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Abstract

In recent years there has been much interest in multiscale signal analysis, a large part
of which is due to the recent flurry of research in the study of the wavelet transform.
Though multiscale analysis seems like a natural enough paradigm in which to solve
various signal processing problems, there has been no satisfactory statistical theory
to provide a means of formulating optimal estimation and identification problems and
assessing the performance of solutions. This thesis provides a statistical framework
for multiscale signal processing based on stochastic models motivated by the wavelet
transform. We first consider models defined on lattices which are naturally motivated
by the synthesis equation of the wavelet transform. These are state-space models in
which the points at each level of the lattice represent the state of the process at
that level or scale. Our models can be used to describe processes which possess self-
similar characteristics and in fact they model rather well 1/f-type processes as well
as, perhaps surprisingly, other well-studied processes. We formulate the smoothing
problem for our class of models and develop fast algorithms for computing the op-
timal smoother based on the wavelet transform. In addition we show how to deal
optimally with the issue of applying the wavelet transform to model signals defined
on finite-length intervals. We then consider state-space models which are defined on
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the homogeneous tree, a special case of the lattice, and which are not so directly tied
to the structure of the wavelet transform. We formulate the smoothing problem for
this class of models and, by taking advantage of the structure of the tree, we develop
an optimal smoother which is a generalization of the Rauch-Tung-Striebel algorithm
to the tree. The filtering step of the smoother is a natural extension of Kalman fil-
tering which includes a new set of discrete Riccati equations. The analysis of these
equations leads us to develop elements of a system theory which allow us to provide
bounds for the filter error covariance as well as to provide asymptotic results. We then
give examples of using our overall framework to smooth 1/f-type processes as well as
standard, stationary 1st-order Gauss-Markov processes. Our results using single-scale
data show the relative richness of our model class in describing a wide variety of phe-
nomena. In particular our examples of smoothing Gauss-Markov processes show that
our smoother performs rather well in comparison to standard smoothers. Moreover,
as are results using multiscale data show, our framework can be used to optimally
fuse data at multiple scales and characterize the performance of this fusion with no
additional algorithmic complexity. Furthermore, by using our smoothing algorithm
on trees we can handle the case where our data may be distributed arbitrarily at
various scales. Also, our approach can be easily applied to 2D, where the potential
computational savings is even more dramatic. Finally, we apply our framework to a
1D version of the optical flow problem in computer vision as a means of illustrating
the potential of a formalism.

Thesis Supervisor: Alan S. Willsky
Title: Professor of Electrical Engineering
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Chapter 1

Introduction and Background

1.1 Introduction

In recent years there has been considerable interest and activity in the signal and

image processing community in developing multi-resolution processing algorithms.

Among the reasons for this are the apparent or claimed computational advantages of

such methods and the fact that representing signals or images at multiple scales is

an evocative notion - it seems like a "natural" thing to do. One of the more recent

areas of investigation in multiscale analysis has been the emerging theory of multiscale

representations of signals and wavelet transforms [9, 20, 21, 22, 23, 28, 35, 36, 40, 54].

This theory has sparked an impressive flurry of activity in a wide variety of technical

areas, at least in part because it offers a common unifying language and perspective

and perhaps the promise of a framework in which a rational methodology can be

developed for multiscale signal processing, complete with a theoretical structure that

pinpoints when multiresolution methods might be useful and why.

It is important to realize, however, that the wavelet transform by itself is not the

only element needed to develop a methodology for signal analysis. To understand this

one need only look to another orthonormal transform, namely the Fourier transform

which decomposes signals into their frequency components rather than its components

at different resolutions. The reason that such a transform is useful is that its use sim-

plifies the description of physically meaningful classes of signals and important classes

of transformations of those signals. In particular stationary stochastic processes are

14
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whitened by the Fourier transform so that individual frequency components of such

a process are statistically uncorrelated. Not only does this greatly simplify their

analysis, but, it also allows us to deduce that frequency-domain operations such as

Wiener or matched filtering-or their time domain realizations as linear shift-invariant

systems-aren't just convenient things to do. They are in fact the statistically optimal

things to do. In analogy, what is needed to complement wavelet transforms for the

construction of a rational framework for multi-resolution signal analysis is the iden-

tification of a rich class of signals and phenomena whose description is simplified by

wavelet transforms. Having this, we then have the basis for developing a methodology

for scale domain filtering and signal processing, for deducing that such operations are

indeed the right ones to use, and for developing a new and potentially powerful set

of insights and perspectives on signal and image analysis that are complementary to

those that are the heritage of Fourier.

In this thesis we develop a theory for multiresolution stochastic processes and

models aimed at achieving the objectives of describing a rich class of phenomena

and of providing the foundation for a theory of optimal multiresolution statistical

signal processing. In developing this theoretical framework we have tried to keep in

mind the three distinct ways in which multi-resolution features can enter into a signal

or image analysis problem. First, the phenomenon under investigation may possess

features and physically significant effects at multiple scales. For example, fractal

models have often been suggested for the description of natural scenes, topography,

ocean wave height, textures, etc. [4, 37, 38, 44]. Also, anomalous broadband transient

events or spatially-localized features can naturally be thought of as the superposition

of finer resolution features on a more coarsely varying background. As we will see,

the modeling framework we describe is rich enough to capture such phenomena. For

example, we will see that 1/f -like stochastic processes as in [55, 56] are captured in

our framework as are, surprisingly, useful models of many other processes. Secondly,

whether the underlying phenomenon has multi-resolution features or not, it may be

the case that the data that has been collected is at several different resolutions.

For example the resolutions of remote sensing devices operating in different bands-

such as IR, microwave, and various band radars- may differ. Furthermore, even
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if only one sensor type is involved, measurement geometry may lead to resolution

differences (for example, if zoomed and un-zoomed data are to be fused or if data

is collected at different sensor-to-scene distances). As we will see, the framework we

describe provides a natural way in which to design algorithms for such multisensor

fusion problems in that treating the case of multiple sensors is no more difficult than

treating the case of a single sensor. Furthermore, our approach leads to algorithms

which are extremely efficient and highly parallelizable.

Finally, whether the phenomenon or data have multi-resolution features or not,

the signal analysis algorithm may have such features motivated by the two princi-

pal manifestations of the at least superficially daunting complexity of many image

processing problems. The first and more well-known of these is the use of multi-

resolution algorithms to combat the computational demands of such problems by

solving coarse (and therefore computationally simpler) versions and using these to

guide (and hopefully speed up) their higher resolution counterparts. Multigrid relax-

ation algorithms[IO, 11, 39, 421 for solving partial differential equations are of this

type as are a variety of computer vision algorithms. As we will see, the stochastic

models we describe lead to several extremely efficient computational structures for

signal processing.

The second and equally important issue of complexity stems from the fact that

a multi-resolution formalism allows one to exercise very direct control over "greed"

in signal and image reconstruction. In particular, many imaging problems are, in

principle, ill-posed in that they require reconstructing more degrees of freedom then

one has elements of data. In such cases one must "regularize" the problem in some

manner, thereby guaranteeing accuracy of the reconstruction at the cost of some

resolution. Since the usual intuition is precisely that one should have higher confi-

dence in the reconstruction of lower resolution features, we are led directly to the

idea of reconstruction at multiple scales, allowing the resolution-accuracy tradeoff to

be confronted directly (e.g. some of these ideas are explored in [15] where a multi-

resolution approach is used to solve an inverse conductivity problem). As we will

see the algorithms arising in our framework allow such multiscale reconstruction and

provide the analytical tools both for assessing resolution versus accuracy and for cor-
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rectly accounting for fine scale fluctuations as a source of "noise" in coarser scale

reconstructions.

In this thesis we analyze classes of multiscale stochastic processes which are largely

motivated by the structure of the wavelet transform. These processes are defined

on lattices where each level of the lattice has the interpretation of a particular scale

representation of the process. In our models scale plays the role of a time-like variable.

For example our processes are Markov in scale rather than in time. The fact that scale

is time-like for our models allows us to draw from the theories of dynamic systems

and recursive estimation in analyzing the properties of our models and in developing

efficient, highly parallelizable algorithms for performing optimal estimation. For our

models defined on general lattices we develop a smoothing algorithm, an algorithm

which computes estimates of a multiscale process based on multiscale data, which

uses the wavelet transform to transform the overall smoothing problem into a set

of independently computable, small 1D standard smoothing problems. Note that

although we focus on 1D signals in this thesis, the fact that scale is a time-like

variable is true as well in the case of 2D, where similar types of models lead to

efficient recursive and iterative algorithms; the computational savings in this case are

even more dramatic than in the case of 11).

We also analyze a class of state-space models defined on the homogeneous tree,

which is a special case of the lattice with a great deal of additional structure. This

structure in fact allows us to extend the notion of Kalman filtering to trees where

the filter recursion is performed in scale rather than in time. The analysis of our

filter leads us to develop elements of a system theory on trees and to derive results

on asymptotic properties of the filter. Our smoothing algorithm is a generalization

of the Rauch-Tung-Striebel smoothing algorithm[45] to trees.

Finally, we give numerical results which give an indication of the richness of our

models in describing processes and which provide an indication of the potential of

our framework in handling multiscale data. In particular we give results which show

that our models do rather well in smoothing 1/f-type processes as well as standard,

stationary 1st-order Gauss-Markov processes. The fact that our smoothers compare

favorably to standard smoothers on single scale data must be viewed in the context
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of the fact that our smoothers handle the case of optimally fusing multiscale data

with no additional complexity. To illustrate this we give examples of how naturally

our general framework can be used to incorporate multiscale data of varying SNR's

as well as multiscale data of varying degrees of coverage. We also provide an example

in which we use our framework to compute optical flow. This illustrates the potential

of our framework in solving a complex problem in computer vision in an efficient,

multiscale fashion.

In the remainder of this chapter we motivate the development of our multiscale

models by first giving a brief overview of the wavelet transform and showing how

the transform leads naturally to the study of processes indexed on lattices. We then

give some background on 1/f-type processes and in particular we cite recent results

on using wavelets to represent these processes which lead naturally to multiscale

models. We follow this with an introduction to a class of state-space models defined

on homogeneous trees, a special case of lattices, for which we provide a great deal of

analysis. And finally, we conclude this chapter with an outline of this thesis.

1.2 The Wavelet 'Dransform

While there are several ways in which to introduce and motivate our modeling frame-

work, one that provides a fair amount of insight begins with the wavelet transforms.

However, the key for modeling is not to view the transform as a method for ana-

lyzing signals but rather as a mechanism for synthesizing or generating such signals

beginning with coarse representations and adding fine detail one scale at a time.

Specifically, let us briefly recall the structure of multiscale representations associated

with orthonormal wavelet transforms [21, 35].

The multiscale representation of a continuous signal f(x) consists of a sequence

of approximations of that signal at finer and finer scales where the approximations

of f(x) at the mth scale consists of a weighted sum of shifted and compressed (or

dilated) versions of a basic scaling function O(x):

+co
f.(x) = E f (m, n)0(2nx - n) (1.2.1)

n=-oo
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As m --+ oo the approximation consists of a sum of compressed, weighted, and shifted

versions of the function O(x) whose choice is far from arbitrary. In particular in order

for the (m + 1)st approximation to be a refinement of the mth, we require O(x) to be

representable at the next scale:

O(x) V2-h(n)0(2x - n) (1.2.2)
n

As shown in [21], h(n) must satisfy several conditions for eq.(1.2.1) to be an

orthonormal series and for several other properties of the representation to hold. In

particular h(n) must be the impulse response of a quadrature mirror filter (QMF)

[21, 47], where the condition for h(n) to be a QMF is as follows.

E h(k)h(k - 2n) = 8n (1.2-3)
k

which has the following frequency domain interpretation where H(w) denotes the

discrete-time Fourier transform of h(n).

IH(w)l' + JH(w + 7r)12 = 1 (1.2.4)

The simplest example of such a 0, h pair is the Haar approximation with

OW 1 0 X < 1
0 otherwise

and
IE2 n = Oilh (n) 2 (1.2.6)
0 otherwise

By considering the incremental detail added in obtaining the (m + 1)st scale ap-

proximation from the mth, we arrive at the wavelet transform. Such a transform is

based on a single function O(x) that has the property that the full set of its scaled

translates 12-/20 (2-x - n)l form a complete orthonormal basis for L 2. In [211 it is

shown that 0 and 0 are related via an equation of the form

,O(x) ,V2g(n)0(2x - n) (1.2.7)
n



CHAPTER1. INTRODUCTIONANDBACKGROUND 20

where g(n) and h(n) form a conjugate mirror filter pair [47], and that

f.+1 (x) = fn(x) + E d(m, n)2'120(2'x - n) (1-2.8)
n

Note that for g(n) and h(n) to form a conjugate mirror filter pair they must obey the

following algebraic relationships.

E g(k)h(k - 2n) = 0 (1.2.9)
k

E g(k)g(k - 2n) = 8n (1.2.10)
k

h(n)h(n - 2k) + E g(n)g(n - 2k) = 6n (1.2.11)
k k

One particular choice of 9(n) is the following.

g(n) = (_l)n h(l - n) (1.2.12)

Thus, fn(x) is simply the partial orthonormal expansion of f (x), up to scale m,

with respect to the basis defined by 0. For example if 0 and h are as in eq.(1.2.5),

eq.(1.2.6), then
1 0 < X < 1/2

O(x) -1 1/2<x <1 (1.2.13)

0 otherwise

-V-'-2 n 0
2

g(n) -,,"2-n 1 (1.2.14)
2

0 otherwise

and 12-/20 (2-x - n) I is the Haar basis.

Thus, we can view a function f (x) as having coarse scale approximations f,(x)

that live in subspaces of L 2 which we denote as V, Furthermore7 these subspaces are

nested, i.e. ... V. C V,.+,..., and in fact Um V, = L 2. The scaling functions O(x) span

these subspaces in that Vm = spanfo(2-x - n) I VnJ, while the wavelet functions

O(x) span the orthogonal complement between successive subspaces; i.e. Vm+1 e Vm =

spanf,0(2-x - n) I VnJ. The structure of these spaces is entirely governed by the
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choice of the filter pair h(n), g(n), which satisfy the algebraic properties in eq.'s(l.2.9-

1.2.11).

One of the appealing features of the wavelet transforms for the analysis of signals is

that they can be computed recursively in scale, from fine to coarse. Specifically, if we

have the coefficients If (m + 1, .)I of the (m + 1)st-scale representation we can "peel

off" the wavelet coefficients at this scale and at the same time carry the recursion one

complete step by calculating the coefficients If (m, .)I at the next somewhat coarser

scale:

f (Ml n) = E h(2n - k)f (m + 1, k) (1.2.15)
k

d(m, n) = 1: g(2n - k)f (m + 1, k) (1.2.16)
k

Note that the operation in eq.'s(I.2.15,1.2.16)) is simply a linear convolution fol-

lowed by downsampling by a factor of two. These equations are often referred

to as. the wavelet analysis equations. For convenience we define the operations in

eq.'s(l.2.15,1.2.16)) formally in terms of "coarsening" and "differencing" operators,

respectively. These operators map 12 sequences, i.e. infinite square-summable se-

quences, into 12 sequences and are defined as follows.

(H,,,f (ra + 1, '))n E h(2n - k)f (m + 1, k) (1.2.17)
k

(G.f(,rn+l,-))n Eg(2n-k)f(,m+lk) (1.2.18)
k

where the operators are indexed with the subscript m to denote that they map se-

quences at scale rn + 1 to sequences at scale nal. From eq.'s(l.2-3,1.2.10,1.2.9 we have

the following fundamental algebraic properties of the operators H, and G,.

H, H,� I (1.2.19)

GG* i (1.2.20)

HmG* o (1.2.21)

Note that for the case of infinite sequences the operators as defined here are precisely equivalent
for each scale; i.e. they are not a function of m. However, we adhere to this notation for the reasons
that a) we may allow for the QMF filter to differ at each scale and b) for the case of finite-length
sequences the operators are in fact different at every scale due to the fact that the the number of
points differ from scale to scale.
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where 'Y' denotes the adjoint of the operator.

Reversing this process we obtain the synthesis form of the wavelet transform in

which we build up finer and finer representations via a coarse-to-fine scale recursion:

f (m, + 1, n) E h(2k - n)f (m, k) + E g(2k - n)d(m, k) (1.2.22)
k k

Eq.(1.2.22) is referred to as the wavelet synthesis equation. Expressed in terms of the

operators H, and Gm we have

f(m. + 1, n) = (H�f (M, -))n + (GM*f (M, -))n (1.2.23)

or

Hm*Hm + G* Gm = I (1.2.24)

which is an expression of eq.(1.2.11) in operator form.

Thus, we see that the synthesis form of the wavelet transform defines a dynamical

relationship between the coefficients f (m, n) at one scale and those at the next. Indeed

this relationship defines an infinite lattice on the points (m, n), where (m, + 1, k) is

connected to * n) if f (m, n) influences f (m + 1, k). This structure is illustrated in

Figure 1.2.1 for the case where h(n) is a 4-tap, filter, where each level of the lattice

represents an approximation of our signal at some scale m. Note that the dynamics in

eq.(1.2.22) are now with respect to scale rather than time. It is this fact which allows

us to apply both ideas and intuition from the study of dynamic systems evolving in

time to the case of multiscale representations of signals. Note also that the fact that

scale plays the role of a time-like variable is true whether our representation is of a

1D signal or a 2D signal. This is an important fact which has implications for the

development of models and algorithms in 2D in which we use this notion of recursion

in scale.

In developing a class of conveniently parametrized models which describes a rich

class of phenomena, we need additional structure to supplement our dynamical mul-

tiscale representations. If we view these multiscale representations more abstractly,

much as in the notion of a state model, as capturing the features of signals up to a

particular scale that are relevant for the "prediction" of finer-scale approximations, we
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Figure 1.2.1: Infinite Lattice Representing Domain of Scaling Coefficients

can define rich classes of stochastic processes and models that contain the multiscale

wavelet representations of eq.'s(l.2.15-1.2.22) as special (and in a sense degenerate)

cases. Carrying this a bit farther, let us return to the point made in the introduction

that for wavelet transforms to be useful it should be the case that their application

simplifies the description or properties of signals. For example, this clearly would be

the case for a stochastic process that is whitened by eq.(1.2.15), eq.(1.2.16), i.e. for

which the wavelet coefficients f d(m, .)I at a particular scale are white and uncorre-

lated with the lower resolution version f f (m, .)I of the signal. In the next section we

review results which indicate that one such class of processes, the class of processes

known as Pactional Brownian motion[38], is indeed simplified by wavelet analysis and

that processes generated by driving the wavelet synthesis equation with uncorrelated

coefficients can exhibit fractal behavior.

With wavelet coefficients which are uncorrelated, eq.(1.2.22) represents a first-

order recursion in scale that is driven by white noise. However, as we know from

time series analysis, white-noise-driven first-order systems yield a comparatively small

class of processes which can be broadened considerably if we allow higher-order dy-

namics. In this thesis we introduce and investigate classes of stochastic state-space
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models on lattices for which the coefficients at each node of the lattice can now be

finite-dimensional vectors rather than just scalars. As further motivation for such a

framework, note that in sensor fusion problems one wishes to consider collectively an

entire set of signals or images from a suite of sensors. In this case one is immediately

confronted with the need to use higher-order models in which the actual observed

signals may represent samples from such a model at several scales, corresponding to

the differing resolutions of individual sensors.

In summary, the wavelet transform provides a unifying framework for the represen-

tation of signals at multiple scales. The structure of the transform can be interpreted

in the context of infinite lattices, of which Figure 1.2.1 is an example, where each

level of the lattice can be used to represent both the approximation of the signal at

that scale (the scaling coefficients) and the difference between that approximation

and the approximation at the next finest scale (the wavelet coefficients). From the

point of view of modeling, the wavelet transform synthesis equation provides the im-

petus for defining dynamic state models in scale. This is the basis for developing

efficient algorithms which are recursive in scale rather than in time. We emphasize

that these ideas are easily extendible to the case of 2D where it remains natural to

consider dynamic models and recursive algorithms in scale and where the potential

for computational savings is even greater.

1.3 1/f-Type Processes

The study of 11f processes originated in the modeling of physical phenomena which

were observed to have long-term temporal dependencies. A model for these processes

was proposed by Mandelbrot and Van Ness[38]. The class of processes described by

this model is referred to as the class of fractional Brownian motion processes and it

includes as a special case the ordinary Brownian motion process. It is a Gaussian

zero-mean nonstationary process indexed by a single scalar parameter 0 < H < 1

(H = 1/2 corresponds to ordinary Brownian motion). If we denote the process as

BH(t), its covariance has the following form.

A
rBH (t, S) = E [BH (t) BH
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0122(ItI2H + IS12H _ It _ S12H) (1-3.25)

It was noted that these the increments of these processes are stationary and they

obey the property of statistical self-similarity[38]; i.e. the statistics of the process

are invariant to time scaling. This property of scale invariance already hints at the

possible use of the wavelet transform as a useful analysis tool for these processes.

Since the fractional Brownian motion process is non-stationary, one would expect

that the use of non-stationary transforms might simplify the analysis of such processes

and perhaps lend further insight into their structure. Flandrin[25] uses a variety of

non-stationary transforms in order to analyze fractional Brownian motion, including

the Wigner-Ville transform and the continuous-scale wavelet transform ( the wavelet

transform using continuous scale and translation parameters rather than powers of

two). He makes precise the notion of spectrum for this non-stationary process by

defining an averaged spectrum with respect to each of these transforms.

In the case of the Wigner-Ville transform , which is defined as

W(t, w) rB,, (t + 't - )e dr (1-3.26)
2 2

the averaged spectrum is taken to be

Sw (w; T) W(t, w)dt (1-3.27)
T fo

The result of taking the limit of this spectrum as the period goes to infinity is

lim Sw (w; T) = 1 (1-3-28)
T--+m IWI2H+1

Furthermore, for any finite T and any given frequency wo it is shown that for T > WO

Sw (wo; T) (1-3.29)1 W012H+1

A similar result is shown using the continuous-scale wavelet transform, which is de-

fined as
00 t

C (t, a) BH(S)9(" )ds (1-3-30)
Va- f-0. a
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where a is the continuous scale parameter and g(t) is the wavelet function. To define

a notion of power spectrum in this case we define

rB,(t, s; a) A E[C(t, a)C(s, a)] (1.3.31)

which turns out to be a function of '; in other words when analyzed relative to
a

a given scale, BH(t) is stationary, which is intuitively satisfying given the fact that

the increments of BH(t) are stationary. So by fixing a, the Fourier transform of

rB,(t, s; a), denoted as Sc(w; a), is well defined. The averaged spectrum is taken to

be the average of Sc(w; a) taken over all scales and integrated using the normalizing

measure for the continuous-scale wavelet transform.

S' (W) f - Sc (w; a) daW 0 a2 (1.3-32)

1 (1-3-33)
IWI 2H+1

These results show that in a very precise sense the spectrum of fractional Brown-

ian motion is indeed 1/f-like. Furthermore, the use of wavelet transforms seems to

simplify a great deal of the analysis of these processes. In particular the wavelet

coefficients of these non-stationary processes are stationary. It turns out that an even

greater deal of simplification occurs by using wavelets to analyze these processes as

borne out in the results of Tewfik[34]. These results consist of the analysis of the

covariance of fractional Brownian motion, eq.(1.3.25), using the orthonormal wavelet

transform. The results indicate that the wavelet coefficients of fractional Brownian

motion are stationary and furthermore, the correlation between coefficients in both

scale and translation decays hyperbolically fast. The fast decay of the coefficients is

due to the vanishing moments property of 0(t) where an increase in the number of

vanishing moments of O(t) necessarily entails an increase in the order of the QMF

filter h(n). Thus, these results indicate that wavelets do very wen in decorrelating or

whitening the fractional Brownian motion process. This has strong implications for

the modeling of 1/f-type processes as shown in the results of Wornen[55].

The results of Wornell also concerns 1/f-type processes and in particular he con-

siders processes whose measured spectra are of the following form.
S(W) 2

1WI" (1.3-34)
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where 0 < 7 < 2. Note that -y ranges slightly differently from the fractional power

associated with the spectrum of the fractional Brownian motion process. These spec-

tra correspond to a particular range of physical phenomena as studied in the work of

Keshner[33].

Motivated by Flandrin's[25] earlier use of wavelets to analyze 11f processes, Wor-

nell shows how the wavelet transform may be used to produce models which approx-

imate 1/f-type spectral characteristics. In particular he constructs models in which

the wavelet coefficients d(mn) are completely uncorrelated with respect to both m

and n, and their variances obey the following power law in scale:

E[d'(m, n)] = ,'2--Im (1.3.35)

where o,2 is a positive constant. He shows that the process resulting from driving the

wavelet synthesis equations with coefficients obeying eq.(1.3.35) has an "averaged"

spectrum of the following form, where the notion of averaging corresponds to assuming

the model has uniformly distributed random phase:

k, < S(W) < k2 (1-3-36)
'YJWF TW I

for some 0 < k, < k2 < oo which depend on the choice of wavelet function. Thus, the

wavelet basis represents a Karhunen-Loeve-like expansion of 11f processes. From the

perspective of modeling this result shows that by assuming the wavelet coefficients are

white and their variances are a function only of scale, the resulting process exhibits

1/f-type spectra. Note that as we will show this corresponds exactly to a special case

of one of our models. The fact that the variances of the coefficients are equivalent

modulo a factor that varies geometrically with scale coincides intuitively with the fact

that the increments of the fractional Brownian motion process are self-similar.

In summary, wavelets go a long way in simplifying the analysis of 1/f-type pro-

cesses. For example, the fact that while these processes are non-stationary their

increments are stationary is characterized by the fact that the wavelet coefficients

are stationary. Furthermore, the wavelet transform provides a Karhunen-Loeve-like

decomposition in that the wavelet coefficients of these processes are nearly uncorre-

lated. Finally, by setting the the wavelet coefficients to be uncorrelated with variances
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decaying geometrically in scale, we can actually synthesize a process with an average

spectrum corresponding to a 1/f-type process. Thus, the wavelet transform can be

used rather naturally to both analyze and model 1/f-type processes.

1.4 Multiscale Representations and Trees

In this section we introduce the class of state-space models on homogeneous trees

which is the subject of Chapter 3. Homogeneous trees are a special case of the lattice

with a great deal of additional structure of which we take advantage in developing

several highly efficient smoothing algorithms, including some that do not involve the

wavelet transform. This additional structure also allows us to analyze much more

deeply the structure of both our models and our algorithm.

Recall that the scaling coefficients, f (m, n), of a function reside on an infinite

lattice where the structure of the lattice is determined by the choice of wavelet rep-

resentation. As a specific case the Haar representation naturally defines a dyadic

tree structure on the points (m, n) in which each point has two equally-weighted (i.e.

h(O) = h(l)) descendants corresponding to the two subdivisions of the support inter-

val of 0(2-x - n), namely those of 0(2(-+')x - 2n) and 0(2(-+')x - 2n - 1). The

structure of the tree is illustrated in Fig.1.4.2 where for notational convenience we

denote each node of the tree by a single abstract index t, i.e. t = * n), where T

denotes the set of all nodes and m(t) denotes the scale or m-component of t. The

development in the previous sections provide the motivation for the study of stochas-

tic processes x(Mn) defined on homogeneous trees (i.e. trees where the number of

branches emanating from each node is 'constant) where x(m, n) can in some sense be

viewed as a stochastic model for the scaling coefficients of the Haar representation of

a signal.

Let us make several comments about this case. First, as illustrated in Figure 1.4.2,

with this and any of the other lattices associated with the wavelet transform, the scale

index m is time-Eke. For example it defines a natural direction of recursion for our

representation: from coarse-to-fine in the synthesis of a signal and from fine to coarse

in the analysis (e.g. in the Haar case x(m, n) is directly obtainable from x(m + 1, 2n),
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Figure 1.4.2: Dyadic Tree Representation

x(m + 1, 2n + 1)). In the case of our tree, with increasing m i.e. the direction of

synthesis - denoting the forward direction, we then can define a unique backward shift

1Y_1 and two forward shifts a and 3 (see Figure 1.4.2). In particular, at = (m + 1, 2n),

flt = (m + 1, 2n + 1), and y-'t = (m - 1, [2]) where [y] =integer part of y.
2

As in the synthesis description of multiscale representations, one of the classes

of stochastic models we consider in this thesis are naturally described as evolving

from coarse-to-fine scales. Specifically, we consider the following class of state-space

models on trees:

x(t) = A(t)x(7-1t) + B(t)w(t) (1.4.37)

where f w(t), t E Tj is a set of independent, zero-mean Gaussian random variables.

Note that this model is defined locally along the nodes of the tree and that the

recursion is de-fined downwards in scale. We also note that while we develop our

formalism for the case of dyadic trees there is a trivial extension of everything we

do to the 2D case in which trees with four downward branches or quadtrees are used

to model 2D processes. The use of a simple quadtree model of this type has been

explored in the context of image coding and reconstruction[19, 52].

As we will see this formalism, which generalizes finite-dimensional state models
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to homogeneous trees, can be used to capture fractal-like behavior. Moreover, these

models provide surprisingly accurate descriptions of a broad variety of stochastic pro-

cesses and also lead to extremely efficient and highly parallelizable algorithms for

optimal estimation and for the fusion of multiresolution measurements using multi-

scale, scale-recursive generalizations of Kalman filtering and smoothing.

1.5 Outline

The following is an outline of the remainder of this thesis.

9 Chapter 2:

We consider processes motivated directly by the structure of the wavelet trans-

form which are defined on lattices. We construct state-space models for these

processes in which scale plays the role of a time-like variable and then analyze

the eigenstructure of these processes. We formulate the multiscale smoothing

problem for our lattice processes and develop an algorithm which is highly ef-

ficient for smoothing single scale data and which incorporates multiscale data

with no added complexity. This algorithm uses the wavelet structure of the

process to decouple the computation into a set of small, independent standard

smoothers. We present two versions of the algorithm, one which goes from

coarse to fine then fine to coarse and another which goes from fine to coarse

then coarse to fine. We then discuss the problem of applying the wavelet trans-

form to finite-length data. The typical approach is to base the transform on

cyclic convolutions rather than on linear convolutions and to perform the scale

by scale recursion up to some specified coarse scale. We present a more general

perspective on the problem of adapting the wavelet transform to finite-length

data which includes as a special case the approach using cyclic convolutions as

well as other approaches which provide modifications of the wavelet transform

to provide Karhunen-Loeve expansions of windowed multiscale processes.

9 Chapter 3:

We formulate and analyze the multiscale smoothing problem for our class of
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state-space models on homogeneous trees. These models can be thought of as a

special case of one of our lattice models in which the lattice is associated with

the Haar wavelet. We derive a two-sweep smoother for these models which is

highly efficient and extremely parallelizable. We exploit the structure of the tree

to which we generalize notions from Kalman filtering theory and linear system

theory. Our Kalman filter propagates upwards along the tree, accumulating

measurements from descendants nodes. This leads us to the analysis of a new set

of Riccati equations. We then define notions of reachability, observability, and

reconstructibility which allow us to give results on bounding the error covariance

of our generalized Kalman filter. We also define a natural notion of stability

for our processes which, along with our bounds on the error covariance, allows

us to give results on the stability of our filter as well as asymptotic properties.

Our overall smoothing algorithm for our tree processes is a generalization of the

Rauch-Tung-Striebel algorithm to trees which consists of the filtering step as

a first sweep up the tree followed by a sweep down the tree using a recursion

that is driven by the previous filtered estimates. Furthermore, by viewing the

smoothing problem from the Hamiltonian perspective we show that we can

derive a two-sweep algorithm by factoring the Hamiltonian dynamic equations.

In fact a property of these dynamics is the fact that they cannot be diagonalized;

i.e. there is no two-filter smoothing algorithm on trees. We give a derivation

of a Maximum-Likelihood version of the Rauch-Tung-Striebel algorithm based

on triangularizing these dynamics. This algorithm has the added advantage of

being able to handle sparse, non-uniformly sampled data. This is an important

point of consideration with regard to sensor fusion problems. As in the case

of our lattice models our algorithms apply equally well, with no difference in

complexity, to both the case of single scale and the case of multiscale data.

Finally, we present an iterative algorithm for solving the smoothing problem

which bears some resemblance to multigrid algorithms. Like our Rauch-Tung-

Striebel algorithm, this algorithm does not rely on the wavelet structure of the

process and can be applied to general measurement scenarios. We develop this

algorithm in the context of our tree models and show how it may be extended
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to the case of lattice models.

Chapter 4:

To demonstrate the applicability of our multiscale estimation framework and

to give an indication of how well our models represent processes, we give nu-

merical examples of the results of using our framework on specific problems. In

particular we give examples of smoothing well-studied processes using our mod-

els. For the case of 1st-order Gauss-Markov processes we show that the relative

difference in performance of standard smoothers using the "true" model versus

that of our smoothers based on our multiscale models is arguably insignificant.

We show that the same is true for the smoothing of 1/f-type processes. Further-

more, we demonstrate the performance of our smoothers for multiscale data as

well as for sparse, non-uniformly sampled data. In the case of non-uniformly

sampled data we give an example in which coarse data of full coverage is used

to interpolate sparse fine scale data. Finally, we apply our framework to the

optical flow problem. We formulate the problem in the context of a smooth-

ing problem, defined precisely within in our framework, which can be solved

extremely efficiently using our multiscale algorithms.

----------



Chapter 2

Multiscale Processes on Lattices

2.1 Introduction

In this chapter we describe and analyze multiscale stochastic processes defined on

lattices. We construct a class of state-space models which is directly motivated by

the synthesis equation of the wavelet transform. We characterize the eigenstructure

of these processes, which is essentially related to the wavelet transform. We then

consider the multiscale fusion problem in which noisy measurements of our process at

different scales must be fused optimally to estimate the process. In this context we

develop an optimal fusion algorithm based on using the wavelet transform to diago-

nalize the smoothing problem, i.e. transform the problem into a set of independent

subproblems, resulting in an efficient and parallelizable procedure. In fact by work-

ing in the wavelet-transform domain we reduce the multiscale smoothing problem to

a set of independently computable 1D smoothing problems where the length of the

smoothing interval is at most log(N), where N is the number points at the finest

scale. Finally, we discuss the significant problem of adapting the wavelet transform

to treat finite-length data. We characterize the problem in such a way as to sug-

gest a variety of possible transforms which are finite-length and orthonormal. One

of these examples is the case of using cyclic convolutions at each scale for both the

coarsening as well as the differencing operations. This procedure amounts to assum-

ing a periodic representation of the signal at each scale. Though the assumption of

periodicity is commonly used to adapt the wavelet transform to finite sequences, this

33
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can potentially introduce unwanted distortions at the edges of the interval. Other

possibilities include transforms which are not based on using cyclic convolutions. We

develop in detail examples of these other possibilities and give an interpretation of

these transforms as a type of windowing of the signal at multiple scales.

2.2 Eigenstructure of Lattice Models

In this section we define our class of lattice models which is directly motivated by

the synthesis equation, eq.(1.2.22), of the wavelet transform and analyze its eigen-

structure. As we will show, included in our class of models is precisely the model

used by Wornefl[55, 56] to describe 11f processes. The Karhunen-Loeve expansion

for the covariance function of our processes at a given scale is achieved exactly by the

wavelet transform. We will use this fact to derive an efficient smoothing algorithm

based on diagonalizing the problem using the wavelet transform. We develop our

ideas for the case of the infinite lattice, corresponding to the wavelet transform as

defined in Chapter 1, and later discuss the issue of adapting the wavelet transform

to the case of finite-length data.

Consider an infinite lattice corresponding to a wavelet whose scaling filter, h(n),

is an FIR filter of length P. Recall that each level of the lattice can be viewed as

the domain of an 12 sequence representing either successively finer approximations of

a signal, the scaling coefficients f (m, n) where f gets finer with increasing m, or the

corresponding wavelet coefficients, d(m, n). We define models whose state, x (M) G 12,

can in some sense be viewed as the stochastic analog of the scaling coefficients at

scale m. Here, x(m) is defined to be an infinite-dimensional random vector whose

elements are defined at a particular scale of the lattice. Let H, and G'-' denote

the coarsening and differencing operators defined in eq.'s(l.2.17,1.2.18), where the

subscript m denotes that the operators map vectors at scale M + I to vectors at scale

m. Let G* and H,*,, denote their respective ad oint operators, i.e. operators that map

vectors at scale m to vectors at scale m + 1.

If we consider the synthesis equation of the wavelet transform, eq.(1.2.22), driven

by uncorrelated wavelet coefficients d(m, n), where the variances are constant along
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scale but varying from scale to scale, we get the following stochastic-dynamic state

model where we define the scale index rn from an initial coarse scale, L, to the

finest scale, M, and where we assume that the coarsest scaling coefficients f(L7n)

are uncorrelated. Thus, with x(m) corresponding to f (m, -) and w(m) to d(m, -) we

have for m = L7 L + 11 ... M - 1

E[x(L)x(L)T] = (2.2.1)

= ALI

x(m + 1) = H�x(m) + G* w(m) (2.2.2)M

E [W(i)W(i)T] = Ai (2.2-3)

= AjI I i = L7 L + 1,...M - 1

Note that if we let Ai = o,22--yi ) i.e. the relationship in eq.(1.3.35), this model is

precisely the one considered by Wornell for modeling a 1/f-type process with spectral

parameter y. It is easy to show that the covariance of the process at each scale m,

i.e. E[x(m)xT(M)]' is as follows.

R--,(m) E[X(M)X(M)T] (2.2.4)

M-1 i=L

Hi*)AL( fj HO
i=L M-1

M-1 M-1 k+1+ Hi*)G*AkGk( II Hi) (2.2.5)
k

k=L i=k+l i=M-1

where we have, for simplicity of notation, adapted standard matrix-vector notation for

,,(m) and the infinite vector x(m). We now proceed to analyze the eigenstructure

of R,,,(m). To do this we need the following properties of the operators Gn and Hm7

which are the fundamental algebraic relations between the coarsening and differencing

operators as stated in eq.'s(l.2.19-1.2.21,1.2.24).

HH,* = I 7 GiG* = I (2.2-6)i

Hj*Hi + G*Gi = I (2.2.7)i

HiG* = 0 (2.2.8)
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We begin by defining unit vectors in 12 as follows.

0, 10, ... 0 ... ]T0 (2.2.9)

ith

where the superscript j is used formally to denote that the vector corresponds to the

jth scale of the lattice. Note that the superscript in this case is unnecessary since 6i' is

not a function of scale. We adhere to this notation, since for the case of finite-length

data 8ij will be a function of scale. The following lemma characterizes the eigenvectors

for the correlation matrix R,,,,(n7,).

Lemma 2.2.1 The vectors :U�(m), v'(,ra) for I = L,...m - 1 and for i, n E Z aren

eigenvectors of the correlation matrix at scale m, R,,,.,(rn), where

M-1
:UiL(,tn) Hj*)6L (2.2.10)

j
j=L

and
M-1

Vn('M) Hi*) GI* 8n (2.2.11)
i=1+1

The following holds:

R..(M)�UjL(rn) = �Lff�(M) (2.2.12)

R.,,,(m,)v'(m,) = AIv1 (m) (2.2.13)n n

for I = L,...m - 1, i, n E Z where AL, Al are scalars.

