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- ABSTRACT

The control of dynamic systems subject to abrupt, state-dependent
structural changes such as component failures, at random times, is
considered. This investigation is motivated by the need for design
techniques that yield fault-tolerant systems, in the sense that
they can perform satisfactorily despite untoward events. This work
concentrates on the tradeoffs between good performance and reliability
Yequirements.

The approach used is to formulate discrete-time nonlinear
stochastic control problems that capture some of the issues of
fault tolerant control, and to analyze the behavior of the
controllers obtained by solving these problems.

These problems are approached using dynamic programming methods.
A preliminary result is the derivation for discrete-time noiseless
problems with Markovian structure, results analogous to existing
results in continuous time. In addition necessary and sufficient
conditions for the existence of a steady-state controller yielding
finite expected cost are obtained.

This preliminary result is then used to attack the harder
problems of state-dependent structure changes. The basic method
used is to convert the state-dependent problems into the comparison
of a set of constrained (in the state) problems that have state-indep-
endent transition probabilities. First systems where the structure
transition probabilities depend upon the state in ‘a piecewise--
constant way are considered. For scalar problems with no input
noise an algorithm is obtained that determines the optimal controller
off line, in advance of system operation. For problems with additional
structure this algorithm collapses into the simultaneous solution of
a set of coupled difference equations that are similar to Riccati
equations.

Two examples of such problems are con31déied in detail; one
involves performance and reliability goals that are conflicting and
in the other case they are commensurate. Both cases are analyzed to
see how the optimal controller handles the tradeoff between these
goals. One controller action is to drive the state to the low cost
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goals. Then additive input noise, more general costs structures and
more general functional dependence of transition probabilities on

the state are considered. The additve noise changes the problem in

a fundamental way since the controller cannot position the state with
certainty. However an algorithm that yileds the optimal controller

can be obtained and qualitative properties of the controller can
be analyzed.

Finally several extensions of these problems are considered.

Thesis Supervisor: Alan S. Willsky

Title: Associate Professor of Electrical Engineering and
Computer Science.
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PART I

INTRODUCTION AND BACKGROUND



1. INTRODUCTION

This thesis considers the control of dynamic systems that
experience abrupt, structural changes at random times. These changes
are caused by phenomena such as component failures and repairs, and
large environmental disturbances.
This document is divided into five parts. Part I contains
introductory, motivational and background material. It also presents
the perspective and conceptual basis of the work. A different class of
problems is considered in each of the next four parts. Part V closes
the thesis with a summary of results, concluding comments and suggestions

for further research.

1.1 Fault-Tolerant Systems

This thesis is motivated by the need for design techniques that

yield automatic systems that are fault-tolerant; that is, systems

which are are able to survive and adequately function despite the oc-
. . 1
currence of component failures and other disruptions.™’

Some examples of situations where there is need for fault-tolerant

system designs are when:

1
The term fault-tolerance comes from digital computer design, where

fault refers to any disruption in the specified behavior of a system.
For example, see [ 5 ].

2‘In (English translations of) Russian reliability theory literature,
a fault-tolerant system is any system having components that can be
repaired. For example, see [33 ].




. failures can jeopardize human lives, such as in

- life support systems,

- medical prosthetics,

- air traffic control systems,

- automated military systems,

- systems for handling hazardous material,

- electric power plants (especially nuclear),

- aircraft, manned spacecraft, trains, automobiles,
elevators and other mechanized conveyances.

. failures have high monetary costs, such as in

- electric power distribution,
- automated manufacturing processes,

- communications systems.

. repair or maintenance by humans is inadvisable or
impossible, such as in

~ deep-space vehicles,
- deep-water systems,

- systems operating in extreme temperature,
radioactive, biohazardous or toxic environments.
We can identify three basic issues that must be taken into account

in the design of fault-tolerant systems. They are

. the type and level of redundancy used,
. the effects of failure-related uncertainties,

and

. conflicting system performance and reliability goals.

These design issues will be briefly discussed here.



REDUNDANCY

Engineering systems have traditionally been made reliable
through the use of redundant components, so that individual failures
need not be catastrophic to the entire system (and by the use of
highly reliable components and aséembly procedures so that failures
are unlikely). Redundant components are used to detect failures and
to compensate for them. There are essentially two kinds of

redundancy that can be used:

., direct redundancy - Multiple copies of the same component

are used, in 'voting' schemes for failure detection

and as 'backups' for failure compensation,

. functional redundancy - The system is designed so that

components and subsystems have overlapping

capabilities. -

PATLURE- RELATED UNCERTAINTIES

Failure event uncertainties that must be addressed in fault-

tolerant system designs include:

. plant uncertainties - Failure events change the system

state or dynamics in ways and at times that are

not known in advance.

. detection uncertainties - The ability to detect, isolate

and estimate failures is usually imperfect. The
possibilities of incorrect failure detections and
decisions must be taken into account in the system

design.



CONFLICTING GOALS

The goals of reliability and fault-tolerance may conflict with
other system performance objectives. Here are three classes of
costs associated with the attaimment of fault-tolerance:

. PFixed costs - Fault-tolerant designs usually require

additional or different hardware that is not needed
during fault-free operation. This extra equipment

may involve not only purchase costs but also degraded

system performance (e.g., extra weight in aircraft).

. Hedging costs - The operation of a system so that it

is fault-tolerant may conflict with the optimal way
to operate the system in fault-free circumstances.
A cost, in terms of performance loss before failure,
is paid to improve the expected performance when

failures occur or to reduce the probability of failure.

. Maintenance costs - Preventive maintenance (and ins-

pection) results in direct costs (for parts, labor,
etc.) as well as performance losses while maintenance

activities are undertaken.

FOCUS OF THIS WORK

This thesis concentrates on the second fault-tolerance issue
listed above - the tradeoffs and conflicts between reliability goals

and system performance. Specifically, we consider the attainment of

fault-tolerance through control strategies, rather than by direct

redundancy.



We seek control problem formulations that yield controller
designs which endow systems with fault-tolerance. 2An optimal fault-
tolerant controller should utilize all system capabilities and take
into account all known system limitations and failure likelihoods, so
as to achieve the best tradeoff between reliability and system
performance. We believe this to be an important step in the ongoing

development of theories and methods for fault-tolerant system design.

1.2 Fault-Tolerant Control

Fault-tolerant control is the use of control strategies to make

failure-prone systems responsive to untoward events. This requires
the 'building in' of fault-tolerance, by modelling how failures can
happen and what can be done to avoid or overcome them. In general,
fault-tolerant controllers will trade some degradation of performance
quality before failures occur for system 'survival' afterwards.

This may involve component repair, maintenance, or reconfiguration

of the control system.

From an examination of common engineering practices and
consideration of fault-tolerance needs of engineering systems, some
attributes that fault-tolerant controllers should possess can be
identified. We call them:

. Passive Hedging

. Active Hedging (Risk Reduction)
Adaptability



.  TRobustness

. TImplementability.
These properties of fault-tolerant controllers are discussed in
this section.

Passive and active hedging require the balancing of conflicts

between system performance and reliability goals. Adaptability
involves the use of redundancy, probabilistic descriptionsof failure
occurrences, and the ability to detect them. Robustness and

implementability are necessary for successful operation of any fault-

tolerant controller.

PASSIVE HEDGING

This is simply taking into account the possibility of failures
(and associated costs) in the choice of control. For example, an
automobile driver speeding around a curve might avoid the outer
edge of the road, so that if a tire blowout occurs the system can still
recover. Passive hedging does not involve using controls to affect

the probability of future failure event occurrences.

- ACTTVE HEDGING (RISK REDUCTION)

Probabilistic knowledge of failures may be used to alter their
likelihoods., Preventive maintenance (replacement before failure)
is an example of this. If failure probabilities depend upon control

inputs {directly, or indirectly as a function of the system state)



then controls can be used to actively hedge as well as to minimize

operating costs. For example, voltages and currents in an elec-
trical system might be kept below levels that cause components to

burn out.

ADAPTABILITY

In general, some kind of on-line, real-time system testing
and failure detection process must take place. When a failure is
known to have occurred, 'contingency' controls are used. The

primary system goal may then become, for example

. degraded recovery - 'graceful degradation',

'fail-soft' operation

. safe shutdown - ('fail-safe' operation)

so as to avoid further system damage by continued

operation.

The system must detect its failures and reorganize itself to com-

pensate for them.

ROBUSTNESS AND IMPLEMENTABILITY

Fault-tolerant controller designs should be robust in the sense
‘that they are insensitive to small disturbances and modelling
inaccuracies. Fault-tolerant control strategies must be implementable
in real-time if they are to be useful. This restricts the complexity

of controller designs.



The controller designs that are obtained using any proposed
fault-tolerant control theory must be evaluated in terms of these
five attributes, to determine if the theory is meaningful. The task
at hand is to develop objective problem formulations that capture
these subjective fault-tolerance attributes. In particular, since we
are concerned here with the balancing of conflicting system performance
and reliability goals, we will focus on the hedging properties of

fault-tolerant controllers.

1.3 Modelling Fault-Prone Systems

A key step in the development of any theory for system design
and analysis is the abstraction of physical reality by approximate
but representative mathematical models. To study fault-tolerant
controllers we must first develop models that aaequately capture the
salient characteristics of fault-prone systems. We need models that
are sufficiently realistic for the design of good fault-tolerant
controllers and are mathematically amenable to detailed analysis. We
also require tractable problems in order to gain insight into fault-
tolerant structures.

A characterizing attribute of fault-prone systems is their

operation in different forms or modes. Fault-prone systems experience

abrupt changes in their structure and state from phenomena such as
component failures and repairs, changing subsystem interconnections,

changes in operating points and abrupt environmental disturbances.



Each system form corresponds to some combination of these
events.
The state of a fault-prone system can thus be decomposed into

two parts: a form process, which indicates the operational status

of the system, and the rest of the state which we call the x process.
A logical structure for modelling this kind of arrangement depicted

in figure 1.1. It is a feedback connection of two subsystems: a form

subsystem that describes abrupt structural changes in the system and
an x-subsystem that represents the dynamic evolution of the system

between form transitions.

Disturbances Outputs
Controls X

SUBSYSTEM | x

FORM .
Disturbances
SUBSYSTEM and Controls

Figure 1.1: General Hybrid System Structure.

lln reliability theory the structural conditions of a system are usually
called modes (eg., normal mode, failure modes, etc.). In control
theory the term mode has a different meaning, and a third definition
pertains to statistical analysis. Since the problems we are investi-
gating draw from reliability theory, control theory and stochastic
processes, we have elected to avoid the term mode. Instead, form is
used to denote the operational status or structure of the system.

