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Abstract

In this thesis we use Markov random field models for the purpose of analyzing
two-dimensional, layered, anisotropic data. We are interested in extracting dip and
edge information from this data. Two model types are considered for characterizing
dip. The first model type is for binary layered data. The second type is for non-
binary layered data and it is based on a new class of covariance functions which we
term ARC functions. The primary signal processing tools used in this thesis are
Maximum Likelihood and Maximum a Posteriori estimation. Several fast algorithms
are developed for dip estimation by utilizing the properties of ARC functions. These
algorithms yield approximate ML estimates. Local edge models are developed which
utilize prior information about dip. The local edge estimates are used as inputs to
a series of global edge estimators which help to identity bed boundaries in the
layered data. Finally, the signal processing techniques developed within the thesis
are applied to analyzing layered data which contain features at several spatial scales.

Thesis Supervisor: Alan Willsky
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Chapter 1

Introduction

Many problems in multi-dimensional signal processing are fundamentally different
from those of one-dimensional signal processing. Often these differences have to
do with the special geometries associated with the underlying models of the signal
processing problem. The existence of geometric relationships and the desire in many
cases to identify or estimate geometric features provide unique features to multi-
dimensional signal processing problems not found in one-dimensional problems.
This thesis concentrates on a set of models and problems which address a partic-
ular class of two-dimensional data processing problems concerned with identifying
specific geometric characteristics. In particular the type of data of interest to us
consists of random fields which exhibit a layered structure and, therefore, display
distinctive anisotropic features. A major portion of the effort expended in what
follows concentrates on quantifying exactly what we mean by the phrase “layered”
data. The result of this effort consists of models which have special geometric

properties. Our signal processing algorithms make explicit use of the geometries of
these models.

1.1 Problem Motivation

This thesis is concerned with a particular type of two-dimensional, anisotropic data.
The data can be loosely described as layered in the sense that the spatial correlation

is much longer in one direction than it is in the orthogonal direction. A particular

15



CHAPTER 1. INTRODUCTION 16

problem of geophysical signal analysis motivated this research. The basic elements
of this problem are described below.

In geophysics the model of the sedimentation process consists of erosion, trans-
port, and deposition [23]. Material that is worn away at one location is carried by
air or water currents to another location and, finally, left at the new location. An
example of this is the build up of sediments at the mouth of a river. The particulate
is obtained from the river’s origin and from other materials worn from the rivers
banks or that are washed into the river by rains, etc. The types of sedimentation
patterns found at the river’s mouth act as a “fingerprint” of the particular process
that created it. Consequently, observations of the sedimentary layers can lead to
conclusions about the geology that gave rise to them.

Several problems exist, however, in trying to draw conclusions from observa-
tions of sedimentary layers. First, the layers we wish to examine are hundreds or
thousands of feet deep within the earth. To perform observations of layers deep
within the earth an exploration team will drill a borehole. Since coring is expensive
and often ineffective due to the destruction of the core during the drilling process
measurements are made in the hole after the drilling is completed.

The data with which we are concerned are high-resolution measurements of the
electrical conductivity of the rock [9]. These conductivity measurements consist
of attempts to pump current into the rock of the borehole wall at many discrete
locations in depth and circumference. Different rock types and fluids within the
rock affect the amount of current which can flow at each point. Consequently, the
measurements of the rock consist of a conductivity map which can be converted, via
appropriate scaling, to a gray scale and represented as a two-dimensional image. The
image is two-dimensional because the borehole wall is a two-dimensional (roughly
cylindrical) surface. We will assume throughout this thesis that the conductivity
measurements used are from a portion of the borehole wall limited in its radial
extent. This assumption allows us to treat the data as if it were obtained from
a planar two-dimensional geometry as opposed to a cylindrical two-dimensional

geometry.! If the density of measurements is high then the data will appear layered

1Al the results of this thesis easily generalize to a cylindrical geometry.
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when examining a sedimentary region. (See Figure 1.1).

The second problem that arises in interpreting data for the purpose of deter-
mining geological processes is the quantity of data that exists. For a hole that
approaches a mile in depth with measurements which are taken at the resolution of
millimeters [9] we have a huge data processing problem. It is desirable to try and
automate the signal analysis process as much as possible. This automation would
allow human interpreters to make more effective use of their time, allowing them
to work on identifying higher-level features.

One of the features with which expert interpreters work is the dip [23], [4], [11] of
sedimentary beds. In a region of sedimentary layering the dip is a vector quantity
defined to be the angle of inclination and the angle of azimuth of the layers. A
difficulty with determining the dip in a region of bedding is that beds are often hard
to identify. Qualitatively, beds are characterized as structures which have a direction
of high correlation while in the roughly orthogonal direction they are relatively
uncorrelated. Conceptually, the dip is defined by the direction of lowest correlation.
Consequently, when a layered region consists of beds with planar boundaries the
dip points orthogonal to the boundaries (Figure 1.2). However, in real sedimentary
data, beds often do not have planar boundaries. In the vicinity of a non-planar bed
boundary our concept of dip is inadequate to model the orientation of the beds.
Consequently, identifying bed boundaries is an additional and important part of
characterizing the geometry of beds. In our work we obtain estimates both of dip,
defined in terms of the correlation structure, and bed boundaries.

Spatial patterns of dip (or bed orientations) provide interpreters with a great
deal of information which they use to identify different geological structures [23],
[6]. Some simplified examples of geological structures and their dip patterns are
illustrated? in Figure 1.4. The left side of Figure 1.4a illustrates an ancient marine
sand bar which has been covered over by sedimentary layers. As more and more
layers cover the sand bar less of the sand bar’s hump is visible in the layers.

The right side of Figure 1.4a illustrates the pattern of dips as a function of depth

seen from the borehole illustrated in the left side of the figure. The representation

2Illustrations taken from [23] pg. 14.
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CHAPTER 1. INTRODUCTION 21

of dips in the illustration is in the form of “tadpoles” [23]. Each tadpole has a filled
circle called the head and an attached straight line called the tail. The location
of the head along the horizontal axis is the angle of inclination of the bed at that
depth. The angle the tail makes with the vertical is the azimuth of the bed.

The dip log of Figure 1.4a illustrates the prototypical pattern of dips associated
with a sandbar. That is, the dips show increasing inclination with depth. The
azimuth remains unchanged with depth.

Figure 1.4b illustrates two beds with smaller beds embedded within them. Also,
shown is the associated dip log. This figure illustrates a more subtle geological
structure which occurs at a much smaller scale than the scale of the sandbar.
The internal bedding structures illustrated here are a result of the way in which
sediments are deposited by the flowing fluid which carried them. The azimuth of
these small scale beds contain information about the direction of fluid flow. The
internal beds are usually of much lower contrast than the beds of larger scale since
they are composed of primarily similar sedimentary materials.

The dip log of Figure 1.4b is prototypical for these internal beds known as “cross-
beds” [23]. The dip log shows the large scale beds at zero dip. The cross-beds are
identified by patterns of dip which decrease in inclination with an increase of depth.
The azimuth indicates the direction of fluid flow at the time of deposition.

The two examples of Figure 1.4 illustrate the character of the problems associ-
ated with automated processing of the data. The data contains features, such as
dip, which are spatially varying and which occur at more than one spatial scale.
In the next sub-section we discuss our approach to dip estimation from the two-
dimensional conductivity data obtained from a borehole wall. Also, we give an

overview of the thesis.
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1.2 Owur Approach to the Dip Estimation Prob-

lem

The primary signal processing techniques used in this thesis are Maztmum Likelthood
(ML) and Mazimum a Posteriori (MAP) estimation. The contributions of this
thesis are primarily in the construction and analysis of Markov random field models
which capture the character of two-dimensional layered data. These models yield
new understanding of a particular class of two-dimensional anisotropic random fields
and also lead to efficient and effective algorithms.

The sedimentary process yields a three-dimensional structure, that is, the ge-
ological record. However, the underlying process is one that has some temporal
causality. We can view the sediments as resulting from two scales of a single process.
On a very short time (and thus spatial) scale a sedimentary layer is added to the
geological record. Within the lateral extent of the layer one would expect a high
correlation of physical properties due to the similarity of materials being deposited.
On a much longer time scale many layers have been added to the geological record.
The underlying physical process which is depositing the sediment may have found
new sources of materials or the process may have totally changed. Thus, we would
expect low correlation of physical properties from layer to layer. Even incrementally
within a layer the correlation is expected to be higher laterally than it is in the
orthogonal direction.

The physical process underlying sedimentation and our conceptual definition of
dip point to the importance of relating dip directly to the correlation structure of the
data. Markov models are a natural framework for modeling correlation structures.
Furthermore, Markov models have the additional advantage of being local models.
Local models are useful since they are parsimonious representations and they often
lead to efficient signal processing algorithms.

The concept of a Markov Random Field (MRF) [15] is a generalization of the
one-dimensional Markov process. MRF’s suit our modeling goals and, consequently,
they are utilized throughout this thesis. Chapter 2 presents some background

materials concerning MRF’s. Furthermore, Chapter 2 introduces an important new
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class of covariance functions which we term ARC functions. Chapter 3 presents
a binary MRF model for conductivity images. This chapter yields some valuable
insights into the use of MRF’s for modeling and signal processing. Furthermore,
Chapter 3 makes an important contribution in that it demonstrates that layered
random fields can be generated using Markov models. However, it is difficult to
mathematically analyze the correlation structure of the particular binary MRF
model introduced in Chapter 3 and its performance falls short of our signal pro-
cessing goals. Consequently, Chapter 4 reformulates the problem with a non-binary
MRF model based on ARC functions. This model is mathematically tractable
and leads to an in-depth analysis. The analysis provides us with increased intuition
about the MRF models and also suggests a sequence of signal processing algorithms
which calculate fast, approximate Maximum Likelihood estimates of dip. The most
important contribution of Chapter 4 is the demonstration of how the properties of
ARC functions can be used to make our signal processing algorithms more efficient.
Chapter 5 addresses the problem of bed boundary estimation. The models used in
Chapter 5 are natural extensions of those developed in Chapter 4. The estimation of
bed boundaries is an important aspect of dip estimation (as has already been noted).
Furthermore, the estimation of bed boundaries helps us to compress the quantity
of dip estimates by helping to identify regions of uniform dip. The contribution of
Chapter 5 is a new model for local edges. This model is strongly related to the
correlation models of Chapter 4 and we show how to combine the results of the two
chapters to achieve global line estimates for bed boundaries in layered data. The
contributions of Chapter 6 deal with some of the issues of hierarchical processing
of data by separating features in the data by their spatial scale. We demonstrate
some simple methods for accomplishing separation of the data by spatial scale which
depend on our results in previous chapters. Finally, Chapter 7 summarizes the
results and contributions of this thesis and identifies some of the major research

areas which would be extensions to this work.



Chapter 2

Background

This chapter discusses the primary ideas and mathematical tools used in the re-
mainder of this thesis. The sections on Markov Random Fields, the Metropolis
algorithm, and Simulated Annealing are most useful for the results of Chapter 3
and the first half of Chapter 4. The section on Angle Reference Covariance functions
is useful in the second half of Chapter 4. All the remaining mathematical tools are

developed within the body of the thesis and in the appendices to the chapters.

2.1 Markov Random Fields

Markov Random Fields (MRF’s) [15], [25], [5], [2], [28], [12], [14], [13] are the
central modeling tool used in this thesis. Analogous to Markov chains, MRF’s have
special properties which make them very attractive modeling tools. These properties

greatly simplify the problem of modeling complex processes both conceptually and

computationally.

A MREF is a collection of random variables

s = {s1,52,..., M} (2.1)

which have the Markov property. This property states that the distribution of the
1** random variable conditioned on the remaining random variables can be simplified
so that

p(s.-|sk,k =1,2,...M,k # 2) = p(s;lsk,k € N,') (2.2)

24
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where N; is a subset of the indices {1,2,...,. M } — ¢ and is termed the neighborhood
of index 1.

So far, the formulation of the MRF is very general. Any random field isa MRF
when the appropriate neighborhood structure is imposed. For example, choosing
N; ={1,2,...,M} —{ ensures that any random field is a MRF.

The MRF’s of real interest are those with small neighborhoods. In most cases we
construct MRF’s with neighborhoods that are small and homogeneous (independent
of the index 7) except possibly at field boundaries.

All MRF’s can be represented by an exponential distribution of specific form
[3]. This distribution may be written as

pls) = 7 exp{u(s)} (23

where Z is the normalization constant which ensures that p(s) sums or integrates
to unity. The distribution in (2.3) is known as a Gibb’s distribution [3] and has had
wide spread application in statistical mechanics [20].

The function u(s) can always be expanded in the following useful form (3]

u(§) = Z G’.-(s,-) + ZZ G,-,-(s,-,s_,-) + -0+ Glz...M(81,82, ...,SM)8182 “e e Spr

1<isM 1<i<i<M _

(2.4)

Equation (24) is completely general in that any function of M variables can be

expanded in such a finite series. The restriction on the G functions js that they are
non-zero only over sets of indices which are mutual neighbors of each other [3].

The bulk of the work presented here involves functions u(s) which can be

represented by only the second term in the expansion (2.4). That means that

the distributions of interest have the following form

p(s) = %exp{ 23T Gisis;) (2.5)
1<i<i <M

where the dependence of Gij on s; and s; persists and has been dropped for
notational convenience.
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2.2 Simulation of MRF’s Using the Metropolis
Algorithm

It is extremely important to be able to produce sample functions drawn from a
MRF such as the one represented in (2.5). Not only does this allow us to examine
the results of our modeling efforts and provide us with synthetic data, but it is also
an essential element of the Simulated Annealing algorithm to be discussed later in
this chapter. The method by which we draw sample functions from MRF’s is known
as the Metropolis algorithm [18].

A flow chart of the Metropolis algorithm is illustrated in Figure 2.1. The
algorithm begins by choosing an arbitrary set of initial values for the elements of
the set s = {s1,$3,..., Spr} from the range of valid values for s. The algorithm then
begins its main loop. This loop begins by choosing one of the indices {1,2,..., M},
say index k. The value of s, say ry, is saved and a new value, for example r,, is
chosen from its valid range of values. The function u(s) is evaluated at s, = 7,
and s; = r;. The change in energy in going from the old value to the new value is
computed as

Au(8) = u(8)lo=rs = #(8)]sx=r, (2-6)

where the value of the other elements remain constant. If Au is negative then the
new value of s; replaces the old value. If Au is positive then a random sample, z,
is drawn from a uniform distribution and is compared to exp{—Au}. If z is less
than exp{—Au} then, again, the new value of s; replaces the old value. Otherwise,
the old value of s; is retained. The algorithm then checks to see if it is done and
returns to the choice of index if it is not.

In the limit it can be shown that the Metropolis algorithm produces samples
from the Gibb’s distribution with the function u(s) [18]. The only constraint is that
the algorithm must cycle through the indices {1,2,..., M} in such a way that all
the indices are considered an infinite number of times. For our implementation of
the algorithm we step through the indices sequentially hitting each index an equal
number of times.

In the practical implementation of the Metropolis algorithm one must provide a
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Figure 2.1: Flow Chart of the Metropolis Algorithm
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stopping rule. This rule indicates when the algorithm has converged sufficiently to
the equilibrium Gibb’s distribution. A rule which we have found useful is as follows.

We associate the three time series fi(tx), i = 1,2,3 with the three possible
decision outcomes of the algorithm at time ¢, described in the previous paragraph.
We assign the values fi(¢;) = 1 and fy(t;) = fa(te) = 0if Au < 0. If Au > 0
and r < exp{—Au} then we assign f2(t) = 1 and fi(tx) = f5(tx) = 0. The only
remaining possibility is to assign f3(tx) = 1 and f;(t;) = f2(tx) = 0.