Proof

We show the existence of scalars' �L and Al for 1L7 ... m, 1 such that
R..(rn)Fffm) = �L7U�(rn) and R,,.,(,m)vl (m) = AY (m) for n0, 1,...2' - 1 i

0,1,...2L1. Let

M-1 k+1

rk Hi*)G*AkGk( H Hi) (2.2.14)
i=k+l i=M-1

M-1 i=L
ILL = *)�LL( ]I Hi)IF 11 Hi (2.2.15)

i=L M-1
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so that

R__�(m)vn'(M) =�LVn'(M) + (E rk)Vn'(M) (2.2.16)
k=L

We now examine separately the structures Of '�Lvl (m) and Flvl (m). We beginn n

with XFLV' (m) by noting that for I = Li ... M - 1n

(M) rn-1 i=L M-1
n *)�&L( 11 Hi)( H Hi*)G*6

TLV HHi I n
i=L M-1 i=1+1

0 (2.2.17)

which follows from eq.(2.2.6) applied m - 1 - I times followed by the application

of eq.(2.2.8). Next, we examine the structure of Fkvl (m) which can be written outn

explicitly as

m-1 k+1 M-1rkv'(m) = Ak(H Hi*)G*Gk( H Hi)( II Hi*)G*6n1 (2.2.18)n k
i=k+l i=M-1 i=1+1

We consider the following three cases. For k < 1: Using eq.(2.2.6) we can reduce

eq.(2.2.18) to the following.

'n-1 k+1

riv'(m) = Ak( 11 Hi*) G* Gk Hi) G* 6n' (2.2.19)n k I
i=k+l i=l

Applying the orthogonality condition, eq.(2.2.8), to eq.(2.2.19), we arrive at the fol-

lowing.

rkvi (M) = 0 (2.2.20)n

For k > 1: Using eq.(2.2.6) we can reduce eq.(2.2.18) to the following.

rkv'(m) = Ak( 11 Hi*)G*Gk( ]I Hi*)G*6n'n k
i=k+l i=1+1

= 0 (2.2.21)

where the last equality follows from eq.(2.2.8).

And finally, for k = 1: Using eq.(2.2.6) we can reduce eq.(2.2.18) to the following.

riv'(,m) = Al( fj Hi*) G* Gi G* 6n'n
i=l+l

Al( Hi*)G*6n'

= Alvn'(M) (2.2.22)
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where the second equality results from the application of eq.(2.2.6) to GjG*

Thus, from eq.(2.2.16) and eq.'s(2.2.20,2.2.21, 2.2.22) we get

R.,,,(m)v'(m) = Alv'(m) (2.2.23)

Finally, we consider the structuresOf XFL-ff�(m) and ]Pjr�(m). Using eq.(2.2.8) we

can write

k

rk'ff�(m) = Ak( H Hi*)G*Gk(H Hj*)b�
i=k+l i=L

= 0 (2.2.24)

Using eq.(2.2.6) we can write

XFLY�(M) �Ljj Hi*) 6�
i=L

�Ld(M) (2.2.25)

From eq.'s(2.2.24,2.2.25) we conclude that

R..(m)'F�(m)= �Ly�(M) (2.2.26)

We have shown that with AL = �L and A' = Al for I LI ... M. - 1,
.. (M)UnL(M) ALF�(m) and R,,,,(m)vl (m) = AY(m), thus proving the lemma.

R n n

F1

Note that computing the representation of a sequence in the basis,

f-*m)Ivn1(m) iIn E Z I = LI ... M - 1 1, is done efficiently using the wavelet trans-

form of the sequence, i.e. recursively computing in scale the wavelet coefficients via

the analysis equations, eq.'s(I.2.15,1.2.16). We also have the following lemma which

shows the eigenvectors to be mutually orthogonal.

Lemma 2.2.2 The vectors :UjL(m), v1 (m) for L,...m - 1, n 0, 1 ... 21 - 1,n

L - j(M)]T[V1(M)] b)i = 0, 1,...2 1 are mutually orthogonal; i.e. a) [vi k

[Vj(M)]T[-VL(M)] [-V�(m)]T[-VL(rn)] &i 0, and c) j _j.

Proof
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We begin with part a). For j < 1:

j+1 M-1
T I(M)] = (6ij)TGj( ][I H,,)( 11 H,*)GI*6k'IVI?(M)l 1Vk (2.2.27)

= (6ij)TG H.)G*6k1 (2.2.28)

= 0 (2.2.29)

where the second equality foRows from eq.(2.2.6), while the third equality follows

from eq.(2.2.8).

And similarly for j > 1:

j+1 M-1T (6ij)TGj H.,) H,*) G* 6' (2.2.30)
lvz?(m)l lvk'(m)) = I k

= (6ij) TG.( H,*)G*6' (2.2.31)3 1 k

= 0 (2.2.32)

where again the second equality follows from eq.(2.2.6), while the third equality fol-

lows from eq.(2.2.8).

Finafly, for j = 1:

1+1 M-1
[V�(M)]T[VI(M)] = (6il)T Gi H.,)( H,,*)G*6k' (2.2.33)

k 1

= (6i1)TG1G*61 (2.2.34)1 k

= (6il)T61 (2.2.35)
k

= 6i-kj-l (2.2.36)

We now proceed with part b).

j+1 M-1
[Vj(M)]T[-VI(M)] j)T H H. *)6L

(6i Gj )( ]I H., k (2.2.37)
S=M-1 q=L

j
= (6ij) T Gj( 11 H.*) G* 6L (2.2.38)

L k
s=L+l

= 0 (2.2.39)
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where the second equality follows from eq.(2.2.6), while the third equality follows

from eq.(2.2.8).

Finally, part c).

L M-1

[-VNM)1'1-VjL(M)1 05� )T( ]I H.)( ]I H.*)8jL (2.2.40)

3=m-l
W) 6i (2.2.41)

8i-j (2.2.42)

where the second equality again follows from eq.(2.2.6).

We have the following corollaries to Lemmas 2.2.1,2.2.2 which win be used in the

next section to diagonalize the smoothing problem.

Corollary 2.2.1 Given the collection of eigenvectors, J:UjL(m), v1 (m) I

1 i, n E Zj, and the fine-to-coarse scaling operator H,-,, the following holds.

H,17�(m) = F�(m - 1) i E Z (2.2-43)

Hn-lV' (m) = v' (m - 1) 1 = LI ... m-2 nEZ (2.2.44)

Hn-lV' (m) = 0 I=m-1 nE Z (2.2.45)

Proof

Consider the case where I = m - 1. Note that from the orthogonality condition,

eq.(2.2.8),
n H.-,Gm*

Hn-lV' 6n--1

0 (2.2.46)

For 1 L,..., m - 2

m-1Hln-lvl (m) Hn-l( H Hi*)Gm*
i=1+1

m-2

Hi*)G*8n'
i=1+1

vi(M-1) (2.2.47)
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And finally,

HMjff�(m) HMj(H Hj*)6�
i=L

m-2

H Hj*)6�
i=L

1) (2.2.48)

Corollary 2.2.2 Given the collection of eigenvectors, f:u� (m), v1 (m) -m -n

1 i, n E Zj, and the fine-to-coarse wavelet operator G,-,, the following holds.

G'_J�U�(M) = 0 i E z (2.2.49)

G,-iv'(m) = 0 l=LI ... m-2 nE Z (2.2-50)

G,-,V'(m) = 6n' 1=m-1 nE Z (2.2-51)

Proof

Consider the case where 1 = m - 1. From eq.(2.2-6)

G,-iv'-'(m) = G'_1G*
n M-1

6n7_1 (2.2.52)

From the orthogonality condition, eq.(2.2.8), for I = LI ... I m - 2

M-1v II Hi*)G* 7_1GM-1 nl(M) = GM-,( M-16ni=1+1

= 0 (2.2.53)

and also

M-1

GM-17ff�(m) = Gm-,( 11 Hj*)6�
i=L

= 0 (2.2.54)
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Corollary 2.2.3 Given the collection of eigenvectors, JF�(m), v1 (m) I

1 in E Zb and the coarse-to-fine operator, H,*n, the following holds.

H,*,,VjL(m) = -FiL('M+l) iEZ (2.2.55)

H,,*,v'(,m) = v'(m+l) 1=Ll ... m-1 nEZ (2.2.56)

Proof

To show eq.(2.2.55) we have

H,*.FjL(m) = Hm*( Hj*)6jL
j=L

= FiL(m + 1) i E Z (2.2.57)

To show eq.(2.2.56) we have

H�v'(m) = H,�( Hi*)G*6n'

= vi nEZ (2.2.58)
n(M +

0

We now consider an important variation of the models we have considered so far.

We consider lattice models in which the elements of the state vectors at each scale

are no longer simply scalars but rather finite-dimensional vectors. In other words, if

we let d denote the dimension of these vectors and if xi(m) denotes the ith entry of

x(m), then xi(m) E JZd. By abuse of notation we now let Hm, Gm be vector versions

of the coarsening and differencing operators; i.e.

(Hmf(M + 1, -))n h(2n - k)f (m + 1, k) (2.2.59)
k

(Gm f (m + 1, =A E g(2n - k)f (m + 1, k) (2.2.60)
k

f (m + 1, k) E -Rd (2.2.61)

We specify our model as follows for m = L, L + 1,...M - 1,

E[x(L)x(L)'] = 'P.(L) (2.2-62)

x(m + 1) = H,*nA(m + 1)x(m) + B(m + 1)w(m + 1) (2.2-63)

E[w(i)w(j)'] = Q(i)6i-j , i = L + 1,...M (2.2.64)
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where

A(m) diag(..., (2.2-65)

B(m) diag(..., (2.2.66)

Q(m) diag(..., (2-2-67)

'P.,(L) diag( .... (2.2.68)

and where A(m), B(m), Q(m), and P,,(L) are finite-dimensional matrices represent-

ing the system matrix, the process noise matrix, the process noise covariance matrix,

and the initial state covariance matrix, respectively. As we will show, the diagonal

operators A(m), B(m), Q(m), and 'P.,.(L) do not affect the block eigenspace structure

of x(m), but do affect the eigenvalues. Note that by augmenting our model class to

include finite-dimensional state vectors defined on lattices, we allow for the possibility

of higher-order models. This allows us to consider a considerably richer class of pro-

cesses which is parametrized by the matrices corresponding to our state model. Note

also that this model bears resemblance to Laplacian Pyramid schemes[12] where the

added detail in going from one scale to the next is not constrained by the differencing

operator G,. Finally, this is the type of model we develop on trees in the next chapter

which corresponds to the case where H,*,, corresponds to the Haar representation.

The covariance of the process at each scale m, i.e. E[x(m,)xT(M)]' is as follows

where we have used the fact that the operators A(m), B(m), Q(m), 'P.,(L) and their

adjoints commute with the operators H, H,*,,.

R,,,,(m) E [X(M)X(M)T] (2.2-69)
'."-I i=L

(T(M - 1, L)P. (L)T* ( M' - 1, L)) Hi*)(H Hi)
i=L M-1

M-1 M-1 k

+ E (T(M - 1, k)B(k)Q(k)B*(k)T*(m, - 1, k))( H Hi*)( H Hi)
k=L+l i=k i=M-1

+ B(m)Q(M)B*(M)

where for i > j

T(i, j) j (2.2.70)
1, j) i > i
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It turns out that the block eigenstructure of this process is precisely the same as that

of the process defined earlier in eq.'s(2.2.1-2.2.3), modulo the fact that we now must

deal with d x d blocks as the basic elements of our decomposition. In fact what we

will refer to as block-eigenvectors will have the same structure as in the case of our

scalar model except that H,, Gn are now the appropriate vector versions and the

resulting block-eigenvectors are infinite sequences of d x d matrices rather than an

infinite sequence of scalars. The "eigenvalues", however, will differ as they will in fact

now be d x d eigenmatrices which will be functions of the matrices A(M), B(M), Q(m),

and P,.,(L). We first redefine our unit vectors as follows.

7 Odi ... I Od) Id ) Od i ... Od7 ... ]T (2.2.71)

ith

where the superscript j is again used to denote that the vector (in (12)d) corresponds

to the jth scale of the lattice and where Id is the d x d identity matrix (and Od the

d x d zero matrix). We have the following lemma concerning the block-eigenstructure

of R,,,(m), where the proof is patterned after that of Lemma 2.2.1.

Lemma 2.2.3 The block vectors -ViL(m), vl (m) for 1 ... m - 1 and for i, n E Z

are block-eigenvectors of the correlation matrix at scale m, Rx.T(m), where

M-1
11 Hj*)6L

:U� (m) j (2.2.72)
j=L

and
M-1

vn ('Tn) ( H Hi* ) G 6n' (2.2-73)

i=l+l

The following holds:

R..(m)!Uj'(m,) = diag( ... )7U�(M) (2.2.74)

R..(m)v'(m) = diag( ... , Al,...Aj,...)v'(m) (2.2.75)

n n

for L,...m - 1, i, n E Z where AL, Al are d x d matrices of the form

M
T ),j� T ).I�T(M

AL = (II (k, L) B (k) Q (k) B (k (k, L)) + �t 1, L) P:, (L 1, L)

k=L+l

(2.2.76)

M
Al = Y T ),tT(k, 1))

(it (k, 1) B (k) Q (k) B (k (2.2.77)

k=l+l
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where

j (2.2.78)
A(i)lk(i - 1,j) i > i

Proof

We show the existence of matrices �L and Al for 1 = LI ... m such that
R..(m)'V�(m) = diag( ... I ALI ... �L7 ... )-fiL(M) and R.,.(m)vl (m) = diag(..., Al, ... Al,...)vl (m)

n n

for i, n E Z. Let

'n-' i=LIF L (L)T* (m - 1, L)) H Hi*) H Hi) (2.2.79)
i=L M-1

k

rk 1, k)B(k)Q(k)B*(k)T*(m - 17 k))( H Hi*)( II Hi)(2.2-80)
i=k i=M-1

so that

R..(M)Vn'(M) =�LVnl(M) + (E rk)Vn'(M) + (B(M)Q(M)B*(M))Vn'(M) (2.2.81)
k=L+l

Immediately, we have that
(B(m) Q(m)B*(m))v1 (m) = diag(..., B(m)Q(m)B'(m),....B(m)Q(m)B'(m),...)v'(m)

n n

(2.2.82)

We now examine separately the structures Of '�LV'(m) and rkv, (m). We begin

with TLVI (m) by noting that for I = LI ... M -n

TLV'(m)

n
M-1 i=L M-1

x (11 Hi*)(11 Hi)( 11 Hi*)G*bnl
i=L M-1 i=1+1

0 (2.2-83)

which follows from eq.(2.2.6) applied m - 1 - 1 times followed by the application

of eq.(2.2.8). Next, we examine the structure of rkV'(m) which can be written outn

explicitly as

rkV'(m) (T(m-lk)B(k)Q(k)B*(k)T*(m-lk))
M-1 k M-1

X Hi*) Hi) Hi*) G* 8n' (2.2-84)
i=k i=M-1 i=1+1
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We consider the following three cases. For k < 1 + 1: Using eq.(2.2.6) we can reduce

eq.(2.2.84) to the following.

rkvl(m) = (T(m-lk)B(k)Q(k)B*(k)T*(m-lk))n

M-1 k

x Hi*) (H Hi) G* 6n' (2.2-85)
i=k i=1

By applying the orthogonality condition, eq.(2.2.8), we arrive at the following.

rkvnl(M) = 0 (2.2-86)

For k > I + 1: Using eq.(2.2.6) we can reduce eq.(2.2.84) to the following.

M-1rkV'(m) = (T(m - 1, k)B(k)Q(k)B*(k)T*(m - 1, k))( Hi*)G*6n'

= (T(m-lk)B(k)Q(k)B*(k)T*(,rn-lk))V'n(m)

= diag( ... I ml, ... ml I ... )Vn'(M) (2.2-87)

Ml = 4k(m - 1, k)B(k)Q(k)BT(k),kT(n7' _ 1, k) (2.2-88)

And finally, for k = 1 + 1: Using eq.(2.2.6) we can reduce eq.(2.2.84) to the

following.

rkv'(m) = (T(m - 1, k)B(k)Q(k-)B*(k)T*(m - 1, k))( Hi*)G*6n'n
i=1+1

(T(m - 1, k)B(k)Q(k)B*(k)T*(m - 1 k))Vn
I , (M)

= diag(.... M2,...M2,...)v'(rn) (2.2-89)n

M2 = t(m - 1, k)B(k)Q(k)B T(k),tT(,rn _ 1, k) (2.2.90)

Thus, from eq.(2.2.81), eq.(2.2.82), and eq.'s(2.2.86,2.2.87, 2.2.89) we get

M

R�,:�(m)vn'(M) E 11k) B (k) Q (k) B * (k)T* (m - 1, k)))
k=1+1

nV' (m)

= diag(..., M3,...M3,...)v'(n7,) (2.2.91)n
M

M3 = E (111(m - 11 k)B(k)Q(k)B T (k)�tT(M _ 1, k)) (2.2.92)

k=1+1
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Finally, we consider the structures Of TLF�(m) and rk:U�(M)- Using eq.(2.2.8) we

can write
M-1 k-1

rk;U�(rn) = (T(m - 1, k)B(k)Q(k)B*(k)T*(m - 17 k))( H Hj*)(H Hj*),6�
i=k i=L

(T(M - 1, k)B(k) Q(k)B-(k)T* (M - 1, k))( H Hj*)6�
i=L

= diag(..., M4(k),...M4(k),...):U!(m) (2.2-93)

M4(k) = (]�(m - 1, k)B(k)Q(k)B'(k)4�'(m - 1, k) (2.2.94)

Using eq.(2.2.6) we can write

IPL'V!(M) = (T(rn - 1, L)P.(L)T*(,rn - 1, L))( H Hj*)6�
i=L

= (T(M - 1, L)-P:,(L)T*(m - 1, L)):U�(m)

= diag(..., (2-2-95)

M,5 = -P(m - 1, L)P,,(L).,�T(M _ 17 L) (2.2.96)

From eq.'s(2.2.81,2.2.93,2.2.95) we conclude that

R.,,,,.(m):UnL(m) = diag( .... ( 1: M4(k)) + M51 ... E M4(k)) + M5'...)
k=L+l k=L+l

X FnL(M) (2.2.97)

In summary we have shown that with

M1: (,k(k, L)B(k-)Q(k)BT(k),j�T(k, L)) +4)(m - 1, L)P,(L),tT(M _ 1, L)
k=L+l

(2.2.98)

Al (4,(k, 1)B(k)Q(k)BT(k),jT(k-' 1)) (2.2.99)

for I = L,...m - 1

R..(m)F�(m) = diag( ... 7 (2.2.100)

R.,,(m)v'(m) = diag( ... , Aj,...Aj,...)v1 (m) (2.2.101)n n

for I = Li ... m - 1, i, n E Z, thus proving the lemma. r-1
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2.3 Efficient Optimal Smoothing

In this section we consider the problem of optimally estimating one of our processes

given sensors of varying SNR's and differing resolutions. We formulate this sensor

fusion problem as an optimal smoothing problem in which the optimally smoothed

estimate is formed by combining noisy measurements of our lattice process at various

scales. In other words each sensor is modeled as a noisy observation of our process

at some scale of the lattice. We treat the smoothing problem in a way which is

sufficiently general to account for situations in which we have measurements at either

one or multiple scales. For example, for the problem of smoothing one of our processes

given measurements at a single scale we can think of having measurements exclusively

at the finest scale of the lattice. In the case of the fusion problem in which we have

measurements at more than one scale we consider having measurements at multiple

scales of the lattice. In the following development we assume the model in eq.(2.2.63).

Consider the following multiscale measurements for m = L, L + 11 ... M.

y(,rn) C(,rn)x(,rn) + v(m) (2.3.102)

where

C(m) diag(..., C(m),.X(m),...) (2-3-103)

)Z(m) diag(.... R(m),...R(m),...) (2.3-104)

E[v(i)v(j)'] R(i)8i-j (2-3-105)

and where C(m) is a b x d matrix and R(m) is a b x b matrix. We define the smoothed

estimate, denoted as x3(m), to be the expected value of x(m) conditioned on y(i) for

i = L, L + 1,...M; i.e.

X'(,rn) = E[x(m)ly(L), -..y(M)] (2-3-106)

We define the coarse-to-fine filtered estimate, to be the expected value of x(m)

conditioned on y(i) for i = L, L + 1,...m; i.e

,�(mjrn) = E[x(m)jy(L),...y(m)] (2.3.107)
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We define the coarse-to-fine one-step predicted estimate to be the expected value

of x(m) conditioned on y(i) for i = L, L + 1,...ra - 1; i.e

,�(mjm - 1) = E[x(m)jy(L),...y(m - 1)] (2.3-108)

From standard Kalman filtering theory, we can derive a recursive filter with its

associated Riccati equations, where the recursion in the case of our lattice models is

in the scale index m. We choose to solve the smoothing problem via the Rauch-Tung-

Striebel(RTS) algorithm[45]. This gives us a correction sweep that runs recursively

from fine to coarse scales with the initial condition of the recursion being the final

point of the Kalman filter. The following equations describe the "down" sweep, i.e.

the filtering step from coarse to fine scales.

For m = L) ... I M:

,�(mjm - 1) = - (2-3.109)

.i(mlm) = �c(mjm - 1) + X(m)[y(m) - C(rn).,�(mjm - 1)] (2.3.110)

K(M) = 'P(MIM - 1)C*(M)S(M) (2-3-111)

S(M) = (C(M),P(MIM - 1)C*(M) + R(M))-1 (2.3.112)

P (m Im - 1) = H�_,A(m)P(ra - 11m - 1)A*(m)H,-,

+ B(ra)Q(m)B*(m) (2-3-113)

P -, (M I M) = 'p-,(MIM - 1) + C*(M)R-'(M)C(M) (2-3-114)

with initial conditions

,�(LJL - 1) = 0 (2.3.115)

P (L I L - 1) = 'P. (L) (2.3.116)

We also have the following equations for the correction sweep of the Rauch-Tung-

Striebel algorithm, i.e. the "up" sweep from fine to coarse scales.

For m = M - 1,M - 2,...L + 1,L:

X3(m) = �(mim)+P(mlm)A*(m+I)HnP-l(m+llm)[xs(m+l)-.,�(m+llm)I

(2.3.117)

'P`(m) = 'P(,mim)+E(m)['Ps(m+l)-P(m+llm)]E*(m) (2-3-118)

E(m) = 'P(mjm)A*(m+1)HnP-'(m+1jm) (2-3.119)
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with initial conditions

X'(M) = -�(MJM) (2-3-120)

'P'(M) = 'P(MIM) (2-3-121)

Note that we could equally have chosen to start the RTS algorithm going from fine

to coarse scales followed by a correction sweep from coarse to fine, i.e. an up-down

rather than the down-up algorithm just described. We treat this case in the next

section.

We now proceed to show how the smoothing problem can be decomposed into a

set of standard 1D smoothing problems, where we use the down-up version of the

RTS algorithm. By transforming our state vectors and data, i.e. by representing

them in the wavelet basis, we end up with a set of independent 1D RTS smoothing

problems which can be computed in parallel. Let us define the following transformed

quantities.

ijk(MIM - 1) (Vjk(M))'-'�(MJM 1) (2-3.122)

!5jk(MIM - 1) (Vkj(M))"P(MIM 1)Vj(M) (2-3-123)
A

ijk(MIM) (Vjk(M))'i(M1M) (2-3-124)

_P (M I M) (Vkj(M))"P(M1M)Vkj(M) (2-3.125)

itLk(MIM - 1) ('FkL (M))'�C (M I M 1) (2-3-126)

PLk(MIM - 1) (-ffkL(M))"P(Ml'rn 1)-ffLk(M) (2.3.127)
A

fiLk(MIM) = (FkL(M))"'4M1M) (2-3-128)
A (2.3.129)

PLk(MIM) (ffLk(M))"P(M1M)ffkL(M)

Z js, k (M) (Vjk(M))'Z'(M) (2.3.130)

P� )'P'(M)Vj(,rn) (2.3.131)3,k(M) (Vk'(M) k

a (VL(M))IZ,(M)
�L, k(M) k (2-3-132)

- q A L(M))Ip,(M)VL(M)
PL', k (M)= (Vk k (2-3-133)

These quantities represent the transformed versions of the predicted, filtered, and

smoothed estimates in the Rauch-Tung-Striebel algorithm, along with their respective
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error covariances, in the transform domain. The eigenvectors used to transform these

quantities involve, as previously defined, d x 1 vector versions of the operators Hi and

Gi. We also need to represent the transformed data, where the data at each scale,

y(m), is an infinite-dimensional vector whose entries are finite-dimensional vectors of

dimension b x 1. We represent these vectors using eigenvectors which now involve

b x 1 vector versions of the operators Hi and Gi. In particular, we define the following

operators

(-9.7(M + 11 .)). =A E h(2n - k)7(m + 1, k) (2-3-134)
k

(U.7(M + 1, '))n = E g(2n - k)7(m + 1, k) (2.3.135)
k

7(m + 1, k) E -9 b (2-3-136)

and the following unit vectors

7 Ob7 ... 7 Obi Ib I 0b) ... 0b7 ... ]T (2-3-137)

ith

We denote the corresponding block eigenvectors as V to distinguish them from their

d x I versions. In particular, we have

M-1-V L IL (M) (2.3.138)

j=L

,n-1
'(M) 11 (2.3.139)

Vn 8n
i=1+1

Finally, we define our transformed data as follows.

16 (Vj(M))TY(M)
Vjk(M) = k (2-3-140)

A (-L(M))TY(M)
�Lk(M) = Vk (2.3.141)

Note that for each scale m, where m = L + 11 ... Ml our transform indices range

as follows.

LI ... M - 1

k Z (2-3-142)
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That is, for each m, other than at the coarsest scale, L, we transform our quantities so

that they involve eigenvectors whose coarsest scale is L. As we will show, quantities

associated with m = L are already block-diagonalized, due to the fact that our model

assumes a block-diagonalized structure at this coarsest scale. For example, the fact

that the measurement at the coarsest scale, Y(L), has a block-diagonal covariance

structure follows from the fact that x(L) has a block-diagonal covariance. structure

and the fact that our measurements are uncorrelated along the nodes of the lattice.

The following lemma is essential to the results in this section.

Lemma 2.3.1 Let F(m) and G(m) be a block diagonal operators of the following

form

,F(m) = diag(.... F(m),...F(m),...) (2-3-143)

,6(m) = diag(..., E(m),...E(m,),...) (2-3-144)

where F(m) is a d x d matrix and E(m) is a b x d matrix. We have the following

relationships.

T T(V'(m)) T(m) = F(m)(v'(m)) (2.3-145)k k

T(v'(m)) T(m)v'(m) = F(m)6jjkj (2.3-146)k I

(:Uk1(M))TT(M) = F (m) (:UA, (M))T (2.3.147)

(M))TT(M)FJL(M) = F(m)6k-l (2.3.148)
'6(m)vj(m) = Vj(m)E(m) (2.3.149)

k k

6(m):U'k(m) = V'l,(m)E(m) (2.3.150)

9*(m)Vkj(m) = vj(m)E T(M) (2-3-151)
k

T(M)E*(m)T,(m) = V'k(m)E (2.3.152)

Proof

We begin with eq.(2-3.145).

(V3(m))TT(M) = (6jk)TGk( 11 Hi)T(m)
k

i=k+l

= (6jk)TT(m,)Gk( fj Hi)

i=k+l
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= F(m#jk)T Gk Hi)
i=k+l

(,M))T= F(m)(vk'

where the second equality follows from the fact that F(m) commutes with the oper-

ators Hi and Gi.

We now consider eq.(2.3.146).

(Vi (M))TT(M)Vj(M) = (8ik)T Gk( Hi)JI(m)( Hi*)G*8j'
k I

i=k+l i=1+1

'm_1 M-1
= (6ik)TT(m)Gk( H Hi)( H Hi*)G*6j'

i=k+l i=1+1

F (m) (8,k) T6j' k = 1

0 otherwise

F(m)8i-jk-1 k = 1

0 otherwise

where the second equality follows from the fact that F(m) commutes with the oper-

ators Hi and Gi and where the third equality uses the properties in eq.'s(2.2.6,2.2-8).

Similar arguments can be used to derive eq.'s(2.3.147,2.3.148).

We now consider eq.(2.3.149).

F(7n)vj(m) E(m)( ][I Hi*)G*8jkk k
i=k+l

M-1

- - * C(M)8jkH H*i) Ck
i=k+l

M-1rl -k
kbi E (m)

i=k+l

W(m)E(m)k

where the second equality follows from the fact that 9(m) commutes with the oper-

ators Hi* and G! in the following way.

9(m)Hi* W*E(m) (2.3.153)

E(m)G! �,*,6(m) (2.3.154)
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A similar argument can be used to derive eq.(2.3.150).

Finally, consider eq.(2.3.151).

"rt-,
.6*(M)vj(m) e*(M)( _k

i=k+l

Hi*)G*,6*(?n)-k
k

i=k+l

M-1

fj Hi*) G * 8j"E T (M)k
i=k+l

V3(m)E T(M)
k

where the second equality follows from the fact that -6*(m) commutes with the oper-

ators 7* and _01*-

E*(m)-H*i Hi*e*(m) (2.3-155)

-'*(m)'Ui* GT�9*(M) (2-3-156)

A similar argument can be used to derive eq.(2.3.152). r-1

We now proceed to derive the equations for filtering and smoothing in the trans-

form domain. As we will see, these results form the basis of a smoothing algorithm

in the transform domain which consists of a collection of independent smoothing al-

gorithms each of which smooths, in scale, a d x I state vector rather than an infinite-

dimensional vector. We begin with the one-step predicted estimate '�(Mjm - 1).

Definition 2.3.1 The transformed one-step predicted estimates ftLk(mjM - 1)

and ijk(mjm, - 1) are defined as follows.

'aLk(MI'M - 1) k(M))T:qMjM 1) (2.3.157)

iik(MIM - 1) (Vj(M))T.,qMjM 1) (2-3-158)
k

Lemma 2.3.2 The transformed one-step predicted estimates fiLk(mjm, - 1) and

ijk(MIM - 1) evolve according to the following equations.

For k E Z we have

fiLk(MIM - 1) = A(m,)7!Lk(M - 11m, - 1) (2-3-159)

m = L+I)L+21 ... M
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Forj=LL+1,...M-2 keZwehave

ijk('MjM - 1) = A(M)ijk(M - 11M - 1) (2-3-160)

m = j+2,j+3,...M

with the initial conditions j = L7 L + 17 ... M-1 kEZ

ijk(i + 11j) = 0 (2.3-161)

Proof

Multiplying both sides of eq.(2.3.109) by (vj(M))T, we get for m L + 1'...mk

(Vj(M))T,,qMjM 1) = ijk(MIM _ 1)
k

= (Vj(M))TH,�_jA(rn).,�(m - 11m - 1)

;(M _ 1))T(Vk A(m)i(m - 11m - 1) i = L,...m - 2 k c- Z

o j=ra-1 kEZ

A(m)ijk(M-11M-1) j=L,...m-2 kEZ (2-3-162)

0 j=m-1 kEZ

where the third equality follows from Corollary 2.2.1 and where the last equality

follows from Lemma 2.3.1. A similar argument applies in deriving eq.(2.3.159). r-1

We now consider the error covariances 'P(mlm) and 'P(,mlm - 1) and show how

each of these quantities propagates in the transform domain.

Definition 2.3.2 The diagonalized one-step predicted error covariances,

!5jk('tnl'M -1), PLk(mlm - 1) are defined as follows.

-Fjk(MI'tn - 1) 'P(rnlm - 1)vj(m) (2-3-163)

-PLk(MIM - 1) (,FkL(M))Tp(MjM _ j)-FL(M) (2-3-164)
k

Definition 2.3.3 The diagonalized filtered error covariances, j5jk(TnjM), PLk(MIM)

are defined as follows.

j5jk(MIM) (Vj(M))Tp(MjM)Vj(M) (2-3-165)
k k

k (M))Tp(MjM)-PLk(MIM) �UkL (M) (2-3.166)
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Lemma 2.3.3 The diagonalized one-step predicted error covariances, _Fj'k(MIM - 1)

and PLk(mlm - 1), evolve according to the following equations.

Forj=LL+I,...M-2 kGZwehave

j5jk(rnjm-1) A(m)-Fjk(m-Ilm-l)A'(m)+B(m)Q(m)B'(m)

(2-3-167)

j+2,j+3,...M

with the initial conditions j = L, L + 1,...M - 1 k E Z

Tjk(j + 11j) = B(j + 1)Q(j + I)B T(j + 1) (2-3.168)

For k e Z we have

PLk(mlm - 1) A(m)PLk(m - 11m - 1)A T(M) + B(m)Q(m)B T(,rn)

(2.3.169)

L + 1, L + 2,...M

The diagonalized filtered error covariances, Pjk (m I m) and PLk (m m), evolve ac-

cording to the following equations.

Forj=LL+1,...M-1 kEZwehave

T'-1(MjM) -'(MIM_ 1) + CT(MT, k -'(m)C(m) .3-170))R (2

m = j + 1,j + 2,...M

T�' (LIL) P.-'(L) + CT (L)R-'(L)C(L) (2-3-171)'k

For k E Z we have

PE1(,MIM) &-1(MjM_j)+CT(M -'(m)C(m) .3.172)
k ,k )R (2

m L+I)L+21 ... M

'(LIL) P.-'(L)+CT (L)R-'(L)C(L) (2-3.173)PE, k

Furthermore, the operators 'P(m, 1m) and 'P(m, Im - 1) are block-diagonalized by our

eigenvectors vi(m) and:UiL(rn). Namely,k

(V ))Tp(MjM)Vj(m) = j5j k-(MjM)8i-jA,-1 (2.3.174)
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(Fk'(M))"P(MIM)ffjL('M) = PLk(MIM)8k-1 (2-3.175)

(Vki(M))"P('rnIM-1)Vj('M) = j5jk(MIrn-1)8i-jk-1 (2-3.176)

(Uk'(M))"P(MI'M-1)'ffjL(M) = PLk(MI'M-1)6k-1 (2-3-177)

Proof

We show our results by induction on m. From our initial condition, eq.(2-3-116),

and our update equation, eq.(2.3.114), we have

'P(LIL) = (P.-'(L) + C*(L)'9-'(L)C(L))-1 (2.3.178)

The fact that 'P.,(L), R(L) and C(L) are block-diagonal implies that 'P(L IL) is block-

diagonal. In particular,

'P-'(LIL) = diag(...,T�' (2.3.179),k k

where

15�1 (LIL) = &'(LIL),k k

= P-1(L) + CT(L) R- 1 (L) C (L) (2-3-180)

Applying our prediction equation, eq.(2.3.113), to -P(LIL) we get

-P(L + 11L) = H�A(L + 1)-P(LIL)A*(L + 1)HL

+ B(L + I)Q(L + 1)B*(L + 1) (2-3-181)

By multiplying on the left by (vL(L + 1))T and on the right by VLk I (L + 1) and by

applying Lemma 2.3.1 and the fact that the operator 'P(LIL) is block diagonal, we

get that

(V L(L + 1))TP(L + IIL)VL (L + 1) = B(L + 1)Q(L + I)B T (L + 1)6k-lk

= 15Lk (L + 1 1 L),6k-l (2-3-182)

Similarly, by multiplying on the left by (FkL(L + 1))T and on the right by -�UL(L + 1),

we get that

(FkL (L + 1))Tp(L + 11L):UL(L + 1) = (A(L + 1)PLk(LIL)A T (L + 1)

+ B(L + 1)Q(L + 1)B T(L + 1))8k-l

= PLk(L + IIL)8k-1 (2-3-183)
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Thus, we have verified eq.(2.3.169) for m = L+ 1 and eq.(2.3-168) for j = L. We have

also shown that 'P(mlm) and 'P(mlm - 1) are block-diagonalized by our eigenvectors

Vi(m) andffffm) for m = L + 1. By updating 'P(L + 11L) using eq.(2.3.114) thenk

multiplying on the left by (4 (L + 1))T and on the right by VL(L + 1), we getk I

(VL(_t + 1))Tp-I (L + 11L + 1)VL (L + 1) = (7�'(L + 11L)
k I k

+ CT(L + 1)R-'(L + 1)C(L + 1))&-j

T�' (L + 11L + 1)6k-I (2-3-184)

where the first equality follows from Lemma 2.3.1 and the fact that 'P(L + 11L),

C(L + 1), and IZ(L + 1) are block diagonal. This verifies eq.(2.3.170) for j = L and

m = L + 1. A similar argument verifies eq.(2.3.172) for j = L and m = L + 1.

We now assume that 'P(m - 1 Irn - 1) and 'P(m - I Im - 2) are block-diagonalized

by vi(m - 1) and:UiL(m - 1). We first show that 'P(mlm - 1) is block-diagonalized byk

Vi(m) andff�(m) and indeed satisfies eq.'s(2.3.167,2.3.168). Multiplying eq.(2.3.113)k

on the left by (vi (rn))T and on the right by vi('M) we getk I

(Vi(M))Tp(MjM_j)Vj(M) = (Vi(M))TH�_jA(M),p(M_ 11m - I)A*(m)H,-lvj(rn)
k I k

+ (Vi (,M))TB(M) Q(m)B*(m)vj(,rn)
k I

(A(ra)Tjk(M - 11m - I)A T(M)

+B(M)Q(rn)BT(M))6i-jk-1 j = L,...,m - 2 k E Z

(B(M)Q(M).BT(M))6,-j'k-1 i = ra - 1 k E Z

j5jk(MIM - (2-3-185)

where the second equality follows from our induction assumption, Corollary 2.2.1,

)TV-I(M)Lemma 2.3.1, and the fact that (V3 (m) Id. A similar argument can be

made to verify eq.(2.3.169).

The fact that 'P(mlm) is block-diagonalized by vj(rn) and:U�(m) can be shown ask

follows. Taking the inverse of each side of eq.(2.3.114) then multiplying on the left

by (Vi (M))T and on the right by vi(m), we getk

Vz(M))Tp(rnjrn)Vj(,M) = (j5.-1(,MjM -'(m)C(m)A-j'k-1
k k )R

= j5jk(rnjM)6i-jk-1 (2-3-186)
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where the first equality follows from eq.(2.3.185) and Lemma 2.3.1. A similar argu-

ment can be made to verify eq.(2.3.172). c-1

We now consider the updated estimate i(m1m). In considering the scale evolution

of this quantity in the transform domain, we must bear in mind the fact that the

data is transformed using eigenvectors, V,,(m), which are defined with respect to

the operators Hi and Gi operating on b x 1 vectors rather than on d x 1 vectors.

The following results show that in fact this does not present a problem with respect

to preserving the independence of the filtering steps with respect to the different

transform components.

Definition 2.3.4 The diagonalized or transformed data, 'gjA,(m) and 9Lk(m), are

defined as follows.

Vjk(m) = (M))TY(M) (2-3.187)

IL (-L(M))TY(M)
9Lk(M) = Vk (2-3-188)

Definition 2.3.5 The diagonalized filtered estimates, iik(m1m.) and itLk(MjM),

are defined as follows.

ijk(MIM) nl (Vj(m))T��(MIM)
k (2-3.189)

I', (-L(,m))T;i(Mjm)
ftLk(MjM) = VA, (2.3.190)

Lemma 2.3.4 The diagonalized filtered estimates, ijk(Mjm) and fiLk(Mjm), evolve

according to the following equations.

