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Abstract

Spatial coherence constraints are commonly used to regularize the problems of recon-
structing dense visual fields like depth, shape, and motion. Recent developments in
theory and practice show that the local nature of spatial coherence constraints allows
us to solve single-frame reconstruction problems efficiently with, for example, multi-
resolution approaches. While it is reasonable to impose temporal as well as spatial
coherence on the unknown for a more robust estimation through data fusion over both
space and time, such temporal, multi-frame extensions of the problems have not been
as widely considered, perhaps due to the different and severe computational demands
imposed by the sequential arrival of the image data. We present here an efficient
filtering algorithm for sequential estimation of dense visual fields, using stochastic
descriptor dynamic system models to capture temporal smoothness and dynamics of
the fields.

Theoretically, standard Kalman filtering techniques (generalized for stochastic
descriptor systems) are applicable to solving temporally-extended visual field recon-
struction problems, but their implementation is practically impossible because of the
high dimensionality and because the time-varying nature of such problems requires
on-line propagation of large covariance matrices. By exploiting the inherent local
spatial structure of the reconstruction problem, however, we have developed filtering
techniques that effectively approximate the information form of the Kalman filter.
This is achieved by replacing covariance propagation steps with what are essentially
low-order spatial model identification steps, in which spatial models with a strictly
local support are constructed based on covariance information. In effect, we are de-
composing the multi-frame problem into a series of Bayesian single-frame problems,
in which the spatial prior model used reflects knowledge from the previous image
frames. The resulting filtering algorithm has memory and computational require-
ments of O(N) each for a frame of data, where N is the number of pixels in a frame,
and, additionally, the filter is implementable in parallel.

As low-level visual field reconstruction is often considered to be a front-end in a
hierachical visual processing system and thus might be VLSI-implemented, we have
also designed a square root version of the information Kalman filter as an alternative
algorithm with a reduced numerical dynamic range. The square root information
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filter features an efficient, iterative computational structure and is parallelizable as
well.

Experiments have shown several beneficial effects of our multi-frame formulation
applied to the sequential estimation of optical flow. For example, temporal assimila-
tion of the data makes the reconstruction more robust to noise. Also, there are cases
where the classic "aperture problem" of motion vision cannot be resolved satisfac-
torily by spatial regularization alone but is dramatically resolved by the additional
temporal coherence constraint.

Thesis Supervisor: Alan S. Willsky
Title: Professor, Electrical Engineering
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Chapter 1

Introduction

Computational vision is a field of study that explores the design and analysis of sys-

tems that process images of natural scene to produce a simple, stable, and useful

set of descriptions. The field is interdisciplinary in nature but is especially active in

robotics where design of artificial systems able to make decisions autonomously based

on visual inputs is of a fundamental importance and in psychophysics where compu-

tational theory guides researchers to formulate functional and structural models for

the components of complex nervous systems. There is an enormous opportunity for

theories of signal processing to contribute to computational vision. This thesis is

concerned with applying stochastic system and estimation theories to a problem of

general interest in computaional vision - reconstruction of so-called low-level visual

fields. A major focus is placed on attaining implementational efficiency in processing

sequences of images obtained as large, two-dimensional (2-D) arrays of brightness'

values measured by an eye or a camera.

1.1 Low-level visual field reconstruction

A computational vision problem is often decomposed into subproblems. By far, the

most popular approach is to characterize the computational task by a "bottom-up"

hierarchical system of mostly independent processing modules [33, 52]. In the early

'i.e., light intensity
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or low-level stages, structural and functional properties such as the depth, motion,

and shape 2 of the imaged surfaces are inferred from the measurements while in later

(higher-level) stages such rudimentary inferences are organized to enable the system

to recognize and characterize various aspects of the objects to which the surfaces

belong, leading to "understanding" of the visual environment. Low-level visual field

reconstruction is an image processing problem in the very early stage of this hierar-

chical system. It aims to recreate a dense scalar or vector field of a particular feature

of the visible surfaces.

Reconstruction of dense visual -fields can be regarded as a problem in inverse

optics, since physical properties of 3-D surfaces are to be recovered from the 2-D

images that the surfaces generate [31, 73]. The inverse problems arising in visual field

reconstruction are generally ill-posed [7], as the measurements from images do not

constrain the desired solution sufficiently. An established approach to making such

problems solvable is to impose an additional constraint on the solution by assuming

that the -field to be reconstructed varies "smoothly" over space [7, 33, 71]. A physical

basis for such an assumption, commonly known as the smoothness or spatial coher-

ence constraint [71], is that most surfaces in natural scenes exhibit some geometrical

smoothness and structural integrity ( 44 rigidity") on the whole. This approach has

been successful in a wide variety of visual field reconstruction problems including

depth interpolation [21, 22], shape from shading [32, 36, 37], and optical flow com-

putation [34, 30]. Mathmatically, these reconstruction problems are formulated as

least-squares problems in which the spatial coherence constraints are implemented as

cost terms penalizing large spatial derivatives in the fields. Solution of such least-

squares problems generally involves inversion of a partial differential operator over a

spatial domain (i.e., the image frame), to which efficient numerical methods such as

multigrid methods are applicable [72].

2which usually refers to a dense field of unit vectors perpendicular to the surface
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1.2 Multi-frame visual field reconstruction

Much of the research effort on visual field reconstruction to this date has been fo-

cused mostly on obtaining a single frame of estimates; only recently have there been

attempts to reconstruct multiple frames of estimates for time-varying visual fields. In

multi-frame visual field reconstruction, the measurements are assimilated temporally

as well as spatially to compute each frame of estimates. Thus, a multi-frame ap-

proach can be expected to provide us with more robost and accurate estimates than

the corresponding single-frame approach applied repeatedly to the individual frames

in an image sequence. The relatively slow progress in proliferation of multi-frame

reconstruction methods can be attributed to their apparent computational complex-

ity. Computational demands for multi-frame algorithms are much greater than their

single-frame counterparts, as the measurements are distributed over a higher dimen-

sional (space-time) domain.

Our main goal in this thesis is to develop a general, efficient computational frame-

work for multi-frame visual reconstruction problems. We also demonstrate the effi-

ciency and robostness of the resulting algorithms, as well as the improved accuracy

in the estimates computed with them, by applying the framework to computation of

several time-varying visual fields including optical flow.

1.3 Probabilistic framework

We formulate the multi-frame reconstruction problems by applying stochastic esti-

mation theory. An estimation theoretic interpretation of a single-frame visual recon-

struction problem is possible by treating the spatial coherence constraint as the prior

model in a Bayesian estimation problem [17, 65, 71]. Similarly, a multi-frame prob-

lem can be considered as an estimation problem by modeling the time-varying visual

field as a stochastic process, for which a Kalman filter can be used to compute the

estimates sequentially in time. Although the sequential computational environment

provided by Kalman filter is certainly desirable, the large dimension of the state vari-
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able (typically on the order of the number of pixels in the image frame) makes the

filter computationally unfeasible in its optimal form. Kalman filtering solutions for

multi-frame visual reconstruction problem have been proposed in a variety of contexts

[55, 71, 27, 10, 69]; however, in each of these cases some ad hoc simplifying assump-

tions are made in order to avoid the computational complexity issues. For example, in

none of these previously proposed methods, is the uncertainty in the dynamic model

for the time-varying visual field properly handled. Normally, in an exact implemen-

tation of a Kalman filter such uncertainty, which is expressed via the incorporation

of 44 process noise", can serve the purpose of making the filter stable against modeling

errors and responsive to new data [4, 16, 45]. Certainly, a filtering algorithm based on

a more systematic approximation of Kalman filter is desirable. This thesis offers such

algorithms. Specifically, we first formulate a general Kalman filtering solution for

multi-frame visual reconstrucition problems and then design various approximation

techniques that yield near-optimal and highly efficient solutions.

1.4 MRF-based approximation of Kalman filter

The approximate Kalman filtering techniques presented in this thesis are based on the

conjecture that faithful statistical specifications of visual fields of interest are possible

using strictly local spatial models. Specifically, to estimate a time-varying visual field

sequentially, we propagate a Markov Random Field (MRF) model of the field over

time and update the model using the measurements from the most recent image at

each time step. MRF models are used extensively in single-frame visual reconstruction

problems, e.g., [17, 11, 71, 29]; they are quite versatile modeling tools especially

suitable for the important problem of estimating the locations of discontinuity in

visual fields [17, 11]. Used in reconstruction of entirely smooth fields, an MRF-

based formulation yields spatially local specifications for the estimated field, and

explicit estimates can be computed from these specifications using efficient numerical

techniques such as multi-grid methods [73, 71] as mentioned previously. That is, the

locality of the specifications enables efficient computation of the estimates.
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Essentially, the design of approximation techniques for the Kalman filter in multi-

frame visual reconstruction amounts to the development of algorithms that efficiently

manages an MRF model for the time-varying visual field by updating the model

based on the temporal dynamics and image measurements. The algorithms are ap-

proximations of a Kalman filter because, as detailed in the thesis, the exact Kalman

filtering algorithm in general yields a non-local description of the visual field. We

will demonstrate that these approximate Kalman filters perform nearly the same as

the optimal filter, supporting our view that the visual fields of interest are indeed

faithfully described locally in space, thus enabling us to construct efficient space-time

processing algorithms for multi-frame reconstruction.

1.5 Contributions

Contributions of this thesis are summarized as follows:

To visual field reconstruction

A probabilistic framework based on maximum likelihood estimation is devised for

visual reconstruction problems, so that spatially and temporally distributed data can

be fused efficiently for statistically optimal estimation of visual fields. Specifically, a

general formulation for multi-frame visual reconstruction problems is obtained using a

descriptor dynamic system model, and an information Kalman filter is derived based

on this dynamic model, providing a sequential solution to multi-frame problems. Al-

though the computational complexity of this Kalman filter is too high for a practical

implementation, the filter can be approximated effectively by various numerical tech-

niques based on the hypothesis that at every stage of estimation the (estimated)

visual fields can be accurately modeled using locally-specified MRF's.

To filtering theory

Some aspects of the proposed filtering algorithms for visual reconstruction are related

to several recent developments in signal processing. First, in [62], the use of the max-

1 7



imum likelihood estimation formalism is shown to be equally applicable to descriptor

dynamic systems, yielding a generalization of standard Kalman filter algorithms. Us-

ing this formalism, an approach to derive an information Kalman filter for a descriptor

system is developed in this thesis. Also, the Markovianity condition for a Gaussian

random field, expressed in terms of the elements of the associated information matrix

[44], is used to relate MRF modeling and the spatially local approximations for the

information Kalman filter algorithms developed in this thesis.

The approximate Kalman filtering techniques should be applicable to general

large-scale, multi-dimensional filtering problems. Specifically, the approximation

techniques can be considered to be extensions of the techniques based on reduced-

order modeling such as the "reduced update" and "strip filter" approximations for the

2-D Kalman filter [78, 57, 79, 76]. Also, a novel, iterative implementation of square

root information Kalman filter is presented.

To optical flow computation

Optical flow is a dense field of perceptual motion vectors. Estimation of the motion

field is particularly important in multi-frame visual reconstruction in developing a

temporal dynamic model for any visual field, as the motion field establishes inter-

frame correspondence of points in a dynamic field. Many visual processing schemes,

including dynamic "structure-from-motion" (e.g., [27, 5]), use optical flow as their

input. The proposed filter is used to estimate time-varying optical flow to demonstrate

that a particular multi-frame formulation, essentially a simple temporal extension of

the gradient-based approach due to Horn and Schunck [34], can lead to estimates

more robust and accurate than traditional formulations, with essentially no increase

in computational complexity.

1.6 Overview of the thesi's

In Chapter 2, we review optical flow computation methods. The chapter serves

as both an introduction to visual reconstruction by providing a case study of the

18



single-frame problems and a background for the multi-frame optical flow formulation

presented later in the thesis. Then, a general, estimation theoretic formulation for

the single-frame reconstruction problems is presented in Chapter 3. We introduce

a maximum likelihood estimation framework in which the pieces of statistical data

necessary for reconstruction can be combined efficiently. Extending the framework in

time, a general formulation for the multi-frame reconstruction problems is developed

in Chapter 4. This multi-frame formulation constitutes a main conceptual contri-

bution of the thesis. The solutions for the multi-frame problems can be computed

sequentially using the optimal Kalman filtering algorithms, including information and

square root information filters, derived in the chapter. These Kalman filters carry

state variables with large dimensions and hence raise computational complexity issues

in implementation. These issues are addressed in Chapter 5, where various approx-

imation techniques for the Kalman filter algorithms are proposed and verified. We

approximate the information matrices and their square root versions as strictly local

specification for MRF's to reduce computational complexity. Further, we propose

methods to compute such MRF specifications efficiently by presenting a series expan-

sion technique for matrix inversion in the information filter as well as an iterative

technique for unitary factorization in the square root information filter. The numeri-

cal experiments presented in this chapter show that the approximated filters perform

near-optimally, demonstrating the effectiveness of these efficient filtering algorithms

for multi-frame visual reconstruction. Also, the numerical techniques featured in

these algorithms offer some novel, iterative approaches to general large-scale filtering

problems. In Chapter 6, we come back to the optical flow problem, as we examine

performance of the filtering algorithms in multi-frame optical flow computation. We

conclude the thesis in Chapter 7 with a summary and remarks on possible extensions

of the presented work.
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Chapter 2

Computing Motion

The relative motion between objects in a scene and a viewer, such as a camera with

which to record images, gives rise to the apparent motion of objects in an image

sequence. Computation of such perceptual motion from image sequences is of consid-

erable interest in the study of vision - both for the development of artificial visual

systems in robotics and for the modeling of biological visual systems. For example,

the computed apparent motion in an image sequence can provide us with information

necessary to detect object boundaries [56, 29] and to derive 3-D motion and structure

of the objects in the image frame [48, 59]. Computing motion from image sequences

is also important in applications in fields outside of robotics and brain sciences, such

as in assessing motility of the heart [13, 64] and in interpretation and prediction

of marine and atomospheric processes [51, 12]. Motion information is also useful

for managing the image sequences themselves as it offers a basis for image sequence

compression for efficient transmission and storage [60, 61].

There are two major approaches in computing apparent motion in image se-

quences. One of these is based on extracting a set of relatively sparse, yet highly

discriminatory features from each image frame in the sequence. These features are

matched from frame to frame, and the displacements of the locations of the fea-

tures yield a set of sparse but relatively reliable 2-D motion vectors. Computational

complexity involved with this method, especially for the inter-frame matching or the

correspondence problem, is in general quite high [1, 2]. The other method is based
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directly on the measured pixel values in the images, and it generally yields a dense

vector field of apparent motion, or optical flow'. Efficient computation of optical

flow serves as a major motivation for designing the algorithms for visual field re-

construction as described in the rest of this thesis. In this chapter, we review and

discuss a well-known approach to the computation of a single frame of optical flow.

A new method to sequentially compute time-varying optical flow will be described in

Chapter 6.

2.1 Computing Optical Flow

Let us define f (s) to be the 2-D optical flow vector where s is the indices for the space

over which the optical flow is defined, i.e., S = [S1, S2 ]T is the coordinate vector for

the 2-D image frame. Let us also define I(st) to be the image brightness value or

gray level at s where t is the temporal index specifying a frame in the image sequence.

The problem of optical flow computation is to deduce f (s) from I(s, t) - We assume

for the time being that f(s) and I(st) are continuous functions of their respecitve

indexing variables.

Based on a straightforward intuition, we can formulate an optical flow compu-

tation problem based on matching brightness values in successive frames of images.

Specifically, let lo(s) = I(s, t) and I, (s) = I(s, t + At). Then, assuming that f (s) is

constant over a certain subregion in the image frame and that object brightness does

not change over the At time interval, the following criterion allows us to compute an

optical flow field [60, 3]:

min II,( s + (At)f lo(s)l.
f

Obtaining this minimum often involves a non-linear search. In another method based

on the same intuition, a flow field is computed from the difference in the phases of

Fourier transforms of Io(s) and Ii(s) [24]. The assumption that the optical flow is

lalso called image flow
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uniform over an image region is an obvious weakness of these approaches, as the

flow vectors in general vary from one pixel location to anothor. By characterizing

the relationship between the measured brightness values and the flow vectors at the

resolution of a single pixel, however, this assumption can be relaxed. This can be

achieved by characterizing the flow vectors using differential variations of the image

brightness, as described in the pioneering work by Horn and Schunck [34]. For the

rest of this chapter, we focus on optical flow computaion based on such an approach.

2.2 Brightness Change Constraint Equation

The brightness change constraint equation relates the optical flow vector f (s) with

the spatial and temporal gradients of the image brightness I(s, t). The principle

behind this equation is that the brightness value associated with a given physical

point (i.e., a point on the surface of an imaged object) in motion can be considered

to be invariant for a sufficiently long duration, so that the position of the point can

be tracked by referencing the same brightness value. Mathematically, such invariance

of the brightness value can be expressed as

d-- I(S' t) = 0 (2.1)
dt

where s is the coordinates of the image of the moving point. Note that the coordinates

associated with a physical point, s, vary with time in general. By expanding the left

hand side of the equation in terms of the partial derivatives, we have the brightness

change constraint equation (BCCE):

OI aI ds, ai ds2Tt + ii'--y + -- = 0. (2.2)
91 t aS2 dt
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2.2.1 Notation

In this thesis, we use matrix notation for the BCCE:

g(s) = h(s)f(s) (2-3)

where we define:

• the opticalflow vector

d
MS) ds dt

AS) Tt d (2.4)
L f2(S) j d, j

• the negative of the temporal gradient

g (S) (2.5)jt

• the spatial gradient

h(s) (2.6)
19S 081' aS2

2.2.2 The Aperture Problem

The brightness change constraint equation (2.3) gives only one constraint for the two

components of the flow vector. This is the essence of a phenomenon called the aperture

problem which states that unique motion cannot be detected by local measurements

of the changes in the brightness values alone [34]. Specifically, consider representing

the optical flow vector f (s) in a local coordinate system where one of the two axes

points along the spatial gradient vector h(s). The component of f (s) along this spatial

gradient axis, denoted as f ' (s), is given by

f'(S) = h(sLf (s). (2.7)
11h(s)JI
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Then, by dividing both sides of (2-3) by 11h(s)JI we obtain

f I (S) = 9(s) (2-8)
11h(s)11'

Thus, the brightness change constraint equation yields only the component of the

flow vector along the spatial gradient vector.

Traditionally, the aperture problem is associated with perceptability of motion of

a translating straight edge. Typically, f ' (s) is the only locally observable quantity

when determining movements of edges in image sequences [30], i.e., f 1 (s) is the

apparent inter-frame displacement of a point on a straight edge.

2.2.3 Other implications of BCCE

1. Motion cannot be perceived from a sequence of completely feature-less images.

This is reflected mathematically in the brightness change constraint equation

(2.3) in such a way that when the spatial gradient h(s) is zero the equation does

not constrain the optical flow vector at all.

2. The fundamental assumption behind BCCE, (2.1), implying invariance of the

brightness associated with a moving point, is not strictly correct for most natural

image sequences. For example, illumination for a point on a moving surface

can vary with time due to continuous change in the geometrical configuration

between the surface and the lighting source. In practice, however, such variation

in illumination occurs at a much slower time scale than movement of the point,

so that the assumption (2.1) is reasonable.

3. Discrete implementation of BCCE requires several additional considerations.

These will be discussed in Section 2.4.
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2.3 Gradient-based Optical Flow Computation

2.3.1 Computing optical flow: a basic formulation

A well-known method for optical flow computation is the optimization approach in-

troduced by Horn and Schunck [34]. In this formulation, the sum of two cost func-

tionals of the unknown flow vectors is optimized. One of the cost terms penalizes

flow vectors that deviate too much from satisfying the brightness change constraint

equation (2.3) for a given set of brightness measurements. The other term, which

is necessary because of the aperture problem associated with the brightness change

constraint equation, forces the flow vectors to vary smoothly over space. Specifically,

the "brightness constraint" cost term based on (2.3) is:

11g(s) - h(s)f (s) 11' (2.9)

which underconstrains the flow vector because the vector has two components. As the

necessary, additional constraint for the flow vector, Horn and Schunck have proposed

to use the "smoothness constraint"' cost term

2 2 219 a f 19 f
- f (2.10)I�S_ Vs 1 1982

The optical flow computation problem is, then, to find f(s) that minimize the sum

of these two cost terms for a fixed t:

11 2 + It 19 2J=f 11g-hf f ds (2.11)
N

where the domain of integration D is often the entire image frame and /,t is a fixed

optimization parameter.

Commonly, the optimization problem is solved by a two step process: (i)derivation

of an implicit form of the solution via variational calculus and (ii)computing the

2 Following terminolgy in computational vision, we use the word "constraint" to refer to a quadrac-
tic penality term in weighted least-squares problems.
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explicit solution by an iterative numerical technique. In the next chapter, we present

a maximum likelihood estimation approach to obtain an equivalent solution.

2.3.2 Spatial coherence constraint

The smoothness constraint (2.10) is a form of spatial coherence constraint, under

which we essentially assume that the flow vectors within a local subregion of the

image frame are almost identical. Such a constraint is reasonable for optical flow

computation because in most practical cases motion in image sequences is generated

by smooth surfaces undergoing rigid motion or deformation; thus, neighboring points

on the surfaces tend to have similar velocities.

A spatial coherence constraint implies stiffness and smoothness of the imaged

surfaces [30]. This is obviously violated along most object boundaries. More so-

phisticated versions of the constraint have been proposed to address the problems

at object boundaries [58, 671 with limited success. Spatial coherence is essentially a

local constraint and cannot capture global characteristics of boundaries in images.

Nevertheless, spatial coherence constraints are considered to be important mathe-

matical components and hence are widely used in reconstruction of a variety of visual

fields, including depth and shape as well as optical flow [7]. They tend to be expressed

as first and/or second order differential cost terms, such as (2.10), in optimization for-

mulations. An important mathematical characteristic of spatial coherence constraints

is that they have spatially local support, i.e., derivatives are local properties of the

unknown fields. This characteristic is a key feature of the low-level visual reconstruc-

tion problems in terms of their computational tractability, which will be discussed in

detail in this thesis.

2.3.3 Optical flow along a contour

Many problems in vision require computing optical flow not over a 2-D region in the

image frame but along a known contour line (edge). Hildreth [30], interested in quanti-

fying motion of edges in image sequences, has formulated an optical flow computation

26



problem which is essentially a I-D version of Horn and Schunck's formulation:

2 2

ic f I- h f + tt a f ds (2.12)
fc 11h1l as

where C is a 1-D domain of integration representing a (possibly closed) contour and

the I-D spatial index s now denotes the location along this contour. The second term

in the integral is the "observation constraint" relating the measurements made on

the contour to the optical flow vectors. Thus, the apparent contour displacements

over time and the unit normal vectors along the contour -A- are the inputs to
11h1l

the optical flow computation algorithm instead of the brightness gradients'. We have

discussed previously that the observation constraint in (2.12) is exactly the BCCE

(2.3) normalized by 11h(s)JI. In the sequel we refer to the optical flow along a contour

as the "1-D optical flow", while the optical flow over an image region as the "2-D

optical flow".

2.4 Discretization Effects on Optical Flow Com-

putation

In practice optical flow is computed over a discrete grid instead of a continuous

domain. In this section we discuss the effects of discretizing the gradient-based flow

computation method presented above. We also propose some practical techniques to

reduce such discretization effects.

2.4.1 Signal bandwidths and optical flow

The brightness signal I(s, t) is typically obtained as a sequence of spatially discrete

images. Let us first consider the effects of such signal sampling on motion perception.

By assuming that the optical flow is constant, f, over space and time, Martinez [54]

has derived the following relationship between the spatial and temporal bandwidths

,3although in practice brightness gradients are often used because f ' can be difficult to measure
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of the brightness signal and the magnitude of the optical flow:

f2t = f2s� I fl I + f2.� I f2 1, (2.13)

where n'i, f2�'2 and fit are the spatial and temporal bandwidths of the brightness

I(s, t) and f, and f2 are the components of the flow vector f - An implication of this

equation is as follows: Suppose that a given brightness pattern lo(s) is translated

with a constant velocity f and that we are to sample the resulting brightness signal

I(s, t) and redetermine the velocity from the sampled images. To correctly perceive

the motion from the sampled image sequence we need to avoid aliasing. The required

minimum spatial sampling rates are determined by the spatial bandwidths R., and f2,2

of the original brightness pattern lo(s). According to (2.13), however, the temporal

sampling rate is a function of not only the bandwidths of the original image Io(s)

but also the magnitudes of the velocity components. Thus, for a given scene Io(s)

and optical flow f, there exists a minimum temporal sampling rate for undistorted

motion perception. Martinez notes that temporal undersampling is often a problem

in accurate motion estimation in typical video (e.g. TV) signals.

2.4.2 Temporal sampling and BCCE

Let us now consider the effects of temporal sampling on the BCCE. Let the sampling

interval be At. Then a discrete version of the brightness invariance principle (2.1)

can be written as

I(S +As, t + At) - I(S' t) = 0, (2.14)

where

As = (At)f(s).
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By performing a Taylor expansion on (2.14) we obtain

0 ai (At)
+ at

a2j 1 a2j (At)2 92I
at (AS)(At) + _(A S)T

S 2 'As) + 2 at-2

+ - - - (2.16)

Then, by substituting (2.15) and dividing both sides by At, we can reduce Equa-

tion (2.16) to BCCE (2-3), if all the second order partial derivatives are zero, i.e.,

192I 92I a2j
__ - .= 0 0 and = 0. (2.17)190t I �� I at2

These derivatives are all zero if and only if the brightness is linear with respect to its

coordinates, i.e.,

I(S 7 t) = [C3, C21 S + C1 t + CO (2.18)

for some constants co, . . . , c,3. Although we are not likely to encounter such an ideal-

ized brightness signal in practice, conditions like (2.17) and (2.18) tend to be approx-

imatedly satisfied regionally in typical image sequences. In subregions of (sampled)

images where (2-17) or (2.18) is badly violated, however, we cannot expect BCCE to

provide us with correct information about the optical flow vectors.

2.4.3 Noise and brightness gradients

So far we have not discussed the effect of noise in obtaining the spatial and temporal

gradients from samples of the brightness signal. Measuring gradients from images is

a notoriously noise-sensitive process. Suppose the measurement P(S, t) of the true

brightness values I(s, t) is corrupted by an additive white noise n(s, t) with a variance

201

V(s, t) = I (s, t) + n(s, t).
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If the brightness gradients are computed by first order differencing, e.g.,

I'(Sl + A, S2, t) I'(51, S2, t)

I(Sl + A, S2, t) I(S1, S2 7 t) ) + - ( n(s, + A, S2, t) - n(s, , S2, t)

1 2then the variance for the corresponding additive noise increases to . or . Ideally, the

sampling interval, A, should be small, but a smaller A leads to a larger effect of noise.

Thus, gradient computation tends to amplify the effect of image noise, and for this

reason the images are typically low-pass filtered to increase the signal-to-noise ratio

before gradient compuatation. A simple and effective way to perform this is by some

local spatial averaging of the image.

2.4.4 Techniques to reduce the discretization effects

Presmoothing the brightness

A way to reduce the effects of signal sampling 4 on BCCE is to intentionally blur the

images before gradient computations. Kearney et al. [42] advocates such presmooth-

ing because

• The second and highter order brightness gradients are diminished (so that (2.17)

is approximated more closely over the sampled signal).

• The effects of noisy brightness measurement are reduced by averaging.

In another words, presmoothing leads to two desirable effects of decreasing the high

frequency components in the signal (to facilitate application of the BCCE) and the

noise (for more accurate computation of the image gradients). Additionally, a low-

pass filtering effect of presmoothing decreases the spatial bandwidths Q,', and Q,,2

which in turn, via (2.13), reduces the temporal sampling rate required to avoid alias-

ing. Another way to look at this is

4more specifically, the effects of temporal undersampling. We assume that the spatial sampling
rates satisfy the Nyquist criterion (high enough to avoid spatial aliasing). For typical images of
natural scences, this assumption is reasonable.
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9 From an image sequence sampled with a particular temporal sampling rate,

flow vectors with larger magnitudes can be estimated by decreasing the spatial

bandwidths of the images by presmoothing.

In experiments to be presented in a later chapter, presmoothing is implemented

by averaging over a small (e.g. 9 x 9), local neighborhood, and improvents in accu-

racy (over the cases in which no presmoothing has been applied) of the optical flow

estimates are observed.

Checking the second order gradients

As discussed earlier, we cannot expect BCCE to provide us with useful information

about motion in a sampled image sequence if the condition (2.17) is badly violated.

Computing and checking the second order gradients E2-, 22-1, and �Z2-1 at each pixel

before optical flow computation are useful. Specifically, we can give a weight to BCCE

associated with each pixel by how closely the measured second order gradients satisfy

(2.17). We have found experimentally that, applied in conjunction with presmoothing,

weighting BCCE at each pixel with a term

(9 2 I2

exp - k 'Os'ot

with a constant parameter k, is particularly effective in increasing accuracy of the

optical flow estimates (Section 6.4-2).

2.4.5 Summary

Undesirable effects of discretization on optical flow computation include:

1. For some fixed spatial and temporal sampling rates for the brightness signal,

the magnitude of detectable motion is upperbounded.

