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Abstract

We describe a methodology for modeling heart rhythms observed in electro-
cardiograms. In particular, we present a procedure to derive simple dynamic
models that capture the cardiac mechanisms which control the particular tim-
ing sequences of P and R waves characteristic of different arrhythmias. By
treating the cardiac electro-physiology at an aggregate level, simple network
models of the wave generating system under a variety of diseased conditions
can be developed. These network models are then systematically converted to
stochastic Petri nets which offer a compact mathematical framework to express

the dynamics and statistical variability of the wave generating mechanisms.
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1 Introduction

Monitoring the heart functions through electrocardiograms (ECG’s) is prac-
ticed so frequently in a variety of medical cases today that there are desires
and necessities to automate it in many situations. The ECG’s are record-
ings of electrical events taken over time on body surfaces, and they consist
of a series of characteristic spikes, or waves, indicative of the electrical and
mechanical activities in the heart. Cardiac arrhythmias are conditions where
these activities in the heart become abnormally synchronized. Many com-
mon cardiac arrhythmias can be detected and classified based solely on the
timing of various types of ECG waves. To develop a classification algorithm
for cardiac arrhythmias, these wave arrival patterns must be represented in a
mathematically formal way. The representation must be sophisticated enough
to capture a wide variety of wave patterns, yet at the same time it must be
simple enough to facilitate formulation of a classification algorithm. This work
presents a new methodology for the construction of concise models that ac-
curately capture the wave timing characteristics of a wide variety of cardiac

rhythms.

A modeling philosophy

The motivation for this work comes from successes and limitations of previous
studies in arrhythmia classification algorithms. Of fundamental importance
in the design of such algorithms is the representations and organization of
knowledge about cardiac arrhythmias, i.e., modeling. The nature and extent
of the models can often dictate such considerations as the tools for decision
making, robustness of the resulting algorithm, and the number of classifiable
arrhythmias.

One of the most popular approaches in arrhythmia classification is algo-
rithm design based on decesion trees (e.g. [1][15]). Decision trees are flow
charts of simple logical rules. At each node of the trec o fogical devivion is

made based on a specific measurement on the EC'G data to narrow the clas



sification choices. As the decision making process moves along a branch of
the tree, necessary additional measurements on the ECG are specified to ul-
timately choose a single arrhythmia class. Decision making based on a series
of deterministic logical rules, however, has a fundamental difficulty in dealing
with uncertainties. For example, a “border line case” at a decision node or
noise in the data can lead the process to go down along a wrong branch of the
tree. A great deal of effort has been spent to make the decision logic robust
against conceivable sources of uncertainty, at the cost of greatly increasing
complexity of the trees. Another important factor contributing to the com-
plexity of decision trees is the complexity of the cardiac arrhythmia phenomena
themselves. Many arrthythmias must be classified based on trends over several
heart beats; moreover, variations within a single class of arrhythmia are quite
common.

This work is concerned with capturing, in a unified modeling framework,
the behavior of ECG wave sequences under various arrhythmic conditions.
Specifically, we present a stochastic Petri net implementation of a dynamic
representation of electrophysiological mechanisms which are responsible for
arrhythmic wave sequences. That is, the models presented here are (i)physio-
logical and (ii)probabilistic:

Physiological v.s. phenomenological

[n a sense, the decision trees mentioned above imply phenomenological models
of cardiac arrhythmias as each arrhythmia class is “defined” by a set of logical
rules in the decision nodes. It is phenomenological because arrhythmia classes
are characterized directly by observable features on ECG. Such models cannot
avoid being complex, as phenomena seen in arrhythmic ECG’s are complex.
The model complexity is only increased further when more sophisticated deci-
sion rules are introduced to deal with uncertainties. These additional decision
rules can easily blur the original descriptions of the arrhythmia classes. Alter-
natively, one can explicitly model the cardiac mechanisms responsible for the
generation of arrhythmic ECG waves, because a variety of arrhethmin: can he

explained coherently in a single framework of cardiac electrophysiolony. One



of the purposes of this work is to demonstrate that by identifying and mod-
eling some macroscopic electrical events in the heart one can describe many
common cardiac arrhythmias coherently and concisely.

Probabilistic v.s. deterministic

One advantage of probabilistic models over deterministic ones is that uncer-
tainties in data (e.g. noise) and in decision making (e.g. multiple candidates)
are more naturally represented in a probabilistic setting. In addition, for the
specific models presented in this work, we need to characterize some macro-
scopic electrophysiological events in the heart. Each of these events is a result
of electrical activities in an ensemble of cardiac muscle cells. Probabilistic

models are suited for characterizing collective effects such as this.

Previous work: Probabilistic arrhythmia models

In the past, relatively simple Markov (i.e., probabilistic) models were used
to describe a small number of cardiac arrythmia classes, and classification
algorithms were developed based on these models. For example, in the work by
Gersch et al.[3] each of six chosen arrhythmia classes was modeled by a three-
state Markov chain. The states of the chain represent “regular”, “short”, and
“long” intervals between successive heart beats which can be measured from
the most prominent ECG features, the R waves. The transition probabilities of
the chains were determined based on the appropriate statistics from a learning
set of ECG data corresponding to the six arrhythmia classes. To classify
observed ECG data, the algorithm first takes transitional statistics of intervals
between successive R waves (e.g., how often is a “regular” interval followed by
a “short”?) and then evaluates which of the six Markov chains is the most
likely to produce such statistics.

One problem associated with such an arrhythmia classification algorithm
is that the observed R wave (i.e., heart beat) intervals must be arbitrarily
classified as regular, short, or long. This is a practical disadvantage hecanse of
individual variations in the heart rate. The classiication aleorithn descloped

by Gustafson et al.[4] avoids this particular problem. In this algorithm. the R



wave intervals are modeled as the output of a linear time-invariant dynamic
system. Four such dynamic models are presented in [4] to model four chosen
arrhythmia classes. To classify an observed R wave interval sequence, the
Kalman filter corresponding to each dynamic model produces a tracking error
sequence!. The probability distributions of the error sequence in the ideal
case, i.e, when the statistical properties of the observation match perfectly
with that of the model output, are known, and such distributions are used
to compute the likelihood that the observation matches with each dynamic
model. As presented in [4], computation of the likelihoods can be performed
sequentially, and with some additional sophistication in the dynamic models,
one can develop an algorithm not only to classify arrhythmias but also to detect

the onsets of changes from one class to another in the ECG observation.

Previous work: Physiological arrhythmia models

The use of simple Markov models by Gersch et al.[3] and Gustafson et al.[4]
has led to the development of arrhythmia classification algorithms which are
computationally elegant and statistically optimal (i.e., the “best choice” is
mathmatically well-defined). The major limitation is, however, that such mod-
els are appropriate for a limited class of arrhythmias. For example, none of
these Markov models has been extended successfully to accommodate the ob-
servations of the P waves, less prominent than the R waves yet essential in
the characterization of many cardiac arrhythmias[5]. The problem is that the
state space for complex wave sequences of cardiac arrhythmias cannot be easily
identified phenomenologically.

Doerschuk[2] has demonstrated, however, that Markovian description of
such wave sequences are nevertheless possible by modeling the physiological
mechanisms responsible for the wave sequences. Each of Doerschuk’s mod-
els consists of several interacting Markov chains, and each of these Markov
chains describes the electrical activities in major components of the alectrical

conduction system in the heart. These NMarkov chains “inferact™ ith cach

Yalso called a residual or innovation sequence in the literatnre



other in such a way that the state of one chain can alter the transition prob-
abilities of another chain. Such “interacting Markov chain” arrangements are
motivated both by physiological facts and practical considerations. Namely,
as described in the sequel, the interactions between major components of the
cardiac electrical conduction system occur relatively infrequently and usually
have some deterministic effects. In another words, the electrical activities in
these components are independent of each other most of the time, and it is
not unreasonable that they are modeled by separate (but interacting) Markov
chains. A practical advantage of the “interacting Markov chain” representation
over the full enumeration of the corresponding state space (i.e., a single, large
Markov chain) is that the former is more compact and descriptive, making

model development, interpretation, and analysis more manageable.

Towards stochastic Petri net modeling

Conceptually, one can imagine developing a arrhythmia classification algo-
rithm based on the “interacting Markov chain” model[2] by (i)builing a model
for each arrhythmia class, (ii)expand each of these model into a single Markov
chain, and (iii)compute the likelihood that each Markov chain generates the
observed ECG wave sequence. Although steps (ii) and (iii) are identical to the
setup for the previously mentioned algorithm by Gersch et al.[3], the Markov
chain in (ii) is too large for such an algorithm to be computationally fea-
sible. Instead, Doerschuk([2] developed a suboptimal classification algorithm
by approximating parts of his “interacting Markov chain” by simpler Markov
chains[2]. Namely, to evaluate the likelihood that a model has generated the
observed ECG wave sequence, the most likely state trajectories in the Markov
chains in the model must be computed using sparse observations of state tra-
jectories. The suboptimal state trajectory estimator described in [2] is essen-

tially an iterative improvement scheme where at each step the optimal state

trajectory at one of the Markov chains is computed under the assnmption
that the interactions from other Markov chains can e desoribed T the he
havior of much simpler (e.g.. two states) chains. The ieration confinues at



least while such locally optimal state trajectories are computed once for all
Markov chains. Despite its potentials, this suboptimal algorithm has not been
completely implemented due to its complexity.

From the perspective of developing such an arrhythmia classification algo-
rithm, it is apparent that a more compact representation than Markov chains
is desirable to facilitate description (approximate or otherwise) of the behav-
iors of the interacting model components. A shortcoming of the “interacting
Markov chain” models is, in fact, their complexity due to the nature of the
representations used. In particular, the desire to use Markov chains, i.e., de-
sire to directly construct a state description, forces one to deal simultaneously
with fine-level timing parameters and more aggregate structural aspects of the
model. Because of this, some of the conciseness of description desirable for
not only algorithm design but also model construction is lost.