Forj = L, L + 1,...M - I and k G Z

4k(MIM) = ijk(`MjM 1) + Yjk-(M)(Fjk('rn) C(M)�jk(MjM - 1))

m = j + (2-3-191)

Fork E Z

�ILk(MJM) = fILk(MIM 1) +kLk(M)('9Lk(`m) C(M)itLk(MjM - 1))

m = Li L + 1,...M (2-3-192)
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where

Tjk(M) (Vjk(M))'IC(M)Vkj(M) (2-3-193)
k(M))T)C(M)Vk(M)

kLk (2-3-194)

and furthermore,

(V i (M))T)qM)Vjj(M) Yjk(M)6i-jk-I (2-3-195)k

k(M))TIC(M)VII (M.) kjk(`M)6i-jk-I (2.3.196)

Proof

We begin by premultiplying eq.(2.3.110) by (Vj(M))T . For m, L,...Mk

(Vj(M))Ti(Mlrn) =
k iik(MIM) (2-3-197)

j(,rn))T)C(,rn)[Y(,rn) _ C(M)._qMIM _ 1)]
= ijk(m1m) + (Vk

We now use the following fact, which follows from the fact that fvn'(M)T�(M)l is a

complete orthonormal basis for 12.

MEEV I (M)(VI (M))T + 1: 7U�(M)(W�(M))T = J2 (2-3-198)
n n

I=L n n

where I2 is taken to be the identity operator for 12; i.e. I2x = x for x E12 Note that

V1 (M)(V1 (,ra))T (2-3.199)I2'P(MIM 1)I2 = (E Y, n n
1=L n

+ E
n

M
X p(M IM _ 1)(E E VI (M)(VI (M))T + E F�(M)(Tr�(M))T)

n n
I=L n n

M

VI (M)151,n(MIM - j)(V1 (M))TE Y, n n
I=L n

1)(:UL(M))T)
+ EW�(M)PLn(MIM n

n

where the second equality follows from the fact that 'P(mlm - 1) is diagonahzed by

VI (m), T� (m) 1. The resultn

M
1)(VI (M))TC(m)'P(mjm-1)C*(m) = C(M)(j:j:Vn'(M)j51,n(MjM- n

I=L n
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+
n

M

'(rn)C(M)j51,n(MjM - 1)Cl(,rn)(Vnl(M))TVn
I=L n

L('rn)C(M)PLn('Mj'M -1) C T (ra) (VnL (,ra)) T+ E Vn
n

(2-3.200)

follows from Lemma 2.3.1. Building on this we get

M
(C(m)'P(mjm-1)C*(rn)+1Z(m))-' - YEVn(rn)(C(rn)J51,n(rnjm- 1)CT(,M)

I=L n

+ R-'(,rn))-'(Vn' (,rn))T

+ E VnL(M)(C(rn)PLn('rn1'rn -1)CT(ra)
n

+ R-1 (,M)) - 1 (VnL (,ra)) T (2.3.201)

It then follows, using Lemma 2.3.1, that

IC(,rn) = 'P(mjm-1)C*(m) I:EVn(ra)(C(?'n)151,n(MIM_1)CT(M)
=L n

M))T + Y+ R-'(7n))-'(Vn( , VnL (M)
n

x (C(M)PLn(rnjm - J)C T (,ra) + R-'(,rn))-I(VnL(M))T]

M
1: J:p(MIM _ 1)VI (M)CT(M)( 1)CT(M)

n C(M)Fln(MIM
n

+ R-'(m))-'(Vnl (,M))T + Ep(,MIM _ j):UnL(,ra)C1(M)
n

x (C(M)j5Ln(tn1M -J)C T(M) + R-'(M))-I(VnL(M))T (2-3.202)

Now, we consider premultiplying K(m) by (vi(M))T.k

(Vj(ra))TK(,M) j)CT(rn)(C(,rn)-Fj'A'(Mjrn _ 1)CT(
= j5jk(MIM - rn

+ R-' (M))-l(Vj(M))T (2.3.203)
k

where we have used the fact that

(V i (M))Tp(MIM _ 1)V j(M) = j5jk(ralM - 1)6i-jk-1 (2.3.204)k I
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Finally,
Vk -Fjk(MIM - 1)C'(m)(C(M)-Fj'k(m1M - I)C'(m)

UMVX(m)[Y(M) - c(MMMIM - 1)]

+ R-'(,m))-'(Vj(m))'[y(m) - C(m)-,�(mjrn - 1)]k

Tjk(MIM j)CT(M)(C(M)j5jk(MjM - 1)CT(M)

+ R-'(m))-'[Yjk(M) - C(M)ijk(MjM 1)]

(2-3-205)

From eq.'s(2.3.193,2.3-1972.3.205) it follows that

Zilk(MIM) = 4k(MIM - 1) + rj,1k(M)(Yjk(M) - C(M)ijk(MjM

(2.3.206)

thus, proving eq.(2.3.191). Eq.(2.3.192) can be derived in a similar manner. M

We now complete the diagonalization of our smoothing algorithm by deriving the

recursions for our fine-to-coarse sweep in the transform domain. In particular we

show how the recursion for both the smoothed estimate and its error covariance in

the transform domain decouple.

Definition 2.3.6 The diagonalized smoothed estimates, z! I'(m) and areL

defined as follows.

TZ! Z8(M) (2-3.207)J'k(M) (vk' (m))

_;sk(M) (VL(M))TZ,(M) (2-3.208)
L k

Lemma 2.3.5 The diagonalized smoothed estimates, zjA,(m) and i-,A,(m), evolve ac-L

cording to the following equations.

Forj LL + 1, ... M - I and k E Z

T(M + 1)j5,-l (M + 1 M) [Z,,, (,rn + 1) ijk(M + 11M)]zj-',A,(m) ijA,(m,jm,) + j5jk(-mlm)A k A:

m M-17M-2,...L+1,L (2-3.209)

with initial condition

(2-3.210)Zj',k(M) = 4k(MIM)
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Fork E Z
Uj rn

'k (M) = k(rnlrn) + Pjk(rnjm)A'(m + +'IM)[-;jk(rn + 1) 'Zjk( + 11M)]
L k

M = M - 11M - 21 ... L + 17L (2.3.211)

with initial condition

3,k(M) = itik(MIM) (2-3.212)

Proof

By multiplying eq.(2.3.117) on the left by (V-I(M))T We getk

i(M))TX,,(M)
Zjk(M) = (Vk

= iik(MIM)
+ (Vj(M))Tp(Mjm)I2AT(,rn)H.,p-1(M + 11M)I2,

k

x [x-,(M + 1) -. �(M + 11m)] (2-3.213)
M

I (,rn)(VI (,rn))T + ))TI2 Vn n M (2-3.214)
I=L n n
M

I (,rn + 1)(VI (M + 1))T + J::U�(M + 1)(-F�(,M + 1))T
I2 EEvn n

I=L n n

(2-3.215)

Note that from

(V i(M))Tp(MIM)V j(M) = j5jk(MjM)8i-jk-1 (2-3.216)k

we get that
(Vj(M))Tp(MIM)I2 = j5jk(MIM)Vj(M))T

k k (2.3.217)

From Corollary 2.2.3 and Lemma 2.3.1 we get that

(Vj(M))Tp(M T(M T(M + I)Vj( + 1))T
k Im)I2A )HP-'(m + 11m)I2' = j5jk(mlrn)A k M

X 'P-'(M + 1*12

(2.3.218)

From
))Tp-I(M + 11M)V i(M + 1) = T,-.,(m + 11M)8i-j'k-1

(V" (rn + 1 'k (2.3.219)
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we get that

(Vk(?n))"P('tnl'ra)I2A'('tn)H,.'P-'(rn + 11M)I2' = Tjk(Mjm.)A'(m + 1)
771(m + llm)(vi(rn + 1))'

k k

(2-3.220)

Substituting eq.(2.3-220) into eq.(2.3.213) we get
Zj',k (m) ' k (rn I m) + 15j, k(mlm)A'(m + + llm)[zjsk(m +1) - ijk(M + 11M)l

Zil ,k

(2.3.221)

thus, proving eq.(2.3.209). Eq.(2-3.211) is proved in a similar manner. Ej

Definition 2.3.7 The diagonalized smoothed error covariances, Pis, k(m) and

Pjlk(m), are defined as follows.

(Vkj(M))"P'(M)Vj(M) (2-3.222)
A (:Uk1(M))Tp,(M),ff1P!,k (M) = k (,m) (2-3.223)

Lemma 2.3.6 The diagonalized smoothed error covariances, Pj',k(,rn) and

evolve according to the following equations.

For j = L, L + 1,...M - 1 and k E Z

M)] -T ('rn)
Pj',k(7n) = !5jk(7nlM) + Fjk(M) [pj',k(M + 1) - j5jk(M + Ejk

(2.3.224)
T(M + 1)T.,-l(M + 11M)

-F7,k(M) = !5jk(,ra I m) A (2.3.225)

m = M-17M-21...L+1)L

with initial condition

Pjk(M) = j5jk(MIM) (2-3.226)

Fork E Z

PL',k (m) = rn) + r7',k (m) (tn + (ra + M)] (R.' JX (m)

(2-3.227)

T(M + j)P-1(M + I 1m) (2.3.228)73,k (M) = Pjk(m1m)A "k

M = M - 1, M - 2,...L + 1, L
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with initial condition

Pj', A, (M) = Pi, k- (M I M) (2-3.229)

Furthermore, we have that

(UAL,(m))"P'(,rn)FjL(m) -PiA,(rn)16k--1 (2.3-230)

(V (2.3.231)

Proof

We show eq.(2.3.224) by induction on m. Assume that

(Vki(M + 1))"P'(M + 1)Vlj(M + 1) = Pjk(M + (2.3.232)

Multiplying eq.(2.3.118) on the left by (vi(M))T and on the right by vj(m), we getk

(V i (M))Tp,(M)V j(M) = j5jk(MjM)8i-jA,-1k

+ (Vi (M))T E(m)I2' [P'(m + 1) - P(m, + 1 Im)] I2E* (m)vj(-rn)k 1

(2-3.233)

where I2' is defined in eq.(2.3.215). From Corollary 2.2.3, Lemma 2.3.1, and the fact

that

(V (M))Tp(MjM)Vj(,M) j5,'A'(MjM)8i-jk-1 (2.3.234)k

V71 (rn))Tp-I (M + 1 IM)V (2.3.235)j(M) Tik -I(M + 11MA-jk-1

we get

(V i (,Yn))T E (m) I2' = (Vi (rn))Tp(M Im)I2A*(m + 1)HP-'(m + 11m)I2'k k

T(M += -Fik(Mjm,)A (M + 11m)(Vi(M + 1))Tk

(2.3.236)

Substituting eq.(2.3.236) into eq.(2.3.233) and using the fact that

(V i (rn + 1))Tp(M + 1 1 M)V j(m. + 1) = Tjk(M + 1jm,)bi-jA,-1 (2-3.237)
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we get

i (M))Tp,(M)V
(V (M) = Fjk(MjM)6i-jk-1

T(,ra + 1)]3,-' (,rn + M)
+ j5jk(mjm)A k

X [pj',k(M + 1) - -Fjk(rn + I IM)l 6i-jk-I

,kF--1(m + 11m)A(m + 1)Tjk(MIM)

Pjk('rn)6i-jk-1 (2-3-238)

By substituting eq.(2.3.236) into eq.(2.3-233) and by using the fact that

(Vi(M))Tp,(M)Vj(7n+j) (Vi(M))Tp(MjM)Vj(M+j)
k k I

J5jk(M1M)6i-jk-1 (2-3-239)

we show eq. (2.3.238) is true for m = M + 1. Thus, we have verified eq.'s (2-3.224,2.3.23 1).

Eq.'s(2.3.227,2.3.230) are derived in a similar manner. o

The previous results can be grouped together to form a smoothing algorithm

consisting of a collection of 1D Rauch-Tung-Striebel smoothing algorithms, each of

which can be performed in parallel. In particular we have the following algorithm.

Algorithm 2.3.1 Consider the smoothing problem for a lattice defined over a finite

number of scales, labeled from coarse to fine as m, = L, L + 1,...M. The Following

set of equations describes the solution to the smoothing problem, transformed onto

the space spanned by the eigenvectors of R.,��(m,), in terms of independent standard

Rauch- Tung Striebel smoothing algorithms.

D 0 WN S WEEP:

For j = L, L + 1,...M - 2 and k E Z:

ijk('rnj'ra - 1) = A(m)�jk 1) (2-3.240)

T(M) T(M)Pjk(MIM - 1) = A(m)j5jk(M - 11m. - 1)A + B(m,)Q(m)B

(2.3.241)

= j+2,j+3,...M

with the initial conditions for j = L, L + 1,...M - I and k E Z

ijk(i + 1 li) = 0 (2.3.242)

]5jk(i + Ili) = B(j + 1)Q(j + 1)BT(j + 1) (2.3.243)
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For L, L + 1,..-M - I and k E Z:

jk(m1m) = ijk(mjm - 1) + Yjk(,ra)(Yjk-(,m) - C(m)�jk(mjm - 1))

(2.3.244)

j5-1 = T,-.'(mlm - 1) + C'(m)R-'(m)C(m) (2.3.245)

m j + I, j + 2,...M

Tjk(M) (Vkj(M))')C(M)Vkj(M) (2.3.246)

For k E Z we have

ftLk(MIM - 1) = A(m)ftLk(M - 11M - 1) (2-3.247)

PLk(mlm-1) = A(m)PLk(M-llm-l)A'(m)+B(m)Q(,rn)B'(m)

(2-3.248)

m = L+1,L+2,...M

with the initial conditions

fiLk(LIL - 1) = 0 (2-3.249)

PLk(LIL - 1) = P--(L) (2-3.250)

For k E Z we have

fiLk(MIM) = fiLk(MIM - 1) + ffLk(M)('YLk(M) - C(M)fiLk(MIM 1))

(2.3.251)

PC'(mlm) = &-'(mjm - 1) + C'(m)R-'(,m)C(m)A k (2-3.252)

m = L7L+11 ... m

(2-3.253)

UP SWEEP:

Forj=LL+1,...M-landkC-Z

Z! MIM) + !5jk(mlm)A'(m + 1)7,-.k

39k(M) '(m + 11m)[zjk(m + 1) ijk(M + 11M)l

(2-3.254)
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5 TPj','k(,rn) = Fjk(Mlrn) + Kjk(m) [pj',k(M + 1) -) jk(M + 11M) (2-3.255)
T(M + I)-F,-'(M + 11M)Tj,,k(m) = Tjk(mjm)A (2.3.256)

M = M-17M-2,...j+2,j+l (2-3.257)

with initial condition

Zj',k(M) = ijk(MIM) (2.3-258)
= j5jk(MIM)

Pjk(M) (2-3.259)

Fork E Z

is T(M + 1)p-l(M +,,�(,m) = Ujk(mjm)+Pjk(mjm)A jA' 3L 11M)1'jk(M + 1) fijk(M + 11M)l

(2-3.260)

j, (M + 1 1 M)] (2.3.261)
PL', k (rn) = PjA(MIM) +'FjAJM) [f'j',k(M + 1) - P k k )T(M)

T(M + I)P-I(M + 11M)_Fj, k (M) 'k (2.3.262)

m = M-1,M-2,...L+IL (2.3.263)

with initial condition

Lk(M) fiLA;(MjM) (2-3.264)

-PL',k(M) PLk(MIM) (2-3.265)

The structure of this algorithm is illustrated in Figure 2.3-1. Note that our algo-

rithm is highly efficient in that we've transformed the problem of smoothing infinite

dimensional vectors to one of smoothing in parallel a set of finite dimensional vectors.

Also, the smoothing procedure takes place in scale rather than in time, and for finite

data of length N this interval is at most of order logN. In particular, the number of

scale components at each scale increases with finer scales. Since only data at scales

at or finer than the scale of a particular component provide information about that

component, this leads to smoothers of different length in scale, with their length in-

dexed by scale component. Let us analyze the complexity of our overall algorithm

for smoothing our lattice processes. We first transform our data using the wavelet

transform which is fast: O(IN) where N is the number of points at the finest scale
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Figure 2.3.1: Parallel ID Smoothing - Down-up
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and I is the length of the QMF filter. We then perform in parallel our 1D smoothers.

Note that as illustrated in Figure 2.3.1 the different scale components are smoothed

using RTS smoothers over different length intervals, where the typically the length of

the interval is at most logN. Even if these smoothers are computed serially the total

computation is O(IN). After performing the parallel 1D smoothers on these trans-

formed variables an additional inverse transformation is required, which is performed

again using the inverse wavelet transform (the synthesis equations). Thus, the overall

procedure is of complexity O(IN). We show in detail later how the wavelet transform

is adapted to the case of finite length sequences. We also point out that our algorithm

generalizes Wornell's smoothing algorithm[56] to allow for multiscale measurements

and to allow for higher-order models.

As a -final note concerning lattice models and our lattice-based smoother, our

transform method of parallelizing the smoothing problem requires the matrix C(m)

in eq.(2.3.102) to have constants along the diagonal for all m, i.e. that the same

measurements are made at all points at any particular scale. The case of missing data

at a given scale is an example in which this structure is violated. This is relevant

to situations in which one might want to use coarse data to interpolate sparsely

distributed fine data. This problem is easily handled by our framework using models

based on homogeneous trees, which is the topic of Chapter 3. We can also use an

iterative algorithm to solve this problem in the context of our lattice models; this is

also discussed in Chapter 3.
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2.4 Up-down Version of the Algorithm

In this section we describe a version of our transform approach to smoothing lattice

processes which performs the Rauch-Tung-Striebel algorithm starting with a fine to

coarse or 44 up" sweep followed by a coarse to fine or "down" sweep. In principle there

is no reason why the filtering step must necessarily be defined from coarse to fine as in

the previous section. However, since our state model is defined in the direction from

coarse to fine, having the filtering step be defined in the same direction simplified the

derivation of the transform approach in the last section. Given that we've already

diagonalized the smoothing problem in this context, in order to derive an up-down

version of the algorithm we can do this entirely in the transform domain using the

smoothing equations derived in the previous section.

In particular note that the filtering step for each of the components in Algo-

rithm 2.3.1 can be interpreted as a Kalman filter for the following state model and

observation equation.

zjk(,m + 1) = A(M)Zjk(M) + B(,m)wjk(,rn) (2.4.1)

E[Wjk(M)WjTk(,M)1 = Q (M) (2-4-2)

-9jk(M) = C(M)Zjk(M) + rjk(M) (2-4.3)

E[rjk(M)r' (m)] = R(rn) (2.4.4)

If we assume A(m) is invertible for all m, we can use results on backward Markovian

models[53] to write down the corresponding backwards model for eq.(2.4.1).

Zik('tn - 1) = Djk(M)Zjk(M) - A-'(m)B(m)iv-jk(m) (2.4.5)

Dik(M) = A-1(rn)jI - B(m)B'(m)(Pj' (2.4-6)
- (7n)17VT (M)] T(,rn)(p, `B(m)

E[tVjk jk = I - B jk (2-4-7)

Q(M)

where
p,jk(M),nl (Vj(M))T R..(rn)vj(m) (2.4.8)k k

Similarly, we have

ULk(M TLk(M)ULk(M) - A-1(m)B(M)_TLk(M) (2.4.9)
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-PLk(?'n) A-'(m)II - B(m)B'(m,)(T2,k(M))_'1 (2.4.10)

E[-wLk(M)TL',k(`m)1 (2.4.11)

where

rL, k (M (,FkL (7n)) TR..(m):UkL(m) (2-4-12)

Now, if we use our newly defined backward models for our transformed variables

and apply the standard Rauch-Tung-Striebel algorithm to each of these, we can trans-

form the algorithm in the previous section into the following up-down algorithm.

Algorithm 2.4.1 Consider the smoothing problem for a lattice defined over a finite

number of scales, labeled from coarse to fine as m = L, L + 1,...M. The following

set of equations describes the solution to the smoothing problem, transformed onto

the -space spanned by the eigenvectors of in terms of independent standard

Rauch-Tung Striebel smoothing algorithms.

UP SWEEP:

For j = L, L + 1, ... M - 2 and k E Z:

ijk(m,jm+1) = D(m,+1)ijk(M+1jM+1) (2.4.13)

Tjk(mlm + 1) = D(m, + 1)-FjA,(m + 11m, + 1)D T(M + 1)

+ B(m, + 1)�(m + 1)B T(M + 1) (2.4.14)

m = M-11M-2,...j+2,j+l

with the initial conditions for j = L, L + 1,...M - 1 and k EE Z

ijk(MIM + 1) = 0 (2.4.15)

j5jk(MIM + 1) = Pjok(M) (2.4.16)

Forj = L, L + 1, ... M - 1 and k E Z:

iik(MIM) iik(MIM + 1) + Kjk(M)(Vjk(M) - C(M%,k(MjM + 1))

(2.4.17)
15,-'(MIM + 1) + CT -'(m)C(m)

15 1 (m)R (2.4.18)
ilk(MIM) k
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m MIM-i,...j+2,j+l

KjA,(M) j5jA,(MIM + 1)C'(M)V-'(M) (2.4.19)

V(M) C(M)j5jk(MIM + 1)CT(M) + R(m) (2.4.20)

For k E Z we have

fiLk(MIM + 1) = 17(M + I)fiLk(M + 11M + 1) (2.4.21)
PLk(MIM + 1) = T(M + 1)pLk(M + 11M + j)-VT(M +

T(M + 1)+ B(m + 1)Q(m + 1)B (2.4.22)

m M-11M-21 ... L+2)L+l

with the initial conditions

ULk(MIM + 1) = 0 (2.4.23)

PLk(MIM + 1) = j5jk(M) (2.4.24)

For k E Z we have

fiLk(MIM) = fiLk(MIM + 1) +kLAI(M)(VLk(M) - C(M)f1Lk(Mj'ra + 1))

(2.4.25)

PEI(MIM) = Pj71(MjM+j)+CT
k ,k (m)R-l(m)C(m) (2.4.26)

m M� m - 1,...L + 2, L + 1

kLk(M) pjk(,MIM + 1)CT(,M)�-i(M) (2.4.27)

,(�(M) C(,M)pjk(,MIM + I)CT(M) + R(m) (2.4.28)

D 0 WN S WEEP:

Fo r i = L, L + 1,... M - 1 and k E Z

Zj',k(M + 1) = ijk(M + 11M + 1)

T(M)T,-l(MIM +
+ j5jk(M + I IM + 1)D k ')[Zjk(M) ijk(MIM + 1)]

(2.4.29)

Pj' ',k (M + 1) = j5jk (M +M + 1) + (M + 1) [pjk (rn) - j5jk (M I M + 1)] Tjk (rn +
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(2.4-30)
Tjk(M + 1) = j5jA,(,m + 11m + 1)D'(m)_Fj_-'(mlm + 1)

,k (2.4.31)

m = j+lj+2,...M-2,M-1 (2.4-32)

with initial condition

Zj",k(i + 1) = ijk(i + 11i + 1) (2.4-33)

Pj',k(i + 1) = Fik(i + Ili + 1) (2-4-34)

Fork E Z

V'kL (M + 1) = fijk(M + 11M + 1)

+ pjk(rn + 11M + j)77T(M)pj(MlM + 1)[ k fijk(,rnlrn + 1)]

(2.4-35)

+ A,)T(,n +
-Pik('rn + 1) -Pjk(7n + 11M + 1) + Ejk(M + 1) m rn

(2.4.36)

!jk (Tn + M + I)Y (ra) -P,-'(M I M +

(2.4.37)

m L+1,L+2,...M-2,M-1 (2.4-38)

with initial condition

-;",k(L + 1) fiLk(L + 11L + 1) (2-4-39)

Pjk(L + 1) PLk(L + 11L + 1) (2.4.40)

Note that as in the case of the down-up version of the algorithm, each transform

component is smoothed over an interval whose length is indexed by scale. In this

version the filtering step of each transform component begins at the finest scale and

filters upward to the scale of the component, followed by a correction sweep back

down to the finest scale.
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2.5 Finite Length Wavelet Transforms

In this section we discuss the problem of adapting the wavelet transform, thus far

defined only for infinite sequences, to the case of finite-length sequences, i.e. produc-

ing a transform that maps finite-length sequences into finite-length sequences. We

characterize the problem in such a way as to show a variety of possibilities for viewing

the finite-length wavelet transform as an orthonormal matrix transformation. Note

that both the analysis and synthesis equations, eq.'s(1.2.15,1.2.16,1.2.22), for com-

puting the wavelet and scaling coefficients are defined as operations on infinite length

sequences. Adapting these equations to the case of finite length sequences while pre-

serving both the orthogonality and the invertibility of the transformation proves to be

non-trivial for the following reason. Take a 10-point sequence (i.e. a sequence whose

non-zero support is 10 points), x(n), and consider performing its wavelet transform

using a QMF filter, h(n), of length four. To compute the scaling coefficients at the

next coarsest scale we apply eq.(1.2.15) to x(n), resulting in a scaling coefficient

sequence, C(n), which is of length 6 (the linear convolution results in a 13-point se-

quence, while the downsampling by a factor of two reduces this to a 6-point sequence).

Similarly, by applying eq.(1.2.16) to x(n) we get a wavelet coefficient sequence, d(n),

which is also of length 6. Thus, the overall transformation from the nonzero portion

of fx(n)l to the nonzero portions of fc(n),d(n)l in this case is a map from Vo to

,gl 2, which makes it impossible for it even to be invertible, let alone representable by

an orthonormal matrix. This example is illustrated Figure 2.5.2, where x(n) is de-

-fined as indicated on the first level of a truncated lattice and f c(n), d(n)j are mapped

into the second level where the lattice branches are illustrated for the case where the

operators Hi, Gi correspond to a QMF filter, h(n), of length four and only branches

connecting to points in the nonzero portion of x(n) are shown.

Thus, we can already see the fundamental problem in trying to develop an or-

thonormal matrix transformation based on the wavelet transform. At each scale we

must have a well-defined orthonormal transformation from our approximation at that

scale into its scaling coefficients and its wavelet coefficients at the next coarsest scale.

To see how this can be done it is sufficient to focus on our previous example involv-
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c(n),d(n)

x (n)

Figure 2.5.2: Transformation of a 10-pt. Sequence x(n) into its 6-pt. Scaling Coeffi-
cients c(n) and its 6-pt. Wavelet Coefficients d(n)

ing the map from x(n) into f c(n), d(n)j. We can write the transformation in our

example explicitly as follows. We denote our 4-tap QMF filter, h, as a row vector

I ho hi h2 h3 J. Similarly, our filter, g, is denoted as [ go g, 92 93 ] where from

eq.(1.2.12) we know that

[ 90 91 92 g3 h3 -h2 hi -ho (2.5.41)

If we think of the non-zero portion of our sequence x(n) as a vector, x, in '910 and

the non-zero portions of c(n), d(n) as vectors, c and d, in R6, our maps x(n) �-4 c(n)

and x(n) �-* d(n) can be thought of as the following 6 x 10 matrices.

h2 h3 0 0 0 0 0 0 0 0

ho hi h2 h3 0 0 0 0 0 0

H 0 0 ho hi h2 h3 0 0 0 0 (2.5.42)

0 0 0 0 ho hi h2 h3 0 0

0 0 0 0 0 0 ho hi h2 h3

0 0 0 0 0 0 0 0 ho hi j
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92 93 0 0 0 0 0 0 0 0

90 91 92 93 0 0 0 0 0 0

0 0 90 91 92 93 0 0 0 0

G 0 0 0 0 90 91 92 93 0 0 (2.5.43)

0 0 0 0 0 0 90 91 92 93

0 0 0 0 0 0 0 0 go gi

where

c = Hx (2.5.44)

d = Gx (2.5-45)

Note that c and d are precisely the non-zero portions of the sequences one obtains

by applying the operators Hi, Gi to x(n). Thus, we can in fact reconstruct x(n) from

el d using our synthesis equation, eq.(1.2.24). In matrix notation

X = H TC + G T d (2.5.46)

If we denote our overall map x �-4 el d as the 12 x 10 matrix

A H
U G (2.5.47)

then eq.(2.5.46) says that UTU = I. Note, however, that it is not the case that

UUT = I, since U is not even square. Another way of seeing this is observing, using

our QMF properties eq.'s(I.2-3,1.2.9,1.2.10), that

HK T I (2.5.48)

GG I (2.5.49)

GH T 0 (2.5.50)

The failure of these conditions to hold is due primarily to the first and last rows of

H and G. In Figure 2.5.2 these correspond to the averaging performed at the edge$

of both ends of the lattice. Note that the rows of H are mutually orthogonal and the

rows of G are mutually orthogonal. The reason for eq.'s(2.5.48,2.5.49) is simply the
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fact that the edge rows of H and G are not normalized so that their inner products

equal one. The reason for eq.(2.5.50) is the fact that the edge rows of G are not

orthogonal to the edge rows of H.

If we want our overall transformation, U, to be orthonormal, we must somehow

eliminate two of its rows. Note that if we eliminate the first and last rows of the

matrix H we get

ho hi h2 h3 0 0 0 0 0 0

0 0 ho hi h2 h3 0 0 0 0

0 0 0 0 ho hi h2 h3 0 0

L 0 0 0 0 0 0 ho hi h2 h3 j

The matrix [fITG T]T is now square and it is sufficient to check the following conditions

for its orthonormality.

ftHT = I (2.5.52)

GG T = I (2-5-53)

GfIT = 0 (2.5.54)

Eq.'s(2.5.52,2.5.54) follow from our QMF properties eq.'s(l.2.3,1.2.9). As noted be-

fore, however, eq.(2.5.53) does not quite hold due to the fact that the the first and

last rows of G are not properly normalized. Examining G in detail and using the

QMF property in eq.(1.2.10) we see that

a 0 0 0 0 0

0 1 0 0 0 0

GG T 0 0 0 0 0 (2.5.55)
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 b

where

2+ g�2a = g2 (2.5.56)

b = g02 + g 2 (2.5.57)1
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Thus, we can satisfy eq.(2.5.53) simply by normalizing the first and last rows of G by

a and b, respectively. So, if we let

§2 §3 0 0 0 0 0 0 0 0

90 91 92 93 0 0 0 0 0 0

A 0 0 90 91 92 93 0 0 0 0 (2.5.58)
0 0 0 0 90 91 92 93 0 0

0 0 0 0 0 0 90 91 92 93

0 0 0 0 0 0 0 0 §0 §1

where the §j's are properly normalized, then the following defines an orthonormal

matrix in Vox'o.
H

Our transformation U maps x into scaling coefficients c of length 4 while mapping

x into wavelet coefficients d of length 6. This has the following interpretation. While

U maps the nonzero portion of x(n) into the nonzero portion of its wavelet coefficients,

d(n), at the next coarsest scale, normalizing the coefficients at the edges, it maps the

nonzero portion of x(n) into the nonzero portion of its scaling coefficients, c(n),

while zeroing the two scaling coefficients at the edges. Note that if we perform

our transformation recursively in scale, at scale each scale we end up with scaling

coefficients which are zeroed at the edges, leaving us with fewer and fewer scaling

coefficients as we go to coarser scales. If we take our example one step coarser in

scale, i.e. we apply the same idea used to create 0 on the scaling coefficients c, we

end up mapping c into one scaling coefficient and three wavelet coefficients at the

next coarsest scale. The overall two scale decomposition results in scaling coefficients

defined on the lattice in Figure 2.5.3. The resulting wavelet coefficients reside on the

lattice in Figure 2.5.4, where the dotted lines represent averaging at the edges due to

the normalized §i's. Thus, we have defined a way of adapting the wavelet transform

to the case of finite-length sequences which has the interpretation of producing a set

of scaling coefficients which are zeroed at the edges at each scale and producing a set

of wavelet coefficients which are include additional edge points at each scale.
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C

-10-c - fix

V --a- X

Figure 2.5.3: Lattice Representing Domain of Scaling Coefficients for 2-scale Decom-
position Based on Zeroing Edge Scaling Coefficients

act

.0 -ax

Figure 2.5.4: Lattice Representing Domain of the Wavelet Coefficients for 2-scale
Decomposition Based on Zeroing Edge Scaling Coefficients
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Note that the coefficients d(n) and c(n) play a symmetric role in our procedure for

making our transformation U orthonormal. In particular we could equally well have

zeroed the edges of of our wavelet coefficients d(n) rather than our scaling coefficients

c(n). This possibility leads us to defining

h2 h3 0 0 0 0 0 0 0 0

ho hi h2 h3 0 0 0 0 0 0

0 0 ho hi h2 h3 0 0 0 0 (2-5.60)

0 0 0 0 ho hi h2 h3 0 0

0 0 0 0 0 0 ho hi h2 h3

L 0 0 0 0 0 0 0 0 ho hi

90 91 92 93 0 0 0 0 0 0

0 0 90 91 92 93 0 0 0 0 (2-5-61)

0 0 0 0 90 91 92 93 0 0

L 0 0 0 0 0 0 90 91 92 93 j

where the hi's are properly normalized. In this case the matrix [fjT6T]T is orthonor-

mal. As in our previous case with U this procedure can be performed at each scale.

The resulting lattice structure, however, is different. Figure 2.5.5 illustrates domain

of the scaling coefficients for a two scale decomposition while Figure 2.5.6 illustrates

domain of the wavelet coefficients.

Finally, we describe a way of making our transformation U orthonormal by using

cyclic convolutions. The idea is to take a finite-length sequence, say of length I where

I is a multiple of two, and to perform our coarsening and differencing operations using

I-point cyclic convolutions. Thus, in our example convolving the 10-point x(n) with

h(n) using a 10-point circular convolution followed by downsampling by a factor of

two, yields a 5-point sequence c(n) while convolving x(n) with g(n) using a 10-point

circular convolution followed by downsampling by a factor of two, yields a 5-point

sequence d(n). The matrices representing these operations are defined as follows,
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Hc

-Hx

V

Figure 2.5.5: Lattice Representing Domain of the Scaling Coefficients for 2-scale
Decomposition Based on Zeroing Edge Wavelet Coefficients

G d

d

X

Figure 2.5.6: Lattice Representing Domain of the Wavelet Coefficients for 2-scale
Decomposition Based on Zeroing Edge Wavelet Coefficients
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where the top row of each matrix is a cyclic permutation of the other rows.

h2 h3 0 0 0 0 0 0 ho hi

ho hi h2 h3 0 0 0 0 0 0

H, 0 0 ho h 1 h2 h3 0 0 0 0 (2-5-62)

0 0 0 0 ho hi h2 h3 0 0

L 0 0 0 0 0 0 ho hi h2 h,3 j

92 93 0 0 0 0 0 0 90 91

90 91 92 93 0 0 0 0 0 0

0 0 90 91 92 93 0 0 0 0 (2.5-63)

0 0 0 0 90 91 92 93 0 0

0 0 0 0 0 0 90 91 92 93

From our QMF properties we can show that the matrix [HTG T]T is indeed orthonor-

inal.

We have described several ways of adapting the wavelet transform so that it per-

forms an orthonormal matrix transformation on a finite-dimensional vector. Though

we have focused on a simple 3-scale example, our approach can obviously be used for

QMF filters of arbitrary order and for transforms decomposing signals into an arbi-

trary number of scales. For example the approach using cyclic convolutions works for

sequences which are powers two, where each step of the transform amounts to taking

cyclic convolutions of length equal to the number of points at that particular scale

followed by downsampling by a factor of two. Note in principal one could iterate this

procedure to a coarse scale consisting of a single point. Due to the fact, however, that

for scales coarser than the length of the QMF filter the degree of wrap-around due to

the cyclic convolution is so great, one typically iterates to the coarsest at which the

number of points is greater than the length of the filter.

We now proceed to show how the results in the previous section apply to the case

of the finite-length wavelet transform. To do this we describe in detail the general

form of the approach based on zeroing out the scaling coefficients at the ends of

each level of the lattice, i.e. the approach yielding & in our earlier example. In this

case, for QMF filters of length P the scaling coefficients reside on a lattice where the
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number of points at the ith scale obeys the following recursion.

f (i + 1) = 2f (i) + P - 2 (2.5.64)

where at the coarsest scale, L, f (L) = 1. Figures 2.5.3 and 2.5.4 illustrate the domains

of the scaling coefficients and the wavelet coefficients respectively for the coarsest 3

scales where the -filter length is 4.

To see how our approach generalizes we consider the matrices fti and 0j, mapping

points at the i + Ist scale to the ith scale, where the filter length P = 6. They are

given explicitly as follows where the solid horizontal lines demarcate the edge vectors

associated with 0j.

ho hi h2 h3 h4 h5 0 0 ... 0

0 0 ho hi h2 h3 h4 h5 0 ... 0

(2-5-65)

0 ... 0 0 ho hi h2 h3 h4 h5 0 0

L 0 ... 0 0 0 0 ho hi h2 h3 h4 h5 j

§4 95 0 0 0 0 0 0 ... 0

§2 �3 §4 §5 0 0 0 0 ... 0

90 91 92 93 94 95 0 0 ... 0

0 0 90 91 92 93 94 95 0 ... 0

(2.5.66)

0 ... 0 0 90 91 92 93 94 95 0 0

0 ... 0 0 0 0 90 91 92 93 94 9.5

0 ... 0 0 0 0 0 0 §0 §1 §2 §3

0 ... 0 0 0 0 0 0 0 0 §0 Li

Note that our matrices fii and Oi satisfy all the algebraic relations satisfied by

our operators Hi and Gi for the case of the infinite lattice. Thus, the results in the

previous section apply with the only changes being purely dimensional ones. Also,

block extensions of Ai and Oi can be defined exactly as in the case for Hi and Gi. In

particular let us define a state model in which we denote the vector of states at the
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mth scale of our finite lattice to be x(m), where each entry, xi(m), is a d dimensional

state vector. Our matrices f1i and Oi are now block matrices where each entry which

was previously a scalar is now a d x d matrix equal to that scalar times Id. Note that

in the case of finite lattices the subscript i is indeed necessary now as the dimensions

of these matrices vary with scale.

We specify our model on the finite lattice as follows for m = L, L + 1,...M - 1,

E[x(L)x(L)'] = 'P.(L) (2.5.67)

x(m + 1) = ftZA(m + 1)x(m) + B(m + 1)w(m + 1) (2-5-68)

E[w(i)w(j)'] = Q(i)46i-j , i = L + 1,...M (2.5.69)

where

A(m) diag(.... A(m),...A(m),...) (2.5.70)

B(m) diag(..., (2-5.71)

Q(m) diag(..., Q(m),...Q(m),...) (2.5.72)

'P�, (L) diag(..., P,(L),...P,(L), ... ) (2.5.73)

and where A(m), B(m), Q(m), and P,,(L) are d x d matrices representing the sys-

tem matrix, the process noise matrix, the process noise covariance matrix, and the

initial state covariance matrix, respectively. The block-eigenstructure of our finite-

lattice process is precisely as we derived in the previous section, where the infinite

dimensional block operators are now replaced by our block versions of f1i and Oi. In

particular

6ij [Od, Od, Id ) Od, 0d] (2.5.74)
N %�

ith
where the superscript j is again used to denote that the vector (now in gf (j) X d

corresponds to the jth scale of the lattice and where Id is the d x d identity matrix

(and Od the d x d zero matrix). The block vectors :U�(m), v1 (m) for I = L,...m - I

and for i = 01 1, 2 ... f(L) - I and n = 0,1,2 ... f(l) - 1 are block-eigenvectors of the

correlation matrix of the process at scale m, R,,.,(m), where

,n-1

(m) H_ FW (2.5-75)
j=L
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and
M-1

V.(M) L (2.5.76)
i=1+1

As we did for the infinite case we can now transform the smoothing problem using

wavelet basis composed of the block vectors :U�(m) and v1 (m). Our transformed

variables are formed as in eq.'s(2.3.122-2.3.133), except that now we have a finite

number of variables to estimate. In particular for each scale index, j, the translation

index k ranges from 0 to f (j) - 1. Our wavelet transform smoothing algorithm now

applies, in either down-up or up-down form, as described in Sections 2.3 and 2.4.