2. Unless conditions like (2.17) and (2.18) are satisfied, the brightness change

constraint equation loses its effectiveness as the temporal sampling interval in-

creases.
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3. Obtaining brightness gradients by finite differencing amplifies noise.

These effects can be reduced by

* presmoothing, i.e., blurring the images spatially before computing the gradients,

and

* weighting BCCE with a function of the magnitudes of the computed second

order brightness gradients.
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Chapter 3

An Estimation Theoretic Perspective of

Single-frame Visual Reconstruction

In the previous chapter we have seen that optical flow can be computed from image

gradients by solving a weighted least-squares problem in which the functional to be

minimized has two types of constraint terms. One constraint is based on the bright-

ness change constraint equation (BCCE) relating the measured image gradients to

the optical flow vector at each pixel, and the other is the spatial coherence constraint

which has been introduced to regularize the problem so that a meaningful unique

solution exists. Many other low-level visual reconstruction problems are formulated

similarly, i.e., they are least squares problems with two types of constraint terms

- constraints imposed by the measurements made on the images and spatial coher-

ence constraints. Since in low-level visual field reconstruction we try to recover some

features of the objects in a 3-D domain (such as depth, shape, and motion of an ob-

ject surface) from some projected information available in 2-D images, reconstructing

these fields from measurements made on the images alone leads to underconstrained

inverse problems [31]. The inclusion of spatial coherence constraints is by far the

most common approach to make the problem mathematically well-posed, i.e., to en-

sure existence, uniqueness, and stability of the solution [7].

A typical mathematical expression for spatial coherence constraints takes the form

of cost terms penalizing magnitudes of spatial gradients of the unknown fields. Phys-

ically, this corresponds to the assumption that the imaged quantities such as the
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object surfaces have stiffness and smoothness [30]. Such an assumption is obviously

violated at some special locations in the images such as at object boundaries, and

detection of such locations of spatial discontinuities have been actively pursued by

modifying and supplementing the spatial coherence constraints [11, 17, 58, 66, 67].

The issue of dealing with discontinuities in the visual fields is beyond the scope of

this thesis.

This chapter is concerned with describing an estimation theoretic formulation

of a general low-level visual field reconstruction problem. We interpret the tradi-

tional least-squares formulations as estimation problems, facilitating development of

efficient multi-frame reconstruction algorithms to be presented in the next chapter.

Bayesian estimation perspectives on visual reconstruction problems have been intro-

duced before [71, 271; however, casting the problems into a strictly Baysian framework

is somewhat awkward because, as shown later, the prior densities tend not to exist

mathematically. The maximum likelihood (ML) estimation framework described in

this chapter, by viewing spatial coherence as a "noisy observation" and representing

the mean-covariance pair implicitly as the "information pair", provides us with a

more natural way to express the reconstruction problems in an estimation theoretic

context. Moreover, as we will see in the next chapter, the ML framework blends in

nicely with multi-frame reconstruction schemes based on descriptor dynamic systems

which permit a wider range of temporal dynamic representations for the fields than

the traditional Gauss-Markovian state-space systems.

3.1 Single-frame Visual Reconstruction

In this and the next two chapters we consider visual field reconstruction problems

which are slightly more general than computation of optical flow. In this way, we

can make explicit that the estimation algorithms presented are directly applicable to

various low-level visual field reconstruction problems. Furthermore, examination of

various forms of spatial coherence constraints not typically associated with optical

flow computation is quite beneficial in the development of temporal dynamic models
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for multi-frame reconstruction to be discussed in the next chapter.

Consider the problem of reconstructing the visual field f (s) over a K-dimensional

spatial domain D (i.e., s E 'D C R') based on the measurements g(s) and h(s)

from the images. In reconstruction of a vector visual field like optical flow, f (s) is

a vector function of s, and, correspondingly, g(s) and h(s) are vector and matrix

functions, respectively. As presented before, for example, in the case of optical flow

reconstruction f (s), g(s), and h(s) have respective dimensions of 2 x 1, I x 1, and 1 x 2.

The general form of the single-frame visual field reconstruction problem considered

in this thesis is

ail ah ajK 2

min v jjg - hf 112 + tl, 11 -_ '' . f ds (3-1)f aslil _jS 2j2 aSK jK

where v(s) :� 0 and fti are strictly positive weighting parameters. We denote the

components of the spatial index vector s byS k, k = 1) 21 ... I K. The dimension K of

the spatial domain in most visual reconstruction problems is at most 3. The orders

of partial derivativesik's are non-negative integers, and -J2-0- = 1. The index i is used
88ko

to distinguish the K-tuples (il, j2, M.

3.1.1 Measurement constraints

The first integrand term in (3.1) constrains the unknown f(s) based on the mea-

surements g(s) and h(s). The weighting function v(s) represents the confidence we

have in the measurements at a particular image point s. The specific form of the

constraint depends on the nature of the particular reconstruction problem. For ex-

ample, as shown in the last chapter, when the unknown f (s) is the optical flow, the

measurement constraint equation g - hf = 0 corresponds to the brightness change

constraint equation in which g(s) and h(s) are obtained from the temporal and spatial

gradients of the image brightness. Another example is the generation of sparse mea-

surements of the depth field by stereo-matching of feature points in a pair of images

[21, 22]. In this case, the unknown f (s) represents the depth field while g(s) is the
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sparse measurement of f (s), and h(s) is a binary function such that

h(s) 1, if the depth is measured at s

0, otherwise.

Note that at the points s where h(s) = 0, f (s) is unconstrained by the measurement

g(s) -

Linearity of the measurement constraints

The measurement constraint in (3.1) is linear with respect to f (s). Although there are

visual field reconstruction problems in which the measurement constraints are non-

linear, the computational techniques designed for the linear measurement case can

frequently be used in solving non-linear problems as well. For example, the non-linear

measurement constraint equation for the shape-from-shading problem [33] has been

approximated linearly based on Taylor expansion with good numerical results [27,

28]. Linearity in the measurement constraint also facilitates analytical and numerical

tractability of the multi-frame reconstruction algorithms to be developed in the sequel.

We, thus, concentrate our efforts in this thesis on the linear measurement case.

3.1.2 Spatial coherence constraints

In (3.1) the spatial coherence constraint is expressed as the sum of quadratic terms

involving spatial derivatives of the unknown field f (s). First and second order deriva-

tives are most commonly used. While spatial coherence constraints make the recon-

struction problems mathematically well-posed by supplementing the measurement

constraints [7], they can also be considered to be our prior knowledge about the un-

known field before the measurements are made [71]. Such prior models implied by

spatial coherence constraints are successfully applied to a remarkable variety of visual

reconstruction problems. Here are examples of some extensively used models:

First order differential constraints and the Membrane model.

Penalizing large magnitudes of the first order spatial derivatives tends to pro-
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mote smoothly-varying behavior in the reconstruction of f (s). On a 2-D spatial

domain, the constriant is often called the membrane model) and it takes the

form

(9 2 (9 2

F I - f + Y2 f (3-2)as, as2

where typically yl = [12- The membrane model has been used in optical flow

computation [34, 30] (as described in the previous chapter) and the shape-from-

shading problem [33].

e Second order differntial constraints and the Thin-plate model.

Constraining the second order derivatives promotes linearity, i.e., it tends to

make f (s) "straight" over a I-D domain and "flat" over a 2-D domain. On a

2-D domain, this constraint is often called the thin-plate model and takes the

form

i92 2 92 2 02 2

Fl 9sl 2 f + ft2 19S2 2 f + P3 9slc9s2f (3-3)

where typically 1P3 = ftl = Jt2. The thin-plate model is often used in surface

interpolation [21, 22, 27, 28]. Note that if the membrane model were used as

the surface model, it would favor a flat surface parallel with the image frame

over a flat surface at an angle to the frame. The thin-plate model is, however,

indifferent to the angle at which the surface is placed with respect to the frame.

Hybrid constraints.

In some cases, combining constraints based on the first and second order deriva-

tives can be useful. A constraint of the form

2 2Al a f + A2 922 f (3.4)

as Os

has been used to model the structure of object boundary contours [41], where

f (s) represents the coordinate vector (i.e., the location in the space) of a point
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on the contour and s is the index along the contour. The first order derivative

term keeps the structural integrity of the contour by encouraging neighboring

points on the contour to be closely located in the image frame, while the second

order term promotes smooth contours.

3.1.3 Solving the optimization problem

By far the most common approach to solving the optimization problem for single-

frame visual reconstruction (3.1) is via variational calculus [33]. Namely, an Euler-

Lagrange equation is obtained from the cost functional in (3.1) so that the solution

is expressed implicitly as the solution of a partial differential equation. The partial

differential equation is then solved by numerical techniques which usually involves

iterative relaxation methods.

3.2 Maximum Likelihood Visual Reconstruction

In practice, the measurements are available over a discrete spatial domain. Rather

than using the continuous formulation (3.1) and then discretizing the resulting Euler-

Lagrange equation, we focus here on a purely discrete, vectorized formulation repre-

senting a discrete counterpart to (3.1). The single-frame visual reconstruction prob-

lem formulated in this way will be shown to be equivalent to a maximum likelihood

estimation problem.

3.2.1 Discretization

Let us consider discretizating the spatial domain 'D C RK by a uniform rectangular

grid. Without loss of generality, we can set the grid points at integral values of the

spatial coordinates, i.e., the components Sk of the spatial position vector s now take

integer values such that Sk = 1, 2,.. ., rnk for given Mk'S-
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The vectorized visual field

We represent the unknown field over the entire discrete spatial domain by a single

vector. Let us define the vector f to be a column vector whose components are f (s)

ordered lexicographically according to the spatial indices. Specifically, for K 3, f

is defined as

h(l) f2(1, S3) f(l, S2, S3)

f f3(2) f2(2,S3) f (2,S2, S3)

f3(S3) f2(S2, S3)

f3(M.3) f2(M2, S3) AMI, $2, S3)

e.g., if f (s) is a scalar field, the unknown at a particular s =[SI, S2, 83 ]T is represented

by the [SI + (S2 - 1)M1 + (S-3 - 1)MlM2 Ith component of f. Analogous definitions are

used for the cases K = 1 and 2 and when f (s) is a vector field. In general, if

f (s) is a d-dimensional vector field and the number of points in the discrete spatial

domain is N, then the dimension of the vector f is Nd. The measurement vector g

is similarly defined from 9(s). We define the matrix H to be a block diagonal matrix

whose diagonal blocks are h(s) sequenced according to the spatial indices by the same

lexicographical order.

The spatial difference operators

Let us define D(j) to be a matrix operator approximating the jth order differentiationk

1h '9jalong the k spatial axis, i.e., D(j)f (s)] -In particular, the general forms for
(2)the first and second order difference operators, D(1) and D used in this thesis are

AM -I I

D(1) - AM

AM
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A(2) I -2I I

2) A(2)D(k
A(2) 1 -21 I

where the appropriate dimensions for the blocks A's and I's are determined by k

(i.e., by the particular spatial axis along which the difference is taken) as well as the

dimension of the field components f (s) (n.b., the unknown might be a vector field

like optical flow). Using this notation, a discrete version of the membrane model can

be written as

2 2
D(1)f + jt2 D2 (3-5)/ti ll 1 11 11 )f 11 -

In order to represent the cross spatial derivatives in the spatial coherence con-

straint, we need to expand the notation for the matrix spatial difference operator.

Let us define the matrix operator S(jlj2,---,jK) to be a -finite difference approximation

of the cross differentiation such that

ail ah 9jK

f (S)
aSljl a-52 j2 a'SK jK

For example, for a 2-D spatial domain (K 2),

S(ii)

where AM is defined before. A discrete version of the thin-plate model can then be

written as

S(2,O)f 2 S(0,2)f 2 S(1,1)f 2Pi 11 11 + tt2 11 11 + tt3 11 11 . (3-6)

Note the following equivalent notations: S(l,') D(1) and S(0,1) D(i Thus, the
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membrane model (3.5) can also be written as

S(1,0)f2 S(0,1)f2
i 11 11 + JZ2 11 11 . (3.7)

We adopt this latter notations for the membrane model throughout the thesis.

A discrete single-frame reconstruction problem

Using the vectors and matrices defined above, we can now write a discrete version of

the single-frame low-level visual field reconstruction problem in (3.1) as

min jjg - Hf 1 12 + y (3-8)
f N pi IlSif 112

where

Si = S(jlj2,---,jK)i for i = 11 21 ... I

and (il, j2, jK)i denotes a particular value of the K-tuple UlJ2, - JK) for each

i while

jjg - Hf I12 = (g - Hf)'N(g - Hf)N -

and N is a diagonal matrix whose diagonal components are v(s) sequenced according

to the spatial indices by the same lexicographical order as f(s) in f.

3.2.2 Maximum likelihood estimation

The discrete, weighted least-squares formulation of the single-frame visual reconstruc-

tion problem (3-8) can be directly converted to a maximum likelihood estimation

problem. As general theories of maximum likelihood estimation are of central impor-

tance to the development of algorithms in the subsequent chapters, we briefly present

here some fundamental facts relevant to our visual reconstruction problems as well

as establish some notation that will be used frequently in the sequel. For derivations

41



and other details, introductory texts on estimation theory (e.g. [16, 45, 74]) should

be consulted.

The maximum likelihood (ML) estimation problem deals with estimation of an un-

known vector x based on an observed sample of a random vector y whose distribution

is parameterized by x. Specifically, let 'Py(.Ix) be the probability density function for

such a distribution. Given a sample value y, of y, the maximum likelihood estimate R

is defined to be the value of x such that 'Py(ylx) is maximized. Much of development

of estimation theory is based on problems that involves random processes with the

Gaussian probability density functions.

Definition 1 We use the notation

r rnR

to express that "r is a random vector with a joint Gaussian probability density func-

tion having a mean r, and covariance matrix R." We call ( rm, R ) the mean-

covariance pair.

One of the most extensively studied ML estimation problems involves a linear ob-

servation y of the unknown x corrupted by an additive zero-mean Gaussian random

noise:

Find the ML estimate for x based on the observation

y = Cx + r, r - ( 0, R ) (3-9)

in which C is a given matrix and r is a zero-mean Gaussian random noise.

Note that the observation equation (3.9) implies that y has a Gaussian distribution

parameterized by x. In this thesis, this is the only type of ML estimation problems

that we deal with. We refer to a linear observation corrupted by an additive zero-mean

Gaussian noise, like that in (3.9), as a "Gaussian observation equation" or simply an

observation equation".
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The ML estimate -2 based on (3.9) given a value of y is

- = (CT CTX R-1C)_1 R-ly (3.10)

The estimation error covariance P__ is defined as P,,, 9(jjx - 5C-11') where.F(-) is the

expected value operator, and for this ML estimation problem it is

p� = (CT R-1C)_1. (3.11)

Note that the effect of the measurement (3-9) is in essence to provide us with a

probability density for x:

Observation 3.1 The vector x can be considered to have a posterior Gaussian dis-

tribution

X,_ (RI PX )I (3-12)

after a particular value of the observation y is obtained.

An important fact regarding the ML estimation based on a "Gaussian observation

equation" is its relationship with a weighted least-squares problem:

Fact 3.2 The ML estimation problem for the unknown x based on the observation

(3.9) is equivalent to the weighted least-squares problem

min Ily - CX112 (3-13)
X R-1 -

This equivalence relation can be used to interpret deterministic least-squares problems

statistically. Note: there is an implicit assumption that R is invertible and that C

has a full column rank for the problem to be well-posed.
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3.2.3 ML single-frame visual reconstruction

Using Fact 3.2 we can interpret the discrete single-frame visual reconstruction problem

(3.8) as an ML estimation problem based on an observation equation. First note that

(3.8) can be written as

min Ily - Cf 112 (3.14)
f R-1

by defining

9 H N-1

0 S, II
Y C R (3-15)

0 S2 Y 2-

L J L j L

Then estimation based on the Gaussian observation

y _- Cf + r, r - ( OR (3-16)

formulates the single-frame visual field reconstruction problem as an ML estimation

problem.

The prior model as a set of observations

Let us look at this ML visual reconstruction problem closely. First note that the

observation equation (3.16) consists of independent Gaussian observations

g = Hf + ro, ro 07N-1 (3-17)

and

0 = Sif + ri, ri 0, p-11 (3-18)
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for i = 1, 2,. . .. They are independent in the sense that the observation noise pro-

cesses ri Is (for i = 0, 1, 2 .... ) are probabilistically independent of each other. The ML

estimation form of the single-frame visual field reconstruction involves finding an f

that maximizes the joint probability of the particular set of observations (g, 0, 0, . . .) -

This expanded view of the observations (as opposed to the composite view of (3.16))

is useful in gaining insights into how pieces of information about the unknown f are

each represented and combined to yield the final estimate. For example, (3.17) rep-

resents the contribution from the measurements in the images, and (3.18) represents

the prior knowledge (model) of the field, i.e., the spatial coherence constraints. In

particular, the prior model implied by the spatial coherence constraints is expressed

in the ML estimation framework as a set of observations (3.18), each indicating that

the differential Sif of the unknown is "observed" to be zero, the ideal situation, with

an uncertainty of p-11.i

3.2.4 Example: ML optical flow estimation

A discrete version of the optical flow computation problem can be formulated using

a vectorized brightness constraint and the discrete membrane model of (3.7) as

min (JIg - Hf 112 + ttl 11SJf112 + tt2 11 S2f 112) (3-19)
f N

where g and H are constructed from the image gradient measurements g(s) = 91 (S)as

and h(s) = -!H(s) while SI and S2 are the first order difference operators, Si = S(',O)at

and S2 = S(o,'). This yields a maximum likelihood optical flow estimation problem

based on the following "optical flow observation equation":

9 H N-1

0 SI f + r, r 0, (3.20)Pi

0 S2 J P 2- 1 IJ
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Interpreting the measurement noise

By expanding the observation equation as in the last subsection, we see that the

brightness constraint (derived from BCCE) is represented in the ML estimation frame-

work as

g = Hf + ro, ro 0,N-' (3.21)

In this form, the observation noise ro represents the deviation one allows f to make

from the BCCE. In the last chapter we have seen how we might select components of

N-' to reflect the effect of undersampling and signal noise on gradient measurements.

In some practical cases, more explicit statistical models for the quality of gradient

measurements might exist. In such cases one might want to use an alternative obser-

vation model such as

g + r. = (H + rH)f

where rg and rH are the noise processes representing the uncertainties in the gradient

measurements. This leads to a total least-squares problem [18]. Other alternatives for

measurement noise modeling are possible, but in this thesis we win not pursue this

issue any further.

3.3 Implicit Solution for ML Estimation

Let us consider solving the single-frame ML visual field reconstruction problem. In

solving an ML estimation problem based on a "Gaussian observation", one is ulti-

mately interested in obtaining the posterior mean-covariance pair. We have presented

a conceptual framework above such that the unknown visual field is reconstructed by

fusing two sets of independent observations (3.17) and (3.18). The equations based

on the spatial coherence constraints, (3.18), are considered to be "pre-observed" in

the sense that the ideal values (zeros) have been observed before the actual mea-

46



surements on the images, (3.17), are made. Thus, one might consider first obtaining

the ML solution based only on the spatial coherence constraints and then updating

the resulting mean-covariance pair with the image measurements. This is exactly

the Bayesian approach to the estimation problem where, essentially, all the pieces of

the independent statistical knowledge assimilated so far for the purpose of estimating

an unknown vector are summarized in the corrsponding mean-covariance pair. One

can speculate that this approach is particularly convenient in a multi-frame visual

reconstruction problem in which observations arriving sequentially over time must be

accumulated in a statistically optimal way. The Bayesian approach is, however, not

directly applicable to visual reconstruction because the covariance matrix does not

always exist. For example, for a typical spatial coherence constraint the correspond-

ing observation equations (3.18) do not constrain the unknown well enough to yield

a posterior mean-covariance pair.

In this section we examine an implicit representation for the mean-covariance

pair, called the information pair, and its uses in ML visual reconstruction. For our

purposes, the information pairs are preferable to the mean-covariance pair because:

1. At all times in the visual reconstruction process, including the sequential multi-

frame reconstruction problem to be presented later, the information pair for the

unknown always exist.

2. As we will see, for our problems the information pair represents the same sta-

tistical data contained in the corresponding mean-covariance pair much more

compactly than the mean-covariance pair itself. Specifically, the information

matrix in single-frame visual reconstruction is very sparse whereas the corre-

sponding covariance matrix is a full matrix.

3. Fusing statistical data contained in several independent observation equations

can be achieved easily by a simple component-wise sum of the information

pairs corresponding to each observation equation. The same operation with the

mean-covariance pair involves matrix inversions.

Item 1 above has a theoretical implication; the information pair gives us a mathemati-
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cal foundation on which we design computational algorithms for visual reconstruction.

Item 2 has an implementational implication; fewer memory elements are required to

store the statistical data implicitly than explicitly. Item 3 has a computational im-

plication; the information pairs are convenient in statistical data fusion which can be

performed with a simple component-wise operation. The fact that this computation

can be performed independently for each component is important because it implies

that the operation can be implemented in parallel, a desirable feature especially in

image processing algorithms including visual field reconstruction.

Ultimately, the statistical data in the information pairs must be made explicit by

translating the pairs into the mean-covariance pairs. As shown below, this translation

process is actually embedded in the standard solution method for an ML estimation

problem, and the sparseness of the information matrix (Item 2 above) plays a key

role in enabling us to compute the mean-covariance pair efficiently.

3.3.1 Information form of ML estimate

Let us consider an implicit solution for a general ML estimation problem based on a

Gaussian observation equation. We will specialize the discussions here to the single-

frame ML visual reconstruction problem in the next subsection.

Definition 2 Consider a maximum likelihood estimation problem for the unknown

x based on the observation equation (3.9), i.e., y = Cx + r, r - ( 0, R ). We call the

quantities z_- and L_- defined as

Z' = CT R-ly (3.22)

= CTL� - R-1C (3.23)

the information pair associated with the unknown x. We use double angular brackets

as in

x z., L.
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to denote information pairs in order to distinguish them notationally from mean-

1covariance pairs. Also, the matrix L. is called the information matrix

By our assumption the observation noise covariance matrix R is always invertible;

thus, the information pair exists for every observation equation. From (3-10) and

(3.11) we see that the estimate and error covariance for the ML estimation problem

can be obtained from the corresponding information pair as

L-1z__ (3.24)

P� = L-'. (3.25)

Thus, the information pair (( zX) Lx )) contains the same statistical data as those in

R, P�,, ). Specifically, the information pair expresses the solution of the ML estima-

tion problem implicitly in the sense that the estimate is given as the solution for an

inverse problem

Lx5c- -_ zx. (3.26)

Clearly, invertibility of the information matrix L,, is cruicial for existence of R and

P.. In fact, we have the following:

Theorem 3.3 For an ML estimation problem based on a Gaussian observation equa-

tion, the following three statements are equivalent:

1. A unique solution for the estimation problem exists.

2. The posterior estimation error covariance exists.

3. The information matrix is invertible.

Proof: From (3.25) we have 2 3, and from (3-24) we have 3 -- � 1. It remains to

show that either 1 --+ 2 or I 3. Suppose that 1 is true but 3 is not. By writing

(3.24) as LR = z., we see that since L-- is not invertible R cannot be unique. Thus,

'It is also called the observation gramian.
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by contradiction, I -- + 3. 0

If the information matrix is not invertible, then certain linear combinations of the

elements of the mean of the corresponding random vector cannot be determined [39].

The information pair representation is more advantageous than the mean-covariance

pair representation x -2, P,� ) because the former always exists while the latter

exists only if L., is invertible. Moreover, as we will see later, the information matrices

in single-frame visual field reconstruction problems are quite sparse, allowing us not

only to store the second order statistics of the fields efficiently but also compute the

estimates of the fields efficiently.

Fusing independent observations

Consider the ML estimation problem of maximizing the joint probability of the ob-

servations

yi = Cix + ri, ri - ( 0,Ri (3.27)

for i = 11 21 ... I Ml where ri's are mutually independent. The information form of the

ML solution is useful because of the following additive property:

Theorem 3.4 Let the information pair associated with each of the observation equa-

tions in (3.27) be denoted by (( zi, Li )). Then, the information pair associated with

the problem of maximizing the 'oint probability of the observations r i = 1, 2, m

is given by

M M
Zi , Li

assuming that the noise processes ri are mutually independent.
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Proof: The joint maximization problem can be formulated as the ML estimation

problem based on the observation equation

Yi C, r,

Y2 C2 r2
X +

YM C, rm

r, R,

r2 07 R2

rm Rm

and the information pair associated with this observation is

M M
CTR-1yi C7IR-.'C-

which proves the theorem. F-1

3.3.2 Implicit solution for visual reconstruction

Let us now focus on solution for the single-frame visual reconstruction problems. The

information pair associated with (3.17) is

(( HTNg 7 H TNH

while those associated with (3.18) are

m 11,STS,
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for i = 1, 2, .. ., m. Using Theorem 3.4 we have the implicit solution for the single-

frame visual reconstruction problem as

TNg, H T NH + [tiSTSj

which for brevity we write as

f zL

Note that operations involved in computing this information pair can all be performed

locally in the sense that each of the necessary matrix operations such as multiplica-

tion is confined to elements corresponding to neighboring spatial locations, as the

matrices H and N are diagonal and Si's are sparsely banded. In particular, each

of the components z(s) of z is given by h(s)v(s)g(s), a strictly local multiplication

of the matrix elements. The information matrix L has a sparsely banded structure,

reflecting the structures of STSi which are also locally computable. (Note: the ma-

trix H'NH is diagonal, and it does not normally influence the structure of L.) The

general structure of the information matrices in visual reconstruction is a principal

focus of Chapter 5; an example of such matrix structures is presented later in this

section. As mentioned before, the sparse structure of the information matrix has an

important computational implication in solution of the visual reconstruction problem.

Specifically, the estimated field f is computed as the solution for the inverse problem

Lf = z (3.28)

where the information matrix L acts as an operator to be inverted. It can be shown, in

fact, that this equation is a discrete version of the Euler-Lagrange equation obtained

in variational solution of the continuous formulation of the corresponding reconstruc-

tion problem. The Euler-Lagrange equation is usually solved numerically by first

discretizing it to a form similar to (3.28). Due to the usual large dimension, N, of

the unknown field the inverse problem (3.28) must be solved iteratively; for a typical

52



value 104 _ 106 of N direct inversion of an N x N matrix is not practical. The sparse

structure of the information matrix L not only facilitates standard iterative inversion

schemes like the Jacobi and Gauss-Seidel iterations by simplifying computation in

each iterative step but also allows us to use more sophisticated and efficient iterations

like the multigrid methods. Terzopoulos [72] reports that for various single-frame

problems it takes O(N) iterations to obtain reasonable estimates, but with a multi-

grid method the amount of computation can be reduced by an order of magnitude or

more.

Besides computational efficiency, the sparseness of L provides us with a compact

way in which to store the statistics of the unknown field at various stages of estimation.

This is an important issue especially in multi-frame reconstruction problems in which

such statistics must be propagated over time for temporal data fusion.

Example

For the optical flow problem in Section 3.2.4, the information pair associated with

the membrane model is

0, 111STS, ST
1 + /12 2 S2

STS, STThe information matrix LM 1 + ft2 2 S2 has the following sparse structure

Ae -I

LM
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where

21 -I 31 -I

-I 31 -I -I 41 -1

-I 3I -I -I 4I -I
Ae A

-I 3I -1 -1 41 -1

-I 21 -I 31 J

where I is a 2 x 2 matrix reflecting that optical flow is a 2-vector field. By close

inspection, we can verify that this information matrix Lm can also be considered as a
discrete implementaion of the 2-D Laplacian operator '92 + 62

1-2 ��;22YEach row of LMf

is a weighted sum Of f(81, S2), f(81 + 1, S2), f(S1, S2 + 1), f(S1 - 1, 52), and f (S1, S2 - 1)-

That is, treated as a matrix operator, Lm operates over a small, local neighborhood

in the spatial domain. For this reason, the sparsely banded matrix structure of Lm

is sometime called the nearest neighbor structure [43].

The posterior information pair for the optical flow field is given as

f H TNg, H TNH + Lm

Since H TNH is a block diagonal matrix (with block size of 2 x 2), the matrix H T NH+

LM retains the nearest-neighbor structure. Sparseness of this matrix is important as

the optical flow estimate i is obtained as the solution of the inverse problem

(H TNH+ Lm)f = H TNg.

This equation is a discrete version of the Euler-Lagrange equation derived by Horn

and Schunck [34] who used Gauss-Seidel iterations to solve the equation numerically.

Each iteration essentially involves computation of only the previously mentioned,

locally weighted sum for each component of the field. By organizing the computation

into such weighted sum operations over mutually disjoint spatial neighborhoods, some

iterative methods (e.g. the Jacobi iteration) can be implemented in parallel.
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3.3.3 Wellposedness of visual reconstruction problem

The information matrix associated with a typical spatial coherence constraint,

M
ftSTS,,

is singular. This means that:

1. The explicit statistics, i.e., the mean-covariance pairs, corresponding to the

spatial coherence constraint do not exist so that a Bayesian perspective on

visual reconstruction is not well-founded in a strict sense.

2. The measurements must provide enough extra constraints to yield an unique

estimate.