This work was motivated by the belief that stochastic Petri nets are more
suitable for concise modeling of the cardiac electrical events. In particular, in
this framework one can quite easily separate and control the two significant
aspects of cardiac activity highlighted in Doerschuk’s model — namely the
timing of events in different parts of the heart and the interactions among
these parts. As we will see, the interactions specify the complete structure of
the Petri net model, while timing information affects specific parameter values
within the structure.

This thesis is organized as follows: In Section 2 we review those aspects
of cardiac electro-physiology of importance for the modeling of ECG rhythms.
We place particular emphasis on the mechanisms generating sequences of P
and R waves. We then represent these mechanisms as dynamic systems con-
taining concurrently operating, stochastic, timing processes. In Section 3,
stochastic Petri nets are introduced. As this modeling formalism was expressly
developed to model concurrently operating and interacting processes, it is a
natural choice for modeling cardiac rthythm. In Section 4 we show how the flow
models developed in Section 2 can be transformed into dvnamic madal b 1he

type described in Section 3. In particular. a svstematic procednre o conerate



stochastic Petri net models of various cardiac arrhythmias is described. We
illustrate the procedure through the construction and simulation of models for
several different cardiac arrhythmias. Finally, Section 5 concludes the thesis

with a summary of the work and discussion of possible extensions.



2 The Cardiac Electrical Conduction System

In this section we identify and categorize various electrical events in the heart
in order to facilitate modeling of cardiac arrhythmias. We describe three
important features of the cardiac electro-physiology: autorhythmic rate, con-
duction delay, and refractory period. Based on these three we then define the
basic subunits of the electrical conduction system in the heart — rhythm and
transmission elements. We show that various common cardiac arrhythmias can
be dynamically characterized by networks of these rthythm and transmission

elements.

2.1 Electrical Activity in the Heart Cells

General characteristics of the electrically active cells in the heart have been
well studied and documented. The following is a brief summary of those char-
acteristics important in explaining the mechanisms of many common cardiac
arrhythmias. For more details see, for example, [8] and [13].

The ECG is a recording of the net electrical potential difference produced
when the cardiac muscle cells are excited electrically. All cardiac muscle cells
follow the same electrical excitation pattern: At rest, they maintain a certain
voltage (about —90 mV) across the cell membrane. But if a sudden change in
the electrical environment of the cell raises the cross-membrane voltage above
a certain threshold, then the cell reacts to increase the voltage spontaneously
to a higher level (about 10 mV). This spontaneous, quick increase in cross-
membrane voltage is the onset of the excitation.? The voltage soon falls back
to the original resting level (thus forming an electrical pulse). However, it
takes the cells a little longer to return to the same excitable state. During this
period the cells cannot be induced to increase their cross-imnembrane voltages
spontaneously, and this duration is called the refractory period. The cardiac

muscle cells come out of the refractory period in about 300 miliseconds after

2This phenomenon, observed also in nerve cells an'd skelotal snnecle o0 alled
depolarization.



the onset of the excitation, at which time they become ready for another
excitation.

Most commonly, electrical excitations in a cardiac muscle cell are triggered
by excitations in its neighboring cells.® For example, if a section of a muscle
tissue from the heart is electrically stimulated, the excitation spreads quickly
into the entire tissue. In such inter-cellular transmission of electrical excita-
tion, the refractory period is important because it prevents back-flows and
reflections. For example, suppose that the excitation of cell A triggers exci-
tation in cell B, a neighbor. Since cell A will be in refractory period, cell B
will not be able to transmit the same excitation back to cell A. But suppose
that cell B has a neighbor cell C which is not a neighbor of cell A and is ready
to be excited. Then cell B can transmit the excitation to cell C. The refrac-
tory period, thus, gives directionality in inter-cellular transmission of electrical
excitation.

As described above, most cardiac muscle cells are induced into activity by
receiving excitation from neighboring cells. However, many cardiac muscle
cells also have a mechanism to generate periodic excitations by themselves. In
fact, the cross-membrane voltage in these cells at rest rises slowly towards the
threshold for the spontaneous, quick increase that characterizes the excitation
of the cells. This property is called autorhythmicity. The rate at which the
resting voltage reaches the excitation threshold differs from cell to cell. The
heart has a collection of cells which have the fastest of such rates and special-
ize in the generation of periodic excitations. In a normal heart, the cells in
a region, called the SA node on the wall of the right atria are the source of
these excitations. The periodic electrical activity of the SA node is eventu-
ally transmitted throughout the heart, and the muscle cells of the atria and
ventricles contract, just as all skeletal muscle cells do, upon reception of the
electrical excitation. The rate at which the SA node excites is, thus, observed

as the heart rate in a normal heart.

3This is accomplished through the gap junctions. crosscellular channele foranre o dnlar
plasma. Increase in electrical potential inside a cell canses the potontinls inade e neichbor
cells to rise.
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2.2 Normal Heart Activity and the Electrocardiogram

The heart consists of two pairs of chambers: the atria and ventricles. The
two pairs contract alternately in such a fashion that the atria pump blood
from the veins into the ventricles which then pump it to the lung and the rest
of the body. At contraction, an electrical excitation is transmitted quickly
throughout the muscle cells of the chamber pair. This nearly-simultaneous
excitation of many cells is observed as a peak on the ECG recording. Because
the ventricles have much larger muscle mass than the atria, they produce a
conspicuous peak called the R wave®, while the atria produce a small (and
often difficult to detect) peak called the P wave. The timing of chamber con-
tractions is orchestrated by a network of muscle cells specialized in generation
and transmission of electrical excitations. The electrical activities in a normal
heart are as follows: The SA node generates excitations periodically due to
its autorhythmicity®. These excitations spread throughout the atria, inducing
contractions. They also reach the AV node on the wall separating the atria
from the ventricles. The AV node is the only normal electrical channel between
the two pairs of heart chambers, and its excitation is normally transmitted to
the muscle cells of the ventricles through specialized conducting muscle cells
called the Purkinje fibers. Unlike intra-muscluar conduction, the transmission
of electrical excitation through the AV node is slow. In effect, this delays con-
traction of the ventricles from that of the atria, so that the blood can flow in
the correct direction from the atria to ventricles. The delay through the AV
node, thus, plays an important role in the control of chamber contraction.

In rhythm analysis of the ECG, we try to make an assessment on how
well this electrical conduction system is controlling chamber contraction. The
intervals between P and R waves are studied for this purpose. In many diseases,
parts of the cardiac electrical conduction system are affected, and we observe

distinct, anomalous patterns in P,R wave sequences. These known patterns

4Strictly speaking this should be the QRS complex. a sequence of three waves Rut for
simplicity, we use the term “R wave” to refer to the TG foatur vorrocpoatine o1l
contraction of the ventricles.

5The autorhythmic rate of the SA node is under autonamic nervous cantral.
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form a very important diagnostic basis for cardiac arrhythmias.

2.3 Control of the Cardiac Electrical Conduction Sys-
tem

The electrical conduction system of the heart has two main functions: gener-
ation of electrical excitations and distribution of these throughout the heart.
Generally speaking, these functions are regulated by three timing parameters:
autorhythmic rate, conduction delay, and refractory period. This subsection
describes how these timing parameters affect the functions of the system.

1)Autorhythmic rate. Normally, the SA node has the fastest autorhythmic

rate in the whole system, and the heart activities are paced at this rate. How-
ever, non-SA nodal tissue can sometimes attain an autorhythmic rate compa-
rable to that of the SA node. In such a system, two or more rhythm sources
compete to pace the heart, resulting in an anomalous and possibly chaotic
contraction pattern. This phenomenon can occur either when the rate at the
SA node slows down abnormally or, more commonly, when the rate of non-SA

nodal tissue speeds up drastically. 2)Conduction delay. As mentioned before,

the conduction speed through the AV node has an important function in de-
laying ventricular contractions after the preceding atrial contractions. This is
an example of the direct influence that conduction delays generally have over

cardiac control. 3)Refractory period. An abnormally long refractory period

can periodically block excitations. For example, suppose that the duration
from the onset of excitation to the end of the refractory period at the AV
node is slightly longer than the period of autorhytinnic excitations at the SA
node. The first excitation from the SA node can successfully excite the AV
node. The second excitation, however, arrives at the AV node during the re-
fractory period, and it is blocked from propagating further. The resulting P,R
sequence in this hypothetical case is a series of P waves alternatingly followed
by R waves. In reality, blockage of excitation by the refractarsy pericd: iz nof
absolute. In general, the refractory period is looselv divided into foo parts,

The early part is where excitation is blocked with certainty and is called the
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absolute refractory period. In the latter part, the tissue goes through a period
where it becomes increasingly prone to be excited, and this period is called
the relative refractory period. Forcing tissues to excite during their relative
refractory period often alters their autorhythmic and trasmission characteris-
tics momentally. For example, an excitation arriving at the AV node during
its relative refractory period will take longer than usual to propagate through
the node. Also, if a pacing tissue like the SA node for some reason receives an
excitation during a relative refractory period, its autorhythmic generation of
the next excitation pulse is momentally delayed. Such brief interference with
natural autorhythmicity is referred to as either the resetting or stunning phe-
nomenon. In resetting, the time interval between the reception of the external
excitation and the generation of the next autorhythmic excitation is roughly
equal to the period of the autorhythmicity. In stunning, on the other hand,

this time interval is significantly longer than the period of the autorhythmicity.