Chapter 3

Multiscale Representations and

Stochastic Processes on Trees

3.1 Introduction

In this chapter we develop a framework for performing estimation using models de-

fined on trees as described in Section 1.4. Note that the dyadic tree is a special case of

the lattice and that what we developed in the previous chapter applies to a subclass

of the models considered in this chapter. There is, however, a great deal of additional

structure in processes defined on trees which allows us to analyze the estimation prob-

lem much more deeply than is possible for general lattices. In particular we present a

smoothing algorithm which is a generalization of the Rauch-Tung-Striebel algorithm

for smoothing temporal processes. Our algorithm includes a generalized notion of

Kalman filtering propagating up the tree based on filtering subtrees of data. This

filtering procedure includes a merge step at each scale which has no counterpart in

standard Kalman filtering theory. This leads us to the analysis of a new set of dis-

crete Riccati equations indexed in scale. We then decompose the filter into two parts

one of which corresponds to the Maximum-Likelihood filter, the other corresponding

to propagating the prior information. We derive the Maximum-Likelihood filter in

several ways, one of which corresponds to triangularizing the Hamiltonian dynamics.

From the structure of the Hamiltonian it will become clear that we can only trian-

gularize and not diagonalize the dynamics. We also present elements of a system

87
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theory for processes on trees in analyzing our filter, including notions of reachability,

reconstructibility, and observability. We then provide a notion of stability for systems

propagating upward on trees. Using our system theory, we give results on bounding

the error covariance of our filter as well as results on asymptotic properties of the

filter. Finally, we note that all of the results in this chapter apply equally well (with

simple modifications) in 2D, using quadtrees instead of dyadic trees.

3.2 Dynamic Stochastic Models on Trees

Recall the following class of state-space models on trees:

x(t) = A(t)x(,y-1t) + B(t)w(t) (3.2.1)

where f w(t), t E Tj is a set of independent, zero-mean Gaussian random variables. If

we are dealing with a tree with unique root node, 0, we require w(t) to be independent

of x(O), the zero-mean initial condition. The covariance of w(t) is I and that of X(0) is

P,,,(O). If we wish the model eq.(3.2.1) to define a process over the entire infinite tree,

we simply require that w(t) is independent of the "past" of x, i.e. jx(,r)jm(-r) < m(t)j.

If A(t) is invertible for all t, this is equivalent to requiring w(t) to be independent of

some x(,r) with r :� t, m(,r) < m(t).

Let us make several comments about this model. Note first that the model does

evolve along the tree, as both x(at) and x(,3t) evolve from x(t). Secondly, we note

that, as with all of our lattice processes, this process has a Markovian property:

given x at scale m, x at scale m + 1 is independent of x at scales less than or equal

to m - 1. Indeed for this to hold all we need is for w to be independent from

scale to scale and not necessarily at each individual node. Also, the analysis we

perform from Section 3.4 onward focuses on the case in which A(t) and B(t) are

functions of m(t); i.e. we focus in these sections on a translation-invariant model

where A(t) = A(m(t)) and B(t) = B(m(t)). As we will see this leads to significant

computational simplification and also, when this dependence is chosen appropriately,

these models lead to processes possessing self-similar properties from scale to scale.

Note that in this case the approach in the previous chapter applies.
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Note that the second-order statistics of x(t) are easily computed. In particular

the covariance P T(t)] evolves according to a Lyapunov equation on the

tree:
P.(t) = A(t)P.(-y-'t)A T(t) + B(t)B T(t) (3.2.2)

Let K.,. [X(t)XT(a)]

,-,(ts) = E . Let s A t denote the least upper bound of s and t, i.e.

the first node that is a predecessor of both t and s. Then

K-,., (t, s) (k (t, s A t) P-- (s At),pT(S' s A t) (3.2-3)

where for m(ti) > M(t2)

,4�(tj, t2) tl = t2 (3.2.4)
A(tj)-1,(-/-1tjt2) M(tl) > M(t2)

As we will see in a moment, the multiscale estimation algorithm we will ana-

lyze involves a fine-to-coarse recursion requiring a corresponding version of eq.(3.2.1).

Assuming that A(t) is invertible for all t we can directly apply the results of [53]:

X(-/- 10 = F(t)x(t) - A-'(t)B(t)i7v(t) (3.2.5)

with

T(t)p-l(qF(t) = A-1(t)[I - B(t)B
T(t)p-1 (t)= P. (-t -'t) A (3.2-6)

and where

,&(t) = w(t) - E[w(t)jx(t)] (3.2.7)

[17V(t)Z7VT(t)] T(t)p-1E = I - B (t) B (t) (3.2-8)

QM

Note that Cv(t) is a white noise process along all upward paths on the tree - i.e. t7v(s)

andCv(t) are uncorrelated if t = -,-r. or s = -I-'t for some r; otherwiseCV(s) andcv(t)

are not uncorrelated.
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We now formulate the problem of smoothing our processes based on multiscale

measurements. We consider the estimation of the stochastic process described by

eq.(3.2.1) based on the measurements

Y(t) = QOXW + V(0 (3.2.9)

where f v(t), t E Tj is a set of independent zero-mean Gaussian random variables

independent of x(O) and f W(t), t E Tj. The covariance of v(t) is R(t). The model

eq.(3.2.9) allows us to consider multiple resolution measurements of our process. This

model provides a natural framework for addressing the sensor-fusion problem, where

one is interested in optimally fusing measurements at various resolutions. This in-

cludes the case for example where one might be interested in fusing coarse data with

sparse fine data. If M denotes the finest scale, sparse data at this scale can be rep-

resented by having C(t) = 0 for some of the points at which m(t) = M. The single

resolution problem, i.e. when C(t) = 0 unless m(t) = M, is also of interest as it cor-

responds to the problem of restoring a noise corrupted version of a stochastic process

possessing a multiscale description.

Let us now examine what we will refer to as the scale-varying model, i.e. the

model whose parameters vary in scale only, for which the analysis following Section 3.3

applies. In this case the covariance evolves according to the following equation.

P.(t) = A(m(t))P.(-y-lt)A T(M(t)) + B(m(t))B T(M(t)) (3.2.10)

Note in particular that if P,,(,r) depends only on m(r) for m(r) < m(t) - 1, then P.,'(t)

depends only on m(t). We will assume that this is the case and therefore will write

P4,(t) = P,(m(t)). Note that this is always true if we are considering the subtree with

single root node 0. Also if A(m) is invertible for all M, and if P.,(t) = P.,(m(t)) at

some scale(i.e. at all t for which m(t) equals M for some M), then P,(t) = P'(m(t))

for all t. Our covariance, K,,(ts), now has the following form.

K.. (t, s) = (P (M (t), M (s A t)) P,, (M (s At)).I�T(M(s)' m(s A t)) (3.2.11)

where for ml > M2

4�(Ml' M2) 'Ml = M2 (3.2.12)
A(ml)-t(ml - 1, M2) Ml > M2
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Also, let d(s, t) denote the distance from s to t, i.e. the number of branches on the

shortest path from s to t. Then d(s, t) = d(s, s A t) + d(t, s A t) = d(t, s) and if

A(m(t)) = A, then

Kxx(t, a) = A d(tsA0P.(m(s A t))(A T)d(sqsAt) (3.2.13)

Furthermore, if A is stable and if B(m(t)) = B, let P., be the solution to the algebraic

Lyapunov equation

�,A + BB (3.2.14)

In this case if P__(0) = P,(if we have a root node), or if we assume that P,(r) = P:,.

for m(r) sufficiently negative', then P,(t) = P and we have the stationary

model

Kx.T(t, s) = A d(tsAt)P,(A T)d($,sAt)

K,,w (3.2.15)
, (d(t, a A t), d(s, s A t))

As a final note, we point out that there is one class of scalar stochastic processes

on trees that has been the subject of substantial analysis. In [3] these are referred to

as stationary processes but we prefer to use that terminology for the larger class of

processes for which K.,,, (t, s) depends only on d(t, s A t) and d(s, s A t). The class of

processes considered in [3] is characterized by the condition that K.T,,(t, s) depends

only on d(s, t) and we refer to these as isotropic processes. Note that eq.(3.2.15)
Trepresents an isotropic covariance if AP, = Pa:A , which shows the connection to the

class of reversible stochastic processes[l]. For example in the scalar case

B 2
K,,,, (t, s) = A d(st) (3.2.16)

1 - A2

Some of our other research has examined the modeling of isotropic processes on trees;

this is the subject of [5, 6].

3.3 Two-Sweep, Rauch-Tung-Striebel Algorithm

In this section we derive the equations for our two-sweep algorithm for smoothing

measurement data on trees. The algorithm is a generalization of the well-known

Once again if A is invertible, if P�, (t) = P,, at any single node, P. (t) = P. at all nodes.



CHAPTER 3. MULTISCALE PROCESSES ON TREES 92

Rauch-Tung-Striebel(RTS) smoothing algorithm for causal state models. Recall that

the standard RTS algorithm involves a forward Kalman filtering sweep followed by a

backward sweep to compute the smoothed estimates. The generalization to our niod-

els on trees has the same structure, with several important differences. First for the

standard RTS algorithm the procedure is completely symmetric with respect to time

- i.e. we can start with a reverse-time Kalman filtering sweep followed by a forward

smoothing sweep. For processes on trees, the Kalman filtering sweep must proceed

from fine-to-coarse(i.e. in the reverse direction from that in which the model eq.(3.2.1)

is defined) followed by a coarse-to-fine smoothing sweep'. Furthermore the Kalman

filtering sweep, using the backward model eq.'s(3.2-5-3.2.8) is somewhat more com-

plex for processes on trees. In particular one full step of the Kalman filter recursion

involves a measurement update, two parallel backward predictions(corresponding to

backward prediction along both of the paths descending from a node), and the fusion

of these predicted estimates. This last step has no counterpart for state models evolv-

ing in time and is one of the major reasons for the differences between the analysis

of temporal Riccati equations and that presented in this paper. As a final remark we

note that our algorithm involves a pyramidal set of steps and a considerable level of

parallelism.

To begin, let us recall the structure of the standard Rauch-Tung-Striebel algorithm

for a standard state model in time whose state we denote as z(t). The first step of

the process consists of a Kalman filter for computing i(tlt) for all t; at any time t the

prediction step yields i(t + 11t) while updating with the new measurement y(t + 1)

yields i(t + 11t + 1). The second step propagates backward in time combining the

smoothed estimate i,(t + 1) with the filtered estimate at the previous point in time

i(tlt) (or equivalently i(t + 11t)) to compute i.(t). In the case of estimation on

trees, we have a very similar structure; indeed the backward sweep and measurement

update are identical in form to the RTS algorithm. The prediction step is, however,

somewhat more complex', and while it can be written as a single step, we prefer to

2The reason for this is not very complex. To allow the measurement on the tree at one point to
contribute to the estimate at another point on the same level of the tree, one must use a recursion
that first moves up and then down the tree. Reversing the order of these steps does not allow one
to realize such contributions.



CHAPTER 3. MULTISCALE PROCESSES ON TREES 93
11
x (t I t) j a based on

measurements in

---------------------------------------------------------------------------------------

t

x(tlt+) in based on
measurements In

........... I---- ----- -------------------- -------------------------

Figure 3.3.1: Representation of Measurement Update and Merged Estimates

think of it as two parallel prediction steps, each as in RTS, followed by a merge step

that has no counterpart for state models evolving in time. One other difference is

that the forward sweep of our algorithm is from fine-to-coarse and thus involves the

backward version eq.(3.2.5) of our original model eq.(3.2.1).

To begin let us define some notation:

Yt = fy(s)js = t or s is a descendant of tj

= jy(s)I-q Cz (aP)*t , m(s) < MI (3-3-17)

YtI = fy(s)js C- (a,,3)*t , t < m(s) < MI (3-3-18)

it) = E[x(.)IYt] (3-3-19)

It+) = E[x(-)Il- j (3.3.20)t

The interpretation of these estimates is provided in Figure 3.3.1.

We begin by considering the measurement update step. Specifically, suppose that

we have computed �(tjt+) and the corresponding error covariance, P(tlt+). Then,

standard estimation results yield

,�(tjt) = ,�(tjt+) + K(t)[y(t) - C(t)i(tlt+)] (3-3.21)
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K(t) = p(tIt+)CT(t)V-1(t) (3.3.22)

V(t) = C(t)p(tIt+)CT(t) + R(t) (3.3.23)

and the resulting error covariance is given by

P(tlt) = [I - K(t)C(t)JP(tJt+) (3.3.24)

Note that the computations begin on the finest level(m(t)=M) with �(tlt+) = 0,

P(tlt+) = P,,(t) for m(t) = M.

Suppose now that we have computed �c(atlat) and Note that Y,,t and

Yot are disjoint and these estimates can be calculated in parallel. We then compute

.�(tlat) and i(tipt) which are given by

.�(tlat) = F(at).,�(atjat) (3-3.25)

:i(t1flt) = F(flt)-�(Otlflt) (3-3-26)

with corresponding error covariances given by

P(tlat) = F(at)P(atlat)F T(at) + Q(at) (3-3.27)

Q(at) = A-1(at)B(at)Q(at)BT(at)A -T (at) (3.3.28)

P(tl,3t) = F(3t)P(3tJ,3t)F Tpt) + Qpt) (3-3.29)

Q(flt) = A-' (#t)B(flt)Q('3t)BT(gt)A -T(#t) (3-3-30)

Eq.(3.3.25) and eq.(3.3.26) follow from projecting both sides of our backward model

eq.(3.2.5) onto Y,,t and Ypt, respectively. By noting that the dynamics of the one-

step prediction error are identical to the dynamics of our backward model eq.(3.2.5),

we arrive at eq.'s(3-3.27,3.3.29) by squaring both sides of the equation and taking

expectations.

These estimates must then be merged to form �(tlt+). The derivation of this

computation can be given as follows. By definition

(t I t +) = E [x (t) I Yt, Yot] (3-3.31)

But from our model, eq.(3.2.1), we can decompose Y,, and Ypt in the following way.

Y-111t = MtX(t) + (3-3-32)

yet = MptX(t) + (3-3-33)
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where the matrices M,,,t and M,et contain products of A(s), m(s) > m(t), and the

vectors �j and 6 are functions of the driving noises w(s) and the measurement noises

v(s) for s in the subtree strictly below at and s in the subtree strictly'at, respectively,

the latter fact implying �j 1 6- We also let

R.t = E[�,�T] (3.3-34)1
Rpt = E[6 �T] (3-3-35)

2

We then write eq.(3.3.32) and eq.(3.3.33) as a single equation in the following way.

Y ='Hx(t) + (3-3.36)

where

IH Mt -9 = E [==Tj (3-3.37)
mot

and x(t) I We can write the optimal estimate of x(t) given Y in the following

way.

[p-1(t) +,HTg-1,H]-1,HTjZ-1y
[P.-'(t) + MjtR-1 Mt + MT R�tM MTR�tly

,at]-1[MjtR-1Y.,t + 'et]at pt at ot

(3.3-38)

But since

P(tiat) = [P.-'(t) + MjtR-1M t]-1 (3-3.39)

+ MT R-'M 1-1 (3-3.40)
P(tlflt) = A-1(t) Gt pt Ot

we can rewrite eq.(3-3-38) as

,�(tjt+) = P(tjt+)[P-1(tjat).,�(tjat) + P-1(tj,3t).,�(tj,3t)]

(3.3.41)

P(tlt+) = [P-1(tIat) + P-1(tj,3t) - P-1(t)]-1 (3.3.42)

We now derive the formulas for the second part of the RTS algorithm involving

the propagation downward along the tree combining the smoothed estimate �,(-Y-10
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with the filtered estimate �4tjt) to produce �c,(t). Our derivation relies essentially on

the following orthogonal decomposition of Yo(the measurements at every node on the

tree).

For each t, Yt, as defined in eq.(3.3.17) is the set of measurements in the subtree

beneath t(and including the measurement at t). Let YE denote all the remaining

measurements, and viewing this as one large vector, define

vflt = YF - E[YFjYt] (3.3.43)

so that vqt I Yt and the linear span of the set of all measurements, Yo, is given by

span Yo = span jYt, YFj = span ty, vfjt� (3-3.44)

Then

,�.(t) = E[x(t)jYtvrjtj

= -�(tjt) + E[x(t)lvfltj (3.3.45)

If we write x(t) as

X(t) = Fc(tlt) +;i(tjt) (3.3.46)

and note that

VFjt (3.3.47)

then we can write the following.

�c,(t) =;i(tjt) + E[.,rc(tjt)jv�t] (3-3.48)

Using the same argument on allows us to write

+ E[;�(-y-'tjt)jvflt] (3.3.49)

Suppose the following equality were to hold.

E[.,�(tjt)jvflt] = L(E[.i(-(-'tjt)jvqt]) (3.3.50)

where L is a matrix. Then eq.(3.3.48) and eq.(3.3.49) could be combined to yield the

following formula.

�c.(t) = �i(tjt) + L -;i(y-1tjt)] (3-3.51)
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We now proceed to show that eq.(3.3.50) indeed holds and compute explicitly the

matrix L. We begin with the following iterated expectation.

E[i�(tjt)jvfltj = E[E[i(tjt)ji(7-'tjt),vqtjjvflt] (3-3.52)

We now examine the inner expectation, E[i(tjt)j;i(y-'tjt), vflt], in detail. In particular

t he linear span of { �Z (y t I t), vflt I has t he following st ruct ure.

span span Vail (3.3-53)

i7vj,,,, W'?IV'11 (3-3.54)

where

S) 8 S' subtree under t (3-3-55)

To show this we note the following decomposition of YF.

YF = L, x(7-'t) + f (Cvj,,,, W.1 I V.'11) (3-3.56)

where f is a linear function of its arguments. Substituting eq.(3.3.56) into eq.(3.3.43)

yields

vflt = Lj.,�(-Y-itlt) + f I W"11 V811) (3.3.57)

where we have used the fact that f (t-vjx, , we, v.,,) I Yt. The fact that i�(-Y-ltlt) I

f (z7vjX', , W.'1 I V.,11) verifies eq.(3.3.53). Using eq.(3-3.53) we have that

E[.;�(tjt)j;i(,y-1tjt),vflt] = E[-,i(tjt)ji�(-y-1tjt)] (3-3-58)

where we have also used the fact that f (Cv.j,�,, W.1, v.,,) I i(t1t). Substituting eq.(3-3-58)

into eq.(3.3.52) we get

E[.�(tjt)jvflt] = E[E[i(tjt)j4i(7-'tjt)]jvflt] (3-3.59)

But by using our backward equations, eq.(3.2.5), eq.(3.3.25)(in the latter case with

at �-+ t and t �-4 7-1t ) we find that

E[Fc(tlt)li(-I-'tlt)] = P(tlt)FT(t)p-l(_Y-ltlt).,�(7-ltlt)

(3.3-60)
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This leads to our desired result.

E[.i(tlt)lvflt] = P(tlt)F T(t)p-1 (-y-1tjt)E[i(-y-1tjt)jv�t]

(3-3-61)

Finally, eq.(3.3.50), eq.(3.3-51), and eq.(3-3-61) yield the following smoothing formula.

:Mt) = �i(tjt) + P(tjt)F T(t)p-1(_1-1tjt) - 4'Y-'tjt)] (3.3.62)

We can easily derive a recursion for the smoothing error. Let

FC'M XM -;Mt) (3-3-63)
J(t) P(tlt)F T(t)p-1(_Y-1tjt) (3-3.64)

Subtracting x(t) from both sides of eq.(3.3-62) and changing signs on both sides, we

get

;i'(t) =;i(tit) + i(t) kc-(-1-10 - 47-itlq (3.3-65)

By rearranging terms we get

;i'(t) - J(t)�C'(-Y-it) = Fc(tlt) - i(t)�q-Y-1t1t) (3-3-66)

By multiplying both sides of eq.(3.3.66) on the right by its transpose and taking

expectations, we get

P. (t) + J (t) E q,�T(,Y- It)) jT(t) = P(tit) + J(t)E[�C(-Y -1t1t) T -1tjt)]jT(t)

(3-3-67)

P. (t) = E [['�.(qiT(t)] (3-3-68)

where we have relied on the fact that

[ FC.'(t)�CT(_Y-1t)] = 0 (3-3-69)
a

E (t jt)�CT(_1-1tjt)] = 0 (3.3.70)

And finally, since

t)'j(_1-1t)] p _Y-1t) p -It) .3-71)3

jt);iT(_Y-1tjt)] p (_Y-lt) p(_Y-ltlt) (3-3-72)
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it follows that

p.(t) = p(tit) + j(t)[p.'(^I-It) _ p(_I-Itjt)jjT(t) (3-3.73)

We now summarize the overall two-sweep algorithm:

Upward Sweep

Measurement Update:

;�(tjt) = ,�(tjt+) + K(t)[y(t) - C(t).-�(tjt+)] (3-3-74)

K(t) = p(tjt+)CT(t)V-I(t) (3.3.75)

V(t) = C(t)p(tjt+)CT(t) + R(t) (3-3.76)

P(tjt) = [I - K(t)C(t)]P(tlt+) (3-3-77)

One-step Prediction:

,�(-y`tjt) = F(t)-,�(tjt) (3-3.78)

P(-y-'tlt) = F(t)P(tlt)F T(t) + Q(t) (3-3.79)

Q(t) = A-'(t)B(t)�(t)B T(t)A -T(t) (3-3-80)

Merge Step:

;�(tjt+) = P(tjt+)[P-1(tjat).�(tjat) + P-1(tIPt);�(tl0t)]

(3-3-81)

P(tlt+) = [P-1(tiat) + P-l(tl)3t) - P-1(t)]-I (3.3-82)

Downward Sweep

i'(t) = -qt1t) + i(t) -;�(-Y-itjq (3.3-83)
p = p(t1t) + j(t)[p"(^1-1t) _ p(^1-1tjt)jjT(t)

'(t) (3.3.84)

J(t) = P(tjt)FT(t)p-1(7-1tjt) (3.3.85)

Finally, in looking ahead to the results in the following sections we summarize the

overall two-sweep algorithm for the scale-varying model.
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Upward Sweep

Measurement Update:

,�(tjt) = -,�(tjt+) + K(m(t))[y(t) - C(m(t)).�(tjt+)] (3-3-86)

K(m(t)) = P(m(t)jm(t)+)C'(m(t))V-'(m(t)) (3-3-87)

V(m(t)) = C(m(t))P(,rn(t)lrn(t)+)C'(m(t)) + R(m(t)) (3-3-88)

P(m(t)jrn(t)) = [I - K(m(t))C(m(t))]P(m(t) lm(t)+) (3-3-89)

One-step Prediction:

�c(-y-ltjt) = F(m(t));�(tjt) (3-3-90)

P(m(t) - I jm(t)) = F(m(t))P(m(t)jm(t))F'(m(t)) + Q(m(t)) (3-3-91)

Q(m(t)) = A-'(m(t))B(m(t))Q(m(t))B'(m(t))A-'(m(t)X3.3.92)

Merge Step:

'WIt+) = P(M(01m(0+)P-1(m(t)jm(t) + 1)[�i(tjat)

(3-3-93)

P(M(t)jm(t)+) = [2P-'(m(t)jm(t) + 1) - P.-, (01-1 (3.3.94)

Downward Sweep

'�-(t) 'Wit) + J(M(0) k-(-t-10 - (3-3-95)
P - P('Y

.,(t) P(tit) + J(M(t))[p'('Y-1t) -1tjt)]jT(7,n(t)) (3-3-96)

J(m(t)) P(m(t)jm(t))F T(M(t))p-1(?n(t) _ 11M(t)) (3-3-97)

3.4 Maximum Likelihood Estimator

In this section we examine the difficulties in analyzing our filtering equations. These

difficulties point to the need to decompose the filter into two parts; one representing

what we call the ML filter, and the other representing our estimate of the mean

of the process. Note that while everything in this section can be developed for the
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general case, we develop our ideas in the scale-varying case, i.e. the case where the

model parameters vary only with scale, for which the results in the following sections

apply-

We begin by rewriting the set of Riccati equations for our filtering problem as

follows.

P(mlm+l) = F(rn+1)P(m+1jm+1)F'(m+1)

+ G(m + 1)0(m + 1)G T(M + 1) (3.4.1)

P-1(m1m) P-'(,rnlm+) + CT(M)R-'(m)C(m) (3.4.2)

P-'(mlm+) 2P-1(mjm+1)-P;,1(m) (3.4-3)

where

G(m(t)) 'n' -A-'(m(t))B(m(t)) (3.4-4)

Note that we can combine eq.(3.4.2,3.4.3) into the following single equation.

P-'(mlm) = 2P-1(m1m + 1) - P.-'(m) + C'(m)R-1(m)C(m) (3-4-5)

The Riccati equations for our optimal filter, eq.'s(3-4.1-3.4.3), differ from standard

Riccati equations in two respects: 1) the explicit presence of the prior state covariance

P,,.(m(t)) and 2) the presence of a scaling factor of 2 in eq.(3.4.3). The scaling factor

is intrinsic to our Riccati equations and is due to the fact that we are fusing pairs of

parallel information paths in going from level to level. The presence of P,(M(t)) in the

Riccati equations accounts for the double counting of prior information in performing

this merge.

The presence of this prior variance term points to a significant complication in

analyzing our filter. Specifically, in standard Kalman filtering analysis the Riccati

equation for the error covariance can be viewed simply as the covariance of the error

equations, which can be analyzed directly without explicitly examining the state

dynamics since the error evolves as a state process itself. This is apparently not the

case here because of the explicit presence of P,,(m) in eq.(3.4.5). Indeed as we show

later in this section, if one examines the backward model eq.'s(3.2-5-3.2-8) and the

Kalman filter eq.'s(3-3.21,3.3.25,3.3.26,3.3.41) one finds that the upward dynamics



CHAPTER 3. MULTISCALE PROCESSES ON TREES 102

for the error x(t) - �(tlt) are not decou led from x(t) unless P-'( (t)) = 0. This

P .�
motivates the following decomposition of the estimator into a dynamic part based on

an estimator in which P-,' = 0(the ML estimator) followed by a gain adjustment to

account for prior information.

To be precise, let PML(MIM + 1) and PML(Mlm) denote the covariance of the

estimation errors produced by our upward Kalman filter assuming that P,,-'(m) = 0

for all m. These satisfy the following Riccati equation, which doesn't depend explicitly

on P,,(m).

PML(MIM + 1) = A-'(m + I)PML(M + 11m + 1)A -T(M + 1) + G(m + 1)G T(M + 1)

(3.4.6)

Pii'L (m I m) = 2 Pj�fL (m I m +1) + CT (m)R-1(m)C(m) (3.4-7)

where our initial condition at level M is P,�fL(MJM) = 0. As we will show the

filtering equations for the ML estimator correspond exactly with the equations for

the optimal(Bayesian) filter with PML(Mim) and PML(MIM + 1) being substituted

for P(mlm) and P(mlm + 1) and by setting P-'(m) = 0. In particular they can be

written as follows.

ML Filtering Equations

Measurement Update:

;�ML(tlt) = i�ML(tlt+) + KML(M(t))[Y(t) - C(M(t))-�ML(tJt+)J3.4-8)

KML(M(t)) = PML(M(t) JM(t)+)CT(M(t))V-1(M(t)) (3-4.9)

V(M(t)) = C(M(0)PML(M(t) JM(t)+)CT(M(t)) + R(m(t)) (3.4.10)

PML(M(t)Jrn(t)) = [I - KML(M(t))C(M(t))IPML(M(t)IM(t)+) (3.4.11)

One-step Prediction:

'�ML(-t-It1t) = A`(M(t))-�ML(t1t) (3.4-12)

PML(M(t) - 11M(t)) = A-'(M(t))PML(M(t)Jm(t))A -T(M(t))

+ G(m(t))GT(M(t)) (3.4.13)

Merge Step:

'�ML(tlt+) = PML(M(t)JM(t)+)P�JL(M(t)JM(t) + 1)[iML(tJCd) +;�ML(tlot)]
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(3-4.14)

Pif-'L(rn(t)In(t)+) = 2Pj�f1L(m(t)jm(t) + 1) (3-4-15)

Before elaborating further on the ML estimator, we describe its relationship to

the optimal estimator. The two are related in the following way.
-'L(M(t) JM(t));iML(t It)

i(tit) = P(rn(t)jra(t))Pjj (3.4.16)

P-1(7n(t)Ira(t)) ,jf-' (m (t) I m (t)) + P.- 1 (7n (t)) (3.4.17)

To derive these relationships we start by writing

Yt = Wtx(t) + 0(t) (3-4-18)

where

E [O(t)OT(t)] = Rt (3-4-19)

E[0(t)] = 0 (3.4-20)

Recall that Yt is the set fy(s)js = t or s is a descendant of tj. Eq.(3.4.18) follows

directly from our downward model for the process x(t) on the tree. From eq.(3-4-18)

we can write the following maximum likelihood estimate for x(t), i.e. the estimate

that maximizes the distribution of Yt conditioned on x(t) where x(t) is considered to

be an unknown, deterministic parameter.

= (,HT-g-1,Ht)-1,HTK-1Y
'�ML(tjt) t t t t t (3.4.21)

pif-L(ra(t)l7n(t)) = HT7Z-1,Ht (3.4.22)
t t

To derive an expression for the Bayesian estimate of x(t) we can augment our previous

measurements with an extra "measurement" of x(t) in the following way.

Yt 'H t X(t) + 0(t) (3.4.23)

TM I

where

E [O(t)77T(t)j = 0 (3.4.24)

[n(qqT(t)] = p
E (3.4.25)

E [,q (t)] = 0 (3.4.26)
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and -ff(t) is the mean of x(t). The maximum likelihood solution to this problem gives

the Bayesian estimate of x(t), i.e. E[x(t)jYt]. The solution is given as follows.

'�(tjt) = P(rn(t)l'rn(t))(P,-�'L(M(t)l'rn(t)),�ML(tit) + P. 7

(3.4.27)

P-'(m(t)jm(t)) = P,�jL(?n(t)Ira(t)) + P.-'(m(t)) (3-4-28)

Since we consider x(t) to be a zero-mean process, eq.(3-4.27) and eq.(3.4.16) are

equivalent.

We now proceed to show that -'�ML(t It) can in fact be computed using what we have

defined as our ML filtering equations. In order to derive a recursion for �ML(tjt) We

solve the following ML problem for x(t), whose solution can be shown to be equivalent

to the solution of the ML problem defined by eq.'s(3.4.18-3.4.20).

Y(t) C(m(t)) V(t)
-iML(atIat) A(m(t)) x(t) + B(m(t))w(at) + iML(atlat) (3.4.29)

�ML(&1130 A(m(t)) j B(m(t))w(3t) + FCML(,3tl,3t) j

where

iML(atlat) �CML(atjat) - x(at) (3.4.30)

FCML(OtlOt) -�ML(Otj,*) - X(00 (3.4.31)

That the ML estimate of x(t) given measurements defined in eq.(3.4-29) is equivalent

to the ML estimate of x(t) given measurements defined in eq.(3.4.18) is a consequence

of the following lemma(for a proof of this result see [41)).

Lemma 3.4.1 Let x and z be unknown vectors and consider the following measure-

ments

yj = H,,,.x + v (3.4-32)

Y2 = J.,X + Jzz + W (3.4-33)

where v and w are independent, zero-mean Gaussian vectors. If x is estimable based

on eq. (3-4.32), then we denote this ML estimate as J�j and its estimation error by U1.
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Consider the following measurement

ii = x + u (3.4-34)

where u is zero-mean Gaussian with variance U1. If z is estimable based on eq.'s(3-4.32,3-4-33),

its ML estimate and estimation error are equivalent to the ML estimate and estima-

tion error of z based on eq.'s(3-4.34,3-4-33).

The particular form of eq.(3.4.29) follows directly from our downward model. We can

use the properties of this model to show the following.

V(t)

B(m(t))w(at) + iML(atlat) (3.4-35)

B(m(t))w(,3t) + i�ML(fltjflt)

R(m(t)) 0 0

E [II JIT] = 0 II, 0 (3-4-36)

0 0 I12

T(M(t))
III = PML(atlat)+B(m(t))B (3-4-37)

1112 = PML(0tj#t)+B(m,(t))B T(M(t)) (3-4-38)

(3.4-39)

Note that as we are considering the case where our model parameters vary only with

scale, 111 in fact equals III2 and thus, we will now denote the updated error covariance

as P(m(t)lm(t)). If we let

C (M (0)

f, A(m(t)) (3.4.40)

L A(m(t)) j

Y(t)
A

XML(atlat) (3.4.41)

'�ML(Otj,3t)

IIT]E[II (3.4.42)
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then our ML solution for x(t) is given as follows.

'�ML (t1t) =

= PML(M(0jM(t)) [CT (m(t))R-'(m(t))y(t) + A T(M(t))( PML(M(at)jM(at))

+ B (m (t)) B T(M(t)))-l (-�ML(atjat) + iML(#tjflt))1 (3.4.43'

pfL(,rn(t)jrn(t)) = CT(M(t) )R -'C(-rn(t))

+ 2A T(M(t))(PML(M(at)jrn(Cet)) + B(m(t))B T(M(t)) )-'A(m(t))

(3.4.44'

We can derive the ML predicted estimate as a function of the ML updated estimate in

a similar fashion. In particular �CML(7-1t1t), the ML estimate of x(-Y-lt) based on Yt,

can be viewed as the ML estimate of x(7-1t) based on the following "measurement".

iML(tlt) = A(m(t))XML(7-'t) + B(m(t))w(t) + j�ML(tjt) (3.4.45)

The ML estimator has the following solution.

PML(M('Y-'t)jM(t)) = A-1(M(t))PML(M(t)jm(t))A -T(M(t))

+ A-1(m(t))B(m(t))B T(M(t) )A -T(M(t)) (3.4.46)

-iML(-t-'tjt) = A-1(M(t))XML(tjt) (3.4.47)

We see that eq.'s(3.4.44,3.4-46) are precisely what we defined earlier as our ML Riccati

equation in eq.'s(3.4.6,3.4.7). As an alternative way of seeing that our ML equations

indeed provide recursions for an estimator whose error covariance PML(M(t)) satisfies

eq.(3.4.28) we can start with the recursions for PML(M(t)), P(m(t)), and P,,(m(t)),

then show that eq.(3.4.28) is satisfied for all m. This is done in Appendix 3A.

There are several reasons for viewing the optimal estimator as being decomposed

into an ML part and a part due to the prior model. One is that the ML Riccati

equations are simpler because they do not include the explicit presence of the prior

information P,,-1(m(t)). This simplicity is significant in that the ML Riccati equations

are readily amenable to stability analysis. The important reason mentioned previously

for focusing our analysis on the ML filter, and perhaps a deeper one, is that the error
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dynamics for the optimal -filter cannot be written as a noise driven process with closed-

loop dynamics whereas the error dynamics for the ML filter can. Let us flesh out

this last point in more detail.

Let us begin by examining the dynamics of our filter in the upward sweep of the

RTS algorithm, eq.'s(3.3-21-3.3.24, 3.3.25-3.3.28,3.3.41,3.3.42). We can rewrite the

dynamics of the filter in update form, eq.(3-3.21), as follows.

,�(tjt) = L(m(t))F(m(t) + 1)(�c(atjat) + �c(fltj,&))

+ K (m (t)) y (t) (3.4.48)

L(rn(t)) = P(m(t)jm(t))P-'(m(t)jm(t) + 1) (3.4.49)

We can also write the dynamics for our process in a similarly symmetric form.

X(t) F(m(t) + 1)[x(at) + x(#t)] + 1G(m(t) + 1)[tb(at) + t7v(#t)] (3.4.50)

We can easily rewrite eq.(3.4.48) as

,�(tjt) = (I - K(m(t))C(m(t)))L'(m(t))F(m(t) + 1)(.�(atjat)

+ i(,6tl#t)) + K(m(t))y(t) (3.4.51)

L'(7n(t)) = P(rn(t)jm(t)+)P-'(m(t)jm(t) + 1) (3.4.52)

By doing straightforward manipulations on eq.(3.4.51) and eq.(3.4-50) we can get

�E(tjt) (I - K(m(t))C(m(t)))x(t) - K(m(t))v(t)

(I - K(m(t))C(m(t)))V(m(t))F(m(t) + 1)(.�(atjat) +.,�(Ptjpt))

(3.4-53)

'qt1t) X(t) - �qtjt) (3-4-54)

The difficulty in proceeding any further with eq.(3.4.53) lies in the presence of the

term L'(m(t)). In standard filtering V(m(t)) = I; said another way there is no

difference between P(m(t)jm(t)+) and P(m(t)jm(t) + 1). Let us now write down the

equations for the ML filter and its corresponding error.

I
-�ML(tlt) -(I - KML(m(t))C(rn(t)))A-1(m(t) + 1)(&ML(atlat) + &ML(0tj#t))

2

+ KML(M(t))Y(t) (3-4.55)
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-iML(tlt) (I - KML(M(t))C(M(t)))X(t) - KML(M(t))V(t)

1(I - KML(M(t))C(-m(t)))A-'(m(t) + 1)(Z�ML(atlat) + -'�ML(MIM))
2

(3.4.56)

Note that we can write the dynamics for our process using our downward model as

follows.

X(t) A-1(m(t) + 1)(x(at) + x(3t)) - A-(,rn(t) + 1)B(m(t) + 1)(w(at) + w(3t))
2

(3-4-57)

By substituting eq.(3-4.57) into eq.(3.4.56) we get

'�ML(tlt) (I KML(m(t))C('ra(t)))A-1(rn(t) + 1)(iEML(atjat) + -'�ML(3t1,3t))

(I KML(m(t))C(m(t)))G(m(t) + 1)(W(Cft) + WOO) - KML(M(t))V(t)

(3.4.58)

Note that eq.(3-4-58) has the same algebraic structure as the the equations for the

error dynamics of the standard Kalman filter except for the scaling factor of 1 and the2

fact that there are two terms in the immediate past being merged. Both the scaling

factor and the merging of pairs of points is crucial to the study of the stability of

the filter. As we will see in Section 3.8 the appropriate scaling factor is necessary for

controlling in some sense the potential growth that might occur in merging points.

Also, for future reference, let us rewrite eq.(3.4.58) using the following equality:

1 (I - KML(M(t))C(M(t))) = PML(rn(t)l'tn(t))P,�11L(M(t)IM(t) + 1) (3.4.59)

We can rewrite eq.(3.4.58) as

'�ML(tjt) PML(rn(t)IM(t))P,�fL(rn(t)IM,(t) + I)A-1(m(t) + 1)(iML(atlat) +;iML(3tjPt))

PML(M(t)jM(t))PjfL(M(t)jM(t) + I)G(m(t) + 1)(w(at) + w(flt))

KML(M(t))V(t) (3.4.60)
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3.5 Up-down Smoothing Algorithm on the Tree

Using Hamiltonian Triangularization

In this section we discuss an alternative derivation of the ML up-down smoothing

algorithm. The derivation is based on triangularizing the Hamiltonian matrix for the

smoothing problem. This approach not lends additional insight into the smoothing

process. In particular as we will see in our derivation the structure of the Hamiltonian

dynamics is non-square; thus, this leads to triagularizing these dynamics and not

diagonalizing them. This approach also suggests an alternative way of computing

the Bayesian smoother. In particular the incorporation of the prior variance, i.e.

the variance of the top node of the tree, is done at the end of the upward sweep

rather than being carried around in the dynamics of the upward sweep as is done in

our previously derived smoother. Note that while we derive our equations for scale-

invariant system parameters, the extensions to the scale-varying case as well as the

general case are trivial.