The second point indicates that although F_T 1 yjSTSj is singular H TNH+ET 1 piSTSi

needs to be non-singular for a unique estimate to exist. This mathematical require-

ment is not so severe in practice. For example, the information matrix associated

with the membrane model for a scalar field (i.e., the scalar-field version of LM de-

fined above) has only one null eigenvalue 2; thus, a measurement at a single point

in the spatial domain can provide enough constraint to satisfy the mathematical re-

quirement for a wellposed problem. Practically, measurements are made over a good

portion of the spatial domain (e.g., image frame) and often, as in the case for optical

flow estimation, over the entire domain. In the sequel, therefore, we assume that the

posterior information matrix

'M
H TNH + EtSTS,

is always invertible.

2Since optical flow is a 2-vector field, LM used for optical flow estimation has two null eigenvalues.
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3.3.4 Spatial models implied by information pairs

Given the information pair of a visual field f as

f - (( zL )) ,

let us consider a spatially dynamic representation of the field

Lf = C (3.29)

where C is a random vector. Since the mean-covariance pair for f is given by

f , ( L-1z , L-' ) ,

the mean and covariance of C can be computed as LL-1z = z and LL-1LT = L,

respectively, i.e.,

ZI L (3.30)

We can interpret (3.29) as a spatial model for the field f in which the spatial random

process C specifies the probabilistic behavior of the field f by controlling certain

interactions, de-fined by the matrix operator L, among components of f (cf. [38]).

In single-frame visual reconstruction problems, the matrix L has a certain sparsely

banded structure, reflecting the local properties of the spatial coherence and measure-

ment terms. Besides the previously mentioned benefits in storage and computation,

another desirable feature of such locality and sparseness of L is that the dynamic

representation (3.29) (3.30) forms a basis for approximation in multi-frame problems.

Specifically, the visual field f is modeled through its internal interactions encoded by

L and a spatial random process C which controls these interactions probabilistically,

and the oint correlation of this controlling process is also given by L. It makes a

physical sense that a visual field is specifed by such spatially local interactions (among

its components) and statistics (of (). As we will see, in multi-frame reconstruction
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the corresponding information matrices are not strictly local; however, based on this

physical intuition they will be approximated by local, sparsely banded matrices with-

out losing much accuracy in estimation.

Markov Random Fields

A statistically equivalent dynamic representation to (3.29) (3.30) can be obtained

using the estimation error process f as

Lf

It can be shown that the mean-covariance pair of the driving noise � is given by

OL

This dynamic model is shown to be a Markov Random Field (MRF) [44], which

has a multi-dimensional extension of the Markovian property for causal processes

[77]. Interpreting the information matrix L as an MRF model for the estimation

error i can be quite useful, as it connects our ML estimation formulations directly

with other important formulations in visual field reconstruction such as detection of

discontinuities [17, 29].

3.4 Conclusion

A wide range of single-frame visual field reconstruction problems can be formulated

in terms of spatial differential constraints and linear measurement constraints. A

vectorized version of such a problem can be considered as an ML estimation prob-

lem. An implicit representation for the statistical data provides us with a convenient

framework to deal with this particular ML estimation problem, both theoretically and

numerically. The statistical interpretation provided by the ML formulation motivates

us to approach the multi-frame visual reconstruction problem as a stochastic process

estimation problem.
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Chapter 4

A Filtering Solution to Space-Time

Reconstruction Problems

Reconstructing visual fields by processing multiple sets of measurements has an obvi-

ous advantage over reconstruction based on a single set, as accumulation of a larger

quantity of data leads to a more reliable estimate due to reduction in measurement

noise. An advantage not as obvious is that in some cases spatial coherence may

not provide sufficient constraints to yield an adequate estimate, and hence temporal

information must be utilized as well. For exmple, in optical flow estimation, if the

measured spatial gradients have the identical directions over the entire image frame,

the resulting aperture problem can be resolved only by incorporating more frames

of measurements. In this chapter, we describe an extension of the single-frame re-

construction problem in which we consider fusing multiple frames of measurements

obtained from images arriving sequentially over time.

We formulate multi-frame visual field reconstruction problems in an estimation

theoretic framework. As described in the previous chapter, the single-frame problem

can be formulated as a maximum likelihood estimation problem, so that the computed

visual field can be considered as a jointly Gaussian random field. This allows us to

treat a sequence of unknown fields indexed by time t, f (t), as a space-time stochastic

process, by capturing the time evolution of the field probabilistically. We can then

utilize well-developed sequential estimation algorithms, i.e., Kalman filter and its

derivatives.
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To use the Kalman filter algorithm, the space-time behavior of the unknown filed

as well as the measurement processes must be expressed in a state-space dynamic

system format. Gauss-Markov system models for f (t) and the corresponding Kalman

filtering solutions have been proposed [55, 71, 26, 27, 69]. These methods, however,

deal with computational complexity associated with Kalman filters by rather ad hoc

approximate methods. We approach such a computational issue more systematically,

leading to near-optimal methods. Moreover, we develop a more general formula-

tion than the traditional Gauss-Markov models by temporal extensions of the spatial

coherence principle. Specifically, we examine several potentially useful temporal co-

herence constraints and show that the most natural format to express the dynamics

is the descriptor system' format [49, 50, 461.

We use the information form of Kalman filter, or information filter, in which

the information pair is propagated over time instead of the mean-covariance pair.

The information filter equations [4, 45] are algebraically equivalent to the standard,

mean-covariance Kalman filter equations. The structure of the particular filtering

problem governs the choice between the two sets of equations [40, 81. For visual

reconstruction, the information filter is a natural choice because of the possibilities

that the information matrices can become singular at various stages of the estimation

process. By viewing the descriptor dynamic equation as an ML observation equation,

we obtain an associated information pair. From this perspective, we can treat the

filtering problem as a sequential fusing of information pairs corresponding to the

temporal/spatial coherence and measurement equations.

A more important reason to use the information pairs in our filtering algorithms

is computational efficiency. The large dimensions of the unknown visual fields make

conservation of memory space as well as reduction of the number of required alge-

braic operations essential. As we will see, information pairs allow us to express the

statistics of the unknowns in a spatially concentrated format, which we exploit in the

development of efficient approximate filtering algorithms. In this chapter, we present

dynamic system models for multi-frame visual field reconstruction and derive, based

lalso called singular system
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on these models, optimal Kalman filtering algorithms, including the information filter

and square root information filter which has well documented numerical stabilities.

Development of the filtering algorithms continues into the next chapter where we

discuss approximation issues.

4.1 Temporal Dynamic Equations

In this section we consider a general form of discrete dynamic equations that cap-

ture temporal behavior of visual fields. We seek a general dynamic expression for

temporal stochastic processes suitable for visual fields. The dynamic equations are

ideally based on some physical laws that govern the spatio-temporal behavior of the

particular visual field of interest; however, most of the time we cannot assume Such

exogeneous, exact knowledge about the field to be available a priori. In fact, a major

purpose of the "low-level" visual processing such as visual field reconstruction is to

organize the raw visual data in a way useful to infer such hypotheses as what we are

looking at and how exactly it is behaving over time and space. With this purpose in

mind, the spatial coherence constraints have been utilized in single-frame visual field

reconstruction problems. In this section, we examine their straightforward extensions

over the time axis - temporal coherence constraints [23], consisting of cost terms of

temporal derivatives. Specifically, consider the following temporal extension of the

general single-frame visual reconstruction problem (3.1) from the last chapter:

,Oil qj� OjK 2112 + E/Min v JJg - hf f
f O aSljl aS2j2 aSKiK

ail 9j2 aj. a_ 2

+ 19S 1 j1 19 S 2j2 195YJK n f ds dt (4. 1)
Ln

where f (s, t), g(s, t), h(s, t), and v(s, t) are now space-time functions. We will examine
some specific forms of the temporal coherence constraints and how they might be
useful for multi-frame visual field reconstruction. At the same time, we present how
each of these constraints can be represented as a discrete dynamic equation driven
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by a white noise process. This leads to a general discrete dynamic representation for

stochastic processes modeling various types of temporal behavior of the visual fields.

4.1.1 Gauss-Markov processes for f(t)

In single-frame reconstruction problems, the first order differential constraint terms

such as those used in the membrane model promote continuity of the field over space.
2

An analogous constraint term over time is p at s � t) 11 which promotes continuity of11iA
the field over time by penalizing rapid changes in time. An equivalent expression for

this constraint is the dynamic model a f (s, t) -- q(s, t) where q(s, t) is a zero-meanat

space-time white noise with covariance p-'I. Via discretization and vectorization (cf.

Sec. 3.2.1), the first order temporal differential constraint thus leads to a discrete

Gauss-Markov process model

f (t) = f (t - 1) + q(t), q(t) 0, p-'l

A more general model can be formulated by incorporation of a time-varying system

matrix A(t) as

f (t) = A(t)f (t - 1) + q(t), q(t) 0, p-'l

In some reconstruction problems the system matrix A(t) plays an important role of

registering moving visual field onto the image frame - a fundamental issue in multi-

frame visual reconstruction problems. That is, unlike many sequential estimation

(and control) problems where there is no ambiguity in which estimates should be

matched with which measurements, sequential multi-frame visual field reconstruction

problem poses the data-estimate registration problem which calls for matching of

estimates in the current frame with the measurements obtained from an image of the

moving objects in the next frame. In essence, the matrix A(t) provides the system

model with the information on how the estimated field from time t - 1 should be

warped in order to fit into the image frame at time t. For example, in multi-frame
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estimation of dynamically evolving depth fields, Heel [25, 26, 27, 28] has proposed

a method to adoptively construct A(t) based on the knowledge of relative motion

between the imaged objects and the image frame. Also, in Chapter 6 we will show that

for multi-frame optical flow estimation there is a differential approach to obtaining a

system matrix A(t) to perform data-estimate registration. Here, it suffices to indicate

that the matrix A(t) essentially performs some local position adjustments of the

components of the -field via shifting and averaging and that the matrix usually has

a sparse structure in which the non-zero elements are concentrated around the main

diagonal.

In summary, the following Gauss-Markov model allows us to capture first-order

differential behavior of time-varying visual fields:

f (t) = A(t)f (t - 1) + q(t), q(t) 0, Q(t) (4.2)

where A(t) is sparse and Q(t) is positive definite. This dynamic equation in con-

junction with an observation equation for f (t) at each t forms a dynamic system

whose state is f (t). As standard discrete Kalman filtering algorithms can be used

directly to solve the reconstruction problems, first order differential constraints and

Gauss-Markov modeling have been popular in multi-frame reconstruction problems

[55, 71, 27, 10, 5, 69]. In a later section, however, we expand the notion of Gauss-

Markov stochastic processes (specifically by allowing Q(t) to be "infinite") so that

this modeling format and the corresponding estimation algorithms, i.e., the Kalman

filter, are applicable to a wider range of temporal dynamics.

4.1.2 Autoregressive temporal models

Although direct applicability of the Kalman filtering algorithms makes Gauss-Markov

modeling convenient, it does not mean that the first order temporal differential con-

straints form the only conceivable basis for temporal dynamic models. Neither does it

mean that the other types of constraints do not lead to efficient sequential estimation

algorithms like the Kalman filter.
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In spatial coherence constraints, second derivatives like those in the thin-plate

model are frequent. Such higher order derivatives also make sense for temporal co-

herence constraints. For example, consider a motion field generated by planar motion

of a surface such that the motion vectors display a constant acceleration such as in
a2planar rotation. In this case, a temporal coherence like gt_2f(s�t) = q(st) (where

q(s, t) is a zero-mean white noise as defined above) makes sense, leading to a discrete

vectorized dynamic model

f(t + 1) = 2f(t) - f(t - 1) + q(t), q(t) 0,,o-'I

This type of model has been used in the computation of optical flow [20]. In general

for an nth order derivative, the dynamic model can be written as

n

f (t) = E ajf (t - j) + q(t), q(t) 0, p-'lj=1

with appropriate coefficients aj's. With the data-estimates registration problem dis-
cussed above in mind, we can further generalize the model as

n

f (t) E Aj (t)f (t - j) + q(t), q(t) 07 Q(t) (4-3)
j=1

for n > 1 where Aj(t) and Q(t) are sparse matrices and Q(t) is positive-definite.
An autoregressive dynamic equation can be written as a Gauss-Markov process

with an augmented state, i.e., using the state vector

X(t) [fT(t), fT(t _ 1) fT(t - n + 1)] T

for the model above. Thus, Kalman filtering algorithms are still applicable but with',
a substantial increase in computational requirements due to the increase in the state
dimension.
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4.1.3 Descriptor dynamic models

The driving noise process q(t) in the Gauss-Markov model(4.2) represents the vari-

ation in the field from one frame to the next. It is reasonable to impose spatial

coherence on this variation, reflecting the fact that such variations have local corre-

lations. Mathematically, such an idea is represented in the least-squares formulation

as cross space-time partial differential constraints. In another case, we might have a

situation where the temporal behavior of the field is best expressed by two or more

temporal differential constraints imposed simultaneously. These two types of situa-

tions can be expressed as descriptor dynamic equations. Let us illustrate these for

some specific cases.

motivation 1:

Consider the following temporal coherence constraint for the 1-D optical flow

field:

f (S' t) = q(s, t)at

where q(s, t) is a white noise process. This model requires the temporal variation

in the optical flow field f (t) along the contour to be spatially smooth. This

model makes sense because the contours are often associated with boundaries

of object surfaces which are assumed (under various forms of spatial coherence

constraint) to display stiffness and smoothness. A discrete, vector version of

the model is

S( f(t) - f(t - 1) q(t), q(t) 0, P-11

or

Sf (t) = Sf (t - 1) + q(t), q(t) 0, p-11
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where S is a first-order spatial difference operator. The latter dynamic equation

is in the standard descriptor form.

9 motivation 2:

For a similar constraint imposed on a 2-D optical flow, we have a simultaneous

set of constraints:

19 a f (S' O q, (s, t)
as, lot

q2(S, t)
a52 U1,

where q, (s, t) and q2(S, t) are white noise with covariance matrices p-'I and

P2 respectively. This corresponds to applying the membrane model to the

first-order temporal variation of the field -�� f (s, t). In our vectorized form, thisat

leads to a descriptor dynamic equation:

S1 S1 P I- 11
f(t) f (t - 1) + q(t), q(t) 0,

S2 j S2 P 2-

9 motivation 3:

Another case where we might have multiple temporal coherence constraints is

a temporal generalization of the deformable contour model used in [41], i.e.,

to use the first and second order temporal derivative constraints to promote

continuity and linearity, respectively, in temporal variations of the field:

As It) = q3(8, t)ata2
at2 Ps 7 t) = q4(8, t)
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where the zero-mean white noise processes q,3(s, t) and q4(s, t) have covariance

-'I and p-1I, respectively. A vectorized form of this model is

I 0 f(t - 1) -

f(t) = + q(t), q(t) 0, 103

1 21 -I f(t - 2) 104

This equation is not in a standard descriptor form. We can write it in the

standard form using a driving noise with a singular covariance matrix:

I 0 I 0
I 0 f (t) - 2I -I f(t - 1) + q(t),

I f(t - 1) j I 0 f(t - 2) j
L J L J

P3

q(t) - 0,
104

L 0 i

o generalization:

For general space-time coherence constraints, we must consider a set of si-

multaneous autoregressive models driven by white noise processes. Let Si for

i = 17 21 ... Im be various spatial difference operators'. Then, the following

dynamic equations can express all the temporal models discussed so far:

ni

Sif (t) E SiAij(t)f (t - j) + qi(t), qi(t) 0, Qi(t) (4.4)
j=1

where Aij(t) performs data-estimate registration and is a sparse matrix, and

Qi(t) is sparse and positive definite.

Dynamic equation for multi-frame reconstruction

The set of dynamic equations (4.4) can express all the dynamics discussed in this

section, including (4.2) and (4.3). By defining n =_ maxi ni, we can write them in a

2including the identity matrix which can be considered to be a zero-th order difference operator
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single vectorized equation:

S, S, All A12 ... Ain f(t 1) q, (t)

f (t) + (4.5)

S, S, Am, Am2 ... Amn f(t n) qm(t)

where Aij -= Aij(t), some of which are zero. This is the dynamic equation on which

we base our development of a sequential estimation algorithm. For brevity we write

the equation as

Bf(t)=BA(t)x(t-1)+q(t), q(t),(O1Q(0) (4.6)

by introducing the correspondingly defined matrices B, A(t), x(t - 1), and q(t) as

well as Q(t) which is a block diagonal matrix whose blocks are Qi(t)'s.

Note that we can certainly write (4.6) in a standard descriptor form

E'x(t) = A'(t)x(t - 1) + q'(t), q'(t) - ( 0, Q'(t) ) (4.7)

with X(t) = [fT(t)'...'fT(t - n + 1)] and appropriately defined matrices E', A'(t),

q'(t) and Q'(t). Although sequential estimation algorithms have been developed for

standard descriptor systems like (4.7) [62], the only truly dynamic part of (4-7) is

(4.6) while the rest of (4.7) just involves transfering of the components f (t - 1), f (t -

2), ... I f (t - n) of x(t - 1) to their appropriate positions in x(t). In our development of

sequential information filter, we regard dynamic equations as observation equations

for a set of unknowns at different times. Treating (4.7) as an observation equation

involves in essence a set of perfect measurements corresponding to the trivial portion

of the dynamics which lead to a singular ML estimation problem which cannot be

conveniently dealt with in information form. For these reasons we express the general

temporal dynamics for the visual field process f (t) using (4.6), which captures the only

non-trivial portion of the dynamics, thereby avoiding the unnecessary complication

caused by the trivial shifting portion of the dynamics.
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4.2 Information Filter for the General Dynamic

System

Consider state estimation problem for the descriptor dynamic system

Bf (t) = BA(t)x(t - 1) + q(t), q(t) - ( 0, Q(t) (4.8)

y (t) = C (t) f (t) + r (t), r(t) - ( 0, R(t) ) (4.9)

where the dynamic equation is from the end of the last section and the measurement

equation corresponds to the constraints in a single-frame reconstruction such as the

44 optical flow observation equation" in Section 3.2.4. The state of the system is

f (t)

X(t) (4.10)

f(t - n + 1)

In this section we present an information filter for the system, i.e., an algorithm to

propagate the information pairs associated with x(t) and f (t) through the equations

(4.8) and (4.9) over time.

4.2.1 Sequential ML estimation

As mentioned before, the dynamic system (4.8)(4.9) is a descriptor system. In this

subsection we present how the explicit statistics, the mean-covariance pair, of the

state can be obtained sequentially over time in a general descriptor system. Extending

the approach presented here, we then design an information filter (which propagate

implicit statistics) for our dynamic system in later subsections.

Propagation of mean-covariance pair

Nikoukah et al. [62] present a general mechanism for generating ML estimates re-

cursively. In their work, previously estimated variables are replaced by "summary
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measurements", and irrelevant variables are discarded. This procedure constitutes

the basis for the descriptor Kalman filter. Suppose we have a descriptor system

V(t)x(t) = A'(t)x(t - 1) + q'(t), q'(t) - ( 0, Q'(t) (4.11)

y(t) = C(t)x(t) + r(t), r(t) - ( 0, R(t) (4-12)

At time t, given the state statistics from the previous frame

X(t - 1) , ( -R(t - 1), fp(t - 1) ) (4.13)

we want to propagate it through the dynamic equation (4.11) to obtain the one-step

predicted statistics x(t) = ( x(t), -P(t) ) and then through the measurement equation

(4.12) to obtain the updated statistics x(t) =: ( R(t), P(t) ). The approach taken by

Nikoukah et al. (and inherited in this thesis) is to view the prediction step as an ML

estimation problem. Namely, the mean-covariance pair (4.13) implies the observation

equation

-R(t - 1) = X(t - 1) + U(t - 1), U(t - 1) 0, fp(t - 1) (4.14)

and the dynamic equation (4. 1 1) can be considered to be a joint observation of x(t - 1)

and x(t) as well, so that (4.11) and (4.14) can be written as a single observation

equation

0 A'(t) - V(t) X(t - 1) + qI(t)

-R(t - 1) J I 0 J L X(t) J U(t - 1)

Assuming that F(t) has a full column rank, this observation equation yields the

mean-covariance pair

X(t - 1) 1) P11 P12 (4.15)
7

L X(t) J J L P21 P22 J
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where dim (R(t - 1)) = dim (x(t - 1)) and dim (Pi,) = dim (X(t)XT(t)) . This mean-

covariance pair specifies the joint Gaussian density for x(t - 1) and x(t). The marginal

densities are simply

X(t - 1) - ( X(t 1), Pi, (4-16)

X(O - ( X(O P22 (4.17)

The desired predicted statistics are obtained as (4.17).

In the next step, the update step, we want to update the statistics (4.17) using the

measurement equation (4.12). The following facts are fairly intuitive but rigorously

proven in [62] based on the ML estimation theory:

1. The estimate, i.e., the posterior mean-covariance pair, of x(t) based on (4.15)

and (4.12) is the same as that based on (4.16), (4.17), and (4.12). This means

that for the purpose of estimating x(t) the mean-covariance pairs in (4.16) and

(4.17) summarize the information provided by the results from the previous

time frames (4.13) and the dynamic equation (4.11).

2. Further, estimating x(t) based on (4.17) and (4.12) yields the same result.

That is, since (4.16) does not involve x(t) it can be discarded for the purpose

of estimating x(t).

The marginal density (4.17) implies the observation equation

x(t) = X(t) + U(t), U(t) ' ( 0, P22 ) -

This equation and (4.12) can be written in a single observation equation

R(O
X(O +

Y W C (t) J r(t) J

from which updated mean-covariance pair can be computed.
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Marginal information pair

Obtaining the marginal Gaussian densities (4.16)(4.17) from the joint density (4.15)

can be considered to be a key step in the preceding sequential estimation algorithm in

the sense that this step separates the "past" from the "present". Although marginal

mean-covariance pairs are easily obtained from the joint mean-covariance pair by tak-

ing appropriate subvectors and submatrices out of the mean vector and the covariance

matrix, an analogous process is a little more complicated for information pairs.

Suppose that you have a Gaussian random vector x - ( ml P ). Let us partition

x into two subvectors xi andX2 and consider obtaining marginal densities for them.

We partition m and P as

Xi Ml P11 P12 (4.18)

X2 J M2 J P21 P22 J

from which we can obtain the marginal densities for xi andX2 as

Xi - ( Ml, P11 ), X2 - ( M2, P22 ) - (4.19)

We want to do the same for the information pair: given x z, L )) we want

to obtain the corresponding marginal information pairs xi - (( bi, K, )) andX2 -

(( b2,K2 )). From the relationship between inean-covariance and information pairs,

such marginal information pairs must satisfy

K, = P-1, K2 = P-1 (4.20)

11 22

and

bi = Kim, b2= K2M2 (4.21)

Computationally, the marginal information pairs can be obtained as follows:

Lemma 4.1 Given the joint information pair x ZI L )), consider the following
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partitioning:

Xi Z1 Li, L12

I

X2 Z2 L21 L22
J

where dim(zi) = dim(xi) and dim(Lil) dim(xix T). Then, if L22 is invertible, the1

information pair for xi, (( bi, Ki )), can be obtained as

bi = zi - L12L-1Z2, Ki = Li, - L12L-lL21-

22 22

Also, if Li, is invertible, the marginal information pair forX2, (( b2,K2 )),can be

obtained as

L21L-1zi, K2= L22- L21L-1L12-

Z2 - 11 11

Proof: We prove this result in the more restrictive case when the joint information

matrix L is invertible. Then, by definition P = L-1; thus, we have

P11 P12 Li, L12

P21 P22 L21 L22

where dim(Pil) = dim(Lil) and from the block matrix inversion formulas in Ap-

pendix A we have

P-1 Li, - L12L-lL21= Ki11 22

P-1 L22- L2,L-lLl2= K2-22 11

Thus, (4.20) is satisfied. By definition, m = L-1z = Pz; thus, we have

Ml P11Z1 + P12Z2

M2 P21Z1 + P22Z2-
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But, again by the block matrix inversion formulas,

1 _1P12Z2 = zi - L12L-1 = bi

Klm, = P1'M1 = Z1 + P11 22 Z2
_1M2 = P_1P21Z1 + Z2 - Z2- L2,L-lzl = b2

K2M2 = P22 22 11

Thus, (4.21) is satisfied.

Note that if only the information pair for x, is desired we only have to require the

submatrix L22 to be invertible, not the entire matrix L. Similarly, to compute the

information pair forX2, only L,, has to be inverted. We refer the readers to [62] for

a more rigorous treatment of such matrix invertibility issues.

4.2.2 Prediction step

Let us now begin derivation of an information filter for the visual reconstruction

dynamic system (4.8) (4-9). Given the information pair from the previous frame

X(t - 1) - (( i(t - 1)1 pt - 1) (4-22)

we want find the predicted information pair

X (t) , ( ( y(t), L(t) (4.23)

For the multi-frame reconstruction problem to be well-posed, the updated information

matrix at each t must be non-singular. Let us assume such is the case, and, in

particular, L(t - 1) > 0. We will see, however, that the predicted information matrices

may become singular even in a well-posed problem.

Let us define a vector � as

f (t)

f(t - 1) f (t) X(t)
(4.24)

X(t - 1) f(t - n)

f(t - n)
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and let u(t - 1) be the estimation error associated with -R(t - 1), i.e.,

U(t - 1) =_ X(t - 1) - -R(t - 1), (4.25)

whose distribution is given by the mean-covariance pair ( 0':EI (t - 1) Then, the

prediction step can be considered to be the ML problem to esimate given the

following observation equation which is essentially a combination of (4.8) and (4.25):

0 - B BA(t) � + q(t)
1 (4.26)

L R(t - 1) j L 0 I i L U(t - 1)

q(t) 0 Q(t) 0

U(t - 1) 0 0 fl-,(t - 1)

The implicit solution for this ML estimation problem, i.e., the information pair for

is given as 77,'E )) where

0 U -UA

i(t - 1) j -ATU AT UA + L(t - 1) j (4.27)
L

in which U and A are defined as

U B TQ-1 (t)B, A =_ A (t). (4.28)

Since x(t) is a subvector of we can use Lemma 4.1 to obtain its information pair.

To obtain the marginal information pair, let us partition the matrix E" and vectory

as

"'111 '_�12 77 771 (4.29)

21 I= 22 772

T(t)) f (tflT(t))so that dim(--:-',,) dim(x(t)x dim(:"22) dim( and dim(yj)
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dim(x(t)). Then, using Lemma 4.1,

L(t) E'11 - -=12'-E22 _1E21 (4-30)

-_1 772 (4-31)

Y1 - 'E"12';722

Note: to compute the desired information pair, the only matrix required to be in-

vertible is 'E-22. Thus, it is sufficient for us to check that f(t - 1) is non-singular to

be able to compute the desired information pair, as 2' '22 is a block submatrix along

the diagonal of the matrix A'UA + t(t - 1). The resulting predicted information

matrix E(t) is, however, not guaranteed to be non-singular. In fact, it is a singular

matrix when U is singular. An important role of the update step, presented below, is

to make certain that the resulting information matrix is non-singular, i.e., a possibly

singular L(t) must be converted to a non-singular t(t).

4.2.3 Update step

In the update step, the predicted information pair obtained as above is fused with the

information pair associated with the observation equation derived from the spatial

coherence and measurement constraints applied to f(t), as expressed in (4.9) which

by itself corresponds to a single-frame estimation problem for the field f(t). Then,

the resulting updated information pair for x(t) is used to compute the estimate f(t)

of the field at time t. Rewriting (4.9) in terms of x(t) instead of f(t), the observation

equation at time t has the form

y(t) [C(t), 0,. _., 0] x(t) + r(t) (4.32)
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as only f (t) is observed. Based on the additive property (cf. Theorem 3.4, p.50), the

information pair is updated as

CTR-'C

0
0) PO + (4.33)

L 0 i

C TR-1YM

0
i(t) -i(t) + (4-34)

0

As discussed in Chapter 3, we assume that the single-frame estimation problem asso-

ciated with (4.9) well-posed, i.e., CTR-'C is non-singular. This assumption implies

that L(t) as obtained above is a full-rank (invertible) matrix. This can be seen by

noting that E(t) might be singular due to rank-deficiency in the dynamic equation

(4.8). Let N =_ dim (f (t)). Then, since (4.8) is an N-dimensional vector equation,

the rank-deficiency in E(t) must be at most N. In fact, a careful inspection of (4.27),

(4.29), and (4.30) shows that the rank-deficient part of E(t) is the upper-left N x N

block. The update equation for the information matrix (4.33), then, converts this

block to be full rank. Thus, L(t) is non-singular if CTR-'C is non-singular.

To obtain the estimate ?(t) we need to to compute the information pair

f(t) - (� bm'km )).

Since f (t) is a subvector of x(t), we can again use Lemma 4.1 to obtain b(t) and R(t).

As in the solution for single-frame problems, the estimate is then obtained by solving

the inverse problem

R(t)f(t) -_ b(t). (4.35)
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Recall that in the single-frame problems such an inverse problem can be solved effi-

ciently by a variety of iterative methods due to the sparse structure of the information

matrix to be inverted. For multi-frame problems, the updated information matrix

K(t) does not have such a sparse structure in general. In the next chapter, however,

we present techniques to approximate the information matrix by a sparse matrix hav-

ing a structure similar to those found in the information matrices associated with the

single-frame problems.