2.4 The Rhythm and Transmission Elements

Since the two main functions of the cardiac electrical conduction system are
generation and distrubution of electrical excitations, the dynamics of the sys-
tem can be described by a network of two types of elements. One of these is
the rhythm element, which generates electrical excitations, and the other is the
transmission element, which distributs excitation from one section of the sys-
tem to another. The controlling mechanisms for macroscopic flows of electrical
signals (excitations) in the heart can be represented by a network of rthythm
and transmission elements. In the next subsection, we represent the dynamics
of several cardiac arrhythmias with such networks. In this subsection the two
elements are described.

We represent rhythm elements diagramatically as triangles and transmis-
sion elements as rectangles (Fig. 1). The rhythm elements are used to describe
the autorhythmic properties of cardiac muscle tissues: their primary function
is periodic generation of electrical signals. Associnted with o rhetho cloment

are input and output terminals as well as several parametric variables fhat
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control the intervals of signal generation. The purposes of these terminals and
parameters are as follows: (i)output. The signal generated by the element
is sent to neighboring elements through the output terminal. (ii)input. The
autorhythmic cells can be stimulated by excitations in neighboring cells. The
rhythm element receives such external stimulation through the input terminal.
(iii)variables. The fundamental parameter of a rhythm element is the period at
which it generates signals. However, this basic period can be altered especially
when an external stimulation arrives through the input terminal. Thus, be-
sides the basic period, variables that quantitatively characterize the external
influence on the function of the element are needed. For example, one such
variable is the refractory period. Others, associated with such phenomena as
resetting and stunning, will be described in Section 4.

The transmission elements are used to describe the delay of signals trav-
eling through cardiac muscle tissues. It is basically a bi-dirctional channel
characterized by two pairs of input and output terminals. Signals can be trans-
mitted through the element in either direction, but when two opposing signals
meet in the element they annihilate each other. The variables associated with
the transinission elements are the transmission delays for both directions, re-
fractory periods which characterize the excitability of the two input terminals,
and other parameteric variables representing the factors that may influence the
durations of transmission delays and/or refractory periods. (We will show an
example of such factors later when we describe the Wenckebach phenomenon.)

The rhythm and transmission elements are used quite flexiblly, and in par-
ticular, the numbers and types of the terminals and variables assigned to an
element are adjustable. For example, a uni-directional transmission element
would graphically be presented as a rectangle just like a bi-directional trans-
mission element(Fig. 1b) but without the second pair of input and output
terminals. Such variations among rhythm and transmission elements are pre-
sented in more details in Section 4, when we discuss the implementation of

these elements with stochastic Petri nets.



2.5 Signal Flow Block Diagrams

The rhythm and transmission elements described in the preceding subsection
allow us to model the timings of P and R waves and aberrancies of different
rhythms at a relatively aggregate level. While it is certainly possible to use the
modeling methodology developed in this paper to describe cardiac activity at
a more detailed level (by partitioning the heart into a larger number of inter-
acting rhythmic and conductive units, each representing a smaller portion of
cardiac electrical pathways), the explicit use to which we put this methodol-
ogy here is at the other extreme. Specifically, by highlighting the mechanism
causing and driving particular arrhythmias, we want to obtain the simplest
possible models capturing characteristics of the corresponding P,R sequences.
Such “minimal representations” should ultimately be of most value as the basis
for robust signal processing and automated diagnosis of cardiac arrhythmias.

To illustrate this philosophy, consider the modeling of a perfectly normal
heartbeat sequence. We can divide the cardiac condution system into five
stages based on their structural and functional differences — the SA node,
intra-atrial conductive paths, AV node, Purkinje fiber conductive paths, and
ventricles. Each tissue block can in fact excite autorhythmically, and all ex-
cept the SA node and ventricles (which are the two ends of this electrical
system) can conduct bi-directionally. As far as the modeling of a normal P,R
sequence is concerned, however, bi-directional conduction is an unnecessary
physiological detail since excitations conducting in the retrograde direction
(i.e., direction towards the SA node, opposite to the normal direction of the
flow of excitation) are never observed in such a sequence. Thus, a model con-
structed with uni-directional transmission elements instead of bi-directional
elements is simpler yet phenomenologically just as acurate. Such a signal
flow block diagram model is shown in Figure 2a. The rhythm element repre-
senting the SA node does not have an input terminal because of the absence
of retrograde-conducting excitation. The autorhythmic excitations of the SA
node activate the atria and generate the P waves. The letter =17 Lo vl cont poat

terminal represents the generation of the P wave. The excitation also hifur-
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cates to activate the trasmission element and reset the thythm element of the
intra-atrial pathways. The excitation produced by the intra-atrial pathways is
the result of either the transmission of the excitation originated in the SA node
or its own autorhythmic activation. This is represented by the convergence
of the outputs of the transmission and rhythm elements. The AV node and
Purkinje fibers are reprsented by a parallel pair of transmission and rhythm
elements, just like the intra-atrial pathways. The only differences among these
three parts of the block diagram are the values of the parameters assigned
to the respective transmission and rhythm elements (i.e., conduction delays,
autorhythmic intervals, and absolute refractory periods). The output of the
Purkinje fibers is directed to the ventricles whose activation produce the R
waves. The letter “R” by the input of the ventricles represents the production
of the waves. This block diagram model implies that the autorhythmic period
of the ventricles is larger than those of other parts of the heart (in particular
the SA node) so that the ventricles are “reset” frequently enough not to excite
autorhythmically. In the model, therefore, the rhythm element representing
the ventricles does not have an output terminal. This is consistent with the
assumption that retrograde conduction is absent.

This block diagram model of the normal heart can be simplified further
as follows: First, since in a normal cardiac sequence the autorhythmic rate in
the SA node is the fastest and drives the entire system, the rhythm elements
in the rest of the system are always “reset” hefore they can generate an au-
torhythmic excitation. We can, therefore, delete the three rhythm elements
used to model the autorhythmic properties of the intra-atrial pathways, AV
node, and Purkinje fibers. After these three rhythm elements are removed, the
three remaining stages that separate the two wave generators collectively form
only a series of three transmission elements. These transmission elements are,
thus, combined into one aggregate element, which we call the “AV node” for
simplicity. The simplified model of the normal heart is shown in Figure 2b.

which has only two rhythm elements and one transmission «lement
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2.6 Modeling of Common Arrhythmic ECG Patterns

In this subsection, we represent the dynamics of several common cardiac ar-
rhythmias using signal flow block diagrams made up of rhythm and trans-
mission elements. Many of the common arrhythmias are included in the four
categories described in this subsection, and Figures 3a to 8a show signal flow
models of several examples from each category. Also, to illustrate the wave
patterns for these examples of arrhythmias, Figure 3b to 8b present the P,R
wave sequences obtained from simulations of the models (See Section 4 for
details). P waves are represented by short vertical lines and R waves by long
vertical lines, and abnormal waves are represented by lines with small squares
at their tips. The interval of time ticks is one second. See [6] for more detailed
descriptions of cardiac arrhythmias.

1. Extrasystole — ectopic beat

(i)phenomenology. In this condition, non-SA nodal tissue becomes, either
continuously or sporadically, a pacemaker for the heart. Such abnormal pace-
makers are called ectopic thythm sources. Ectopic beats may originate in the
atrial wall outside the SA node causing untimely atrial contractions and ab-
normally shaped P waves. This class of cardiac arrhythmia is called Atrial
Premature Beat, or APB. Ectopic beats may also arise in the AV node, in
the Purkinje fibers, or in the ventricular musculature, and they tend to cause
Ventricular Premature Beat, or VPB. These ectopic beats, in addition, may
initiate excitations that flow backward into the atria (i.e., retrograde conduc-
tion). The resulting atrial electrical activity is referred to as the retrograde
P wave. As mentioned before, the SA node can be “reset” or “stunned” by
retrograde excitations. (ii)modeling. Ectopic beats are caused by abnormally
fast autorhythmic rates at non-SA nodal tissues. Rhythm elements are used
to represent such ectopic sources. (uii)ezamples. Figures 3a and 4a show ex-

amples of signal flow block diagrams of APB and VPB, respectively. Both

models consist of three stages — the atria, AV nodes and ventricles - just like
the normal heart model in the previous subsection. To the NPT el Tobae 2
the atrial stage has two rhythm elements. one for the normal S\ nadal heats
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and the other for the atrial ectopic beats. The output of each rhythm ele-
ment resets the other rhythm element and activates the transmission element
representing the AV node. The rest of the model is identical to the normal
heart described before. The P waves produced by atrial ectopic beats usually
have abnormal shapes; in the model a “P” with an overbar denotes that the
output of the rhythm element representing the ectopic source generates such
abnormal P waves. In the VPB model(Fig. 4a) the ectopic source is generally
thought to be in the ventricular tissue. Thus, the rhythm element representing
the ventricles has an output terminal whose activation produces a premature,
abnormally shaped R wave (denoted by an “R” with an overbar in the figure).
Since the excitation generated by the ventricles conducts in the retrograde
direction towards the atria, a bi-dirctional transmission element is used to
represent the AV node. Retrograde activation of the atria causes a retrograde
P wave (“P” with an overbar) and resets the SA nodal autorhythmic source.