Consider the following scale-invariant model defined with downward dynamics and

its associated measurement equation for an M-level tree.

x(t) = Ax(-y-'t) + Bw(t)

Y(t) = CX(t) + V(t) (3.5.2)

where w and v are white-noise processes with variances Q and R respectively. The

Hamiltonian function for the smoothing problem is as follows.

1 1 T(t)Q-1W(t)H(x, A) _(y(t) Cx(t))'R-'(y(t) - Cx(t)) + E _W (3.5.3)
t 2 t:Ato2

1 (X (to) Z(to))Tp�-I(X(to) _ T(to)) + EA T(X(t) - Ax(-y-'t) - Bw(t))
2 ttoto

The optimal estimates of the state x, the noise w, and the Lagrange multiplier A are

obtained by solving the following equations for the minimum of H.

0 = CTR-'C--�(t) - CTR-'y(t) - A T( A(at) + A(gt)) + A(t) (3.5.4)

0 = Q-17_b(t) _ BT�(t) (3-5-5)

0 = ,�(t) - A.,�(,y-lt) - B7b(t) (3.5.6)
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for all t 54 to while for t = to we have

0 CT R-'Ci(to) _ CT R-'Y(to)

AT(A(ato) + Wto)) + 4_1i(to) - P�_'X(to) (3-5.7)

By substituting eq.(3-5-5) into eq.(3.5.6) and reindexing the equations, we get the

following set of equations solely in terms of x and A.

0 = CT R`C�c(t) - CT R-'y(t) - AT(A(at) + �pt)) + A(t) (3.5.8)

0 = ,�(at) - A;�(t) - BQ.BTA(at) (3-5-9)

0 = ,�(flt) - A,,�(t) - BQBTA(#t) (3.5.10)

for all t such that t to and m(t) z� M while for t = to we have

0 CT R`C-,�(to) _ CT R-1y(to)

AT(A(ato) + A(3to)) + P�-'i(to) - P�-'Y(to) (3-5.11)

0 ;�(ato) - Ai(to) _.BQ.BTA(ato) (3-5.12)

0 i(flto) - A;�(to) _ BQBTA(#to) (3-5-13)

and for m(t) = M we have

0 = CT R`C:�(t) _ CT R-'y(t) + �(t) (3.5-14)

By rewriting eq.'s(3.5-8-3.5-10) in matrix form we get the following Hamiltonian dy-

namics in terms of the points t, at, and 3t for t to.

0
A X + 0"' X + (0 X 0

A t J at '3t CTR-1
L Y i

where

A 0

A A 0 (3.5.16)

CTR-1C I
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I -BQB T

0 0 (3-5-17)

0 -A T
L

0 0

00 I -BQB T

0 -A T

We now consider the problem of deriving an up-down algorithm for solving for the

smoothed estimate ,�. Our approach to the problem is to triangularize the dynamics

defined by eq.(3.5.15), thus yielding an algorithmic structure in which an upward

recursion is followed by a downward recursion to produce ;i. Consider the following

time-varying transformation.

U

Tt (3-5-19)
t t

where
Tt rt i (3.5.20)

1 0

With respect to the transformed variables xu and i we now wish to transform the

dynamics of eq.(3.5.15) into a form in which there is an upward recursion for xu

decoupled from ,�. Note that we are free to multiply eq.(3.5.15) on the left by an

invertible matrix, St, without losing information. By doing so, we wish to transform

the dynamics for xu and ,�, eq.(3.5.15), into the following structure.

CT 1
XU XU XU R-

StO.T-1 + St 0,3 Tt7+1 0 (3.5.21)
StAT�_ t+

X X X
t at pt L 0 i

where

-P�-'A-' -Pj'A-1 I

St 0 1 0 (3.5.22)

I 0 0
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I 0

StATjl = Li L2 (3.5.23)

LL3 L4

Ft+ 0

St (E). Tt7+1 = 0 0 (3.5.24)

L N APtA T rt+ j
Ft + 0

St 0,8 Tj+' = N APtA T rt+ (3.5.25)

0 0

We now solve for the matrices LI L4, Ft+, and N given eq.'s(3-5-22-3.5.25). It

is straightforward to show that eq.'s(3.5.24,3.5.25) are actually equivalent. Thus,

eq.'s(3.5.23,3.5.24) represent 12 constraint equations(9 of which are non-trivial) for

our 6 unknowns. These 9 equations are explicitly as follows.

rt = 2Pt7l + CTR-'C (3.5.26)

LI = 0 (3.5.27)

L,3 = 0 (3.5.28)

-A = Li rt++ L2 (3.5.29)

-A = L3rt++ L4 (3.5-30)

Ft+rt+ = -Pj'A-1 (3.5.31)

Ft+ = Pj'A-'BQBT - A T (3.5.32)

I = Nrt+ + APtA Trt+ (3.5.33)

M = _BQBT (3.5.34)

It follows easily that

L2 = -A (3-5-35)

L4 = -A (3-5-36)

Thus, we can write the up-down algorithm as an upward recursion for x'U followed by

a downward correction sweep involving i and xu.
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For all t such that t :� to and m(t) 54 M the upward recursion is as follows.

xu(t) = JFt+(x"(at) + xu(,3t)) + C'R-'y(t) (3.5.37)

Xt+ = -Ft+ = Pt71A-1r-1 (3-5.38)

For t = to we have

Xu(to) = jct"+(Xu(ato) + Xu(,3to)) + CT R-'y(to) + P�`T(to) (3-5-39)

where

.Fto+ = Pt71A-1r-1to+ (3.5.40)
F-' = 2Pt7' + CT

to+ 0 R-C + P�-' (3.5.41)

Note that we've incorporated our a priori variance Po at the end of the upward sweep.

The initial condition for the upward recursion, eq.(3.5.37), is determined by con-

sidering our constraints for all t such that m(t) = M, namely eq.(3-5-14). We must

now define xu along the bottom level to provide our desired initial conditions. Con-

sider the following definition for all s such that m(a) = M.

XU(s) = rm.�(S) + A(S) (3-5.42)

rm = CT R-1 C (3.5.43)

By substituting eq.(3.5.42) into eq.(3.5.14) we get our desired initial condition for xu.

X u(,) = CT R`y(s) (3-5.44)

Note that the system matrix for our upward recursion, Ft+, can be written

solely as a function of Pt7l. But we can also write a recursion for Pt7l. From

eq.'s(3.5.26,3.5.31,3.5.32) we get the following.

P�_' = (A-'(M,�+' + CT R-'C)-'A -T + A-'_BQj3TA-T)-1 (3-5.45)

where for all s such that m(s) = M

PI- 1 = 0 (3.5-46)
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Note that if we let

pi' = P-1(rn(t) + 11m(t)) (3.5-47)

then eq.(3.5.45) is precisely the Riccati equation for the Maximum-Likelihood esti-

mator in information form.

We now write down the downward recursion for the smoothed estimate �C(t). For

all t such that t :� to the downward recurion is as follows.

,�(t) = _TtT.,�(-y-'t) + JctTA-'.BQBTXu(t) (3.5.48)

while for t = to we have

;(to) = F 0+ (3.5.49)

We now summarize the overall two-sweep algorithm for the case of general pa-

rameters A(t), B(t), Q(t), and R(t):

Upward Sweep

For all t such that t 7�_ to and m(t) z� M:

,q7-1tjt) = (S(at):qtjat) + S(,3t)i(tj#t)) + CT `(t)y(t) (3.5. 0)(t)R 5

S(t) = P(7-1tjt)A-1(t)P(tjt) (3.5.51)

p(t1t) = p-l(atlt)+p-l(,3tlt)+CT(t)R-l(t)C(t) (3.5.52)

P(-I-'tlt) = A-'(t)P(tlt)A -T(t) + A-1(t)B(t)Q(t)BT(t)A -T(t) (3.5.53)

Initial Conditions:

i(,Y-1tjt) 0 (3-5-54)

P_1(_Y._1t1t) 0 (3.5.55)

for all t such that m(-/-'t) = M.

Incorporation of Prior at Top Node

i.(tolto) = P-1(tolto)-Wolt-) (3-5-56)

P-I(tolto) = P-I(tolato) + P-I(topto) + CT(to)R-'(to)C(to) + P.-'(to)

(3-5-57)
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Downward Sweep

:�'(t) = ST(t):�'(_Y-It) + ST(t)A-1(t)B(t)Q(t)B T(t).,q_Y-1tjt) (3.5-58)

p.(t) = p(tjt)+j(t)[p.(7-1t) _ p(_1-1tjt)jjT(t) (3-5-59)

J(t) = P(tlt)A -T(t)p-1(_1-1tjt) (3-5-60)

3.6 Reachab'lity, Observability, and Reconstructibil-

ity

In this section we develop certain system theoretic constructs which are useful in

analyzing both the stability and the steady-state characteristics of our filter. In

particular we define notions of reachability, observability, and reconstructibility on

dyadic trees in terms of system dynamics going up the tree. At the end of this

section we describe a dual theory for systems with downward dynamics. Note that

for the remainder of this chapter we focus on the scale-varying case, i.e. the model

parameters depend on scale only.

3.6.1 Upward Reachability

We begin with the notion of reachability for a system defined going up a tree. Anal-

ogous to the standard time-series case, reachability involves the notion of being able

to reach arbitrary states at some point t on the tree given arbitrary inputs in the

past where in the case of processes evolving up a tree the past refers to points in the

subtree under t. Recall that we can rewrite the dynamics for our backward process

up the tree, eq.(3.2.5), in the following form.

1 1
X(t) = _F(m(t) + 1)[x(at) + x(pt)] + _G(m(t) + 1)[,Cv(at) + zvZ(0t)] (3-6-1)

2 2

Also, recall that in our backward model z7v(t) is a white noise process along upward

paths on the tree. For the analysis of reachability, however, we simply view zb(t) as

the input to the system eq.(3.6.1).
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We define the following vectors,

Xmt,, [x'(aMto),x'(#aM-'to)7 ... x T(#Mto)iT (3.6.2)

ffrm'to [ Z7VT (ato) 17VT(pto) ... cvT (amto) ... iV-T(,3Mto) ]T (3.6.3)

which have the following interpretation. Consider an arbitrary point on the tree,

to. The vector Xmt,, denotes the vector of 2M points at the Mth level down in the

subtree under to; i.e. Xmto includes all of the nodes at this level that influence the

value of x(to). The vector W-mt,, comprises the full set of inputs that influences x(to)

starting from initial condition Xmt,,, i.e. the,&(t) in the entire subtree down to M

levels from to. We de-fine upward reachability to be the following.

Definition 3.6.1 The system is upward reachable fi-om Xmt, to x(to) if given any

TMt, and any desiredff(to), it is possible to specify fV'mt,, so if Xmt, = Xmt,, then

X(to) = Y(to).

In studying conditions for reachability since we are given Xmto, we can set it equal

to zero without loss of generality. Note that if Xmt,, = 0, then we have

x(to) = GfVmt(, (3.6.4)

where

G TO) TO) TM TM TM T(1) ... (3-6-5)

1�(M - 2) ... T(M - 2) 1�(M - 1) ... T(M - 1)

2M-1 times 2M times

1)'+'O(,rn(t'0)7 m(to) + i)G(m(to) + i + 1) (3-6.6)
2

Ml = M2

O(Ml IM2) (3-6.7)
F(ml + I)O(Ml + 1, M2) Ml < M2

OM - 1) m) F(m) (3.6.8)

Let us also define the following quantity.
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Definition 3.6.2 Upward-reachability Grarnmian
- T

-R(t,,, M) GG
M-1
E 2-'-'0(m,(to), m(to) + i)G(m(to) + i + 1)
i=O

x GT(,rn(to) + i + 1)OT(M(to), M(to) + i) (3.6.9)

From eq.(3.6.4) we see that the ability to reach all. possible values of x(to) given

arbitrary inputs, ITVMto) depends on the rank of the matrix G. This, along with the
Tfact that the rank of G equals the rank of GG , leads to the following, where x(t) is

an n-dimensional vector:

Proposition 3.6.1 The system is upward reachable from XMt, to x(to) iff G has

rank n i R(to, M) has rank n.

Note that 7Z(to, M) bears a strong similarity to the standard reachability grammian

for the following system.

x(m) = �F(m + 1)x(m + 1) + -G(m + 1)U(M + 1) (3.6.10)
2

where the reachability grammian in this case is
M-1

7V (M' M + M) ='2' E 2 -2i-20(M, M + i)G(m + i + 1)
i=O

x G T(M + i + I)OT(M, M + i)

= G*(G* )T
In,

G* = [ T (0) T (1) ... 1�(M - 2) 1�(M - 1) (3.6.11)

In fact it is evident from the definitions in eq.'s(3-6.5,3.6.11) that the rank of G is

equivalent to the rank of G*. This leads to the following corollary.

Corollary 3.6.1 The system is upward reachable fi-om Xmt,, to x(to) iff for any

a, 0 -R*',9(m(to),m(to) + M) has rank n, where 7Z*'0(m(to),m(to) + M) is theQ

reachability grammian for the system

x(m) = aF(m, + 1)x(m + 1) +,8G(,m + I)u(m + 1) (3-6-12)

Note that if F and G are constant in eq.(3.6.1), then reachability is equivalent to the

usual condition, i.e. ranks ... IFM-'G] = n.
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3.6.2 Upward Observability and Reconstructibility

We develop the notion of observability and the notion of reconstructibility on trees.

Defined on trees, observability corresponds to the notion of being able to uniquely

determine the points at the bottom of a subtree, i.e. the "initial conditions", given

knowledge of -the inputs and observations in the subtree. It is also useful to develop

the weaker notion corresponding to being able to uniquely determine the single point

at the top of a subtree given knowledge of the inputs and observations in the subtree.

This notion is analogous to reconstructibility for standard systems; thus, we adopt

the same term for the notion on trees.

Let us define

... JyT ... yT(pMto) ]TYmt,, y'(to)l y'(ato), y'(3to)j (amto), (3.6.13)

where

y(t) = C(,ra(t))x(t) (3-6-14)

Definition 3.6.3 The system is upward observable fi-om Xmt,, to x(to) if given

knowledge of 17VMto and YMto, we can uniquely determine Xmt,,.

Note that if fVMto = 0 then

YMto == WmXmto (3.6.15)

where 'HM is most easily visualized if we partition it compatibly with the levels of
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the observations in Ymt.:

2m blocks

E) (0) 0 (0) ... ... O(O)

0(1) ... ... 0(i) 0 ... ... 0

0 ... ... 0 OM ... ... E)(1)

0(2) ... 0(2) 0 ... 0 0 ... 0 0 ... 0

0 ... 0 0(2) ... 0(2) 0 ... 0 0 ... 0

0 ... 0 0 ... 0 0(2) ... 0(2) 0 ... 0

'H m 0 ... 0 0 0 0 ... 0 E)(2) ... 0(2)

O(M) 0 ... ... 0

0 O(M) ... ... 0

0 0 ... ... 19(M)

L (3.6.16)

Here

0(i) q)M-iqm(to) + i)O(M(to) + i, M(to) + M) (3-6-17)

As a simple example to help clarify the structure of the matrix 'HM consider the



CHAPTER 3. MULTISCALE PROCESSES ON TREES 120

matrix W2 for the scale-invariant case, i.e. where F(m) = F, C(m) C.

2 2 2 1C 2'CF 1CF 1CF FT T T T

'CF 1CF 0 0i 2

0 0 1CF 1CF2 2

'H2 C 0 0 0 (3-6-18)

0 C 0 0

0 0 C 0

0 0 0 C

That is, at level i, there are 2' measurements each of which provides information

about the sum of a block of 2M-' components of XMt.. Note that this makes clear

that upward observability is indeed a very strong condition. Specifically, since suc-

cessively larger blocks of Xmt,, are summed as we move up the tree, subsequent

measurements provide no information about the differences among the values that

have been summed. For example consider M = 1. In this case y(t) contains infor-

mation about the sum x(at) + x(,3t), and thus information about x(at) - x('3t) must

come from y(at) and y(,3t). This places severe constraints on the system matrices.

In particular a necessary condition for observability is that y have dimension larger

than '(otherwise 'HM has fewer rows than columns).2

We also define the following.

Definition 3.6.4 Upward-observability Grammian

A iT -u
MM = 'HM I I-M (3-6-19)

where

Mk U(k, 0) (3.6.20)

i)2(k-i)0T(M(t0) + i, M(to) + kprn(to) + i)O(M(to) + i',rn(to) + k)U(k' k) D_
i=O 2

(3.6-21)

C (k) C T (k)C(k) (3-6-22)

U(k, I + 1) S(k, 1)

U(k, 1) S(k, 1) U(k, I + 1) (3.6.23)
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and S(k, 1) is a block matrix with 2"' x 2k-1-1 blocks each of which equals

T (k, 1) = 1:(_)2( J1-i)0T(M(t0)+i' M(to)+k)CT(M(to)+i)C(M(to)+i)O(M(to)+i, M(to)+k)

i=O 2
(3.6.24)

Once again we consider the scale-invariant case, this time in order to make explicit

the structure of the matrix Mm. The following is M2 for the scale-invariant case.

Ml M2 M3 M3

M2 M2 Ml M3 M3 (3-6.25)
M3 M3 Ml M2

M3 M3 M2 Ml

where

Ml = 1 F2TCT CF 2 +1 FCTCF + CTC (3-6.26)
16 i
1 2TCT 2 1 CTM2 = F CF + _F CF (3-6.27)

16 4
M3 = I F2TCT CF 2 (3-6.28)

16

From eq.(3.6.15) we see that being able to uniquely determine Xmt,, from Ymt,, is

equivalent to requiring the nullspace of the matrix 'Hm to be f 01. This leads to the

following.

Proposition 3.6.2 The system is upward observable fi-om Xmt,, to x(to) iffjV(Hm)

f 01 iff Mm is invertible.

A much weaker notion than that of observability is the notion of reconstructibility.

Reconstructibility requires only the ability to determine the single point at the top

of a subtree given knowledge of the inputs and observations. in the subtree.

Definition 3.6.5 The system is upward reconstructible fi-om Xmto to x(to) if

given knowledge of fVmto and Ymt,,, we can uniquely determine x(to).

We also define the following.
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Definition 3.6.6 Upward-reconstructibility Grammian

0(to, M) IMHTHMIMT
M

ME 2' OT(m(to) + i, M(to) + M)CT(M(to) + i)

i=O
X C(M(to) + i)O('M(to) + i, M(to) + M) (3.6.29)

where

IM = [IIII-III (3.6.30)

2M times

and each I is an n x n identity matrix.

Note that if fVM'to = 0, then

X(to) = 'I'(to)XM't� (3-6.31)

where
1
_)MO(m(to), ra(to) + M)Im (3.6.32)'1*0) 2

Since the condition of reconstructibility only requires being able to uniquely determine

the single point x(to) from the measurements in the subtree, we guarantee this con-

dition by requiring that any vector in the nuffspace, A�(Hm), is also in the nullspace,

,V(4)(to)). We thus have the following theorem, the proof of which can be found in

the Appendix 3B.

Theorem 3.6.1 The system is upward reconstructive iff A((H) C A((4�(to))- If

F(m) is invertible for all m, this is equivalent to the invertibility of 0(to, M).

Note that 0(to, M) bears a strong similarity to the standard observability grammian

for the following system.

x(m) = aF(m, + 1)x(m + 1) + G(m + 1)u(m + 1) (3-6.33)

y(m) = OC(m)x(m) (3-6-34)

where the observability grammian in this case is

M
2(M-i)o2oT(M(to) + i, ra(to) + M)CT(M(to) + i)

0.,p (-M (to), rn (to) + M) Ea
i=O

x C(m(to) + i)O(m(to) + i, m(to) + M) (3.6-35)
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This results in the following corollary.

Corollary 3.6.2 Assuming that F(m) is invertible for all m, the system is upward

reconstructible fi-om Xmto to x(to) iff 0,,,,o(m(to), m(to) + M) has rank n.

Let us comment on an important difference between the concepts of reconstructibil-

ity and observability for our upward propagating systems and those for standard

temporal systems. For standard systems observability implies reconstructibility and

the two concepts are equivalent if the state transition matrix is invertible. In our

case, observability certainly implies reconstructibility, but the former remains a much

stronger condition even if 0 is invertible. In this case reconstructibility is equivalent

to being able to determine the average values of the components of the initial state.

We can define this notion formally as follows.

Definition 3.6.7 The system is upward coarsely observable fi-om Xmt(, to x(to)

if given knowledge of fVmt,, and YMto, we can uniquely determine ave(Xmt(,) where

& I
ave(Xmt.) = (-) ImXmt,, (3-6-36)

2

Note that if 0 is invertible from eq.'s(3.6.31 and 3.6.32) we get

1
ave(Xmt.) = (-)MIMXM't.

2
= 0-1(-m(t0)'m(t0)+M)X(t0) (3.6-37)

This leads to the following corollary.

Corollary 3.6.3 Assuming that F(m) is invertible for all m, the system is upward

reconstructible from Xmt, to x(to) iff the system is upward coarsely observable

from XM't" to X(to).

Note that in contrast to our notion of observability our reachability concept going

up the tree is actually rather weak since we have many control inputs in the subtree

to achieve a single final state x(to). As one might expect there is a dual theory

for systems defined moving down the tree, but the tree asymmetry leads to some

important differences. In particular, weak and strong concepts are interchanged.
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For example, observability is concerned with determining the single initial state

given observations in the subtree under to, while reconstructibility corresponds to

determining the entire vector XMto. In this case if 0 is invertible observability is

equivalent to determining the average value of Xmt,,. Similarly, reachability is

concerned with reaching arbitrary values for the entire vector Xmt,,, an extremely

strong condition. A natural and much weaker condition is achieving an arbitrary

average value for Xmt,,. A complete picture of this system theory is be given in the

next section.

3.6.3 Downward Systems

In this section we describe a dual theory for systems defined moving down the tree.

Consider the following system described by downward dynamics.

x(t) = A(,m(t))x(7-'t) + B(m(t))w(t) (3-6.38)

with measurements

YM = C(MM)X(0 (3-6.39)

We define the following vector,

WM'to 'n' [ WT(to) JWT(ato) WT(,3to)l ... IWT(aMto) ... WT(,3Mto) ]T (3.6.40)

where Wmto represents the the full set of inputs that influences Xmt,, (as previously

defined) starting from the initial condition x(,y-'to), i.e. the w(t) in the entire subtree

down to M levels from to, including the point w(to). The reason for defining the

initial condition as being x(-y-'to) rather than x(to) is to insure a duality between the

downward and the upward concepts. The necessity for the asymmetry in upward and

downward definitions will become more clear as we begin to establish this duality.

Let us begin with the notion of observability for downward systems. This is the

notion of determining uniquely the initial state, which in this case is x(to), from

the observations in the subtree down to M levels from to, but not including the

point y(to). Again this asymmetry in upward and downward definitions is necessary
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for establishing a duality between upward and downward concepts. We define the

following vector of observations,

km'to y'(ato), y'(0to)j ... jyI(aMt0)'...yT(0Mt0) ]T (3.6.41)

and also the following vector of inputs

W WT(ato) WT(,3to)l ... JWT T(,3Mto) JT (3.6.42)'�'to (amto) ... W

where W,�It. is simply Wmt,, without the input w(to).

Definition 3.6.8 The system is downward observable Porn x(to) to Xmto if given

knowledge of W,�fto and fmto, we can uniquely determine x(to).

Note that if W,;fto = 0 then

Ymto =Hmx(to) (3-6.43)

where

�jT jf(o) +(O) X�(j) +(1) X�(j) +(j) ... (3-6.44)
m

I�(M - 2) ... T(M - 2) 'i(m - 1)...+(M - 1)

2M-1 times 2M times

C(M(to) + i + 1)0(M(to + i), M(to)) (3-6.45)

I 'Ml = M2

O(Ml, M2) A(ml - 1)0(m, - 1, M2) Ml > M2 (3-6-46)

0(m, + 1, m) A(m) (3.6.47)

We also define the following.

Definition 3.6.9 Downward-observability Grarnmian

-TMm HmHm (3.6.48)

Since being able to uniquely determine x(to) from &,t,, is equivalent to requiring the

nullspace of ')�m to be 101, we get
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Proposition 3.6.3 The system is downward observable fi-om x(to) to Xmt,, iff

A((?�m) = f 01 iff f4m is invertible.

Similarly to the case of observability and reconstructibility for upward systems we

would expect the invertibility of 0 to suggest an equivalence between these concepts

for downward systems as well. But in this case weak and strong concepts are reversed;

i.e. observability is equivalent to coarse reconstructibility for invertible 0.

Definition 3.6.10 The system is downward coarsely reconstructible from x(to)

to XMto if given knowledge of Wmt,, andkmt, we can uniquely determine ave(XMto).

If 0 is invertible, then from eq.(3-6.37) we get

Corollary 3.6.4 Assuming that F(m) is invertible for all m, the system is down-

ward observable from x(to) to Xmt,, iff the system is downward coarsely recon-

structible fi-om x(to) to XMto.

We now consider reachability for downward systems. In this case for the sake of

establishing duality between downward and upward concepts we consider our initial

condition to be x(-y-lto) rather than x(to)

Definition 3.6.11 The system is downward reachable fi-om x(7-1to) to Xmt,,

if given any 7(-y-'to) and any desired XMto, it is possible to specify WMto so if

X(-y-'to) = -0(-f -'to), then Xmt,, = Xmto.

Note that if x(-y-Ito) = 0, then we have

_IYMt�' = GWmto (3-6.49)
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where

2M blocks

E)(0) 6(0) ... 19(0)

6(1) 0 ... ... 0

0 ... ... 0 6(i) ... ... 6(t)

6(2) ... 6(2) 0 ... 0 0 ... 0 0 ... 0

0 ... 0 6(2) ... 6(2) 0 ... 0 0 ... 0

0 ... 0 0 ... 0 6(2) ... 6(2) 0 ... 0

OT & 0 ... 0 0 ... 0 0 ... 0 6(2) ... (5(2)M-

6(M) 0 ... ... 0
0 6(m) ... ... 0

0 0 ... ... 6(M)

L
(3.6.50)

Here

6T(i) -'2' 0(rn(to) + M, m(to) + i)B(,m(to) + i) (3-6-51)

Let us also define the following quantity.

Definition 3.6.12 Downward-reachability Grarnmian

,k(to, M) = OOT (3.6.52)

Since reaching all possible states Xmt,, depends on having the rank of be equal to

the dimension of Xmt,,, we get the following.
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Proposition 3.6.4 The system is downward reachable from x(to) to Xmt,, iff

has rank m, iff t(to, M) has rank -m, where m, is the dimension of XMt".

Finally, we define the following weaker concept of reachability which win prove to be

the dual of reconstructibility for upward systems.

Definition 3.6.13 The system is downward coarsely reachable fi-om x('Y-lto) to

Xxto if given any 7(-�-Ito) and any desired ave(Ymto), it is possible to specify Wmto

so if x(-y-Ito) = Y(-y-lto), then ave(Xmt,,) = ave(Ymt,,).

Note that

ave(Xmto) )MIMOWM't. (3-6-53)

We also define the following.

Definition 3.6.14 Downward-coarsely-reachability Grarnmian

4TiTave(R(to, M)) = Im!99 M (3.6.54)

Proposition 3.6.5 The system is downward coarsely reachable from x(to) to

Xmt,, iff IM0 has rank n iff ave(t(to, M)) has rank n, where n is the dimension of

the state.

Having defined appropriately our downward system theoretic concepts, we can

now state the following duality between upward and downward systems. Given the

following downward model,

x(to) = F T(M(to))X(_Y-Ito) + CT(M(to) (3-6-55)Mto)
T(M(t))X(,Y-lt) + CT(M(t))W(t) rn(t) > M(to)x (t) = - F (3.6.56)

2

y M = Gt(m(t))x(t) m(t) > rn(to) (3-6-57)

we have the following duality between the upward model(eq.'s(3.6.1,3.6.14)) and the

downward model(eq.'s(3.6.55-3.6.57)).
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Upward Downward

Reachability Observability

(Coarse Reconstructibility)

Observability Reachability

Reconstructibility Coarse Reachability

(Coarse Observability)

3.7 Bounds on the Error Covariance of the Filter

In the following sections we will analyze the stability of our upward Kalman filter via

Lyapunov methods. As we will see our analysis of the ML filter will require bounds

on PML(Mjm), and it will also be necessary to have bounds on P(m1m) in order to

infer stability of the optimal filter. Thus, in this section we begin by deriving strict

upper and lower bounds for the optimal filter error covariance P(mjm). We then

use analogous arguments to derive upper and lower bounds for the ML filter error

covariance PML(Mjm). Existence of these bounds depends on conditions that can be

expressed in terms of the notions of upward reachability and upward reconstructibility

developed in the previous section.

Recall our system whose dynamics are described by eq.(3.6-1) and whose measure-

ments are described by eq.(3.6.14). We define the stochastic reachability grammian

for this system as follows.

Definition 3.7.1 Stochastic Reachability Grammian

M-1
R(to, M) E 2 0(m (to), m (to) + i) G(m (to) + i + 1)

i=O
x 0(m(to) + i + 1)G T(M(to) + i + j)0T(,M(to)' m(to) + i) (3-7-1)

We define the stochastic reconstructibility grammian for this system as follows.
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Definition 3.7.2 Stochastic Reconstructibility Grammian

-U(t,,, M) E 2' OT(M(to) + i, M(to) + M)CT(M(to) + i)

i=O

x R-l(m(to)+i)C(m(to)+i)O(m(to)+i,rn(to)+M) (3-7.2)

Among the assumptions that we make under which we prove our bounds is that

the matrices F(m), F-1(m), G(m), Q(m), C(m), R(rn), and R-1(m) are bounded

functions of m. In terms of our reachability and reconstructibility grammians these

assumptions mean that for any Mo > 0 we can find a,,3 > 0 so that

7(t, Mo) < aI for all t (3-7-3)

_U(t, Mo) < OI for all t (3-7-4)

We define the notion of uniform reachability as follows.

Definition 3.7.3 An upward system is uniformly reachable if there exists -Y, MO >

0 so that

7(t, MO) > -yI for all t (3.7.5)

This property insures that the process noise contributes a steady stream of uncertainty

into the state. Intuitively, we would expect in this case that the error covariance

P(m1m) would never become equal to zero. In fact we prove that under uniform

reachabilty P(m1m) is lower bounded by a positive definite matrix.

We also need the notion of uniform reconstructibility, which is formulated as

follows.

Definition 3.7.4 An upward system is uniformly reconstructible if there exists

8, MO > 0 so that

_U(t, Mo) > 6I for all t (3-7-6)

where M is the bottom level of a tree.

This property insures a steady flow of information about the state of the system.

Intuitively, we would expect that under this condition the uncertainty in our esti-

mate remains bounded. In fact we prove that under the condition of uniform recon-

structibility the error covariance, P(m1m), is upper bounded.
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Without loss of generality we can take MO to be the same in eq.'s(3.7.3-3.7-6) for

any system which is uniformly reachable and reconstructible.

3.7.1 Upper Bound

We begin by deriving an upper bound for the optimal filter error covariance, P(m1m).

The general idea in deriving this bound is to make a careful comparison between the

Riccati equations for our optimal filter and the Riccati equations for the standard

Kalman filter. First consider the following lemma.

Lemma 3.7.1 Given the Riccati equation

P(m1m + 1) = F(m + 1)P(m + 11m + I)F T(M + 1)

+ G(M + I)O(M + 1)GT(M + 1) (3.7.7)

p-I(MIM) = p-I(MjM+j)+CT(M)R-1(m)C(in)

+ P-1(MjM+1)-P-'(M) (3.7-8)

and the Riccati equation

T(mlm+l) = F(m+l)T(m+llm+l)F T(M + 1)

+ G(m + I)Q(m + I)G T(M + 1) (3-7-9)

j5-1(MIM) = T-1(MIM + 1) + CT(M)R-'(m)C(m) (3.7.10)

we have that

T_1(MjM) < P'(MIM) (3.7.11)

Proof

We first note that eq.(3.7.8) can be rewritten as

p-I(MIM) = p-I(MIM + 1) + CT(m)R-'(m)C(m) + D T(m)D(m) (3.7.12)

where DT(m)D(m) is positive semi-definite. This follows from the fact that

P(m1m + 1) < P.,(m) or P-'(mlm + 1) - P-1(m) > 0. The Riccati equation,
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eq.'s(3-7.9,3.7.10), characterizes the error covariance for the optimal filter correspond-

ing to the following filtering problem.

x(m) = F(m, + 1)x(m. + 1) + G(m, + 1)w(m + 1) (3.7.13)

E[w(m,)w'(m,)] = Q(,rn) (3.7.14)

y (M) = C (m) X (M) + v (M) (3.7.15)

E[v(m)v'(,tn)] = R(m) (3.7.16)

Similarly, the Riccati equation, eq.'s(3.7.7,3.7-12), characterizes the error covariance

for the optimal filter corresponding to the filtering problem involving the same state

equation, eq.(3.7.13,3.7.14), but with the following measurement equation.

(M) = C(M) x(m) + U(M) (3.7.17)
D(m)

E[u(m)u'(m)l = R(m) 0 (3-7.18)
0 I

Since the filter corresponding to eq.(3.7.7,3.7.12) uses additional measurements com-

pared to the filter corresponding to eq.(3-7.9,3.7.10), its error covariance can be no

worse than the error covariance of the filter using fewer measurements; i.e. P(m1m) <

T(mjm) or T-'(mlm) < P-'(mlm).

0

We now state and prove the following theorem concerning an upper bound for

P(MIM). -

Theorem 3.7.1 Given uniform upper boundedness of the stochastic reconstructibility

grammian, i.e. eq.(3.7-4), and given uniform reconstructibility of the system there

exists n > 0 such that for all m at least MO levels fi-om the initial level P(m1m) < r'I.

Proof

Consider the following set of standard Riccati equations.

-F(mlm+l) = F(m+l)j5(m+llm+l)F'(m+l)

+ G(m, + I)Q(m + 1)G T(M + 1) (3.7.19)

15-'(MIM) = T-'(,MIM + 1) + CT(M)R-'(rn)C(m) (3.7.20)
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From standard Kalman filtering results we know that given (F(m), R-2 (M)C(m)) is

a uniformly observable pair that is bounded above, there exists a r, > 0 such that

T(m 1m) :5 r.I or -F-'(m 1m) > n-'I. But by Corollary 3.6.2, (F(,fn), R-2(m)C(m))

being a uniformly observable pair is equivalent to the original system being uni-

formly reconstructible. Also, the grammian (F(m), R-2(m)C(m)) being bounded

above is equivalent to our assumption of uniform upper boundedness of the stochas-

tic reconstructibility grammian. Thus, under uniform reconstructibility and the uni-

form upper boundedness of the stochastic reconstructibility grammian of the orig-

inal we deduce that j5_1(m1m) > tc-'I. But from Lemma 3.7.1 we know that

T-1 (mlra) < P-'(mlm). Thus, P-'(mlm) > r,-'I or P(rnlm) < rI.

0

We can easily apply the previous ideas to derive an upper bound for PML(MIM)-

Note that Lemma 3.7.1 would still apply if eq.(3.7-8) did not have the P.,-'(m) term

and the matrices F and 0 were replaced with the matrices A-' and I, respectively;

i.e. the lemma would apply to the case of the ML Riccati equations. Then by using

the same argument used to prove Theorem 3.7.1 we can show the following theorem.

Theorem 3.7.2 Given uniform upper boundedness of the stochastic reconstructibil-

ity grammian, i.e. eq.(3-7-4) where the state transition matrix 0 corresponds to the

system associated with dynamics A-'(m), and given uniform reconstructibility of the

system there exists W > 0 such that for all m at least Mo levels from the initial level

PML(MIM) < K /I.

3.7.2 Lower Bound

We now derive a lower bound for P(m1m). As in deriving the upper bound, we appeal

heavily to standard system theory.

Lemma 3.7.2 Let

3(MIM) IL" 1(p-I(MjM)_CT (m)R-'(ra)C(m) + P-'(m)) (3.7.21)
2

3(m I m, + 1) _�� F -T(M + 1)p-l(M + 11m, + I)F-1(m + 1) (3-7.22)
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Given the Riccati equation

S*(mlm + 1) = 2F-'(m + I)S*(m + 11'ra + 1)F-1(m + 1)

+ F -T(M + j)CT(M)R-'(m)C(m)F-'(m + 1) (3.7-23)

S*-'(,rnlm) = S*-'(mlm + 1) + G(m + 1)0(m + 1)G T(M + 1) (3.7.24)

where 3(010) = S*(010). Then for all m S*(m1m) > 3(m1m).

Proof

By substituting eq.(3-7-12) into eq.(3.7.21) and collecting terms we get

3(MIM) = P'(MIM + 1) (3.7.25)

By substituting eq.(3.4.1) into eq.(3.7.25) we arrive at

3(m1m) = [F(m + 1)P(m + 11m + 1)F T(M + 1)

+ G(m + 1)0(m + 1)G T(M + 1)]-i

= ['3-1(mlm + 1) + G(m + 1)0(m + 1)G T(M + 1)]-i (3.7.26)

where the the last equality results from the substitution of eq.(3.7.22). Also, by

substituting eq.(3.7.21) into eq.(3.7.22) and collecting terms we get

3(m1m + 1) = 2F -T(M + 1)3(M + 11m + 1)F-'(,rn + 1)

+ F -T(M + I)CT (m)R-1(m)C(m)F-'(m + 1)

- F -T(M + I)P-1(m)F-1(m + 1) (3-7-27)

Now we prove by induction that for all m S*(mlm) �! 3(mlra). Obviously, S*(010) >

3(010). As an induction hypothesis we assume S*(i + 11i + 1) > 3(i + 11i + 1). From

eq.(3.7.27), eq.(3.7.23), and the fact that F-T(M + I)p-'(m)F-l(m + 1) �! 0 we get

that

S*-'(iIi + 1) < (3.7.28)

Substituting eq.(3.7.24) and eq.(3.7.26) into eq.(3.7.28) and canceling terms we arrive

at S`*-�(iji) < i.e. S*(iji) > 3(iji).

---------- ---
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Theorem 3.7.3 Given uniform upper boundedness of the stochastic reachability gram-

mian, i.e. eq. (3.7.3), and given uniform reachability of the system there exists L > 0

such that for all m at least MO levels from the initial level P(m1m) > LI.

Proof

Consider the following set of standard Riccati equations.

S*(mlm+l) = 2F-'(m+I)S*(m+lim+I)F-'(m+l)

+ F -T(M + I)CT (m,)R-1(m)C(m,)F-1(m, + 1) (3.7.29)

= S*-'(mlm + 1) + G(m, + 1)Q(m + I)G T(M + 1) (3.7.30)

From standard Kalman filtering results we know that if (F-T(M), G(M)Qf' (m)) is a

uniformly reachable pair that is bounded above, then there exists N > 0 such that

S*(mlm) < NI. However, from Corollary 3.6.1 and the invertibility of F(m) the

uniform reachability of the pair (F-T(M), G(m)� 21 (m)) is equivalent to the original

system being uniformly reachable. Also, the grammian (F-T(M), G(m)Qf' (m)) being

bounded above is equivalent to our assumption of uniform upper boundedness of

the stochastic reachability grammian. Thus, under uniform reconstructibility and

the uniform upper boundedness of the stochastic reconstructibility grammian of the

original we deduce that S*(mlm) < NI. But from Lemma 3.7.2 we know that

S*(mlm) > 3(m1m). Thus, 3(m1m) < NI. But from eq.(3.7.21) we get

1(p-,(MIM) _ CT(M)R-l(m)C(m) + P,,-'(m)) < NI (3.7-31)
2

It follows straightforwardly that

P-1(m1m) < L-1I (3.7-32)

where

L-1I > 2NI + CT(M)R-'(m,)C(m) (3.7.33)

Thus,

P(m1m) > LI (3.7.34)
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Using analogous arguments we can derive a lower bound for PML(Mlm). Note

that with the following definitions for 3 and the equations (3.7.23,3.7.24) where the

matrices F and Q are replaced with the matrices A-' and I, respectively, Lemma 3.7.2

still applies.
(p'� I -'(m,)C(m))

IL(,rnlrn) _ CT(M)R (3-7-35)

3(m1m, + 1) AT (m, + 1)P,�f'L(m + 11m. + 1)A(m, + 1) (3-7-36)

Using the same argument as in the proof of Theorem 3.7.3 with our current definitions

for 9 we get that

(p'� I -1(m,)C(m,)) < NI

fL(,MIM) _ CT (ra)R (3.7-37)

for N > 0. Equivalently,

Pif-1L(mJm,) < (3.7-38)

for

(L')-'I > 2NI + CT (m) R C (m) (3.7-39)

Thus, we have the following theorem.