4.2.4 Summary of the information filter algorithm

Prediction step:

Given the information pair x(t- 1) - (� i(t - 1), f(t - 1) form the following

vector and matrix; then, partition them with 77i's and EE-ij's as

0
(4-36)

i(t - 1) 772

U -UA 1 1 1 2 (4-37)
T T

L -A U A UA+ L(t - 1) 9. -"121 "'122J

where U B Tq-1 (t)B, A =_ A(t), dim (yj) dim (x(t)), dim( 772 dim (f (t)),

and dim(:22)= dim (f(t)f(t)T Then, the predicted information pair is com-

puted as

=-1
-t(t) 771 - EE12 22 772 (4-38)

V t) 1:1. 11 1:7 12 - 1,::-. 21- (4-39)

Note that having a non-singular L(t - 1) is sufficient to ensure that 22 is

invertible.

Update step:
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Update the information pair as follows:

CTR-'C

0
0) PO + (4.40)

L 0 j

CTR-1 YM

0 (4.41)
i(t) +

0

Partition the resulting information pair as

(4-42)
Z2

Li, L12

PO (4-43)
L21 L22

so that dim (zi) = dim (f (t)) and dim (Li,) = dim (K). The information pair

associated with f (t) can be extracted using Lemma 4.1 as

b(t) = zi - L12L- (4.44)

K(t) = Li, - L12L22'-U21 (4.45)

from which the updated estimate can be computed as

R-i(t)6(t)' P(t) = R-i(t). (4-46)f(t) =

The most computationally intensive step is inversion of the (n - I)N x (n - I)N

matrix L22 in the update step (where N is the dimension of a frame of f (t) and n

is the number of frames in the state vector x(t)); thus, efficiency of this algorithm
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heavily depends on the value of n as well as the structure of the submatrix L22-

4.2.5 Example I

We illustrate the filtering process in a specific multi-frame reconstruction problem.

Consider a discrete formulation of the following space-time reconstruction problem

for f (S' t):

2 92 2 2 i92 2

min v jjg - hf 11 2 + '0I 19 f + [12 f +pi (9 f + P2 - f ds dt.f as 9,q2 ��t 5t2

By letting f (s, t) parameterize the points on a contour in the image frame, we can

apply this least-squares formulation to dynamic contour reconstruction problems such

as estimation of heart chamber boundaries from a sequence of noisy images [131. A

discretized ML estimation version of this problem is the estimation based on the

dynamic system

I f (t) I I O f(t - 1) + q(t) (4.47)

I IJ L 2I -1 j f(t - 2)

q(t) 0, PI
P2

g(t) H(t)

0 S(1) f (t) + r(t) (4.48)

0 S(2)

N-1(t)

r(t) 0,

Y2
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e Prediction:

Let the posterior statistics of x(t - 1) from time t - 1 be

f(t - 1) Z1 Li, L12
X(t - 1) = - -

f(t - 2) L21 L22
L Z2i L

Then, from (4-36) and (4.37),

0
'q2 i2

L Z1j

(Pi + P2)1 -(pi + 2P2)1 P2I
1=12

-(pi + 2P2)1 fIll + (pi + 4P2)I L12 - 2P2I

21 P21 fL21 - 2P21 22 E22 + P21

and predicted information pair is given as

771 - -=21-=22 772

11 12 22 -21

9 Update:

Let the predicted information pair be partitioned as

X(t) f(t) ii Ell E12

f(t - 1) Z2 L21 L22

The updated information pair is given by

-ii + H TNg
i(t) =

L i2 j

T S (2)
Li, + H NH + YlS(1)7'S(l) + P2S(2)' L12

L(t)
L21 L22
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Using (4.42)-(4.45), we obtain the updated information pair for f as

Tii -1(t) + H Ng - E12E22 22

T S(2)TS(2)+ H NH + it, S(1)'S(1) + tt2 1;12E22 E21

4.3 The Gauss-Markov Case

In this section we consider a special case of the descriptor system model (4.8) (4-9) for

the multi-frame visual field reconstruction problems. Specifically, we let x(t) = f(t),

Bf(t) = BA(t)f(t-1)+q(t), q(t) 0, Q(t) (4.49)

y(t) = C(t)f (t) + r(t), r(t) ( 0, R(t) ) , (4.50)

which implies a first order temporal dynamic model for f (t). For this particular dy-

namic system, the information filtering algorithm presented in the previous section

can be considerably simplified. Note that the equation (4-49) is in a standard de-

scriptor form and that it can be reformulated as a standard Gauss-Markov dynamic

equation only if the matrix B has full column rank.

4.3.1 Filtering algorithm for the Gauss-Markov system

Let U =_ B TQ-1 (t)B and A =_ A(t). Then, by applying the algorithm in Section 4.2.4

to the system (4.49) (4.50) the equations for the prediction and update steps can be

obtained as follows:

9 prediction:

E(t) = U - UA (A TUA + f(t - 1))_1 A TU (4.51)

?(t) = Ai(t - 1) (4.52)

i(t) = pq(t) (4.53)
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0 update:

'(t) = pt) +CT R-1C (4.54)

i(t) = t(t) +CT R-ly(t) (4.55)

i(t) = L-1(t)2(t). (4.56)

An advantage over standard information Kalman filters

As detailed below, the descriptor dynamic equation (4.49) can be expressed in a

Gauss-Markov form (4.57). Thus, standard information Kalman filtering equations

(e.g., [4, 45]) can also be applied to the estimation problem. The filtering algorithm

(4.5l)-(4-56) is, however, more suitable for visual reconstruction mainly due to the

fact that, unlike the traditional information Kalman filters, the inverse of A(t) is not

needed. As previously mentioned, in visual reconstruction the system matrix A(t)

often performs a local averaging and thus is sparse. Taking its inverse generally loses

its sparseness and computational efficiency of the filter. Also, it is conceivable that

A(t) may not even be invertible in some formulations.

Derivation

Deriving (4.5l)-(4.56) by applying the general information filter algorithm in Sec-

tion 4.2.4 to the system (4.49) (4.50) is straightforward except for (4.52), which is

derived below. From the general filtering algorithm, the predicted information pair

is computed as

f(t) = U - UA (A TUA + i(t - 1))_' A TU

Y(t) = UA (A TUA + L(t - 1)) i(t - 1).

But the latter equation can be written as

UA (A TUA + L_(t - 1) L(t - 1)i(t - 1)
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= UA I- (A TUA + t(t - 1)) TUA i(t - 1)

T Tu= U - UA (A UA + t(t - 1))_1 A Af(t - 1)

= E(t)At(t - I).

Thus,

(t)�(t) = A?(t - 1),

proving (4.52).

4.3.2 Generalized Gauss-Markov process

Consider the descriptor dynamic process (4.49), i.e.,

Bf(t)=BA(t)f(t-1)+q(t), q(t),(O1Q(0)-

For the purpose of estimating f(t) we can consider this dynamic process as a gener-

alized Gauss-Markov process

f(t)=A(t)f(t-1)+u(t), u(t)-((OU(t))) (4.57)

where

U(t) =_ B Tq-1 (t)B (4.58)

in the sense that the information filtering equations applied to this dynamic equation

is equivalent to those applied to (4.49) (using the same observation equation (4.50)).

In general, the information matrix U(t) associated with the process noise u(t) is

singular because the submatrix components of B, the spatial difference operators

Si, are rank-deficient. Since the Gaussian density function for u(t) does not exist

in a strict sense, the dynamic process is not a standard Gauss-Markov process. The

information filtering algorithm, however, does not require U(t) to be invertible, and it
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can be applied to (4.57) just as effectively as to (4.49). The Gauss-Markov form (4.57)

is in fact preferrable to its descriptor form (4.49) because the large static matrix B is

replaced by a smaller matrix U(t), leading to a reduced representation for the system

model. For the rest of the thesis, we use this generalized Gauss-Markov form for first

order temporal dynamic equations of f (t), mainly due to its notational conciseness

and implementational compactness.

4.3.3 Example 2

Consider multi-frame reconstruction of a 2-D visual field whose temporal dynamics

are modeled by imposing the thin-plate constraint on its -first order temporal difference

as

S(2,O) S(2,O)

S(0,2) f (t) S(0,2) f(t - 1) + q(t) (4.59)

2S(1,1) 2S(1,I)

Pi

q(t) 0, 102

103

while the spatial coherence is implemented by a thin-plate model as well, i.e.,

g(t) H(t)

0 S(2,O)

S(0,2) f (t) + r(t) (4-60)
0

0 2S(1,1)
L J L

N-1(t)

r(t) 0,

ft 2

L
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As mentioned before, thin-plate models are suitable for surface interpolation, and we

will present examples of multi-frame surface interpolation in the next chapter (using

approximated filters). The generalized Gauss-Markov process corresponding to the

descriptor dynamic equation (4-59) is

f(t) = f(t - 1) + U(t), U(t) 0, U(t) (4.61)

where

U(t) = P1S(2,O)'S(2,O) + P2 S(0,2)'S(0,2) + 4P3 S (1'1)' S (4-62)

The equations (4.61) (4.60) form a generalized Gauss-Markov system, to which we

can apply the information Kalman filtering algorithm (4.5l)-(4.56) to estimate the

visual field.

4.4 Square Root Information Filter (SRIF)

Invertibility of the updated information matrices are important in visual reconstruc-

tion as it implies wellposedness of the problem. In implementing the information

filters presented so far, therefore, we need to be careful about whether the computed

information matrix in each update step is non-singular, because numerical roundoff

could introduce indefiniteness in information matrices in some reconstruction prob-

lems, especially in those problems that have near-rank deficient updated information

matrices. For example, in optical flow estimation, the updated information matrix

can become near-rank deficient when the directions of the spatial brightness gradients

are nearly the same. In surface reconstruction, a similar situation can also arise when

the depth measurements are very sparse over the image frame.

The so-called square root form of an information Kalman filter, or a square root

information filter (SRIF), improves numerical stability in such near-singular estima-

tion problems by reducing numerical dynamic ranges of the variables [9, 471. Besides

providing an increased margin for numerical roundoff errors, such reduction in the dy-
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namic ranges can also relieve memory requirements (i.e., the number of bits required

to represent each variable) in filter implementation - a desirable feature as low-level

visual reconstruction algorithms are likely to be VLSI-implemented as "front-ends"

of a complex visual system. In this section, we present an SRIF algorithm for the

generalized Gauss-Markov system discussed in the previous section.

4.4.1 Data fusion in square root form

The computational mechanisms for SRIF algorithms are considerably different from

those for the information filter algorithms. Unitary transformation is a key operation

in SRIF's. Here, we briefly review some rudiments of square root estimation theory

191.

Unitary transformation and unit white noise

Let us use 6 to denote generically any zero-mean white noise process whose covariance

matrix is an identity matrix, i.e.,

6 - ( O'l

The dimension of 6 is context-dependent. A unitary transformation on a (column) vec-

tor is a left multiplication by a matrix operator T such that T'T = 1. An important

fact is that the statistical properties of 6 are unaltered by a unitary transformation,

i.e., if 6' = T6 then 6' Oj ). Thus, using our generic notation, we write 6 = T6.

Matrix square root

If a square matrix M can be written as

M = STS
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where S is a square matrix, we say that S is a square root of M and write

M1/2 S.

For notational convenience we write the transpose of M112 as MT12 , and if M112 is

invertible we write its inverse as M-1/2. Similarly, the transpose of the inverse is

written as M-T12.

The usual definition of square root matrices does not require them to be square

matrices; however, we will confine ourselves here to square roots that are square, as

this will be important in developing sparse filter approximations in Chapter 5. For

any square matrix, a square root matrix which is square always exists, but it is not

unique. (For a symmetric matrix, however, a unique symmetric square root always

exists. See Appendix C for more details on such symmetric square root matrices.)

SRI-pair

Let us define the square root information pair or SRI-pair to be a square root version

of the information pair. Specifically, if w and L'/' are the SRI-pair corresponding to

the information pair ( z, L ) then

T/2 /2 T/2W Z.L L' =_ L7 L (4-63)

We denote a SRI-pair as

(( WI L' /2 1/2

and call V /2 the square root information (SRI) matrix. The corresponding mean-

covariance pair can be computed from the SRI-pair as

L-1 = (LT/2L' /2) -1

L-1z = L- 1/2L -T/2Z = L- 1/2W.
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In particular, the mean i can be obtained as the solution of the inverse problem set

up by the SRI-pair:

L' /2j = W.

Data fusion with the SRI-pair

We now present a fundamental algorithmic mechanism for SRIF's. Consider ML

estimation based on the following two observation equations for an M-dimensional

unknown vector x:

Yi = Cix + ri, ri - ( 0,Ri (4.64)

for i = 11 2. Since R-1/2 ri = 8, these equations can be written as

R_ 1/2CiX - R-1 /2 Yi = 8 (4-65)i i

from which the SRI-pair associated with each of these equations can be extracted as

X R-1/2 R- 1/2 Ci 1/2
i Yi I i

for i 1) 2. By (4.63), these SRI-pairs can be verified to correspond to the information

pairs CTR-'Yi ) CTR-'Ci for i = 1�2.

To fuse the two SRI-pairs together, we set up a joint observation equation based

on (4.65) as

R_ 1/2 C, R_ 1/2 Y1 X
1 1 6. (4-66)

'-1/2 1/2R_ Y2
12

For this estimation problem to be well-posed, the matrix operator on the left hand

side of the equation must have a column rank of at least M. We assume such is the

case. Then, there exists a unitary transform T that nulls the lower-left block of the
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operator matrix above as

R-1/2 C, R- 1/2 V V"
T 1 1 Y1

R- 1/2 C2 R- 1/2
L 2 2 Y2 J L 0 Vb J

so that the resulting submatrix V is of dimension M x M and is non-singular. One

such T can be obtained by QR factorization [18]. Since T does not alter the white

noise process, we can left-multiply both sides of (4.66) by T and obtain

V V" X
= S. (4.67)

0 Vb 1

The top M rows of this equation are

VX Va = 6

from which the fused SRI-pair can be obtained as

X - (( Va, V ))1/2 .

An important point of this procedure is that all computations are performed with

square root matrices (i.e., avoiding explicit computation of the information matrices),

which have smaller dynamic ranges, to ensure the previously mentioned numerical

stability. The readers are referred to [9, 40] for more complete coverages of the square

root estimation theory.

4.4.2 Prediction step for the SRIF

Consider the SRIF for the generalized Gauss-Markov system introduced in the last

section:

f (t) = A(t)f (t - 1) + u(t), u(t) - (( 0, U(t) (4-68)

y (t) = C (t) f (t) + r (t), r(t) - ( 0, R(t) (4-69)

8 9



Consider, in particular, propagating the updated SRI-pair from the previous frame,

*(t - 1) and tl/2(t _ 1), through these two equations.

Let U1/2 be a square root of U(t). In the prediction step, we fuse information in

the SRI-pair from the previous frame, i.e.,

*(t 1) = fl/2(t_ I)f(t _ 1) + 6,

with information in (4.68). The prediction step is then captured by the following

observation equation:

1/2(t*(t - 1) 1) 0 f (t - 1)
+

0 _U1/2A U1/2 f (t)
L J L

or

fl/2(t f(t - 1)

_ 1) 0 *(t _ 1)

_U1/2A U1/2 0 f (t) 6. (4.70)

By applying an appropriate unitary transformation on both sides of this equation we

can obtain

V1 V2 V 1 f(t - 1)
f (t) (4.71)

0 V3 V2

(where dim (Vi) dim (fT (t)f (t) and dim (vi) dim (f (t)) for i 1, 2,.. -) from

which we obtain the predicted SRI-pair

E1/2 (t) = V3, W(t) V2- (4.72)
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4.4.3 Update step for the SRIF

Expanded observation equation

The observation equation in a visual reconstructing dynamic system y(t) = C(Of M+

r(t) by itself corresponds to a single-frame reconstruction problem. We have discussed

in the previous chapter that such an observation equation can be expanded into the

mutually independent spatial coherence part and measurement part. That is,

g(t) H(t) ro(t)

0 SI f(t) + ri (t)

L 0 J L S- J L r,, (t) j

can be written as

g (t) H (t) f (t) + ro (t), ro(t) 0, N-'(t) (4.73)

0 S 1 ri (t) ri(t) 0, it-11
f(t) + i (4-74)

i = 1121 ... I
0 j S, j r,(t) j

where the noise processes ri(t),i = 0,1,2,..., are mutually independent. The SRI-

pair associated with (4.74) is

f (t) 0, S )) 112

where the square root matrix S is defined as

M I/2
S [tisTsi (4-75)

Thus, (4.74) is equivalent to

0 = Sf(t) + 6
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in the sense that both of these equations lead to the same SRI-pair. Similarly, (4.73)

is equivalent to

N -1/2(t)g(t) = N -1/2( t)H(t)f (t) + b.

Consequently, the measurement equation, (4.69), of the system can also be expressed

as a pair of equations

N -1/2(t)g(t) = N- 1/2 (t)H(t)f (t) + 6 (4-76)

o = Sf (t) + b. (4.77)

Note that the latter equation is more compact than (4-74) as S has the dimension

dim (f (t)f (t)T).

Spatial coherence update:

Combining the predicted SRI-pair and the spatial coherence part of the obser-

vation equation, we have

W(t) 1;1/2M
f(t) + 6 (4.78)

0 Sj L j

which can be written as

El/2(t)
f (t)

(4.79)
S 0 -1

By applying an appropriate unitary transform on both sides of this equation we

can obtain

V4 V .3 f (t)
(4.80)

0 V4 -1
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which implies that the data assimilated so far for estimation of f (t) can be

summarized as an observation equation

V3 YJ (t) + 8, (4.81)

117- 1/2.whose SRI-pair representation is V3, 4

Measurement update:

To complete updating the SRI-pair, the summary observation equation just

derived must be combined with the measurement equation. These two equations

can be written jointly as

V3 V4
N-1/2 9(t) N- 1/2H f(t) + 6 (4.82)

J

which can be written as

V4 V3 f(t)

N-1/2 H N -1/2 g(t) , , -1 = 6. (4-83)
A

By applying an appropriate unitary transform on both sides of this equation we

can obtain

V5 V5 f(t)
= 8 (4.84)

0 V6 -1

from which the updated SRI-pair can be obtained as

1/2(t) = V5, *(t) = VS. (4-85)

Mean-covariance pair:

The estimate is computed from this SRI-pair as

f - 1 / 2 (t)iV- (t), f?(t) = f-1/2(t)f-T/2(t).
f(t) (4-86)
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In particular, the estimate is obtained by solving the inverse problem

t1/2(t)j(t) = *(t). (4-87)

4.4.4 Summary of SRIF algorithm

The basic mechanism for propagation of the SRI-pair involves nulling of certain sub-

matrices by a unitary operation. Let M =_ dim (f (t)), i.e., if f (s, t) is a d-vector

defined over a discrete spatial domain with N points then M = Nd.

9 The prediction step.

1/2(tGiven the SRI-pair from the previous frame *(t - 1) and , _ 1) we form

the following 2M x (2M + 1) matrix using the SRI-pair as well as the M x M

matrices Ul/2(t)A(t) and U1/2(t) as its block components; then, by an appro-

priate unitary transformation we null the lower left M x M block of the matrix,

i.e.,

j1/2(t _ 1) 0 *(t _ 1) V1 V2 V 1 (4.88)

_UI/2A U1/2 0 0 V3 V2
L J L

where Vk and vk are M x M matrix and M-vector, respectively, for k = 11 2'....

Then, the predicted SRI-pair is given by W(t) = V2 and E(t) = V3.

* The update step 1 - spatial coherence update.

We form the following 2M x (M + 1) matrix using the predicted SRI-pair and

an M x M matrix S =_ [Ei /JiS7,Si] 1/2; then, we null the lower-left M x M blockI

of the matrix by a unitary transformation:

1;1/2 (t) W(t) V4 V 3 (4.89)

S 0 0 V4

* The update step 2 - measurement update.

Using the M x M matrix V4 and M-vector v.3 just computed as well as the
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matrix N'/'H and vector N'/2 g obtained from the measurements, we again

form a matrix with M + 1 columns and then null its lower-left block so that V5

is M X M:

V4 V3 V5 V 5 (4-90)

/2 /2 0 V'SN' H N' g J

f 1/2(t) VThe updated SRI-pair is given by *(t) vr, and 5 The estimated

field is obtained by solving the inverse problem

1/2(t)?(t) = *(t). (4.91)

In summary, propagation of the SRI-pair is achieved by nulling the appropriate lower-

left blocks of the aggregate matrices shown on the left hand sides of (4.88) (4.89)

(4.90).

4.4.5 Example 3

In Example 2 (Sec. 4.3.3), a generalized Gauss-Markov system based on thin-plate

space-time constraints (4.61) (4.60) is presented. To apply the SRIF equations just

presented we need to first compute the square roots U1/2 and S based on

U = P1S(2'O)TS(2,O) + 02 S(0,2)TS(0,2) + 4p3S(111)'S(111) (4.92)

STS = /'tJS(2'O)TS(2,O) + Jt2 S(0,2)TS(0,2) + 41t3 S(1'1)TS(1'1). (4.93)

We also need the square root matrix N' /2 , a square root of a (block) diagonal matrix.

Noting that A = I in this problem, we have all the parameter matrices necessary to

propagate the SRI-pair as (4.88)-(4.90). The estimate at each t is computed from the

updated SRI-pair as in (4.91).
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4.4.6 Spatial model implied by SRI-pairs

We have seen previously that an information pair

f - (( zL

implies a spatial model for the visual field f

Lf zL

By left-multiplying both sides by L-T/2 we have

V/2f = Al A - ( wj (4.94)

where A =_ L-T/2C whose mean and covariance are given by L-T/2Z = w and

L-T/2 LL -1/2 = 1, respectively. This shows that an SRI-pair also implies a spatial

model for f.

4.5 Concluding Remarks

In this chapter we presented various temporal coherence constraints for multi-frame

visual field reconstruction as direct extensions of the spatial coherence constraints

used in the single-frame reconstruction problems. The resulting formulation of the

multi-frame reconstruction is a state estimation problem for the descriptor dynamic

system (4.8) (4.9) for which we derived an information filtering algorithm in Sec-

tion 4.2.4. A useful special (i.e., first order) case of the problem can be formulated

in a generalized Gauss-Markov system format (4-57) (4-50), and the corresponding

filtering algorithm (4.5l)-(4.56) is considerably simplified. A square root version of

this filter is also presented in Section 4.4.4.
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4.5.1 Recursion over space

The fitering algorithms presented in this chapter essentially perform recursive data

assimilation over the time axis. As the temporal coherence constraints in visual re-

construction plays the same mathematical role as the spatial coherence, a similar

recursive processing can be performed over one of the spatial axes. Such spatially

recursive computation is particularly useful for efficient reconstruction of visual fields

defined over a I-D space, as demonstrated in [65] for estimation of optical flow along a

contour (2.12). An analogous recursion over a higher dimensional space faces compu-

tational complexity issues because of large state dimensions [57, 79, 78]. One notable

difference between temporal and spatial recursion is that the unknown processes in

general lose causality over space; thus, for spatially recursive estimation smoothing,

rather than filtering, algorithms are used.

4.5.2 Locality of spatial models implied by information pairs

We have seen that throughout stages of single-frame estimation the information ma-

trix preserves a sparse structure, providing us with a local spatial model interpretation

of the corresponding information pairs. The same is not true in multi-frame problems.

Let us, for example, consider the information filtering algorithms, (4.5l)-(4.56), for

the generalized Gauss-Markov process. The information matrix loses its sparseness

because of the matrix inversion operation in (4.51), as an inverse of a non-diagonal,

sparse matrix is in general a full matrix. From the spatial model perspective, it is

conceivable that such information matrix still retains strong local components be-

cause physical relations among the components of the visual fields, as well as the

measurements with which we reconstruct them, are usually spatially local. A similar

statement can be also made about the SRIF algorithm, as the SRI-pair also implies a

spatial model for the unknown field. These provide us with the motivation for effec-

tive and efficient approximate implementations of the filtering algorithms described

in this chapter. Such implemental issues are discussed next.
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Chapter 5

Suboptimal Filtering Techniques

The number of pixels, N, in a typical image frame is in the range of 10' to 10'. The

information filter for a generalized Gauss-Markov process presented in the last chapter

requires storage of O(N') elements of the information or the square-root information

(SRI) matrices - a substantial memory requirement. Moreover, an optimal propa-

gation of such large matrices over time requires a practically impossible amount of

computation. Computational requirements are particularly severe for matrix inver-

sions in the information filter and unitary transformations in the SRI filter. Clearly,

practical implementation of these filters must be achieved through some approxima-

tions. In this chapter we discuss such implementational issues.

5.1 Approximating the Information Filter

5.1.1 The filtering problem

Let us consider the information filter for a generalized Gauss-Markov system

f (t) = A(t)f (t - 1) + u(t), u(t) - (( 0, U(t) (5.1)

y(t) = C(t)f (t) + r(t), r(t) 0, R(t) (5.2)
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which, as discussed in the last chapter, is a descriptor system in disguise. The infor-

mation filter corresponding to this system is

E(t) = U - UA (A T UA + L(t - 1)) _' ATU (5-3)

?(t) = A?(t - 1) (5.4)

X(0 = EMA0 (5.5)

1;(t) + CT R-IC (5.6)

j(t) + CTR-ly(t) (5-7)

L-1(t)-i(t). (5.8)

We first consider approximating this information filter. Approximation for the corre-

sponding square-root filter will be discussed later in the chapter.

2-D scalar fields

For explicitness in presentation, we assume that the field is defined over a 2-D space

(e.g. an image frame) and that the field is scalar. The filter approximation techniques

can be straightforwardly extended to the other cases where we need to deal with vector

fields and fields defined over a 1-D or 3-D space. We will comment on such extensions

at the end of the chapter.

5.1.2 Approximation strategy

Through approximations performed on the information filter we want to achieve:

• Reduction in storage requirements for the information matrix.

• Reduction in computational complexities, especially those imposed by matrix

inverses, and enhanced parallelizability.

Computational structure of the single-frame problems

Our approximation methods are motivated by the structure of the single-frame visual

reconstruction problems whose solutions can be computed efficiently. Recall from

99



Chapter 3 that in the single-frame visual reconstruction problems the information

matrices have certain sparsely banded structures. Such matrix structures allow us to

0 store only the O(N) non-zero elements of the information matrix, and

9 invert the information matrix efficiently using an iterative method.

Inversion of the information matrix is needed when the estimates are computed from

the information pairs obtained from the measurements and the spatial coherence

constraints, and it is a key computational step in the single-frame problems. As

mentioned previously, for various single-frame problems it takes O(N) iterations to

obtain reasonable estimates, but with a multigrid method the amount of computation

can be reduced by an order of magnitude or more [72].

The sparse structure of the information matrices that leads to such efficient imple-

mentations of the single-frame problems reflects the fact that the spatial coherence

constraints are localized in the sense that each constraint equation essentially op-

erates over a confined area on the spatial domain to take a local weighted average

among some neighboring field elements. (Recall that such local averages are used

as measures of how smooth, i.e., coherent, the field is.) The relation between the

local nature of the problem formulation and the sparse, banded structures of the

information matrices is elaborated later.

Computational structure of the multi-frame problems

The multi-frame version of the reconstruction problem has an inherently local struc-

ture as well, as the extents of the temporal coherence constraints are also localized.

Although in its optimal form the information filter algorithm still requires some global

operations such as matrix inversion over the entire image frame, the algorithm is "al-

most there" in terms of computational efficiency, and we will describe in the sequel

how to make an effective approximation of the multi-frame algorithm so that the

resulting suboptimal filter is truly local (thus, is parallelizable and requires much

reduced memory for information matrix storage) while demanding no more compu-

tational complexity per frame than the corresponding single-frame problem. Specifi-
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cally, in the filtering equations, all except (5.3) preserve sparseness of the information

matrix. Also, (5.3) is the only step that requires an explicit inverse matrix. Hence,

an efficient implementation of the information filter seems to be possible by approxi-

mating this equation in a way to enhance computational efficiency and preserve the

sparse matrix structure. Note: (5.8) also requires inversion of an updated information

matrix, but if all the information matrices are approximated to be sparse, then this

step would have the same computational structure as the corresponding inversion

step in the single-frame problem.

5.1.3 The approximation problem

We intend to approximate (5.3) so that the approximated predicted information ma-

trix L,,(t) is confined to have the sparse banded structure analogous to those of the

information matrices in the single-frame problems. Development of such an approxi-

mate filtering algorithm can be regarded as a two-step process. First of all, we need

to make certain that truncating the optimal predicted information matrix E to be

a sparse matrix, L,,(t), will actually lead to an effective visual reconstrution filter.

Then, we need to find a way to compute L,,,(t) efficiently or to approximate L,,,(t)

itself so that we can avoid the explicit matrix inversion in (5.3). These issues are

addressed in Sections 5.2 and 5.3.

5.1.4 Spatial modeling perspective of the approximation

As discussed previously, an information pair implies a spatial model for the corre-

sponding unknown field. The information matrix, in particular, can be considered

to encode interactions among the components of the field in such a spatial model.