2. Extrasystole — coupled beat

(i)phenomenology. This category of cardiac arrhythmias also deals with pre-
mature waves. Although the occurence of premature waves in the previous
category seem independent from the timing of the normal waves (thus they
are thought to be caused by ectopic rhythm sources acting independently from
the SA nodal source), the premature waves in this category show some corre-
lation with the SA nodal beats. Specifically, these premature waves are syn-
chronized with the normal beats, and the intervals between premature waves
and preceding normal waves are fairly constant. Such intervals are called the
coupling intervals. (ii)modeling. Although there are several physiological or
anatomical explanations for the origin of the coupling intervals, a convenient
way to describe the phenomenon is to use a hypothetical electrical conduction
channel called the reentrant pathway. Conceptually, the reentrant pathway
resides within the muscular wall of a heart chamber. It has a conduction delay
whose value is equal to that of the coupling interval. It receives an excitation
when the chamber is excited to contract. delavs the excitation for the anannd

of the time specified by its conduction delay parameter and then vornms fhe
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excitation back to the chamber. This leads to a second, abnormal contrac-
tion of the chamber (and generation of an associated ECG wave) following the
normal contraction arising from the direct excitation pathway. In the block
diagram, the coupling intervals are described by uni-directional trasmission
elements representing the reentrant pathways. (iii)ezample. Figure 5a shows
the block diagram for a condition called bigeminy, where a premature ventric-
ular contraction occurs every other beat. The first two stages of the model
— the SA and AV nodes — are the same as the normal heart. The output of
the AV node activates both the ventricles (producing the normal R wave) and
the reentrant pathway. The reentrant pathway delays the excitation and acti-
vates the ventricles (producing the abnormal R wave). The interval between
the normal and succeeding abnormal R waves is the coupling interval in this
case, and it is modeled by the delay parameter of the transmission element
representing the reentrant pathway. The normal conduction wave (initiated
by the SA node) immediately following the premature R wave arrives at the
ventricle during its absolute refractory period. Thus, the normal excitation is
blocked, and the corresponding R wave is not produced. This is observed as
the relatively long interval between a premature R wave and the succeeding
normal R wave(Fig. 5b).

3. AV Conduction Block

(i)phenomenology. This category includes arrhythmias caused by abnormali-

ties in conduction between the atria and ventricles. In a complete blockage,
called third degree AV block, the AV node is entirely unable to conduct excita-
tions. Thus, the contractions of the ventricles must be paced by the autorhyth-
micity of the AV node, Purkinje fibers, or ventricular musculature itself.® The
resulting P,R wave sequence displays a case of AV dissociation, a phenomenon
in which the thythm of the R waves is independent from that of the P waves.
In second degree AV block, not all the atrial excitations are blocked by the
AV node. When only two out of three P waves are followed by R waves. the

condition is referred to as 3:2 block. Other ratios commeonly coen e F 20

%This is an example of autorhythmic beats from s non-5A nodal tissne prosonting a
complete failure of the heart, and these beats are called the cscape hoats,
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4:1, and so on. A P,R sequence in this subcategory may also exhibit a Wencke-
bach phenomenon described as follows: The SA node generates excitations at
a constant rate, but the P-R interval grows progressively longer during several
beats until there is a P wave not followed by an R wave (i.e., a block has
occurred). The next P wave is followed by an R wave with a normal, short
P-R interval; then, the interval again grows progressively longer over the next
several beats as the pattern is repeated. Figure 7b shows an example of a P,R
sequence displaying the Wenckebach phenomenon. Finally, in first degree AV
block, no R wave is missed after any P wave, but the P-R interval is abnormally
prolonged. (ii)modeling. AV conduction blocks are caused by various disease
conditions inside the AV node. Since all the abnormalities occur within the
transmission element representing the AV node, the signal flow block diagram
is essentially the same as that of the normal heart (Fig. 2b). The transmission
element (the AV node), however, tends to have a considerably more complex
role than in the normal P,R sequence. (Modeling of the third degree AV block
is an exception and is trivially simple; it can be accomplished by removing the
transmission element from the normal heart model.) (iii)ezamples. Figure 6a
shows a model of second degree AV block. Note that the trasmission element
has an extra parameter called “probability of conduction.” In 3:2 block, for
example, this probability is set to 2. Figure 7a shows a model featuring the
Wenckebach phenomenon. A completely different transmission element must
be used to describe the dynamics of the AV node. In Wenckebach, events
in the current beat are dependent on the events in the previous beats. For
example, every P-R interval must be longer than the previous interval unless
the R wave is missing from the previous beat; if the R wave is missed the
P-R interval must become short again. The transmission element, therefore,
must have a “memory” of its actions in the previous beats to determine how
it behaves in the current beat. This requires us to describe the transmission
element itself as a dynamic system. Detailed specification of the behavior of
such a transmission element is discussed in Section Iin swhich wedeovibe e

implementation of the dynamics of various rhythm and transmission <lenents,
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4. Abnormal conduction path

(i)phenomenon. In a normal heart, electrical insulation exists between the
atria and ventricles, and the AV node is the only electrical channel between
the pairs of chambers. Some abnormal hearts, however, have conduction path-
ways that bypass the AV node. For example, in a condition called the Wolft-
Parkinson-White syndrome the ECG displays an abnormally early onset of
the ventricular activity. It also exhibits broadened R waves because each beat
reaches the ventricles through the abnormal and normal (AV nodal) routes and
excites different parts of the chambers at slightly different times. (ii)modeling.
An abnormal conduction channel is represented by a transmission element.
(iii)ezample. Figure 8a shows a model of the Wolff-Parkinson-White syn-
drome. The ventricles are divided into two parts. One of these is excited
normally and produces R waves. The other part is excited via the abnormal
conduction channel” and produces characteristic delta waves®. The output
of the SA node simultaneously activates the normal and abnormal channels.
The conduction delay through the abnormal channel is slightly shorter than
that through the normal, AV nodal channel. To increase the anatomical ac-
curacy of the model, the two rhythm elements representing the two parts of
the ventricles may be connected with a bi-directional transmission element.
But since the two parts of the ventricles excite at about the same time, such
a transmission element would host only collision and annihilation of two exci-
tations flowing in the opposite directions. This activity does not influence the
P,R wave sequence produced by the model. The bi-directional transmission

element is, therefore, omitted in favor of model simplicity.

In the preceeding description of the cardiac electrical conduction system,
we have identified several of its dynamic properties which enable us to char-
acterize the P,R wave sequences of the cardiac arrhythmias. In the follow-

ing sections, we describe such dynamics in a mathematically formal way by

“called the bundle of Kent

8The R and delta waves are actually parts of a single peak The bl e v bontitiahl
as an abnormally smeared leading edge of the conspicuons Rowave peak
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implementing the signal flow block diagrams developed in this section using
stochastic Petri nets. This process is similar to translating flow-charts into
computer codes using a particular programming language. It is desireable
that the programming language has features that allow a straightforward rep-
resentation of the sequential behavior characterized by the flow-chart. In this
context, two important features of the signal flow block diagrams for cardiac
arrhythmias should be noted: One is that the system dynamics are regulated
by timing parameters, and the other is the concurrency of the dynamics (e.g.,
the SA node is in its refractory period while the AV node is conducting exci-
tation). In other words, using the block diagrams introduced in this section
we have characterized the mechanisms of various cardiac arrhythmias as con-
current timing processes. Stochastic Petri nets, which are described in the
next section, have been developed to model dynamics of such concurrent tim-
ing processes. They, therefore, offer a natural framework for the translation

process discussed above.
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3 Stochastic Petri Nets

In the preceding section we have seen that the electrical activities of various
parts of the heart are governed by local timing parameters such as autorhyth-
mic periods, conduction delays, and refractory periods. These activities inter-
act with each other by passing and receiving excitations, collectively defining
the electrical phenomena observed as ECG’s. Thus, behaviors of the cardiac
electrical conduction system can be considered as a collection of concurrently
operating timing processes. Stochastic Petri nets offer a general and flexible
format to express the activities of concurrent timing processes. Historically,
stochastic Petri nets were developed as the result of an extension of the original
Petri net theory which features simpler execution policies (i.e., dynamics). In
this section we first review the main features of the original Petri nets before
discussing those of stochastic Petri nets. The section closes with a discussion
of features of stochastic Petri nets desirable for the modeling of the cardiac

electrical conduction system.

3.1 Petri Nets

Petri nets are abstract models of information flow, and they are particularly
useful in describing and analyzing the flow of information and control in sys-
tems which exhibit asynchronous and concurrent activities. In this subsec-
tion, we try to highlight some fundamental properties of Petri nets. Refer to
Peterson[10][11] for more detailed discussions of them.

Structure. Petri nets are commonly represented pictorally as directed graphs.
Figure 9 shows an example of a Petri net. There are four structual components
— two types of nodes, called places and transitions, and two types of directed
arcs, input and output arcs. A place is represented by a circle (“p0” to “p6”
in Fig. 9) and a transition by a bar (“t0” to “t5”). All the directed arcs in
a Petri net connect a node of one type with a node of the other tvpe: no
arc connects two nodes of the same type. An are coine from o ploe e g

transition is referred to as either an output arc of fhe place ar an inpnt arc



of the transition. Similarly, an arc going from a transition to a place is called
either an output arc of the transition or an input arc of the place.
Dynamics. The dynamics of Petri nets are represented by the positions and
movements of markers called tokens. Tokens are pictorally represented by dots
inside places. In the example (Fig. 9), each of the places p0, p2, and p6 has a
single token. Tokens can be moved to other places along directed arcs by firing
transitions on the arcs. A transition can fire only if it is enabled. A transition
becomes enabled when all its input arcs are connected to places possessing
tokens. In the example, t1 and t2 are enabled, and t3 is not enabled because
p3 does not have a token.

Decision Rules. Note that in the preceding example t1 and t2 cannot fire at

the same time because firing one of them takes the token out of p0 and disables
the other. Those transitions competing for the same token(s) are described
to be “in conflict.” Policies, called the decision rules, to resolve such conflicts
are thus specified. One implementation of the decision rule is a probabilistic
policy. For example, in Figure 9 we can make t2 fire with probability of 0.7
whenever t1 and t2 are in conflict. Note that when this probability is set
to 1.0 the decision rule can be considered to be a preferential policy, i.e., t1
can fire only when it is not in conflict with t2 (equivalent to saying that tl
can fire only when p3 has no token). It is clear from this example that the
dynamics of some Petri nets cannot be made explicit without decision rules.
Once the static properties of a Petri net, i.e., the net topology and initial
token placement, are defined, transitions that may potentially be in conflict
with each other can be identified. A set of such transitions is called a conflict
set. Given a Petri net topology and initial token placement, it is important to
identify all conflict sets and assign a decision rule for each set. See references
[9][12][14] for more detailed discussion on net topology and conflict sets.