10



The form is a stochastic process taking values in a finite set.
Its transition probabilities are dependent, in general, on the
X-subsystem state and control inputs. The x-subsystem is modelled by
deterministic or stochastic finite-dimensional vector differential
or difference equations. The parameters of these equations depend on
the form, which feeds into the x-subsystem.

The use of this kind of continuous~plus-discrete-state structure
to model fault-prone systems is not new. For example, some applications

are surveyed in [67]. These systems have been called stochastic hybrid

models by Willsky, et al [75] in the analysis of electric power
systems.

The use of stochastic models when representing fault-prone
systems is essential. As in other control analysis applications, the
system model used must successfully deal with sources of uncertainty

such as

sensor errors, measurement noise

»

. parameter errors and other modelling errors
in the mathematical representation of the
physical system

. external random disturbances (driving noises)
that effect the time evolution of the
system,

Por fault-prone systems an additional source of uncertainty comes from
random disturbances that alter the system structure. Deterministic
system models just cannot adequately represent these fundamental

system characteristics.

11



In this thesis we restrict our attention to the fault-tolerant

control of discrete-time systems, There are several reasons for

doing this. The increasingly digital nature of control technology and
the inexpensive availability of microprocessors for componenté in
'smart' controllers make discrete-time models appropriate for con-
troller design and analysis. Since implementability is a required at-
tribute of fault-tolerant controllers, it seems preferable to avoid
problems arising from the discrete approximation of continuous-time
designs, by obtaining discrete-time designs directly.

In addition the discrete-time formulations of these problems are
more easily analyzed than continuous-time ones. When dynamic program-
ming is used to solve discrete-time trajectory control problems there
is no partial differential equation that must be solved. Thus we can
sidestep the inability to solve the Bellman equation for control
problems with x-dependent form transition probabilities% This allows
us to gain considerable conceptual insight into the structure of
fault-tolerant control sysﬁems.

This research considers discrete-time systems that are special

cases of the following model;:

e = g 1.:
X 1 = Al x, + Blru + (r, v (1.1)
Pr{rk+l=3lrk=1, S A qk=q} = pli,jix,u,q) (1.2)

= s 1.3
X1 Rs[rk, e X l] (1.3)

1See, for example, [701].

12



Yy

= C(Iklxk + D(rk)uk + A(rk)wk

The 'order of operations' is as follows:

(1)

(2)

(3)

(4)

(5)

(6)

at time k the system is in state (xk,rk)

controls uk and qk are chosen

during time interval (k,k+1), x;+1 is

generated via (1.1)

then rk+1 is generated according to (1.2),

based on xk+1, uk, 9 and T

when the form changes from Ty to LY
xk+1 may be "reset" to Xy This resetting
is generally nonlinear,

The output of the x-subsystem, yk, is produced

by (1.4).

This convention allows for a failure or other form change to be

modelled as occurring at the final time K=N (when N<®).

In the above

. time index k takes integer values

ké{ko,k +1,...,N-1,N}

0
n
. xk € R X—-process
m
. uk € R x-controls
m . .
. Vk € R x-driving noise

13
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. yk € R X-subsystem output
. wk € RP x-observation noise

The form process ’{rk: k=k ,...,N} takes values in a finite set

0

r, €M ={1,2,...,m} M<o

The form controls '{qo,ql,...,qN_l} take values in a finite set

9, ern=1{1,2,...,1} L<o |

A(rk), B(rk), C(rk), D(rk), :(rk) and JKrk) are appropriately-

dimensioned matrices where:

A(r) = open-loop x dynamics given the current
form r

B(r) = =x-process input gain in form r

5(r) = x-process driving noise gain in form r

C(r) = =x-process sensor gain in form r

D(r) = input-output direct link in form r

A(Y) = =x-process observation noise gain in form r.

Thus the model (1.1)-(1.4) is sufficiently general to allow represen-
tation of form-dependence in dynamics, actuators, sensors and noise.

The form transition probabilities p(i,j;x,u,q) in (1.2) must
obey

pli,jix,u,q)> 0 for all i,j € M

and all x,u,q

14



for each 1i € M

M
z P(irj;xrulq)=l

5=1 and all x,u,q .

The noise processes'{vk} and {wk} are assumed to be 'white',

in that

Il
o

E{ v -E(v )1V ~Ev )] } s#k

il
o

&{ Iw, ~E(w, ) 1" v _~E(w )] } s#k

with unity variance matrices and

. all elements of vk and ws are independent

(for all times k,s)
. all elements of v. and x , and of w and x ,
k s k s

are independent for all k>s

. all elements of vk and wk are independent of

rs for all k>s.

A crucial consideration in the modelling of fault-prone systems
is the realistic representation of form transitions. There are two

basic kinds of transitions:

. independent of x

. X-dependent

The x-independent form transitions occur as though no =x-to-r

feedback link exists in figure 1.1. They may be uncontrolled, or

15



controlled by form controls'{qo,...,qN_l} that are not chosen in

response to'{xo,...,xN_l}. Example of x-independent form shifts
are random 'no wearout' component failures and lightning-induced
failures in electrical power distribution systems.

The x-dependent form transitions are always controllable in some

sense, either by form controls %G {(which can be based on xk) or

through active hedging (by'{uk} and the resulting x-process).

Examples of x-dependent form shifts in electrical power distribution
systems include the restructuring of a system when generator-protecting
relays and circuit-breakers trip, human operator control actions based
on observation of x-dynamics (such as switching on auxilary generators)
and transmission-line failures due to current overloads. Thus form

shifts can be totally unpredictable (as in random 'no wearout' component

failures), totally predictable (as in scheduled, deterministic actions)

or partially predictable (as in the switching of relays precisely (or

approximately) when a random quantity reaches a given threshold).
Suppose that the "reset" operation in (1.3) is linear. Then the
x~-subsystem dynamics are linear in x and control u if the form process
'{rk} does not depend on xX. For such systems with x-dependent forms,
the only source of x-dynamics nonlinearity is through the form transition
probabilities.
Tn this thesis we will consider x-dependent form transition

probabilities that are piecewise-constant in x (or which can be

16



approximated as such). This yields a kind of dynamics model that

is amenable to detailed analysis, since it consists of linear 'pieces'.

1.4 Formulating Fault-Tolerant Optimal Control Problems

A general fault-tolerant control system structure is shown in
figure 1.2. Both the x-controls {uo,...,uN_l} and the form controls

{g.,...1q } can depend upon possibly noisy observations of current

0 N-1 ‘
(or past) values of the hybrid system state (x,r). If these quan-
tities are not perfectly observable then the design of x and r
estimators is an integral part of the overall fault-tolerant optimal
control problem.

When form transitions are x-dependent, imperfect knowiedge of
X causes uncertainty about future form shifts even if r is perfectly
observed. When r is not perfectly observed, failure detection and
isolation (hence form estimation) usually involves some combination
of hypothesis testing ideas and dynamic stochastic estimators
(such as the Kalman filter). A thorough survey of failure detection
and isolation methods appears in the survey paper [ 74].

When the form is not perfectly observed, the control serves a
'dual' purpose. It can be used both to control the state and to probe
for information about it. Tradeoffs between control costs, the costs
resulting from incorrect form detection and the expected benefits of

probing must be considered in these cases. A general discussion of

17
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Figure 1.2: Fault-Tolerant Control System Structure
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this 'dual control' phenomenon first appeared in 1960 in the work
of Fel'dbaum [24 ].

Two types of form control actions are possible:

. indirect form control - This is the control of the

probabilities of form transitions.

. direct form control - This involves control actions

that immediately, deterministically change r.

An example of indirect form control is preventive maintenance, which

improves failures probabilities (at some incurred cost). Switching to
backup systems in anticipation of (or response to) failures is an

example of direct form control.

Embedded in any fault-tolerant control problem is an implicit
criterion of system reliability. The problem formulation incorporates
models of failure occurrences, and reflects the relative importance
of wvarious form-dependent costs.

In this thesis we propose extensions of the well-known linear

guadratic Gaussian (LOG) control methodology to systems having

randomly Jjumping structures and parameters that are described by

reliability-theoretic models. We call this the jump linear gquadratic

(JLQ) control problem.

The cost function to be minimized is quadratic in the x-control,

uk. If the system is in state (xi,ri) at time i, we want to minimize
N-1 x
= ' , i
J; (xgry) S E kZi O RE g+ Q0T T g | s
' i

+ QNIxN, rN]
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where the expectation is with regards to {v },'{wk} and'{rk}.

k
mxm |, . - .
R: Mx L —»R is a bounded positive-definite symmetric matrix-valued
function
R(r,q) = R'(zx,q)> O all r,q (1.6)

n . .
and Q: R xMx MxL—-> R is a bounded nonnegative scalar-valued

function

Q(x,rl,rz,q)z_o. all x,r e (1.7)

1'%2
The optimal expected cost-to-go from state (xk,rk) at time k is

V. (x, ,r,) = min J {x ,r ) . (1.8)
kokok {u, ,q; :k<i<N-1} ok k

Thus the optimal controls are found by minimizing the expected value of

a cost functional which may include:

. operating costs that penalize control energy expenditure

and system performance differently in each form.

. Jjump costs that are charged if and when the form changes.
These might represent start-up or shut-down costs of
equipment, or undesirable transient phenomena; load shed-

ding costs in electric power systems are examples.

. terminal costs dependent upon the final state (including

form) of the system.
The control costs u];R(rk,qk)uk (and usually the x-cost

Q[xk+l,rk, rk+1’qk]) are chosen to be quadratic because of the

20



wide applicability and good robustness properties of linear quadratic
control problem formulations (see, for example, [3]). The
qk-dependence of these costs models the penalties incurred in applying
form controls. The Q cost depends, in general, on the current and

prior form (rk and rk) so that jump costs can be included. The

+1

control sequences'{uk},'{qk} are constrained to be feedback controls

of the form

: L f :k ‘<S<k . u q :k <s<k- . : <k -
= 4g Y :k s< ‘ H <k=- » H <Ss< ] .

That is, the x-control and form control at time k are determined

from past outputs, past (known) controls, and perfectly observed

form observations.