Theorem 3.7.4 Given uniform upper boundedness of the stochastic reachability grarn-

mian, i.e. eq. (3.7.3), where the state transition matrix 0 corresponds to the system as-

sociated with dynamics A (m) and the matrix Q is replaced with I, and given uniform

reachability of the system there exists L' > 0 such that for all m PML(MIM) �: L'I.

3.8 Upward Stability on 'D-ees

In this section we formalize the notion of stability for dynamic systems evolving up

the tree. The dynamics on which we are interested in focusing the major portion

of our analysis are the ML error dynamics of eq.(3.4.60). Thus the general class of

systems we wish to study here has the form

z(t) =.F(m(t) + 1)[z(at) + z(flt)] + G(m(t))u(t) (3-8-1)
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What we wish to do is to study the asymptotic stability of this system as the dynamics

propagate up the tree. Since we are interested in internal stability, we will consider

the autonomous system with u _= 0.

Intuitively what we would like stability to mean is that z(t) --+ 0 as we propagate

farther and farther away from the initial level of the tree. Note, however, that as we

move up the tree(or equivalently as the initial level moves farther down), z(t) is influ-

enced by a geometrically increasing number of nodes at the initial level. For example,

z(t) depends on f z(at), z(3t)j or, alternatively on f Z(a2t), Z(3at), Z(a,3t), Z(,32t)j or,

alternatively on f z(a3t), z(3a2t), Z(apat), Z(32at), z(a2,3t), z(3aflt), Z(a,32t), Z(33t)j,

etc. Thus in order to study asymptotic stability it is necessary to consider an infi-

nite dyadic tree, with an infinite set of initial conditions corresponding to an nodes

at the initial level. Note also, that we might expect that there would be a number

of meanings we could give to "z(t) --+ 0" - e.g. do we consider individual nodes at a

level or the infinite sequence of values at all points at a level?

To formalize the notion of stability let us change the sense of our index of recursion

so that m increases as we move up the tree. Specifically, we arbitrarily choose a level

of the tree to be our "initial" level, i.e. level 0, and we index the points on this initial

level as zi(O) for i G Z. Points at the mth level up from level 0 are denoted zi(m) for

i E Z. The dynamical equations we then wish to consider are of the form

Zi (M) = -4(rn - 1)(Z2i(M - 1) + Z2i+l(M - 1)) (3-8.2)

Let Z(m) denote the infinite sequence at level m, i.e. the set f Zi(M) C-

The p-norm on such a sequence is defined as

A
P (3.8-3)11Z(M)11P (E 11MM)IIPYL

where jjzj(m,)jjp is the standard p-norm for the finite dimensional vector zi(m).

We define the following notion of exponential stability for a system.

Definition 3.8.1 A system is lp-exponentially stable if given any initial sequence

Z(O) such that 11Z(O)j1p < oo,

11Z(M)11P < Calz(O)HP (3-8-4)

where 0 < a < I and C is a positive constant,
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From eq.(3.8.2) we can easily write down the following.

zi (M) = 4� (m, 0) 1: zj (0) (3-8.5)
jEO.,i

where the cardinality of the set 0,,,,i is 2"n and for ml > M2

(k(Ml , M2) = I Ml, M2 (3-8-6)
A(ral - 1)'I�(Ml M2) Ml > M2

As in the case of standard dynamic systems it is the state transition matrix, (k(M, 0),

which plays a crucial role in studying stability on trees. However, unlike the standard

case, as one can see from eq.(3.8.5), the nature of the initial condition that influences

zi(m) depends crucially on m; in particular the number of points at level 0 to be

summed up and scaled to give zi(m) is 2n. These observations lead to the following:

Theorem 3.8.1 The system defined in eq. (3.8.2) is 1,-exponentially stable if and only

if
2 V jj,11(m,0)jjp<K'-/- forallm (3.8.7)

where 0 < -Y < I and K' is a positive constant.

Proof

Let us first show necessity. Specifically, suppose that for any K > 0, 0 < < 1,

and M > 0 we can find a vector z and an m > M so that

0)zjjp > K7-2-T jjzjjp (3.8.8)

where

I + 1 (3-8.9)
p q

Let z and m be such a vector and integer for some choice of K, -y, and M, and define

an initial sequence as follows. Let PO, P1, P2, be a sequence with

00
EPP (3-8-10)
i=O
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Then let
Poz 0 < i < 2'

Piz 2m < i < 2.2n

zj(0) (3.8.11)

Piz j2m < i < (i + 1)2-

Note that

IIZ(O)IIP = lizi(O)IIP

P P
i=O

= 2'11zlIP (3-8-12)P

Also, note that

(i+i)2--l

zi (M) = 't (M' 0) E zj (0)
j=i2-

= 2'pi-t(m, O)z (3-8-13)

Thus,

IIZ(m)IIP = 2mPjj,(t(m,0)zjjPP P
MP -Tnp> 2mPKP7 2 q IIzIIPP

-ME= 2mPKP_Y,,_Z q -,n IIZ(O)IIPP

KPIfMPIIZ(0)IIP (3.8.14)

where the first equality comes from eq.(3.8.10), the inequality from eq.(3.8.8), the

next equality from eq.(3-8.12), and the last equality from eq.(3-8-9). Hence for any

K, 0 < < 1 and M > 0 we can find an initial Ip-sequence Z(O) and an M > M so

that

IIZ(m)llp > K-y'njjZ(0)jjp (3-8.15)

so that the system cannot be IP-exponentially stable.

To prove sufficiency we use the following.
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Lemma 3.8.1 A system is lp-exponentially stable if for every i

lizi(m)llp < KO'( E llzj(O)IIP)p' (3.8.16)P
jEO,.,i

where 0 < 0 < 1 and K is a positive constant.

Proof

By raising both sides of eq.(3.8.16) to the pth power we get

IIzi(m)IIP < KP(#P)' Y, llzj(O)IIP (3-8-17)p- p
jEO,.,i

Since eq.(3.8.17) holds for every i we can write

Ilzi(m)IIP < KP(#P)' Ilzi(O)IIP (3.8.18)p - p

The lemma follows from raising both sides of eq.(3.8.18) to the power of p

Lemma 3.8.2 Consider the sequence of vectors xi for i C- Z. Then, for any m and

any j

11 E xillp < 2qn( E lixilIP)p (3.8.19)p
iEo""j iEO,,j

where Oj = jj, j + 1, ... j + 2m - 1 1 and q satisfies eq. (3.8.9).

Proof

We first show the following.

Ila + blip <,2'(IlallP + IIbIIP)' (3.8.20)p p

Since 11 - IIP is a convex function, we can writep

)a+ (I - I )bIIP < )IIaIIP + (1 - I )IIbIIP (3.8.21)P- p p2 2 2 2

from which eq.(3.8.20) follows immediately. We now show the result by induction on

m. Suppose for all j

11 E xillp < 2 .. IIxiIIP) (3.8.22)p
iEOnj iEOni
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Consider the summing xi over the two sets Oj, and 0,,j, wherej2= j, + 2'n. From

eq.(3.8.20) we get

Xi + E xi)j1p < 2q(ll( E xillp + IK E xilIP)p (3-8.23)
P P

iEO.,,,jl iE0111,42 iEo.,jl iEO,,j,

Then by substituting into eq.(3-8-22) eq.(3-8.23) we get

(-+,)xillp :5 2 q (11( E xillp + II( E xilIP)p (3-8.24)P P
iEO,,,,j, U01"'142 iE0,J-1 iE0-J2

We can now show sufficiency thereby completing the proof of the theorem. By

applying the p-norm to eq.(3.8.5) and using the Cauchy-Schwarz inequality we get

IIZi(,M)IIP < IIb(M,0)IIPII E Zj(0)1IP (3.8.25)
jEO.'i

Using Lemma 3.8.2, we get

IIzi(-rn)IIp :5 II41(rn,0)IIp2T( E IIzj(0)IjP)'PL (3.8.26)P
jEO,,t

By substituting eq.(3.8.7) into eq.(3.8.26) we get

jjzj(,rn)IIp < K'-y'( E jIzj(0)IjP)P' 3.8.27)P
jEOmi

which by Lemma 3.8.1 shows the system to be lp-exponentially stable.

r_1
Note that referring to eq.'s(3.8.2,3.8.5,3.8.6) we see that the lp-exponential stabil-

ity of eq.(3.8.2) is equivalent to the usual exponential stability of the system

�(m) = 2PV1 A(m - 1)�(rn - 1) (3.8.28)

For example for p = 2, we are interested in the exponential stability of

�(,rn) = V2-A(,rn - 1)�(m - 1) (3-8.29)

If A is constant this is equivalent to requiring A to have eigenvalues with magnitudes
< y2

2
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Note also that it is straightforward to show that if one considers the system with

inputs and outputs

Zi(M) = A(M - 1)(Z2i(M - 1) + Z2i+l(M - 1))

+ B(m -1)(U2i(M - 1) + U2i+l('rn -1)) (3-8-30)

Yi(,rn) = C(m)zi(m) (3-8-31)

then if B(m) and C(m) are bounded, the asymptotic stability of the undriven dynamics

imply bounded-input/bounded-output stability.

3.9 Filter Stability

In this section we show that the error dynamics of the maximum likelihood filter are

stable and also that the same is true of the overall filter.

Theorem 3.9.1 Suppose that the ML system is uniformly reachable and uniformly

reconstructible. Then, the error dynamics of the maximum likelihood filter are 12-

exponentially stable.

Proof

The following proof follows closely the standard proof for stability of discrete-

time Kalman filters given in [24]. Based on the comments at the end of the preceding

section and on the ML error dynamics of eq.(3.4.60), we see that we wish to show

that the following causal system is stable in the standard sense.

Z(M) = PML(rnjM)Pj-;j'L(MjM - 1)V2-A-'(m - 1)z(m - 1) (3.9.1)

Theorem's 3.7.2 and 3.7.4, i.e. the upper and lower bounds on PML(Mlm), allow us

to define the following Lyapunov function.

V(z,,rn) '2' z'(m)P (3.9.2)

Let us also define the following quantity.

-;(m) V2A-l(m - I)z(m - 1) (3.9.3)

PML(7njM - 1)PjjA(M1M)Z(rn) (3.9.4)



CHAPTER 3. MULTISCALE PROCESSES ON TREES 143

Substituting eq.(3.4.7) into eq.(3.9.2) followed by algebraic manipulations, one gets

V(Z'M) = Z'(m)(2Pii'L(mlm-l)+C'(m)R-'(m)C(m))z(,rn) (3-9-5)

= 2 z' (m) (P,�,L (m I m) - 2 P,,�jL (m I m -1))Z(M) _ ZI(M)CT (m)R-'(m)C(m))z(m)

+ z T (m)(2P,,�'L(mjm - 1))z(m)

+ P'�A (M I M 1) _;(M) �T(M) P i(M)
v/2- V2_ N/2- '1�11L (MI M - 1) -v/2- (3,9.6)

)Tpjf-1-(v1_2z(m) - L(MIM _ 1)(v/2z(m) -
v2 -\/2-

zT(M)CT(m)R-'(m)C(m)z(m) + Pif- 1L (M I M - 1) -4m) (3.9-7)
.\/-2 V2_

But note that by using the matrix inversion lemma we get

iT (M) P i(M)V2_ �A(Mllm - 1) V2_ - V(Z'M - 1) - A (3-9-8)

A > 0 (3-9-9)

It follows that

)Tp'� I _Z(M)V(zm)-V(zm-1) < -(V2-z(m)- v'2- fL(MIM _ 1)(V2 N/2-

- z T(M)CT(M)R-1(m)C(m)z(m) (3-9-10)

Stability follows from eq.(3.9.10) under the condition of uniform observability of the
-L(M)C(M))pair (A-'(m), R 2 which by Corollary 3.6.2 is equivalent to uniform recon-

structibility of the system.

n
Let us now examine the full estimation error after incorporating prior statistics.

It is straightforward to see that

i�(tjt) = P(M(t)IM(t))(P,-;i'L(M(t)IM(t))�iML(tlt) + P. (3-9-11)

Thus we can view �Z(tjt) as a linear combination of the states of two upward-evolving

systems, eq.(3.4.60) for �EML(tjt) and one for P,,-1(m(t))x(t). Note first that since

P(MIM) < PML(MIM)

IIP(M(t)IM(t))P,�I'L(M(t)IM(t))-�ML(tlt)lI _< jj-�ML(tjQj (3-9.12)
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and we already have the stability of the --�ML(tjt) dynamics from Theorem 3.9.1.

Turning to the second term in eq.(3.9.11), note first that thanks to Theorem 3.7.1,

P(m(t)lm(t)) is bounded. Note also that the covariance of P-'(m(t))x(t) is sim-

ply P,,,-1(m(t)). By uniform reachability P,,-,1(m,(t)) is bounded above. Thus, while

P.,(m(t)) might diverge, the contribution to the error of the second term in eq.(3.9.11)

is bounded.

Also, our previous analysis allows us to conclude that the full, driven '�ML(tjt)

dynamics are bounded-input, bounded-output stable from inputs �cv and v to output

�iML(tjt)- If we use eq.(3.4.50), together with eq.(3-2.10) and eq.'s(3.2.6-3.2.8) we can

write down the following upward dynamics for �(t) = P-'(m(t))x(t):

(t) A T(M(t) + 1)(�(at) + �(flt))
2
1

+ -N(m(t) + 1)(ib(at) +,t7v(3t)) (3-9-13)
2

where

N(m(t) + 1) = P.-'(m(t))A-'(m(t) + 1)B(m(t) + 1) (3-9-14)

Note that in general there is no reason to constrain the autonomous dynamics of

eq.(3.9.13) to be stable. However, if they are not, then reachability implies that

P�,,(m) --+ oo so that N(m) --+ 0 and the covariance of ib -- * I. The bounded-input,

bounded-output stability of this system can be easily checked.

3.10 Steady-state Filter

In this section we study properties of our filter under steady-state conditions; i.e. we

analyze the asymptotic properties of the filter. We state and prove several results.

First we show that the error covariance of the ML estimator converges to a steady-

state limit and that furthermore, the steady-state filter is 12-exponentially stable.

Theorem 3.10.1 Consider the following system defined on a tree.

X(t) = Ax(-y-') + Bw(t) (3-10-1)

y(t) = Cx(t) + V(t) (3-10.2)
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E[w(t)w'(t)] = I (3-10-3)

E[v(t)v'(t)] = R (3-10.4)

where v(t) and w(t) are white noise processes on the tree and A is invertible. Suppose

that (A-', G) is a reachable pair and (A-', R- "Y C) is an observable pair, where G =

A-'B. The error covariance for the ML estimator, PML(MIM), converges as m, --+ oo

to T,,, which is the unique positive definite solution to

F. 1A-1j5mA -T + 1GGT
2
-TCT 1CGGTCT TK.(-CA-'-P,,A +_ + R)K (3-10-5)

2 2 00

where
Koo = pooCTR-1 (3.10-6)

Moreover, the autonomous dynamics of the steady-state ML filter, i.e.

1
e(t) = -(I - K.C)A-l(e(at) + e(ot)) (3.10.7)

2

are 12-exponentially stable.

Proof

Recall the Riccati equations for the ML estimator where the scale variable m

increases in the direction upward along the tree.

PML(MIM + 1) = A-'PML(M + 11m. + 1)A -T + GGT

(3-10-8)

Pif-'L (m, 17,n) = 2 P,�,L (m. I m +1) + CT R-1 C (3-10-9)

Convergence of PML(MIM)

In order to show the existence of a limit Of PML(Mlm) as m --+ oo we show that

both a) PML(MIM) is monotone-nonincreasing in m and b) PML(MIM) is bounded

below.

a) We adopt the following notation.

P (m) PML(MIM) M > 0 (3-10-10)

P(m.; m') P(m. - m') m, > rn' (3-10-11)
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By the scale-invariance of our system showing

InIl < M2 ---� P(M; Ml) < P(M; M2) (3.10.12)

is equivalent to demonstrating that P(m) is monotone-nonincreasing.

We note that eq.'s(3.10.8,3.10-9) preserve positive definite orderings; i.e. if PI (M2) <

P2 (rn2) then P1 (M; M2) < P2 (M; M2) for M > M2 - We now t ake

PI (M2) = P(M2; Ml) (3-10-13)

P2(M2) = oo (initial condition for the ML estimator) (3.10.14)

Then,

Pl(M;M2) = P(M;Ml) (3-10.15)

P2(M; M2) = P(M; M2) (3-10-16)

for m > m2. So by the property of positive definite ordering of the Riccati equations

we know that

Pl (M; M2) < P2 (M; M2) (3-10.17)

and thus,

P(M;Ml) < P(M;M2) (3-10-18)

b) The fact that PUL(MIM) is bounded below follows from Theorem 3.7.4 under

our assumptions of reachability and observability.

Having established the convergence Of PML(MIM), let us denote the limit as fol-

lows.
A -

linI PML(MIM) = P,, (3-10-19)

Note that by Theorem 3.7.4 must be positive definite. We can also establish that

PML(MIM) Must converge to the solution of the steady state Riccati eq.(3.10-5). Since

PML(Mlm) both satisfies the Riccati eq.'s(3.10.8,3.10.9) and converges to a limit, this

limit must satisfy the fixed point equation for eq.'s(3-10.8,3.10.9). This fixed point

equation is precisely the steady state Riccati eq.(3.10-5).

Exponential Stability of '(I - K,,,,C)A-1
-2
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In order for !(I - K,, C)A-1 to be 12-exponentially stable, it must have eigenvalues2

that are strictly less than -V"2. This fact follows from Theorem 3.8.1.2

From Theorem 3.9.1 we know that the following system is exponentially stable

with respect to 11 - 112*'

Z(t) = PML(Tn(t)jM(t))PjjL_' (M(t) jrn(t) - 1)(z(at) + z(flt)) (3.10.20)

which can be rewritten as

1
Z(t) = -(I - K(ra(t))C)A-'(z(at) + z(flt)) (3-10.21)

2

where
K(m(t)) = PML(rn(t) IM(t))CTR-1 (3-10.22)

But, since PML(MIM) the system in eq.(3.10.21) in steady-state be-

comes

Z(t) (I - K,,C)A-'(z(at) + z(3t)) (3.10.23)

Uniqueness of

Consider PI and P2, both of which satisfy the steady state Riccati eq.(3-10-5).

Thus)

-T + I GGTPI -A-'PIA -
2 2

1 -TCT + 1CGGTCT TKl(-CA-'PA - + R)K (3.10.24)
2 2

P2 1 A-1P2A -T + I GGT
2 2

1 -TCT + CGGTCT
K2( -CA-'P2A + R)K2T (3-10.25)

2 2

Subtracting eq.(3.10.25) from eq.(3.10.24) we get

P1 - P2 = v 2 (I - KC)A-'(Pi - P2)(V/2(I - KC)A-' )T
2 2

+ A (3-10.26)

where A is a symmetric matrix. Note that we have established the fact that 2

KC)A-1 has eigenvalues within the unit circle. From standard system theory this
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tells us that we can write PI - P2 as a sum of positive semidefinite terms. This implies

that P, - P2 is positive semidefinite or P, > P2. By subtracting eq.(3.10.24) from

eq.(3.10,25) and using the same argument we can establish that P2 > P1.

El

Note that the preceding analysis assumed constant matrices A, B, C, Q, and R

invertible. We also assume the process is in steady-state; i.e. P-1 is constant. As

we are interested in asymptotic behavior there is no loss of generality in assuming

this and there are two distinct cases. Specifically, if A is stable, then the covariance

P.(M(t)) at all finite nodes(starting from an infinitely remote coarse level) is the

positive definite(because of reachability) solution P,,. of eq.(3.2.14), and in this case,

we have that
p(,m1m) ___� (j5-1 + p-1)-100 (3.10.27)

On the other hand, if A is unstable, P-'(m(t)) 0 and

P(MIM) F" (3-10.28)

Note that the existence of two distinct limiting forms for P(m1m), depending on the

stability of the original model is another significant deviation from standard causal

theory.

3.11 Model Extensions and Iterative Algorithms

In this section we first describe an extension of the models considered in this chapter

which allows finite correlations among the process noises at each scale of the tree.

These processes are considered in [8) for which a system theory is developed, including

results on the realization of these processes. We show how this class of processes can

be treated in the same way as in our previous models. We then turn to the idea of

developing iterative algorithms for smoothing our multiscale processes. We develop

the idea in detail for the case of tree processes, then show how this may be extended

to the case of general lattice processes.

We begin by discussing an extension of our state model on trees which lets the

process noise in our model be correlatedin finite subsets of the nodes of the tree. In
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t
............

02

Figure 3.11.2: The Set of Points M2(o-) for a Particular Point t on the Tree

particular we consider models where the state at each node on the tree t is equal to

a function of the state at -y-'t plus a linear combination of noises in the vicinity of t.

To describe these models precisely, we first define the following set of operators, cr',

comprising our operators a,,8 and -/. They are defined recursively as

nt
er -It t (3.11.29)a ly

where we have as initial condition

Cr1t 3-1-1t t a-/-lt (3-11.30)
a7-It t #'Y-1t

Note that if we label the points along the level of the tree in binary notation, the action

of 0-n on the point 000 ... 0 is equivalent to flipping the nth least significant bit. Note

also that for any n -,,-n = 0 where 0 denotes the identity operator. We also define

the set Mk (o-) to be the set of all distinct monomials in o-' where o-' c f 0, 0- 1, 0, 2, ... or 'J.

Figure 3.11.2 illustrates the result of applying each of the operators in 1112(o) on the

point t.
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Consider the following state model.

x(t) = A(t)x(y-lt) + 1: B(st)w(st) (3-11.31)
sEMk(a)

E[w(tl)w T (t2)] = 6t�-t2 (3.11-32)

Note that the "process noise" for this model, i.e. the summation in eq.(3.11.31), is now

correlated with neighboring points of t, in particular the points at where a E Mk(o,).

In order to apply our recursive smoothing method to processes described by this

class of models, we must somehow transform the model to have uncorrelated process

noise. A simple way of doing this is to perform state augmentation, where we define

our state to be the set of points of the form st where s E Mk(o-). We illustrate this

idea for the following special case of eq.(3.11.31).

x(t) = A(t)x(7-'t) + B(t)w(t) + B(at)w(o-t) (3.11-33)

1where for notational convenience we let o, = o,

Let us label all distinct pairs of points of the form f t, o-tj by the new index r.

That is, r now indexes the pairs of points of the tree as illustrated in Figure 3.11.3,

and can now in fact be interpreted as the index for a new dyadic tree whose nodes

represent pairs of points on the old tree. Let us define the following quantities with

respect to r.

X(t)
z (r) X(01) (3-11-34)

W(t)

W(01)

A(t) 0 (3-11-36)

A(at) 0

B(t) B(ol)
B(at) B(t) (3.11.37)

We now have the following state model for z.

z(r) = + 77(r):ff(r) (3-11.38)
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Figure 3.11.3: State Augmentation for Noises Correlated in Neighborhoods t, atj

where

E[-w(,r,)W'(,r2)] (3-11.39)

Note that our new model is precisely in the class of models we've considered in this

chapter where r is in fact the index of the nodes of a dyadic tree. Figure 3.11.3

illustrates how z(r) is defined in terms of the tree on which x(t) is defined. Note

that the matrix �T(t) is now singular and that we must use the following form for the

dynamic matrix of our backward model.

P.(^1-'0AT(t)P-'(t) (3-11.40)

Taking this last consideration into account, we can now apply our Rauch-Tung-

Striebel algorithm on trees to smooth processes modeled by eq.(3.11.38).

Finally, we turn to the idea of developing an iterative algorithm for smoothing our

processes. We consider the case of our tree model as in eq.(3.2.1). By using the local

Markov structure of eq.(3.2.1), we develop an iterative algorithm for the computation

of the optimal estimate of the process given multiscale measurements. As in the

multigrid solution of partial differential equations, this approach may have significant

computational advantages even if only the finest level estimates are actually desired
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and if only fine level measurements are available. We develop in detail the general

approach to developing an iterative algorithm for the case of our tree models, then

suggest what may be done to extend the approach to apply to general lattice models.

Let Y denote the full set of measurements at all scales. Then, thanks to Markovian

structure of our model in eq.(3.2.1) we have the following: For m(t) = M, the finest

scale

E[x(t)IYJ = EfE[x(t)jx(7-'t),Y]jYj

= EjE[x(t)jx(y-'t),y(t)]jYj (3-11.41)

For m(t) < M

E[x(t)IY] = EIE[x(t)lx(-y-'t),x(at),x(,3t),Y]IYI

= EIE[x(t)lx(,y-'t),x(at),x(,3t),y(t)]IYI (3.11.42)

The key now is to compute the inner expectations in eq.(3-11.41) and eq.(3.11.42),

and to do this we need to view x(-f-'t), x(at), and x(#t) as measurements of x(t).

For the latter two, this comes directly from eq.(3.2.1). For x(-t-'t), however, we need

the reverse-time version of eq.(3.2.1), i.e. eq.(3.2.5).

Let us now focus on the computation of the inner expectation of eq.(3.11.42). We

can write the following equations for x(y-1t), x(at) x(3t), y(t).

Y(t) = C(M(t))X(t) + VM (3-11.43)

x(-y-'t) = F(m(t))x(t) - A-'(m(t))B(m(t))i-v(t) (3-11.44)

x(at) = A(m(at))x(t) + B(m(at))w(at) (3.11.45)

x(ot) = A(rn(ot))x(t) + B(m(0t))w(,3t) (3.11.46)

which can be rewritten as

Y = Hx(t) + (3.11.47)

where

C(M(t)) V(t)

H F(m(t)) A-1(m(t))B(m(t))fv(t) (3.11.48)
A(m(at)) B(m(at))w(at)

L A(m(,3t)) j L B(m(ot))w(ot)
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and 3

X (t) (3-11.49)

Note the covariance of � has the following structure.

R(m(t)) 0 0 0

0 R, (7n(t)) 0 0
E (3.11.50)

0 0 R2(M(at)) 0

L 0 0 0 R2(M(at))

where

R,(,rn(t)) A-' (M(t))B(M(t))Q(t).BT(M(t ))A -T(M(t)) (3.11-51)

R2(M(at)) B(m(at))BT(m(at)) (3-11.52)

B(M(0t))BT(M(,3t)) (3.11-53)

The inner expectation in eq.(3.11.42) can now be computed as follows.

E[x(t)IY] = (P.-'(t) + HT7Z-'H)-'HTR-ly

= IP-1 jKly(t) + K2x(7-1t) + K3x(at) + K4x(flt)� (3-11.54)

where

K, = CT(M(t))R-1(m(t))

K2 = F T(M(t) )R-'(m(t)) (3-11.56)

K3 = A T (m(at))R-1(m(at)) (3-11-57)

K4 = A T(M(,3t))R-1(m(at))2

'P = P.-'(t) + KC(ra(t)) + K2F(,ra(t)) + K3A(m(at)) + K4A(m(,3t))

(3.11.59)

We can use a similar procedure for computing E[x(t)jx(-�-'t),y(t)] so that we can

now carry out the outer expectations in eq.(3.11.41) and eq.(3.11.42) to yield the

'We denote I to denote orthogonal in the sense that a I b if E[abT] = 0.
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following formulas for �(t) -A E[x(t)IY].

For m(t) = M
,qt) = (ply, JCT( -'(m(t))y(t) + F T(M(t) -'(m(t))-( -'t)j (3-11-60)

m(t))R )R1

For m(t) < M

.i(t) =P-'jKjy(t) + KV�(_YIt) + K3.�(at) + K4;�(flt)l (3-11.61)

where

,pl = p-1(t) + CT -'(m,(t))C(m,(t)) + FT(,rn(t))R-1(m,(t))F(m,(t)) (3.11.62)

Thus, eq.(3-11.60) and eq.(3.11.61) are an implicit set of equations for J.�(t)jt G Tj.

Note that the computation involved at each point on the tree involves only its three

nearest neighbors and the measurement at that point. This suggests the use of a

Gauss-Seidel relaxation algorithm for solving this set of equations. Note that the

computations of all the points along a particular scale are independent of each other,

allowing these computations to be performed in parallel. We could then arrange

the computations of the relaxation algorithm so that we do all the computations

at a particular scale in parallel, i.e. a Jacobi sweep at this scale, and the sweeps

can be performed consecutively moving up and down the tree. The possibilities for

parallelization are plentiful.

The following is one possible algorithm for computing smoothed estimates itera-

tively using our tree models. Let Xk denote the vector of points along the kth level

of the tree; ±k denotes the smoothed estimate of Xk.

Algorithm 3.11.1 Iterative Algorithm:

1. Initialize ±O I...) -km to 0.

2. Do Until Desired Convergence is Attained:

(a) Compute in parallel eq. (3.11.60) for each entry of ±M

(b) For k = M - I to 0
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Compute in parallel eq. (3.11.61) for each entry of ±k

(c) Fork =I to M - 1

Compute in parallel eq. (3.11.61) for each entry of ±k

Essentially, Algorithm 3.11.1 starts at the finest scale, moves sequentially up the tree

to the coarsest scale, moves sequentially back down to the finest scale, then cycles

through this procedure until convergence is attained. This bears resemblance to what

is referred to in multigrid terminology[11] as a V-cycle. The issue of convergence is

normally studied via the analysis of the global matrix formed from the set of implicit

equations, eq.(3-11.60)-(3-11-61). However, our problem has a particular structure

that allows us to give the following relatively simple argument for the convergence

of a Gauss-seidel relaxation algorithm under any ordering of the local computations.

We can think of the computation of E[x(t)IY] for all t E T as performing the mini-

mization of a convex quadratic cost function with respect to f x(t) : t E Tj and each

Gauss-Seidel step is the local minimization with respect to a particular x(t) with the

remaining x's held constant. Since each local minimization results in a reduction of

the overall cost function and this function is convex, then the limit of the sequence

of local minimizations results in the global minimization of the cost function.

Note that the development of our iterative algorithm relies essentially on the

Markovianity of the model. In particular, it relies on the fact that the probability

density of a point at a particular node conditioned on the remaining nodes is equal

to the density of that point conditioned on a local neighborhood surrounding that

point. In principle this idea can be applied to the case of our general lattice models

in Chapter 2. For example the neighborhood on which we would be conditioning

for the case of a 4-tap QMF filter is illustrated in Figure 3.11.4. Note that, unlike

our transform approach which relies on the process' having a wavelet eigenstructure,

our iterative approach can be applied to more general classes of lattice processes in

which the model parameters need not be a function only of scale. For example, in the

observation equation the matrix C can vary arbitrarily on the lattice, allowing for the

case of sparse data. Also, the class of models in which there is finite correlation in

the process noise, a special case of which was described in the previous section, can
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Figure 3.11.4: Neighborhood Involved in Local Computation of an Iterative Algorithm
for the Case of a 4-tap, QMF Lattice

be handled using an iterative approach.
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3.12 Appendix 3A: ML Result

Lemma 3.12.1 Given the following recursions for allm > M
P -T BT -T)-I +CT

,�f'(m) = 2(A-'PML(M + I)A + A-1B A R-1C (3.12-63)

P.`(m) = (A-'P.(m + 1)A-T - A-'BB TA-T)-i (3.12.64)
Tp-l(,rn + - P.-'(m + 1)BB T )A -T

P-'(m) = 2(A-'(I - BB 1))P(m + 1)(I

Tp-I(M + T -T)-l +CT 1 C - P.`(m)+ A-'B(I - B 1)B)B A R

(3-12.65)

where

P.�A (M) = 0 (3-12.66)

P - I (M) = P.- 1 (M) (3-12.67)

then the following is true for all m > M

P (M) = P,,�A (M) + P.` (M) (3.12.68)

Proof

For ease of notation we make the following definitions.

P P(M + 1) (3.12.69)

PML PML(rn + 1) (3-12.70)

P. P,(M + 1) (3-12.71)

We prove the lemma by induction, where we assume that

P-1 = + P-1 (3-12.72)
PI�11L X

We now proceed to show the following.

P - 1 (m) = Pj�jL (m) + P.- 1 (m) (3-12.73)
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By substituting the right hand sides of eq.'s(3.12.63-3.12.65) into eq.(3.12.73) and

performing cancellations we arrive at the following equivalent form for eq.(3.12.73).

(A-'PMLA-T + A-'BBTA-T)-l + (A-'P,.A-T - A-1BBTA-T )_1

(A-'(I - BBTp-I)p(l _ p-'BBT)A-T
Tp-'B)BTA-T)-1

A-1B(I - B (3.12.74)

By left multiplying by A-T and right multiplying by A-' we arrive at

(PML + BBT)-l + (P,,: - BBT)-1

Tp-l)p(I _ p-1 T)((I - BB BB
Tp-'B)BT)-l .75)

B(I - B (3.12

But by using the matrix inversion lemma,

(E + F)-1 = E-' - E-'(E-' + F-')-'E-1 (3.12-76)

we get that

((PML + BBT)-l + (P. - BBT)-l)-i P. - BBT
T -1 (P T)

(P. - BB )(PML + P.) - BB

(3-12-77)

By substituting eq.(3.12.77) into eq.(3.12.75) then left and right multiplying by (PML+

BBT)-l we get the following equivalent form for eq.(3.12-75).

BT)-1 -1-1 -1 PP.(P. - B (PML + P.) P.
T) Tp-1 )BT(p BBT)-l+ (P,, - BB `B(I - B B

(3-12-78)

By using the matrix inversion lemma, eq.(3.12.76), we get that
(P _')_'P-1

(PML + P.) P. - P. j�lL + P.

-1 - P-1pp-1 (3.12.79)
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where the last equality follows from our induction assumption, eq.(3-12.72). By sub-

stituting eq.(3.12.79) into eq.(3.12.78) and performing cancellations we arrive at the

following equivalent form for eq.(3.12.78).
(p. _ _BBT)-l _ p-I = (p _ B13T)-IB(I -113)BT(p _ BBT)-l

BTp .12.80)(3

(p _ BBT) We getBy left multiplying eq.(3-12.80) by

BBTp-1 = B(I BTp-1 B)BT(p - 13BT)-l (3

By right multiplying eq.(3.12-81) by (p BBT) we get

B(I _.BTp-I.B)BT BTp-l(p _ BBT)B

BBT(I _ p-IBBT)

B(BT _ BTp-IBBT)

B(I BTp-l.B)BT (3.12.82)
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3.13 Appendix 3BO- Proof of Theorem 3.5.1

We define the following quantities.

YM'to = 'HMXM't, (3.13-83)

xto = lk(tO)XMt. (3.13-84)

4�(to) = GI2m (3-13-85)

where G is invertible(and thus 4k(to) is onto). We use A�(-) and '9(.) to denote

nullspace and rangespace, respectively. A system is upward-reconstructible if given

Ymt,), xt,, is uniquely determined, i.e. A((Hm) C A'(4t(to)). We first prove the

following lemma.

Lemma 3. 13.1 For all M

,HTHMtT(to) I)T(to)M A (3-13-86)

where
diag( .13.87)

, _,, ) (3

2M times

and is some matrix.

Proof

The structure of HTHM, which we denoted as Mm, is described in a recursiveM
fashion in eq.'s(3.6.20-3.6.24). We compute

MM(kT(to) U(M' 0).I�T(to)
T J2T -'T(M, O)G

U(M, 1)G M_' + 2M I2M-I (3.13-88)
TI2m_, + U(M' 1)GTI2T2m-'T(M, O)G M_'

By repeating this procedure M - 1 more times we get

U(M'OypT(to) = M�T (to) (3-13-89)

where

A = diag( (3-13.90)

2M times
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and
M-1
E 2m-'-'T(M, i) + U(M, M) (3-13.91)
i=O

We prove the following theorem.

Theorem 3.13.1 jV(Hm) C jV(4)(to)) iff 4�(to)HTHm4�T(to) is invertible.M

Proof

a)

jV(,HM) C jV(,t(to)) q�(to)-HT -HMtkT(to) is invertibleM

Assume 4.�P(to)HT 'Hm(pT(to) is not invertible. Then for some y :� 0, yT 4P (t0)HTHM(kT(t0)yM M

0. This implies 'HM4�T(to)y = 0. But the fact that 4)(to) is onto implies -I�T(to)y 54

0. Furthermore, 4�T(to)y 54 0 implies (1)(to)(bT(to)y :� 0 since if it were true that

(p(to),I)T(to)y = 0, then Y T.J�(to).J)T(to)y = 0, which implies tT(to)y = 0. Thus, there

exists a z 54 0, namely J�T(to)y' such that 'Hmz 0 and -t(to) 74- 0; i.e. it is not true

that A((Hm) C A"(4�(to))-

b)

4�(to)-HT 'HmJ�T(to) is invertible V(Hm) C A((t(to))M

Assume that )V(Hm) C )V(,t(to)) is false; i.e. there exists an x such that 'HMx = 0

and t(to)x :� 0. Since X E jZ(,pT(t0)) (D A(((]�(to)), we can write x = xjz(,tT(t(,)) +

xA((,;t(t0)) where XR(,,TT(to)) is non-zero and xA((,t(t0)) may or may not be non-zero.

Since 'HMx 0, 'HMXjZ(.tT(t0)) +HMXAr(,j�(t,))) = 0, which means that 'HMT) T(to)y +

),HT-HmXA((I,(to)) 0 for some y :� 0. Left multiplying by 41,(to M, we get

,t(to),HT HM41�T(to)y + 41)(to),HT
M M'Hmxv(j,(t0)) 0 (3-13.92)

But from Lemma 3.13.1 and our definition for -1)(to), we get

4jqt0),HT -HM = 4)(to)A T = GXT[ I ... I (3-13-93)
M

2M times
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By substituting (3.13.93) into (3.13.92), we get

,(j)(t0),HT HM(I�T(to)y -M + GXT[ I-I 0 (3-13.94)

2M times

for y -� 0. But XA((§(t,,)) E A,(-I�(to)) implies that 4�(to)xAr(,t(t,,)) = 0 or, using

the definition of 4)(to), G[ I ... I ]xAr(j,(t0)) = 0. But since G is invertible, then

2M times
I... I ]xA((§(t,)) = 0. Thus, eq.(3-13.94) collapses to 4b(to)H THMjT(t0)y = 0M

2M times
for some y :� 0, implying that yT4,(to)-HT -HM.,]�T(to)y = 0 for Some y :� 0; i.e.M
(k(to),HT -HMtT(to) is not invertible.M



Chapter 4

Applications and Numerical Examples

4.1 Introduction

In this chapter we explore the applicability of our multiscale estimation framework

by performing a variety of numerical experiments. Having developed both theoretical

results on and fast algorithms for the estimation of multiscale processes, we now pro-

vide numerical examples which demonstrate the utility of our framework for solving

estimation problems involving both single scale as well as multiscale data.