The three time series reflect the state of the Metropolis algorithm. When the
algorithm starts up the relative ratio of 1’s in the three series will reflect the random
initialization of s. Since the initial value of s does not necessarily come from a highly
likely portion of its distribution we can expect the ratio of 1’s in the three series to
be changing. However, as the algorithm proceeds and begins to converge we would
expect that the ratios of 1’s in the three series would also converge to some constant
values. We have employed a stopping rule which examines the ratios of the moving
windowed sums of the time series. When these ratios start to converge we stop the
Metropolis algorithm.

Finally, we point out that the smaller the neighborhood size, the easier it is to
compute Au. The computation of Au due to a change in the site s; depends only
on the values of s, and its neighbors. Consequently, the Metropolis algorithm has

less computational complexity for smaller neighborhoods.

2.3 Simulated Annealing

Simulated Annealing (SA) [16], [10], [17], [27], [22], [24] is an optimization proce-
dure which has the Metropolis algorithm at its core. We are not concerned with
the theoretical aspects of SA in this thesis. Rather, we make use of SA as an
optimization technique for computing Mazimum A Posteriors (MAP) estimates of
dip and other quantities. In this section a qualitative description of how SA works
is given.

As already noted, SA incorporates the Metropolis algorithm as its central com-

ponent. Suppose it is desired to find the s which minimizes u(s). The SA algorithm
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proceeds as follows. First a parameter, T', known as the temperature is chosen. The
value of T is chosen initially to be “high”. Then, using the Metropolis algorithm,
sample functions are generated from

pl(s) = 5 exp{u(s)/T} (2.7

The value of T is then lowered gradually while the Metropolis algorithm is continued.
This version of the SA algorithm can be shown (under the correct conditions) to
converge to an s which minimizes u(s) [10].

Conceptually, the SA algorithm works in the following fashion. When T is high
the distribution in (2.7) is relatively flat. The sample functions all occur with
almost equal probability. As the temperature is lowered, the distribution tends to
have sharper peaks at the minima of u(s) and more of the density is concentrated
about the major peaks of the distribution. Consequently, the sample functions tend
to occur more frequently in the vicinity of the major peaks. As the value of T gets
even smaller almost all the distribution is concentrated about the sample points
which are the maxima of the distribution and, therefore, the global minima of u(s).
This process is illustrated in Figure 2.2.

The schedule of values that T takes in a practical implementation of the SA
algorithm is an important issue. Convergence to the extrema of the distribution
depends on a schedule which slowly lowers T [10]. A schedule which is too fast will
yield only local as opposed to global minima of u(s).

2.4 MAP Estimation By SA

Much of the signal processing done in this thesis is accomplished using MAP
estimation. To review the MAP estimation methodology it is assumed that the
problem formulation consists of two random vectors, z and y, for which the joint
distribution, p(z,y), is known. One of the vectors, say Y, is observed and its value

is Y. The MAP estimate of z is the vector value which maximizes the conditional
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Figure 2.2: Conceptual Illustration of the SA Algorithm
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distribution of z given y =Y, or

Eyap = argmaxp(zly =Y)
= ply=Y)
= argmaxp(z,y =Y) (2.8)

As (2.8) indicates the MAP estimate consists of determining the value of z which
maximizes p(z,y) when Y is substituted in as the value of y.
Thus, MAP estimation is an optimization procedure. SA is one of the methods

used to find MAP estimates in this thesis. In particular the joint distributions of
interest to us have the form

p(s,z) = %exp{—u(ﬁ,z)} (2.9)

where s is an observed vector and we desire an estimate of z.

2.5 Angle Reference Covariance Functions

This section introduces a class of covariance functions termed Angle Reference
Covariance (ARC) functions. The ARC functions are covariances of homogeneous,
anisotropic, two-dimensional random fields. A special propefty of ARC functions is
very useful for the signal processing algorithms we introduce in Chapter 4.

ARC functions depend on a two-dimensional unit vector, d. Since d is of unit
length it is completely specified by an angle, ¢ (see Figure 2.3). A function K (z,y),

where z and y are both points in the plane, is an ARC function if

K(z,y) = K(d-(z—p)) (2.10)

By expressing the difference vector, £ — y, in polar coordinates (r,f) we can write
(2.10) as

K(z,y) = K(rcos(¢ — 6)) (2.11)

From (2.10) and (2.11) it can be seen that K is homogeneous and anisotropic. The

anisotropy is due to the comparison of  to an absolute reference angle, ¢ (which is
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Figure 2.3: Unit Direction Vector d
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specified by the unit vector d). Thus, K is called an “Angle Reference Covariance”.
In the ensuing discussion the dependence of K on the direction vector d is denoted
by a subscript as in K, or Kj.

The most important signal processing property of ARC functions is presented

in the following theorem.

Theorem 1 Let K be an ARC function defined on a disk, D, centered at the
origin. Also, let d and d be two direction vectors related by d = Vd where V
is a two-dimensional rotation matriz. Furthermore, denote the i** eigenvalue and
eigenfunction of K; and Kj as X, &i(z) and X, &;(z), respectively. Under the above
conditions \; = \; and é(z) = &(Vz).

Proof 1 The eigenstructure of K; is obtained by solving the integral equation
| Kld-(z- yady = X&) (2.12)
yED

where for y, and y; the components of y we take the differential area dy = dy, - dya.
Similarly, for K; we have

[ K@ @~ vk = Aa() (2.13)
Substituting for d, (2.18) becomes
[ KIVi-(@- pli(y)dy = Jalz) (2.14)
yED
Since V is a rotation and rotations preserve angles (2.14) can be written as

-/veD K[d-V7(z - y)lai(y)dy = iti(a) (2.15)

Finally, making the change in variables n = VTz, v = VTy and noting that dv =
|VT|dy = dy in disk D we obtain

[ K@ (n - vfe(vi)dy = Sa(vn) (2.16)

Since the kernels of (2.12) and (2.16) are identical we have that A; = X; and &(z) =
é,’(VQ).
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The consequences of Theorem 2.1 are exploited in Chapter 4. Section 4.4 shows
how the properties of ARC functions can be used to improve the computational

efficiency of some of our signal processing algorithms.



Chapter 3

Binary MRF models

This chapter develops a MRF model for use in estimating spatially varying dip and
bed frequency from observations of binary layered random fields. Section 3.1 of
this chapter presents a model for MRF’s with constant dip and bed frequency. Sec-
tion 3.2 expands the model in Section 3.1 to address MRF’s with spatially varying
dip and bed frequency. Section 3.3 uses the model in Section 3.2 to produce some
synthetic data sets. These synthetic data sets substantiate the models presented
in Section 3.2 and are useful for illustrating the use of signal processing algorithms
developed in Section 3.4. Section 3.5 contains examples and Section 3.6 contains a

critique and summary of the results in this chapter.

3.1 Constant Dip and Bed Frequency Model

In this section a simple MRF model is introduced which is dependent on the two
parameters dip, d, and bed frequency, A. Arguments for why the model represents
layered random fields are given. Section 3.3 substantiates these arguments by
presenting examples of synthetic data generated by the models discussed here.

The model discussed in this section is a second order MRF. Its joint distribution

35
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can be expressed as
p(sld,A) = p(81,82,...,8M|d,A)

%exp{ ZZ G,'J'S,'Sj} (31)

1<i<j<M

where the s; are binary valued (+1), Z is a normalization constant and the G;; are
non-zero only when ¢ and j are mutual neighbors. There is an implied geometry
which accompanies the model in (3.1). The data is assumed to be arranged on an
N x N Cartesian grid. Thus, M = N? and the location of data element s; is at grid
location (k,!) where! I = [int(i/N) + 1] and k = [¢ — ({ — 1) N]. If p; is a two vector
representing the location of the data element s; then p; = (k,!) in this geometry.

The only remaining part of the model to be specified are the functions G;;. Let,

Arld- (pi — ps)|] i€ Nj 5 € N;
G,.,.={cos[ nld- (pi—p;)l] i€ Njyj € 3

0 otherwise

The parameters in (3.2) are the unit dip vector, d, the bed frequency, A, the location
vector of the data point, p;, and the neighborhood set, N;.

The model specified by (3.1) and (3.2) has sample functions which are composed
of layers at “average” thickness 1/A. Examination of Figure 3.1 helps provide a
heuristic argument for why this is so. Assume, for the following discussion, that the
neighborhood sets, IV;, are very large. This assumption allows us to ignore the effect
of the neighborhood structure and, so, the function G;; is only dependent on the
2-vectors p; and p;. The illustration in Figure 3.1 displays the cross-section of G;;
along the direction of the 2-vector, d. G;; is a constant in the direction orthogonal
to d.

When two elements of the data vector, s; and s;, are positioned so that their
difference vector p; — p; is orthogonal to d then G;; = +1. Consequently, according
to (3.1), it is more likely that s; and s; have the same sign. That is s; = s; = +1 or

s; = 8; = —1. When the difference vector p; —p; is parallel to d and is of length 1/,

Lint is the function which takes the integer portion of :/N
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Figure 3.1: Cross-Section of G;; in Direction of d
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the function G;; = —1. In this case it is more likely that s; and s; are of opposite
sign. That is s; = —s; = +1 or 8; = —s; = —1.

The neighborhood structure imposes a limit on the range of possible values for
A. To get a layered sample function from the model requires that the neighborhood
set includes data points which are at least 1/A in distance from each other. For
the remainder of this chapter it is assumed that the neighborhood N; is the set of
indices which are contained in a square centered at p;, the position of data element
1. Furthermore, it is assumed that NV; contains enough indices so that some of the
data positions are at least 1/\ away from each other. Given that the neighborhood
structure is consistent with the actual value of A, the above analysis suggests that
sample functions generated by (3.1) and (3.2) tend to look like the illustration in
Figure 3.2.

The next section of this chapter expands on the model presented here. The
emphasis is on using this model for spatially varying dip and bed frequency. This
is accomplished by thinking of the dip and bed frequency as spatially varying fields
themselves and, in particular, as components of a vector MRF consisting of dip;

bed frequency; and the binary pixel values, s;.

3.2 Spatially Varying Dip and Bed Frequency
Model

In this séction the model in Section 3.1 is expanded and modified to account for
random fields which exhibit spatially varying dip and bed frequency. The model in
this section takes the dip and bed frequency to be vectors of the same dimensionality
as the data. Consequently, for each component of the data, s;, there is a correspond-
ing component of the dip, d;, which quantifies the value of dip locally around the
location p;. Similarly, there is a component of the bed frequency, A;, which is a
measure of the bed thickness in the vicinity of location p;. Furthermore, the dip
and bed frequency are no longer considered to be parametric components of the

model. Rather, the dip and bed frequency are themselves modeled as components
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Figure 3.2: Typical Sample Function for MRF
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of a vector MRF which interact with each other and the data vector, s
Specifying the dip and bed frequency vectors by d and A, respectively, the joint
distribution of the data with d and A is modeled as

p(s,d,A) = lexp{U(s 4,2} (3.3)

where Z is the normalization constant? and U is a function still to be specified.

The U function is given by

Uls,d,d) = Y3 f(dirdi)g(Ni, A;) cos[hijm|dis - (pi — p5)]sis;

1<i<j<M

+ 3% Df(didi)+ 3D Ag(hi, ) (3.4)

1<i<j<M 1<i<j<M

f(disdj) = |di-ds™ (3.5)
) = _Mm\

o0ik) = [1- ] (36)
Aij = @ (3.7)
- (di +d;)
dij = —H——+ 3.

! |d.-+d,'| ( 8)

where D, A, v4, and «, are constants. The terms Nj, J(f,-, and N; are three, possibly
different, neighborhood structures. In our work all three neighborhoods are taken
to be square and centered at element ¢ with N; = N; and |N;| < |N:|. The
choice of constants and neighborhood sizes are non-trivial and are discussed more

in Section 3.3.

Notice that (3.4) is in the form of a canonical second order MRF. That is,

Uls,d,A) = DD Gisisi+ D, Dif(didi)+ D0 Aig(Mi2)) (3.9)

1<i<j <M 1<i<j<M 1<i<j<M

The first term in (3.4) is

2.2 [fldidi)g(Ni, A;) cos[mdij|ds; - (pi — p5)|]sis; (3.10)

1<i<j<M

2This is a different Z than the one in (3.1)
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The term in (3.10) is similar to the model introduced in Section 3.1. The differences
are that d and ) are replaced by d;; and X;; and there are two functions, f(d;,d;)
and g(A;, A;) which scale the term.

The functional form of X;; and d;; is given in (3.7) and (3.8). These expressions
are averages of the 7** and j** elements of the dip and bed frequency vectors. Since
dip and bed frequency vary throughout the field when relating the ¢** and jt*
elements of the conductivity field it is sensible to incorporate the values of dip and

bed frequency from both locations. This accounts for use of the averages d;; and

Aij-

The two scale functions f(d;, d;) and g(X, A;) are used to regulate the effect that
the data has on the energy function. The model in (3.4) is supposed to account for
conductivity samples which are contained in similarly bedded regions. This means
that samples are related to each other when they come from beds of similar dip
and bed frequency. If, in examining samples s; and s; we find that they come from
beds of different dip and/or bed frequency, then it is desirable to remove the mutual
effect of the two samples from the evaluation of the energy function. The terms
f(di,d;) and g(Xi, A;) accomplish this by approaching zero when their arguments
are very different and unity when their arguments are similar.

The two remaining terms in (3.4) are

Ez Df(di,d;) + D D Ag(hi, ) (3.11)

1<i<j<M 1<i<iSM
These terms are intended to specify how much variability of the dip and bed
frequency fields is desired or expected in our model. This is accomplished by setting
the values of D and A. When D and A have large positive values the likelihood
function in (3.3) is larger for slowly varying dip and bed frequency fields. The
critical aspect of the model is the balance of values between the data term in (3.10)
and the smoothing terms in (3.11). When (3.11) is larger in value than (3.10)
then smoothing dominates the model. When the alternative is true, then the data
dominates the model. It is desirable to obtain smoothing without dominating the

data. More about this is discussed in Section 3.3.
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3.3 Synthetic Data From MRF Models

In this section we describe the generation of synthetic data based upon models
presented in Section 3.2. In particular, sample functions of the data vector s are
obtained from the distribution given in (3.3) and (3.4) conditioned on knowledge
of the vectors d and A. The synthetic data presented in this section is used in
Section 3.4 to illustrate the inverse problem of estimating d and A given observations
of the data, s.

The method used to generate the synthetic data is the Metropolis algorithm
discussed in Chapter 2. Three sample functions are illustrated in this section. For
each of the sample functions, the functional form of the d and A vectors is given. The
first sample function is the result of constant dip and bed frequency. The second
sample function has dip and bed frequency which change across a boundary and
are constant on either side of the boundary. The final sample function is generated
from spatially varying dip and bed frequency. Each example assumes a square
neighborhood structure consisting of a 7 x 7 array of pixel sites for N;. It should
be noted that the energy terms in (3.11) play no role in the Metropolis algorithm
since they do not change from iteration to iteration.

Figures 3.3-3.5 illustrate the resulting sample function generated from constant

dip and bed frequency vectors. The values of dip and bed frequency are

di = tan(3) ¢=1,2,..,1600

3.12
o=} i1=1,2,...,1600 (8.12)

The MRF associated with (3.12) consists of a 40 X 40 array of sites where the
lower left hand corner element corresponds to # = 1 and upper right hand corner to
¢ = 1600. The indexing of the remaining elements is obtained by moving along rows
from left to right as the field is traversed from bottom to top. Figure 3.3 illustrates
the dip field, Figure 3.4 illustrates the bed frequency field, and Figure 3.5 is the
resulting synthetic data sample.