Control problems for continuous-time stochastic hybrid systems
with x-indpendent r have been extensively studied in the literature.
The stochastic hybrid models used are usually special cases of those
analyzed by Gihman and Skorohod [26]. TUnder the assumption of perfect
observations, continuous—time optimal control problems for a large
class of system dynamics, form transition models and cost functionals
can be reduced to the search for solutions of nonlinear partial
differential equations using 'verification' theorems of dynamic

programming.

21



Krasovskii and Lidskii [ 34] obtained most of the results
that are currently available in the literature for stochastic hybrid
system control (with x-independent form processes and perfect state
observations). The problem was studied later by Wonham [76 ]. He
obtained conditions for the existence and uniqueness of solutions in
the JLQ case, and also derived a separation theorem under Gaussian
noise assumptions for JLQ control problems with Markovian forms and
noisy x (but perfect r) observations. Sworder [ 63 ] obtains similar
results using a stochastic maximum principle.

Discrete-time versions of the JLQ x-control problems for
stochastic hybrid systems have not been thoroughly investigated in
the literature. A special case1 of the x-independent JLQ discrete-
time problem is considered in Birdwell [12] and [13 1-[ 141.

A great deal of work has recently been done concerning the
modelling and analysis of jump processes like those describing the
form subsystems here. References of particular note include [16-18,20,
25,42,62,71. An excellent discussion of martingale methods for optimal
control problems is contained in [21 ].

This thesis focuses on systems where the form observations are
not noisy. This has not been done because the noisy observation case is
unimportant. The reason for this problem restriction is that, even when

the form is perfectly observed, the solution of control problems of this

lOnly the actuator gain is form dependent.
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kind for the x- and u-dependent form transition probability cases
is very difficult, previously unsolved, important, and useful

in terms of the insight which it provides us regarding the trade-
offs between reliability and system performance goals in fault-

tolerant controller designs.

1.5 Problems Addressed and Results Obtained

Using dynamic programming, several classes of the discrete-
time jump linear quadratic (JLQ) control problem formulation of the
last section have been solved. 1In this section these problems

and results are surveyed.

PART II: JLQ Problems with x-independent forms

In part II of this theses the 'easiest' class of JLQ problems
is examined. These involve systems with =x-independent, Markovian
form processes.

The noiseless case is addressed in chapter 3. The control
laws that are obtained are linear in x, with a different law for each
form. The expected costs-to-go are quadratic in x (for each form).
All of the control gains and costs are obtained by solving off-line
a set of M precomputable Riccati-like difference equations (one for

each form).
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The continuous-time version of this problem was first solved by
Krasovskii and Lidskii [ 34 ], and later by Wonham [ 76 ] and Sworder
[67]. A special case of the discrete-time result presented in
chapter 3 appears in Birdwell [ 12].

For infinite time-horizon problems, steady-state results similar
to those obtained in the standard LQG problem are accessible. An
interesting (but, in retrospect, obvious) fact is that the controlled,
closed-loop dynamics in every form need not be stabilizing so long
as the probability of entering and remaining in these stable forms
is not "too large." A similar but less inclusive sufficient con-
dition for the continuous-time version of the problem was developed
by Wonham [ 76 ].

These controllers exhibit the desired adaptability property in

that different laws are used in each form. That is, the system
reorganizes itself when a failure occurs so as to best use available
direct and functional redundancy. The controllers derive robustness

and implementability from the linear quadratic nature of the problem.

Passive hedging is used to minimize the expected costs. That is,

potential failures and other form changes are taken into account (via
the cost functional) in the choice of the optimal control. But no

active hedging (controlled modification of failure probabilities) is

possible because of the independent, uncontrollable nature of the

failures.
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In chapter 4 several extensions of the x-independent JLQ
problem are considered. These include the addition of jump costs,
linear resets of x, and additive white input and x-observation noises.

The presence of additive (usually Gaussian) white observation
and input noise does not complicate these problems. Since the form
is perfectly observed (with delay), a separation theorem like that of
the standard LQG problem follows. In each form, a Kalman filter
estimates x, and this estimate is then used by the control law for

that form.

PART III: Scalar JLQ Problers with x-dependent forms
In part III we consider JLQ control problems that involve state-—

dependent structural changes. These problems possess

. perfect observations of the state (xk,rk) at time k

. quadratic costs in scalar X and u for each form,

kl
. no driving or observation noises,

. X dynamics that would be linear, if not for

randomly jumping parameters,

.  jump probabilities that depend upon % in a
piecewise-constant way (with finitely many

pieces) or are approximated as such.

For finite time-horizon problems in the xX-dependent case we

have obtained a recursive algorithm that determines the optimal
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expected costs-to-go and control laws off-line, in advance of system

operation.

The optimal control laws are piecewise-linear in x (with

1 0 . . .
x ,x terms) and the optimal expected costs-to-go are piecewise-

quadratic in x (with xz,xl,xo terms). The gains and costs are
obtained from a set of precomputable Riccati-like equations (not the
same as in the x-independent failure case). The number of "pieces"
grows only additively (going backwards in time from a finite terminal
time). The additive increase depends upon the number of different
forms that the system can change to (from its current one), and the
number of pieces in the relevant piecewise-constant-in-x transition
probabilities. Thus there is a tradeoff between the accuracy of the
modelling of failure probability state-dependence versus the comp-
utational burden of control law determination (and the complexity

of the . controller.

The optimal controller attempts to minimize the cost incurred
both by the usual LQ regulator action, and by driving the system
state to regions where the likelihood of undesirable form shifts is
reduced. The different "pieces" of the optimal expected cost-to-go
and control law correspond to using the control alter form transition

probabilities at various future times. That is, to actively hedge.

In general, for infinite time horizon problems the number of

' pieces becomes infinite. Fortunately, for a large class of problems
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this is not an obstacle to implementation because most of the control

law and cost pieces converge. That is, although the true optimal

control law involves a (countably) infinite number of pieces, each
valid over a different range of the x variable, most of these pieces
are "almost the same."

Thus there is a tradeoff between closeness to optimality and
controller complexity. Nearly optimal, steady-state controllers
can be obtained to within any specified deviation from optimal, but
with a corresponding level of complexity (number of separate-interval

control laws).

PART IV: Extensions to the Scalar x-dependent JLQ Problem

In this part of the thesis we extend the results of chapters
5-7 to more general JLQ problems. In chapter 8 we consider a
modification of the solution algorithm of Part III that lets us solve

approximately problems involving:

x operating costs and terminal costs that are piecewise-quadratic in x

. 2 1 o
(with x°, x~ and x terms)
cost pieces that are concave-up as well as concave-down.

This jump linear piecewise quadratic (JLPQ) control problem is solved using

a recursive algorithm that determines the optimal control law and expected
costs-to-go off-line. As in the JLQ case, the optimal JLPQ control laws

are piecewise-linear in x in each form. The optimal expected costs-to-

kl

go are piecewise-quadratic. Unlike the JLQ case, the number of pieces of
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the ootimal JLPQ controller may grow at a faster-than—iinear‘réfé.asvthén4
vﬁﬁéﬁerbof/;£ages from the finite terminal time increases. The éiecewise
structure of the optimal controller is caused by both the piecewise-con-
stant nature of the form transition probabilities (as in chapters 5-7) and
by the piecewise-quadratic nature of the x-operating and terminal costs.
In chapter 9 we extend the solution methodologv of chapters 5-8 to
address a larger class of scalar jump linear control problems, possessing
additive input noise and a more general class of x-dependent form transi-
tion probabilities, x-operating costs and x-terminal costs. Specifically
we consider scalar jump linear control problems with guadratic control
penalties and
. input noise densities that are twice continuously differentiable
except at a finite number of points,
. x-operating costs Q(x,r), x-terminal costs QT(x,r) and form tran-
sition probabilities p(i,j=x) consist of a finite number of con-
vex or concave (in xj pieces.

We call this the jump linear piecewise convex (JLPC) control problem.

Our study of this class of problems is motivated by a desire to make the
solution approach of chapters 5-8 applicable to more realistic control
problems. The major extension of chapter 9 is the inclusion of additive
input noise in the x-process dynamics. Additive input noise profoundly
changes the nature of the optimal controller. The piecewise-~quadratic
structure of the optimal cost and piecewise-linear structure of the op-
timal control laws is lost due to the "blurring" effect of the noise. 1In
chapter 2 we show how JLPC control problems with additive input noise can
be reformulated (at each time stage) as different but equivalent JLPC pro-

blems that do not possess input noise. These reformulated problems can be
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solved using the approach of chapters 5-8. The optimal controller for
noisy JLPC problems can be obtained following the steps of an algorithm
(presented in flowchart form) which generates, off-line, the optimal con-
trol laws and expected costs at each time k and from each form j, Since
the optimai control laws are not piecewise-linear in xk, we don't have the
nice inductive controller structure of the JLQ and JLPQ problems. We
therefore propose a suboptimal approximation of the JLPC controller that
is easier to determine and implement than the optimal controllerf The
suboptimal control laws are piecewise-linear in X, at all times k (and
from each form j).

In chapter 10 we examine further extensions of the solution methodol-
ogy of Part III. We first consider jump linear control problems where the
X process is not scalar. This class of problems is far more complicated
than the scalar case. However we can obtain approximate (suboptimal) con-
trollers for these problems using an algorithm based upon the suboptimal
controller approximation of the JLPC problem (of chapter 9).

We next consider jump linear control problems involving u-dependent
form transition probabilities. This class of problems is of practical im-
portance since it captures the issue of actuator-dependent failures and it
allows us to examine conflicts between system performance goals and relia-
bility requirements. The control problems (for scalar x and u) can
be solved using a modified version of the solution algorithm of Part
ITI. At each time stage the optimal expected cost is piecewise-quad-
ratic in‘x.

In chapter 10 we also consider JLQ problems where‘the form process
can be controlled on the basis of observed X, and r. values. This allows

us to study controllers that use strategies such as preventive maintenance,
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switching to backup systems in anticipation of failures and the like.

Both direct form control (deterministically switching between forms) and

indirect form control (altering form transition probabilities) are consi-

dered. For scalar-x versions of these problems with x-independent form
transition probabilities (if no form controls are applied), after one time
stage (backwards from a finite terminal time) the optimal control problem
resembles the x-dependent JLPQ problems of chapter 8. The optimal expected
costs-to-go are piecewise-—quadratic in x and are indexed by the choice of

form control q, as well as the current form r at each time k. The opti-

kl
mal controller must determine the best form control option on-line, given
observations of (xk,rk). These choices are based upon parameters that are

computed (off-line) by Riccati-like difference equations, in a modification

of the algorithms of chapters 7-9.