First, we demonstrate the richness of our models in approximating well-known pro-

cesses by comparing the performance of our smoother, using model parameters chosen

so as to well-approximate the process, with the performance of standard smoothers.

We give numerical examples in which we use our models to approximate both 1st

order Gauss-Markov processes as well as 1/f-type processes and in each case compare

the performance of the smoothers. In addition we use the Bhattacharyya distance

measure as a way of evaluating how well our models approximate these processes.

We also use this to show the effect of wavelet filter order on approximating processes.

Our examples indicate that our multiscale models do rather wen in smoothing differ-

ent classes of processes. Besides being important from a modeling perspective, this

is also an important consideration from a computational perspective given the fact

that our multiscale algorithms based on these models are both efficient and highly

parallelizable.

We also study examples of using multiscale measurements in doing estimation.

163
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We see that the use of coarse-scale data can aid in estimating features which are not

discernible using fine-scale data of poor quality. We then use our tree models to handle

the case in which our -data is sparsely distributed. In this case we show how coarse

scale data of full-coverage can be used to interpolate features which are not directly

measured with the sparse data. Note that our approach is trivially extendible to 2D,

and thus, has considerable potential for solving multiscale problems in 2D, including

the case for example of fusing spatially distributed data of various resolution and

coverage.

4.2 Processes and Multiscale Models

In this section we describe'the two types of processes we consider throughout the

examples in this chapter (excluding the section on optical flow). They are the class of

stationary Gauss-Markov processes and the class of 11f processes. We also describe

the specific multiscale models we use to approximate these processes and give exam-

ples of sample paths generated using these models to give a qualitative idea of the

type of signals they represent.

We begin by describing the type of Gauss-Markov process which we use in our

examples. Consider the following stationary 1st-order Gauss-Markov process.

;i(t) = -Px(t) + W(t) (4.2.1)

E [X2(t)] = 1 (4.2.2)

This process has the following correlation function and associated power spectral

density function.

(4.2.3)

S. 20 (4.2.4)
2 + 02

In the numerical examples that follow we use a discretized version of eq.(4.2.1).

In particular we use a sampled version of eq.(4.2.1) in which the sampling interval

is small enough to minimize any aliasing effects. We choose 3 = 1 and take the
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sampling rate to be twice wo where S,,.,--(wo) =.002, S_,_,(w) being the power spectral

density function of x(t). This yields a sampling interval of A= 7r/wo where wo = 30.

Our discretized model is as follows.

x(t + 1) = ax(t) + w(t) (4.2.5)

E [X2(t)] = 1 (4.2.6)

a = e-0'6 - .9006 (4.2.7)

We consider the following measurements of x(t).

Y(t) = X(t) + V(0 (4.2.8)

E[V2(t)] = R (4.2.9)

Y = fy(t)jt=0,...N`-1j (4.2.10)

In the examples that follow we take the interval length N = 128.

While we would expect our models to yield good approximations for 1/f processes

given recent results on this[55, 25], it comes somewhat as a surprise that we are

able to estimate so well noisy Gauss-Markov processes using our models. Our ability

to use the wavelet transform as a basis to model Gauss-Markov processes, however,

is supported by recent results by Beylkin et al[9] in using the wavelet transform to

analyze classes of kernels that share properties with the covariance functions of Gauss-

Markov processes. Their main result is the transformation of kernels of the Calderon-

Zygmund class into matrices with extremely sparse sets of non-negligible elements,

providing a way of doing large-scale matrix-vector multiplications extremely fast. A

feature of this work is the property that the number of vanishing moments determines

the decay of the off-diagonal elements of the transformed kernels from their diagonals.

The higher the number of vanishing moments the faster the decay, where an increase

in the number of vanishing moments necessitates an increase in the order of the QMF

filter, h(n).

In the work of Golden[27] the covariance of Gauss-Markov processes is represented

in terms of various wavelet bases. The examples in Figures 4.2.1,4.2.2,4.2.3 illustrate

the effects of transforming an example of one of these kernels using the wavelet trans-

form. Figure 4.2.1 is a gray-scale image of the covariance matrix of a stationary first
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.............

............

... ....... ............

Figure 4.2.1: Covariance Matrix of a Stationary Gauss-Markov Process

order Gauss-Markov process defined on a finite interval, corresponding to the model

in eq.(4.2.5). Note that these examples plot the correlation coefficients of the process,

i.e. the covariance between two points normalized by the product of the standard de-

viation at each point. The diagonal of the matrix is thus is unity, and the off-diagonal

terms decay exponentially away from the diagonal. In [27] this covariance matrix is

transformed using various wavelet bases, i.e. the matrix undergoes a similarity trans-

formation with respect to the basis representing the wavelet transform based on a

variety of QMF filters, h(n). This transformation corresponds essentially to the sep-

arable form of the 2D wavelet transform[36]. Figures 4.2.2,4.2.3 are the images of

the covariance matrix in Figure 4.2.1 transformed using QMF filters of length 2 and

8, respectively. Note that aside from the finger-like patterns in these images, the

off-diagonal elements are essentially zeroed. The finger patterns correspond to corre-

lations between wavelet coefficients at different scales which share the same location

in the interval. Note that even these correlations are weak.

The low level of inter-scale correlation in the wavelet representation of the Gauss-

Markov process as illustrated in Figures 4.2.2 and 4.2.3 motivates the approximation
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...... ..... .....

Figure 4.2.2: Representation of the Stationary Gauss-Markov Process in a Wavelet
Basis using a 2-Tap QMF filter

Figure 4.2.3: Representation of the Stationary Gauss-Markov Process in a Wavelet
Basis using an 8-Tap, QMF filter
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of the wavelet coefficients of this process as uncorrelated. This results in a lattice

model precisely as defined in eq.'s(2.2.1-2.2.3). We use this model as well as several

other state models defined on trees as an approximation to the Gauss-Markov process

in order to do fixed interval smoothing.

In particular, one class of models which we consider as approximations for both

Gauss-Markov and 11f processes is obtained precisely in the manner just described.

That is, we construct models as in eq.'s(2.2.1-2.2.3) where the wavelet coefficients are

assumed to be mutually uncorrelated. The results of Beylkin and Golden indicate

that this model does very well in approximating Gauss-Markov processes. In this case

the variances of the wavelet coefficients, w(m) in eq.'s(2.2-1-2.2.3), are determined by

doing a similarity transform on the covariance matrix of the process under investiga-

tion using a wavelet transform based on the Daubechies FIR filters[21]. In particular

if P,, denotes the true covariance matrix of the process, V the diagonal matrix of

wavelet coefficient variances, and W is the wavelet transform matrix, then

Wp WT (4.2.11)

V = Wp"""""WT (4.2.12)

Thus, this approximate model corresponds to assuming that A is diagonal (i.e. to

neglecting its off-diagonal elements). For reference we give the following numerical

values for the various QMF filters h(n) we will use throughout this chapter, including

the 2-tap Haar filter as well as the 4-tap, 6-tap, and 8-tap Daubechies filters.

2 tap = 0.70710678118655 0.70710678118655 1 (4.2.13)

4 tap = 0.48296291314500 0.83651630373800 0.22414386804200

-0.12940952255100 1 - (4.2.14)

6 tap = 0.33267055295000 0.80689150931100 0.45987750211800

-0-13501102001000 -0.08544127388200 0.03522629188200

(4.2.15)

8 tap = 0.23037781330900 0.71484657055300 0.63088076793000

-0.02798376941700 -0-18703481171900 0.03084138183600

0.03288301166700 -0-01059740178500 ] (4.2.16)
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Note that in adapting the wavelet transform to the finite interval we have chosen the

method of using cyclic convolutions at each scale as described in Chapter 2. In this

case the number of points at each scale is half the number of points at the next finest

scale.

For the case of 1/f-type processes the result of Wornell on approximating these

processes using wavelets suggests that our lattice models can be easily used to model a

11f process with parameter -y. In particular by simply taking the model of eq.'S(2.2.1-

2.2.3) and setting the variances of w(rn) so that they obey the power law 2-'Y-, we

get precisely the model of Wornell. We will give examples in the following sections of

smoothing noisy 11f processes using this modeling scheme both for single scale data

as well as multiple scale data.

Finally, we describe the particular tree models we use in some of our examples

as approximate models for Gauss-Markov and 11f processes. The simplest model we

consider is the following scalar tree model which is assumed to be in steady state.

xt = axly-it + Wt (4-2.17)

E[w'] = 1 (4-2-18)

E[x'] = p (4.2.19)

We refer to this model as the 2-parameter model since it is parametrized by the

parameters a and p. In order to broaden the class of processes we might want to

consider, we also consider a tree model which includes a parameter that controls

the behavior of the process noise wt. In particular we consider a model which has

the property that its fine-scale variations have smaller variance than its coarse-scale

variations. We know for example that 11f processes can be synthesized using the

wavelet transform as in [551, where the variances of the wavelet coefficients decay

geometrically with finer scales. Thus, we consider the following scalar tree model.

imulxt = ax^,-lt + 2- 2 Wt (4.2.20)

E[W2] = (4.2.21)
t

E[X2 ] = Po (4.2.22)
to

We refer to this model as the 3-parameter model since it parametrized by the param-
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eters a, po, and 6 where 6 controls the amount of scaling in the variance of the process

noise from scale to scale.

We use both the 2-parameter as well as the 3-parameter tree model to approximate

both Gauss-Markov as well as 11f processes. Our method for choosing the parameters

of these models will be described in the next section.

Before we go on to present examples of smoothing processes using our multiscale

models, we give examples of sample paths of our processes in order to give a qualitative

idea of the type of processes our models represent. We first consider examples of our

lattice processes and in particular we take our model to be the one in eq.'s(2.2.1-

2.2.3), where the variances of w(m) are set so that they obey the power law 2-'Y'; as

noted before in this case we get precisely the model of Wornell for processes whose

measured spectrum is 111w1l. Figure 4.2.4 shows the plots of two different sample

paths, one corresponding to a process with spectrum 111w10-1, the other with spectrum

1/JW12 . Both are generated using a 4-tap Daubechies filter. Note the presence of more

high frequency energy in the process with -y = .1 as compared with the process with

7 = 2. This illustrates in the time-domain the contrast between two processes of

different rates of spectral decay. In Figure 4.2.5 we compare processes with spectrum

111wl generated using the 4-tap Daubechies filter and the 8-tap Daubechies filter.

Note that from the sample paths it is difficult to discern any significant contrasting

features between the two processes. Furthermore, it is even more difficult to assess

the impact that the QMF filter order has on the approximation of processes. This

issue will become clearer in following sections in the context of smoothing processes

using lattice model approximations.

Finally, we show some sample paths of the tree processes which we consider.

Figure 4.2.6 illustrates sample paths of our 2-parameter model for the case of a = .9

and the case of a = .5, where in each case p = 5.26. As we would expect, the points

in the process corresponding to a = .5 appear much more uncorrelated compared

with points in the process with a = .9. Recall from Chapter 3 that our 2-parameter

model actually describes a process in which the correlation between any two points

t, s is proportional to ad(l,.,) where d(t, s) denotes the number of branches along the

shortest path between t and s (i.e. an isotropic process). Figure 4.2.7 illustrates the
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Figure 4.2.4: (a) Sample Path of a Lattice Process with Spectrum 11jwj0-' (b) Sample
Path of a Lattice Process with Spectrum 1/JW12
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Figure 4.2.5: (a) Sample Path of a Lattice Process with Spectrum 11jivj Generated
Using a 4-tap Daubechies Filter (b) Sample Path of a Lattice Process with Spectrum
11jwj Generated Using an 8-tap Daubechies Filter
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Figure 4.2.6: (a) Sample Path of a 2-parameter Scalar Tree Process with a .9 (b)
Sample Path of a 2-parameter Scalar Tree Process with a = .5
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Figure 4.2.7: (a) Sample Path of a 3-parameter Scalar Tree Process with a = .9, P0=1,
o, = I (b) Sample Path of a 2-parameter Scalar Tree Process with a = .9, po=1, 0- = 2

sample paths of our 3-parameter model for the case of 8 = .9 and the case of 8 = .5,

where in each case a = .9 and po = 1. Note that the sample path corresponding to

o, = 1 appears to have more high frequency energy than the sample path with 0. = 2.

This suggests that our 3-parameter tree model can be used to describe processes with

11f -like features; in fact we will show in the following sections that this model can

be used to describe both Gauss-Markov processes as well as 11f processes.

4.3 Smoothing Processes Using Multiscale Mod-

els

In this section we present examples in which we use our models to smooth processes

embedded in noise. These examples not only demonstrate the utility of our frame-

work, but by smoothing processes outside of our class of processes we provide an
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indication of how rich our models are in approximating other processes. The two

types of processes we consider are Ist-order Gauss-Markov processes and 11f pro-

cesses. We give examples showing how our models can be used to estimate rather

well versions of both of these types of processes given noisy measurements. We provide

several examples of sample-paths of noisy Gauss-Markov and 11f processes and their

smoothed versions using both lattice and tree models. Since our data is generated

from processes other than those described by our model, the use of smoothers based

on our multiscale models results in suboptimal estimates. What win become appar-

ent in the examples is the strikingly good performance of our suboptimal smoothers,

giving support to the idea that our models can well-approximate other processes.

We study the effects of performing fixed-interval smoothing of processes, both 1st-

order Gauss-Markov and 1/f-type processes, using a variety of suboptimal smoothers

based on several of our multiscale models as described in the previous section. We

take the optimal smoothed estimate of a process x(t) to be the conditional mean of

the process conditioned on data over a finite interval.

i,(t) -A E[x(t)IY] (4-3.23)

where

Y(t) = X(t) + V(t) (4.3.24)

E [V2(t)] = R (4.3.25)

Y = f Y(t)jt = 01 ... N- 11 (4.3.26)

and the optimal smoothing error is given by

AE opt = E[(x - i.)(x (4.3.27)

x = f x(t) It 0,...N - 11 (4.3.28)

f.�,(t)jt 0,...N - 11 (4.3.29)

Conceptually, the idea of using a suboptimal smoother based on a model that

does not exactly describe the data is as follows. Suppose we postulate a model for

a zero-mean process, z(t), where z(t) is an approximation of x(t), with the following
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second-order statistics (in our case z(t) represents either a lattice or a tree process).

Z fz(t)jt=0,...N-1j (4.3-30)
[ZZT] p.E (4.3-31)

Consider the following measurements of z(t).

X0 = ZW + VM (4-3-32)

E [V2(t)] = R (4-3-33)

V = M01t = 01 ... N- 11 (4-3-34)

The best estimate of z(t) based on V is the conditional mean of z(t) conditioned on

This mean is a linear function of V of the following form.

i.(t) E[z(t)17] (4-3-35)

Z's = f i,(t)jt = 0,...N - 11 (4-3-36)

= LY (4-3-37)

= Pz(Pz + RI)-'V (4-3-38)

Suppose now that we apply the estimation operator L, to data corresponding to

our process x(t). This would result in the following suboptimal estimator with its

corresponding suboptimal error covariance.

sub L�,Y (4.3.39)

x f X(t)lt = 0,...N - 11 (4-3.40)

Esub E[(x -,�Sub)( X _ i.ub)T] (4.3.41)

L�,)P,:(I - L, )T + L,,RL T (4.3.42)Z

The structure of Eub motivates one criterion for selecting the parameters of our

multiscale models. In the case of our tree models our procedure for fitting model

parameters to data is to optimize the parameters of our model so as to minimize

the average suboptimal error variance, i.e. the trace of Zub. The suboptimal error

variance is a natural choice of optimization criterion since we are concerned ultimately
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with the smoothing of noisy data. In particular we choose the optimal parameters of

our model as follows.

0 = tree model parameters (4-3.43)
argmin

= 0 trace Esub (4.3.44)

Note that Eub is a function of the true process (the process to be approximated)

covariance, P,, and the noise power, R, both of which we assume to be known. In an

of the following examples, including the ones in the section on sensor fusion, we use the

average suboptimal error criterion to optimize both our 2-parameter and 3-parameter

tree model parameters to approximate processes, both of the Gauss-Markov as well

as the 11f type.

As further evidence that our models can be used effectively to approximate both

Gauss-Markov processes and 1/f processes, especially in the context of estimation in

noise, we provide examples using the Bhattacharyya distance measure as a way of

showing the relative accuracy of our approximations. Finally, we give several examples

comparing estimation performance for various order wavelets (i.e. various order QMF

filters). These examples provide a partial answer to the question of whether increasing

the wavelet order buys one anything in terms of modeling power and/or estimation

performance.

4.3.1 Smoothing Gauss-Markov Processes

In this section we give a variety of numerical examples demonstrating the performance

of our multiscale models in smoothing Gauss-Markov processes. We focus on the case

of a single scale of data at the finest scale and consider both lattice models as well as

tree models.

We begin by using our lattice models. In Fig.'s 4.3.8-4.3.14 we compare the

performance of the optimal estimator, the one that minimizes the mean-square error,

with the performance of our suboptimal estimator based on lattice models for both

2-tap and 8-tap Daubechies filters. In these examples the measurement noise variance

R = .5; i.e. the data is of SNR = 1.4142. Note the strikingly similar performances
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Figure 4.3.8: Sample Path of a Stationary Gauss-Markov Process (solid) and Its Noisy

Version with SNR=1.4142 (dashed)
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Figure 4.3.9: Stationary Gauss-Markov Process (solid) and Its Smoothed Ver-

sion (dashed) Using Standard Minimum Mean-Square Error Smoother (Data of

SNR=1.4142)
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Figure 4.3.10: Stationary Gauss-Markov Process (solid) versus Multiscale Smoother

Using 2-Tap (dashed) (Data of SNR=1.4142)
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Figure 4.3.11: Standard Minimum Mean-Square Error Smoother (solid) versus Mul-

tiscale Smoother Using 2-Tap (dashed) (Data of SNR=1.4142)
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Figure 4.3.12: Stationary Gauss-Markov Process (solid) versus Multiscale Smoother
Using 8-Tap (dashed) (Data of SNR=1.4142)



CHAPTER 4. APPLICATIONS AND NUMERICAL EXAMPLES 183

2

1.5 -

0.5 -

0

-0.5 -

-1

-1.5

-2 -

-2.5
0 20 40 60 8� 100 120 140

time

Figure 4.3.13: Standard Minimum Mean-Square Error Smoother (solid) versus Mul-

tiscale Smoother Using 8-Tap (dashed) (Data of SNR=1.4142)
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Figure 4.3.14: Multiscale Smoother Using 8-Tap (solid) versus Multiscale Smoother
Using 2-Tap (dashed) (Data of SNR=1.4142)
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of the optimal and suboptimal smoothers, as illustrated in Figure 4.3.11 for the case of

the 2-tap lattice smoother. From visual inspection of the results of the two smoothers

it is difficult to say which does a better job of smoothing the data; it seems one could

make a case equally in favor of the standard smoother and the lattice-model smoother.

The similarity in performance of the optimal smoother and our lattice smoothers is

even more dramatic for the case of the 8-tap smoother as illustrated in Figure 4.3.13.

Figure 4.3-14 compares the performance of our 8-tap and 2-tap sinoothers. The

difference in performance between these two suboptimal smoothers will be precisely

quantified shortly.

Note that although the standard smoother results in a smaller average smoothing

error (the trace of E,,,t divided by the number of points in the interval), it seems the

average error of our lattice-model smoothers is not that much larger. To quantify

these observations let us define the variance reduction of a smoother as follows.

P variance reduction (4-3.45)
Po -Ps

Po
po average process variance (4-3.46)

p, average smoothing error variance (4-3.47)

We also define the performance degradation resulting from using a lattice smoother

as compared with using the standard smoother as follows.

A performance degradation (4.3.48)perf

Pstandard - Plattice
Pstandard

Pstandard variance reduction of standard smoother (4.3.49)

Plattice variance reduction of lattice-model smoother (4.3.50)

If we compare the variance reduction of the two smoothers, we get that the vari-

ance reduction for the standard smoother is 85.0 percent whereas the variance reduc-

tion for the 2-tap lattice model smoother is 81.9 percent. For the case of the 8-tap

lattice model smoother the reduction is 83.8 percent. Figure 4.3.15 shows a plot of

the smoothing errors for the various smoothers over the entire interval.
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2-tap 4-tap, 6-tap 8-tap
SNR = 2.8284 1.07 % .550 % .402 "/o .334 %
SNR = 1.412 T 2 �7%F 1.77 % 1.24 % 1.04 %
SNR .7071 7 �1'To 4.13 % 2.70 % 2.33 %

�� T �14'To
SNR = 9 58 % 3.87 %

Table 4.3-1: Performance Degradation Comparison of Lattice-Model Smoothers - 2-
tap, 4-tap, 6-tap and 8-tap,

Note that while the 2-tap, smoothing error looks highly irregular, no doubt due

to the structure of the Haar transform, even at its points of highest amplitude the

relative decrease in performance is still rather small. In particular, if we examine

the point of highest amplitude for the 2-tap smoothing error in Figure 4.3.15, this

corresponds to a performance degradation of only 8 percent. The strong similarity

between the result of this smoother and the result of the standard smoother as shown

in Figure 4.3.11 serves further to emphasize the fact that the degradation is negligible.

We now examine the performance degradation of the lattice-model when we vary

the order of the QMF filter corresponding to the model. Table 4.3.1 shows the perfor-

mance degradation of the lattice-model smoother relative to the standard smoother

for filter tap orders 2, 4, 6, and 8 and for four different noise scenarios: 1) SNR =

2.8284 2) SNR = 1.412 3) SNR = .7071 4) SNR = .5. The variance reductions are

computed using smoothing errors averaged over the entire interval.

While the degradation in performance lessens as the order of the filter increases,

a great deal of the variance reduction occurs just using a 2-tap filter. For example

for the case of SNR = 1.412 the standard smoother yields a variance reduction of

85 percent. It is arguable whether there is much to be gained in using an 8-tap filter

when its relative decrease in performance degradation is only 2.23 percent over the

2-tap smoother; i.e. the variance reduction of the 8-tap smoother is 83.8 percent

while the variance reduction of the 2-tap smoother is already 81.9 percent.

The performance degradation numbers for the lower SNR case (SNR = .7071)

seem to suggest that the effect of raising the noise is to decrease the performance of

the lattice-model smoothers. But one should keep in mind that this decrease is at
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most only marginal. Consider the case where the SNR = .5. In this case the data

is extremely noisy, the noise power is double that of the case where SNR = .7071,

and yet the performance degradation in using the 2-tap smoother compared with the

standard smoother is 9.58 percent, up only 2.87 percent from the case of SNR =

.7071. Furthermore, if one examines a plot of the smoothers, the performance of the

two smoothers is as before quite comparable. Figure 4.3.16 is a plot of the sample

path of the Gauss Markov process and the noisy data and Figure 4.3.17 compares the

result of the standard smoother with that of the 2-tap smoother. We would expect

that raising the level of the noise should somehow mask the effect of the model in

smoothing the data, making our choice of model class somewhat irrelevant. The

effect of noise in the data on the relative performance of the smoothers is one way of

seeing how well our models do in approximating Gauss Markov processes. In the next

section we use the Bhattacharyya distance as a way of gauging how wen our models

approximate these processes and in fact these results will confirm our intuition that

noise masks the importance of the model structure one uses.

We emphasize that the average performance degradation is a scaler quantity, and

at best gives only a rough measure of estimation performance. From this quantity it

is difficult to get any idea of the qualitative features of the estimate. The plots of

the sample path and its various smoothed estimates over the entire interval offer the

reader much richer evidence to judge for himself what the relative differences are in

the outputs of the various smoothers.

Also, as a final note recall that our fast algorithm in Chapter 2 involving the

parallelization of the smoothing problem using the wavelet transform requires the

same measurements to be made at all points at any particular scale. The case of

missing data at a given scale for example is a situation in which this structure is

violated. This is relevant to situations in which one might want to use coarse data

to interpolate sparsely distributed fine data. This problem is treated in Section 4.4

using multiscale models based on homogeneous trees.

As we did for our lattice models we now demonstrate the potential utility of

our tree models as the basis for designing smoothing algorithms and in particular

we present numerical results that demonstrate the effectiveness of these models in
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Figure 4.3.16: Sample Path of a Stationary Gauss-Markov Process (solid) and Its

Noisy Version with SNR=.5 (dashed)
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Figure 4.3.17: Sample Path of a Stationary Gauss-Markov Process (solid), Standard

Smoother (dotted), 2-Tap Smoother (dashed) (Data of SNR=.5)
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smoothing noisy Gauss-Markov processes. As in our examples using lattice models

we use our tree model to smooth the noisy Gauss-Markov process in Figure 4.3.8 (SNR

= 1.412). As described in the beginning of the section, we fit our tree parameters by

choosing them to minimize the average suboptimal smoothing error variance. For the

case where our measurements are of SNR = 1.412 the optimal tree parameters are as

follows.

2-Parameter Tree Model:

a = .9905 (4-3-51)

p = 6.2698 (4-3.52)

3-Parameter Tree Model:

a = .9464 (4-3-53)

po = 7.7462 (4-3-54)

8 = .5059 (4-3-55)

Figure 4.3.18 shows the result of our smoothed estimate using a 3-paraineter

model while Figure 4.3.19 compares this estimate with the result of using a standard

smoother. Note again the similarity in performance between our smoother and the

standard smoother. The performance degradation of the 3-parameter model smoother

with respect to the standard smoother is 3.31 percent, which is comparable to the

performance of the 2-tap lattice smoother. This is to be expected given the fact that

both the 2-tap smoother and the tree smoother have the Haar representation as its

natural basis. It is also interesting to note that by fitting the 2-parameter model

in eq.(4.2.17) we get a performance degradation of 3.55 percent, only .24 percent

worse than the 3-parameter model smoother. This seems to suggest that the 2-

parameter model is already quite adequate in describing the 1st-order Gauss-Markov

process, which is also described by two parameters. Table 4.3.1 is a comparison of

the performances between the 2 and 3-parameter tree models for a variety of SNR's.
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Figure 4.3.18: Stationary Gauss-Markov Process (solid) versus 3-parameter Tree-

model Smoother (dashed) (Data of SNR=1.4142)

2-parameter 3-parameter

SNR = 2.8284 1.11 % 1.08 %

SNR = 1.412 3.55 % 3.31 %

SNR = .7071 7.59 % 6.88 %

SNR =.5 10.52 % 9.15 %

Table 4.3.2: Performance Degradation Comparison of 2-parameter and 3-parameter

Tree Smoothers
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Figure 4.3.19: Standard Minimum Mean-Square Error Smoother (solid) versus 3-

parameter Tree-model Smoother (dashed) (Data of SNR=1.4142)
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3-par. Tree 2-par. Tree 2-tap Lattice
SNR = 1.4142 -21-94 �'o or 7.82 % -23-83 % or 8.04 % -21-83 % or 7.71 %

Table 4.3.3: Mismatched a Comparison (both percentage decrease and increase in a
given)

As a final point of comparison, we compare the performance of our non-standard

smoothers with the performance of the standard smoother by seeing how much the

parameter a of the Gauss-Markov process defined in eq.(4.2.5) must vary before the

performance of the standard smoother is equal to the performance of our smoothers.

Table 4.3.1 plots the value of the percentage decrease or increase over the true value

of a such that the result of using the standard smoother with this mismatched value

of a gives the same variance reduction as that resulting from a smoother using a

2-parameter tree model, a 3-parameter model, and a 2-tap lattice model. Note that

the suboptimal error in using an incorrect value for a is not symmetric about the

true value.

4.3.2 Bhattacharyya Distance

In this section we provide further evidence supporting the fact that multiscale pro-

cesses are able to well-approximate stationary first order Gauss-Markov processes.

In particular we use the Bhattacharyya distance as a measure of the distance be-

tween two stochastic processes. The Bhattacharyya distance is useful in providing

bounds for the error probability in the binary hypothesis testing problem. As a way

of comparing our multiscale processes'with the Gauss-Markov process we consider

the following problem. Suppose we are given a finite length observation, y, which we

know to be equal to one of the following two stochastic processes in white noise.

YX = x+n (4-3-56)

E[xx T] = F':, (4-3-57)

Y, = z+n (4.3-58)

E[zz T] = E�' (4-3.59)
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The binary hypothesis testing problem consists of choosing one of the following hy-

potheses given our observation y: 1) H. : y = y. 2) H. : y = y., A decision is made

based on the following threshold test.

Pr(ylH,,,) > Pz. : choose H., (4-3-60)
Pr(ylH.) P.

Pr(ylH.) < P. : choose H,, (4.3.61)
Pr(yjH.) P.

where P and P,,, are the a priori probabilities for the two hypotheses. If we consider

the two hypotheses to be equally likely, the total probability of error in making a

decision is as follows.

I
P,, = _P1 + 1P2 (4-3.62)

2 i
P, = Pr(ChooseH,,.Iy = y,) (4.3-63)

P2 = Pr(ChooseH.,Iy = y.,) (4-3.64)

In the context of comparing stochastic processes if we let x be the Gauss- Markov

process and z be one of our multiscale approximations the probability of error, P,

gives an indication of how distinguishable two processes are in noise; i.e. a large value

of P,, indicates the two processes x and z are relatively indistinguishable from each

other given some amount of noise in the observation. Note that the probability of

error, P,, is upper bounded by .1 since in the worst case, i.e. if we randomly choose2

H.(or H.), P, = 12

The Bhattacharyya distance between two probability densities is defined as fol-

lows.

In f (P1 (Y)P2 (Y)) 1 dy (4.3.65)

As shown in [32] B can be used to both upper and lower bound the probability of

error P,, where we take pi(y) = Pr(ylH--) and P2(Y) = Pr(ylH,,).

We now use the Bhattacharyya Distance to upper bound the error probability, P,,

where y,,, is a noisy-version of the Gauss-Markov process defined in eq.(4.2.5) and y,, is

a noisy-version of its lattice process approximation; i.e. y., is a Gauss-Markov process

in white noise of some intensity and y, is our multiscale process, chosen to approximate

the Gauss-Markov process, in white noise of the same intensity. Figure 4.3.20 plots
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the upper bounds for P, for several noise levels and for lattice models of various QMF

filter orders. Note that adding noise to the process makes the error probabilities

significantly larger, indicating that, as one would expect, noise tends to make the

hypothesis testing problem more difficult. For sufficiently high noise levels the error

probabilities approach .5, which is the error probability resulting from a decision

based on the flip of a fair coin. This confirms our earlier intuition that the increase

in noise in the data tends to mask the effects of the model, making the choice of

model class less significant. The plot also indicates that for higher filter order our

approximations get better as manifested by higher error probabilities. Note, however,

that increasing the filter order only marginally increases performance. We also saw

this in our earlier computations on performance degradation (Table 4.3.1).

Finally, as a point of comparison we note that the error probability for the 2-

parameter tree model with SNR = 1.4142 is .2549 while for the case of the 3-parameter

model with SNR = 1.4142, it is .2726. Under the same SNR the 2-tap lattice model

yields an error probability of .2753.

4.3.3 Smoothing 11f Processes

In this section we provide examples in which we use our models to smooth 11f

processes. We generate our sample path using the model of Wornell, i.e. we let the

variances of our driving noise in eq.(2.2.2) vary as follows where we take our h(n) to

be the 4-tap Daubechies filter.

E[w(m)w(m)'] = 2--Im (4.3.66)

We take 7 to be equal to one, corresponding to an averaged spectrum of 111wl, and

we take our interval again to be 128 points. Figure 4.3.21 plots a sample path of

the process and its noisy version of SNR = 1.4142. We would expect that our lattice

smoother using a 4-tap model would do well in estimating this process since our model

for the process exactly describes the model used to generate it. Figure 4.3.22 in fact

confirms this. We also use a 3-parameter tree model to smooth the data, where the

following are the optimal parameters for this case, i.e. the signal is a 11f process

with ^j = 1 and the data is of SNR = 1.4142.
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R=.5 (+), R=1-0 (*), R=1-5 (o), R=2 (x)



CHAPTER 4. APPLICATIONS AND NUMERICAL EXAMPLES 198

1.5

0.5

0

-0.5

-1.5 -

-21
0 20 40 60 80 100 120 140

time

Figure 4.3.21: 11f Process withy 1 (solid), Noisy Version of SNR 1.4142 (dotted)
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Figure 4.3.22: 11f Process with -y 1 (solid), Optimal Estimate Using 4-tap Lattice

smoother (dashed)
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Figure 4.3.23: 11f Process with 7 1 (solid), Smoothed Using 3-parameter Tree

Model (dashed)

3-Parameter Tree Model:

a = .6694 (4.3.67)

po = 1.0131 (4-3-68)

6 = .4843 (4.3.69)

Figure 4.3.23 shows the result of using our 3-parameter tree model to smooth

the data in Figure 4.3.21 while Figure 4.3.24 compares this result with the result

obtained before using the 4-tap lattice model. Note the similarity in performance

between the tree smoother and the 4-tap lattice smoother. The average performance

degradation of the tree smoother compared with the 4-tap smoother is only 2-76%.

Note, however, that for certain portions of the signal the tree smoother actually seems

to do better in estimating the signal. This indicates that our tree models actually

capture quite well 1/f-like behavior. This brings about the question of how strong a
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Figure 4.3.24: Smoothed Using 4-tap Lattice smoother (solid), Smoothed Using 3-
parameter Tree Model (dashed)
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(*), SNR = 1.4142 (o), SNR = I (x)

factor the wavelet filter order in our lattice models is in capturing 1/f-like features.

This question can be partially answered by using the Bhattacharyya distance in the

following way. We take y., to be our observed signal under the hypothesis that it is

equal to a 11f process with y = 1 generated using an 8-tap filter in additive white

noise. We let y,, be our observed signal under the hypothesis that it is equal to our

approximation to this process using either a 2-tap, 4-tap, or a 6-tap filter in additive

noise of the same intensity. Figure 4.3.25 plots the upper bounds for P, for several

noise levels. Note that again increasing the noise level added to the process makes

the error probabilities significantly larger, making the model choice less significant.

But in addition for reasonable noise scenarios the plot indicates that the 2-tap, 4-tap,

and 6-tap filters perform comparably, all of them doing rather well in approximating

the 8-tap model.

To further illustrate this last point we actually show the result of taking a noisy
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Figure 4.3.26: 11f Process with 7 1 Generated Using 8-tap h(n) (solid), Noisy

Version of SNR = 1.4142 (dashed)

11f process generated using an 8-tap filter and smoothing it using 6-tap, 4-tap and

2-tap lattice models. Figure 4.3-26 is a plot of a sample path of a 11f process with

^/ = 1 which is generated using an 8-tap lattice model along with a noisy version of

SNR = 1.4142. Figure 4.3.27 is a plot of the noiseless signal and its smoothed estimate

using an 8-tap model, i.e. the optimal smoothed estimate using the correct model.

In Figure's 4.3.28-4.3.30 we compare this optimal estimate with smoothed estimates

using 6-tap, 4-tap and 2-tap lattice models, all of which correspond to models of the

same 11f process with -y = 1. Note in particular in Figure 4.3.30 the remarkable

similarity between the estimate using an 8-tap model and the estimate using a 2-

tap model. The performance degradation averaged over the interval, measured with

respect to the performance of the 8-tap model, for the 2-tap, 4-tap, and 6-tap models

are 3.59%, 2.15%, and 1.12%, respectively.
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Figure 4.3.27: 11f Process with 7 1 Generated Using 8-tap h(n) (solid), Estimate

Using 8-tap Smoother (dashed)
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Figure 4.3.28: Estimate Using 8-tap Smoother (solid), Estimate Using 6-tap Smoother

(dashed)
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Figure 4.3.29: Estimate Using 8-tap Smoother (solid), Estimate Using 4-tap Smoother

(dashed)
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Figure 4.3-30: Estimate Using 8-tap Smoother (solid), Estimate Using 2-tap Smoother

(dashed)
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4.4 Sensor Fusion

In this section we provide examples that show how easily our framework handles the

problem of fusing multiscale data to form optimal smoothed estimates. In our frame-

work not only is there no added algorithmic complexity to the addition of multiscale

measurements but it is also easy for us to evaluate the performance of our smoothers

in using multiscale data. In the next section we present examples in which we use

multiscale measurements where the coverage is full at each scale and the SNR's vary

from scale to scale. In Section 4.4.2 we give examples in which the measurements at

the finest scale are sparse, i.e. there are measurements which are absent at various

points along the interval, but in which there are also measurements at a coarser scale

which are in fact full in coverage. An example of this is the case in which sensors

using both high frequency and low frequency energy are used to probe a medium.

The high frequency sensor gives fine scale data in the vicinity of the boundaries of

the medium but due to its short wavelength is unable to penetrate deeply into the

medium. The low frequency sensor, however, is able to penetrate the medium due to

its longer wavelength, giving data throughout, but at a coarser scale. Our example

shows how our framework can be used to fuse the coarse scale data with the fine scale

data, allowing the full-coverage coarse data to interpolate features unattainable from

the sparse-coverage fine data. Note that in this case our methods using the wavelet

transform to diagonalize the problem do not apply. We must use either an iterative

algorithm for the case of general lattice models or our Rauch-Tung-Striebel algorithm

on trees for the case of tree models.

4.4.1 Multiscale Measurement Performance

In this section we focus on the problem of using multiscale data to estimate a process

in which the data at each of two scales is full in coverage but may vary in SNR from

scale to scale. Consider the Gauss-Markov process used in our previous examples as

defined in eq.(4.2.5). Again, the length of our interval is taken to be 128 points. For

our coarse scale measurements we assume the following model where M is the index

of the finest scale containing 2M points and L is the index of the scale of 2L points
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at which our coarse data resides. Referring to eq.(4.2.5) for the model of our process

at the finest scale,

Xm fx(t)lt=Ol ... 2M - 11 (4.4.70)
L

XL II Hi)Xm (4.4.71)
i=M-1
M-1

Ycoarse = (11 HT)XL + V (4.4.72)

i=L
E[VVTJ = rI (4.4.73)

That is, we take our coarse measurements to be the coarsened version of our fine

scale signal, coarsened by using the wavelet coarsening operator to project the fine

scale noiseless signal down to the desired scale, added with white noise. The choice of

wavelet filter in the definition of the operator Hi is governed by the way one chooses

to model the relationship between the coarse and fine sensors. Note that in the case

of the lattice models we are using, which correspond precisely to driving the wavelet

synthesis equation with white noise, the projection XL is exactly equal to the lattice

process at the Lth scale. This is simply due to the structure of the wavelet transform

and in particular the following analysis equation,

X,. = H,,,,,X,.+, (4.4.74)

where X, is the state vector of our lattice process at the mth scale. As we discuss

in the next section this is not true for the case of our lattice models as defined in

eq.'s(2.2.62-2.2.64) of Chapter 2.

Consider the case where our fine scale measurements are of extremely poor quality.

In particular we take the case where our data is of SNR = .3536 (the noise power is

eight times the signal power) as illustrated in Figure 4.4.31. Figure 4.4-32 compares

the result of using the standard smoother on this data with the result of using a 4-tap

lattice model smoother on the same data. The performance of the two smoothers is

comparable as we would expect from our results in the previous section.