It makes physical sense that the information matrices are local, i.e., have structures

corresponding to the locality of the spatial relationships among the components of

the field, as the natural forces and energies governing structural characteristics of the

field usually have local extent.
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Let us consider the spatial model for the predicted information pair

f(t) - X(t), -Em

i.e.,

PtMt) -t(t), pt) (5.9)

Because of the matrix inversion process in (5.3), L(t) is a full matrix even though

f(t - 1) might be a sparsely banded matrix such as the updated information matrix

in a single-frame problem. Approximating E(t) by a sparse matrix L,,(t) having a

"local" structure described above corresponds to characterizing the field f(t) by a

reduced-order version of the spatial model (5.9). This leads to the following physical

intuition for our approximation strategy for the information filter:

* The prediction step of the information filter can be considered as a model re-

alization process (for the error in the one-step predicted field). Such a model

associated with the optimal information filter, which tends to yield full infor-

mation matrices, characterizes the spatially discrete field by specifying every

conceivable interaction among its components.

9 Since a visual field in natural scenes can normally be specified by spatially

local interactions among its components, a reduced order model obtained by

truncating the predicted information matrix should be effective.

5.2 Truncated Information Filter

Consider the information filtering algorithm (5.3)-(5.8) in which the information ma-

trices are truncated to have a certain sparse, diagonally banded structure that we

call a neighborhood structure. If the number of bands is 0(l), the information ma-

trix with such a neighborhood structure has only O(N) non-zero elements; thus, this

information matrix can store the approximated second order statistical data with
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only that many storage elements as opposed to the usual number of O(N'). In this

section, we examine such a truncation of information matrices and its effect on filter

performance. Computational complexity issues will be discussed in Section 5.3.

5.2.1 Structural constraints on the information matrix

Let us first make explicit the neighborhood structures to be imposed on the informa-

tion matrices. The motivation for such structural constraints is provided by spatially

local (i.e., neighborhood) interactions among the components of the unknown field.

As detailed previously in our notation N components of the field f (s, t) are organized

by a lexicographical order to form the unknown vector f(t). Because of this lexi-

cographical ordering, the spatial relationships among the components are often not

apparent in the vector notation. As we will see, the diagonal bands in a matrix with

the neighborhood structure may not always be adjacent to each other even though

the matrix structure reflects the local spatial relationships among the components of

the -field.

The neighbor sets

The components, f (s, t), of the unknown field at a given time t are defined over

a rectangular, discrete spatial domain. Let us define a neighbor set to be a set of

spatial locations within a certain distance from a given point in the domain. The

size of a neighbor set is determined by the number of layers, specifying the maximum

rectangular distance' between the given point and each point in the set. Let us

pictorally present the smallest neighbor sets over a 2-D spatial domain. In the figures

below, X is represent the locations of the neighbors of the point denoted by (D. The

locations of these x's and (& form a neighbor set.

lalso called "city block" or "Manhattan" distance
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I-layer neighbor set.

X

X 0 X

X

9 2-layer neighbor set.

X

X X X

X X (& X X

X X X

X

Note that the number of elements in a neighbor set with a certain number of layers,

f, is given by 2f(f + 1) + 1. Obviously, a neighbor set centered around a pixel near an

edge of the image frame has fewer elements because of truncation of the set by the

edge.

The neighborhood structures

An information matrix can be considered to be a matrix operator operating on the

field, as the predicted field at time t can be specified by a spatial model (5.9), i.e.,

Pt)f (t) = (I ( - ( -t(t), -r(t) ) -

That is, each row of the information matrix forms an inner product with the field

vector f (t) to yield a weighted average of field elements, modeling the interaction
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among certain components of the field. As discussed before, we intend to constrain

the spatial extent of such an interaction to be local around a given point, and the

spatial extent is, in fact, given by a neighbor set. Specifically, we constrain each row

of the information matrix to have a structure corresponding to a lexicographically

ordered neighbor set. (The lexicographical order is, of course, the same order by

which f (s, t) are organized into f (t).)

Motivated by this, a matrix with a neighborhood structure is obtained from a

neighbor set as follows: For each row, say the kth row, of the matrix consider the

(given) neighbor set centered around the corresponding, i.e., the k1h, element in the

field vector. For the matrix to be a neighborhood structured matrix, all the elements

in the row vector outside this neighbor set must be zero. Note that the diagonal

elements of the matrix always belong to a neighbor set. Let us show some examples

of neighborhood structured matrices.

A neighborhood structured matrix corresponding to the I-layer neighbor set is

block tri-diagonal where the diagonal blocks are themselves tri-diagonal while

the off-diagonal blocks are diagonal. Specifically, consider a rectangular 2-D

spatial domain with the dimension n x m (i.e., N = nm); then a I-layer neigh-

borhood matrix has a structre

Al C,

B, A2

B,_1 A,

where A's are n x n tri-diagonal submatrices while B's and C's are n x n diagonal

submatrices. Clearly, the matrix has 5 diagonal bands, each corresponding to

one of the 5 elements in the I-layer neighbor set. This is also called the nearest

neighbor structure [43]. The information matrix corresponding to a membrane

model has this structure.
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9 Similarly, a Mayer neighborhood matrix has a block penta-diagonal structure

Al C, El

B, A2 C2 E2

Di B2 A3 C3 E3

Ern - 2

C'n - i

D.-2 B,,,_1 A,.

so that the diagonal blocks A's are penta-diagonal, the first off-diagonal blocks

B's and C's are tri-diagonal, and the second off-diagonal blocks D's and E's

are diagonal. The matrix can be verified to have 13 diagonal bands, the same

number as the elements in the Mayer neighbor set. The information matrix

corresponding to a thin-plate model has this structure.

The fact that the neighborhood structures reflect the structures of information ma-

trices corresponding to various spatial coherence constraint serves as a motivation for

constraining the information matrix in the filter by these structures. As demonstrated

above, a neighborhood structured matrix has as many bands as the elements in the

corresponding neighbor set. A neighbor set with a larger number of layers than those

depicted above may be desirable for filter approximation purposes, e.g., when the

spatial coherence constraints use higher order derivaties and when the system matrix

A(t) has significant non-zero elements far from their main diagonals.

5.2.2 Filtering with truncated information matrices

We consider here an approximated information filter obtained by forcing L(t) in (5-3)

to have a neighborhood structure by truncation.

Definition 3 Let )/V be an N x N neighborhood structured matrix whose elements

are either 0 or 1; an element is 1 if it belongs to the neighbor set, 0 if not. Thus, for
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a given information matrix L, the operation

VV 0 Li

where (D is an element-by-element multiplication operator, results in an information

matrix truncated to be a matrix with the desired neighborhood structure. Thus,

VV can "mask" information matrices into neighborhood matrices. Since a certain

neighborhood structure can be specified by the number of layers, we use the notation

Wt to denote a masking matrix corresponding to a specific neighbor set with f layers.

Also, for convenience in terminology, a matrix A is said to be W-structured or to be

a VV matrix if A has the same neighborhood structure as W.

The truncated information filter algorithm

The optimal information filter has been given in (5.3)-(5-8). The truncated (or

masked) information filter can be obtained by replacing (5.3) with

T 1 TUWt G) - UA (A UA + L(t - 1)) A (5.10)

where the masking matrix Wt has been specified by the number of layers, f, in the

corresponding neighbor set. If f has been chosen large enough so that the neighbor set

contains the spatial extent of the spatial coherence constraint, the rest of the filtering

algorithm does not alter the structure of the information matrix. Because of the

matrix inverse on the right hand side of (5.10), this approximation does not improve

on the computational complexity in the optimal information filter implementation. As

we defer the discussion of this issue to the next section, however, let us point out that

the truncation step greatly improves the storage situation, as the number of elements

in the (approximated) information matrix is now O(N), and the inversion operation

in the update step, (5.8), can now be implemented efficiently by the afore-mentioned

iterative methods.
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Comments

* This truncation process corresponds to minimizing the Frobenius norm of the

approximation error. For a given neighborhood structure, W, let La be a )/V-

structured matrix. it can be easily shown that JIL - La11F is minimized when

La = W 0 L.

o Besides simple truncation, there are possibilities for defining other optimization

criteria for choosing L,,,. For example, we can choose L,,, to be the matrix

with the particular neighborhood structure that minimizes the Bhattacharyya

and other distance measures [68] for probability density functions. Recall that

an information pair implicitly defines Gaussian density function, so that we

can choose La to be one that minimizes the "distance" between the Gaussian

densities associated with La and L. Specifically, if we use the Bhattacharyya

distance we have

min In det [(L + La) (L-' + L-')

while if we use the divergence we have

min trace [(L - La) (L-' - L-')]

Although these approximation criteria are attractive in the sense that they have

an information theoretic foundation, there is no apparent way to compute La

efficiently based on them. We, thus, stay with the simple truncation approach.

5.2.3 Numerical results

Consider applying the truncated information filter to the following dynamic system:

f (t) = f (t - 1) + U(t), U (t) - (( 0, PI
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V-11

YM S(1,0) f (t) + r(t), r(t) 0, (5-12)

S(0,1)

where f(t) is a scalar field defined over a 10 x 10 spatial domain. Estimation of f(t)

corresponds to solving a discrete counterpart of the continuous multi-frame recon-

struction problem

tfI12 +f'f VIIg-1' _ f + f +P f ds dt.0 asi '952 5t

Let a _= p-I and v-'. Then, a and fl represent the variances of the process and

measurement noise processes, respectively. We want to determine how well the trun-

cated information matrices are approximated in the filter by examining the percent

approximation error

IlLap. - L,,ptll X 100, (5-13)
JIL.ptli

where LaPX is the approximated (i.e., truncated) information matrix and L"Pt is the

optimal information matrix. The 2-norm [18] is used to compute the matrix norms.

Using this measure of performance, we consider the cases where the information

matrices are truncated by the masking matrices W1, W2, and W3 as well as the cases

where the process noise parameter a and the measurement noise parameter # are

varied in the ranges of [10-5, 102 ] and [10-', 102], respectively.

Figure 5-1 shows the approximation errors for the case a = fl = I when the filter

has processed 10 frames (t = I,-, 10) of data with each of the three different masks.

Referring to the figure we can make the following comments:

As expected, the matrices are better approximated when fewer elements are

truncated. The solid lines are associated with the filter using W, for truncation,

while the dashed and dotted lines are associated with those using W2 and W.3,

respectively.
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predicted and updated inflation matrices
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0 ...........

2 3 4 5 6 7 8 9 10

time

Figure 5-1: The approximation errors for the predicted and updated information

matrices using different structural constraints in truncation - Vvj (solid-line), W2

(dashed-line), and )/V:3 (dotted-line). The top three lines are associated with the

predicted informaton matrices, while the bottom three lines are associated with the

updated information matrices.
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predicted information matrices
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process noise (alpha)

Figure 5-2: The effect of the process noise parameter on the approximation errors for
the predicted information matrices using different structural constraints in truncation
- WI (solid-line), W2 (dashed-line), and W3 (dotted-line).

* The approximation errors for the predicted information matrices (top three

lines) are consistently higher than those for the updated information matrices

(bottom three lines). As we will see, this is a prevaling characteristic of a filter

with structurally constrained information matrices.

* As the dynamic system (5.11) (5.12) is time-invariant, it is expected that the

predicted and updated information matrices for the optimal filter converge to

their steady-state values. We can observe from the figure that the approxima-

tion errors reach steady-state conditions by t = 5 as well, implying that the

approximated information matrices also converge in time.

Effects of filter parameters

Let us consider how the modeling parameters a and 3 affect the performance of the

approximated filters. Figures 5-2 and 5-3 show the approximation errors for the

predicted and updated information matrices, respectively, at t = 10 when a is varied



updated information matrices
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Figure 5-3: The effect of the process noise parameter on the approximation errors for
the updated information matrices using different structural constraints in truncation
- )/Vi (solid-line), I/V2 (dashed-line), and W3 (dotted-line).

from 10' to 10', while keeping 3 = 1. Again, the solid lines are associated with

Wl-structure approximation, the dashed lines are with W2, and the dotted lines are

with VV3. The near-unimodal shapes of the curves in the figures can be explained

by the effect of the strength of the process noise on the structure of the optimal

predicted information matrix. When the process noise is progressively decreased, the

prediction based on (5.11) becomes closer to being perfect, and, in particular, the

predicted information matrix approaches the updated information matrix from the

previous time frame. Thus, the optimal predicted information matrix in this case

almost has the same structure as the updated information matrix, i.e., the nearest

neighbor structure, and truncation has small effect on it. When the process noise

is very high, on the other hand, the prediction is close to providing no information

about the unknown, i.e., the optimal predicted information matrix approaches zero.

Thus, the structural constraints on the predicted information matrix again has small

effect. The process noise significantly affects the performance of the truncated filter

only in the cases a c [10-3, 101], and the maximum approximation errors are still
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predicted and updated information matrices
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Figure 5-4: The effect of the measurement noise parameter on the approximation
errors for the predicted and updated information matrices using different structural
constraints in truncation - W, (solid-line), VV2 (dashed-line), and VV3 (dotted-line).

low. For example, with the VV2 structural constriant, the maximum errors for the

predicted and updated information matrices are 4 and 2.5%, respectively, for this

particular experiment.

The performance of the truncated filters is affected strongly by the strength of the

measurement noise. Figure 5-4 shows the approximation errors for the predicted and

updated information matrices when 0 is varied from 10-1 to 102 while keeping a = 1.

The approximation errors for the predicted information matrices (represented by the

top three curves) are extremely high when the measurement noise covariance,3 is high,

although the maximum error for the corresponding updated information matrices

(bottom three curves) is still less than 7%. Recall that the diagonal information

matrix associated with a measurement equation strengthens the diagonal part of

the filter information matrix, thereby increasing the relative size of the norm of the

elements within the W-structure against the norm of the elements to be truncated off.

A low value of v (corresponding to a high level of measurement noise, 0), therefore,

makes the effect of truncation on the matrix greater.
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Summary

Based on the criterion (5.13), the information matrices produced by the truncated

information filter approximate those produced by the optimal filter wen, if the mea-

surement noise covariance is sufficiently small. Certainly, it is of interest to know

how well the truncated information filter approximates the optimal estimates of the

unknown visual fields. Experimentation performed for this purpose is presented in

Section 5.5 in which estimates computed using various approximate and optimal fil-

ters are compared.

5.3 Efficient Sparse Matrix Inversion

Continuing the discussion of the information filter approximated by truncated infor-

mation matrices, we examine in this section approaches to propagating the truncated

information matrix, or its approximation, efficiently through the filtering equations.

5.3.1 The problem

The computational bottleneck in the approximate filtering scheme presented in the

last section is (5.10) because of the inversion of the matrix

A TUA + L(t - 1), (5.14)

which has a neighborhood structure. Note that (5.10) can also be written as

L(t) = Wt, 0 U - UA WI, 0 (A T UA + i(t - I))- I ATU (5.15)

for an f2 > fl- That is, if we intend to constrain the information matrices to have a

TVVI, -structure, we could first constrain the intermediate result (A UA + L(t - 1))

to be of another neighborhood structure, Wt, associated with a sufficiently larger

neighbor set than that accompanying Wt, This two-step structural constraint makes

the matrix multiplications in (5.15) simple and localized, as every matrix involved in
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the multiplications would be sparse with O(N) elements as the result of the extra

matrix truncation step.

The issue that we address in this section, then, is how to compute or approximate

Wi, 0 (A T UA + f(t - 1)) (5-16)

efficiently. The rest of the computations in (5.15), i.e., matrix multiplications, sub-

traction, and truncation, are all spatially confined so that they are parallelizable. Our

hope is that the O(N) elements in the matrix (5.16) can be computed or approximated

just as efficiently.

5.3.2 Recursive inversion

As mentioned above, the computational bottleneck is the inversion of a W-structured

matrix. We have seen that a neighborhood structured matrix has a block banded

structure, e.g., W, is block tri-diagonal, W2 is block penta-diagonal, etc. We show

here that such matrices can be inverted by processing their blocks sequentially.

Outer product representations for inverse elements

Asplund [6] has described various properties of inverses of diagonally banded matrices

of a certain kind. Of these properties, that of particular interest to us is that the

elements of the inverses of a symmetric matrix which is centrally banded (e.g., tri-

diagonal, penta-diagonal, septa-diagonal, etc.) can be obtained as the elements of the

sum of rank- I outer products. For example, given a symmetric tri-diagonal matrix T,

the elements of its inverse T` can be obtained by first computing the elements of an

outer product between a pair of vectors. Specifically, there exist fuil and fvjl such

that ( T-1 )ij = ( T-1 )ji = uivj for i < j. Similarly, for a symmetric penta-diagonal

matrix P, there exist JsiJftjJfuiJ, and fvjl such that ( P-' )ij = ( P-1 )ji =

sitj + uivj for i < j. An important implication of this result is that while inversion

of an N x N matrix requires computing O(N 2) distinct elements of the inverse, if

the matrix has a symmetric, banded structure described above, these elements can
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be deduced from O(N) intermediate values such as fuil and fvjl.

Recursive inversion of symmetric block tri-diagonal matrices

Concus et al. [141 have presented a recursive algorithm to obtain the sequences luil

and jvjj introduced above for a symmetric tri-diagonal matrix T. Their result can

be generalized to a block tri-diagonal, symmetric matrix T as follows:

Let

BTAl 1

BTB, A2 2

T (5.17)

BT
M-1

A,,,

Compute f Ujj and f Vjj recursively as

U, I (5-18)

U2 _B-TA, (5.19)1

Uk _B-T (AkjUkj + Bk-2Uk-2),
k-1

k = 314, ... IM (5.20)

V.,.,= (AmU,. + B,._jU,,_j)-1 (5.21)

Vk = (AkUk + Bk-1Uk-1)_1 [I - (UkVk+,Bk )T]

k = ra - 11 ra - 21 ... 1 2 (5.22)

V, = (AjUj)-1 [I - (UjV2Bj )T (5.23)

Then, the (ij)th block of T-' is given by

(T` )iIj = ( T-' Ui Vj, i < j. (5.24)

Proof: by substation into T-'T = TT-1 1.
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Enforcing the nearest-neighbor (Wi) structure

Let us consider the problem of approximating the inverse of T as

W, O T-1.

for the case where T has the "nearest-neighbor" structure (so that Ak's are tri-

diagonal and Bk's are diagonal). We can specialize the above algorithm to obtain

only the tri-diagonal blocks of T-1 as follows:

• Compute f Ukj as above: Eq. (5.18)-(5.20).

• Initialize the backward recursion as:

V = (A,.,,U,. + (5.25)

T-1 ) mrn = U.1 V (5.26)

W U1_1V (5.27)

T-1 W (5.28)

T-1 wT. (5.29)

• Fork=m-1, m-2, ... 1 27

V = (AkUk + Bk-,Uk-,)-l [I - (WBk )T] (5-30)

T-1 ) kk = UkV (5-31)

W = Uk-1 V (5-32)

T-1 )k-lk = W (5-33)

T-1 )kk-1 = wT. (5-34)

• Finally,

A` [I - (WB, )T] (5-35)T-1 = 1
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Let the dimension of the 2-D spatial domain be m x n (i.e., N = mn), so that the

block size is n x n. Then, the computational complexity of this algorithm can be

assessed from the m inversions of n x n matrices and 0(m) multiplications between

n x n matrices of various degrees of sparseness, resulting in a total of O(mn3) flops.

(Note that since T has a W, structure, Bk's are diagonal.)

To complete the approximate inversion, we need to truncate the result from the

above algorithm to a VV, matrix: the diagonal blocks, ( T-' )kk) are truncated to be

tri-diagonal and the off-diagonal blocks, ( T-1 )k-,,k and ( T-1 )kk-l, are truncated

to be diagonal.

Applying the algorithm to the information filter

An advantage of the algorithm just presented is that an exact truncated inverse

matrix can be obtained in a finite number of steps, so that the information filter

may be implemented without an additional approximation over that caused by the

truncation of the information matrices. A serious disadvantage is, however, that

the computational requirement is still substantial for most applications (except for a

special case where the spatial domain is an elongated rectangle such that n < m)-

5.3.3 Inversion by polynomial approximation

Let us consider taking an alternative approach to computing (5.16) on page 115

efficiently. Specifically, we express the matrix inverse in (5.16) as an infinite series of

easily computable terms. We show that truncating the infinite series leads us to an

efficient implementation of the information filter.

Diagonal dominance

We introduce here a matrix property important for convergence of the series repre-

sentation of the inverse matrix in (5.16).
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Definition 4 (cf. [35, 751) A matrix A is said to be diagonally dominant if its

elements aij, where i and j are the row and column indices, satisfy

laiij > E jajjj , V Z'.
j:Ai

If the inequality is a strict inequality, then A is said to be strictly diagonally dominant.

Polynomial approximation for the matrix inverse

Suppose we are interested in computing the inverse of a symmetric matrix K. Let A

be a diagonal matrix formed by the main diagonal of K and define Q to be Q =- K - A,

i.e., the off-diagonal part of K. Then, K-' can be obtained by the following in-finite

series

K-' = A-1 - A-1QA-1

+ A-'QA-IQA-1

+

+ (5-36)

which converges if all eigenvalues of A-1Q reside within the unit disk, or equivalently,

if K is strictly diagonally dominant [14, 75]. Convergence is especially fast when the

eigenvalues of A-'Q are close to zero, and taking the first few terms of the series

makes a good approximation of the inverse. To compute the matrix inverse in (5.16)

we set K = A'UA + f(t - 1). Then, since this K has a neighborhood structure

the matrix Q will be sparse, leading to a situation where the -first several terms in

the series are very sparse (in fact, they have certain W-structures). The operations

involved in computing the finite approximation of the series are, thus, all locally

confined so that they are parallelizable.

The diagonal dominance characteristic of the matrix K = A TUA + f(t - 1)

is not easy to verify analytically. We can speculate, however, that it is diagonally

dominant because of the strong tendency for the matrix t(t - 1) to be diagonally
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dominant. That is, in each time frame the predicted information matrix is updated

by an addition of the measurement information matrix which is generally a diagonal

and positive semidefinite matrix.

The -finite series approximation already has a W-structure; thus, it can be re-

garded as an approximate computation of (5-.16), which can then be used in (5.15)

to approximate the predicted information matrix. The computational complexity of

such an approximation process is O(N) because of the sparseness of the matrix Q.

Moreover, as mentioned before, the matrix structure makes every step of the compu-

tation parallelizable, providing us with a possibility for quite efficient implementation

of (5.15).

5.3.4 A Suboptimal Information Filter

We propose a suboptimal information filter for the generalized Gauss-Markov sys-

tem (5.1) (5.2) based on the polynomial inverse approximation described above. The

effictiveness of the approximated filter is examined through some numerical experi-

mentation.

The filtering algorithm

The optimal filter is given as (5-3)-(5-8). Given a masking matrix W to structurally

constrain the information matrices, we obtain a suboptimal filter by replacing (5.3)

of the optimal filter with:

1. Compute the W-structured matrix K -_ ATUA + f(t - 1).

2. Let A be a diagonal matrix whose diagonal is the same as the main diagonal of

K. Let Q = K - A.

3. Use the first several (a fixed number of) terms in the infinite series (5-36) to

approximate K-' as (K-').,,.

4. E(t) - VV 0 IU - UAT (K-'),, AU] -
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As discussed before, this modification on the optimal filter reduces both the storage

and computational requirements to O(N).

Comment

The approximation method presented so far can be considered as a 3-D (space-

time domain), temporal extension of the "reduced update filter" and "strip filter"

approximations for the 2-D Kalman filters developed mainly for image restoration

[78, 57, 79, 761. In essence, these approximation techniques also aim to gain compu-

tational efficiency by constraining certain matrices in Kalman filter, such as the gain

matrix, to be "local".

5.3.5 Numerical results

We apply the suboptimal information filter to the dynamic system used in the exper-

iments in Section 5.2.3, (5.11) (5.12), to examine its performance. Again, we use the

quantity (5.13) to measure the closeness of approximation of the information matri-

ces. The two charts in Figure 5-5 show the approximation errors for the predicted

and updated information matrices when different numbers of terms are used to ap-

proximate the in-finite series (5.36). The filter parameters are a = 13 = 1, and the

structural constraint is W2. The six solid lines, from top to botton, shown in each

chart represent the errors when the first one to six terms, respectively, in the series

are used. The dashed line in each chart is the error for the "truncated information fil-

ter" of Section 5.2.2 (i.e., corresponding to using the complete infinite series and then

truncating to the W2 neighborhood structure). As can be observed, as the number

of terms increases the error approaches that corresponding to optimal truncation.

Number of terms and structural constraints

It appears that accuracy gained per addition of a term in the series dimishes as the

number of terms in the series increases. Here, we determine such an effect for given

structural constraints on the information matrices. The two charts in Figures 5-6
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Figure 5-5: Performance of the suboptimal information filters using various number
of terms in series approximation.
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Figure 5-6: The performance of the series-approximated suboptimal information fil-
ters as a function of the number of terms in the series. The solid, dashed, and dotted
lines correspond to the filters with )/V1, W2, and W3 structural constraints, respec-
tively. The dash-dot lines correspond to the filter with no sturcutral constraint.
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Figure 5-7: The effect of the process noise parameter on the approximation errors
for the predicted information matrices using different numbers of terms in the series
approximation - 2 (solid-line), 4 (dashed-line), and 6 (dotted-line).

show the approximation errors for the predicted and updated information matrices

at t = 10 as a function of the number of terms in the series. (a = P = 1.) The solid

lines are the errors associated with a Wl-structural constraint, while the dashed and

dotted lines are those associated with W2 and W3-structural constraints, respectively.

The dash-dot lines represent the errors when no structural constraint is applied. As

can be observed, for a tighter structural constraint the gain in accuracy obtained by

including more terms in the series levels off at an earlier point.

Effects of filter parameters

As in the numerical experiment in Section 5.2.3, the effects of the process and measure-

ment noise parameters a and P on the suboptimal information filter are determined.

Figures 5-7 and 5-8 show the errors at t = 10 when the number of terms in the series

is 2 (solid lines), 4 (dash lines), and 6 (dotted lines). The structural constraint for

the information matrices is W2- Generally, the results shown are similar to those

presented in Section 5.2.3: the error curves as a function of a (Fig.'s 5-7 and 5-8)
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Figure 5-8: The effect of the process noise parameter on the approximation errors
for the updated information matrices using different numbers of terms in the series
approximation - 2 (solid-line), 4 (dashed-line), and 6 (dotted-line).

show unimodal patterns, and the error curves are monotonically increasing with 3

(Fig. 5-9).

Summary

A relatively small number of terms in the series (5.36) is sufficient for an effective

approximation of the truncated information filter in Section 5.2.2. In particular, a

tighter structural constraint )/V for the information matrix allows approximation by

a smaller number of terms.

The qualitative effects of the model parameters, i.e., a and 3, on the series ap-

proximated filter are similar to those on the optimally truncated filter. A particularly

important characteristic of these filters is the sensitivity to the measurement noise -

the measurement g(t) of the unknown field f (t) must be modeled to have a sufficiently

high fidelity for the approximation techniques to work.

In this section we have shown that the series-approximated suboptimal informa-

tion filter can be used to approximate the optimal information matrix efficiently. In
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Figure 5-9: The effect of the measurement noise parameter on the approximation
errors for the predicted and updated information matrices using different numbers of
terms in the series approximation - 2 (solid-line), 4 (dashed-line), and 6 (dotted-
line). The top three lines are associated with the predicted information matrices,
while the bottom three lines with the updated information matrices.
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Section 5.5 we will present numerical results on how well this and other suboptimal

filters produce estimates of the visual field f(t).

5.4 Approximating the SRIF

In this section we present an efficient, iterative implementation of the square root

information -filter (SRIF) for the extended Gauss-Markov system (5.1) (5.2). Recall

that for explicitness of presentation we have assumed that f (t) is a scalar field defined

over a 2-D space and that N =_ dim (f (t)). Although the general optimal filtering

algorithm has been presented in Section 4.4.4, let us highlight its key operations for

our specific case:

Unitary transformations for propagation of the SRI-pair.

(( *(t _ 1), fl/2(tTo update the SRI-pair from the previous frame,

by propagating it through the system equations (5.1) (5.2), we have formulated

three stages of unitary transformation problems in which the lower-left N x N

block of each operand matrix is to be nulled, i.e.,

fl/2(t_ 1) 0 fV(t _ 1) VI V2 V 1

_U1/2 U1/2 (5.37)A 0 j 0 V3 V2

V3 V 2 V4 V3 (5-38)

S 0 0 V4

V4 V3 V5 v .5 (5-39)

N1/2 H N1/2 9 0 V6
L i L

where Vk and Vk are an N x N matrix and an N-vector, respectively, for

k = 172, ... I and U, A, S, N, and H are N x N matrices obtained from the com-

ponents of the system equations (5.1) (5.2) while g is the N-dimensional mea-

f 1/2(t) = Vsurement vector. The updated SRI-pair is given by fv(t) = vE; and 5.

Inverse problem for updating the estimate.

The estimate for the visual field f (t) is obtained from the updated SRI-pair as
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the solution of the inverse problem

t1/2(t)j(t) - *(t). (5-40)

5.4.1 Approximation strategy

The computational and storage demands for the optimal SRIF are as follows:

1. The N' elements of the square root information (SRI) matrix must be stored.

2. Propagation of the SRI-pair costs O(N 3) flops per time frame.

3. The updated SRI matrix must be inverted to obtain the estimate at each time

frame.