PART V: Conclusions and Suggestions for Future Research

In chapter 11 we summarize the results of this thesis and we
identify a number of specific and more general directions for

future research.

In conclusion, this thesis considers the control of dynamic
systems subject to abrupt structural changes at random times. It
is motivated by the need for design techniques that yield fault-
tolerant systems. This thesis concentrates on the tradeoffs and
conflicts between system reliability and performance goals.

Specifically, we consider the attainment of fault-tolerance through

control strategies rather than by direct redundancy. This is, of
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course, only part of the overall fault-tolerant design problem.
However the problem formulations here capture many important issues.
We believe that the problems that are addressed and the results
obtained in this thesis provide an important step in the development

of a general theory of fault-tolerant control.
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2. BACKGROUND AND RELATED LITERATURE

The design of fault tolerant, failure-resistant dynamically-
reliable control systems is a problem that falls within the scope
of both automatic control theory and reliability theory. The purxpose
of this chapter is to provide background for this investigation
from both of these fields, and to survey results relating to the
design of fault-tolerant control systems.

In section 2.1 we consider the relationship between the fault-
tolerant control problem and reliability theory. In section 2.2 we
will describe approaches to the design of fault-tolerant control
systems that are distinctly different from the methods we are con-
sidering. More closely related work on the control of jumping para-

meter systems is discussed in section 2.3.

2.1 Relations to Reliability Theory

Reliability engineering is primarily concerned with the design
and analysis of systemsthat can perform their missions with high
probability despite component failures.

Reliability developed as an engineering discipline in response
to the military requirements of World War II. The first formal
reliability study reportedly (see [23 1) sought to explain why
German VI and V2 missles performed so poorly despite their construction

from highly reliable components.
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Following the wax, complex system design problems in the
electronic, nuclear, aircraft and space industries gave impetus
to the field. Most of this early work involved the modelling of
failure phenomena and the collection of component failure data.

Early theoretical considerations of reliability in the context
of automata theory (Von Neumann [ 73]) and reliable circuit synthesis
(Moore and Shannbn [431) concerned achieving overall reliability
through the "proper" use of unreliable components.

The first book on reliability (by Bazovsky) did not appear until
1961 [ 8 1. It was followed by a number of texts in the early 1960's,
such as [ 61, [19], [28]3, [46], [52], [54]1, [72] and [81].
Three more recent texts are [29], [43] and [23]. The works of
Gnedenko, et.al [27 ] and Barlow and Proschan [ 7 ] provide more
mathematically rigorous treatments of reliability theory.

Current activity in reliability theory consists, in large part,
in the development of mathematical theories and associated computerized
algorithms for the analysis of reliability characteristics for systems
composed of highly reliable components. In most contemporary engineering
applications, many (or all) of a system's component parts must be
extremely reliable if strict system reliability standards are to
be met. One motivation for the development of a dynamic control ap-
proach to reliability engineering is the existence of problems (for

example, electric power systems) in which the system's dynamics and its
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reliability are intrinsically intertwined. Also the use of controls
to achieve reliability may, in some applications, facilitate the use
of fewer and less reliable (that is, less expensive) components in the
design of reiiable systems.

There are two basic approaches that are currently used for the
reliability analysis of complex systems (or proposed designs). One
approach might be called the 'static' consideration of system
reliability. This kind of analysis seeks to determine the probability
that a given system will not fail (or will achieve various degraded
modes of operation) after some fixed time interval, based on a priori
information about the components, their connections, etc. Some
examples of this static approach, which involves fault-trees, cut sets,
graph theory and the like are in [39],[44].

A second approach to system reliability analysis focuses on the
dynamic behavior of system failure probabilities. It involves the use
of queueing theory models of complex systems. Queueing systems might
be thought of as combinations of sequences of elementary operations
such as single component failures, repairs or replacements, maintenance,
fault searches and detections, successful component operation prior to
failure, etc. These elementary operations overlap in time, in general.
They are usually considered to be independent of each other; depending

only on the operational status of the overall system.
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The outlook of this thesis is in the spirit of this second ap-
proach to reliability analysis. However, we are particularly concerned
with the dynamic performance of systems and the evolution of
(continuous-state space) physical quantities as well as the failure
status of the components that manipulate these quantities. We want
to formulate control problems that achieve good system performance
and high reliability. It is important to realize that the goals of
reliability and performance may be conflicting. For example, the use
of a large control to quickly drive the system into a safe region of
the state space, so as to reduce the probability of a failure, may
entail a large control cost. On the other hand the use of control to
maximize performance may result in a loss of system reliability.
Reliability considerations often limit the performance that can be
obtained from a system; electric power systems are an example of this.

The motivation for our work is a desire to obtain a systematic,
objective means for designing systems that take into account the need
for both high reliability and performance and also account for possible
intrinsic conflicts between these goals. Consequently suych systems
should use available system redundancy in a quantifiably efficient

manner.

2.2 Other Approaches to Fault-Tolerant Control

A number of approaches to the design of fault-tolerant control

systems that are distinctly different from the methods used here have

been considered previously. We will survey them here. In the next
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section we will then consider previous work that is more closely
related to ours, and we will indicate how previous efforts differ
from the work of this thesis.

A mathematical framework for building reliable control systems
through the use of redundant, less reliable controllers is presented
in the work of Siljak [61 ]. This approach is a direct extension,
in spirit, of the work of van Neumann [ 73 ] for automata, Moore
and Shannon [43] in synthesizing reliable circuits, and Barlow and
Proschan [ 7 ] in constructing reliable system from unreliable com-

ments. In [61 ], control reliability is defined to be the probability

that a given control structure will insure stability of the controlled
system under a specified class of failures which occur with known
probabilities. Experimental observations indicate high reliability

of decentralized control schemes for large systems with respect to
structural perturbations of interconnections and nonlinearities of
subsystem couplings [59 ],160]1,[ 221 and low reliability of these
same decentralized strategies when the system is subject to structural
perturbations in feedback interconnections and controller failures.
The main reason is that, in reliability-theoretic terms, decentralized
controllers are generally series connections of controllers; hence

any one controller failure can cause total system failure. The
natural solution suggested by reliability theory is to introduce a

kind of parallel contreller action, through multiple control systems
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that have "functional" redundancy (i.e., overlap of capabilities).

This is explored in [61]. This kind of overlapping decentralized
control system decomposition has been used for the modelling and control
of a string of high-speed vehicles[ 4 ] and in freeway traffic flow
regulation [ 32].

Another approach to the analysis of reliable systems appears in
the work of Beard [ 9 ]. He examines 'self-reorganizing' linear
systems which restructure themselves to compensate for actuator and
sensor failures, using the functional redundancy of their components.
Beard's approach is to identify any change (from a set of known pos-
sibilities) and then to attempt to alter the system's feedback control
law so as to achieve closed-loop stability. He obtains bounds on the
number of actuators and sensors needed (that is, the level of component
redundancy) using controllability and observability criteria.

A third method for achieving fault-tolerant designs makes no
explicit reference to reliability theory. This approach is to try to
obtain a kind of "passive" fault-tolerance through the design of non-
adapting, robust controllers that attempt to provide satisfactory control
in all forms. The fundamental work on the robustness of feedback
systems is that of Bode [ 15]. These results were extended by Horowitz
I 301, [ 311, Kriendler [35 ] and others, and by Kwakernank and Sivan
(I 38], p.427) 1in the discrete-time case. Geometric approaches to the

analysis of robustness properties of feedback controllers have been
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“used by Wong [ 771, [781, Zames [ 791, [80] and Safonov and Athans
[551, [56], [57]. In particular, Safonov [56 1 has obtained
conditions characterizing the robustness of controllers when parameter
variations result from a change of operating pointsin a nonlinear
system. The recent thesis of Lehtomaki [ 41 ] provides a common frame-
work for these and new robustness tests.

An alternative approach to the design of fault-tolerant controllers
is the use of actively adapting controllers that respond to changes in
the operating environment. There are a large number of diverse problem
approaches and formulations that go by the name 'adaptive control', some
of which are relevant to fault-tolerant control. We will not review
these here since general excellent surveys exist (see, for example

[31, 11, and [401]).

2.3 Control of Jumping Parameter Systems

In this thesis we consider control problem formulations that
explicitly include the possibility of system failures and structural
changes. We propose extension of the well known linear quadratic (LQ)
control problem to include systems having randomly jumping parameters,
and costs that reflect these changes in system structure. As discussed
in Section 1.4, in this way we hope to capture some of the reliability
and performance tradeoffs in the faunlt tolerant control problem. We

call this the jump linear quadratic (JLQ) control problem.
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Control problems involving systems having jumping parameters are
not new. For example, some applications are surveyed in [67]. These
continuous-plus-discrete-state models have been called stochastic

hybrid models by Willsky, et.al [ 75] in the analysis of electric

power systems. Control problems for continuous-time stochastic hybrid
systems having state and control—independent discrete-state parts
(i.e., =x-independent form processes in the terminology of section 1.3)
have been extensively studied in the literature.

The stochastic hybrid models used are usually special cases of
those analyzed by Gihman and Skorohod [26 ]. Under the assumption of
perfect observations, continyous-time optimal control problems for a
large class of system dynamics, form transition models and cost fuﬁc-
tionals can be reduced to the search for solutions of nonlinear partial
differential eguations using 'wverification' theorems of dynamic pro-
gramming. Krasovskii and Lidskii [34 ] obtained most of these results
that are currently available in the literature for stochastic hybrid
system control (with x-independent form processes and perfect state
observations) . The problem was studied later by Wonham [76 ]. He
obtained conditions for the existence and uniqueness of solutions in
the JLQ case, and also derived a separation theorem under Gaussian noise
assumptions for JLQ control problems with Markovian forms and noisy x
(but perfect r) observations. Sworder [63] obtains similar results

using a stochastic maximum principle and has published a number of
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extensions with his co-workers, including [45], [ 64 1, 1e51], [e6 1],
[681, [69]. Stochastic minimum principle formulations for

continuous time problems involving jump process have also been considered
by Rishel ([ 48 1,[ 49 1,150 1,151 1), Kushner [ 36 1, and others.