Now we use the same data and consider fusing a higher quality coarse scale data

set to form a smoothed estimate. In particular we take our coarse data to reside at
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Figure 4.4.31: Sample Path of Stationary Gauss-Markov Process (solid), Poor Quality

Data with SNR=.3536 (dotted)



CHAPTER 4. APPLICATIONS AND NUMERICAL EXAMPLES 211

3

2 -

0 -

-2 -

-3'
0 20 40 60 80 100 120 140

time

Figure 4.4.32: Sample Path of Stationary Gauss-Markov Process (solid), Result of

Standard Smoother on Poor Data of SNR=.3536 (dotted), Result of 4-tap Lattice

Smoother on Same Data (dashed)
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Figure 4.4.33: Sample Path of Stationary Gauss-Markov Process (solid), Coarse Data

of SNR = 2 Using 4-tap Model (dashed)

the scale one level coarser than the original data (scale at which there are 64 points)

and the coarsening operator, Hi, corresponds to a 4-tap filter. The SNR of this coarse

data is equal to 2. Figure 4.4.33 is a plot of this coarse data. Figure 4.4.34 compares

the result of using the standard smoother on the low quality fine scale data with

the result of using our 4-tap lattice smoother to fuse this low quality data with high

quality coarse data. Note that the coarse measurement aids dramatically in improving

the quality of the estimate over the use of just fine-scale data alone. To quantify this

recall that our smoother computes the smoothing error at each scale. We use these

errors as approximations to the actual suboptimal errors (note that the computation

of the actual error covariance from multiscale data is appreciably more complex than

for the case of single scale measurements; the same is not true for our tree models,

where the complexity of the two cases is essentially the same). The variance reduction

in the case of fusing the two measurement sets is 97 percent versus only 36 percent

for the case of using only the poor quality fine-scale data.
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Figure 4.4.34: Sample Path of Stationary Gauss-Markov Process (solid), Result of

Standard Smoother on Fine Data of SNR = .3536 (dotted), Result of 4-tap Lattice

Smoother on Same Data Supplemented with Coarse Data of SNR = 2 (dashed)
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Figure 4.4-35: Sample Path of Stationary Gauss-Markov Process (solid), Results of
4-tap Lattice Smoother Using Fine Data of SNR = .3536 Supplemented with Coarse
Data of SNR = 31.6: Coarse Data at 64 pt. Scale (dashed)

To explore even further the idea of fusing coarse measurements with poor quality

fine measurements we compare the results of using coarse measurements of various

degrees of coarseness in order to determine how the scale of the coarse data affects

the resolution of the smoothed estimate. In particular, we take our fine scale data to

be the same as that in Figure 4.4.34. However, we supplement this data with coarse

measurements of extremely high quality (SNR = 31.6) and consider several cases: 1)

the coarse data is at a scale at which there are 64 points 2) the coarse data is at

a scale at which there are 32 points 3) the coarse data is at a scale at which there

are 16 points. Figures 4.4.35-4.4.37 compare the original signal with its smoothed

estimates using coarse data at the three different scales. Note how the coarseness of

the estimates in this figure corresponds to the coarseness of the data used to produce

them. All of these estimates are considerably better than the estimate using the fine

data alone as illustrated in Figure 4.4.32.
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Figure 4.4.36: Sample Path of Stationary Gauss-Markov Process (solid), Results of
4-tap Lattice Smoother Using Fine Data of SNR = .3536 Supplemented with Coarse
Data of SNR = 31-6: Coarse Data at 32 pt. Scale (dashed)
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Figure 4.4.37: Sample Path of Stationary Gauss-Markov Process (solid), Results of

4-tap Lattice Smoother Using Fine Data of SNR = .3536 Supplemented with Coarse

Data of SNR = 31.6: Coarse Data at 16 pt. Scale (dashed)
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4.4.2 Limited Coverage Fine Scale, Full Coverage Coarse

Scale

In this section we provide an example which corresponds to the problem of having

measurements of limited coverage at the fine scale and measurements of full coverage

at the coarse scale. In this case we would like to optimally fuse the two sets of

measurements, where we would expect that the coarse measurements would provide

information to interpolate the part of the signal not directly measured by the fine scale

data. Note that since our data is not uniformly distributed, we cannot use transform

based lattice smoothers to do the fusion. We instead use our Rauch-Tung-Striebel

tree smoother, where the case of missing data simply amounts to setting the variable

C(t) equal to zero for all t on the tree for which there is no measurement. In all of the

examples which follow we use the 3-parameter tree smoother where the parameters

are chosen to minimize the average suboptimal error resulting from using a fun set of

fine scale measurements of SNR = 1.4142. For the case of the Gauss-Markov process

the parameters are as in eq.'s(4-3.53-4.3.55). For the case of the 11f process which

we consider later the parameters are as in eq.'s(4-3.67-4-3.69).

Consider the same Gauss-Markov process as before. We take the set of measure-

ments of SNR = 1.4142 as illustrated Figure 4.3.8, and consider zeroing out the half

of the measurements contained in the middle of the interval, i.e. the measurements at

points 33 to 96. Figure 4.4.38 illustrates this measurement scenario. We now apply

our 3-parameter tree smoother to this sparse data set the result of which is illustrated

in Figure 4.4.39. As we would expect, the estimate in the middle of the interval where

there is no data is very poor.

Now we consider using coarse scale data to try to improve the quality of our

estimate based on sparse fine scale data. The coarse data in Figure 4.4.40 is of SNR

= 1.4142 (the same as the fine scale data) and it is taken to be one level coarser than

the fine data using the model in eq.(4.4.72) where the matrix Hi is formed using the

Haar 2-tap filter (i.e. this data represents pairwise averages of the original signal in

additive white noise). Note, however, that unlike in the case of the lattice models

we've used in this chapter which are precisely the synthesis equations driven by white
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Figure 4.4.38: Sample Path of Stationary Gauss-Markov Process (solid), Noisy Sparse

Data with SNR=1.4142 (dashed)
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Figure 4.4-39: Sample Path of Stationary Gauss-Markov Process (solid), Result of

Using Tree Smoother on Sparse Data of SNR=1.4142 (dashed)
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noise as in eq.'s(2.2.1-2.2.3), for the case of our tree models we are essentially using a

scalar version of the model in eq.'s(2.2.62-2.2.64) where the noises are not constrained

by the differencing operator G'. In this case our measurement equation, eq.(4.4.72),

does not yield a noisy version of the tree process at a particular scale but a scaled

version added with independent process noises. We show this more explicitly and for

the case of a coarse scale measurement at an arbitrary scale, L. Note that for our

3-parameter tree model we have that

M-1 M-1 M-1
m-L ( T E (V2a)--k 2X(M) = (V2-a) 11 Hi )X(L) + 2-k HT)W(k) + W(7n)

i=L k=L+l i=k

(4.4-75)

where X(i) is the vector of points of our tree process x(t) for m(t) = i, W(i) is the

vector of points of tree process noises w(t) for m(t) = i, and L is the level at which we

consider our coarse data. Note that the W(i)'s are mutually uncorrelated and have

diagonal covariance matrices, i.e.

E[W(i)W(i )T] = qjI8,_j (4.4-76)

Recall that our measurement at the Lth scale is taken to be

L

XL = ( fj Hi)X(M) (4.4-77)
i=M-1
M-1

YL = ( fj HT)XL + V (4.4.78)
i=L

E[VVT] = rI (4.4-79)

where M is the finest scale. From eq.'s(4.4.75,4.4.76), the orthonormal properties of

Hi, and our coarse scale measurement eq.(4.4.78), we have the following expression

for our measurement, Y, at scale L.

M-1
YL = (V2-a)--L ( 11 HT)X(L) + fV(L) + V (4-4-80)

i=L

E[JTV(L)jkT(L)] = 1: (N/-2a)2(m-k)2 -6k qk + qm)I (4.4.81)
k=L+l

E [VVT] = rI (4.4.82)
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Figure 4.4.40: Sample Path of Stationary Gauss-Markov Process (solid), Coarse Data

of SNR=1.4142 Modeled as Pairwise Averages of the Original Signal in Additive

White Noise (dashed)

Thus, our measurement at the Lth scale does indeed correspond to a scaled version of

our tree process at the Lth scale plus additive white noise, where the noise variance

is equal to
M-1E (V/-2a)2(m-k)qk + qm + r (4.4-83)

k=L+l

Note, however, that part of this noise, namely TV(L), is correlated with measurements

at scales finer than L. Though we could use state augmentation to handle this

correlation, for the sake of simplicity we have chosen in our examples to ignore this

correlation.

We now show examples using our 3-parameter tree model to fuse the sparse fine

scale data with the full coverage coarse data at a 64 point scale. Figure 4.4.41 illus-

trates the result of using our tree smoother to fuse the coarse and fine data. Note the

high degree of interpolation performed by using the coarse scale data set. It is worth
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Figure 4.4.41: Sample Path of Stationary Gauss-Markov Process (solid), Result of
Using Tree Smoother to Fuse Coarse (64 point) and Fine Data, Both of SNR

1.4142 (dashed)



CHAPTER 4. APPLICATIONS AND NUMERICAL EXAMPLES 223

3

2

0 -

-2 -

-3
0 20 40 60 80 100 120 140

time

Figure 4.4.42: Sample Path of Stationary Gauss-Markov Process (solid), Result of

Using Tree Smoother to Fuse High Quality Coarse Data (64 point) of SNR = 100

with Fine Data of SNR = 1.4142 (dashed)

emphasizing at this point that our smoother accommodates arbitrarily distributed

data with no added computational complexity. To further illustrate the effects of

coarse scale data on interpolation we provide an example in which the coarse data is

of extremely high SNR; the result of this is illustrated in Figure 4.4.42. Note that in

this case the interpolation is extremely good due to the near noiseless coarse data.

We compare this with the example in Figure 4.4.43 in which the coarse data resides

at the level of the lattice corresponding to 32 points, i.e. data which is 2 levels coarser

than the fine data. Note that the estimates in the interior of the interval are resolved

up to the scale given by the coarse data while the estimates near the ends are resolved

much more finely due to the additional fine measurements there. This effect is even

more noticeable in Figure 4.4.44 where the coarse data being fused is at a 16 point

scale. To better illustrate this effect of the scale of the coarse data on the interpo-

lation, Figure 4.4.45 compares the result of using coarse data at the three different
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Figure 4.4.43: Sample Path of Stationary Gauss-Markov Process (solid), Result of

Using Tree Smoother to Fuse High Quality Coarse Data (32 point) of SNR = 100

with Fine Data of SNR = 1.4142 (dashed)
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Figure 4.4.44: Sample Path of Stationary Gauss-Markov Process (solid), Result of

Using Tree Smoother to Fuse High Quality Coarse Data (16 point) of SNR = 100

with Fine Data of SNR = 1.4142 (dashed)
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Figure 4.4.45: Result of Using Tree Smoother to Fuse High Quality Coarse Data

(64 point) of SNR = 100 with Fine Data of SNR = 1.4142 (solid), Result of Using
Tree Smoother to Fuse High Quality Coarse Data (32 point) of SNR = 100 with Fine

Data of SNR = 1.4142 (dashed), Result of Using Tree Smoother to Fuse High Quality

Coarse Data (16 point) of SNR = 100 with Fine Data of SNR = 1.4142 (dotted)

scales (64 pt., 32 pt., and 16 pt.).

In fact we can characterize the effect of coarse scale data on fine scale performance

by plotting the smoothing errors for a variety of scenarios. Figure 4.4.46 is a plot of

the smoothing error at the fine scale when full-coverage coarse data is fused with fine

data which is sparse (zero data at at points 33 to 96). The plot shows cases where

the coarse scale data ranges from one level coarser than the fine data to five levels

coarser (4 points) and in each case the SNR's of the coarse data and the non-zero

fine data are taken to be 1.4142. Note that although these performance plots are

only approximate to the extent that our tree models approximate the Gauss-Markov

process, the smoothing error computations come naturally from our Rauch-Tung-

Striebel algorithm and the fact the data is distributed arbitrarily is handled at no



CHAPTER 4. APPLICATIONS AND NUMERICAL EXAMPLES 227

0.9

0.8 -

0.7 -

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1
0 20 40 60 80 100 120 140

time

Figure 4.4.46: Plots of Performance for the Case of Full Coverage Coarse Data Fused

with Sparse Fine Data Both of SNR = 1.4142. Five Plots Correspond to Coarse

Data 1) One Level Coarser Than Fine Data 2) Two Levels Coarser ... 5) Five Levels
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Figure 4.4.47: Sample Path of 11f Process with -y I (solid), Result of Smoother

Using Sparse Fine Data of SNR = 1.4142 (dashed)

extra cost.

Finally, we present plots showing the results of using coarse data to interpolate

sparse measurements of a 11f process. We take a 11f process with 7 = 1 and assume

again that our measurements at the finest scale are sparse; i.e. they are zero at

points 33 to 96 of a 128 point sequence and of SNR = 1.4142 at the remaining points.

Figure 4.4.47 shows the result of smoothing the data using just the sparse fine scale

measurements. Figure 4.4.48 shows the result of fusing these sparse measurements

with full-coverage coarse data, where the data is at the 64 point scale and of extremely

high quality (SNR = 100). Again, we can see that the resolution of the estimate at the

ends of the interval is better than that of the resolution in the middle, corresponding

to the difference in resolution of the data in these two regions. This effect is further

illustrated in Figures 4.4.49-4.4.51, where we compare the result of the fusion using

data at 64, 32 and 16 point scales.
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Figure 4.4.48: Sample Path of 11f Process with 1 (solid), Result of Fusing Sparse

Data with Coarse Data of SNR = 100 at 64 point Scale (dashed)
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Figure 4.4-49: Sample Path of 11f Process with -y = 1 (solid), Result of Fusing Sparse

Data with Coarse Data of SNR = 100 a,t 32 point Scale (dashed)
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Figure 4.4.50: Sample Path of 11f Process with 7 = 1 (solid), Result of Fusing Sparse

Data with Coarse Data of SNR = 100 at 16 point Scale (dashed)
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Figure 4.4.51: Result of Fusing Sparse Data with Coarse Data of SNR = 100 at 64

point Scale (solid), Result of Fusing Sparse Data with Coarse Data of SNR = 100 at

32 point Scale (dashed), Result of Fusing Sparse Data with Coarse Data of SNR

100 at 16 point Scale (dotted)
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4.5 Optical Flow

In this section we use our framework to formulate the problem in computer vision of

determining the optical flow[30) from a sequence of images. Our purpose is to show

the potential of our framework for solving this complex, computationally intensive

problem. The results in this section focus on a 1D version of the problem as formu-

lated in Horn and Schunck[30] and serve to show how our multiscale models can be

used as the basis for a highly efficient, multiscale algorithm for computing optical

flow. Note that everything we present in this section is extendible to 2D by using

quadtrees. Typical methods for determining optical flow from 2D images are iterative,

based on the idea of using relaxation algorithms as a way of handling the enormous

computational complexity. Our algorithm on the other hand is a direct method based

on recursions in scale which is both highly efficient and highly parallelizable.

4.5.1 ID Optical Flow Formulation

Let us denote the image intensity function, a function of both time and space, as

f (X, t). For our purposes we focus on the case where x is a scalar quantity; i.e. f (x, t)

is a 1D image as a function of time. The constraint typically used in gradient-based

approaches to motion estimation is referred to in the literature as the "brightness

constraint" [30] and it amounts to assuming that the brightness of each point in the

image, as we follow its movement, is constant. In other words the total derivative of

the image intensity is zero, i.e. Df

dt = 0 (4.5.84)

This equation can be rewritten as follows.

Of 'If axTt + ax at = 0 (4.5.85)

The quantity 2-0 is referred to as the optical flow, which we denote as the spatialat
function, v(x), and it is this quantity which we would like to determine from observing

f (X, t) sequentially in time.

We rewrite eq.(4.5.85) as follows.

Y(X) = c(x)v(x) (4-5-86)
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Y W = af (4.5-87)
(9t

C(X) = Of (4.5-88)
19X

The following is the optimization problem formulation of Horn and Schunk[30] for

determining v(x).

=argmin dv 1,2,
f�(X) V f'UIIY(X)-C(X)V(X)II'+IIdx (4-5.89)

The second term in the cost function, II & 11 2, is referred to as the "smoothness"
dx

constraint as it is meant to penalize large derivatives of the optical flow, constraining

the solution to have a certain degree of smoothness. The variational solution to

eq.(4.5.89) can be written implicitly as follows.

Lf�(X) = U(f C(X)Y(X) _ f C2 (x)dx) (4.5.90)

d2
IC = dX2 (4.5.91)

Note that computing �(x) in eq.(4.5.90) is potentially daunting as the dimension of

,6(x) is equal to the number of pixels in the image.

As in Rougee et al[46] the optimization problem in eq.(4.5.89) can be interpreted

as a stochastic estimation problem. In particular the smoothness constraint can be

interpreted as the following prior model on v(x).

dv = W (X) (4.5.92)
dx

E[w(x,)W(X2)] = 8(X1 - X2) (4.5-93)

The estimation problem consists of estimating v(x) based on the following observation

equation.

y(x) = c(x)v(x) + r(x) (4.5.94)

E[r(xl)r(X2)] = t1-16(X1 - X2) (4.5.95)

Note that since we are interested in estimating v(x) based on y(x) for an x, we are in

fact concerned with a smoothing problem. Henceforth, we will refer to eq.'s(4.5.92,4.5.93)

as the standard modeL
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The incorporation of the smoothness constraint becomes useful for several reasons.

First, if the measurement in eq.(4.5.94) is extremely noisy, it is necessary to incor-

porate a prior term in order to provide a certain degree of regularity in the estimate

of v(x). Secondly, for portions of f (x, t) which have zero derivative the data at these

locations are missing, i.e. c(x) = 0, and the prior term provides a way of interpolating

the sparse data. Finally, in the 2D case, where the optical flow is a 2D vector field

in both the x and y directions, we actually have an underspecified system. That is,

at each point in the image there is one measurement equation for two unknowns. In

this case the smoothness constraint provides additional constraints for determining

the solution.

Let us now examine the particular prior model associated with the smoothness

constraint. From eq.'s(4.5.92,4.5.93) we see that v(x) is in fact a Brownian motion

process. Note that the Brownian motion process is a special case of the class of

fractional Brownian motion processes, a class of processes that exhibit Ilf spectral

characteristics. Since, as we showed in previous sections, our multiscale models do

in fact provide good approximations to Ilf processes, we would expect to be able to

use our multiscale models in place of eq.'s(4.5.92,4.5.93) as a prior model for v(x).

This would of course allow us to solve the estimation problem in our framework using

the extremely efficient and highly parallelizable algorithms described in the previous

chapters.

Let us consider v(x) to be modeled as one of our multiscale models. Note that our

observation equation, eq.(4.5.94), has a spatially varying c(x), which would disallow

the use of our transform method for smoothing lattice processes. Thus, if we were

to consider using a lattice model for v(x), we would need to solve for the smoothed

estimate iteratively. If we consider v(x) to be modeled by a tree model, however, our

Rauch-Tung-Striebel tree smoother can be applied. Note also that the use of our tree

smoother can be easily extended to the case of 2D by simply considering quadtree

models as opposed to our ID dyadic tree models. Thus, for the examples in this

section we use a tree model as a model for the optical flow, v(x).
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4.5.2 Inherent Problems, Discretization

The formulation in the previous section is convenient and simple in that it consists of

a linear measurement equation, eq.(4.5.86), which can be easily supplemented with

prior models. In this section we point out some of the problems known to exist in

using this approach on noisy images. Note that these problems are inherent to the

problem itself, and that their treatment remains a critical question in computational

vision. Our examples serve simply to show the viability of our multiscale modeling

approach as an efficient method for computing optical flow and to provide a basis

for further investigation of applying our approach to estimating optical flow. Thus,

although we acknowledge the existence of these problems, we do not delve deeply

into them in this thesis. Also, in this section we discretize the smoothing problem

formulated in the previous section, providing the basis for our numerical results in

the next section.

We begin by describing how noise in our measurements of f (x, t) enters into our

formulation. Note that what we have available as data are the measurements of

f (X, t) sequentially in time. It is from these measurements that we compute the

partial derivatives ff and ff . Consider the following model for our measured f (x, t).
9t '9X

treasured (X, t) = f (X, t) + U(X, t) (4.5-96)

E[u(x, s)u(y, t)] = 4(x - y, s - t) (4.5.97)

Thus, if we use feau,,d(X1 t) to compute y(x) and c(x), we get

Ymeasured(X) = Y(X) - U2(X) (4.5.98)

Cmeasured(x) = C(X) - U1(X) (4.5.99)

Uj(X) = 9u(x, t) (4.5.100)
19X

U2(X) = 9u(x, t) (4-5.101)
19t

Note that c(x) is itself noisy. Furthermore, if we substitute eq.'s(4.5.98,4.5.99) into

our observation equation, eq.(4.5.94), we get

Ymeasured(X) = (Cmeasured(X) + Ul(X))V(X) + U2(X) + r(x) (4.5.102)
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Thus, in terms of our measured quantities, Ymeasured(x) and cmeasured(x), we have a

nonlinear estimation problem. Note that even if we assume ul(x) and v(x) to be

Gaussian, Ymeasured(x) is not due to their product in eq.(4.5.102). There is clearly a

need for taking into account higher order moments in this case and a tractable solution

requires further investigation. The typical method used to partially cirvumvent this

problem is to prefilter the image f (x, t) before computing Cmeasured � thus minimizing

the variance of ul(x). For our purposes we simply wish to compare the use of our

multiscale models with the use of the standard model, i.e. the model implied by the

standard regularization approach. Thus, in our numerical examples we avoid this

issue entirely by assuming c(x) to be known exactly.

We now turn to the discretization of the standard model, eq.'s(4.5.92,4.5.93), and

the observation equation, eq.(4.5.94). We need to estimate v(x) based on approxima-

tions of both 2L and 2L We consider the following finite difference approximationsat 9x'

of these partial derivatives.

Of 1.,t ,:Z� f (x, t + 1) - f (x, t) (4.5.103)
at

of (f (x + 1, t) - f (x - 1, t)) /2 (4.5.104)
(9 x

Let us assume that our image is available at two time instants, t and t + 1, where

each image is uniformly sampled over a finite interval in space; i.e. we have f (i, t)

and f (i, t + 1) where i e 10, 1, 2,...N - 11. The discretized smoothing problem for

our standard model is as follows.

V(i + 1) - V(i) W(i) (4.5.105)

E[w(i)w(j)] b(i - j) (4.5.106)

y(i) c(i)v(i) + r(i) (4.5.107)

C(i) f (i + 1, t) - f (i, t) (4.5.108)

E[,r(i)r(i)] ic' 6(i - j) (4.5.109)

i C- 10,11 ... N - 21 (4.5.110)

The following is the linear least-squares solution to the discrete smoothing problem
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for our standard model.

f� = (L+11-1CTC)-1(1t-1CT V

= lf(Olt+l)-f(olt),f(lt+l)-f(I)t),...f(N-2,t+l)-f(N-2, t)]T

V = [v(0,t),v(1,t),...v(N-2, t)]T (4-5.112)

where

C(0) 0 ... ... 0

0 C(1) 0 ... 0

C (4.5.113)

0 ... c(N - 3) 0

0 ... 0 c(N - 2)

and
1 -1 0 ... ... ... 0

0 -1 2 -1 ... ... 0

'C (4.5.114)

0 ... ... 0 -1 2 -1

0 ... ... 0 -1 1

Note that the matrix C, which is a discrete approximation of the operator d2dX2 I

does not assume the boundary points to be known. In terms of our prior model,

eq.'s(4.5.105,4.5.106), this corresponds to assuming infinite variance of the process

at each endpoint. Thus, the smoother resulting from the use of this model is a

Maximum-Likelihood smoother.

4.5.3 Numerical Examples

In this section we give numerical examples of applying our framework to the optical

flow problem using the discrete formulation from the previous section, where we con-

sider two cases. We compare the solution produced using the discretized standard

model, i.e. eq.'s(4.5.105,4.5.106), with the solution produced by using one of our
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tree models. These examples show that our tree smoother performs comparably to

the smoother resulting from the standard model. Note, however, that our smooth-

ing algorithm, which is based on recursions in scale, is extremely efficient, highly

parallelizable, and extendible to 2D. Although for the case of ID a Kalman filtering

approach can be used to compute the smoother[46], in 2D no such recursive procedure

exists.

In our examples we consider our image to be a 128 point sequence; i.e. N = 128.

The multiscale model we use as our prior model for v(x), as an alternative to our

discretized standard model, is the following scalar tree model.

6-rn(t)
zt = azy-it + a2- 2 Wt (4.5.115)

E[w'] = 1 (4.5.116)

E[Z2 j = po (4.5.117)to

where t indexes the nodes of a finite tree with N points at the bottom level. Thus,

the covariance of this zero-mean process at the bottom level of the tree is specified

entirely by the parameter vector 0 = [a, po,,y, o,]. That is,

E[zz Tj = p(q) (4-5.118)

Z = IZO) Z1 7 ... ZN-1 ]T (4-5-119)

where we've indexed the points at the bottom level as 0, 1,...N - 1.

As we pointed out earlier the standard model corresponds to the Brownian motion

process, a process which our tree model does well in approximating. We focus now on

the problem of using our scalar tree model to approximate the discrete standard model

in eq.'s(4-5-105,4.5.106) defined for the points i = 0, 1,...N - 1. Note that since the

standard model has no boundary conditions specified, it does not have a well defined

covariance matrix. Thus, in order to approximate this model we consider instead

the discretized operator, L, which represents the information matrix of the process

described by the standard model. To choose the parameters of our tree model so as

to yield an approximation to the standard model, we fit the information matrix of

our tree process, P-1 (0), to C by minimizing the matrix 2-norm (the largest singular
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value of the matrix) of the difference betweenC and P-'(0).

argmin -1 (0)12
Ofitted= 0 JC - P (4.5.120)

Note that in using our multiscale smoother, as in the case with using the standard

model, we would not wish to assume boundary information. Thus, we must actually

use the Maximum Likelihood form of the smoother. This is achieved by assuming an

infinite variance for the point of the process at the top node of the tree.

In comparing the performance of the multiscale smoother with the performance

of the standard regularization method, we need a way of normalizing the problem.

We define the following quantity, which can be thought of as the ratio between the

information due to measurements and the information due to the model.

A trace(tCTC)
(4.5.121)

trace(T)

where I is either C or P-'(d). For our examples, we varyrby varying y, which is

the inverse of the measurement noise variance.

We begin with examples using noiseless data. Consider an image which is a

sinusoid moving with constant velocity. In particular we take v(i, t) = 3 for all i, t.

Figure 4.5.52 shows snapshots of the image at times t and t + 1. We now compare

the performance of estimating v based on the images at these two time instants using

our tree smoother and using the standard regularization.

Figure 4.5.53 shows the result of estimating v based on standard regularization

for F = 4.1,.01. Figure 4.5.54 shows the result of estimating v based on our tree

smoother for r = 1,.1,.01. Recall that the optimal solution should be a constant equal

to 3. Note that the two approaches yield similar results. In fact for all three values

of r our tree smoother actually performs better. As we would expect by decreasing

r, i.e. decreasing the weight p of the measurment term in the cost function, the prior

term would have more effect on the solution. In both cases the solution becomes more

and more regular with increased reliance on the prior model.

We now turn to an example using images consisting of a concatenation of trape-

zoids which are moving with constant velocity, v(i, t) = 3. Figure 4.5.55 shows

snapshots of the image at times t and t + 1.
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Figure 4.5.52: Noiseless Sinusoid at Time t (solid) and at Time t + I (dashed)

Constant Velocity
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Figure 4.5.53: Estimate of v(x) Using Standard Regularization for r 1 (solid), for
r =.1 (dashed), and for r = .01 (dotted)
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Figure 4.5.54: Estimate of v(x) Using Tree Smoother for F = 1 (solid), for r .1
(dashed), and for r = .01 (dotted)
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Figure 4.5.55: Noiseless Image of Shifted Trapezoids at Time t (solid) and at Time

t + 1 (dashed) ; Constant Velocity
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Figure 4.5.56: Estimate of v(x) Using Standard Regularization for r 1 (solid), for

F = .1 (dashed), and forr = ol (dotted)

Figure 4.5.56 shows the result of estimating v based on standard regularization

for r = 1,.1,.01. Figure 4.5.57 shows the result of estimating v based on our tree

smoother for r =1,.1,.01. Note that again as one increases the weight of the prior

term relative to the measurement term the degree of regularity in the solution in-

creases. In this example solutions due to both the tree smoother as well as the

standard regularization are rather irregular due to the fact that the trapezoid has

discontinuous derivatives. Also, the flat portions of the image which have zero deriva-

tive represent portions of the image with missing data. This is probably the source

of the bias existing in the result of both smoothers.

We now turn to examples in which our images, f (i, t), are noisy. In this case as

mentioned in the previous section we assume the matrix of spatial derivatives C to be

known exactly; i.e. we compute C from noiseless versions of f (i, t). We do, however,

take our vector of temporal derivatives, V, to be formed using the noisy images at

times t and t + 1. We begin with the sinusoid example moving at constant velocity,
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Figure 4.5.57: Estimate of v(x) Using Tree Smoother for F = 1 (solid), for F .1

(dashed), and forr = ol (dotted)
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Figure 4.5.58: Noisy Sinusoid at Time t (solid) and at Time t + 1 (dashed); Noise

Variance = .001, Constant Velocity

v(i, t) = 3. Figure 4.5.58 shows snapshots of the image at times t and t + 1.

Figure 4.5.59 shows the result of estimating v based on standard regularization for

F = 1,.1,.01. Figure 4.5.60 shows the result of estimating v using our tree smoother

for I' = 1,.1,.01. In this case the noise has a definite effect on the regularity of the

estimates. Note that again decreases in F yield more regular estimates of v(x). Note

also that as in the noiseless case our smoother performs consistently better than the

smoother based on the standard model.

In Figure 4.5.61 we have a noisy version of our trapezoidal image moving with

velocity v(i, t) = 3. Figure 4.5.62 shows the result of estimating v based on standard

regularization for r = 1,.1,.01 and Figure 4.5.63 shows the result of estimating v

using our tree smoother for r = 1,.1,.01. Note that in both cases the estimates are

biased. Again, this is probably due to the fact that the image has large portions

where the data is missing, i.e. the spatial derivative is zero. The presence of noise

degrades even further the information in the portions where the data are missing.
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Figure 4.5.59: Estimate of v(x) Using Standard Regularization for r 1 (solid), for

F = .1 (dashed), and for r = .01 (dotted)
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Figure 4.5.60: Estimate of v(x) Using Tree Smoother for r =I (solid), for r .1

(dashed), and forr =.ol (dotted)
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Figure 4.5.61: Noisy Trapezoid at Time t (solid) and at Time t + 1 (dashed); Noise

Variance = .001, Constant Velocity
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Figure 4.5.62: Estimate of v(x) Using Standard Regularization for F 1 (solid), for

F = .1 (dashed), and forr = ol (dotted)
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Figure 4.5.63: Estimate of v(x) Using Tree Smoother forr = 1 (solid), for F 1

(dashed), and forr = oi (dotted)
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Figure 4.5.64: Noisy Line at Time t (solid) and at Time t + I (dashed); Noise Variance

= .01, Velocity V(x) = .2x

Also, discontinuities in the spatial gradient for this particular image strongly affect

the estimates.

Finally, we give an example in which the data is noisy and in which the velocity

v(x) is non-constant. In Figure 4.5.64 we have a noisy version of a ramp image moving

with velocity v(i, t) = .2i. This corresponds to the case of linear or shear velocity.

We show in Figure 4.5.65 the result of estimating v based on our tree smoother and

the result based on using the standard regularization.

In summary our examples have shown that our tree smoother yields optical flow

estimates which are comparable or better in quality to the result of using standard

regularization. Our smoother has the added advantage of being extremely efficient

and highly parallelizable. Thus, our tree models seem promising as a way of regu-

larizing the optical flow problem, although examples in 2D need to be looked into

thoroughly. Also, the inherent problems of this gradient-based formulation as touched

upon briefly in this section deserve further investigation.
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Figure 4.5.65: True v (solid) � Using Standard Regularization for F 1 (dashed) b

Using Tree Smoother forr = 1 (dotted)



Chapter 5

Conclusion

In this chapter we summarize the major contributions of this thesis and suggest direc-

tions for future research. This thesis has been motivated by the need for developing

a stochastic modeling and filtering theory to complement the already existing and

quickly growing deterministic theory of multiresolution signal representations, moti-

vated primarily by the wavelet transform. Motivated by the structure of the wavelet

transform, we have introduced classes of stochastic state models defined on lattices

which are Markov in scale. These models describe a rich class of phenomena, in-

cluding for example a class of 11f processes, as well as other processes. We have

developed several algorithms for smoothing our processes based on data at multiple

scales, where we've used the notion of recursion in scale to develop algorithms which

are both extremely efficient and highly parallelizable. Note that our algorithms allow

for the fusion of multiscale data with no added complexity. Also, recursions in scale

can be performed equally well in 2D, resulting in extremely efficient algorithms for

processing 2D data. The numerical examples presented in this thesis illustrate the

potential of our approach in modeling processes which may or may not possess mul-

tiscale features and in fusing multiscale data efficiently. The theory developed in this

thesis provides a formalism in which to investigate multiscale signal processing prob-

lems and, more importantly, we hope it provides a framework in which to understand

more deeply what makes a given problem appropriate for a multiscale approach.

255
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5.1 Thesis Contributions

* We have introduced a class of stochastic processes described by state models

on trees and lattices motivated by the wavelet transform. These processes are

defined on lattices where each level of the lattice has the interpretation of scale

and where our processes defined on these lattices are Markov in scale. A specific

case of our processes corresponds to the model of Wornell[55] for modeling

11f processes. Our models are also successful in describing other processes as

demonstrated in the numerical results in this thesis on smoothing Gauss-Markov

processes. We have characterized the eigenvectors of one class of our processes

(in which parameters may vary in scale but not in translation) in terms of the

wavelet operators Hi and Gi and have developed an algorithm for smoothing our

processes based on the wavelet transform. In particular the algorithm uses the

wavelet transform to transform the problem into a set of independent smoothing

problems each of which is solved recursively in scale. The algorithm is extremely

efficient and allows for the case of smoothing multiple scale data as well as for

the case of vector processes. We have provided two versions of the algorithm,

one which consists of a coarse-to-fine sweep followed by a fine-to-coarse sweep

and another which starts starts with a fine-to-coarse sweep and is followed by

a coarse-to-fine sweep.

* We have provided a general framework for modeling multiscale processes de-

fined over a finite-length interval by characterizing the problem of adapting the

wavelet transform to finite length signals. In particular we have characterized

the effect of the finite length assumption on the operators Hi and Gi and have

provided several ways of adapting these operators to the case of finite length sig-

nals while preserving their fundamental algebraic structure. In our framework

for example the commonly used method of using cyclic convolutions in place of

linear convolutions in the operators Hi and Gi is simply one particular choice

of adaptation of these operators. Models based on these operators assume that

the signal is periodic in the length of the interval. We have also characterized

ways of adapting the these operators that lead to models which do not assume
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the signal is periodic but rather the result of some form of windowing.

9 We have studied in detail our class of lattice processes for the case where the op-

erator Hi corresponds to the Haar wavelet. In this case we have the class of state

models on dyadic trees. We have developed a smoothing algorithm for these

processes which can be viewed as a generalization of the Rauch-Tung-Striebel

algorithm to trees. This algorithm is extremely efficient, highly parallelizable,

and easily extendible to 2D. As in the case of our transform approach the al-

gorithm allows for the smoothing of vector processes based on data at multiple

scales. Moreover, unlike in the case of our transform algorithm, our tree al-

gorithm can be applied to the case where the parameters of the model may

vary arbitrarily, i.e. in both scale and translation. An example of this is the

measurement scenario in which the data is missing at arbitrary points in the

interval.

e We have analyzed the filtering step of our algorithm and in particular we've

analyzed in detail the Riccati equations associated with the filter. This lead us

to decomposing the filter into an ML filter plus a filter which propagates the

prior information. We have derived the ML filter in several ways including one

which involves the Hamiltonian formulation of the smoother. We have defined

notions of reachability and observability on trees which allow us to provide

bounds on the error covariances of the filter. We then defined a notion of lp

stability for processes propagating upwards along the tree. Using Lyapunov

methods we showed that our filter is 12-stable under conditions of reachability

and observability. We also showed the existence of a steady-state filter which is

12-stable.

9 Finally, we have given numerical examples demonstrating the effectiveness of

our multiscale approach in smoothing processes. We've shown the richness of

our models in approximating processes by giving examples of using our models

to smooth both 11f and Gauss-Markov processes. We've compared the perfor-

mance of our smoothers with the performance of the optimal smoother (the one

which is based on the true model) on these processes. Our results show, both
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qualitatively and quantitatively, that our smoothers do quite well for a wide

range of SNR's. We've also given examples of fusing coarse scale data with fine

scale data. We've shown that the resolution of the estimates produced by our

smoothers at a particular point reflects the resolution of the available data at

that point; i.e. the fusion of the data is optimal in both scale and translation.

For example in the case where a fine scale data set of poor quality is fused with

a coarse set of high quality, both of fun coverage, the estimate resulting from

their fusion accurately captures features of the original signal at the scale of

the coarse set. Also, in the case where sparse fine scale data is supplemented

with ful1-coverage coarse data, the optimal estimate at locations where there is

fine data is at that fine scale whereas the estimate at locations where there is

coarse data is at that coarse scale. FinaRy, we give an example in which we use

our multiscale framework in the context of estimating optical flow. We show

how our multiscale models can be used as a prior model for the optical flow,

allowing us the use of our fast multiscale algorithms for computing the flow.

5.2 Directions for Future Research

e While the theory we've developed in this thesis is for general vector processes,

our numerical examples focused on scalar models, leaving the fun modeling

power of our processes largely unexplored. An example of exploiting the mod-

eling power of our vector processes is to create higher-order models in scale in

order to capture better interscale correlations. Since the wavelet coefficients of a

wide range of processes exhibit these correlations, using our vector processes to

capture these correlations is analogous to using state augmentation to account

for colored noise in the case of temporal processes. An example of higher-order

models in the case of our tree models, is the case where we have a finite set of

lag variables where the lag variables are indexed for each node t on a tree by

the indices -y't for a finite number of Vs.

* System identification for our multiscale processes needs to be thoroughly inves-

tigated. For the case of our tree processes we have developed a filtering theory
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which should prove useful for developing ideas related to likelihood functions.

The possibilities for using likelihood functions to do detection of signal features

in scale deserve investigation.

9 The system theory we developed in Chapter 3, i.e. notions of reachability,

observability, and Instability, was for tree processes in which the model param-

eters were a function of scale only. It seems the notions we developed in this

context should be extendible to the general case in which the parameters can

vary arbitrarily. Whether this involves simple redefinition of the notions or a

more fundamental rethinking of these notions remains an open question.

9 The idea of a multigrid-like iterative algorithm for smoothing our multiscale

processes was explored briefly in the end of Chapter 3. While the algorithm for

the case of our tree models was developed fully, the details of the algorithm for

the case of general lattice models still needs further investigation. Computing

the weights involved in the local computations is much more difficult in this

case as the correlation structure for general lattice models is not as apparent

as in the case of tree models. An iterative algorithm for these lattice models

would be useful since it would apply to more general classes of models than the

ones considered in Chapter 2 for which the transform approach was developed.

9 In general serious effort in studying applications in which a multiscale approach

might be appropriate would be invaluable. The interaction between applying

our approach to applications and using our applications as a guide to adapting

our theory would undoubtedly lead to a deeper understanding of multiscale

modeling and signal processing. The optical flow formulation at the end of

Chapter 4 is an example of such an application. As discussed in our section

on optical flow the issue of noise in the images leads to a nonlinear estimation

problem which deserves further investigation. Also, the formulation in this

section was developed for the case of 11); applying our framework in 2D needs

to be explored.
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