The results illustrated in Figure 3.5 reflect the intuition concerning sample
functions expounded in Section 3.1. The sample function in Figure 3.5 is layered

with beds of approximately % = 4 pixels per bed in thickness and at approximately
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Figure 3.5: Sample Function Generated From Constant d and A fields
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d = tan™!(1/3) in dip. Note the the generated data is not quite regular since it is
a sample from a MRF.

The second sample function is illustrated in Figures 3.7-3.9. In this example the
values of the dip and bed frequency change suddenly across a boundary and are
constant on either side of the boundary. The boundary is a straight line described

by the equation
15 315

Y=3"" 26
where again the data consist of a 40 x40 array of sites. The elements are indexed 7 =
1,2,...,1600 where the position of element ¢ is at p; = (k,!) and [ = [int(s—1/N)+1],
k = [i—(I—1)N]. Consequently, the line in (3.13) cuts between the 12* and 13** rows
at column 1 and between the 27** and 28! rows at column 40 which is illustrated

in Figure 3.6. The functional form for d and A is

(3.13)

-1(1 15 315
4 = BTG Izgktse (3.14)
tan"1(-2) I< ;—g—k + %
1 15 315
o= {5 P2 ekt (3.15)
* 1 15 315 :

Once again, due to the fact that Figure 3.9 is a sample from a MRF, the data is
not regular as is seen by the “split bed” in the lower half of the data.

The final example is for continuously varying dip and bed frequency. One
point of this example is that dip and bed frequency cannot be specified totally
independently of each other. For example, assume that dip is constant and bed
frequency is changing in value. This would result in a sample function which
attempts to create layers at the inclination d and which varies in thickness according
to the functional form of the bed frequency. However, for a layer at inclination d
to become thicker requires the layer to change its inclination. This is illustrated in
Figure 3.10.

Consequently, specification of varying dip and bed frequency fields requires some
careful thought. The following example illustrates a method for choosing a varying

dip and bed frequency field that roughly corresponds to layered earth structure
called cross-beds [23].
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13
12

Figure 3.6: Boundary Location in MRF
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Figure 3.8: Piece-Wise Constant A field
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W

Figure 3.9: Sample Function From Piece-Wise Constant d and A fields
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Figure 3.10: Interdependence of Dip and Bed Frequency
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Figure 3.11: Unit Tangent Vector Field ® for Parabolic Bouﬁda,ries

The objective of this example is to obtain sample functions varying in dip
and bed frequency. The layers have boundaries which are parabolic and the bed
thickness should be consistent with this parabolic condition.

To begin, a parabola which passes through the origin and the point (zo,yo) has
the functional form (see Figure 3.11)

y=-—z (3.16)

The vector field ®(z,y) which consists of unit vectors tangent to the parabola

through the origin and the point (z,y) is described by
TI 2yy

(22 +49%)3 (2 +4p?)7

o(z,y) = (z,5) # (0,0) (3.17)



CHAPTER 3. BINARY MRF MODELS 53

where Z and i are unit vectors parallel to the z and y axes, respectively.
Dip can be defined, using (3.17), to be the continuously varying vector field
which consists of unit vectors which are orthogonal to the vector field ®(z,y) at
point (z,y). Consequently,
—2yZ Ty
(z? + 4y?)3 (22 + 4y?)3

One possible method for defining a consistent bed frequency field is to use the

d(z,y) = (3.18)

divergence operator, (V-), to specify bed thickness variations. Since divergence
computes the spatial rate of change of a vector field, using the divergence of ® to
model bed thickness changes is a reasonable way of choosing a bed frequency field
which accounts for the changing dip field.

We take

AMz,y) = o[V -2(z,y)]+8
L Ly (3.19)
(z? +4y%)2
as our bed frequency field. The constants o and (3 are used to scale and shift the
divergence of ® so that A(z,y) takes reasonable values. This is more completely
discussed in the following example.

In this example there are two separate parabolic fields. The data is arranged on
a 40 x 40 Cartesian grid where the position of the i** sample is at p; = (k,!) where

= [int(¢/40) + 1] k = [¢ — (! — 1)40| and k,! = 1,2,...,40. The lower parabolic
field has its origin at (0,0). That is, the parabolic vertex is at (0,0). The upper
parabolic field has its vertex at (41,20). The data which is below the line y = 21
is subject to the lower parabolic field. The remaining data is subject to the upper
parabolic field.

The choice of the constants o and 8 are made by evaluating the A field at its
extreme points in value. For example, at p; = (6,3) we have A(6,3) = «(.18) + 3
and at p; = (30,20) we have A(30,20) = «(.027) + 8. The points (6,3) and (30, 20)
have A values which are essentially the extreme values for the lower parabolic field.
Beds cannot be any thinner than one pixel and our neighborhood constraint of 7 x 7

pixels limits beds to thicknesses less than about 6 pixels.
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Thus, choosing A(6,3) = 1 and A(30,20) = .3 requires

(1.-.3)
@ = (1768—0272) = 4.68 (3.20)
B = 1.—(4.68)(.1768) = .1726

which should yield beds of thickness 2 pixels at (1,1) and thickness 5 pixels at
(20,20). A similar analysis is made for the upper parabolic field. The results of

this analysis for our example yields

(m:-il;)% + (m:jzz)% 1<20
d = —2(1-20)2 i (k—41)§ 1> 921 (3.21)
((k-41)2+4(1-20)2)3 ' ((k-41)2+44(1-202)F ~ =

68[ 2(k—41)2+4(l—20)23] + 1726 1 Z 21 (3'22)
((k—41)2+4(1—20)2)2

. {4.68[ﬁ]+.1726 1<20

Figures 3.12-3.14 illustrate the results of this example.

3.4 MAP Estimation of d and )

In Sections 3.1 and 3.2 we discussed modeling of binary layered data. The models
discussed depend on the interaction of the data field, s, with the dip and bed
frequency fields, d and A. Given a sample function of the distribution in (3.3) it is
of interest to estimate the values of d and A which gave rise to the sample. The
purpose of this section is to describe algorithms which produce the MAP estimate
of d and A (see Chapter 2 for a discussion of MAP estimation).
The MAP estimate of dip and bed frequency are denoted by QMAP and ZMAP,
respectively. They are obtained by solving
[ dyy

= Arg Max p(s,d, ) (3.23)
Amap

where p(s,d,]) is as in (3.3). Since p(s,d,)) is a non-linear function of d and A

(3.23) is difficult to solve analytically. In our work we have adopted the method

of Simulated Annealing (SA) discussed in Chapter 2 in order to compute these
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Figure 3.13: Spatially Varying ) field
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Figure 3.14: Sample Function From Spatially Varying d and A fields
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estimates. The estimates resulting from this process, which under perfect conditions
should be the MAP estimates, will be denoted Es 4 and X SA-

Before applying SA to the model of Section 3.2 to estimate d and A there are a
few parameters which need to be set. These parameters are the smoothing weights D
and A, the metric powers v and 7 (see (3.4) and (3.5-3.8)), and the neighborhood
structures IV;, ]V.-, and N;. The choice of these parameters affects the estimates
Qs 4 and X sa So some experimentation is necessary. The following section illustrates
the use of the SA algorithm and develops a rationale for the choice of the model

parameters.

3.5 Examples of MAP Estimation for d and )\

This section illustrates the use of the SA algorithm for obtaining MAP estimates
of d and A. In all the examples the neighborhood structure is as described in the
preceding sections. The first set of examples all use the same synthetic data set
which was generated using constant dip and bed frequency fields. The various
estimates of d and A obtained from this synthetic data field is used to illustrate the
issues involved in the choice of the parameters ~4, v, D, and A. The second set of
examples illustrate estimates for d and A when the SA algorithm is applied to more
complicated synthetic data sets using the values of the parameters obtained from
our first series of tests. Finally, the SA algorithm is used to estimate d and A from
a field of synthetic non-binary data followed by a piece of real non-binary data.

Figure 3.15 illustrates the synthetic data set used for the first set of examples.
It is identical to the data set in Figure 3.5. The objective of the first set of examples
is to illustrate the use and effect of the parameters ~4, vA, D, and A which were
introduced in Section 3.2. These examples show estimates of d and A given the data
in Figure 3.15 for, (1) different values of 44 and 4, when D = A = 0, (2) different
values of D and A when 44 = 45 = 0, and, (3) for non-zero values of 44, 7, D, and
A together based on the results in (1) and (2).

To begin, Figures 3.16 and 3.17 illustrate ds4 and g, (see notation in Sec-

tion 3.4) when 74 = A = D = A = 0. No smoothing is imposed on the model
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Figure 3.15: Synthetic Data Obtained from Constant Dip and Bed Frequency Fields
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Figure 3.16: Estimate of d for vy =y =0and D=A=0
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Figure 3.17: Estimate of A for yy =~ =0and D=A=0
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except for the averaging which comes frtl)m calculating d;; and X;;. The absence of
smoothing is apparent in the estimates of d and A. The estimated dip field consists
of clumps of dip which nominally point in the correct direction interlaced with dip
which point orthogonally to these clumps. Careful examination of the orthogonal
dips shows that these dips are only found on (or very near) bed boundaries and
point along the direction of the bed boundary.

The estimated bed frequency field also displays features which correspond to the
bed boundaries of the data. The bed frequency field consists of alternating beds of
high bed frequency (light colored beds) and low bed frequency (dark colored beds).
The explanation for the effects seen in the estimates for d and A are associated with
an aspect of the model which is described below.

The model as described in Section 3.2 is specified by an energy function. The
cross-section of the energy function along the direction of dip is as illustrated in
Figure 3.18. What the model expects, therefore, is that the “correlation” between
the data point at element ¢ and its neighbors is positive within a distance of 1/2A.
Thus, for a data point at or near a bed boundary the model is bound to be confused
concerning the value of A or the value of d.

Figures 3.19 and 3.20, 3.21 and 3.22, and 3.23 and 3.24 illustrate estimates of d
and A given the data in Figure 3.15 for various values of v4 and ~,. In Figure 3.19
and 3.20, 74 = v» =4 and D = A = 0. In Figure 3.21 and 3.22, 74 = v, = 16 and
D = A = 0. Finally, in Figure 3.23 and 3.24, 74 =4, =64 and D = A =0.

Note first that the estimates in Figures 3.19 and 3.20 are superior to those in
Figures 3.16 and 3.17. However, in Figures 3.21, 3.22, and Figures 3.23, 3.24 we see
that the estimates of d and A become poorer as the values for v4 and ~, get larger.
The estimate for each field tend to consist of clumps which are close in value (a
common effect of smoothing in MRF’s) and this phenomenon worsens as 4 and 7,
get bigger. The best of the three sets of estimate is the set illustrated in Figure 3.19
and 3.20. Here there are many individual spurious dip and bed frequency estimates
(although not nearly as many as in Figures 3.16 and 3.17). However, since these
do not clump together they do not look like features of the data. This allows for

post processing on the smoothing terms (for D, A # 0) methods to improve the
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A Gij[d°(pi_-pj)]

-1|/X 1{)\

d-(pi-p;)

Figure 3.18: Cross-Section of G-function
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estimates.

" Figures 3.25 and 3.26, 3.27 and 3.28, and 3.29 and 3.30 illustrate estimates of
d and A given the data in Figure 3.15 for various values of D and A. In the three
sets of figures, D and A are set to the values 1, 10, and 100, respectively. For each
of these figures 74 = v, = 0.

As in Figures 3.19-3.24, Figures 3.19 and 3.20 (y¢a = 7» = D = A = 0) and
Figures 3.25-3.30 illustrate an increasing and then decreasing performance of the
SA algorithm as a function of the parameters. Figure 3.25 shows an estimate of
d which has the correct character, however, it is peppered with large regions of
incorrect local estimates. The estimate of A depicted in Figure 3.26 is definitely
unacceptable and is similar to the A estimate of Figure 3.17.

In contrast to Figures 3.25 and 3.26 are Figures 3.27 and 3.28. Here both the
estimate of d and A are greatly improved. The increase in the value of D and A has
smoothed out the estimate of the A field. Correspondingly, the d field estimate is
greatly improved. .

Figures 3.29 and 3.30 show the results of choosing values for D and A which
are too large. The smoothing terms start to dominate the data terms of the model
here. As can be seen, the estimate of d is flawed by several regions which are highly
biased. However,the regions do display a high degree of smoothness as the flow into
one another. The estimate of the A field appears less affected by the increase in the
value of A.

The results illustrated in Figures 3.19-3.30 have provided some insight concern-
ing appropriate values for the parameters D, A, v4, and ). The results are now
applied to data fields which are more complicated than the data field illustrated in
Figure 3.15. In Figure 3.31 the data set of Figure 3.9 is reproduced. Figures 3.32
and 3.33 are estimates of the d and A fields given this data. The parameters are set
according to the results of the previous experiments, D = A = 10 and 4 = ), = 4.
These parameter values provided good results when applied independently to the
data field exhibiting characteristics of constant dip and bed frequency.

As might be expected, Figures 3.32 and 3.33 illustrate reasonably good estimate

of the d and A fields. However, there is a bit too much smoothing observed, especially
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Figure 3.20: Estimate of A for vy =y =4and D=A=0
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Figure 3.22: Estimate of A for vy =7, =16and D=A=0

o teamrc es c % e s e i s e A [

68






70

BINARY MRF MODELS

CHAPTER 3.

0

A=

fornq=~4y=64 and D =

A

imate of

.24: Est

3

igure

F




DN A e et et |

SSINATIIYNESY 2l m
f\l‘lj}"i

S TN

e ~ = \//.IMH =

. SrReTETann e
m — S SN - A
e b s e -

& S U‘I..‘“!ll-.i!l”rlloli




72

BINARY MRF MODELS

CHAPTER 3.

1 and 74

A=

26: Estimate of A for D =

3

igure

F






74

BINARY MRF MODELS

CHAPTER 3.

=0

10 and ~4

A=

28: Estimate of A for D =

3

igure

F






76

BINARY MRF MODELS

CHAPTER 3.

=0

="

100 and 4

A=

30: Estimate of A for D =

3

igure

F



CHAPTER 3. BINARY MRF MODELS

S

Figure 3.31: Sample Data Generated by Piece-Wise Constant d and A fields
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near the boundary which separates the two major regions of dip and bed frequency.
This is not surprising considering that the values of the parameters D, A, 74, and 7y
are now working simultaneously. Previously, either the D and A parameters were in
effect or the parameters ~4 and v, were in effect. These parameters were not used
together. Consequently, the model is a bit oversmoothed.

Figures 3.34 and 3.35 verify the fact that the model is over-smoothed in Fig-
ures 3.32 and 3.33. Here the parameters take the values D = A =1andv; =7, = 2.
As can be observed the estimates of d and A are greatly improved about the
boundary between the major regions of dip and bed frequency.

Figures 3.37 and 3.38 show the results of estimating d and A from the data set
in Figure 3.36. As above the parameters are D = A = 1 and ¢ = v), = 2. The
estimates illustrated in Figures 3.37 and 3.38 are remarkably good. Comparison
between these figures and Figures 3.12 and 3.13 shows that the SA algorithm
estimates capture the nature and character of the data.

At this point it can be concluded that the model proposed in this chapter is
useful as a tool for solving some inverse problems. These are inverse problems
which attempt to determine the dip and bed frequency characteristics for binary
layered data. A question of interest concerns the ability of the techniques discussed
so far to handle non-binary data sets. To address this question, the following two
examples illustrate attempts by the SA algorithm to estimate d and A from non-
binary data.

The first example is similar in nature to the binary data set already discussed.
It is generated using the Metropolis algorithm and the specifications given in (3.14)
and (3.15) (discussed in Section 3.3) with a modification. This modification simply
removes the constraint that the data must be binary and allows the data to take a
continuum of values within the range [-1,1]. The results of this change can be seen
in Figure 3.39.