Robinson and Sworder [ 53], I70 1 nave derived the appropriate
nonlinear partial differential equation for continuous-time jump para-
meter systems having state and control-dependent rates, A similar result
appears in the work of Kushner] 36 ] and an approximation method for the
solution of such problems has been developed by Kushner and DiMasi [ 37 1].
This is important work but technical issues, such as the lack of existence
of closed form solutions, make it difficuylt to expose how the optimal
controller effects the tradeoff between performance and reliability.

The major focus of this thesis (i.e., part III) is on systems
subject to structural form changes that can be implicitly controlled,
through the dependence of form transition probabilities on the continuous
part of the state. This dependence allows for the modelling of
conflicts between performance and reliability goals. We choose to
consider discrete-time versions of the jump linear quadratic (TLQ)
control problem, rather than extend the continuous-time x—-dependent
results of Sworder [53], [70 ] because the discrete-time formulation is
amenable to detailed analysis. In discrete time we can'get insight into
how the optimal controller balances reliability and performance goals.

Qualitative fault-tolerance concepts such as active hedging can be quanti-

fied in the discrete-time setting.
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The control of jumping parameter systems in discrete time have
not been as thoroughly investigated as in continuous time. The only
results available in the literature are for x-independent JLQ problems
where the actuator is form-dependent. These are considered in the
thesis of Birdwell [12] and in [13], [141].

As a preliminary step in our investigation we also consider
discrete-time JLQ problems with x-independent forms. The derivation
of the basic result is straightforward and analogous to the continuous
time problem for finite time horizons. We obtain some interesting
results regarding infinite time horizon problems, including necessary
and sufficient conditions for the existence of steady-state optimal con-
trollers. These results are stronger than the corresponding continuous-
time sufficient conditions obtained by Wonham [ 76 ], and they provide
significant insight into the different types of behavior that can be

exhibited by JLQ systems.

2.4 sSummary
In this thesis we consider the design of fault-tolerant control
systems through the jump linear quadratic control problem formulation
that was introduced in Chapter 1. These problems involve the control
of continuous-plus-discrete state, stochastic hybrid systems.
Continuous time control problems for such systems haye been

extensively studied in the x-independent form case (with perfect form
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observations). The continuous-time x-dependent case leads to
nonlinear partial differential equations that are analytically
intractible, although approximation techniques have been proposed.
The results available for the continuous-time case don't expose how
the tradeoff between reliability and performance is effected by the
optimal controller.

We consider discrete time problems in order to obtain some
understanding of the control tradeoffs involved between system
performance and reliability goals, when structural changes and failures
depend upon the continuous part of the state. The main focus of this
thesis is on problems involving x-dependent form transitions since
this dependence allows for the modelling of conflicts between perfor-
mance and reliability. To the best of our knowledge, discrete-time

problems with this x-dependence have not been studied previously in

detail.
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PART 1T

JLO PROBLEMS WITH X-INDEPENDENT FORMS
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3. NOISELESS MARKOVIAN-FORM JUMP LINEAR QUADRATIC
OPTIMAL, CONTROL PROBLEMS

3.1 Introduction

In this chapter we consider a special class of the jump linear
quadratic (JLQ) control problem formulation in chapter 1. We examine
the optimal control of jump linear systems having

. X-independent Markovian form processes
. perfect state observations and no noises
. purely quadratic operating and terminal costs

. no 'resets' of x when the form changes.

This class of problems is formulated and solved in sections 3.2-3.3.
The optimal control laws are linear in X (a different law for each form)

and the optimal expected costs-to-go are quadratic in x These control

.
laws and costs can be computed off-line, in advance of system operation,
by solving M coupled Riccati-like matrix difference equations.

The continuous-time version of this problem was first formulated
and solved by Krasovskii and Lidskii [ 34 ], and later by Wonham [70] and
Sworder [63]. A special case of the discrete-time result presented here
appears in Birdwell [ 12-14 ],

The solution of the discrete-time JLQ problem that is developed here
is a necessary logical first step in the study of more general control
problems for systems with abruptly changing structure which will be

used in later chapters. The controller derivation presented here is
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conceptually straightforward. However study of the optimal controller
provides valuable insights into the qualitative behavior and stability
properties of jump linear systems. Several of these properties are
highlighted by example problems in section 3.4.

In section 3.5 the steady-state control problem is considered.
Necessary and sufficient conditions are derived for the existence of
a set of steady-state constant expected cost-to-go functions. It is
shown that the corresponding set of time-invariant steady-state control
laws stabilizes the controlled system, in that E{xi xk} -+ 0 as
(k-ko)+ ®© and that the steady-state control laws minimize the limiting
expected cost-to-go as (N—k0)+ o, with finite optimal expected cost.

A more restrictive sufficient condition for the continuous-time

version was developed by Wonham [ 76 ]. To the best of our knowledge,

the discrete time steady-state results are new.

3.2 Problem Formulation

Consider the discrete-time jump linear system

LY = Ak(rk)xk + Bk(rk)uk (3.1)

Pr{rk+1=Jlrk=1} = Pk+l(l,3) (3.2)

where

x(ko) =x rr(ko) =r

0 0]
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In the above we have

. time index k takes integer wvalues

k e{ko,ko+l,...,N-1,N}
n

- Xy € R X-process

. uk e ﬁp x-control .
The form process .{rk: k=k0,...,N} is a finite-state Markov chain
taking values in

r, €M={1,2,...,M} M<w

That is,

Pr{rk+1=j ro,rl,...,rk} = Pr{rk+l=j|rk}, vj€ M and k 5.3

where the form transition probabilities pk(i,j) in (3.2) must

satisfy

Pk(»irj)z_ 0 Vi,j €M and k

=

p, (i,j)=1 Vi em and k

1l

3

Here A(-) and B(-) are appropriately -dimensioned matrices where,

for ieM
A(i) = open-loop x dynamics in form i
B{(i) = x-process input gain in form i.
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The cost criterion to be minimized is

N-1

. / = L + ]

JKO(xo’ro) E kzk [uk Ry (zy )y xk+lgk+1(rk+1)xk+l]
0

, (3.4)
+ XN KT(rN)xN

The RK(j), Qk+1(j) (for each k=0,...,N-1) and KT(j) are positive-

semidefinite symmetric matrices for each j€EM where

M
R (3) + Bl () izl Pppg (3009 (D] BL(G)>0 . (3.5)

In particular, (3.5) is satisfied if

Rk(j)> 0

0, (312 0

for all j € M and timesk .

The x 'K (rN)x term is a terminal cost in addition to

Xy QN(r )x .

3.3 Problem Solution

The optimal control law can be derived using dynamic programming
[101. Let Vk(xk,rk) be the expected cost-to-go from state

(xk,rk) at time k:
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x 'K _(r )x

Ve Ty N T NN

; = ; 1 '
Vi Ixery o By upR oy duy + xp 100 ()% r .
X
* Viern ByrnTiean) "
(3.6)

Thus Vk[xk,rk] is the minimal value of the cost criterion (3.4),

computed over time interval jk, K+1,...,N¢ - Hence

v. (x. ,r. ) = min J (x ,r. ) .
0 0] 0 uko,uko"'l,'..'un"l 0 0 0

The iterative relationship (3.6) can be recursively solved for

Vk(xk,rk) and uk(xk,rk), going backwards in time from finite time N.

Proposition 3.1: Consider the discrete-time noiseless Markovian-form

jump linear quadratic optimal control problem (3.1)-(3.5). The

optimal control law is given by

k-1 T Pk-13%e for n_,=3¢€M

k=k0+1,...,N

u

and the optimal expected cost-to-go by

! =1 = t ] - 3
kaxk,rk jl % Kk(J)xk r.=3eu
k=k/ k0+l,...,N
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where the optimal gains L _,(j) are given by

M F o (1) -1
{Rk-l(j) + Bi_l(j)['E: pk(j,i)[ ‘:_ ]Bk_ltj)l '
L, 3k =1 K (i
{B' (3) j§ e e I (j%
i k-1 & P " k-1 |
Kk(l) (3.7)

for each j € M,and the sequence of sets of positive semi-definite
symmetric matrices'{Kk_l(j): j € M} satisfies the set of M coupled

matrix difference equations
Qk(i) - A (3)

m k-1
KR Gy =a G Y p G| o+

| (3.8)
i=1 k (| ||-8,_, &z, _

jen
with terminal conditions
KN(J) = KT(J) .

The value of the optimal expected criterion (3.4) that is achieved

with these control laws is given by
]
*o Kko(ro)xo :

The proof of this Proposition is contained in Appendix B.1l.
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Note that the'{Kk(j): j € M} and optimal gains {Lk(j): j e M}
can be recursively computed off-line, using the M coupled difference
equations (3.7)-(3.8). The M coupled Riccati-like matrix difference
equations cannot be written as a single nM-dimensional Riccatifequation,
because of the inverse terms. Proposition 3.1 essentially1 appears

in Birdwell's thesis [12 ], where it is called the switching gain

solution.

3.4 Examples and Discussions

In this section some qualitative aspects of the JLQ controller
given in Proposition 3.1 are illustrated via example systems. For

convenience, the examples considered here are time-invariant and scalar

in ¥ with M=2 forms. That is,

= + 1 =
xk+1 alxk bluk if rk 1

xk+1 = azxk + b2uk if rk=2
N-1
. : 2 2 2
min E kzo [xk+lQ(rk) + ukR(rk)] + . KT(rN)

with form transition probabilities as shown in Figure 3.1.

1Time-invariant parameters with A, R, Q independent of the form r.
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Figure 3.1: Example System Form Structure

From Proposition 3.1 we see that the optimal expected costs-to-go

and control laws are

VK(xk,rk~]) = xk Kk(j) j=1,2
U (;x e Ty j) = ~L (J)x j=1,2
where
Q Q
o 1 2
AL L ST I B < PY B
K, (1) 1<k(2)
Q '92 (3.9)
Rj + b? P + + 5 *
J K, (1) J K, (2)
and
K, ) = ay pjl + * Pyl ¢ aj.—bjLK_l(j) (3.10)
K 1%((_2)

for 3j=1,2 and K=N,N-1,...,0.
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The closed-loop optimal system thus obeys

a, R

J
X = x (3.11)
k+1 ) 0, Q, k
J

for k=0,1,...,N-1 and rk=j.