To summarize, the dynamics of a Petri net depends on specification of the
net structure (topology), the initial placement of the tokens. and the decision

rules (if there are conflict sets).
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3.2 Stochastic Petri Nets

The original Petri nets, as described above, are defined without the notion of
time; however, in timed Petri nets some explicitly defined timing parameters
(“processing times”) influence the evolution of the state of the nets. Stochastic
Petri nets (SPN’s) are those timed Petri nets in which the processing times are
specified probabilistically via distribution functions. Indeed, the relation be-
tween SPN’s and the original, untimed Petri nets is analogous to that between
semi-Markov chains and Markov chains. Different versions of SPN’s exist.
For example, SPN’s can be divided into two groups depending on whether
the processing times are associated with transitions or places®. This issue is
particularly important in modeling of cardiac arrhythmias, and we discuss it
in detail in this subsection. Another source of diversification of SPN’s is the
relationship between clocking of the processing times and firing of the tokens.
Reference [7] describes various “firing policies” that result because of different
interpretations of this relationship. The firing policy of interest in this paper
is called the “race” policy which is assumed in the descriptions below.

Transition-timed SPN. In transition-timed SPN’s, the processing times are

associated with transitions. When a transition is enabled, a sample of the ran-
dom variable representing the corresponding processing time is chosen, and the
transition must wait for this amount of time before it can fire. It is possible
that the transition becomes disabled while waiting to fire. =~ For example, in
Figure 10, t0 can be disabled while waiting (regardless of decision rule) if t1
becomes enabled and fires. Note that in the figure a double bar represents a
transition whose processing time is non-zero. A single bar represents a transi-
tion with zero processing time; it fires as soon as it is enabled.

Place-timed SPN. In place-timed SPN’s, the processing times are associated

with places. When a token enters a place, it initially becomes “unavailable”

to the rest of the system until the corresponding probabilistically chosen pro-

cessing time elapses. A transition is not enabled unless all its input ares are
?No SPN developed so far has attempted to assign fransifion time o loth sran atians
and places.



connected to places with “available” tokens. Figure 11 shows an example
of place-timed SPN’s. A double circle in the figure represents a place with
non-zero processing time, while a single circle represents a place with zero
processing time.

A place-timed SPN can be converted to a transition-timed SPN that has
the same dynamic property; however, the converse of this statement is not
true in general. For example, the transition-timed SPN fragment depicted in
Figure 10 has no equivelence in the place-timed format'®. Nevertheless, in
many modeling problems place-timed SPN’s offer more concise structure than
transition-timed SPN’s (Fig. 12), making model interpretation easier. This is
especially true in modeling of the cardiac electrical conduction system, and
the issue of choosing one of the two SPN formats is addressed breifly in the
next subsection. Both formats can be seen regularly in the literature, although

transition-timed SPN’s seem to be a little more popular.

3.3 SPN for Modeling of Cardiac Conduction System

SPN modeling of the cardiac electrical conduction system poses a tradeoff
between using the place-timed and transition-timed versions: (i)Place-timed
SPN’s offer a graphically more concise format to represent the cardiac system
than transition-timed SPN’s. For example, compare the normal heart mod-
els using the two SPN formats(Fig. 2c and 2d). (ii)Transition-timed SPN’s
can model a wider range of dynamics than place-timed SPN’s. Unfortunately,
some dynamic aspects of the cardiac system can only be modeled with the
transition-timed format. An example of such is activation of a tissue dur-
ing its relative refractory period. The SPN model of relative refractory period
(Fig. 14d-1) is alimost identical to the transition-timed SPN of Figure 10, which
cannot be translated into a place-timed SPN. We emphasize that the graphical

conciseness offered by place-timed SPN’s is important, as we will see in the

10This statement holds if the “race firing policy™[7] is adopted. In the literatne thi podioy
is seldom seen, and statements asserting equivalence hetween place el e v i
formats can be found. There is. however, no single ST formad preforrod cooe the athers

today, and such statements are not well founded.
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next section that some relatively simple models of cardiac arrhythmia can have
complex topologies. Graphical conciseness facilitates not only interpretation of
the models but also representation of more complex physiological mechanisms.
On the other hand, the transition-timed format is necessary to represent cer-
tain essential dynamical properties of the cardiac system. This dilemma can
be avoided in the following way: As we have mentioned, every place-timed
SPN has an equivalent transition-timed SPN. We can thus graphically repre-
sent a system with a place-timed SPN but deal with its dynamics in terms
of its transition-timed equivalence. This relation between place-timed SPN’s
and transition-timed SPN’s is analogous to that between high level computer
languages and assembly codes as compliers translate the high level languages
into assembly codes before executable codes are generated.

To represent a model with a place-timed SPN while dealing with its dy-
namics with the corresponding transition-timed SPN, we need to allow the
place-time format to represent just as wide range of dynamics as the transition-
timed format. We, thus, make a modification in the place-timed SPN format
by introducing “interruptable processing times.” A place with an interrupt-
able processing time has a special output arc through which a token inside it
is always “available” to the rest of the system. Figure 13a shows such a place.
It has a special output arc, marked by a small circle, through which the token
inside it is always available to the rest of the system. Thus, while the transition
t0 cannot fire until the processing time at the place elapses, t1 can fire as soon
as it is enabled. Firing of t1, therefore, may “interrupt” the processing time
assigned to the place. As previously mentioned, a standard place-timed for-
mat cannot replace the transition-timed SPN fragment of Figure 10, but with
an interruptable processing time that is possible(Fig. 13c). This illustrates
the usefulness of the new place-timed SPN’s. Although this modified place-
timed format (i.e., using interruptable processing times) is not found in the
literature, its execution is exactly the same as the standard transition-timed
format under the “race” firing policy. For example. the maodificd pha fimed

SPN of Figure 13a behaves exactly the same as the transition-time b SN of
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Figure 13b. That is, a modified place-timed SPN can always be converted into
a standard transition-timed SPN, whose execution policy is well-defined. We

will be using this modified place-timed SPN format in the next section.
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4 SPN Models of Cardiac Arrhythmias

In Section 2 we modeled several common cardiac arrhythmias with networks
of thythm and transmission elements. In this section we implement various
rhythm and transmission elements with SPN’s. We then discuss briefly how to
connect these SPN elements to form SPN cardiac arrhythmia models. Finally,
we present several examples of such SPN models of cardiac arrhythmias at the
end of the section. The graphical notations in the figures of this section are the
same as the previous sections. In particular, the modified place-timed SPN’s
are denoted as in Figure 13: double circles represent places with non-zero pro-
cessing times, and output arcs marked by small circles are the “interruptable”

outlets of tokens from such places.

4.1 Fundamental Building Blocks

Recall form Section 2 that variations in autorhythmic rates, conduction delays,
and refractory periods characterize functions of individual rhythm and trans-
mission elements which are in turn responsible for most cardiac arrhythmias.
We now present SPN implementations of sub-elements (“units”) controlling
these timing quantities.

1)Autorhythmic unit.

Figure 14a shows the basic SPN building block for an autorhythmic unit. The
period of the thythm is represented by the processing time associated with the
single place p0. The transition t1 represents the output of the autorhythmic
unit. The incomplete arcs to and from t1 are parts of the SPN fragment repre-
senting the neighboring tissue which receives excitation from the autorhythmic
unit. The reception of excitation is accomplished by firing of t1. As soon as
the token becomes availabe in p0, it is fired back into p0 via either t0 or t1 to
recycle the process. An autorhythmic activity may or may not induce activ-
ity in the neighboring tissue depending on whether the tissue is in refractory
period or not. But if the tissue is ready to he excited the aotizit o aleavs

transferred to it. Thus, the decision rule for the conflict cot O f 1] i aesiened

29



so that it chooses t1 preferentially over t0.

2)Conduction units.

A conduction unit receives excitation from one tissue (the input tissue), waits
for a probabilistically specified amount of time (the conduction delay), and
transfers the excitation to another tissue (the output tissue). Figure 14b
shows the SPN implementation of the basic conduction unit. If the token
in the place pl is “available” (meaning that the conduction tissue has come
out of the refractory period and is excitable), the transition t0 fires when it
receives excitation from the input tissue. The token then enters the place p0
whose processing time represents the conduction delay. After the delay, the
token is fired back into pl by t1 or t2. When the token is in p0, t1 is always
enabled while t2 is enabled only when the output tissue is ready to receive
the excitation. Since excitation is always transferred to output tissue not in
its refractory period, the decision rule is assigned so that t2 is preferentially
chosen over t1 whenever they are in conflict. The processing time associated
with pl represents the time required for the conduction unit to become ready
to receive a new excitation after it has processed a preceding excitation; thus,
this processing time can be considered as a collective absolute refractory pe-
riod for all the cells in the conduction tissue. The roles of relative refractory
periods in conduction of excitations is discussed later.

3)Refractory periods.

There are two kinds of refractory periods—absolute and relative. When the tis-
sue is in an absolute refractory period, an oncoming excitation is blocked. On
the other hand, when the tissue is in a relative refractory period, an oncoming
excitation induces the tissue to be activated with abnormal characteristics such
as elongated conduction delay (e.g., Wenckebach). Figure 14c shows a basic
absolute refractory unit. The processing time assigned to the single place is
the absolute refractory period, and the transition cannot fire unless the token
in the place becomes available. Figure 14d-2 shows a basic relative refrac-

tory unit, using a place with an interruptable processine fime inteocdoeood i

Section 3. The processing time associated with the place veprecont il pela-
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tive refractory period. The firing of t0 represents the normal course of action
where the tissue becomes completely ready to receive a new excitation. On
the other hand, the firing of t1 represents a premature activation of the tissue
by an external excitation (an interrupt), and the tissue is expected to display
some abnormal activities. Figure 14d-1 shows the transition-timed equivalent
of the relative refractory unit. As mentioned in the previous section, these two

SPN’s display exactly the same dynamics.