Figure 3.39 was generated using exactly the same d and A fields as were used
to generate Figure 3.9. The synthetic data in Figure 3.39 appears very similar in
structure to the data in Figure 3.9. The difference is that the new data is non-binary

and noisy looking. The apparent noise is a feature of the Metropolis algorithm which
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Figure 3.35: Estimate of Afor D=A=1and 74y =, =2
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Figure 3.36: Sample Data Generated by Continuously Varying ¢ and A fields
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produces sample functions from a distribution and, consequently, allows variability
in the sample.

Figures 3.40 and 3.41 illustrate the estimates of d and A based on the data in
Figure 3.39. The choice of parameter values is D = A = 1 and 74 = v, = 2. As
can be seen, the estimates are good, however, it is apparent that the estimate of d
is slightly oversmoothed and the estimate of A is slightly undersmoothed.

The final example is based on a non-binary real data set. The data is illustrated
in Figure 3.42. Notice that the character of the data is similar to that of the
synthetic data in Figure 3.39. That is, there is an abrupt jump in dip value across
a boundary in the data. The bed frequency is variable throughout the data.

Figures 3.43 and 3.44 illustrate the estimates of d and A based upon the data in
Figure 3.42. The parameter values are, again D = A =1 and 44 = 75 = 2. As can
be seen, these estimates do not capture the character of the data. The boundary
between the piecewise-constant regions of dip does not appear in either estimate.

There exist two possibilities for the failure of the estimates in Figures 3.43 and
3.44. The first possibility is that the neighborhood structure (consisting of 7 x 7
blocks of data) is not large enough to capture the bed features in the data. The beds
are thicker than 7 pixels in some regions of the data. However, careful examination
of the data and estimates also reveals some thin beds in the data which are not
captured by the estimates.

The second possibility has to do with the fact that the data illustrated in
Figure 3.42 has beds which are adjacent but are composed of data which are not of
opposite sign. This confuses the model presented in this chapter since it is a change

in sign value which indicates a bed boundary.

3.6 Conclusions and Discussion

This chapter has presented a model which can be used for signal processing of binary
image data consisting of layered structures. The signal processing is accomplished
by calculating MAP estimates of two feature vectors d and A which are integral

components of a simple MRF model. Performance of the model depends on four
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Figure 3.44: Estimate of Afor D=A=1and 4=, =2
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parameters, D, A, 74, and ). Examples presented in Section 3.5 illustrate the
effects of these parameters on the estimates.

As was shown in Section 3.5, the signal processing algorithms discussed in this
chapter are effective. However, the algorithms are limited to special types of data
sets which consist of layers of alternating sign. The final example of Section 3.5
demonstrated that the estimation algorithms discussed in this chapter are not
necessarily effective on general non-binary data.

Clearly, one of the reasons why the models of this chapter are ineffectual on
general non-binary data is because of the limitation of the type of energy function
used in the Gibb’s distribution. The fact that the model relies on alternation in the
sign of the data is clearly a drawback for data which is non-binary.

However, there is a deeper problem with the models in this chapter. The
models here are partially dependent on distances between elements of the data.
Furthermore, the models in this chapter assume data of an anisotropic structure. In
the case of these models the anisotropy is due to a long correlation length orthogonal
to dip and a short correlation length parallel to dip. Intuitively, data which is highly
correlated is, in some sense, close (spatially) and data which is uncorrelated is likely
to be distant.

Consequently, the associated intuition about correlation implies that distances
which are traversed parallel to the dip vector are different than distances traversed
orthogonal to the dip vector. The above discussion suggests that the neighborhood
structures of the MRF models should directly incorporate or account for differences
in correlation distances. That is, neighborhood structures should be functions of
dip.

The next chapter discusses models which are designed to handle general layered
non-binary data. The most important feature of the models are their incorporation
of neighborhoods which depend locally on dip. The change in modeling of neigh-
borhood structures, making them functions of dip leads to results circumventing

the undesirable features of the models proposed in this chapter.



Chapter 4

Correlation Model for’Layered Data

This chapter proposes several models which are designed to overcome the shortcom-
ings of the binary data model of Chapter 3. These models are themselves MRF’s
and are intended for use on continuous-valued or binary-valued data containing
layered features (as in Chapter 3).

In this chapter the MRF models do not depend on beds that alternate in sign.
Rather, the models are designed to find directions of minimum (or maximum)
correlation. This change in modeling philosophy precludes the need for estimating
the bed frequency field, A. Since estimation of dip is associated with correlation
and not the sign of the bed data the bed thickness (i.e. 1/A) is not necessary
information. Consequently, only dip estimation is considered in this chapter.

The chapter is composed of the following section. Section 4.1 describes two MRF

models for jointly distributed dip and data fields. The rationale for the models in
l Section 4.1 is discussed later in the chapter in Sections 4.3 and 4.4. Section 4.2
discusses MAP estimation of the dip field conditioned on observations of the data
and using the model described in Section 4.1. This section also includes an example
of dip estimation using the SA algorithm. Section 4.3 introduces the major ideas
underlying the model proposed in Section 4.1 by introducing models that capture
the correlation-oriented approach to dip estimation. A sequence of simplifications
is then presented in Section 4.4. These simplifications form the conceptual bridge
from the models introduced in Section 4.3 to those discussed in Section 4.1. Each

successive model/algorithm captures the spirit of the model in Section 4.3, however,
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with increasingly reduced computational complexity. Examples are given in Sec-
tion 4.4 to allow comparison of the various algorithms. Section 4.5 contains further

examples of our simplified algorithm, and conclusions and discussion are given in
Section 4.6.

4.1 MRF Modeling of Data and Spatially Vary-
ing Dip

This section presents two MRF models which have continuously-valued data. Fur-
thermore, the models have neighborhood structures which depend on the local value
of dip. The objective of this section is to explain the structure of the models. The
rationale for the models is left to Section 4.3 and 4.4.

As in Chapter 3, the models of this section are defined as Gibb’s distributions.
The models are second order MRF’s, thus,

1 M M M M
p(s,d) = EeXP{—E_Z_:G-':‘SiSJ' = ;;D‘ﬂd" -dj|} (4.1)
=1j=1 i=1j=1
where Z is a normalization constant and G;; and D;;, when specified, complete the
model description. The D;; serve an identical function to the one they performed
in Chapter 3. The neighborhood structure of the D;; is also identical to that in
Chapter 3. Not much more is said about the D;; here except for the fact that we have
taken them all to be equal to a constant value which serve to scale the smoothing of
the dip field. The data is now considered to be continuously-valued. Furthermore,
the data is arranged on an N x N square Cartesian grid where the location vector,
pi, of element ¢ has integer components p; = (k,l) and ! = [int(:/N) — 1] where
k=[—(I-1)N].

So far, the model in (4.1) is similar to the models proposed in Chapter 3 with
the exception that the s; are now continuously valued. There is a major conceptual
difference, however, in the models that are now presented. The differences are in
the way the G;; are specified and how the neighborhoods are internally structured.

To describe the function of the G;; and the internal structure of the neighborhoods
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associated with (4.1) we first recapitulate these for the models in Chapter 3.

The models in Chapter 3 describe the interaction between the data M-vector s
and feature M-vectors d and A.! For each element of the data vector, s;, there is an
associated element, d;, from the dip vector. Furthermore, there is also an associated
neighborhood, Nj, which consists of a subset of the indices {1,2,...,M} — 1. The
model in Chapter 3 takes the neighborhood N; to be the n; X n, rectangular array
of elements which have the element 7 as its center.

At a superficial level the structure of the models developed in this chapter are
the same as that used in Chapter 3: the neighborhoods again consist of n; X n,
rectangles. However, there is an important difference. As depicted in Figure 4.1
we can think of the neighborhood structure used in Chapter 3 as having a natural
internal ordering (the nearest neighbors are the four points closest to the center
pixel) that doesn’t depend on dip (although the G;; values do depend on dip). In this
chapter we will often find it useful to think of dip determining the internal ordering
of the neighborhood. As illustrated in Figure 4.2 the “nearness” of neighbors is
determined by how close they are after being projected onto the dip vector. This
reflects the idea that points in the same bed, i.e. lying along a line perpendicular
to the dip vector, are close to one another. This is reflected in our choice of G; in
this chapter: these functions depend essentially only upon the nearness of pixels ¢
and j as just defined.

To be a bit more precise, the neighborhood structure illustrated in Figure 4.2
affects the model through a re-ordering of the data elements. That is, the implemen-
tation of the effect of d; on N; is through the rearrangement of the data elements.
Normally the data in the n; X n; neighborhood N; is ordered lexicographically into a
data sub-vector. Referring to Figure 4.1, the ny X nq-vector sy, of the data elements
in neighborhood N; take the following ordering. The first element is the element of
the lower left corner of Figure 4.1. The ensuing elements are taken from Figure 4.1
moving along rows from left to right. When a row is finished the next element
comes from the next higher row starting, again, from the left side.

The ordering of data into the vector sy, when using the neighborhood structure

IThe A vector is incidental to the remaining discussion and is ignored.
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Figure 4.1: Neighborhoods Independent of d;
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Figure 4.2: Neighborhoods Dependent on d;
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illustrated in Figure 4.2 is as follows. The projection of the element ¢ onto the dip
direction is taken to be the origin of the line. The element which has the most
negative projection onto the line with respect to the origin is the first element in
the vector sy. The ensuing elements are ordered in the vector from the most
negative projection through the most positive projection. When ambiguity exists
due to elements which project to the same point on the line, the element with the
shortest perpendicular to the line is entered into the vector closest to the element
¢. If ambiguity still exists due to equal perpendicular distance then the ordering is
taken randomly.

The above dip-directed ordering has a modeling interpretation. The idea is
that data which are separated by a directed distance which is orthogonal to dip is
highly correlated. The larger the component of separation parallel to dip becomes,
the lower the correlation. Furthermore, data along a direction perpendicular to
dip decreases in correlation, however, at a much longer scale than in the direction
parallel to dip.

The data ordering as a function of dip can be represented by a permutation
matrix, E. The permutation matrix consists of a single one in each of its rows and
columns and zeroes everywhere else. Furthermore, E is an (nin;) x (nyn;) matrix.

Consequently, the ordered data vector sy, (d;) is

sn,(di) = E(di)sw, (4-2)

where sy. is the lexicographically ordered data vector.
Now that the neighborhood structure has been described, the G;; can be spec-
ified. The explicit values of the G;; are not given. Rather, an expression which is
equivalent to the first double sum in (4.1) is described. Labeling this double sum

as V(s,d),
M M

Vis,d) = DY Gijsisg
i=1j5=1
M

= Y shET(d)KE(d)sy,

-.
Il
i

k() Ky, (d) (4.3)

-
1l
-

I
.M:
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where K is an (nyn;) X (r1n;) matrix to be specified. The interpretation of (4.3) is
that V(s,d) is calculated by summing the contributions from each neighborhood.
Each neighborhood orders the data according to the neighborhood dip and then
calculates a quadratic product with constant matrix K.

The entries in matrix K take one of two forms. These two forms are differenti-
ated by subscripts so that we use either K, or K,, and the meaning of the subscripts

is explained in Section 4.3. The matrix K is defined by

nins—7+1
K= Y. K (4.4)
i=1
where K; is an (n1nz X niny) matrix and 7 is an integer less than nyn;. The matrix
K; is zero everywhere except for an embedded 7 X 7 matrix. This 7 X 7 matrix is
denoted A, or A,, corresponding to the K, or K,, matrices. The location of A
within K; is illustrated in Figure 4.3. The (1,1) element of A is at the (7,¢) element
of K;, the (1,2) element of A is at the (¢,7 4+ 1) element of Kj;, etc. The matrix A

takes one of the following forms

=1 _1 _1]
T2 T2 72
T R |
A, = T. T . T. (4-5)
4 h e @
1 -1 0 0
-1 2 -1
AP’I= 0 _1 2 b 0 (4-6)
0 0 o --- 1
L

The effect of taking the quadratic product of a r-vector with the matrix in (4.5)
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Figure 4.3: Matrix K;
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is to compute the vectors sample covariance. That is, for a 7-vector z

T

T T—l 2 T 1
' = ) ——= +EZ(—-T—2)$.'$J' .

-1 7 =1 A

1 T 2 1 T T
= ;;zi —;ZEm,-

i=1j5=1

- ! g[:c,- -1 };1 z,]? (4.7)

The effect of the quadratic product with the matrix in (4.6) is to compute the sum

of squared differences,

7-1 7—1
TApz = zl+zt+) 222 -2) mimin
=2 =1
-1
= > (% — zin)’ (4.8)

i=1

Thus, in each neighborhood, the data is ordered according to the dip. Then a
moving window computation is made. The window is of length 7 and calculates
either the sample variance or the sum of squared differences. The intuition is as
follows. The data has been ordered so that elements which are highly correlated
are close to each other. Consequently, computing a moving sample covariance or
moving sum of squared differences should have a close to optimally small value, and,
thus, a high likelihood in (4.1). The parameter 7 is a correlation length parameter
which regulates the distance within which the model believes data to be highly
correlated.

The two models discussed here rely solely on orderings of the data. These
orderings are the manner by which the dip interacts with the data. The next
section discusses the procedure of MAP estimation of dip from observations of the
data using the SA algorithm. Sections 4.3 and 4.4 give a detailed description and

analysis of a sequence of models and algorithms which culminate in the one specified
here.
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4.2 MAP Estimation of Dip Using the SA Algo-

Two models fdr continuously valued data were discussed in Section 4.1. These
models relate the dip field and data field through an energy function as was the
case in Chapter 3 for binary valued data. However, the relationship between dip
and data is now conveyed through the neighborhood structure of the model. The
dip interacts with the data by orderings of the data vector.

The purpose of this section is to describe the process of obtaining a MAP
estimate of the|dip vector, d. As in Chapter 3 we use the SA algorithm to obtain this
estimate which|is referred to as is 4. The notation QS 4 is used since the SA algorithm

does not necessarily find the exact MAP estimate but does find an approximate

As in Cha

smoothing par

eters D; are cq

some experime

ter 3 there are choices to be made concerning the values of the
meters, D;. For the purposes of this chapter the smoothing param-
nstant, that is D; = D. The choice of value for D is found through

ntation which is described in Section 4.5.

Again, as in Chapter 3, the neighborhoods, N;, of this chapter consist of the

7 x T array of
in Section 4.1
structures desq

The neighh
data along the
orderings for
finite resoluti
is a benefit to
the data. The
finite number

The speed
computation ¢

product of the

h

data elements with element ¢ at the center. However, as described
the internal structuring of the neighborhoods is different from the
ribed in Chapter 3.

)jorhood structures in this chapter are based upon orderings of the
hypothesized dip direction. There can only be a finite number of
7 X T array of data along the dip direction. Consequently, only a
of dip may be had. This is no surprise given the model, and there
be had from the explicit relationship between dip and orderings of

benefit is that the orderings can be pre-computed since there is a

of them.

of evaluating the likelihood function is greatly enhanced by pre-
f the orderings of data. The remaining computation is a quadratic

ordered data with a simple matrix. The matrix is sparse and allows
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for fast computations of the quadratic product. More about these fast computations
is discussed in Section 4.4.

We close this section with an illustration of a dip estimate for the last data
set of Section 3.5. More examples are discussed in Section 4.5. The data set is
reproduced in Figure 4.4. Figure 4.5 illustrates the dip estimate obtained using the
SA algorithm and the A, matrix of (4.5). The value of the smoothing parameter
was taken to be D = .1.