The

Ki(j)' j € M! may or may not converge as k decreases fram
N, and xk may or may not be driven to zero, as shown in the following

examples.

converge quickly

Example 3.1: Here is an example in which the {Kk(j)

and x is driven to zero. Let

k+1 ~ Tk k

xk+1 = 2xk + 2uk if rk=2
with
pij =1/2
KT(j) =0
i,j=1,2
0(3) = 1
R(j) = 1

The optimal costs, control gains and closed-loop dynamics (computed
using (3.9)-(3.11)) are given in Tables 3.1 and 3.2, for four

iterations:
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Kk(1)=Lk(l) Kk(2)=Lk(2)

k=N-1 .5 .8
k=N-2 .6226415 .868421
k=N-3 .6357717 .87472
k=N-4 .6370559 .875327

Table 3.1: Optimal Gains and Costs of Example 3.1.

al-blLk(l) a2-b2Lk(2)
k=N-1 .5 .4
k=N-2 .3773585 .263158
k=N-3 .3642283 . 25056
k=N-4 .3629441 . 249346

Table 3.2: Closed-Loop Dynamics of Example 3.1.
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The expected cost parameters Kk(j) and optimal gains Lk(j) are
converging as (N-k) increases. The same is true for the closed-loop

systems, which are stable
a.-b.K (j)|< 1
|a;-p K (3)]

for all times k=N-1, N-2,...,0 and Jj € M. Conditions for convergence
will be addressed in the next section.

In the 'worst case' of rk=2 for all times k=0,1,...,

N-1
1im | < 1im (.5) x| =o0.
£ Lin |%,]

Thus x is driven to zero by the optimal controller.

This example demonstrates the passive hedging behavior of the

optimal controller, That is, possible future form changes and their

associated costs are taken into account. To see this, consider the

usual LQ regulator gains and cost parameters (as if Fil=p22=l and
P _=P_= hich are 1i i .
P12 o 0), which are listed in Table 3.3
Kk(l) = Lk(l) Kk(2) = Lk(2)
(with P11=1) (with P2 2=l)_
k=N-1 .5 .8
k=N—-2 .6 .8780487
k=N-3 .6153846 ‘ .8825214
k=N-4 .617647 .8827678

Table 3.3: Standard LQ Solution for Example 3.1.
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Comparing Tables 3.1 and 3.3, note that for k<N-2 the gains
of the Proposition 3.1 JLQ controller are modified (relative to
LQ controller) to reflect future form changes and costs. The JLO

controller has higher r=1 gains to compensate for the possibility

that the system might shift to the more expensive form r=2, Similarly,

the r=2 gains are lower in the JLQ controller.

Example 3.2: Here is an example where the optimal closed-loop

systems in different forms are not all stable, although the expected

value of x is driven to zero. ILet

- — + 1 =
xk+l xk uk if rk 1
Xk+l = 2xk + uk if rk=2
11° 721" °° Pig Py = -1

/”———— ——-"“s

2
.9
where
() = 0

KT j=1,2

Q@) =1
and

R(1) = 1

R(2) = 1000.

Thus there is a high penalty on control in form 2.
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This system is nine times more likely to be in r=1 than in r=2

at any time.

We might expect that the optimal control strategy may

tolerate instability while in the expensive-to-control form r=2, since

the system is likely to return soon to the form r=1 where control costs

are much less.

Computation of (3.8)-(3.11l) for four iterations

demonstrates this, as shown in Tables 3.4 and 3.5.

k=

k=N-1
k=N-2
k=N-3

Table 3.4:

Optimal Gains and

56

Costs of Example 3.2.

Kk(2) LK(;) LK(Z)
0
-3
3.996004 .5 1.998x10
. 6490736 7.384818 . 6490736 3.67203x10_3
9.2692147 .6990352 4.60253x10_3
10.198343 .7187893 5.06036x10-3



al—blLK(l) %beLK(z)

k=N-1 .5 1.998002
K=N-2 .3590264 1.996328
k=N-3 .3009648 1.9953975
k=N-4 .2812107 1.9949396

Table 3.5: Closed-lLoop Optimal Dynamics of
Example 3.2.

These quantities are converging as (N-k)» ®. Note that the closed-loop
system is unstable while in r=2.

and r_,

Direct calculation of the expected wvalue of Xy r given X, 0

shows that Elxkl decreases as k increases. This is shown in Table 3.6,

if r =1 if r =2
X, 1.0 1.0
X, .28121 1.99494
E{xz} .13228 .93844
E{x3} .06915 .49057
Efx,} .04493 .31877

Table 3,6: E{xk]» for Example 3.2.
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In four time steps, E{x} is reduced by over 95% in form 1 and 68% in

form 2. Note that if the system starts in the expensive-to-control

form r=2, x is allowed to increase for one time step (until control

while in r=1 is likely to reduce it).

Example 3.3: This example illustrates how 'small' errors in the modelling
of transition probabilities near zero or one can cause large differences

in the JLQ optimal controller. Let

= + 1 =
+1 - *x T Y% if =l
xk+l = xk if rk=2
e
P”C.1 2. > P12 small
where =4
Ql-=
Rl=100
=0
R2
KT(l)
8
=10
KT(2)
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The system starts in form r0=l. If a failure occurs at time k (that

is, rk=2) then a cost

, _ _ .2

Ve BB TR K2
is charged. But since no control is possible in the failed form (i.e,
b(2)=0),

‘ o _ .2
VK(xk,rk 2) = xk KT(Z) .

We will consider three values of the failure probability p12 here:

Case A: No failures possible P12=0

Case B: I&2=.001

Case C: p12=.002

in order to examine the effects of small errors in the modelling of ¥a2.

'If there is no chance of failure (Case A) then the optimal LQ

control slowly drives x towards zero (less than 4% reduction in 4 time
intervals). The optimal costs, control gains and closed loop dynamics

(for r=1) in this case are given by Table 3.7.

Kk(l) LK(l) al-blLK(l)
k=N-1 .99099 . 00990099 . 99099
k=N-2 1.951267 .0195126 .9804874
k=N-3 2.8666641 . 028666 .971334
k=N-4 3.7227191 .0372271 . 9627729

Table 3.7: Example 3.3 JLQ controller in form r=1, under
Case A (P12=0).
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If there is a small nonzero failure probability (Case B p12=.001,

Case C p1

almost completely in the first time step, as shown in Table 3.8.

a small difference in the value of p

12

2=.002) then the optimal JIQ controller drives X to zero

Thus

here makes a large difference in

the optimal controller only if the difference changes the form transition

structure of the system ((Case A vs. Case B) but not (Case B vs. Case C)).

K, (1) Ly (1) a =b, Ly (1)
k=N-1 99.990001 .9999 9,999x10 >
k=N-2 99.990002 .9999 9.99801x10 >
k=N-3 99.990002 . 9999 9.99801x10 >
k =N-4 99.990002 .9999 9f99801x1095

(a) Case B: P12=.001 b(2)=0

Kk(l) ‘Lk(l) al—blLk(l)
k=N-1 99.995 . 99995 4.999975x10 >
k=N-2 99.995 .99995 4.99951x10°
k=N-3 99.995 . 99995 4.99951x10 >
k=N-4 99.995 .99995 4.99951x10 >

(b) Case C: P12=.002 , b(2)=0
Table 3.8: Example 3.3 JLQ controller in form r=1 with

b(2)=0 and (a) p12=.001
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Now consider what happens when the wrong controller is used in the

above cases, where x0=l and r0=1.

If the true value is P;,=0 and the p,,=.001 controller is used then

u . 992002

0

9.98x10 2

]

%

and the achieved cost-to-go is around 99.801, or about twenty-six
times greater than the cost with the correct (p12=0) controller.

If the time P._.=.001 but the p12=0 controller is mistakenly used,

12
then
X, = .9627729
E{xz} = .9352016
E{x;} = .9188873
E{x4} = .9087535

and the expected cost-to-go is
346290.67
which is around 3400 times greater than what the correct controller
obtains,
In general, sensitivity to small parameters can be expected

if the closed-loop costs are very different in the different

forms and if a small change in the form transition probabilities alters
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the form chain structure (probabilities Very near zero and one). Changes
in the controllability structure are reasonable in models of failure-

brone systems. Different cost structures for failed and unfailed forms are
also appropriate; for example, a system may use expensive back-up equipment
when failures occur. The example system above is an extreme case which
illustrates some of the issues that arise in deriving general

theoretical results concerning JLQ systems.

3.5 The_Steady—State,Problem

In this section we consider the JLO Markovian form control problem

(3.1)-(3.5) when all parameters are time-invariant and the time horizon

(N=ko) becomes infinite.

We wish to minimize

N-1
tim By ) [uﬁR(rk)ukfxi+1Q(rk+1)xk+1.]*’xﬁK&(rN)xN %,
(N-k )»o k=k
0 0 r
- 0
subject to (3.12)
K1 = A(rk)xk + B(rk)uk (3.13)
_ Y
Pr rk+l—j|rk—1‘ = pli,J) (3.14)

x(k0)=xo r(k0)=rO
From Proposition 3.1 we have that the optimal control laws are

-1 -1 Fe-1™d) = L Gy
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with optimal expected costs-to-go

Vi BTy =3 = % K O)x

where for each j € M, and k=N-1,N-2,...,k

0
— -
M Qi) }'1
%R(_j) +3'G)| I e, B .
L_(§) = i=1 .
K Kk+1(:|)
M Q(i) (3.15)
- B ) pG.A) Al |
B i=1 _
Kk+1(i)
and
M Q(i) A(3)
Kk(j) = A'(3) z p(j,i)( N >< > (3.16)
i=1 Kk+1(i‘) —B(j)Lk(J)
with
K (3) = K (3)

The optimal closed-loop dynamics in each form j € M are thus

X1~ D)%

where
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k 0 M Q4
D (3) = |I-B, ¢+ § i B izlpji N A,
B! p..y + Kk (1)
J)i=g 3t ; +1
i=1 Kk+1(1) Bj
(3.17)

Before stating the main result of this section, we recall the

following terminology pertaining to finite-state Markov chains:

A state is transient if a return to it is not guaranteed.

A state i is recurrent if an eventual return to i 1is
guaranteed. If the state set is finite, the mean time

until return is finite.

state 1 is accessible from state j if it is possible to
begin in j and arrive in i in some finite number of

steps.

states i and j are said to communicate if each is accessible

from the other.

A communicating class is closed if there are no possible

transitions from inside the class to any state outside of it.