4.2 SPN Model of the Normal Heart

Using the building blocks developed above, a SPN model of the normal heart
can be implemented. We have shown in Section 2 that the normal heart can be
modeled with three elements — the SA node, AV node, and ventricles(Fig. 2b),
and these elements can respectively implemented as the autorhythmic unit,
conduction unit, and absolute refractory unit described above. The resulting
SPN model is shown in Figure 2c. The output of the model is the timing
of generation of P and R waves, and these are represented by firing of the
transitions 10, t1, and t3 — t0 and t1 for P wave and t3 for R wave. The
parameters of the model are the processing times associated with the places
p0, p1, p2, and p3, and these correspond with the autorhythmic interval of the
SA node, the refractory period of the AV node, conduction delay of the AV
node, and the refractory period of the ventricles, respectively. The transition-
timed equivalent is shown in Figure 2d, and note that the model in this format
requires twice as many nodes as the model in the place-timed format. Figure
2¢ shows the output of a simulation run of the SPN model in Figure 2c. (As
mentioned before, short and long vertical lines represent P waves and R waves,
respectively, and tick marks have one second intervals.) The processing times
used in the simulation run are listed on Table 1.

The simplicity of the models in Figure 2 has come about because un-
necessary physiological details are deliberately left ont. For example.in the
signal flow block diagram model (Fig. 2h). uni divectional fran e e el

ment rather than more complex bi-directional transmission clement was used
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to represent the AV node because it is known that no retrograde conduction
is observed in a normal P,R wave sequence. The thythm element representing
the SA node does not need an input terminal also because of the absence of
retrograde conduction. We emphasize that the normal heart is still capable of
conducting excitations in the retrograde direction, but modeling at such level
of physiological accuracy is not necessary to capture the behavior of a normal
P,R wave sequence correctly. Using such simpler variations of the rthythm and
transmission elements allows simpler SPN implementations of them. In this
case we were able to directly substitute the autorhythmic unit from Subsec-
tion 4.1 for the rhythm element representing the SA node, the conduction unit
for the transmission element of the AV node, and the absolute refractory unit
for the rhythm element of the ventricles. We have seen in Section 2, however,
that more complex variations of these elements are needed to model most car-
diac arrhythmias. In the next subsection we extend the basic SPN units of the
previous subsection to implement a wider variety of thythm and transmission

elements.

4.3 Rhythm and Transmission Elements

The rhythm and transmission elements are aggregations of the fundamental
building blocks developed above. SPN implementations of various rthythm and

transmission elements are presented.

The most simple thythm elements are the pacemaker (Fig. 15a) and terminal

(Fig. 15f). An example of a pacemaker is the SA node in the normal heart; the
sole function of the element is to generate excitation periodically. The single
parameter for the pacemaker is the period of the autorhythmic excitation,
and this is represented by the processing time at the place. An example of
a terminal is the ventricle in the normal heart; the element simply receives
and absorbs incoming excitations. The single parameter of the terminal is the
absolute refractory period. If the terminal depicted on Fiowre 10E copre onts

the ventricle, firing of the transition represenfs fhe gencration of the Rowave.

32



In reality, pacemaker tissues can receive excitation (for example, the SA
node can receive retrograde-conducting excitation) and can be reset or stunned.
A more accurate model of pacemakers should have such dynamic properties.
Moreover, a way to make the model more accurate than this is to include an
absolute refractory period during which the pacemaker tissue cannot be reset
or stunned. These functional variations of the rhythm element can be used in
arthythmia modeling, and corresponding SPN building blocks are presented
in Figure 15:

ethe basic pacemaker (Fig. 15a)
eresettable pacemaker (Fig. 15b)
estunnable pacemaker (Fig. 15¢)
eresettable pacemaker with refractory period (Fig. 15d)
estunnable pacemaker with refractory period (Fig. 15e)

ethe basic terminal (Fig. 15f)

Transmission Elements.

The most simple transmission element is the basic uni-directional transmis-
sion element depicted in Figure 16a and employed in the construction of the
normal heart model (Fig. 2b). One of the functional variations is the trans-
mission element with a probability of conduction, shown in Figure 16b, which
is necessary in the modeling of second degree AV block. An extra transition
t0 has been added. The transitions t0 and t1 are in conflict; firing of t0 does
not activate the transmission element while firing of t1 does. The decision rule
for the conflict set {t0, t1} is a probabilistic policy where the probability “q”
of choosing t1 is equal to the probability of the conduction.

Another functional variation is the bi-directional transmission element. It
is more realistic than the uni-directional element, while its implementation is
slightly more complex than a simple combination of two uni-directional ele-
ments. The complexity is due to the necessity of modeling annihilation of two
excitations colliding inside the element. Figure (6 shaw: the B lieotional

transmission element. It is basically two uni-directional alements nperime
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posed, with the addition of the transition t5 and the use of interruptable
processing times at p0 and pl. When excitations collide in the element, t5
fires, and no activity reaches the outputs.

Another functional variation is the transmission elements capable of gener-
ating the Wenckebach phenomenon. As discussed in Section 2 the Wenckebach
phenomenon is charcterized by an incrementally increasing P,R sequence. An
abnormally long refractory period at the AV node is thought to be responsible
for the phenomenon. Specifically, after the AV node is excited by a normal
excitation from the SA node, the relative refractory period of the node is just
long enough such that the next normal excitation arrives at the AV node dur-
ing a late part of the relative refractory period. The AV node still becomes
excited, but the subsequent conduction delay as well as absolute and relative
refractory periods are longer than previous ones. Consequently, the next nor-
mal excitation tends to arrive at the AV node during an even earlier part of
the relative refractory period, resulting in yet longer conduction delays and
refractory periods. Such an incremental increase in the AV node conduction
delay (and thus the P,R wave interval) continues until the normal excitation
arrives at the node during an absolute refractory period, resulting in a blocked
conduction (and thus a missing R wave). When a conduction block occurs, the
AV node gains enough time to recover from its refractory period completely;
then, the process described above begins again.

Figure 16d shows an SPN implementation of a transmission element that
captures such cyclic process. The relative refractory period is represented by
the interruptable processing time of p0. The normal course of token movement
is p0 — pl — p2 ~ p3 — p0. However, when the element is excited during its
relative refractory period, the token travels the abnormal course p0 - p4 -
p5 — p0. The conduction delays through the element are represented by p2
and p4, while the absolute refractory periods are represented by p3 and p5.

For the Wenckebach phenomenon, the processing times for p4 should be set

Wy e

longer than for p2 while that for p3 should be longer than for pi At

mentioned in Section 2 that this element should hase “memaorc The <loment
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in this example registers whether the previous excitation has arrived during its
relative refractory period or not by the location of the token, i.e., whether the
token is in the abnormal loop or the normal loop. Note that the token takes a
longer time to go through the abnormal loop so that the chance of receiving the
next external excitation while it is in absolute or relative refractory period is
greater. To model common Wenckebach conditions, more than one abnormal
loop may be necessary. Such a Wenckebach model is presented in Subsection
4.5.

Several functional variations of the transmission element have been dis-
cussed here. Although their coverage is not exhaustive, most of common car-
diac arrhythmias can be modeled using the variations of the elements discussed
above. The SPN implementations of these are presented in Figure 16:

ethe basic uni-directional transmission element (Fig. 16a)
euni-directional transmission element with probability of block (Fig. 16b)
ebi-directional transmission element (Fig. 16c¢)

ea stunnable transmission element (Fig. 16d)

4.4 Interfacing the Elements

Here, we discuss ways to connect the SPN representations of rhythm and
transmission elements described above.
Case I: connecting a single output to multiple inputs. Figure 17a
shows a rhythm element sending excitation to two transmission elements.
When the thythm element sends an excitation, each of the two receivers (the
transmission elements) can be in two states— ready to receive the excitation
or not ready to receive. Thus, the number of states of the receivers is four
(= 22), and four transitions are used to implement this interface with SPN
(Fig. 17b). Each of the four transitions represent the following cases:

t0 — neither of the transmission element is ready fo receive

t1 — element A is ready to receive, hut nof elemeont B

t2 — both elements are ready to receive.
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t3 — element B is ready to receive, but not element A.
In general, when a single output is trying to distribute an excitation to N
inputs, 2" transitions are required.
Case II: connecting multiple outputs to a single input. Figure 18a
shows three rhythm elements sending excitation to a transmission element.
Since each sender may or may not be able to excite the receiver, six (= 2 x 3)
transitions are needed (Fig. 18b). In general, when N outputs are trying to

access to a single input, 2V transitions are required.