The data set in Figure 4.4 is carried through the sequence of algorithms presented
in Section 4.4. This is for comparison purposes. There are two major regions in the
data of Figure 4.4. These regions are separated by a line. The regions above and
below the line are regions of relatively constant dip with a sharp difference in value
across the line. This type of feature is often referred to as an “unconformity” in
the geological literature [23].

As can be seen in Figure 4.5 there are three major regions of interest in the set
of dip estimates. Two of the regions correspond well to two of the major regions of
interest in the data. The third region is a small fantail of dips which are located at
the juncture of the bend in the line separating the two data regions. This fantail
is caused by the two high contrast bed boundaries just above and below the right
bend portion of the line separating the data. The dip smoothly varies from the
lower dip value to the upper dip value in this fantail.

The left bend portion of the line separating the Figure 4.4 data is higher than
the corresponding dip line in Figure 4.5. This is due to the lack of high contrast
bed boundaries below the data line. Consequently, the dip estimate lock onto
the high contrast boundary at the data line. That is, in estimating dip at a
pixel located slightly below the left-hand portion of the line in Figure 4.4, it is
the high-contrast boundary at the upper edge of the pixel’s neighborhood that
determines the dip estimate. Clearly this would seem to indicate a built-in bias
in determining boundaries in the data. However, in the next chapter we directly
address the problem of boundary estimation following dip determination in a way
that overcomes this apparent bias.

Figure 4.6 is an estimate of dip using the A,, matrix of (4.6). The results of
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Figure 4.4: Non-Binary Data
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Figure 4.5: Dip Estimate From SA Algorithm with A, Matrix and D = .1
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this figure are similar to those in Figure 4.5. The two models are contrasted more

completely in Section 4.5.

4.3 Constant Dip Field Models

Section 4.1 presented a joint distribution for the data, s, and the dip field, d, where
d was assumed to be a spatially-varying vector of dip values. This joint distribution
is conceptually simple, however, it is extremely difficult to analyze. The difficulty
stems from the space-varying, interacting dip values. This section and ensuing
sections analytically explore the model in Section 4.1. The analysis proceeds by
examining a single neighborhood of the model in Section 4.1 and, thus, only a
single value of dip.

This section proposes several models for data which is available on both spatially
continuous and discrete sets. The models proposed do not necessarily seem related
to the MRF models proposed in Section 4.1. However, Section 4.4 reveals the
connection between the models discussed here and the neighborhood structures
and G;; functions of Section 4.1. The models are parametrically dependent on a
single value of dip which is denoted by d (no underscore). This contrasts the vector

of dip values, d, used in Section 4.1.

4.3.1 Two Models for Spatially-Continuous Data

Two models for spatially continuous data are discussed in this section. For both
models assume that the data, s(z), is available on a disk, D, centered at the origin
and of radius R (see Figure 4.7). The data is assumed jointly Gaussian and zero
mean. Specification of the covariance function completes the model. The covariance
function is different for the two models.

For the first model the covariance function is denoted by A,(z,y) and
Ay(z,y) = P*E VN +0,26(z — y) (4.9)

where 0 < p < 1 and 0,2 is the noise variance. The covariance function in (4.9) is

called the continuous p-model and it can be understood as follows. In the direction
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Figure 4.7: Support of GRF data
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of the dip vector, d, the data looks like a first order Gauss-Markov process observed
in white noise. In the direction orthogonal to the dip vector (denoted by the unit
vector d1) the data is constant and is observed in white noise. Figure 4.8 illustrates
two cross-sections of A.

In the second model the covariance function is denoted by A,,(z,y) and
Apr(z,y) = plE DIyl 4 5, 25(z — y) (4.10)

where 0 < p < 4 < 1, d* is the unit vector orthogonal to the vector d and o,? is
again white noise. The covariance in (4.10) is termed the continuous py-model and
is similar to that in (4.9) with the exception that the data is a first order Gauss-
Markov random field observed in white noise in both the d direction and the d*

direction. If 4 were allowed to be unity, then (4.10) would reduce to (4.9).

4.3.2 Two Models For Spatially-Discrete Data

The discrete models are analogs of the continuous models. All of the practical
signal processing algorithms of this chapter are for the discrete models. However,
these practical models are based on optimal signal processing algorithms for the
continuous data models.

The discrete models assume the data to be a jointly Gaussian random vector.
The data is assumed to be arranged on an n; X n; rectangular grid with the lower left
hand corner element located at the grid point (1,1) (see Figure 4.9). The vector of
data is referred to by the notation s which should not be confused with the notation
for the M-element vector of Chapter 3 and Section 4.1.

The ning components of s are referred to in several ways in the ensuing dis-
cussion. Primarily the data is denoted by the njns-vector s. The ordering of the
components in s is from the lower left corner to the upper right corner of Figure 4.9
traveling along rows from left to right. Consequently, the first n; elements of s come
from the lowest row of Figure 4.9, the left-most element being the first component
of s. The second lowest row of Figure 4.9 constitutes the next n; elements, etc.

Often the k** row of s is denoted by the nj-vector s;. This should be contrasted

with the notation for the k** element of s, denoted s; (no underscore).
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Figure 4.8: Cross-Sections of A
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Figure 4.9: Sampling Geometry of Discrete Data Models
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As for the continuous models the discrete models assume the data to be Gaussian
and of zero mean. The covariance matrix of the first model is analogous to the

spatially continuous model (4.9) and has elements
[Ap(z,9))ij = &2 1 6,6 (4.11)

where z; is the two-vector location of element s;.
The covariance matrix of the second model is analogous to the spatially contin-

uous model (4.10) and has elements
[Ap'y(ga 2)]” = pld'(ﬁi_gj)Iq'dl'(ﬁi—gj)l + 0n26ij (4.12)

This completes the initial modeling section of this chapter. The next section,
Section 4.4, discusses a number of signal processing algorithms based on the models
presented here. The sequence of algorithms culminates in a final algorithm which

is the basis for the model in Section 4.4.

4.4 Signal Processing: ML Estimation of d

Section 4.1 presented models for spatially varying dip. However, the computations
within each neighborhood of the models of Section 4.1 are based on a constant dip
model. One objective of this section is to show that the constant-dip models in
Section 4.3 are the basis for the constant neighborhood models in Section 4.1. A
second is to demonstrate the utility of the types of signal processing algorithms we
have proposed.

In this section we propose a sequence of increasingly simplified algorithms based
on the models of Section 4.3. Each algorithm retains the character of the models
while also becoming increasingly computationally simplified. The final algorithm
which is discussed is the basis for the model used in constructing the models of
Section 4.1.

Several fast algorithms for estimating the direction of minimum correlation are
proposed in this section. There is a crucial modeling feature which is the crux of

the fast algorithms. This feature is that the covariance models are ARC functions
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(see Chapter 2). ARC functions are important modeling tools in image processing

problems and this comes out in the ensuing sections.

4.4.1 ML Estimation of d

In this section the maximum likelihood (ML) estimate for d is described in both
the continuous and discrete data cases. In the continuous data case the likelihood
function is determined with the help of a complete orthonormal (CON) basis. In
the discrete data case the likelihood function can be determined directly. In both

cases the ML estimate is obtained by maximizing the joint distribution of the data
dyy = arg max p[s(z)] (4.13)

for continuous data, and
dui = arg max p(s) (4.14)
for discrete data.
For continuous data the joint distribution cannot be obtained directly. Rather,
a limit is taken of a k coefficient expansion s(z) using a CON basis. Following Van
Trees [26] we assume that the covariance function of the data is positive definite

so that the set of functions {¢;(z)} is a CON basis where the elements of this set
satisfy

/ueD K(z,y)¢:i(y)dy = Midi(z) (4.15)

where {\;} are the eigenvalues and {¢;} are the eigenfunctions of K. That K is a
function of d is denoted by Ky(z,y).

To find the likelihood function, the data is expanded in the CON basis obtained
from K(z,y)

[ o}

s(z) = kX_:l sigi(z) (4.16)
where
8= [_ _, s(@e(@)dz (4.17)

Since s(z) is a GRF the s; are independent JGRV’s. The likelihood function of
s(z) can be obtained as the limit of the likelihood function of the s;. Denoting the
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likelihood function of the first K s; as px we have

1 8,'2

H \/2_T _A_.- (4.18)

For the continuous data models of Section 4.3.1 the covariance models are ARC
functions (see Chapter 2). Thus, for these models, the A; are independent of the
value of d and, consequently, the 1/(27);) term can be dropped from (4.18) yielding
the equivalent likelihood function,

- 1s;?
Pk = Hexp{——;

1 K s,-2
exP{_EZA—,-

=1

= exp{——/';eD /eD s(z) s(y)z dilz ¢'(y)d zdy} (4.19)
In the limit (4.19) converges to

p[s(z)] = lim px

k—o0

= exp{-= / / s(2)Q(z, y)s(y)dzdy} (4.20)

where Q(z,y) is the inverse covariance function.
The likelihood function for the discrete data model is simpler. The data vector
s is a JGRV so that the likelihood function can be written

1

Ple) =

where A is the covariance matrix of s.

exp{—%gTA'lg} (4.21)

In general Q(z,y) and A~! cannot be analytically computed. Both are non-linear
functions of d. The approach to calculating dpr Tequires some sort of state space
search in which (4.20) or (4.21) is calculated for each candidate value of d. The ML

estimate is taken to be the value which maximizes (4.20) or (4.21).
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4.4.2 Rotating the Data

The remainder of Section 4.4 addresses signal processing algorithms designed to
obtain dpz and approximations to damr. Implementation of such algorithms is
generally easier when considering discrete data because of the flexibility and avail-
ability of digital computers. Hence the emphasis is on algorithms for discrete data.
However, when it suits the purpose of furthering development of, or conceptualizing
new approaches to algorithms the continuous data model is utilized.

This section demonstrates the interchangeability of rotating d or rotating the
data for the purpose of evaluating (4.20) of Section 4.4.1. This property holds
true for the continuous data model and is only approximately true for the discrete
data model. However, the assumption that this property holds exactly leads to
tremendous gains in computational efficiency for algorithms which estimate d in
the spatially discrete data case.

Equation (4.20) of Section 4.3.1 evaluates p[s(z)] repeatedly, where

pls(z)] = exp{—% f / s(z)Q(z,y)s(y)dzdy} (4.22)

Here, Q(z,y) = Q[d - (z — y)] and we are only interested in the properties of the
integral

1= [ [epo(@)Qld- (2~ Dlsy)dzdy (4.23)

Our objective is to show that changing the value of d by a two-dimensional rotation,
V, is equivalent to a rotation of the data by VT. An alternative way of expressing
this relation is that rotation of d by V while simultaneously rotating the data by V'
does not affect the value of I in (4.23).

Theorem 2 Rotation of the support for the data, s, by V has the sdentical effect
on (4.23) as does rotation of the dip, d, by VT. That is

/yeD /gED s(Vz)Qld - (z — y)|s(Vy)dzdy

= [ o @RI - (2~ sla) ez
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Proof 2 The proof proceeds by showing that rotating the data by V while simulta-
neously rotating the dip vector by VT is equivalent to having done neither rotation.
Let £ =Vz and § = Vy be a change of variables. Since det(V) = det(VT) = 1 we
have that dz = dz and dy = dy_. Thus,

[ [ AVEIQUYTd) - (2~ (Y )dzdy

_ /” . /_ _,S(VaRId: (Vz - Vy)ls(Vy)dzdy

_ /, . / _, S@)Rld - (& - D)ls(§)dzdy

where the first equality comes from the fact that rotations preserve angles between
vectors. Q.E.D.

It should be noted that the validity of the above theorem is a direct consequence
of the fact that @ is an ARC function. The value of the theorem comes when
repeated evaluations of (4.23) are made with different values of d. This is required
for calculation of dasr. For each value of d, calculating (4.23) requires evaluating K
and then its inverse, Q. Obtaining @ is a computationally expensive operation.

An alternative procedure is to calculate @ for a single value of d, say dy. For
all ensuing values of d = Vdy we continue to use Q(z,y|do) and we rotate the data
support by V7 to obtain the equivalent effect. Rotation of the data is much more
computationally efficient than recalculation of @ for each value of d.

The above discussion suggests a simple, computationally efficient algorithm for
finding dai in the discrete data case. The next sub-section discusses this algorithm

and the computational savings achieved by using it.

4.4.3 The Rotate and Interpolate Algorithm

As is discussed in Section 4.4.2, multiple calculations of the quadratic integral (4.23)
can be efficiently computed by rotation of the data. This property is valuable when
searching for the ML estimate of d. This section presents an algorithm which

searches for fiML based on the results of Section 4.4.2.
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The ML estimate of dip can be found by solving

dvr = argmaxln p|s(z)]
= argmax{- f s(z)Q(z,y)s(y)dzdy} (4.24)
yeD JzeD
(see (4.20) in Section 4.4.1). Equation (4.24) can be written so that
b =arg (- [ [ o@)ld- @-yls@dzdy} @429

for some initial value of dip, dyp. From the results of Section 4.4.2 the expression in

(4.25) is equivalent to
duaz, = arg mgx {— / - f s(VT2)Q[do - (z — y)]s(V y)dzdy} (4.26)

The rotate and interpolate (RI) algorithm is a method of searching for dmr
when the data is spatially discrete, not continuous. The RI algorithm is based on
(4.26), however, since the data is spatially discrete the algorithm finds drr which is
approximately equal to drr. The remainder of this section details the RI algorithm
and discusses its relationship to ML estimation.

The data used in the RI algorithm is spatially discrete. It is arranged on a
rectangular grid and the following notation follows conventions proposed in Sec-
tion 4.3.2. Since the data is spatially discrete the joint distribution is that of a

Gaussian random vector. Consequently, the ML estimate of dip is found by solving
dmr = argmg.x{— In|A| - sTA s} (4.27)

where A is the covariance matrix.?

Evaluation of (4.27) requires calculation of a matrix determinant and a matrix
inverse for each value of d. For s an n;n;-vector these calculations require o(n;3n,*%)
multiplies. The RI algorithm requires o(n;?n,%) multiplies to obtain dgy which is
approximately :iML, and it accomplishes this by using the results of Section 4.4.2.

The RI estimate is obtained by solving

dpr = arg max{ —F[s(Vz)]TA ™ (do) F[s(V 2)]} (4.28)

2Note: The ensuing discussion is identical for both the p and py models (see (4.11) and (4.12)).
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where F is an interpolation operator. The algorithm suggested by (4.28) is as
follows: (1) Calculate the matrix inverse for a particular value of d = dy, (2) rotate
the grid the data is defined on by the rotation V', (3) interpolate the data onto the
original grid using F, (4) Evaluate the expression in (4.28).

The interpolation operator, F performs the following operations. For each point
on the rotated grid, the four closest points on the unrotated grid are found. One of
the four points is discarded and the remaining three are used to fit a plane to the
values of data at these points. The interpolated data value at the rotated grid point
is the value on the plane associated with the rotated grid position. The discarded
point is chosen by selecting the three out of four grid points which have minimum
covariance. This choice ensures that the interpolated value retains the character of
the data in its vicinity.

The RI algorithm is the discrete counterpart to the computation of the ML
estimate for spatially continuous data. There are two reasons why (4.28) does not
yield &ML exactly. First, the data lies on a grid which when rotated does not
superimpose on itself (except at dip angles —%,0,%). This explains the purpose of
the interpolator, F', which obtains values of data on the unrotated grid from values of
data on the rotated grid. The interpolation is a model-independent approximation
of the data on the unrotated grid which is not equivalent to rotation of the spatially
continuous data. Second, the calculation of the determinant specified by (4.27) is
ignored in (4.28). This determinant is independent of d for spatially continuous data
(see Section 2.5). For spatially discrete data, however, the dip is only approximately
independent of the determinant.