A closed communicating class containing only one member, j,

is an absorbing state. That is, pjj=1.
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. A Markov chain state set can be divided into disjoint sets

T, Cl,...,Cs, where all of the states in T are transient,

and each Cj is a closed communicating class (of recurrent

states)}

Define the cover cj of a form j € M to be the set of all forms

accessible from j in one time step. That is,

e = {ieM: p(j,i)0} .
The main result of this section is the following:

Proposition 3.2

Consider the time-invariant Markovian JLQ problem (3.12)-(3.14).

Suppose that there exist feedback control laws
u, = -F.x for each ieM
such that the following conditions hold:

(1) For each absorbing form i (ie: Pii=l) the (deterministic)

cost-to-go from (xk=x,r =i) at time k remains finite

k
(for any finite x) as (N-k)»>«. This is true if and only if

oo

' , _ t
;éo (a,-B,F.) "(Q+FIR;F.) (A, -B.F,) < (3.18)

(each element finite).

lSee_[36]a p.53.
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(2)

(3)

For each closed communicating class Cj (having two

or more members) the expected cost-to-go from

(xk=x( rij € Cj) at time k remains finite (for any
finite x and each i € Cj) as (N-K)»> «©. This will be
true if and only if for each such class Cj there

existsa set of finite positive-definite nxn matrices

'{zl,...,zlc l} satisfying (3.19):
j

- Qi+'F;_RiFi
- ' t
z, = (1-p,.) > po.l@,-B,F) o] o+ (A,-B,F,)
i ii ii i ii P, i ii
t=1 z il 7
Lec 2
3 1p;,
L#i

for all i € Cj .

For each transient form i € T C M, the expected cost-

to-go until the form process leaves T (that is, until

a closed communicating class is entered) is finite.

This is true if and only if there exist finite positive-

definite nxn matrices'{Gl,...,GT} satisfying (3.20):

0.+F.R.F,
. 1 1 1 1 t
- ]
G, = (1-p,,) > Pi.:.l(A.-B.F.) t * (A,-B.F,)
1 11 11 1 1 1 1 1 1
t=1 TP,
LeT = G
w1 1Py *
1 (3.20)

for all i € T.
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The existence of feedback laws Fi satisfying these conditions is

necessary and sufficient for the solution of the set of coupled

matrix difference equations (3.15)-(3.16) to converge to a unique

constant steady-state set

1k(3)> 0: § € m}

as (N—k0)+ @, given by the M coupled equations
M o Qi
' 3] ‘s
Aj i1 Jiy + - Aj
. K(i)
K(3) = R 1
J Q
. + _ .
§ <Qi> _. n % § Y
-all D p..| + BB [ > p.\K@ /B[ B Dp.\T . /|a.
I i=1 3% K(i) ild jop It J 8] Pk K(i) 3
for j € M. The steady-state optimal control laws
uk=—ijk jeM_

have time-invariant gains'{Lj: j € M} given by

5 -1 § (Qi )
L, = Q. B! p..\ + A,
I Li=1 I\ g(q)/d 3

and minimize (3.12)-(3.14) with

Vk (x0

r ) =
0 0

1] < 00
xOK(ro)xo

] <M.
for xoxo
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When the steady-state optimal control laws (3.23)-(3.24) exist, they

stabilize the system in the sense that

E{xk'xk}-*o
as (k—k0)+ o, and K(j)> O for each j € M if

(4) for at least one form i in each closed communicating

subset of M, the null spaces

n(,gi/z) Ane,) = {0}

The conditions (2)-(3) take into account

. the probability of being in forms that have unstable

closed loop dynamics

. the relative expansion and contraction effects of
unstable and stable form dynamics, and how the
eigenvectors of accessible forms are "aligned."
That is, it is not necessary or sufficient for all
forms to be stable, since the interaction of dif-
ferent expected form dynamics determines the

behavior of E{xk'xk}.

(3.25)

This will be illustrated in the examples of this section. The conditions

in Proposition 3.2 differ from those of the usual discrete-time linear

quadratic regulator problem1 in that:

. necessary and sufficient conditions (1)-(3) replace the

sufficient condition that the (single form) system is

stabilizable

1See, for example [38], p. 497.
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. condition (4) replaces the assumption that the (single

1/2

form) pair (A, Q ) is detectable.

:Unfortunately conditions (1)-(4) are not easily verified. There is
no evident algebraic test for (3.18)-(3.21) like the controllability
aﬁd observability tests in the LQ problem. The use of the conditions
in Proposition 3.2 will be demonstrated in examples later in this
section.

The proof of Proposition 3.2 has the same basic outline as in

the LQ problem:

(i) First show that conditions (1)-(3) guarantee that
with zero terminal costs {KN(j)=O; j e g}, the
sequence of positive semidefinite symmetric matrices

'{Kk (3)} (for each j € M) in (3.16) is increasing
0

and bounded above as (N—ko) increases and hence the
Kko(j) converge element by element to bounded matrices
Then (3.15)-(3.16) yield the steady-state values
(3.22)-(3.23) and the costs

' . P
X, K(j)x0 r JEeM

are finite for finite xo.
(ii) Condition (4) is then shown to guarantee that E{xk'xk}
goes to zero as (k—ko) becomes large, and that K(j)>0

for each j € M.
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(iii) Next it is shown that these results hold for

arbitrary finite symmetric terminal cost matrices

(iv) Finally it is easily shown (by contradiction) that
the'{K(j), j e g} are the unique positive definite
solutions of (3.18).

Once (i)-(ii) are proved then (iii)-(iv) are easily established}'

Step (ii) is proved in Appendix B.2. Note that:

Corollary 3.3: The null-space requirement in condition (4) of pro-

position 3.2 is satisfied if, for at least one form i 1in each closed

communicating subset of M,

> . a
Q; >0

The difficult part of proving Proposition 3.2 is establishing that
conditions (1)-(3) have the desired effect. Equations (3.18)-(3.20)
follow by a direct application of dynamic programming. The cost-to-go

from (x , ¥ . =i) if i is an absorbing form is

k k
o
1
(1 @-8F) t 0 +F'R.F,) (A,-B,F,) " | x
£=0 i i1 i i1 1 i i1 k

(where control law gain —Fi is used), hence (3.18). For a closed com-

municating class Cj' the expected costs-to-go from (xk,rk=i) for each

as in [11], pp- 76-79.

70



' .
xk Zixk (1 e Cj)

as given in (3.19), if these Zi are all positive-definite and finite.
Similar arguments yields (3.20). Details of this are given in
Appendix B, 3.

In the remainder of this section conditions (1)-(3) are
examined and illustrated via examples.

Consider the following simple scalar example problem that shows

how the conditions of Proposition 3.2 can be tested.

Example 3.4

s6d
e
~

o
3

O n

6

ol

Xl = a(r)_xk re{1,2,3,4,5,6,7)
Q(r)> 0
Here
6 is an absorbing form

{3,4} is a closed communicating class

T = {1,2,5,7} are transient forms



For the absorbing form r=6, (3,18) yields

) ale)g(6)a(6)< «
t=0
Hence

5 t
o(6) ) (a, (:6).) <w
t=0

Thus we have condition:

(1)  a®(e)< 1

For the closed communicating class 13,4}, (3.19) gives coupled

equations

Z3 = a(3)IQ3+Z4] a(3)

zZ, = a(;4);I_Q4rl~Z3] a(4)

Plugging in for Z4 in the first equation yields

2
z, 2_6) 10(3) + a®(4)0(4)]
1-a“ (3)a (4)
a2(4) 2
z, = A 0(4) + a*(3)Q(3)] |

1-a(@3)a’(4)

Thus for Z3, Z4 positive we have condition

(i1)  a’(3a(4)< 1 -
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For the transient forms {1,2,5,7}, (3.20) yields

6, = alo) +6, 1a@
G2 = a(2)[o(2) + pzlGl] a(2)
G. = (1-p._) E pe-t azt(7)[Q(7) + —EZE———]G
7 77 =1 77 ) - lHP77 2
T t-1 2t
Gy = (1-p,,) tzl P A (5)0(5)

Now for O < G5 < © we have the condition

‘s 2
(1ii) Pgga (9)< 1
with the resulting

: 2
Q(5)a (5)(1-955)

G5 = 3
1- a
Poy (5)

We find from the Gl and G2 equations above that

a2 (1) [o(L)+ a2 (1)0(2)]
2 . 2
1-a° (a’(2)p,,

a’(2)19(2)+ a”(1)P,,0(1)]

2 2
1-a (l)a (2)p,,
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so for 0 < Gl' G, < ® we have conditions

2

. 2 2 ..
(iv) a (L)a (2)py; <1

Finally we find

2 Pl | T [ 2 t
G, = a " (7) (1-p,.,) | Q(7)+ — Yy 2" (np
7 77 [ 1p,, ]t=1 77

so for 0 < G7 < o we have condition

2
v) a (Dp,, <1

and

2 2 2
a”(7) (1-p..) p__a”(2)I9(2)+a" (1)p,,Q(1)]
o = 77 o) + 22 21

2 2 2
1-a (_7)p77 (1-P77)(l—a (1)a (2)p21)

Thus (i)-(v) are the necessary and sufficient conditions of
Proposition 3.2. For this example we see that

. The absorbing form r=6 must have stable system

dynamics (i)

. one of the forms in the closed communicating class
{3,4} can be unstable as long as the other form's

dynamics make up for the instability (ii)

. transient forms r=5,7 can have unstable dynamics as
long as the probability of staying in them for any

length of time is low enough (iii), (v)
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. some instability of the dynamics of form r=1,2
© is okay so long as the probability of repeating

a
2> 12

cycle is low enough (iv).
From (3.15)-(3.16) it is clear that each'{Kk(j)} sequence is increasing
as (N-K) increases.
In the proof of the LQ problem, the existence of an upper bound
can be guaranteed by assuming the stabilizability of the system. This
does not suffice here (except for scalar x), as shown in the following

example.

Example 3.5: Stabilizability not sufficient for finite cost

Let M=2 where

<1/2 10 > (0 >
A = B =
1 0 1/2 1 \o
1/2 0 0
= B =
Ay 2\,
10 1/2

with p12=p21=1, p11=p22=0 (a "flip—-flop" system).
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Both forms have stable systems (eigenvalues 1/2, 1/2) and hence are

stabilizable. However

100,25 5
= ’ X if r =1
+ v
) 5 25 /) K K
.25 5
X = X if r =2
k+2 5 100.25 k k

which is clearly unstable. Thus~xk and the expected cost (3.12)

become infinite aS»(N—ko) goes to infinity.