4.5 SPN Models of Cardiac Arrhythmias

SPN implementations of the cardiac arrhythmias discussed in Section 2 are
presented in Figures 3¢ to 8c. The results of simulation based on these
SPN’s are presented in Figures 3b to 8b, in which the normal P waves are
represented by short lines and normal R waves by long lines. The values of
the model parameters used in the simulation runs are listed in Table 1.
Atrial Premature Beat (Fig. 3c)

The block diagram model of Figure 3a is implemented with an SPN. Two “re-

settable pacemakers” are used to represent the normal (SA nodal) and ectopic
rhythm sources in the atria. Firing of one source resets the other source; thus,
after every beat the two sources race to initiate the next excitation. The pro-
cessing times at p0 and pl correspond with the autorhythmic intervals of the
ectopic and normal sources, respectively. The probability density function of
the processing time at p0 has a broader distribution than the one at pl, so
that with a certain probability the ectopic source can generate excitation at
a noticablly shorter interval than the normal source. The firing of t0 or t1
represents an excitation of the ectopic source, and it produces a P wave with
an abnormal morphology, denoted by a “P” with an overbar in the figure.
The firing of t2 or t3 represents an SA nodal excitation producing a normal P
wave. The rest of the model is similar to the normal heart madel. The places
p3 and p2 represent the AV nodal conduction delazy and it vobra o peonnd,

respectively, and they are parts of the “hasic uni-directional fransmission el-
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ement.” The ventricles are modeled by the “terminal” element (p4 and t5).
Firing of t5 produces a R wave. In the simulation result (Fig. 3b), the short
vertical lines with small squares at their tips represent P waves initiated by
the ectopic source (i.e., the premature beats).

Ventricular Premature Beat (Fig. 4c)

This model, whose block diagram was introduced in Fig. 4a, consists of two
“resettable pacemakers with refractory periods” and a single “bi-directional
transmission element.” The places pl and p0 are the autorhythmic interval
and absolute refractory period at the SA node, respectively, while p7 and p6,
respectively, are those at the ventricles. The conduction delay and absolute
refractory period at the AV node are represented by p3 and p4, respectively,
for the antegrade (normal) direction and by p2 and p5, respectively, for the
retrograde direction. Correspondence between firing of the transitions and
production of the waves are as follows: t2 and t3 for normal P, t5 for normal R,
t6 and t7 for ectopic (premature) R, and t1 for retrograde P. In the simulation
result(Fig. 4b), the R waves and P waves with small square on the tips denote
the ectopic R waves and retrograde P waves, respectively. Observe that a
pairing of a normal P wave and an ectopic R wave occuring at about the same
time is followed by neither a normal R wave nor a retrograde P wave. Nearly
sitnultaneous autorhythmic excitations at the two rhythm sources of the model
produce a normal P and ectopic R waves, but the resulting flows of excitations
have collided inside the transmission element and blocked each other.
Bigeminy (Fig. 5¢)

As described in Section 2, we use the concept of “reentrant pathway” to ex-
plain the mechanism of bigeminy. The model is almost the same as the normal
heart model. The only difference is the presence of the reentrant pathway rep-
resented by the basic uni-directional transmission element consisting of p3 and
p5. When the excitation is passed from the AV node to the ventricles (which
is modeled by the “terminal” element consisting of p4) via the transition t4,
the reentrant pathway is excited. The reentrant pathway delave the o ocitation

by an amount specified by the processing time af piand then pacee it e the
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ventricles via t5. Firing of t5 produces abnormal R waves which are denoted
by long lines with small squares in the simulation result(Fig. 5b). The time
intervals between a normal R wave and the succeeding abnormal R wave are
fairly constant, exhibiting a coupling interval. Note that a normal P wave
follows every abnormal R wave. In reality such a P wave cannot be easily dis-
cerned in an ECG tracing because of the typical, broad shape of the abnormal
R waves of bigeminy.

Second Degree AV Block (Fig. 6¢)

The topology of this model is exactly the same as that of the normal heart, but

in this model “uni-directional trasmission element with probability of conduc-
tion” is used to represent the AV node. Thus, the decision rule for the conflict
set {10, t1} is no longer determinstic (i.e., to preferentially choose t1 over t0).
Whenever a conflict exists, t1 is chosen over t0 with a probability equal to
the probability of conduction. Figure 6b is the result of simulation of a “4:3
Block,” where the probability of conduction is 2. Since in this model conduc-
tion blocks are independent events, they can occur in consecutive beats. In
reality, however, such consecutive blocks are rare. Making sure that conduc-
tion blocks are isolated can be accomplished at the expense of a more complex
model with more memory. Specifically, decision by the model to cause a block
in a particular beat must be influenced by whether or not a block has oc-
curred in the previous beat, i.e., the model must have a “memory” of an event
in the previous beat. Although such a model is not presented in this paper,
the model of the Wenckebach phenomenon described next contains a memory
feature of the same general type as that would be needed to obtain a more
accurate model of second degree AV block.

Wenckebach (Fig. Tc)

The block diagram of this Wenckebach model consists of two rhythm elements
and a transmission element(Fig. 7a). Two “basic thythm elements” are used
to represent the SA node (p0) and ventricles (p12). The single transmission
element is a “stunnable transmission element™ similar fo fhe cne b

in Subsection 4.3 and Figure 16d. but this element has foo cctra alinanmnal
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loops.” The loops, in the order of increasing transit times, are: (i)pl - p2 -
p3 — p4 - p8, which is the normal loop, (ii)pl — p2 - p3 - p5 - p9, (iii)pl - p2
- p6 — p10, and (iv)pl — p7 - p1l1. The processing times at p4, p5, p6, and pT7
(in the order of increasing length) represent the AV conduction delays (thus
the P,R intervals). Those at p8, p9, pl0, and pll are the absolute refractory
periods of the AV node. The relative refractory period is divided into three
sub-periods of equal lengths — early (p1), middle (p2), and late(p3). Each of
these sub-periods is assigned an interruptable processing time. An interrupt
occurs when the SA node (p0) excites while the token of the AV node is
in one of these relative refractory sub-periods, initiating an entry into the
corresponding abnormal loop. P waves are produced by the firing of t0, t1, t2,
t3, or t4, while R waves by the firing of 8, t10, t12, or t14. The simulation
result(Fig. 7b) clearly displays the Wenckebach phenomenon.
Wolfe-Parkinson-White Syndrome (Fig. 8c)

This model uses “basic” elements for the SA node (p0-autorhythimic interval)

and AV node (p3-conduction delay, p2-refractory period). The ventricles are
divided into two parts: one part receives excitation from the bundle of Kent
and produces delta waves, while the other part receives excitation normally
and produces normal R waves. Both of these are modeled with the “terminal”
rhythm elements (p5 and p6). The bundle of Kent is represented by the uni-
directional transmission element consisting of p4 (conduction delay) and pl
(refractory period). Delta waves and normal R waves are produced when {6
and t5 fire, respectively. P waves are produced when t0, t1, t2, or t3 fires. In
the simulation result(Fig. 8b) the delta waves are represented by short lines
with squares at the tips, and they are immediatedly followed by R waves as
they should. Note that in the model the two parts of the ventricles (p5 and
p6) could have been connected with a bi-directional transmission elements
since physiologically they are parts of a single block of tissue. It is clear
from the simulation result, however, that these two parts are excited almost
simultaneously so that collision of excitations in such a fransmic o o lonend

is evident. Thus. to achieve the most concise madeling of fhe TR cqnepee
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such an element is not included.

This section along with Section 2 has illustrated a systematic way in which
we can derive SPN’s for cardiac arrhythmia models. Specifically, the physi-
ological mechanism of an arrhythmia is first described as a signal flow block
diagram with rhythm and transmission elements. The block diagram may be
simplified greatly by removing physiological details unnecessary to character-
ize the P,R sequence of the particular arrhythmia under study. Such a high
level description can then be translated into an SPN in an element-by-element
fashion using the implementations presented in this section (and straightfor-
ward extensions of them if needed). Thus, we have a method to derive the
SPN structure (topology), initial token placement, and decision rules. The
last piece of information required to complete the model are the parameters,
i.e., probability distributions for the processing times and probabilistic desci-
sion rules. We emphasize that two sets of parameters assigned to the same
SPN structure can lead to two outputs drastically different from each other.
For example, the SPN structure for Bigeminy (Fig. 5c) can be programmed
to output a P,R sequence of Trigeminy, a different arthythmia class'!, just by
increasing the processing time at the place p3 by one second.

Given a P,R sequence to be modeled, some parameters such as the SA nodal
thythms and AV conduction delays have direct correspondence to the given
data and are thus relatively easy to assign; however, many other parameters
such as refractory periods cannot be directly observed from the data and must
be chosen intelligently. The parameter values listed in Table 1 are chosen so
that the simulation results match with the qualitative characteristics of a P,R
wave sequence for a given cardiac arrhythmia as described in Section 2, under

the constraint that each value chosen must be physiologically plausible.

ILAn abnormal R wave appears every three cycles in Troigemine in comfrast oo oory fwo
cycles in Bigeminy.
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5 Conclusion

5.1 Summary

This thesis has described a systematic procedure for constructing concise math-
ematical models capable of generating the P,R wave patterns characteristic of
different arrhythmias. In particular, there is a straightforward way in which
one proceeds from a phenomenological descriptions to a block diagram and
then to a stochastic Petri net. Fundamental to this modeling methodology is
the availability of electrophysiological explanations for the phenomena char-
acterizing various cardiac arrhythmias. The modeling methodology, in turn,
offers a general, abstract framework to synthesize and analyze physiological
hypotheses pertaining to electrical activities in the heart.

A key feature of the models presented here is the hierachical separation of
model structures and parameters. The model structure captures the partic-
ular aspects of cardiac physiology of importance in modeling an arrhythmia.
Specifically, the model structure is determined by the interactions among the
rhythm and transmission elements and dynamics of each of these elements.
The model structure characterizes the distinct features of various arrhyth-
mias at different levels of physiological detail. For example, while the normal
heart and atrial premature beat are distinguishable at the level of the signal
flow block diagram (i.e., compare Figures 2b and 3a), the normal heart and
Wenckebach are not (Fig.’s 2b and 7a). The later pair can only be distin-
guished by the inner dynamics of the transmission element at the AV node;
the corresponding Petri net structures (Fig.’s 2d and 7c) which reflect these
dynamics are indeed distinct from each other.