The approximation strategy for SRIF is fundamentally the same as that used for the

information filter discussed previously. That is:

* Restrict the SRI matrix to have a neighborhood structure so that it is repre-

sented by O(N) elements. This relieves the storage problem (Item 1 above)

tremendously. It also facilitates iterative inversion of the updated SRI matrix

(Item 3), especially with a multigrid method.

* Find an efficient way to compute such a masked (approximated) SRI matrix to

reduce the computational complexity associated with propagation of the SRI-

pair (Item 2). Specifically, we are aiming to develop a computational scheme

that is iterative and parallelizable - two features that make the scheme suitable

for a modular hardware (e.g., VLSI) implementation.

In this section, we first address the efficiency issue in propagation of the SRI-pair by

presenting an iterative scheme which converges to the optimal square root filter in

the limit. This scheme is parallelizable, and if implemented in parallel each iteration

costs O(N) flops. We then consider imposing the neighborhood structural constraints

on the SRI matrix. Representing the SRI matrix by a sparse, W-structured matrix

128



allows us to approximate the iterative SRI-pair propagation scheme so that its cost

per iteration is reduced to 0(1) flops.

The square-root of a square matrix is not uniquely defined. In a traditional

SRIF algorithm [9], the SRI matrices are the upper triangular square-roots of the

information matrices. As we will see, a notable feature of the iterative SRIF presented

in this section is that the SRI matrices are not triangular.

5.4.2 Iterative propagation of the SRI-pair

The basic mechanism for propagation of the SRI-pair involves nulling of certain sub-

matrices by a unitary operation. In particular, propagation of the SRI-pair is achieved

by nulling the lower-left N x N blocks of the aggregate matrices shown on the left

hand sides of (5.37) (5-38) (5-39).

QR Factorization

The QR factorization [18] is a systematic algorithm to perform the nulling required in

a traditional formulation of SRIF's [9]. It nulls the columns of the target submatrix

sequentially from left to right. Although it is a standard technique used in SRIF's, its

computational complexity, O(N') flops, is too high for filtering of large dimensional

visual fields and it is not implementable in parallel.

Givens Rotation

The Given rotation is a rudimentary unitary operation that nuns a specific matrix

element, and QR factorization can be considered as a precisely ordered sequence of

Givens rotations [18, 70]. A single Givens rotation operates on only a pair of rows in

a matrix at a time; thus, Givens rotations operating on disjoint pairs of rows can be

performed simultaneously. A clever scheduling of rotations can, therefore, lead to a

parallelizable nulling scheme.

The principle behind the Givens rotation is that for any pair of real numbers, p

129



and q, there exists a rotation 0 such that

Cos 0 sin 0 P P

sin 0 cos 0 q 0

i.e., an element q in a vector can be nulled against another element p by a left-

multiplication by a unitary rotation matrix.

Now, suppose we have partitioned an arbitrary 2N x N matrix into an upper

N x N block P and a lower N x N block Q as

P

Q

and suppose we want to null an element qij in the lower block against an element

in P. Any matrix element in the j1h column can be used to null qij with a Givens

rotation. Let us denote such an element in block P byPkj, and let the rotation that

nulls qij against Pkj be 0. Then a left-multiplication on the matrix by the following

unitary operator, which is an identity matrix with modifications on rows and columns

k and i, will null the element qij:

C

_S C

where C cos 0 and S sin 0. Note that all the elements in rows k and i of the
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operand matrix are modified as the result of this multiplication, while the remaining

rows are left unmodified.

Submatrix nulling by parallel rotations

Let us now consider the problem of nulling an entire submatrix by a unitary trans-

formation, i.e.,

P Pt
__+ (5.41)

Q 0

where P and Q are previously defined N x N blocks of an arbitrary 2N x N matrix.

In essence, this is an abstraction of the main computational problem involved in

propagation of the SRI-pair. The solution, i.e., the unitary transformation, for the

nulling problem (5.41) is directly applicable to the stages of the SRI-pair propagation

operations (5.37) (5-38) (5-39) when P and Q are appropriately selected.

We present here an iterative algorithm to perform this nulling operation. Mo-

tivated by computational efficiency, our algorithm makes use of selective nulling by

Givens rotations, similar to that used in the Jacobi method for eigenvalue computa-

tions2 [15, 18, 70], which can lead to parallel implementation.

Let us call the N x N lower block the eliminate block and the N x N upper block

the elminator block. A diagonal band of the eliminates block Q is formally defined as

the set of elements qj+bj for i E Jb given a fixed integer b E [-N + 1, N - 1], where

jb _= [1, N] n [1 - b, N - b]. The value of b determines the location of the band in Q.

For example, b = 0 specifies the main diagonal, while b = 1 and -I specify the upper

and lower first off-diagonal bands, respectively.

Our proposed algorithm calls for nulling of elements in a diagonal band of Q

against the elements in the main diagonal of the eliminator block P. Note that such

band elements can be nulled simultaneously, i.e., in parallel. That is, the set of Givens

rotations associated with nulling the band element qj+bj (for a fixed b) against pjj

2as well as other iterative methods to reduce matrix structure by selective nulling of elements
(see [70] for details)
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for every j E Jb operates on disjoint pairs of rows - row j of P and row j + b of Q

for i E Jb. This simultaneous nulling of a band in the eliminates block constitutes a

fundamental operating unit on which our iterative SRIF algorithm is based.

Let us further define a sweep' to be a sequential set of the nulling operations on

bands so that every diagonal band (i.e., Vb E [-N + 1, N - 1]) in the eliminates block

Q is nulled once. This process essentially nulls every element in Q once in a systematic

fashion. We do not, at this point, worry about the order in which the diagonal bands

are nulled. Note, however, that a band which has been nulled previously can become

non-zero again while another band is being nulled. Before describing the process of

sweep in any more detail, let us present a key result:

Theorem 5.1 The elminatee block Q is completely nulled in the limit by iterations

Of sweeps.

A sketch of the proof of this theorem is provided in Appendix B. The number of

iterations for a satisfactory convergence (e.g. satisfying 11Q11 < e for an E > 0)

varies with the contents of the blocks P and Q in general. As we will see, for visual

reconstruction problems, reasonably good estimates can be obtained by iterating less

than N times. Note that when implemented in parallel, the computational cost of a

sweep (i.e., an iteration) is O(N) flops.

An illustration of sweep

Let us illustrate the proposed nulling process using a simple example. Suppose that

N = 5 and both P and Q are tri-diagonal. In this example, the diagonal bands of Q

are nulled by the following specific order:

1. The main diagonal, i.e., b = 0.

2. The upper (right) first off-diagonal, b = 1.

3. The lower (left) first off-diagonal, b = -1.

after a similar operation in the iterative Jacobi method [15, 18]
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4. The upper second off-diagonal, b 2.

5. The lower second off-diagonal, b -2.

6. The upper third off-diagonal, b 3.

7. The lower third off-diagonal, b -3.

8. The upper fourth off-diagonal, b 4.

9. The lower fourth off-diagonal, b -4.

Step 1 above is pictorally presented below. Here we show non-zero elements of the

5 x 5 eliminator and eliminates blocks. The x's and +'s denote the locations of the

non-zero elements in the eliminator and eliminates blocks, respectively. An element

ED is nulled against (& in the same column. The nulled elements are denoted by small

dots, .,S.

(8) x x x

x (D x x x x

x x x x x

x (8) x x x x

x x x

ED + +

+ ED + + - +

+ ED + + - +

+ ED + + - +

+ ED +
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Using the same notations, Step 2 is illustrated below.

x x x x

x (& x x x x

x (D x x x x x

x (& x x x x x

x (8) x x x

ED + +

+ - (D + + +

+ - E) + + +

+ (D + +

Note that after Step 2, the eliminates main diagonal, which has been nulled previously,

becomes non-zero again (depicted by smaller +'s). Also note the appearance of an

additional non-zero band in each of eliminator and eliminates blocks. Such addition

of non-zero bands can also be seen in Step 3:

x x x x

x (8) x x x x x

x x (8) x x x x x

x x (8) x x x x x

x x x x x x

E) + + + +

ED + . + + - + - +

ED + + + - + -

ED + + +
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Continuing the process, we illustrate the structures of the matrix after Steps 4, 5,

and 6:

X X X X X X X X X X X

X X X X X X X X X X X X X X

X X X X X X X X X X X X

X X X X X X X X X X X X X

X X X X X X X X X X X X X

A sweep for this particular matrix is complete after Step 9, by which time every

element in the eliminates block Q has been nulled exactly once. The eliminator block

P, which has started as a tri-diagonal matrix, is a full matrix after a sweep. Since

every element in Q is nulled against a main diagonal element in P, a sweep in essence

is a systematic attempt to transfer the energy (i.e., the square-sum of the elements) in

Q to the main diagonal of P. In fact, as shown in Appendix B, the norm of the main

diagonal of P is non-decreasing throughout a sweep, and despite losing the initial

sparse structure the eliminator block typically ends up storing larger portion of its

energy in the main diagonal after several sweeps.

Incomplete sweeps

Let us now consider applying iterations of sweeps to a matrix. When performing

iterative nulling on a matrix with sparsely banded blocks such as the matrix above

before Step 1, it is often advantageous computationally to null only a subset of the

diagonal bands in the eliminates block. We call such an iteration an incomplete sweep.

In the illustration above, an iteration that terminates before Step 9 is an example of

incomplete sweep.

135



eliminates (lower) block
40

35 -

30 -
............... -------------------

25 -

20 -

P.
15 -

10 -

5 - .......... ... ....................
----------------------------

0
0 2 4 6 8 1 0 12 14 16 1 8 20

# of iterations

Figure 5-10: The reduction of the Frobenius norm of Q.

Let us examine convergence of the iterative nulling procedure numerically. In

particular, we iterate the sweep illustrated above on the following 10 x 5 matrix:

1 2

3 4 5

6 7 8

9 1 2

P 3 4

Q 5 6

7 8 9

1 2 3

4 5 6

7 8

In addition, we consider iterating the incomplete sweeps that perform nulling only up

to Step 3, 5, and 7. Note that these incomplete sweeps correspond to constraining the

extent of sweep by a 1-D versions of W, (i.e., tri-diagonal), VV2 (penta-diagonal), W3

(septa-diagonal) structures, respectively. Figure 5-10 shows the ratios of the Frobe-
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nius norms of Q before and after a certain number of iterations of these incomplete

and complete sweeps. Note that all except the Wl-constrained incomplete sweep

(dash-dot line in the figure) have performed well in the sense that less than 10% of

the initial energy in Q remains after the fourth iteration. Nulling with the complete

sweep (solid line) reduces the energy quickly down to about 7% in the first three

iterations and then gradually down to near-zero by the 20' iteration. The reduction

of energy for incomplete sweeps where the extents of sweep are VV2 (dotted line) and

VV3 (dashed line) seem to level off at around 5% and 4%, respectively, by the 101h

iteration.

An iterative SRIF

The iterative nulling procedure (Theorem 5.1) is directly applicable to the SRIF

algorithm. That is, for the matrix in the left hand side of each of (5.37) (5.38)

(5.39), we can let the N x N upper-left submatrix to be the eliminator block and the

N x N lower-left submatrix to be the eliminates block. The nulling algorithm offers

a parallelizable scheme to propagate the SRI-pair optimally by iterations; however,

we still need to address the issues of reducing the storage requirement for the SRI

matrix and solving the inverse problem (5.40) (to obtain the estimate ?(t)) efficiently.

We examine these issues in the next subsection.

Let us comment that the iterative nulling procedure or a modified version of it can

be applicable to a general SRIF problem, and it offers an alternative to the traditional

filtering scheme based on QR factorization. The iterative procedure, therefore, might

merit further study in the context of general square root filtering theory although

such study is out of context of this thesis.
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5.4.3 Approximating the iterative SRIF

Truncating the SRI matrix

As mentioned in the previous chapter, an SRI-pair implies a spatial model for the

corresponding visual field. Specifically, for f - (( W7 L' /2 1/2 we have

L' /2f =A,' A,(wI). (5.42)

As in the design of the approximate information filter, this motivates us to approx-

imate the SRI matrix by truncation - a spatially local model should be able to

approximate (5.42) effectively. Truncating the SRI matrix to a W-structured ma-

trix reduces the storage requirement from O(N 2 )to O(N) and allows us to solve the

inverse problem (5.40) efficiently (e.g., by a multigrid method).

An SRI matrix corresponding to an information matrix is not unique. As we intend

to truncate the SRI matrix in the iterative SRIF algorithm, it is desirable that an SRI

matrix computed using the iterative nulling procedure described above has most of

its energy concentrated within a given W-structure so that truncation has little effect

on the quality of the corresponding estimate. A seemingly effective approach (judging

from the results of the numerical examples to be shown) is to impose a condition on

the equations (5.37) (5.38) (5.39) such that all their N x N submatrices, including

_U1/2 Al U1/2 ISIN' /2 H, and the intermediate SRI matrices for the field, have the

W-structure prior to nulling. In another words, this condition enforces the matrices

in the left hand sides of (5.37) (5.38) (5.39) to be sparsely banded except for their

respective right-most columns. The idea behind this approach is that by confining

energies of the N x N submatrices in the desired W-structure and focusing the sweep

procedure around the bands that belong to this W-structure (hence impeding spread

of energy to undesired bands) we should be able to preserve most of the energy within

the W-structures of the submatrices throughout the nulling procedure.
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Symmetric square roots

Let us consider, then, how well the matrices _UI/2A, U1/2 I S, and N 1/2 H can' be

represented by W-structured matrices. Since N and H are diagonal matrices and A is

already a W matrix, we focus our attention on U1/2 and S. Recall from the previous

chapter that these two matrices are computed as square roots of the information

matrices U(t) =_ BTq-1 (t)B and Ej jzjSTSj which are )IV matrices. As any of the

square roots of an arbitrary sparse matrix is not sparse in general, we expect U1/2 and

S to be full matrices. Since these square root matrices are to be truncated to a given

W-structure, ideally we select a form of square root that tends to concentrate energy

in the W-structure. Since a W matrix is structurally symmetric, we have chosen to

use symmetric square roots for U1/2 and S and have obtained good numerical results.

A symmetric square root is uniquely defined for a symmetric matrix [35], and the

symmetric square root of a large positive semi-definite matrix can be approximated

efficiently as detailed in Appendix C.

An approximate iterative SRIF

Reflecting the considerations indicated so far, we have implemented the following

approximate SRIF algorithm which, as we will see, has performed effectively in nu-

merical experimentation. The algorithm propagates the SRI-pair as in (5.37), (5.38),

and (5.39) using an approximation of the iterative nulling procedure with the follow-

ing features:

9 Truncation of the blocks.

The N x N submatrices in the left hand sides of the equations are truncated

by Wt, for a given f, before each nulling procedure.

* Incomplete sweep.

In each iteration, rather than performing a complete sweep, only the bands in

Wt, are nulled. We choose the "extent of sweep" f2 to be at least as large as fl.

9 Fixed number of iterations.

In each nulling session, a fixed number of iterations of incomplete sweep is
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performed.

Symmetric square roots are used to compute the parameter matrices U1/2 and S.

Then, for each t the (approximate) updated SRI-pair from (5.39) is used to compute

fl/2(t) isthe estimate as in (5.40). As , truncated to be a Wt, matrix, this is an inverse

problem involving a sparse operator and can be performed efficiently.

5.4.4 Numerical results

We apply the approximate iterative SRIF to the dynamic system used in the exper-

iments in Section 5.2.3, (5-11) (5-12), to examine its performance. We measure the

closeness of approximation by squaring the computed SRI matrices and comparing

them to the optimal information matrices using the criterion (5.13). Recall that for

this particular problem N = 100.

The two graphs in Figure 5-11 show the approximation errors for the predicted and

updated information matrices, respectively, when various incomplete sweeps are used

for nulling. Three iterations of these sweeps have been used in each nulling session.

The filter parameters are a = 3 = 1, and no structural constraint has been applied

to the blocks, i.e., f, = oo or more precisely f, > 2N - 2, leading to a masking matrix

)lVt, whose elements are all ones. The five solid lines, from top to botton, shown in

each graph represent the errors corresponding to f2 = 1, 2, 3, 4, and 5, respectively.

As can be observed, as the extent of sweep increases the error decreases.

Extent of a sweep, number of iterations, and structural constraints

The two graphs in Figure 5-12 show the approximation errors for the predicted and

updated information matrices, respectively, at t = 10 as functions Of f2 with a = # =

1 and f, = oo. The solid lines are the errors when one iteration per nulling session is

applied, while the dashed, dotted, and dash-dot lines correspond with the cases for

two, three, and four iterations per session, respectively. The curves for the three and

four sweeps almost overlap each other in each graph. The graphs indicate that two or

three iterations per nulling session is sufficient to achieve the near-best performance
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Figure 5-11: Performance of the approximate iterative SRIF using various incomplete
sweeps, i.e., f2= 1, 2, 3, 4, 5.
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Figure 5-12: Performance of the approximate iterative SRIF when the number of
iteration per nulling session is 1 (solid lines), 2 (dashed lines), 3 (dotted lines), and 4
(dash-dot lines) as funcations Of f2-
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in the given situation.

Let us consider the effects of structural constraints , i.e., fl, on the blocks. The two

graphs in Figure 5-13 show the approximation errors for the predicted and updated

information matrices, respectively, at t = 10 as functions Of f2- (a = 3 = 1.) Three

iterations are used for each nulling session. The solid lines are the errors associated

with an )/Vl-structural constraint (f, = 1), while the dashed and dotted lines are those

associated with W2 and )/V3-structural constraints Y, = 2 and f, = 3), respectively.

The dash-dot lines represent the errors when no structural constraint (f, = 00) is

applied. These graphs show that for a given structural constraint )/VI,, extending the

incomplete sweep beyond the j1h layer (i.e., using a valueOf f2 strictly larger than fl)

does not lead to a large gain in accuracy.

Effects of filter parameters

As in Section 5.2.3, the effects of the process and measurement noise parameters a and

,3 on the approximate iterative SRIF are examined. Figures 5-14, 5-15, and 5-16 show

the errors when the number of sweeps in each nulling session is I (solid lines), 2 (dash

lines), and 3 (dotted lines). The structural constraint is W2 for each case. As in the

case with the approximated information filters, the performance of the approximate

SRIF degrades as the magnitude of the measurement noise 0 is increased (Fig. 5-

9). The effects of the process noise a (Fig.'s 5-14 and 5-15), however, are relatively

modest.

Summary

Incomplete sweeps have been shown to be effective in iterative SRIF. In particular,

for a given structural constraint Wt, for the SRI matrix, we can choose the extent of

sweepf2 to bef2= fl. A further increase in the valueOf f2 does not lead to gain in

accuracy.

Only a small number of iterations per nulling session is sufficient to propagate the

SRI matrix (or its truncated version) with high accuracy. In particular, a near-best

performance has been obtained using only 3 iterations per sessions.
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Figure 5-13: Performance of the approximate iterative SRIF for f, = 1 (solid lines),
2 (dashed lines), and 3 (dotted lines) as well as when there is no structural constraint
(dash-dot lines) as functions Of f2-
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Figure 5-14: The effect of the process noise on the approximation errors for the
predicted information matrices for different numbers of iterations per nulling session

I (solid line), 2 (dashed line), 3 (dotted line).
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Figure 5-15: The effect of the process noise on the approximation errors for the
updated information matrices for different numbers of iterations per nulling session
- 1 (solid line), 2 (dashed line), 3 (dotted line).
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Figure 5-16: The effect of the measurement noise on the approximation errors for the

predicted and updated information matrices for different numbers of iterations per
nulling session - I (solid line), 2 (dashed line), 3 (dotted line).

As in the case for the approximated information filter, the approximate iterative

SRIF is sensitive to the level of noise in the measurement. The measurement noise

variance should be sufficiently low for a reliable performance. The effect of the process

noise, on the other hand, has been observed to be small.

5.5 Simulations: Surface Interpolation

In Sections 5.2.3, 5.3-5, and 5.4.4 numerical examples are presented to illustrate how

closely the computational techniques described in this chapter can approximate an

optimal set of information matrices. In this section we examine how closely these

techniques, particularly the series approximated information filter of Section 5.3.4 and

the approximate iterative SRIF of Section 5.4.3, can estimate artificially generated

scalar fields, f(t). We add white Gaussian random noise to f(t) to simulate noisy

observations, g(t), which enter these suboptimal filters as the inputs. We measure
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the performance of the suboptimal Kalman filters by %' estimation error

Ile( ?(t) ) - f (t) I X 100, (5.43)
11f(011

where f(t) is the estimate generated by the filters. Each of the suboptimal filters

performs estimation on the same sample path of the observation process g(t). The

estimates based on several such samples are averaged to obtain an average estimate,

,6( f (t) ), for each filter.

Our primary concern in this section is to examine how closely the suboptimal

filters can approximate the optimal estimates by comparing the estimation errors

(5.43) associated with the suboptimal and optimal filters.

5.5.1 Static surface

The dynamic system model (5.11) (5.12) introduced in Section 5.2.3 (and used also in

Sections 5.3.5 and 5.4.4) is used to reconstruct the 10 x 10 static scalar field (surface)

depict ed in Figure 5-17. Note that the model (5.11) (5.12) is by no means perfectly

matched to the estimation problem for this particular visual field. Specifically, the

process noise in (5.11) should not be used for estimation of a static quantity, and

the membrane model contained in (5.12) is not as suitable as the thin-plate model

for surface reconstruction (as elaborated below). This estimation problem, however,

allows us to quantify relative performance among the optimal and suboptimal filters

in terms of the actual estimates and complements the results in Sections 5.2.3, 5.3.5,

and 5.4.4. The surface depicted in Figure 5-17 is corrupted by an additive space-time

white Gaussian noise to achieve a signal-to-noise ratio (SNR) of about 2.27. The

parameters used for the dynamic system model is a = 10', corresponding to the

variance of the process noise, and 10', corresponding to the variance of the

measurement noise.

Figure 5-18 depicts the estimate at t = 10 obtained by the optimal Kalman filter.

It shows expected flattening of the central knoll in the field caused by the over-

smoothing caused by the use of the membrane model. Nevertheless, the estimation
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Static Surface

Figure 5-17: The surface to be reconstructed.

a sample of estimated Static Surface

t=10

Figure 5-18: A reconstructed surface after 10 frames of measurements have been
incorporated using an optical Kalman filter.
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Figure 5-19: Performance of various implementations of Kalman filter measured by
"% estimation errors". The solid line corresponds to both an optimal Kalman filter
and series approximated information filter, as the estimation errors for these two
implement ations are close enough to be indistinguishable on this figure. The dotted
line corresponds to an approximate iterative SRIF.

errors associated with the optimal Kalman filter as well as suboptimal filters have de-

creased from about 12% at t = 1 to about 6% at t = 10, as presented in Figure 5-19

which shows three nearly identical error curves. The three estimation error curves,

almost indistinguishable from each other, belong to the optimal Kalman filter, series-

approximated information filter, and approximate iterative SRIF, and they illustrate

closeness of these particular suboptimal estimates to the optimal estimates. Ten (10)

samples of estimates are averaged to obtain the curves. For the series-approximated

information filter, only 2 terms in the series (cf. (5.36)) are used in conjunction with

an )/Vl-structural constraint for the information matrices. Increasing the number of

terms in the series and relaxing the structural constraint for the information matri-

ces have not been observed to alter the corresponding estimation errors noticably.

For the approximate iterative SRIF, on the other hand, a )/v4-structural constraint

is imposed on the SRI matrices and in each nulling iteration an incomplete sweep

corresponding to the same structural constraint is used. Three iterations of such an

incomplete sweep are used in each nulling session. Changing the structural constriant
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Figure 5-20: Performance of various approximate iterative SRIF's. The solid line
corresponds to Wl-truncated, the dashed line to W2-truncated, the dotted line to
)/V3-truncated, and the dash-dot line to )/V4-truncated. The last two of these lines
overlap each other and are indistinguishable from each other.

for the SRI matrices has been observed to alter performance only slightly. Figure 5-20

shows estimation error curves for SRIF's with the structural constraintswi , VV2, W3,

and W4. The filter performance depicted in Figure 5-20 improves as the structural

constraint is relaxed and the extent of sweep is widened; however, the improvement

saturates quickly as the error curves for VV3 and W4 are almost identical.

5.5.2 Moving surface

A sequence of 16 x 16 images of a moving tip of quadratic cone has been synthesized,

and the moving surface has been reconstructed based on noisy observation of the

image sequence using an optimal Kalman filter, series approximated information filter,

and approximate iterative SRIF. The surface f (t) translates across the image frame

with a constant velocity whose components along the two frame axes are both 0.2

pixels/frame. That is,

AS1 , S2,t) f (s, + 0.2, S2+ 0.2, t - I).
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2 1 6

Figure 5-21: The moving surface to be reconstructed at t = 2,4, and 6.

Figure 5-21 shows f(t) at t = 2,4, and 6. Since the spatial coordinates si and S2 take

only integer values in the discrete dynamic model on which the filters are based on,

we use the following approximate model

AS1, S2,t) = (1 - 0.2 )2f(Sl, S2, t

+ (0.2)(1 - 0.2)f (sl+ 1, S2, t - 1)

+ (0.2)(1 - 0.2)f (siS2 + 1, t - 1)

+ (0. 2)'f (s 1+ 1,S2 + 1,t - 1)1

which we express as a matrix dynamic equation

f (t) = Af (t - 1).

In essence, the matrix A approximately performs spatial shifting of the elements of

f (t - 1) by a subpixel (in this case 0.2) amount (see Heel's work such as [27] for more

details) -

A zero-mean white Gaussian process has been added to f(t) to simulate a noisy

measurement g(t) with SNR of about 2. Moreover, we have created a situation where

at each t only randomly chosen 50% of the points on the surface can be observed.

That is, the measurement model is

g(t) = H(t)f (t) + ro(t) (5.44)
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Figure 5-22: Reconstructed moving surface by optimal Kalman filter at t 2,4, and
6.

where randomly selected 50% (on the average) of the components of H(t) are 1 and

the rest of the components are 0. This type of partial observation is common in

surface interpolation using depth data obtained from stereo matching [21, 22], as

matching can be performed only on selected features in the images.

The dynamic system model on which the filters are based on is

I I

S(I'O) f (t) S(1,0) Af (t - 1) + q(t), q(t) - Oal (5.45)

S(0,1) S(0,1)

g(t) H(t)

0 S(2,O)
S(0,2) f (t) + r (t), r (t) 0, .(5.46)

0 I

L 0 -1 L 2 S (1, 1) J I

An extended Gauss-Markov form of this descriptor dynamic system can be obtained

as presented in Section 4.3.3. Note that a thin-plate model is used as the spatial coher-

ence constraint. Thin-plate models are considered suitable for surface interpolation

[211. The dynamic equation reflects the temporal coherence constraint that penalizes

large deviation from the dynamic model f (t) = Af(t - 1) and imposes smoothness

on the deviation f(t) - Af(t - 1) using a membrane model. The application of the

membrane model makes the process noise spatially smooth, which is reasonable from

the perspective that the noise reflects (at least partially) the effect of surface motion

which should exhibit some spatial coherence. As in the static surface case, we let
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Figure 5-23: Performance of various implementation of Kalman filter measured by
"% estimation errors". The errors associated with the optimal Kalman filter (solid
line), series-approximated information filter (dashed line), and approximate iterative
SRIF (dotted line) are shown.

a = 10' and # -_ 10-'.

Figure 5-22 shows the surfaces reconstructed by the optimal Kalman filter based on

the dynamic system above. Observe that the qualitative appearance of the estimated

surface improves as more frames of data are incorporated into the estimate. The

earlier estimates are expected to be especially noisy because as indicated above the

surface is only partially observable in each image frame.

Figure 5-23 shows the estimation errors for the optimal Kalman filter (solid line),

series-approximated information filter (dashed line), and approximate iterative SRIF

(dotted line) for the first 16 frames. Four samples are averaged to obtain each curve

in the figure. The error curves indicate that the two suboptimal filters perform just

as well as the optimal Kalman filter. The estimation error associated with each

filter decreases steadily from about 12% at t = 1 to about 4% at t = 8. In the

series-approximated information filter, the information matrix is constrained to be

)/V6-structured, and the first 8 terms are used to approximate the infinite series (5-36)

in the prediction step. For the approximate iterative SRIF, on the other hand, a W7
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matrix is used to truncate the SRI matrix and to define the extent of sweep (i.e.,

f, = f2 = 7). The number of iteration per nulling session is set to be 3. For the

two approximate filters, looser structural constraints than the previous examples are

appropriate because of the larger spatial extent of the thin-plate model (as opposed

to the membrane model used as the spatial coherence constraint in the previous

examples) and non-zero off-diagonal elements in the system matrix A.

5.5.3 Summary of simulations

In the two surface reconstruction simulations, the approximate filters have performed

almost identically to the corresponding optimal Kalman filter. The discrepancy be-

tween the optimal filter and an approximated filter appears smaller when the com-

puted estimates are used as the criterion, i.e., (5.43), as in the simulations just pre-

sented than when the information matrices are used, i.e., (5.13), as in the examples

in Sections 5.2.3, 5.3-5, and 5.4.4. In a sense this is desirable, because to be able

to produce an estimate of the same quality as those from the optimal filter is the

primary concern in the design of approximate filters.

5.6 Extension to Higher Dimensions

The presentation so far in this chapter is concerned with filter approximation tech-

niques for estimation of scalar fields defined over 2-D spatial domains. The techniques

are extendable for estimation of other kinds of fields.