The advantage of computing the RI estimate over the straight-forward ML es-
timate is computational speed. As previously mentioned, the ML estimate requires
0(n13n,°) multiplies for each value of d. The RI estimate calculates a matrix inverse
only once. For each ensuing value of dip there is a rotation (o(nin.) multiplies), an
interpolation (o(n;n3) multiplies), and a quadratic product (o(n;2ns?) multiplies).
The computation for the RI algorithm is dominated by the o(n;?n;?) calculations
which makes it far faster than the algorithm for computing the ML estimate.

At this point we would like to illustrate the use of the RI algorithm on the real
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data of Figure 4.4. To apply a constant dip model such as the one used for the
RI algorithm to the data of Figure 4.4 requires an assumption. The data displays
varying dip in Figure 4.4, however, we assume that it varies slowly. If the dip varies
slowly enough then within small windows it can be assumed that the dip is constant.
Consequently, to apply the RI algorithm to the data in Figure 4.4 we use a moving
window. At each location, the data within the window is assumed to be a constant
function of dip. The RI algorithm is used to calculate the estimate of dip at that
window location.

In the following two examples the window is a 7 x 7 array of elements. Thus,
according to the previous discussion n; = n; = 7. The window is centered at
each of the data positions in Figure 4.4. For each position an estimate for dip is
calculated based on the data within the window. When the window extends beyond
the boundaries or the data the RI algorithm is adjusted to account for the decreased
amount of data (that is, n; and/or n, are decreased in value).

Figure 4.10 illustrates the use of the RI algorithm when the p-model of Sec-
tion 4.3.2 is used as the model for the data. Figure 4.11 illustrates the algorithm
when the py-model is used. In Figure 4.10 the model takes the values p = .125,
0,2 = .1. For Figure 4.11 the model uses the value p = .099, v = .99, and 0,% = .1.
Approximately 45 minutes of CPU time on a Data General MV10000 computer was
required to obtain each of the estimates. This contrasts with the approximately 4
hours required to obtain the dip estimates using the SA algorithm in Figures 4.5
and 4.6.

The estimate in Figures 4.10 and 4.11 appear very similar to the SA estimates in
Figures 4.5 and 4.6. There are, however, some spurious local dip estimates along the
boundaries in Figures 4.5 and 4.6. In several locations the local dip estimate points
in a markedly different direction than its neighbors. This behavior is due to the
difficulty in rotating and interpolating data near data boundaries. The points near
a boundary have no reasonable interpolated values when they are rotated outside
of the boundaries. Consequently, it is not surprising to see a few poor estimates
near boundaries nor to see superior estimates in the SA algorithm which includes

a dip smoothing term.
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The next two sub-sections examine the structure of A and A~! for a particular
value of dip. The new insights obtained from this examination lead to a faster

algorithm for estimating dip.

4.4.4 Structure of Covariance for Vertical Dip

The structure of A is special since its entries are derived from an ARC function.
The RI algorithm of Section 4.4.3 relies on the inverse of A at a particular value
of d. As is demonstrated in the next sub-section, much can be inferred about the
inverse of A when d = [0 1]7. This section discusses the structure of A for this value
of dip.

Section 4.3.2 discusses two discrete data models. In each of the models the
data vector, s, represents a two-dimensional arrangement of the data. The first n,
elements of s represent the lowest row of the image, the next n, elements represent
the next row, etc. When d is chosen to be orthogonal to the rows of the image (i.e.
d = [0 1]T), the i;** element of the covariance matrix has the following structure.
Let I; and I; be the column numbers and k; and k; be the row numbers of element

¢ and j, respectively, then
(A )i = p* 8 + 0,65 (4.29)
for the p-model in (4.11), and
[Ap s = p*Hilylilil 4 g, 265 (4.30)

for the py-model in (4.12) (see Section 4.3.2).
From (4.29) and (4.30) it is seen that the covariance matrices are of special forms.

The structure of A, is block Toeplitz plus a constant times an identity matrix

Ro Ry - Ray|

R et Rp,_
;! R° T 4ol (4.31)

| Rai-y Rayz -+ Ro
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where I is (n1n;) X (ninz), Rk is ng X nz, and Ry is the constant matrix

k pk k
k k k
p eop
Ry=|". " . (4.32)
- pk pk pk

The expression in (4.31) is compactly expressed as a Kronecker product

A, =(R®U) + 0,21 (4.33)
where R is the n; X n; matrix
1 p - pml
r=| ?» ' pnf_z (4.34)
i pn;—l pn;—z cen i )
and U is the ny X ny matrix
[ 1 1]
e . (4.35)
11 -1

The structure of A,, is similar to A, in that it is simply represented using a
Kronecker product

Ay = (RQ®G) + 0,21 (4.36)
where R is the n; X n; matrix in (4.34) and G is the n; X n, matrix
v P 7"2_1 ]
1 oo ~N2—2
e=| 7 I (4.37)
,.ynz—l ,7n3—2 e 1

The matrix A,, is block Toeplitz. Furthermore, each of the blocks of A, are Toeplitz
(ie., p*Q).
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The next section looks at the structures of the inverses of A, and A,,. The
interpretation of these structures provides much insight into the models and suggests

fast alternatives to the RI algorithm.

4.4.5 Structure of the Inverse Covariance Matrices for d =
[0 1]*

Both of the covariances in Section 4.4.4 are highly structured and a great deal can be
said about the inverse covariance matrices. This section finds the inverse covariance
matrices by using power series expansions. An interpretation of each matrix inverse

is given utilizing the most significant terms of the power series.

Structure and Interpretation of A;!

As discussed in Section 4.4.4 the covariance matrix, A,, has,the representation
A, = (ROU) +el (4.38)

where R and U are as in (4.34)-(4.35) and € = 0,,2. The inverse of A, is found as a

power series expansion

1
AU = ;S—1+So+651+6232+“'

= ) €S (4.39)
k=-1
Taking A, to be
A,=R+el (4.40)

where R = R ® U, we have that
I = A

~ R+eD)(3 éSy)

k=-1

= %25_1 + Z Gk(RSk + Sk—l) (4.41)
k=0
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Setting the €® term in (4.41) to the identity and insisting that all the remaining

terms equal zero yields the matrices S,

S _ Inlnngzlng - %(Inlxm ® U) k = -
* -E}E(R_(k-'-l)@[]) k=0v1,2)°"

The proof that (4.42) satisfies (4.41) is found in the appendix to this chapter.
Substituting (4.42) into (4.39) yields A?,

(4.42)

1 1 s

A;l = E(Imnaxnl"z - n_z(Inlxnl ® U P k+1 ® U]
1 1 1 & k[ p—k+1
= _(Inlngxnlng - _(Inlxnl ® U -__2 E(_ ) [R ® U]
€ 9 no
1
= E(Iﬂlﬂzxmﬂz - (I"lxnl U ) + [R_l Z( kR_k] ® U(4 43)

For |A(:£R™")| < 1, (4.483) reduces to

_ 1 1 1 - € __1\v—
API = ;[Iﬂlﬂz)“‘l'h - n_z(ImXﬂl ® U)] + n_zle I(Iﬂlxm + n_zR l) 1] QU

1 1 1 € _
= E[Iﬂlnzxnlﬂn - ;;(Iﬂnxm ® U)] + n_f[R + n_zIﬂlxnl] ! ®U (4'44)
For € small enough (4.44) becomes

_ 1 1
Al’l = ;[Inl'uxnl"z - ‘n_z(Inlxnl ® U)] (4'45)

This approximation lends a special interpretation to the inverse covariance matrix.

To see the interpretation requires explicit evaluation of (4.45) which looks like

-

Uy, 0O - 0
o U. --- 0
= T (4.46)
0 0 U,
where
ng=1 _ 1 _a ]
na na na2
=1 n-1 ., =1
U,=| ™ ™ " (4.47)
-1 na=1
| n2 ny na
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Computation of the quadratic product

ny
T -1 1 T
S Ap s =~ - E Sk Un,Sk

€ k=1
1 ny No — 1 knz 1 kng knz
L S S S T
€k=1 "2 i—(k-1)na+1 N2 i=(k—1)na+1 j=(k—1)ng+1, j#i
1 n kng 2 1 kng 9
= 20 X &'——( X )%
€ k=1 i=(k—1)n, "2 i=(k—1)n,
1
1S (4.48)
€ k=1

where s, is the k*® row of data and 67 is the sample covariance of the k** row of
data.

Thus, (4.48) states that the estimate dr; is approximately the value of dip which
minimizes the sum of the row data sample covariances. The row data is obtained
by rotating the data grid by d = Vdy and interpolating the data onto the unrotated
grid. This interpretation is intuitively pleasing. Furthermore, computation of the
sum of the row sample covariances requires only o(n;n;) multiplies, a substantial
savings over the exact calculation of :im.

The result in (4.48) is obtained by approximating the inverse covariance matrix
A, by the first term in (4.39). As already shown, the first term of the expansion
results in a block diagonal matrix with zero blocks off the main diagonal. The effect
of including the second term in (4.39) results in a matrix which is block tri-diagonal
with zero blocks off the three principal diagonals. Consequently, when the second
order term is included, the interaction between adjacent rows of data is included
in the computation of the quadratic product with the data. As more terms in the
expansion are included, rows of data which are farther apart are included in the
calculation of the quadratic product.

Before proceeding to a similar analysis for the inverse structure of A,, it should
be noted that there is a striking similarity between (4.48) and beamforming (see [8]).
Beamforming is the synthetic steering of a fixed antenna array for the purpose of
maximizing the power of an incoming plane wave. The steering is accomplished by

appending a linearly increasing set of delays on the antenna array. This is followed
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by performing sums of inner products on the incoming data. The direction which
maximizes the sum of inner products is the direction from which the plane wave
emanates.

The linearly increasing set of delays in the beamforming problem is analogous
to the rotate and interpolate operation proposed by the RI algorithm. The RI
algorithm then proceeds to approximately form the sum of covariances which is
equivalent to taking a sum of inner products. Thus, there is a strong relationship

between beamforming and the p-model of Section 4.3.2.
Structure and Interpretation of A;,,l
The covariance matrix A,y can be expressed as
Ayy=(R® G) + el (4.49)

where R and G are as in (4.34) and (4.37) and ¢ = 0,%. Again the inverse covariance

matrix is represented by a power series expansion,

AL =3 €S, (4.50)
k=0
Taking A, to be
Apy=R+el (4.51)
where R =R ® G, we have that
I = A\t
= (R+el)() é+sy)
=0
= RSo+ ) e (RSps1 + S) (4.52)

=0
Setting the first term in (4.52) to the identity and the remaining terms to zero yields

R-1 k=0
Sk = { (~1)PR-+) kg 5., (4.53)
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Thus,

A;’:. — Z ek(_ l)kR_(k+1)

k=0

= R71 fj(—ela‘l)" (4.54)

k=0
When [A(eR™!| < 1 the expression in (4.54) may be written

AV = RTYI+eRTY)

= (R+el)™ (4.55)
For € small a good approximation to (4.55) is
5w R
= (Re®G)™
= R'e@G! (4.56)
where § i
1 —p 0 -0
N 1+0) —-p -0
R'= 0o - 14p%) -+ 0 .
7| ’ ( +.p) : (4.57)
| 0 0 0 cee 1
and
r .
1 -y 0 oo
P Bt U ) B B
G!= = 0 -y (1+4+9%) --- 0 (4.58)
- 7 . - . .
i 0 0 : 0 -ee 1
Consequently, (4.56) looks like
e —pG™! ] ]
—pG™t (149Gt —pG1 0
- 1 _ -
= = 0 -Gt (14 p%)G™? 0 (4.59)
0 1] 0 .er GT1
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The quadratic product of the data with (4.59) yields

1
§TA;':§ ~ (1 — p2 ){QITG—lﬁl + §n1TG—1§_n1
n;—1 n;—1
+ 2 (1408 G s — 20 ) 8"G M sp 11} (4.60)
k=2 k=1

Now assuming p ~ 0 and 4 ~ 1 makes (4.60) look like

ﬂ]_—l
ﬁTA;,,l_bl = §1TG_1§1 +§,.1TG—1§,,1 + E ngG_l_s_k
k=2
n1
— ZﬁkTG—lﬁk
k=1
ny 1 kna-1 kny—1
= Z{(l Il Y 287—2 Y sisip1 + S(k-t)ngr1” + Skno )}
k=1 + 7T i=(k-1)na+2 i=(k—1)na+1
n) 1 kna—1 .
= 2= 2 (s-s)%} (4.61)
k=1 T i=(k-1)ng+1

The inner sum in (4.61) is the sum of squared differences of adjacent data elements
for row k. Thus, for the case where the covariance of the data can be modeled by
A,y when d = [0 1]7 the estimate dg; is approximately as in (4.61). That is, dg; is
the value of d which after rotating and interpolating the data minimizes the sum of
the sum of squared differences along rows. This, too, is intuitively pleasing since it
is expected that the variation in data along rows is smallest when the data has been
rotated by the best value of dip. As in the case of the p-model, the more terms of
the expansion that are included in the calculation of the inverse covariance matrix
the more interaction there is between rows of data which are farther apart from
each other.

The next section proposes an alternative to the RI algorithm. This new algo-
rithm is faster than the RI algorithm and it achieves its improved computational

speed using the results discussed in this section.

4.4.6 The Approximate Rotate and Interpolate Algorithm

The examination of the structure for A, and A,, in Section 4.4.5 gave much insight

into the nature of the RI algorithm. After certain approximations are made the
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computational complexity of the RI algorithm can be decreased from o(n;*n?)
multiplies to o(ninz) multiplies. The purpose of this section is to present the
Approximate Rotate and Interpolate (ARI) algorithm which is based upon the
analysis of Section 4.4.5.

The ARI algorithm finds darr which is approximately equal to drr. The algo-

rithm is very similar to the RI algorithm and it proceeds as follows,
darr = arg max {~Fs(V z)|"KF[s(Vz)]} (4.62)
=V do

where K is an nins X nin,; block diagonal matrix

(40 .. 0}
0 A -0

K=| . . (4.63)
00 --- A

and A is an ny X ny matrix.

In the case of the p-model covariance given in (4.11) we take

np=1 _ 1 .., _ 1|
ng? ng? ng?
1 m-1 0 _ 1
A=| m* na® (4.64)
1 _1 .., n2=1
ng'3 1132 n23

Combining (4.64) with (4.63) specifies the ARI algorithm to search for d4rr by: (1)
Rotating the data grid by V/, (2) interpolating the data onto the old grid using F,
(3) evaluate the sum of the row sample covariances (see Section 4.4.5 (4.48)). The
value of d = Vdy which minimizes the sum of the row sample covariances is darr.
The procedure of calculating dagrr is computationally efficient. Calculation of
the rotation of the grid is o(n1n;) multiplies, the interpolation is o(n;n;) multiplies,
and the quadratic product of the data with K is o(nl‘%nzg). However, since K has
the effect of calculating sample covariances along rows of the data the computation

can be made in o(nyns) multiplies. This can be seen by expanding the computation
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of the k** row, s;, with the matrix A

knz _ 1 kn; 1

T na 2
sTAs, = Y D DD D L
i=(k—1)nz+1 i=(k—1)ng+1 j#i 2
kng 1 kng kn2 1
2
= > ntt ) > a2 iS50
i=(k—1)ng+1 "2 i=(k—1)n2+1 j=(k—1)na+1 2
knz 1 1 kng

= Y Sst-(—= Y s) (4.65)

i=(k—1)ny+1 2 N2 i=(k—1)nga+1

Calculation of (4.65) requires n; multiplies for the first term and one multiply for
the second term. Since (4.65) is calculated once for each of the n; rows there are
ning + ng multiplies.