The parameters of the models, on the other hand, provide us with the
means for modeling the synchronization and control among the cardiac el-
ements and for including the expected level of statistical fluctuation in the
observed wave sequence. Although the parameters play a rele in arrhvthmia
characterization at a finer level than the model strucfure thes el peen

sible in complete characterization and are often pivetalin distinguizhing some
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arrthythmic phenomena. For example, as mentioned previously, the stochastic
Petri net in Figure 5 can produce wave sequences corresponding with both
Bigeminy and Trigeminy depending on the value of the conduction delay pa-
rameter for the reentrant pathway. Similarly, if the SA rate were sufficiently
slow in the Wenckebach model, the Wenckebach phenomenon would not be ob-
servable, as the AV node would have sufficient time to recover from refractory
periods between successive excitations.

The modeling methodology presented in this work is expected to be ap-
plicable to a wide range of electrical phenomena in the heart because of its
physiological basis. It is also flexible in the sense that modeling at various
complexity levels is possible. From the perspective of designing an arrhythmia
classification algorithm, being able to control the model complexity, in re-
sponse to the numbers and types of different classes considered, is an obvious

advantage.

5.2 Possible Extensions
Selection of model parameters

An important area for further work is development of algorithmms that estimate
the values of the model parameters to realize a desired P,R sequence. Since
the parameters tend to represent physiological quantities (e.g., SA rate), the
estimates should be within physiologically reasonable ranges of values. Pa-
rameter estimation is not only an integral part of model construction but also
likely to be the first stage of an arrhythmia classification algorithm. Note that
some parameters, such as refractory periods in most cases, are not directly
measureable from the wave sequence data. Consequently, in posing the pa-
rameter estimation problem one must include some analysis of how each SPN

parameter affects the model output.
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Design of classification algorithm

As mentioned before, a potential approach in classification is computation of
likelihoods by an iterative procedure. In particular, Doershuck[2] has pre-
sented an iterative, distributed algorithm for computation of state trajectories
in the “interacting Markov chain” models, and the computation of the like-
lihoods involve the evaluation of such estimated trajectories. An important
aspect of this approach is aggregation of parts of the model in order to facili-
tate computation. That is, some selected portions of the model are drastically
simplified by statistical approximations during certain iterative steps of state
trajectory estimation. Applying a similar computational procedure to SPN
models is expected to be a promising alternative because of their natural hi-
erachical model structure which provide a natural basis for aggregation. Also,
in the Petri net literature, work directed towards statistical characterization
of various dynamic properties of SPN’s are available (e.g. [9] and [14]); these
might be useful in approximating, in a statistically aggregated manner, the

dynamics of various parts of the model.

Generalization of modeling methodology

Another possible direction of research is to extend the “physiological modeling”
concept to describe a wider variety of electrical activities in the heart. A
potentially useful extension is to partition the cardiac conduction system at
a finer level. For example, in this work the ventricles have been considered
as a single entity within the cardiac conduction system. Although such a
treatment of the ventricles has been sufficient for the purpose of describing
the P,R wave sequences of arrhythmias, a wider range of ECG phenomena
may be characterized with SPN models by partitioning the ventricles in some
way and dealing with each of the elements of such a partition as though it is

capable of independent rhythmic and conductive activities.
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Figure and Table Captions

Figure 1

Building blocks for the signal flow models: a rhythm element(a) and transmis-

sion element(h).

Figure 2

Models of normal heart P,R sequences: (a)-a physiologically motivated sig-
nal flow model, (b)-a simplified signal flow model, (¢c)-SPN implementation
of (b) using the place-timed format, and (d)-SPN implementation using the

{ransition-timed format. A P,R sequence output of model (c) is shown in (e).

Figure 3
Atrial premature beat: signal flow model(a) and an example of P,R sequence(b)

obtained by the simulation of the SPN implementation(c) of the model.

Figure 4
Ventricular premature beat: signal flow model(a) and an example of P,R se-
quence(b) obtained by the simulation of the SPN implementation(c) of the

model.

Figure 5
Bigeminy: signal flow model(a) and an example of P,R sequence(b) obtained

by the simulation of the SPN implementation(c) of the model.

Figure 6
Second degree AV block: signal flow maodeltat and an conmpde b T e

quence(b) obtained by the simulation of the SPN implementationtc) of the
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model.

Figure 7
Wenckebach phenomenon: signal flow model(a) and an example of P,R se-
quence(b) obtained by the simulation of the SPN implementation(c) of the

model.

Figure 8
Wolfe-Parkinson-White syndrome: signal flow model(a) and an example of
P,R sequence(b) obtained by the simulation of the SPN implementation(c) of

the model.

Figure 9

An example of Petri net.

Figure 10
A portion of a transition-timed SPN.

Figure 11
An example of place-timed SPN.

Figure 12
quivalence of two SPN formats: the place-timed SPN fragment in (a) can be
translated into the transition-timed format as shown in (b), using additional

nodes.

Figure 13

A modified place-timed format that includes interrptable processing time:
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the SPN fragment in the modified place-timed format shown in (a) is dy-
namically equivalent with that in the transition-timed format shown in (b).
Also, the SPN fragment in (c¢) (modified place-timed) is dynamically equiva-
lent with that in Figure 10 (transition-timed), which cannot be translated into
the standard place-timed format under the “race” execution policy defined in

the reference [6].

Figure 14

Fundamental units for SPN implementation of signal flow models.

Figure 15
SPN implementations of common rhythm elements. The processing time as-
signed to a places is period of autorhythmicity (denoted as “rhythm” in the

figure), absolute refractory period (“relra”), or duration of stunning (“stun”).

Figure 16
SPN implementation of common transmission elements: (a)-basic uni-direc-
(1P 4]

tional, (b)-uni-directional with probability of conduction “q”, (¢)-bi-direction-

al, (d)-uni-directional and stunnable.

Figure 17
An example of interfacing SPN blocks — fan-out: (a)-The rhythm element
sends its output to two transmission elements. (b)-The SPN implementation

of interface of the three elements in (a).

Figure 18
An example of interfacing SPN blocks — fan-in: (a)-Each of the three rhathm
elements can activate the transmission element. (ho The S qmplovontation

of interface of the four elements in (a).



Table 1

Model parameters: The processing times and probabilistic decision rules for
the models in Figures 2 to 8 are shown. The processing times take the discrete
values listed here. They are uniformly distributed among the indicated set of

values unless noted otherwise. The unit of time is the second.
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Table 1: Model Parameters

Normal Heart (Fig. 2c)

pO (SA rhythm) {0.92, 0.96, 1.00, 1.04, 1.08 }
p1 (AV refractory period) {03}
p2 (AV conduction delay) {0.08,0.10}
p3 (Vent. refractory period) {03}
Atrial Prematur (Fig. 3c)
pO (ectopic rhythm) {0.6,0.8,1.5}"

*non-uniform distribution: Prob(0.6) = Prob(0.8) = 0.15; Prob(1.5) = 0.70.

p1 (SA rhythm) {0.92, 0.96, 1.00, 1.04, 1.08 }
p2 (AV refractory period) {03}

p3 (AV conduction delay) {0.08,0.10}

p4 (Vent. refractory period) {0.3}

(continued to the next page)



(Table 1 continued)

Ventricular Prematur (Fig. 4c)
pO (SA refractory period)
p1 (SA rhythm)
p2 (retrograde conduction delay)
p3 (AV conduction delay)
p4 (AV refractory - normal)
p5 (AV refractory - retrograde)
p6 (Ventricles refractory)

p7 (ectopic rhythm)

{03}

{0.92,0.96, 1.00, 1.04, 1.08 }
{0.14,0.16}

{0.08,0.10}

{0.3}

{03}

{0.3}

{0.6,0.8,15)*

*non-uniform distribution: Prob(0.6) = Prob(0.8) = 0.15; Prob(1.5) = 0.70.

Bigeminy (Fig. 5¢)
p0 (SA rhythm)
p1 (AV refractory period)
p2 (AV conduction delay)
p3 (reentrant conduction delay)
p4 (Vent. refractory period)

p5 (reentrant refractory period)

(continued to the next page)

{0.92,0.96, 1.00, 1.04, 1.08 }
{03}

{0.08,0.10}

{0.7,08)}

{05}

{0}

Table 1



(Table 1 continued) Table 1

nd Degree AV Block (Fig. 6¢)

pO (SA rhythm) {0.92, 0.96, 1.00, 1.04, 1.08 }
p1 (AV refractory period) {03}

p2 (AV conduction delay) {0.08,0.10}

p3 (Vent. refractory period) {03}

Decision Rule for { t0, t1 } Prob(t0) = 0.25; Prob(t1)=0.75.

Wenckebach (Fig. 7c)

pO (SA rhythm) {0.92, 0.96, 1.00, 1.04, 1.08 }
p1 (AV relative ref. sub-period) {0.16 }

p2 (AV relative ref. sub-period) {0.16}

p3 (AV relative ref. sub-period) {0.16}

p4 (AV conduction delay) {0.16, 0.20}

pS (AV conduction delay) {0.20,0.24}

p6 (AV conduction delay) {0.24,0.28}

p7 (AV conduction delay) {0.28,0.32}

p8 (AV absolute refractory) {0.48}

p9 (AV absolute refractory) {0.56}

p10 (AV absolute refractory) {0.68}

p11 (AV absolute refractory) {0.80}

p12 (Vent. absolute refractory) {0.28,0.32,0.36 }

(continued to the next page)



(Table 1 continued) Table 1

Wolfe-Parkinson-White (Fig. 8¢)
pO (SA rhythm) {0.92,0.96, 1.00, 1.04, 1.08 }
p1 (Bundle Kent refractory) {0.3}
p2 (AV refractory) {03}
p3 (AV conduction delay) {0.12,0.14}
p4 (Bundle Kent conduction delay) {0.08,0.10}
p5 (Vent. refractory period) {03}

p6 (Vent. refractory period) {03}