5.6.1 Fields defined over higher dimensional spaces

For fields defined over spaces with dimension other than 2, we need to consider how the

neighborhood structures can be defined in such dimensions. This is straightforward.

In 2-1), a W-structured matrix has a nested centrally banded structure, i.e., it is

a block banded matrix whose blocks are themselves banded. For a neighborhood

structured matrix in a higher dimensional space, then, the degree of nesting is just
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that much higher.

In I-D space, on the other hand, there is no nesting, i.e., the 1-D counterpart of

the W-structure is simply a centrally banded structure such as tri-diagonal, penta-

diagonal, etc.

5.6.2 Vector fields

Each element of a vector field) f (S7 t), has more than one component. For example,

in optical flow ftst) represents the two components of a 2-D motion vector. For

simplicity, let us consider the case of a 2-D vector field. To extend the approximation

techniques in this chapter to estimation of such fields, we need to reconsider what we

have been treating as scalars as vectors. Specifically, each "element" in the N x N

information and SRI matrices is now a 2 x 2 submatrix. For the most part, such

treatment of the matrix "elements" is all that is required to extend the approximation

techniques. For example, in the polynomial approximation of the matrix inverse

(5.36), the "diagonal matrix" A is now more exactly a block diagonal matrix whose

blocks are 2 x 2. Also, the recursive matrix inversion technique (Sec. 5.3.2) is not

affected by this extension as it already works on the basis of matrix blocks, e.g., if

f (s) t) is a 2-vector the blocks in (5.17) simply double in dimension.

A block Givens rotation

As a single exception, however, the extension discussed above is a little more compli-

cated for the Givens rotation used in the iterative SRIF algorithm: How do you null

a 2 x 2 "element" against another? Specifically, let

PI P2 q, q2
P q

P3 P4 q3 q4

155



and consider nulling q against p in a matrix

P1 P2

P P3 P4

q q, q2

L q3 q4 J

with a unitary operation. This can be accomplished by a two-step process: First use

p to null the first row [q, q21 of q; then, use p again to null the second row [q3 q4].

Each of these steps can be performed by essentially a sequece of two Givens rotations.

Specifically, let

Pi P2 1 S1 P1 P2

P3 P4 C2 $2 P3 P4

qI qI _SJ C1 -S2 C2 q, q21 2

where ck _= cos Ok and sk sin0k for k 1 2. The desired sequence of two rotations

01,02 can be obtained from the two equations q' = 0 and q' = 0. In practice, it tends

to be easier to solve for Ck's and Sk's directly, aided by the trigonometric identity

C2 + S2 = 1. (In fact, efficient implementation of a Givens rotation is of a majork k

importance as rotations tend to be used repeatedly. References on this topic include

[19, 18].)

5.7' Conclusion

Guided by the locality principle, we have developed efficient approximate implemen-

tation techniques for the information Kalman filter and square root information filter

for multi-frame visual reconstruction problems. The computational cost to propagate

the information or SRI pair has been reduced to O(N) flops or less per frame. Thus,

the computational complexity for processing a frame in the approximate multi-frame

reconstruction filters is on the same order as that for a single-frame reconstruction

problem. Through various numerical experimentations, we have shown that the ap-
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proximate filters perform just as well as the corresponding optimal filter, as long as

the measurement noise is sufficiently low.
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Chapter 6

Multi-frame Optical Flow Estimation

In single-frame optical flow computation, spatial coherence constraints are vital not

only for mathematical well-posedness of the problem formulation but also for visual

acceptability of the results. In this chapter, we investigate the role of an analogous

constraint imposed over time for a multi-frame version of the flow computation prob-

lem. Specifically, we consider applying a first order temporal coherence constraint on

time-varying optical flow fields.

6.1 Temporal Dynamics of Optical Flow

Constructing plausible temporal dynamic models for the optical flow field is a key

step in our algorithm development. In general, dynamics of the optical flow and other

visual fields cannot be captured explicitly without some knowledge of the physical

properties of the objects being imaged. For sequential estimation of the depth field,

for example, Heel [26, 27] proposes a physically explicit dynamic model based on a

geometrical relationship (due to Longuet-Higgins and Prazdny [48]) among the motion

parameters of a rigid object, the depth field associated with the object surface, and

the optical flow vectors. Conceivably, the same (or a similar) relationship can be used

to derive a temporal dynamic model for the optical flow field. This approach, however,

leads to a non-linear estimation problem involving simultaneous computation of the

optical flow and depth fields as well as the motion parameters.

Alternatively, temporal behavior of the optical flow field can be described in terms
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of the temporal coherence principle which imposes an inertia condition on motion, es-

sentially allowing the optical flow vectors to change only gradually in time. Temporal

coherence models of optical flow are applicable to a wide range of motions in natural

scenes, as most movements display inertia of some type. It has also been suggested

that temporal coherence might play an important role in human motion vision [23].

In this chapter, we consider multi-frame estimation of optical flow based on a

discrete formulation of the following space-time reconstruction problem:

2 2 2
2 + f1l la 49 a

min v jjg - hf f + 112 f +P f ds dt (6.1)
f Osi IOS2 5-t

which is essentially a simple temporal extension of the optical flow formulation (2.11)

by Horn and Schunck [34] using a first order temporal coherence constraint.

6.1.1 Eulerian v.s. Lagrangian perspective

We have mentioned in Chapter 4 that designing temporal dynamic models for visual

fields requires dealing with the data-estimate correspondence problem which arises

due to the motion of the imaged surfaces. Here, we briefly discuss how the corre-

spondence problem is handled in our first-order temporal modeling for the optical

flow.

Let q(S, t) be a zero-mean space-time white noise with covariance p-1. Then (6.1)

implies the temporal dynamic model

10 f (SI t) = q(S' t), (6-2)
-ji

which imposes temporal coherence on the flow vector associated with each pixel lo-

cation. Alternatively, consider the dynamic model using a first-order total derivative

instead of the partial derivative,

d
_f (Sit) -_ q(S't)' (6-3)
dt

which implies that the motion of each surface element changes gradually over time.
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That is, the temporal coherence model (6.2) is viewer-based, i.e., Eulerian, while (6.3)

is object-based, i.e., Lagrangian.

The Lagrangian model (6.3) certainly makes more physical sense as it achieves

data-estimate correspondence based on the motion of the imaged object; however,

there are reasons that the Eulerian model (6.2) might be at least as appropriate as

(6-3): ,

1. The total derivative on the left hand side of (6.3) can be expanded in terms of

the partial derivatives as

d 09 + 09 f f. (6.4)
Tt f = 6t- f a.

A spatial coherence constraint will keep the spatial variation in the estimated

flow field small, and only flow vectors with relatively small magnitudes can be

computed accurately based on the brightness gradients (Section 2.4). Thus, the

term .. f tends to have a small magnitude in practice, so that approximating[ 9 f]
(6.3) with (6.2) is reasonable.

2. There are some motion patterns, such as static planar rotation, in which the flow

vectors are invariant with respect to the pixel locations but not with respect to

the surface elements. Thus , for such motion patterns (6.2) is more appropriate

than (6.3).

The Eulerian model (6.2) is simple to implement. Specifically, as described in

Chapter 4, (6.2) leads to a discrete temporal dynamic model for the optical flow f (t):

f(t) = f(t - 1) + q(t)7 q(t) - ( 0, p-'l ) , (6-5)

where the noise q(t) is uncorrelated over time. This Gauss-Markov dynamic model

indicates that the optical flow evolves in time as the accumulation of a random per-

turbation at each time frame. Implementation of the Lagrangian model (6.3), on the

other hand, requires maintaining a correspondence between the image frame coor-

dinates and moving surface elements, e.g., using the estimated flow vectors to track
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the images of the surface elements in the frame [10]. That is, using (6.4) as an

intermediate step, (6.3) can be discretized as

Asit) - As't - 1) + 19 f f(st - 1) = q(st)as

leading to a temporal dynamic model for f(t):

f (t) a f (t - 1) + q(t), (6.6)as

85 .95where f] is a block diagonal matrix whose 2 x 2 blocks are The matrix
(I - I ul) is a specific form of the matrix A(t) in (4.2), introduced to perform

the inter-frame correspondence operation described in Chapter 4. Usually, such a

correspondence matrix is computed "on-line" adoptively [26, 27]. In our discrete La-

grangian model (6.6), the spatial derivative -8 f] must be estimated by, for example,

differentiating the estimated flow f (t - 1). Noisy estimates of the optical flow can,

therefore, make the implementation of the Lagrangian model (6.6) unstable.

In summary, although the Eulerian model essentially ignores the data-estimate

correspondence issue, it is a good approximation of the more sophisticated Lagrangian

model. This is because the brightness change constraint equation requires a suffi-

ciently high temporal sampling rate with respect to the magnitudes of the optical

flow vectors (cf. Sec. 2.4) so that the inter-frame motion is not large enough for the

correspondence issue to have significant effects on estimation. Our main objective in

this chapter is to compare optical flow estimates with and without temporal coher-

ence, and the simplicity of the Eulerian model (6.5) makes it attractive for us to use

for this purpose. Certainly, a more physically oriented model such as (6.6) can be

more appropriate for specific motion estimation problems; however, modeling at such

specific details is beyond the scope of this thesis.
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6.1.2 The Simple Temporal Coherence (STC) Model

As described above, the temporal coherence constraint in (6.1) leads to the discrete

Eulerian temporal dynamic model (6.5) for the optical flow f(t). We refer to this

discrete dynamic model as the simple temporal coherence (STC) model or the STC

constraint. The complete formulation of the multi-frame optical flow estimation that

corresponds to a discrete version of (6.1) is given by the dynamic system consisting

of the STC dynamic equation (6.5) and the measurment equation

g(t) H(t) N-1(t)

0 S, f (t) + r (t), r(t) 0, (6.7)

0 S2 2- II

which has been described in Section 3.2.4. This last equation is a discrete version

of the single-frame optical flow formulation by Horn and Schunck [34]. Indeed, note

that (6.1) is exactly the Horn and Schunck formulation when p = 0.

6.2 Computing Optical Flow with STC

In this section we demonstrate the beneficial effects of the simple temporal coherence

(STC) constraint applied to optical flow computations. Synthetic image sequences

of moving brightness patterns are processed by a STC-based optical flow estimation

method as well as by other more traditional flow computation methods, and the

improvements gained by using the STC constraint are presented. In this section,

small image frames are used so that the optical flow estimates can be computed

exactly by direct matrix inversion instead of the usual iterative computation, in order

to facilitate comparison of the optimal estimates by different methods. The following

three methods are compared:

The "single-frame" method.

Each frame of optical flow is computed independently, i.e., without any provision

for temporal integration of data. A discrete version of Horn and Schunck's
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single-frame optical flow computation algorithm [34] is used. This approach

corresponds to solving the maximum likelihood (ML) estimation problem based

on the observation equation (6.7) at each t. In this chapter, unless otherwise

indicated, we give equal weights to the brightness constraints at all pixels, so

that N(t) = 1. The ML estimate for the optical flow, i(t), is obtained by solving

the inversion problem

H T(t)N(t)H(t) + _tSTS, + J12 ST S2) i(t) = H T(t)g(t). (6.8)
1 2

Typically, Gauss-Seidel iterations are used to solve this equation. In the exper-

iments presented in this chapter, however, the optimal estimates are obtained

non-iteratively by matrix inversion unless otherwise indicated. (We have chosen

to work with small image frames so that this is practically possible.)

The "once-GS" method.

In [34], Horn and Schunck suggest an approach to multi-frame optical flow

estimation not based on a statistical optimality criterion. Let us refer to this

algorithm as the "once-GS" method. The method performs only one Gauss-

Seidel iteration for the inverse problem (6.8) at each t but uses the estimate

from the previous frame, i(t - 1), to initialize the iteration. Unlike the "single-

frame" method, therefore, this method does have some provision for propagating

the estimates temporally. Note, however, that if the iterations are allowed to

converge for each frame of data, the resulting flow estimates would exactly be

the same as the "single-frame" estimates. Although the once-GS method is ad

hoe in terms of its temporal integration of data, its ease in implementation is

appealing from a practical point of view. It is an interesting method to compare

against the STC-based method.

Because the "once-GS" method iterates only once per frame of data, it must

process many frames before a reasonable estimate starts to emerge. We do not

want such an initial transient effect to be a factor in our experimental study;

therefore, the first frame of data is processed non-iteratively by direct matrix
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inversion, i.e., using the ,single-frame" method above. (Thus, the method is

receiving a much more favorable initial estimate in this experiment than in

practice.)

The "STC" method.

The simple temporal coherence constraint is imposed on the flow vectors as

well as the standard spatial coherence constraint. Optical flow under such con-

straints is computed sequentially using the information Kalman -filter based on

the dynamic system (6.5) (6.7):

- prediction step

PI P2 1) + PI) (6.9)

i(t 1) (6-10)

-i(t) pq(t) (6-11)

- update step

L(t) = L(t) + H T( t)N(t)H(t) + /,tSTS, + jt2 ST S2 (6-12)
2

i(t) = t(t) + H T(t )N(t)g(t) (6-13)

i(t) = L-1(t)i(t) (6-14)

where L(t) and L(t) denote the predicted and updated information matrices,

respectively. The small image frame size allows us to perform the exact com-

putation necessary for optimal filtering. Suboptimal filtering techniques are,

however, necessary for a larger, more typical image frame size. Examples using

suboptimal Kalman filters are presented in later sections.

Note that all three methods presented above process the initial frame of data (spatial

and temporal'gradients of the brightness) identically; they all compute the initial

estimates from (6.8) by direct matrix inversion.
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6.2.1 Measurement integration by STC

One of the advantages of using a temporal coherence constraint in optical flow es-

timation is improvement in estimates due to temporal accumulation of information

regarding the flow vectors. Because of the aperture problem, the measurements of

the brightness gradients by themselves are not sufficient to deduce the optical flow

vectors uniquely. That is, the brightness measurement at each pixel at a certain

time can only provide us with partial information about the optical flow vector at

that pixel. The spatial coherence ("smoothness") constraint, typically used as the

extra constraint to the brightness constraint in single-frame flow computation, effec-

tively supplements the gradient measurements at each pixel with the measurements

at surrounding pixels, constraining the problem well enough so that a unique optimal

flow vector can be computed at that pixel. In multi-frame flow computation, such

integration of measurements can be expanded over time as well as space.

Reconstruction of optical flow using only spatial data integration (i.e., by using

only spatial coherence constraints as in the case with the "single-frame" method de-

scribed above) cannot be performed correctly when a complete set of the information

necessary to estimate the flow vectors is not contained in each frame of images. Specif-

ically, since variation in the orientations of the measured spatial gradients is necessary

to resolve the aperture problem, optical flow computation method employing only a

spatial coherence constraint will have difficulties dealing with images such that all

spatial gradients are oriented in almost the same direction (including the case where

the number of spatial gradient vectors with significant magnitudes are very small).

Addition of a temporal coherence constraint can often relieve such difficulties. We give

a demonstration below that the STC constraint is, in fact, instrumental in correctly

estimating the flow.

Experiment: Rotating Ramp

1. The motion.

A brightness pattern is rotated constantly over time. The amount of rotation

between ad .acent image frames is 0.1 radians (slightly less than 60).
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............

Figure 6-1: Rotating Ramp. Frames 0, 5, 10, 15, 20, and 25 are shown.

2. The image sequence.

The brightness pattern to be rotated is a 10 x 10 images of a sloping edge.

Figure 6-1 shows frames 0, 5, 10, 15, 20, and 25 of the image sequence. The

sloping edge, or ramp, is a quarter-wave of a sinusoid changing from -1 to 1

over a band approximately 5-pixel wide. The pixel values are measured with

floating-point accuracy without noise. The ramp is the only region in the image

with non-zero spatial gradients; the rest of the image frame is feature-less (con-

stant brightness) so that motion is' undetectable there. Since the ramp forms a

straight edge, all the spatial gradient vectors in each image frame are oriented

in the identical direction.

3. The flow estimates.

Figure 6-2 shows the estimated flow vectors using the three methods mentioned

above: "single-frame", "once-GS", and "STC". As described before, all three

methods begin with the same initial estimates, reflected in the results for frame 0

in the figure. The STC method produces a fairly accurate estimate at frame 25.

The estimate by the once-GS method at frame 25 appears to be fairly good,

also. The single-frame method, however, fails completely. This shows that some

sort of temporal integration of measurements is necessary for correct estimation.
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Figure 6-2: Optical flow estimates for the rotation ramp example. The flow patterns

at frames (from left to right) 0, 5, 15, and 25 are shown. The flow vectors are
magnified by 1.5 for clarity.
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Figure 6-3: The normalized average estimation errors in the rotating ramp example for

the three methods: single-frame(dashed line), once-GS(dotted line), and STC(solid

line). The dash-dot line shows the errors for the hybrid of the once-GS and STC

methods.

(The computation parameters were P = 1 and /t, = jt2 = 0.00025.)

4. The estimation errors.

Let us de-fine the "percent normalized average estimation error" at time (frame)

t as

El 11 ASI t) - f (SI t) X 100, (6.15)

El 11 f (SI O 11

where f is the true flow and I is the estimated flow. This quantity is computed

for the three methods, and the results are plotted on Figure 6-3. The dashed,

dotted, and solid curves correspond to the errors associated with the single-

frame, once-GS, and STC methods, respectively. The percent errors for the

once-GS method are at least 10% higher than those for the STC method.
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Figure 6-4: Kalman gain magnitudes for STC in the rotating ramp case. Frames 0,
5, 10, 15, 20, and 25 are shown.

5. The Kalman gains and variances for the STC method.

The STC method is implemented as a Kalman filter. One can visualize the

temporal integration process of the STC method by observing the "images"

of the magnitudes of the Kalman gains and variances. Figure 6-4 shows the

magnitudes of the Kalman gains at frames 0, 5, 10, 15, 20, and 25. Lighter

pixels have higher values than darker pixels. (Note that the frame size is only

10 X 10, resulting in jagged appearance of the images.) The magnitude of

Kalman gain is an indication of how much the filter values the new data in

updating the estimate. By comparing Figures 6-4 and 6-1 one can observe that

the Kalman gain is high where the image contrast is high. Figure 6-5 shows the

magnitudes of the error variances. Pixels with low (dark) variances have high

confidence in their associated flow vector estimates. Notice that the area of high

confidence grows with time, indicating that the -filter produces good estimates

of flow vectors over a wider region in the image frame as more measurements

are integrated over time.

6. A "once-GS" implementation of the STC Kalman filter.

The once-GS method performs only an ad hoc propagation of the flow estimate

between frames. It is difficult to determine how much the previous estimate
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Figure 6-5: Error variance magnitudes for STC in the rotating ramp case. Frames 0,
5, 10, 15, 20, and 25 are shown.

(thus, the previous measurements) influences the present estimate, as the prop-

agated estimate from the previous frame appears only as the initial condition

for the Gauss-Seidel iteration. Nevertheless , the method is attractive for its

computational efficiency. Let us consider a hybrid method which retains the

computational feature of the once-GS method while properly imposing a tem-

poral coherence constraint as in the STC method. The resulting algorithm

is essentially a STC-based Kalman filter where the update step is performed

by only a single Gauss-Seidel iteration (initialized by the predicted estimate).

The average normalized error magnitude for such an algorithm is plotted as the

dash-dot line in Figure 6-3. The improvement over the original once-GS method

(dotted line) is evident, as the error decreases almost monotonically down to

below 5% (at frame 60).

6.2.2 Noise reduction by STC

A single pair of frames in image sequences of many natural scenes often contains

enough information (i.e., variation in spatial gradients of the brightness) to recon-

struct the motion field. Even in these image sequences, however, a temporal coher-

ence constraint can improve the quality of optical flow estimates by reducting the
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effect of measurement noise. Measurement of gradients is a noise-sensitive process.

As described in Section 2.4, presmoothing, i.e., to spatially blur the images before

obtaining the brightness gradients, can often be important for maintaining validity

of the brightness constraint and hence reducing the sensitivity of the optical flow

estimates to noise in the measurements. The effect of noise can be decreased further

by applying a temporal coherence constraint on the flow. The constraint serves to

average the noisy data in time. Let us examine how the STC constraint performs for

such a purpose.

Experiment: Collision

1. The motion.

A viewer approaches a wall at a constant velocity until collision. We define the

time of collision to be t = 0. Because of the effect of perspective projection,

the viewer, looking at some fixed optical features on the wall, perceives motion.

The optical flow that the viewer sees has a radially expanding pattern, in which

the flow vector magnitudes increase with time. Appendix D mathematically

details the dynamics of the time-varying optical flow vectors f (s, t). Figure 6-6

shows the spatial average of II f (s, t) II and the corresponding standard deviation

at each frame t. Note that in the beginning (e.g., t < -50), the flow is almost

static in time, making application of the STC constraint suitable in this region.

Close to the collision, however, the flow vectors have great variations in time

and space, so that the temporal and spatial sampling rates necessary for the

brightness change constraint equation to be valid (cf. Sec. 2.4) might become

too high for this particular image sequence to satisfy. In fact, as we will see, it

is not possible to estimate the flow vectors with reasonable quality for t > -10

from the image sequence.

2. The image sequence.

There are 101 images in the sequence. The frame size is 10 x 10. The brightness

pattern on the wall is a sinusoidal checkerboard pattern, and in the initial image
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Figure 6-6: Collision motion pattern: the spatial average a(t) (solid line) of the
flow vector magnitudes for each image frame t and a(t) + o,(t) where o,(t) is the
corresponding standard deviation (dotted lines) are shown.

frame, at t = -100, approximately one period of the sinusoid along each axis

can be viewed. The focus of expansion' in the optical flow pattern is chosen to

be located outside of the image frame, at about 5 pixels below and to the right

of the lower right corner of the frame.

3. The noise

The pixel values are floating-point values between -1 and 1. A temporally and

spatially white Gaussian noise process with variance 0.01 has been added to

each pixel to achieve a signal-to-noise ratio of about 20.

4. Presmoothing.

Each image is convolved with the 3 x 3 unit uniform stencil (a 3 x 3 matrix of

ones) to smooth the brightness values spatially before the brightness gradients

are computed by finite differencing.

5. The flow estimates.

Figure 6-7 shows the true optical flow and the estimated flow at t = -90,

1 For the synthesized motion (pure translation), each frame of optical flow consists of vectors of
varying length that all pass through a single point when extended. This point where the optical flow
vector is zero is called the focus of expansion [33].
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-80, -70, and -60 using the three methods: single-frame, once-GS, and STC.

Qualitatively, the STC method clearly produces the best flow estimates. (The

computation parameters were p -_ I and it, = P2= 0.025.)

6. The estimation errors.

The normalized average estimation errors (6.15) for the three methods are plot-

ted on Figure 6-8. The estimation errors for the STC method are significantly

lower than those for the single-frame method. Note that the largest decrease

in the errors for this method occurs within the first 10 frames. The once-GS

method has noise-reduction capability as well, but its response time is longer

than for the STC method. The errors of the STC and once-GS methods increase

steadily after t = -50, because of the gradual increase in spatial and temporal

variations in the flow vectors and hence corresponding increase in the required

sampling rates. (Note: the sampling rates are fixed in this particular image

sequence.)

6.2.3 Summary

The experiments in this section have demonstrated the importance of temporal in-

tegration of measurements in optical flow computation and the effectiveness of the

STC constraint in performing this task. Specifically, the STC constraint can help

resolve the aperture problem and reduce noise sensitivity by assimilating more data

(over time) than traditional optical flow computation methods.

6.3 An Evaluation of the STC Modeling

As described before, an Eulerian temporal dynamic model such as the STC model

should be nearly as effective in multi-frame optical flow estimation as a Lagrangian

model. We demonstrate this in this section. For this purpose, let us compare the

performance of the STC-based method in reconstructing the motion vectors in the

Collision image sequence in the previous section with the performance of a method
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Figure 6-7: Optical flow estimates at times -90, -80, -70, and -60. The flows are

magnified by 2 for clarity.

174



Collision
100

90 -

80 -

70 -

J
60 -

O
50 -

C
0E I.T f

30 -

20 -

10 -

01
-100 -90 -80 -70 -60 _�o 0 -lo40 3 20 0

time to collision

Figure 6-8: The estimation errors in the collision example for the methods: single-

frame(dashed-line), once-GS(dotted-line), and STC(solid-line).

based on an accurate dynamic representation of the flow vectors for this particular

image sequence. As noted before, the flow vector in the Collision sequence displays a

range of temporal dynamics, from near-static to rapidly changing.

As derived in Appendix D, the true flow vectors in the Collision image sequence

obey the following Lagrangian temporal dynamics:

d MS7 O y� (.,t))2
= 2 A81 (6.16)

dt f2(s, t) (f2(St))2
L L A82 j

for

MS7 O As,

f2(S7 t) AS7 t) and AS2 S SFOB (6-17)

where SFOE is the location of the focus of expansion. (Recall that the optical flow
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displays expanding patterns.) A discrete version of (6.16) is also derived as

(S t) 1 Of, ef, t 1)
981 1982 fi(sl + 2 Aq (6.18)

(f2(St_,))2
h(S7 �th I _ !�h h(sl t - 1)

L t) J L 9$1 i932 i i L A82

where the spatial partial derivatives are evaluated at (S, t - 1). Let us call this the

nonlinear modelof the temporal dynamics of the flow vectors in the Collision sequence.

Obviously, the model is accurate only for this particular image sequence. (In practice,

we usually cannot predict the temporal dynamics of the flow well enough to construct

a model with such accuracy. We synthesize such a model here for the comparison

purpose only.)

An extended Kalman filter is implemented (see Appendix D) based on the "non-

linear model" (6.18) to estimate the optical flow using the noisy Collision image

sequence. It is assumed that so,, is known. Figure 6-9 shows the percent normalized

estimation errors (6.15) for the filter based on the nonlinear model as well as for

the filter based on the STC model. As expected, the nonlinear model yields more

accurate estimate than the STC model when the flow vectors are changing rapidly,

i.e., for t > -35. When the flow vectors are not changing as rapidly, however, the

estimates based on the STC model has slightly smaller errors than those based on

the nonlinear model. The right hand side of the nonlinear model (6.18) consists of

second order terms with respect to f (s, t) as well as spatial derivatives which must be

computed from the estimate of f (s, t); thus, it can be speculated that the prediction

step of the extended Kalman filter based on (6.18) amplifies estimation errors.

The flow vectors estimated with both the nonlinear and STC models are shown

on Figure 6-10. The estimated flows depicted in the figure are from the time interval

during which the flow vectors are changing quite rapidly. In the frames near the

collision (i.e., t > -30) the average errors (in Fig. 6-9) for the nonlinear-estimates are

lower than those for the STC-estimates; however, the flow patterns produced by the

nonlinear model-based filter are not necessarily better in these frames. For example,

the nonlinear-estimate at frame t = -10 depicted in Figure 6-10 is qualitatively quite

different from the corresponding true flow pattern.
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Figure 6-9: Normalized average errors for the collision experiment. The errors for the

estimates based on the STC(solid line) and nonlinear(dashed line) models are shown.

To conclude, the experiment in this section has demonstrated that the mathemat-

ical simplicity of the STC model can be advantageous in terms of the robustness of

-filter performance as well as ease in implementation, compared with a more complex

model that attempts to capture the flow dynamics in greater details. Specifically,

the "non-linear" filter is sensitive to spatial variations in the estimated flow vectors

because of the spatial gradient terms in (6.18). The detailed modeling approach has

another drawback in that the temporal dynamics of optical flow cannot be predeter-

mined in most applications.

Practically speaking, to track motions with large temporal variations using a STC-

based method, one needs to sample the image frequently enough over time. It is

in accord with a characteristic of a gradient-based optical flow computation, which

also requires high enough temporal sampling rate for accurate measurements of the

temporal gradients.
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Figure 6-10: Estimated flow for the collision experiment. Frames t -40, -30, -207

and -10 are shown.
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6.4 Suboptimal Filtering based on STC

The number of pixels in a frame of a typical image sequence is on the order of 104

to 106. Such a large data size makes optimal implementation of the STC-based

information Kalman filter (6.9)-(6.14) impractical. In this section, we investigate

effectiveness of filter approximation techniques discussed in Chapter 5, by applying

the series approximation presented in Section 5.3.4 to the STC-based information

filter. Only the first two terms in the infinite series (5.36) are used, i.e., the prediction

step (6.9) is replaced by

-r(t) = PI _ P2(A-1 (6.19)

where A is a block diagonal matrix whose diagonal blocks are 2 x 2 and are identical

to the corresponding block diagonal part of the matrix f,(t - 1) + PI while Q is given

by Q = fL(t - 1) + PI - A.

Recall from Section 3.3.2 that the matrix H T(t )N(t)H(t) + p1STS1 + jt2STS2 has1 2

a nearest neighbor structure. The suboptimal prediction step (6-19) preserves the

nearest neighbor structure of the (approximated) information matrix, i.e., if t(t - 1)

has a nearest neighbor structure, so does L(t). The nearest neighbor structure is also

preserved in the optimal update step (6.12), which means that the suboptimal filter

preserves such a matrix structure for all t. It can be verified straightforwardly that

propagating the information matrix in the suboptimal filter as in (6.12) and (6.19)

costs only O(N) flops per frame and has a local, modular computational structure

suitable for parallel implementation.