In the case of the covariance model in (4.12) we take

[ 1 -1 0 --- 0
-1 2 -1
A= 0 -1 2

o

(4.66)

o o o ---1

When (4.66) is used in the ARI algorithm, rotation and interpolation of the data is

followed by calculating the sum of squared differences of the data along rows (see
Section 4.4.3). Thus,

kna—1 kna—1
S,TASy = S(e-ing+tt +Skngo +2( D sT— D sisiy1)
i=(k—1)na+2 i=(k-1)no+1
kﬂg—l
= Z (3,‘ - S,‘+1)2 (4'67)
t'=(k—l)ﬂz+l

which is of o(n;) multiplies. Thus, for A as in (4.66) the ARI algorithm is also of
o(n1nz) multiplies in computational complexity.

As in Section 4.4.3 we illustrate the use of the ARI algorithm on the real data
set in Figure 4.4. The moving window is a 7 X 7 array of elements and there are
no parameters to set since the approximations which result in the ARI algorithm

require the parameters to have special values. Figures 4.12 and 4.13 illustrate the
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ARI algorithm for the A matrix as in (4.64) and (4.66), respectively. As can be seen
by comparison with the examples in Section 4.4.3 there is only nominal difference
between the RI and ARI estimates of dip on this data set. The amount of CPU time
to obtain each of the estimates was approximately 15 minutes. This is in comparison
to the 45 minutes needed for the estimates computed using the RI algorithm.

The next sub-section describes a modification of the ARI algorithm. The modi-
fication is an approximation of rotation and interpolation. The resulting estimation

procedure is faster than the ARI algorithm.

4.4.7 The Projection Algorithm

The signal processing algorithms in this section have relied on rotating and inter-
polating the data. These two operations are computationally expensive and data
dependent. This sub-section describes a modification of the ARI algorithm. The
new algorithm replaces rotation and interpolation of the data with projections of the

data locations along the dip direction. Consequently, the new procedure is termed
the PROJ algorithm.

The PROJ algorithm calculates an estimate of dip
dpros = arg IIEX{—(E&)TK (Eas)} (4.68)

where E; is the permutation matrix appearing in (4.2) of Section 4.1 and K is one
of two matrices in Section 4.4.6 (see (4.62), (4.63), (4.64), and (4.66)). The novelty
of the PROJ algorithm is that the data is re-ordered according to projections along
the dip direction. This re-ordering is an approximation to the rotate and interpolate
procedure performed by the RI and ARI algorithms.

To understand why the permutation matrix, E;, can be considered an approx-
imation to rotation and interpolation, consider the problem of determining which
data points in the unrotated, uninterpolated data would be closest in value to the
data values in the rotated interpolated data. Figure 4.14a shows how the rotated
data grid looks and Figure 4.14b shows the unrotated data grid. Figure 4.14 also

shows a correspondence between the data locations in the two grids illustrating
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a solution to the above question. Projection is an approximation to rotation and
interpolation.

Note that since the orderings of the data are independent of data values they
can all be precomputed for each value of dip. Clearly, there are only a finite number
of orderings of the data due to projection and, consequently, only a finite number
of dip values can be resolved.

Once again the data of Figure 4.4 is employed this time to illustrate the use of
the PROJ algorithm. Figures 4.15 and 4.16 illustrate the dip estimates from the
PROJ algorithm based on the p and py-models, respectively. The main difference
between the PROJ estimates and the ARI estimates is seen in Figure 4.16. There
is quite a bit of degradation in the quality of the estimate in Figure 4.16 compared
to that in Figure 4.13. This is a result of the fact that the PROJ algorithm is twice
removed from the RI algorithm by approximations.

The result in Figure 4.15, however, looks similar to its counterpart from the
ARI algorithm in Figure 4.12. The p-model of the PROJ algorithm employs much
more lateral smoothing within each neighborhood than does the py-model. This
accounts for the superior performance as the estimate of dip at each point is based
in effect on looking at a wider field of data.

One advantage that the PROJ algorithm has over the ARI algorithm is that
estimates of dip near boundaries are less likely to be biased. This is because
the PROJ algorithm only projects data within the boundaries. The ARI and RI
algorithms attempt to interpolate data points outside of the data boundaries. The
second advantage that the PROJ algorithm has over the ARI algorithm is speed.
The estimates in Figures 4.15 and 4.16 took approximately 5 minutes of CPU time
each. This compares with 15 minutes required by the ARI algorithm to calculate
the estimates in Figures 4.12 and 4.13.

The next sub-section presents the final algorithm of this section. This last
algorithm improves the performance of the PROJ algorithm and serves as a final
link in explaining the relationship between the models in Section 4.1 and the models

in Section 4.3.
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Figure 4.14: Approximation of Rotation and Interpolation
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4.4.8 The Smoothed Projection Algorithm

The last section discussed the PROJ algorithm which was based on the ARI algo-
rithm and an approximation of the rotate and interpolate procedure. A comparison

of the dip estimates in Figure 4.16 using the PROJ algorithm and Figure 4.11 using

the RI algorithm shows a substantial loss of quality. This is not surprising since the

PROJ algorithm is twice removed from the RI algorithm by approximation methods.
This section proposes a new algorithm which improves the estimate quality of the
PROJ algorithm without significantly increasing the computational burden.

The new algorithm is termed the Smoothed Projection (SPROJ) algorithm. The
SPROJ algorithm modifies the PROJ algorithm by using a slightly different matrix

for the quadratic product computation. Consequently, referring to (4.68)
dspros = argmax{—(Eqs)" K(Eas)} (4.69)

where K is related to K in the following manner. The matrix K is a block diagonal
matrix (see (4.63)) composed of zero blocks on the off-diagonal and the matrix 4
on the diagonal. For each row of data, the A matrix computes either the sample
variance or sum of squared differences with the data. The K matrix treats each
consecutive n, elements of the data as a row, computes the sample variance or sum
of squared differences of these n, elements, and takes the sum of each of these.

Thus, K can be written as

- nany —n2+l
K= ) K (4.70)
=1
where each K; has a single A matrix embedded in it and zeros everywhere else. The
matrix K; has the (1,1) element of the A matrix at its (¢,¢) position and the (1,2)

element at its (7,7 + 1) position, etc. Thus,

—t -1 ) < ’ < . -
[Ki]k1={ Ale-ivrp-in i<kl <itn —1 (4.71)

otherwise

As was shown in Section 4.4.6, the quadratic product of the data with the A

matrix requires either ns or ny+1 multiplies. This means that the SPROJ algorithm
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requires no more than (n; + 1)(nin; — ne + 1) multiplies. This is an increase in
* computation over the PROJ algorithm which requires no more than (ning + ng)
multiplies. However, the SPROJ algorithm is still faster than the ARI algorithm
due to the precomputation of the orderings of the data.

The point of this section is that the SPROJ algorithm serves as the basis for
the model described in Section 4.1. This is the model that was used in calculating
the SA estimate of dip. The SA algorithm calculates the function within the braces
in (4.69) for each neighborhood. In addition the SA algorithm also calculates a
smoothing term which evaluates a cost associated with adjacent dip values. The
model in Section 4.1 is a joint model for data and dip. This distribution is easily
written as the product of a distribution for the data conditioned on dip times a

prior dip distribution

ped) = plsldp(d)
= Z81Z4 exp{— Z z Gijsisjtexp{— Z Z D;;|di - d;|} (4.72)

where Z, and Z; are appropriate scale factors. The SPROJ estimate of dip is a

collection of independent ML estimates. The SA estimate of dip specifies a prior
dip field distribution, and, consequently, yields an MAP estimate of dip.

Figures 4.17 and 4.18 show the SPROJ estimates of dip based on the p and p~-
models, respectively. The estimate in Figure 4.18 is much closer to the RI estimate
in Figure 4.13 than is the ARI estimate in Figure 4.16. The estimates in Figures 4.17
and 4.18 took 10 minutes of CPU time compared to the 5 minutes used by the PROJ
algorithm and 15 minutes used by the ARI algorithm.

The next section does a detailed analysis of the algorithms presented so far in

this chapter.

4.5 Examples

Most of the examples in this section are concerned with the use of the RI algorithm
of Section 4.4.3. The reason for this is that the RI algorithm depends on several

parameters, namely p, v, and 0,%, and one of the objectives of this section is to
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illustrate the effect these parameters have on the RI algorithm. Examples are
also presented which comparatively illustrate the performance of the ARI, PROJ,
SPROJ, and SA algorithms.

As in the examples section of Chapter 3, the data set used to illustrate the
following examples is a constant dip field. The data is illustrated in Figure 4.19.
This data was deterministically generated so that the bed boundaries have a slope
of % and display various contrasts between adjacent beds. The bed boundaries are
vertically separated by five pixels. Consequently, the beds are 4.47 pixels thick in
the dip direction.

This section is composed of three major sets of examples. The first set illustrates
the effect of the parameters p and 0,% on the RI algorithm based on the p-model
in (4.11). The second set of examples illustrates the effect of parameters p, 7, and
0,2 on the RI algorithm based on the py-model in (4.12). The final set compares
results of the ARI, PROJ, SPROJ, and SA algorithms to those of the RI algorithm.

4.5.1 Examples Using the RI Algorithm with the p Model

There are six examples in this section. The examples are comprised of two subsets.
The first subset illustrates the RI algorithm using the p-model in (4.11) with a
small value for 0,2. The second subset uses a large value for 0,2. In each of the
two subsets the value of p takes on large, small, and intermediate values.

The first three examples take 0,2 = .01. The values of p are .01, .25, and .9,
respectively. The examples are illustrated in Figures 4.20-4.22. As can be seen, the
quality of the estimates in these figures are good except near the boundaries. The
left and right boundaries show some individual dip estimates which are extremely
poor. The reason for spurious dip estimates near the boundaries is due to the
rotation and interpolation part of the algorithm. It is difficult to obtain good
interpolations in these regions since rotation of the data moves grid points outside
of the image boundaries. Consequently, there are no data points from which to
interpolate.

It is interesting to note that the estimates in Figures 4.20-4.22 are seemingly

independent of the value for p. This is not surprising if one examines the power
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Figure 4.19: Synthetic, non-binary, constant dip data with d = [1 2]7 and with beds
4.47 pixels thick in the dip direction
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series expansion for A™! in (4.43). As can be seen the ¢! (where € = 0,?) term in
the power series expansion is independent of the value for p. For small values of €
this term dominates. Consequently, we would not expect p to affect the estimates
for small e.

The second three examples are illustrated in Figures 4.23-4.25. These three
figures all show dip estimates using the RI algorithm based on the p model with a
large value for o,%. The value of p is .01, .25, and .90, respectively, while o, = 1.

The estimates in Figures 4.23-4.25 still display spurious dips near the boundaries
due to the difficulty with interpolation there. Furthermore, in all three figures there
is a coherent degradation of the dip along lines which coincide with bed boundaries
in the data (Figure 4.19). This degradation is due to the increased strength of
the noise parameter 0,2. Careful examination of the dip estimates reveals that the
coherent degradation occurs at bed boundaries of low contrast. The degradation at
low contrast bed boundaries decreases as the value of p increases.

To explain these observations we refer to Figure 4.26. Figure 4.26 shows a 7 X 7
window of data where the center of the window is near a bed boundary. There are
three different types of locations the center of the 7 x 7 window can occupy near
the bed boundary. These three locations are illustrated in Figure 4.26(a-c). As can
be seen, the window in Figure 4.26a contains elements from only two beds. The
windows in Figures 4.26b and 4.26c have one and two elements from a third bed,
respectively.

Figure 4.23 shows the dip estimate with p = .01 and 0, = 1. The figure
also highlights three individual dips with the labels a, b, and c. These labels
correspond to the window configurations in Figure 4.26a, b, and c, respectively.
The dip computed using the window in Figure 4.26a is a good estimate. This is due
to the fact that only two beds are within the boundaries of the window. The dips
computed using windows in Figures 4.26b and c, however, are highly biased. The
bias in these estimates is due to the high value for the noise and the low contrast
of the two major beds inside the window. The elements from the third bed are
more heavily weighted since they contrast more highly than the two major beds

do. Since there are only one or two elements from the third bed the RI algorithm
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cannot accurately identify the correct dip.

The estimates in Figures 4.24 and 4.25 increasingly improve as the value for p
increases. This is because the RI algorithm performs more and more smoothing in
the direction of the dip as the value of p approaches unity. Consequently, the one
or two additional elements from the third bed in Figure 4.27b and c have less effect
on the resulting estimates.

We draw the following conclusions from these examples. When noise is small the
value of p is of little consequence. However, as the noise increases, increasing the
value of p improves the performance of the RI algorithm. This improvement is due
the extra smoothing which is provided by the higher order terms in the expansion

of the inverse covariance matrix in (4.43).

4.5.2 Examples Using the RI Algorithm with the py-Model

This section illustrates the relationship between p and v when the RI algorithm is
used in conjunction with the py-model in (4.12). There are three examples in this
section. These examples show the effects of the RI algorithm when p is small and
~ is large. The examples also illustrate the estimates of dip when p and  are close
in value.

In all three examples presented here the parameter 0,2 = .1. The examples are
illustrated in Figures 4.27- 4.29. In these figures p and ~ take the values p = .01
~=.99,p=.2~=.8,and p = .4 v = .6, respectively.

In the three figures it can be seen that as p and ~ become closer in value, the
estimates become more disturbed. In particular, the data regions of low bed contrast
show dip estimates which are highly biased. This phenomenon is not surprising since
p and ~ specify the anisotropic character of the data model. As p and v become
more similar in value, the RI algorithm is less capable of distinguishing the major

correlation axes.
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4.5.3 Example Using the ARI, PROJ, SPROJ, and SA Al-

gorithms

This section contains ten examples. These examples are composed of two estimates
for each of the algorithms ARI, PROJ, SPROJ, and SA. The first estimate is based
on the p-model in (4.11). There are two additional estimates which compare the
SPROJ and SA algorithms. The results of this section are compared to those in
Sections 4.5.1 and 4.5.2.

The first pair of examples are illustrated in Figures 4.30-4.31. These two figures
illustrate the use of the ARI algorithm in estimating the dip field associated with
the data in Figure 4.19. Figure 4.30 is obtained using the p-model and Figure 4.31
is obtained using the p~vy-model.

The estimates still suffer from spurious dips near the boundaries. This is due to
the attempt to interpolate data outside the data boundaries. The estimate based
on the p-model is better than the one based on the py-model. As discussed in
Section 4.4.5 the py-model leads to an algorithm which performs less smoothing
in the direction orthogonal to dip than does the p model. This accounts for the
decreased performance in Figure 4.31.

The illustrations in Figures 4.32-4.33 are dip estimates using the PROJ algo-
rithm based on the p and py-models, respectively. Notice that since the PROJ
algorithm does not use rotation and interpolation, the dip estimates near boundaries
are much better than those obtained using the RI or ARI algorithms.®? However,
since the PROJ algorithm uses an approximation to rotation and interpolation it
also seems to be more sensitive to problems with low contrast data.

The results of the PROJ algorithm are greatly improved when extra smoothing
is used as in the SPROJ algorithm. The results in Figures 4.34-4.35 illustrate the
SPROJ algorithm when using the p and py-models. Both estimates are extremely
good.

The illustrations in Figures 4.36-4.37 show the results of using the SA algorithm

3Note: The region affected by trying to interpolate data outside of the boundaries of the data is

the region consisting of dips within four elements of the boundary. This is due to the use of a 7% 7
window.
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Figure 4.33: PROJ algorithm using the py-model
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Figure 4.34: SPROJ algorithm using the p-model
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Figure 4.35: SPROJ algorithm using the py-model
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on the data in Figure 4.19. The SA algorithm incorporates the SPROJ algorithm
with a smoothing term. As the figures show, the results are good, however, they
are not as good as the results from the SPROJ algorithm. The SA algorithm is a
smoothing algorithm which finds an approximate MAP estimate based on the p and
py-models. For data which is noisy one could expect the SA algorithm to perform
very nicely and possibly much better than the SPROJ algorithm.