In fact, controllability in each form is not sufficient, as

demonstrated below.

‘Example 3.6; Controllability not sufficient for finite cost

Let M=2 where

0o 2 0
A, =\ B, =
' \o o o\:
0 o0 1
A. = B_ =
2 2 .
2 0 0

Thus in each form (x=1,2) the system is controllable, and the closed-
loop systems have dynamics

X 1= Djxk r, =3
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where

0 2
D, =
1

? f
f1 2
£ £

3 4
2 0]

where fl, f2, f3, £ are determined by the feedback laws chosen.

4

Now suppose that we have a "flip-flop" system as in the previous

example;
P11 = P22 =0
P21 = P12 =1
Then
x. = (O.D.)" if ro=1
2k 271t *o - o~
% “‘(D‘D)kx if r =2
2k 127 0 0
where
flf4 2f3+f2f4
D2D1 =
o] 4
4 0
D1D2 =
£lf3+2f2 f1f4

77



Both D1D2 and D2Dl have 4 as an eigenvalue. Thus xk grows without
) 1
bound for xO#O as k increases. Controllability in each form allows

us to place the eigenvalues of each form's closed loop dynamics matrix

(Di) as we choose, but we cannot place the eigenvectors. 1In this

example, there is no choice of feedback laws that can align the eigen-
structures of each of the closed loop systems so that the overall dynamics
are stable. The following example demonstrates that (for n>2) sta-
bilizability of even one form is not necessary for the costs to be bounded

above.

Example 3.7

Let M=2 with

1 -1 0

A = B =
1 0 1/2 1 0
1/2 1 0]

Az = B2 =
0] 1 0

Both forms are unstable, uncontrollable systems so neither is sta-

bilizable. We again take

1

The closed-loop systems are stable if and only if the moduli of each
eigenvalue is less than one. See, for example, [38] p. 454,
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Then

where

2k

2k

1/2

if r0=1

if r =2

Thus X goes to zero geometrically as k increases and hence the

cost (for any finite Qj' Rj > 0 j=1,2) is finite. We next show

that this example does satisfy condition (2) of Proposition 3.2.

From (3.19),

2

Ai [Ql + Z2]Al

=3 +
A2[Q2 zllA2

Suppose, for convenience, that Ql

the first equation above that

Z

Z

11

21

(1)

(1)

Z

Z

12

22

(1)

(1)

1+le(2)

-1—le(2)+

||
0

- Z

79

21

(2)

Then we obtain from

: 1
a1=z11(2)+ 2 le,
147, (2)- Z 2z (2

11207 3 %5
1 11
3 2@+ 2

(2)

)

22

(2)



and plugging this into the second equation:

1 1 11

2,20 2,(2) 2 T 1% 2T 2%,
Z..(2) Z..(2) 1,1 1 )
21 22 > + 7 221(2) 2 2 + 222(2)

This yields four equations in four unknowns. Solving, we find

Zy1(2) Z,,(2) 2/3 2/3
Z21(2) 222(2) ) 2/3 3
and thus
le(l) le(l) 5/3 -4/3
221(1) 222(1) ) -4/3 5/3 '

which are both positive definite. Thus Z1 and 22 satisfy (2) of

O
Proposition 3.2.

We can obtain sufficient conditions

that replace the necessary and sufficient conditions (1)-(3) in
Proposition 3.2, and are somewhat easier to compute, in terms of

the singular values of certain matrices. For any matrix A,

2
[max eigenvalue A‘A]l/

| [al]

max singular value of A (3,26)

>

o(a).
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Note: In the above, |]A|| is the spectral norm of A, defined as

la]] & max  {]|mul|} (3.27)
uf{ =1

over all vectors u of unit length where I]---II on the right in
(3.27) designates the ordinary euclidean norm of a vector

1/2

n

2

xl] =] )
| i=1

Corollary 3.4: Consider the problem of Proposition 3.2. Sufficient

_ conditions for the existence of the steady-state control law (and

finite expected costs-to-go), replacing (1)-(3), are:

there exist feedback control laws

= -F X i M
Yy i¥k e

such that

(1) for each absorbing form i (pii:l),

[ee]

£ (2
tgo || a-8.F )" < o (3.28)

(2) for each recurrent, nonabsorbing form i

b,

£,,2
|(a,-B,F.) || <c<1 : (3.29)
1 1 11

1 t~1 8

. -1
(1~p, ;) : |
t=1
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(3) for each transient_form i € T that is accessible from a

form j € Ci in its cover (j#i)

o]
, ¢ Lt o E2 L
(1~pii)-t§1 p H@a-BF) || sc<n (3.30)

and for each transient form i € T that is not accessible from

any form j € ei in its cover (except itself):

00
- 2
(1-p,.) ) p:il ll(Ai—B.Fi)t|| <o, (3.31)
t=1 t a

The proof of this Corollary is given in Appendix B.3. A similar result
for continuous-time systems is obtained by Wonhaml [76 1, except that
stabilizability and observability of each form is required, and a
condition (3.29)=(3.30) is required for all nonabsorbing forms.
vCondition (3) is motivated as follows. The cost incurred while in

a particular transient form is finite with probability one since,

eventually, the form process leaves the transient class T and enters a
closed communicating class. If a particular transient form i € T

can be repeatedly re-entered, however, the expected cost incurred while
in i may be infinite; (3.30) excludes such cases. Note that the suf-
ficient conditions of Corollary 3.4 are violated in example 3.7 (in both

forms). This demonstrates that they are restrictive, in that they ignore

1Theorem 6.1, p.195 of [761.
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the relative "directions" of x growth in the different forms
(i.e. the eigenvector structure). We consider next a sufficient
condition that is easier to verify than (1)-(3) of Corollary 3,4,

but more restrictive.

Corollary 3.5;: Sufficient conditions (1)-(3) in Proposition 3.2

can be replaced by the following;

For each form i € M, there exist feedback control laws

such that

[lAi—BiFill <ec< 1l (3.32)

Proof: If this condition holds, then with these Fi we have (with

XO finite)

E Lo % Q)+ .R(Ik)uk§

.t~ 8

2 ' © 2k
< i . L, A, =BT,
< |1z, | (mzx o, + FJRJFJH)m?x DRREEEAT

o]
2k
< (constant) Z ¢ <
k=0

since ¢ < 1.

Note that if (3.32) holds then conditions (1)-(3) do. Note also
that we are guaranteed that ||xk||+ 0 with probability one, if (3.32)
holds only for recurrent forms. However this is not enough to have

finite expected cost, as demonstrated in the following examples.
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Example 3.8:

Let

0
N
[

i=1,2

with

e}
=
[

H
o)
o]

N
o

]

=

e

transient
form

84

absorbing
form




Thus

> 1

It
[*)]

min ||a,-57 || =\
1

a 0
0 a
min | |A2-B2F2| |= o
F
2
and for r0=1 and ||x0|| finite

E Z ku(rk)xk + ukR(rk)uk}

k=0
[ee]
k 2k 2
= 1 pa [[x]l
k=0
: 2 @ 2 k
= %171 @
k=0
If
azp <1

then the expected cost is

2
I,

2
l1-a p

< o

but if azplil. then the expected cost-to-go is infinite. This
demonstrates that (3.32) holding only for nontransient forms is not

sufficient.
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Example 3.9: Let
1 1
X = X if r =1,3
. '
kel -1 =1 k k
a o]
xk+1 = xk if rk=2
0 a
(a#0)
where
P12
P11 ( :’1
P23

If the system is in form 1 for three successive times

th v
R

(P = Tpqr T Tpp T

(0 0) for any %, -

The same is

true for three successive times in the absorbing form r=3.

In form r=2, the expected cost incurred until the system leaves

(at time T) given that the state at time k is (xk,rk=2) is
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T=1

[oe]
: t-1 , 4.t t
Ey ) xl Qx ¢= x' |(1-p..) Y op..- ) ga [x
o tT2t k 22 eop 22 t 272 [Tk
For this cost to be finite we must have
T _t-1 t ¢
. - ]
(‘1‘p22)'zp22 (2,0 24,
t=1
e o)
2. 2.t
= 02" (1-p,,) tzo (p,a") <o

which is true (for Q2 finite) if and only if

2
< 1.
a p22 1

Thus we would expect that the optimal expected costs-to-go in Proposition

3.2 will be finite if and only if

2
<1,
a P

Let us verify that the necessary and sufficient conditions of Proposition
3.2 say this.
From (3.18), for absorbing form r=3
S t t
L BJ(QA; < e

t=0

but
0O o

= for tzz'
0 0

t
A3

so this condition is met.

87



Por transient forms {1,2} we must have 0 < Gl’ G2
where
oo p
t~1 v t 12 t
G, = (-p.) ) P~ (&) |o. + G, |a
1 11 =1 11 1 1 1 Pil 2 1
T -1 t ot
= (1-p P !
G, = (1-P,,) [ P_" (a) QA
t=1
Now
t
(A')t £ a 0]
2 By =
0 at
thus

00

_ 2 2. t
G, = 9,(1-R,)a Zo (B,,a%)

hence we have condition
(i) a P <1

2 . 2 , ,
and G2 = Q2a (1—P52)/(1-P§2a ). Finally since

t 0] 0
a) = for t>2,
0 ©0
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we have

]
I

(1-p..) | & |o. + P12 ¢ |a
1 11t | ta 1”1-.pl'1 2171

2
P,,a (1-p..)
(1-p )A" 0. + 12 22 0 A ,
(1-p..) (1-p a2) 2 1
11" - 22

which is positive-definite since Ql' Q2 > 0. Thus the necessary
and sufficient conditions of Proposition 3.2 here reduce to (i),
as we deduced earlier. Note that the sufficient condition (3.32)

of Corollary 3.5 is never met for r=1, r=3

1/2

i 2 2
a1 1=, ] - Am<2 Cas

and to meet (3.32) for r=2 requires

|A|| |\/ <1=%a% <1,

However the sufficient conditions for Corollary 3.4 are met because
forms {1,2} are 'non-re-enterable'! transient forms satisfying

(3.31) (if a%Pzz <1 for r=2).

89



3.6 Summary

Let us consider the JLQ controller here in terms of the fault-
tolerance criteria of section 1.2. We note that the controller
(3.7)-(3.8) is clearly adaptable<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>