6.4.1 Experiment: approximation error

The image sequences in the Rotating Ramp (Section 6.2-1) and Collision (Section 6.2.2)

experiments are processed with the series-approximated STC-filter. The resulting es-

timates are compared with the estimates obtained with the corresponding optimal

Kalman filter. Figure 6-11 shows the average errors for the optimal and suboptimal
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Figure 6-11: The estimation errors for the suboptimal STC-filter (dashed-line) and
the optimal filter (solid-line).
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estimates; the difference between the suboptimal and optimal estimates appear to be

small. To quantify the difference between the two estimates we have computed for

each t a percent normalized average approximation error

El 01Als(soll - 11 'AL(s, t) 11) (6.20)

E. lif (SI 011

where Af, and Af, are the estimation errors for the suboptimal and optimal filters,

respectively, and f is the true flow. Figure 6-12 shows the approximation errors

associated with the flow estimates for the two image sequences. In the Rotating Ramp

case, in which the images are noise-free, the approximation error is at most 3% and

is negligible for most t. The errors are often negative, meaning that the supoptimal

filter has estimated more accurately than the optimal filter in some frames. For the

noisy Collision image sequence, the approximation error ranges between 0% and 10%.

Note that large approximation errors occur only in the time range t > -50 where

even the optimal filter does not perform well due to undersampling (cf. Fig. 6-8).

6.4.2 Computing optical flow in a realistic image sequence

The improvements in implementational efficiency (in terms of both computational

costs and stroage requirements) achieved by the filter approximations described pre-

viously allows us to impose the STC constraint on realistic multi-frame optical flow

estimation problems, which usually require processing image sequences with a much

larger frame size than those in the experiments presented in this chapter so far.

Experiment: Yosemite

We compare the estimates obtained by using the suboptimal STC-filter and the

4i single-frame" method of Section 6.2.

1. The image sequence.

A motion image sequence is synthetically generated based on a 3-D topographic
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Figure 6-12: The errors introduced by the approximation of the optimal STC-filter
(as % of the magnitudes of the true flow).
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Figure 6-13: A frame from the Yosemite image sequence

model of the Yosemite Valley'. Figure 6-13 shows a typical frame from the

sequence. The frame size is 316 x 252, and the pixel values are quantized to 256

grey levels. We have corrupted the images by adding an independent Gaussian

noise with a variance 9 to each pixel to achieve a signal-to-noise ratio of about

85 and then requantizing the resulting pixel values to 256 grey levels.

2. The true optical flow.

An advantage of using a synthetic motion image sequence is that the true motion

is known. Figure 6-14 shows the tenth frame of the true optical flow sequence.

3. Presmoothing.

The 9 x 9 unit uniform stencil is used to spatially smooth the images before

brightness gradients are computed.

4. Weighting the gradient measurements.

In Section 2.4 we have determined that the second order brightness gradients
,92 I 2 2aSat � 51' and 2--, should be small for the brightness change constraint equation

to be accurate for a given set of spatial and temporal sampling rates. In this

experiment we weight the gradient measurement with a function of ' 2I to quan-

2Lyn Quam of SRI International has produced the image sequence.
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Figure 6-14: The true flow for the tenth frame in the Yosemite image sequence. The
flow vectors are reduced by a factor of 2 for display purposes.

tify the emphasis placed on the brightness constraint at each pixel. Specifically,

for the observation equation

g(s, t) = h(s, t)f (s, t) + e(s, t) e(s, t) 07 V-1 (S7 t) (6.21)

we set

V(S, t) = CXp - k 92 I(S' t) 2 (6.22)

asyt

where k is a constant that we have chosen to be ' for the Yosemite image
2

sequence. Since v(st) are the elements of the diagonal matrix N(t), using

(6.22) we no longer have N(t) = 1. The value of 2 I's are obtained by forwardas-9t

temporal differencing of the computed first order spatial gradients. Replacing

the usual v(s, t) = I with (6.22), we have been able to decrease the average

estimation error by over 4% per frame. We have attempted similar weighting

schemes of the observating equation (6.21) using other second order gradients

but have not found them as beneficial as (6.22).
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5. Iterative solution for the estimates.

Both the suboptimal STC-filter and single-frame method require solving the

inverse problems (6-14) and (6.8), respectively, to obtain the flow estimates at

each t. We have used 500 Gauss-Seidel iterations to solve the inverse problem

for each frame of flow estimate, except for the estimates in the first frame. The

estimate from the previous frame is used to initialize each iterative procedure.

To obtain the estimates in the first frame, due to lack of a favorable initialization

values, 3500 iterations have been used. Note that the suboptimal STC-filter (but

not its optimal version) allows us to use such an iterative method by setting up

each update step as an inversion of a nearest neighbor operator.

6. The flow estimates and estimation errors.

Figure 6-15 shows the tenth frame of the estimated flow vectors computed by

the single-frame method and suboptimal STC-filter. The filter parameters were

p = 10 and it,= Jt2= 250. Noise-rejection effect due to the STC constraint can

be observed in the upper part of the frame. Figure 6-16 shows the estimation

error vectors associated with the estimates in Figure 6-15. Some systematic

estimation errors can be observed in the lower left corner of the frame. Possible

sources of such errors are:

* The lower left corner of the frame is the region where the magnitudes of

the flow vectors are the largest. As discussed in Section 2.4, the brightness

change constraint equation is less effective for large flow vectors.

* In this region of the image sequence is a large cliff (El Capitan) which

displays vertical striations of brightness. In fact, the brightness images in

this region lacks contrast in the horizontal direction, making the vertical

motion components difficult to be estimated. The error vectors in Fig-

ure 6-16 confirm this; the flows tend to be underestimated in the vertical

direction.

Finally, Figure 6-17 shows the estimation errors in the first ten frames for the

two flow computation methods. The suboptimal STC-filter consistently yields
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Figure 6-15: The optical flow estimates for the tenth image frame by the single-frame

method and the suboptimal STC-filter. The flow vectors are reduced by a factor of 2

for display purposes.
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Figure 6-16: The estimation errors corresponding to the estimated flow in Figure 6-15.
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Figure 6-17: The estimation errors by the suboptimal STC-filter(solid-line) and the
single-frame method(dotted-line) during processing of the noisy Yosemite image se-
quence.

more accurate estimates than the single-frame method.

Experiment: Stagnation Flow

The optical flow sequences examined so far in this chapter are all projections of the

movements of solid objects. In this experiment we consider estimation of the motion

of a non-rigid body, in particular fluid flow, using the suboptimal STC-filter and the

"single-frame" method.

1. The flow.

Figure 6-18 shows a flow pattern whose velocity vector at point (X 7 Y) is given

by (Ax, -Ay) for A = 0.1, where the coordinate origin is at the midpoint of the

bottom edge of the figure. This type of flow (for an arbitrary constant A)3 is

useful for a local characterization of stagnation flow [63], i.e., the flow of fluid

obstructed perpendicularly by a solid object.

-3As described in [63], this is a planar potential flow given by a stream function Axy, i.e., a
function which is constant along each streamline.
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Figure 6-18: The true flow in the Stagnation Flow experiment. Every other flow
vector along each axes is shown with a magnification factor of 4 for clarity.

2. The image sequence.

A sequence of 64 x 48 images are synthesized based on the velocity field de-

scribed above. Figure 6-19 presents four images from the sequence. Note that

the direction of the predominant contrasts in each image changes from mostly

horizontal in the early frames to mostly vertical in later frames, implying that

some type of temporal coherence constraint is necessary for correct estimation

of the flow from this image sequence. As in the case with the Yosemite experi-

ment, we have corrupted the images by adding an independent Gaussian noise

with a variance 9 to each pixel to achieve a signal-to-noise ratio of about 85.

3. The flow estimates and estimation errors.

We have used the same single-frame method and suboptimal STC-filter as

those used in the Yosemite experiment, except for the parameter change so

that tt, = 112 = 0.025 (while still using p = 10), to process the image se-

quence. Figure 6-20 shows frame 18 of the estimated flow vectors computed

by the two algorithms. Clearly, the single-frame method has completely failed

to reconstruct the flow field, while the suboptimal STC-filter has performed a
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Figure 6-19: The Stagnation Flow image sequence. Frames 0 and 7 (top row) as well
as 14 and 21 (bottom row) are shown.

reasonable reproduction of the flow in Figure 6-18. The estimation errors for

the two algorithms, shown in Figure 6-21, are consistent with this observation.

The error curve associated with the suboptimal STC-filter indicates that the

filter has produced increasingly accurate estimates as more measurements are

assimilated.

4. The number of iterations required.

Both the single-frame method and suboptimal STC-filter have been allowed

to use a maximum of 500 Gauss-Seidel iterations to compute the estimates at

each t; however, the actual numbers of iterations required for convergence of

the solution (to within 1 0 - 7) have typically been lower, as shown in Figure 6-

22. Note that, as in the case with the Yosemite experiment, both algorithms

initialize each iterative session (except in the first frame) using the respective

estimates from the the previous frame. Figure 6-22 indicates that the subopti-

mal STC-filter requires progressively fewer iterations to compute the estimates

(e.g., down to 16 iterations for the estimates in frame 18) and has a much Su-

perior convergence property than the single-frame method which requires 100
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Figure 6-20: The optical flow estimates for frame 18 of the Stagnation Flow sequence

by the single-frame method and the suboptimal STC-filter.
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Figure 6-21: The estimation errors by the suboptimal STC-filter (solid-line) and the
single-frame method (dotted-line) for the Stagnation Flow experiment.
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Figure 6-22: The number of iterations used by the suboptimal STC-filter (solid-line)
and the single-frame method (dotted-line) for convergence of the estimates in the
Stagnation Flow experiment.
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to 500 iterations for the estimates in any frame.

6.5 Conclusion

Using primarily the STC model, we have demonstrated that a temporal coherence con-

straint can improve the quality of the optical flow estimates by performing temporal

measurement integration and noise reduction. We have also observed the versatility

of the STC model which has been derived from an Eulerian interpretation of a simple,

non-parameteric, first order temporal differential model for the time-varying optical

flow. The STC-based information Kalman filter is shown to be approximable by using

only two series terms in the series-approximation method, leading to a computation-

ally efficient formulation of an effective, general-purpose procedure for multi-frame

optical flow estimation.
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Chapter 7

Conclusion

7.1 Thesis Summary

A general and efficient algorithmic framework for sequential estimation of time-

varying visual fields has been developed in this thesis. A prominent feature of the

algorithmic framework is that each of the independent pieces of knowledge about the

visual field (i.e., the coherence constraints and measurements) is statistically repre-

sented in an implicit format called an information pair, which can also be interpreted

as a specification of a spatial model for the visual field. In the information pair repre-

sentation (and its square root version) the statistical data can be efficiently combined

over space and time, leading to the development of several useful multi-frame visual

reconstruction algorithms that are sequential in time and parallelizable in space. The

main contributions of the thesis are:

1. Multi-frame visual reconstruction with temporal coherence.

We have demonstrated that multi-frame visual reconstruction based on temporal

coherence, which is essentially a temporal extension of well-established spatial

coherence constraints (e.g., the membrane and thin-plate models), can yield

more robust estimates of smoothly time-varying visual fields than reconstruction

by independent, serial applications of a single-frame algorithm. In particular, in

multi-frame optical flow estimation we have illustrated that a simple form of the

temporal coherence constraint can reduce the effect of noise in measurements
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and can in some cases resolve aperture problems not resolvable by imposing

only spatial coherence constraints.

2. Estimation theoretic framework for multi-frame visual reconstruction.

A discrete formulation of the traditional, variational approach in single-frame

visual reconstruction has been interpreted as a maximum likelihood estimation

problem, allowing formulation of visual reconstruction in a statistical frame-

work. For multi-frame reconstruction problems, a descriptor dynamic system

has been formulated. The system is specified by the dynamic equation obtained

from the temporal coherence constraint and the observation equation obtained

from the spatial coherence constraint and the measurements (so that the ob-

servation equation by itself specifies a single-frame reconstruction problem).

Kalman filtering algorithms are formulated based on the descriptor system such

that the implicit form of the statistics of the visual field is propagated over time

for sequential estimation.

3. Efficient and effective filter approximation based on spatially local modeling.

The information pair representation of the statistical data has been shown to

be computationally advantageous in visual field reconstruction because of its

compactness and its ease in fusing data (by simple component-wise addition).

The information pair (as well as the square root information pair) can be in-

terpreted to specify a spatial model for the unknown field at various stages of

estimation. In a single-frame reconstruction problem, such models are spatially

local and can be shown to be equivalent to Markov Random Field modeling of

the visual field [17, 711. In a multi-frame problem, on the other hand, the mod-

els are not strictly local, and as a result the corresponding Kalman filter faces

an enormous computational complexity when implemented optimally. Based

on the conjecture that visual fields should be specifiable by spatially local mod-

els, however, we have developed computationally efficient, approximate filtering

techniques that have been demonstrated to yield near-optimal estimates. A key

result in this filter approximation is that the information (as well as the square
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root information) matrix in multi-frame visual reconstruction can effectively be

approximated by sparse matrices corresponding to spatially local specifications

of visual fields.

7.2 Extensions and Future Work

7.2.1 Statistical framework for visual computation

We speculate that the statistical estimation theoretic framework presented in this

thesis for a class of low-level visual processing tasks can be extended for formulation

of some higher-level tasks. Specifically, the statistical representation of the estimates

offers a measure of uncertainty which should be useful in assessing the quality in

the estimates produced by low-level processing modules as well as in combining these

estimates. Also, the storage and computational efficiency provided by the information

pair representation for the statistics can make implementation of a complex, multi-

level visual processing task practical.

Data fusion

Enhanced, robust estimation of a visual field may be possible by combining several

simultaneous estimates of the field based on different visual cues. For example, we

can consider computing optical flow not only using the brightness gradient measure-

ments but also relying on some sparse yet accurate motion vectors obtained by feature

matching. Such a merger of primary estimates (e.g., two optical flow fields respec-

tively based on brightness gradients and feature matching) can be easily accomplished

using the information pair representations of the estimates. The information pair rep-

resentation provides us with a unified framework to perform computation necessary

for such a data fusion task.
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Hypothesis testing for higher-level vision

High-level visual information processing often requires decision-making based on a set

of results provided by low-level modules. The second order statistics (i.e., a measure of

uncertainty in estimates) contained in the information pair allows us to formulate this

task as a statistical hypothesis testing problem. For example, a statistical approach

is shown to be useful in a formulation for reconstructing a smooth surface partially

occluded by other surfaces [53], which essentially involves first estimating segmented

patches of surfaces from the measurements and then deciding which patches belong

to the same surface. Thus, in a statistical framework, a low-level task of visual field

estimation can be interfaced naturally with a high-level processing task formulated

using statistical decision theory.

High-level to low-level feedback through spatial modeling

As a sequence of images is processed, the visual system gradually "understands" its

environment, i.e. 7 the physical properties of the objects in the field of view. We

can consider using this high-level understanding of the imaged environment, such

as the locations of the object boundaries along which imposing spatial smoothness

is not appropriate, to provide the low-level visual field reconstruction modules with

improved prior spatial models. Such a "top-down" feedback of visual information can

be formulated in the presented framework through refinement of the spatial models

implied by the information pair. That is, the spatial model interpretation of the

information pair should be useful in capturing inter-level communication of visual

information.

7.2.2 Techniques for general large-scale space-time filtering

The filters and approximation techniques developed for multi-frame visual field recon-

struction can be studied in terms of general large-scale space-time filtering problems.

In particular, extensions and detailed numerical analyses of the approximation tech-

niques developed in Chapter 5 may contribute to general signal processing theory.
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Nested series-approximated information filter

The series approximation for matrix inversion used in the information filter (Sec-

tion 5.3.4) converges only if A-'Q has all its eigenvalues within the unit circle in the

complex plane. Although we have presented an approximation method such that A is

a diagonal matrix, we can alternatively choose the matrix A that satisfies this eigen-

value condition so that the approximation technique is applicable to a wider range of

filtering problems. That is, the only reason to choose A to be the diagonal part of

the matrix to be inverted is that A` is easily computable. However, an alternatively

chosen A, which is a sparse matrix so that A-'Q satisfies the eigenvalue condition,

can be inverted by another series approximation, leading to a nesting of the series

approximation algorithm. In this way, filtering problems to which the original form of

the approximation algorithm are not applicable can now be approximated and made

efficient.

Analysis of the iterative SRIF

The iterative SRIF (Section 5.4.2), unlike the series-approximated information filter,

theoretically converges for all cases. For this algorithm, a more detailed study of

its general convergence properties seems appropriate, so that such implementational

parameters for the approximate iterative SRIF (Section 5.4.3) as the number of it-

erations per nulling session and depth of nulling in each incomplete sweeep can be

chosen systematically.
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Appendix A

Block Matrix Inversion

Let A and B be matrices which are inverses of each other, i.e., A-' = B. Partition

these matrices as

All A12 B,, B12
A B = (A.1)

A21 A22 B21 B22

so that dim Aij dim Bij and Aii's are square. Then, Ajj's and Bij's are related as

follows:

All = (B,, - B12B-lB21) (A.2)
B-1 + B-1B12A22B2jB-1 (A.3)

11 11 11

A22 = (B22 - B2,B-lBl2)-' (A.4)
B-' + B-1B2jAjjB12B-1 (A.5)

22 22 22

A12 = -B-1B12A22 (A-6)

-AjjB12B-1 (A-7)

A21 -B-1B21A11 (A.8)

-A22B2,B-1 (A.9)

proof

By substitution into AB = BA = 1.
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Appendix B

Convergence of Iterative SRIF

Let P and Q be N x N matrices whose elements are denoted as pij and qij, respectively.

Consider the matrix

P
(B-1)

Q

and the problem of nulling its lower square block Q by application of a series of Givens

rotations. Specifically, let us first examine the following procedure:

Elementary Iterative Nulling Procedure

In each iteration, perform:

• Find the element qkl such that jqk1j = MaXij lqijl-

• Null the element qkl by Givens rotation against the diagonal element

of the submatrix P in the same column, i.e., P11-

Let P(') and Q(-) be the eliminator and eliminates blocks, respectively, after n 1h

iteration. To show that the iterative procedure nulls the eliminates block in the

limit, let us define A(n) to be

N
A(n) P2 (B.2)
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i.e., the total energy in the main diagonal of the eliminator block P. Then, we have

A(-+')= A(-)+ q (,,�) ) (B-3)
( k1

HI (7)1.where Iqkl maxili Iqi3 This can be easily shown by first noting that in the

(n + 1)1h iteration a Givens rotation is applied to the Ith row of p(n) and k1h row of

Q (n) leaving the other rows unchanged. Since unitary transform like Givens rotation

preserves the 2-norms of the operand vectors,

(n+1) 2 (n+1) 2 = (P(n 2 (n)) 2
(Pil + (qkl 11 )) + (qkl

(n+1) 2But since (qkl ) = 0 according to the Elementary Iterative Nulling Procedure

defined above, we have

(n+1)2 2 + (n) ) 2

(Pli ) = (P11 (qkl

leading to (B.3). From (B.3) we observe that IA(n)j is a non-decreasing sequence

,A(-+l) > A(n)
Vn. (BA)

The sequence I'A (n) Iis also upper-bounded. To see this, note that unitary transforms

preserve the Frobenius norm 1of the operand matrix [35]. In particular, we have

' 2p(n)
= p(n) 112 + II Q(n) 112 = K7 Vn,

Q(n) F F F

where K is a constant. Thus,

'A (n) < p (n) 112 < K. (B.5)
F

IThe Frobenius norm [18] of a matrix A is defined as IJAI IF [j:j Ej a?]
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The conditions (B.4) and (B.5) imply that the sequence converges, i.e.,

Jim A (n) AO" (B.6)
n--+oo

for a constant A,,,, < K. Now if

I- (n) 0,
im qkln-+ 00

then (B.3) implies that

,A(n+l) > A(n).

Thus, we must have

I- (n) 0
im qk1n-+00

(n)) 2 2ki q; 7))and since (q maxij 3

Jim IIQ(n)II = 0_
n--+00

The Elementary Iterative Nulling Procedure, therefore, can completely null the elim-

inatee block Q in the limit.

Proving Theorem 5.1

Theorem 5.1 is concerned with the convergence of the nulling procedure using the set

of rotations that we have defined as a "sweep" in Chapter 5. A sweep is different from

the Elementary Iterative Nulling Procedure in that each rotation is not selectively

nulling the eliminates element with the largest magnitude. The convergence property

(B.6) of the sequence fA(n)j , however, holds true regardless of the choice of the

eliminates element to be nulled in each Givens rotation, and this indeed does imply

lim II Q(n) 0 (B -7)
n-+oo
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when iterations of sweeps are used.
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Appendix C

Computing Symmetric Square Roots

To use the square root information filter presented in this thesis, we need to specify

the square root information matrices U1/2(t) and S =- [Ei ftiS7,Si] 1/2 - Note that

these matrices are square roots of symmetric, positive semidefinite matrices.

Let us consider computing a square root of a symmetric, positive semidefinite

matrix M. For any symmetric and positive semidefinite matrix there is a unique

symmetric square root matrix which is positive semidefinite [35]. A direct way to

compute such a symmetric square root matrix is via similarity transformation [70].

Specifically, let M = TTDT, where D is a diagonal matrix of eigenvalues of M and T

is a unitary matrix whose columns are eignevectors of M; then, M1/2 = T T D1 /2 T is

the symmetric square root of M. Eigenvalue problems are computationally expensive

for a (typically) large matrix like U(t) and [Ei ilis!Sil even if we can perform the

computation "off-line" from the filter. Alternatively, symmetric square root matrices

can be computed iteratively [18]:

Let X0 -- I and compute the sequence

Xk+1 1 (X, + MX-1)
2 k

for k -- 07 112, ...

Then Xk __+ M1/2 as k ----> oo, if M > 0.

It is possible to show [18] that this algorithm converges if M is strictly positive

204



definite. In performing the numerical experiments presented in Chapter 5, however,

we have found that the following modified scheme works quite well for a positive

semidefinite M:

Let Xo = I and compute the sequence

XA'+1 (X, + MX-1)

for k = 0) 11 27 ... until X2k k11 +1 M11 > lix, - Mil.

Let M1/2 = Xk-
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Appendix D

Optical Flow in Collision

This appendix details dynamics of the optical flow vectors in the Collision image

sequence (Section 6.2.2). It also presents an extended Kalman filter for estimation of

such optical flow.

A viewer moves along a straight line perpendicular to a "wall" (a plane). On the

wall is a fixed brightness pattern. As the viewer, looking at the brightness pattern,

moves towards or away from the wall he perceives motion due to the effect of per-

spective projection. The optical flow patterns that he perceives are expanding flow

vector patterns.

Imaging geometry

Let Z be the distance of the viewer from the wall and r, be the focal distance associated

with the viewer (thus, the image plane is located Z + r, from the wall.). Let (R, 0)

be the polar coordinates of a point on the wall. Then, by perspective projection the

image of the point appears at the location (r, 0 + 7r), in polar coordinates, on the

image plane, where R and r are related by

Z
(D.1)

R

This relation can be deduced easily from the geometrical relations among RZr.,

and r depicted on Figure D-1. Motion is perceiv6d by tracking a point on the wall
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wall

R

Z + distance

Z r

Figure D-1: The point R on the wall projecting its image on the image plane located
at Z + r,

(distinguished from other points by its associated brightness value) over time; so we

fix R (and 0). Since r, is also a given, fixed quantity, we have:

Zr == constant. (D.2)

Since the optical flow in this case has an expanding pattern which is circularly sym-

metric, the flow pattern is independent of 0. Thus, to characterize the optical flow

vectors, it suffices to know the changes in r. So, we take the time derivative of (D.2):

d
-(Zr) == Z� + �'r = 0. (D.3)
dt

Thus, we have an expression for the magnitude of the optical flow

Z (D.4)
Z

The direction of the flow vectors is radially outward with respect to the focus of

expansion.
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Constant viewer velocity

For the rest of this appendix, we consider the case that the viewer is approaching the

wall with a constant velocity, i.e., let

,�, = - VO (D.5)

Z = -Vot + zo (D.6)

where the constants vo and ZO represent the speed and initial location of the viewer,

respectively. Substituting these into (D.13) we obtain

1 r (D.7)
t - T

where T = -ZQ- is the "time to collision" when the viewer is at the initial location.VO

Temporal change in

The rate of change in the optical flow magnitude, can be expressed without a term

involving Z. By twice differentiating (D.2) we have

d2
�t-2(Zr) Z� + 2Z`� + 2r = 0. (D.8)

Since 2 = 01

Z
-2 - �7 (D.9)

Z

in which we can substitue (DA) to replace Z's with r's as

�2

2-. (D. 1 0)
r
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Expressions 'in the Cartesian system

To convert the polar coordinates (r, 0) to Cartesian coordintes s we have

Cos 0
S - SIrOB = 'r (D. I 1)

sin 0

where s,,,,, is the location of the focus of expansion, i.e., the Cartesian coordinates of

the intersection between the Z-axis and the'image plane. Let us define As =_ S - so,'

so that its components As, and AS2 satisfy

Asi r Cos 0 (D. 12)

L AS2 i L sin 0 i

Since 0 and s,,,. are time-independent, we can differentiate both sides of this equation

to obtain the optical flow vector f (Si t) as

f, (Si O Cos 0f (Si t) = = (D 13)

h(sl t) sin 0

for a given 0. Moreover, we have

d f (Sit) = d h (Si t) Cos 0 (D 14)

dt dt f2(si t) sin 0
L j L J

We can use (D.12), (D.13), and (D.14) to eliminate r, �, and from (D.10) so that

we finally obtain the temporal dynamic model for f (Si t):

d f, (S i O
= 2 (D. 15)

dt f2 (Si t) (f2�S't))2
AS2
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Discretized dynamic model

We can write the left hand side of (D. 15) in terms of the partial derivatives as

d af + af ds
-Wt- f at as dt

af + af f
zi as

where the arguments s and t are omitted for conciseness. By the finite difference

approximation if (s, t) -- f (s, t) - f (s, t - 1), we haveat

dPS 7 t) -- f(s, t) - I - 'of AS7 t - I).Tt as

By substituting this to the left hand side of (D.15) we have a discrete temporal

dynamic model for f (s, t):

f, (SI t) a fi ah A t - 1) (fl(St_,))2
'5�-' 1 a-12 (SI + 2 A.31 (D. 16)

ah ah (f�(.,t_j))2

L h(s) O j L asi a,8 2J Lf2(S't - 1)J L A$2 -

where the spatial partial derivatives are evaluated at the pixel (s, t - 1).

Extended Kalman filter

1. Notation

Equation (D. 16) specifies a mapping from f (s, t - 1) to f (s, t). Let us describe

the nonlinear function of f (s, t - 1) on the right hand side of (D. 16) as -Y(.) so

that (D-16) can be expressed as

AS70 == 7( f (SI t - 1) (D -17)

Note that so,, is a parameter of the function -y(.).
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Let f (t) be the optical flow field at time t, i.e., formally, it is a column vector

constructed by a lexicographic ordering of the optical flow vectors f (s, t). We

define the non-linear operatorr(.) to express the temporal dynamics of f(t)

f(t) = r(f(t - i) (D. 18)

so that each component of f (t) is obtained from the corresponding component

in f(t - 1) according to (D.17). Note that r(-) operates locally in space and

that SPOE is a parameter of the function.

2. Temporal dynamic model.

We use the model

f(t) = r( f(t -1) ) + q(t), q(t) - ( 0, p-'l (D. 19)

where q(t) is uncorrelated over time. The addition of the "fictious process

noise" q(t) is a standard technique in sequential estimation theorey to account

for modeling errors [16]. In our case, the quantization errors essentially account

for the entire modeling error. The errors are still substantial especially due to

the second order terms and differentiation in the mappingr(.).

3. Extended Kalman filter thoeory.

The mean and covariance of the estimates can be propagated through a nonlin-

car equation for sequential estimation purposes using a technique known as the

extended Kalman filter [39, 16]. Essentially, it is a technique based on linear

expansion.

Through the nonlinear mappingrin (D.19), the estimate and its covariance

are propagated as follows based on the extended Kalman filtering theory:

f (t) = r( f(t - i) (D.20)

a T-P(t) = Of r P (t - I) r +p-li (D.21)
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where i(t - 1) is used to evaluate q r (thus, it is a matrix of known values).Z07

4. Extended Kalman filter implementation.

The extended Kalman filter algorithm corresponding to the system with the

process (D.19) and observation (6.7) is as follows:

9 predication step

PI _ P2 (jT(t)t(t _ 1)�p(t) + PI) (D.22)

r( i(t - i) (D.23)

YM POAO (D.24)

9 update step

L(t) + H T( t)N(t)H(t) + ItJSTSJ + /12 ST S2 (D.25)1 2

-i(t) + HT N(t)g(t) (D.26)

L-1(t)i(t) (D.27)f M

where L(t) and f(t) denote the predicted and updated information matrices,

respectively.

The matrix 4�(t) is defined as the block diagonal matrix whose blocks are the

2 x 2 inverse, A-' (s, t), of a matrix defined as

1 - !Ih + 4-A-
A(s, t) 831- A81 032

- ah 1 - 2A + 4 f2
L '9SI 1932 A-32 J

The order in which A-1(st)'s are placed as the diagonal blocks of 4�(t) is

identical to the order of f (s, t)'s in the vector f (t).
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