As a test the SA algorithm was re-run on the data where the estimates were
initialized to the values obtained from the SPROJ algorithm. The expectation is
that the SA algorithm should perform better due to this initialization. We found
that indeed the performance was improved as seen by comparing the energy of
the Gibb’s distributions for the initialized case versus the uninitialized case. The
difference in performance, however, is small due to the extremely regular nature of
the data.

The final two examples compare the SPROJ and SA algorithms based on the p-
model when applied to noisy data. Figure 4.38 shows a noisy version of the data in
Figure 4.19. The data in Figure 4.19 takes values in [—1,1]. The data in Figure 4.38
takes values in [—.8,.8] and the additive noise takes values in [—.2,.2]. The signal
to noise ratio could be considered to be 6db under these conditions. It should be
noted that several of the layer boundaries that are readily identified in Figure 4.19
are obscured by the additive noise in Figure 4.38.

Figures 4.39 and 4.40 illustrate the dip estimates obtained from the data in
Figure 4.38 using the SPROJ and SA algorithms, respectively. Both algorithms
are based on the p-model. In Figure 4.39 there are several regions where the dip
estimates are incoherent with respect to the main character of the data. This is
due to the additive noise which obscures several of the bed boundaries in the data.
Since the window structure of the SPROJ algorithm is a 7 X 7 array of elements the
noise prevents the algorithm from correctly estimating the dip at the boundaries of
low contrast layers.

The dip estimate in Figure 4.40 is obtained using the SA algorithm with the
smoothing constant D = 1.0. As can be seen in the figure, the regions which were

troublesome for the SPROJ algorithm are smoothed over by the SA algorithm. This
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is a consequence of the smoothing term employed in the SA algorithm.

4.6 Conclusions

This chapter introduce several models for non-binary anisotropic random fields.
These models are developed in substantial detail and fast algorithms are derived
from these models for the purpose of processing observed data.

To summarize the chapter, Sections 4.1 and 4.2 develop a MRF model for
non-binary data. Sections 4.3 and 4.4 are alternate models for the data which,
through a sequence of steps, provides a rationale for the MRF models introduced
previously. In the process of discussing the models we develop several fast algorithms
in Section 4.4. Section 4.5 is an examples section which illustrates many of the
features discussed within the chapter.

Chapters 3 and 4 developed models and methods of analyzing data. A possible
criticism of the results obtained in these chapters is that analysis of the data results
in estimates of the same cardinality as the data. That is, there is no compression
of the data by the estimation algorithms.

The feature that our estimation algorithms have concentrated on is dip. Dip
is conceptually an aggregate feature of the data. Consequently, it is reasonable
to expect one to be able to compress the dimensionality of the dip estimates.
Furthermore, it is highly desirable to do so since it simplifies the interpretation
of the data.

The next chapter concentrates on estimation of bed boundaries. This is impor-
tant since dip near bed boundaries can be more complicated when these boundaries
are non-planar. Consequently, information about bed boundaries helps in calculat-
ing accurate dip estimates near these boundaries. Furthermore, characterizing the
bed boundaries also helps in identifying higher level features in the data and, thus,

is a step towards compressing the data.
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Figure 4.38: Synthetic, non-binary data in additive noise
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4.7 Appendix: Power Series Expansion of the

Inverse Covariance Matrices

First it is shown that (4.42) satisfies (4.41) by making the € term equal to the

identity and the remaining terms zero. Note that

1 —
5= { g;g;;ﬁ’(kli‘_’;{}“f"’ e o (4.73)
and that
AV = f: €Sy (4.74)
k=-1
A, = (R + elninyxning)
= (R®U) + elnnyxning (4.75)
so that
AAY = (RQOU) + elnynyxnyn,) kf: €' Sy
=-1
- YreU)s.+ (st (ROU)S) + éekﬂ(s,, + (RO U)Ses)
(4.76)
The % term in (4.76) can be expanded by substituting for S_;
(ROU)S.t = (R®UV)Unimsunn = - Unuxns OV)
= (R8V) ~ - (R@V)nyer, @T))
= (RQU) - nlz(R ®U?) (4.77)

since U? = nyU we have that (4.77) is zero as is desired.

The €° term in (4.76) is now expanded

1 1
S_l + (R ® U)So = (Iﬂlnzxnlnz - n_z(Inzxng ® U)) + (R ® U)(n—zzR 1 ® U)
1

1
= (Iﬂlﬂzxmnz - n_z(Iﬂzxnz ® U)) + ng2

(Inyxn, ® U?)  (4.78)
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which by the same property of U makes (4.78) equal t0 I, n,xn,n,- Finally, each of

the remaining terms in (4.76) expand into

Sy +(RQU)Sky1 = k+2(R (k+l)®U) +(R®U)( ) —(R™ (k+2) o 1)
By Dimeev) - Lre &9 0 0)

k+2

— ( ) [(R (k+1) ® U) (R—(k+l) ® Uz)]
= g (4.79)

which completes the argument.
It is now shown that (4.53) satisfies (4.52) by making the €® term the identity

and all other terms zero. Note that

R k=0
Sk = { (..1)"2‘(""'1) k=12, (4.80)

where R = R ® G + €I, n,xnyn,. Furthermore,

AL = 3 ek(—1)kR-(k) (4.81)
k=0
Ay, = R+el (4.82)

so that,
AMA;'vl = (R+ GI)(Z: €k(_l)kk—(kﬂ))
k=0

— RR_I + Z Ek[(—l)kRR_(H-l) + (_1)(k—1)2—k]
k=1
=1 (4.83)

since, RR~! = I and all the terms in the sum are zero.



Chapter 5

Edge Models for Layered Data

Chapters 3 and 4 concentrate on modeling and estimation of low level features such
as dip and bed frequency. The objective of this chapter is to present methods for
the identification of bed boundary locations. Information about bed boundaries is
useful for calculating dip near these boundaries. Furthermore, bed boundaries are
important for characterizing higher level features of the data.

This chapter is organized into the following sections. Section 5.1 presents a local
edge model which depends on the knowledge of dip in the region. Section 5.2 details
an edge estimation algorithm using the model of Section 5.1. Section 5.3 illustrates
some examples of the local edge estimation algorithm using the SPROJ dip esti-
mates discussed in the last chapter. Section 5.4 presents a clustering algorithm for
combining local edge estimates into global straight line estimates. Section 5.5 illus-
trates some examples of the global line estimation algorithm. Section 5.6 introduces
another global line estimation procedure based on Kalman filtering. Section 5.7
illustrates examples of the Kalman filter algorithm. Section 5.8 illustrates examples
combining the two global line estimation techniques and some other post-processing

techniques. Section 5.9 summarizes the conclusions of this chapter.

5.1 A Local Edge Model

This sub-section describes a local edge model. This model is used in a manner

similar to the way in which the local constant dip model of Section 4.3 is applied

174
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Figure 5.1: Data Separated By Line /2

to large data sets. That is, the local edge model is proposed for an n; X n, array
of data. For data sets much larger than n; X n; the local edge model is applied by
moving an n; X n; window over the data, calculating local edges as it is moved along.
The collection of local edges is the output of our local edge estimation algorithm.
As stated above, it is assumed that the data associated with our local edge
model consists of an n; X n, array of elements, s. Referring to Figure 5.1 it is
assumed that the data array can be divided into two regions S; and S; separated
by a straight line whose location is to be estimated. The line separating the two
subsets is parameterized in terms of its distance, r, from the center of the array.
The ray perpendicular to the line and through the array center makes an angle ¢
with the y-axis. This angle corresponds to the local dip within the data window.
The line in Figure 5.1 represents our edge. The edge enters into a mathematical

model for the data through specification of the distribution for s. The data, s, is
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assumed to be a zero-mean JGRV. The covariance matrix for the data is denoted

by II, and the elements of II are specified by

(5.1)

1 +0'25ij {%J} C S or {iaj} C S
(105 = .
0 otherwise

The covariance model in (5.1) indicates that if s; and s; are on opposite sides
of line ;5 then they are uncorrelated. Furthermore, if elements s; and s; are on
the same side of line ;5 then they can be viewed as being observations of a single
unit-variance random variable in the presence of zero-mean, white Gaussian noise
of variance o?. Consequently, the variance of s; is 1 + o2.

If the elements of the data vector, s, are ordered so that the elements belonging
to set S; are in the upper portion of vector and the elements belonging to set S,

are in the lower portion of the vector then

Lis,y O
0 1is,|

M= + 0’1 (5.2)

where |S;| denotes the number of elements in the set S;, ¢ = 1,2, 1s,| is an |S;| x | S|
matrix whose elements are all unity and I is the (nyn2) X (ni1n;) identity matrix.
The model just described implicitly depends upon the location of line ;5. The
parameters r and 6 define the location of this line. Consequently, the model can
be used to estimate the line’s position by estimation of the parameters r and 6.
However, if some prior knowledge of either of the parameters is available this can
be incorporated into the estimation procedure. Since we are concerned with layered
data structures and dip estimation, a logical approach is to use the dip estimate
provided by one of the algorithms in Chapter 4 to specify the value of §. This is

the approach taken in the next section and throughout this chapter.

5.2 ML Estimation of Edges

The previous section discussed a model for an edge in layered data. The purpose

of this section is to develop the ML estimate of the edge location. It is assumed
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that the edge orientation (the dip) is already known and the estimation procedure
concentrates on the unknown value for r (see Figure 5.1).

The ML estimate of r is obtained by solving
amr = arg max{log p|s|r, ]} (5.3)
where 8 is known. Substituting the distribution for s into (5.3) we obtain
fymL = arg mra.x{— log |IT| — sTIT s} (5.4)

where the matrix II is as in (5.2).
Solving (5.4) requires the determinant and inverse of II. Fortunately, II is a
simple matrix for which the determinant and inverse are easily computed. The

matrix IT is composed of two sub-matrices which have the form
Xis;| = Lisy + 02I|sl.|, i=1,2 (5.5)

where 1, is the |S;| X |S;| unity matrix and I|s, is the |S;| x |S;| identity matrix.
The determinant of X|g, is

det(Xis,)) = ()51 o? + |Si]], i=1,2 (5.6)
The inverse of X|s, is
XITS'TI - m[_llsd + (o +|Si)fisy],  i=1,2 (5.7)

The result in (5.7) is easily verified by multiplication with (5.5). The result in (5.6)
is shown in the appendix to this chapter.
Using the results of (5.6) and (5.7) the determinant of II is

det(Il) = det(Xs,|) det(X)s,|)
(o%)IBH520% 1 [53]][0” + 1))
= (@*)""7*[(0%)* + ninao® + 151||S|] (5.8)

where (|S1] + |Sz2|) has been replaced by nin;. The inverse of II is

X 0
nt=|"’® = (5.9)
0 Xlszl
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The quadratic product of the data, s, with the inverse of II yields a simple result.

7' = s Xish s, + 875, Xish8is,
— 2 T 1 2
= zﬁls-'l{az( 2 1+ [Si)) [~Ljsy + (o* + |1Si) L5} 85,

i=1

_ o’ + 5] L2 - 1
- Z[az(omsn,,es ZCE RN

kES;

= Z{ 2[2 sk’ CEYA) +|S| (2 =)} (5.10)

i=1 kes; keS;

When 0% < |;| the inner bracket of (5.10) is approximately |S;|63, where 6%, is the
sample covariance of the data in set S;.
Substituting (5.8) and (5.10) into (5.4) yields

Pz = arg max{ — log[w)"*"r”[(a?)* + nunao? + 515
(2 s? - ‘( se)’]} (5.11)
02 sZ; k%.; ? + IS I kEG;.'
Discarding constants which are independent of r yields
fmL = argmax{ - 108[02("'1"2 +0%) +51[ ]
1 2
- Sk — Ty Sk }
FLIE - G (S

= argmax{ - log(a + |S1|) — log(o® + |S2))
1 2
- §[k§ k z 3 ISEI) (kezs, sk) ]} (5'12)

Assuming o? < |S;| gives
1 2
mr ~ arg max{—log||5]|5,|] — ;[Z |S:|6%.]} (5.13)
=1

Equation (5.13) has an intuitively pleasing interpretation. Specifically, the ML
estimate for the r is obtained by separating the data into the two sets so that we

minimize the sum of the sample variances in each of the two regions plus an energy
term.
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The local edge detection algorithm proposed in this section is based on a model
which assumes data on either side of the edge is constant and observed in additive
white noise. The ML estimate of the edge location consists of finding the edge offset
which minimizes the sum of the sample variances on either side of the edge. The
model is similar in character to those used by other edge detection algorithms
found in the literature [19], [21]. However, it seems that this edge estimation
algorithm based on this model is unique. Although, for the purposes of this thesis
the algorithm for estimating the edge location looks only for the edge offset, the
proposed model could be used for estimating both offset and angular orientation.
The prior knowledge obtained from dip estimation algorithms (which indicates the
likely value of the edge’s angular orientation) described in Chapter 4 is utilized here
to simplify the edge estimation problem.

The next section illustrates the use of the ML estimation procedure described

here.

5.3 Examples of Local Edge Estimation

This section demonstrates some of the characteristics of the ML edge estimation
procedure described in Section 5.2. In particular, the examples discussed here
illustrate the effect of the parameter o on the performance of the algorithm. Also,
some approximations to the ML estimation procedure are examined.

As in Chapter 4 the edge estimation algorithm is applied to a large data set
which has varying edge characteristics. The algorithm is applied to the data by
moving a small window over the data assuming that the characteristics of the edge
model hold within the window boundaries. The edge estimation algorithm described
in Section 5.2 is repeatedly used on the data within the confines of the window as
it is moved over the data. For each window location an edge is estimated and the
location of the edge is associated to the center pixel of the window. In this manner,
and edge estimate field is produced (similar to the dip estimate fields of Chapter 4).

The data set which receives the most attention in this chapter is illustrated in

Figure 5.2. This data set is used to illustrate the edge estimation algorithm of
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Section 5.2. The examples of this section assume that the data window consists
of a 7 x 7 array of data elements. Furthermore, the prior information concerning
the slope of edge estimates is given by the dip estimates obtained from the data in
Figure 5.2 using the SPROJ algorithm described in Chapter 4. These dip estimates
are illustrated in Figure 5.3.

Figure 5.4 illustrates an edge estimate based on the raw data and dip data of
Figures 5.2 and 5.3. In the figure each of the large dots represents an estimated
edge location. The small dots represent the locations of pixel centers. Each edge
is associated with a pixel, and this is illustrated by a line connecting the pixel’s
small dot to the edge’s large dot. For clarity, the ensuing examples display neither
the small dots representing pixel locations nor the lines connecting pixels to their
edges. ‘

The first three examples in this section are based on (5.12) in Section 5.2. In
the three examples the value of 0? changes. The values for o? are .01, .1, and 1.0.
The estimates based on these values are illustrated in Figures 5.5-5.7, respectively.

It can be seen that the sharpest edges in Figure 5.2 correspond to highly clustered
edge locations in Figures 5.5-5.7. However, there are clear bed boundaries in
Figure 5.2 which correspond to edge estimates which are not so well clustered.
An example of this is highlighted in Figure 5.5. The bed boundary in the data
corresponding to the region of edge estimates boxed in Figure 5.7 has an important
characteristic. This bed boundary has a cross-section which consists of a broad
ramp rather than a sharp jump. The model for our estimation algorithm assumes a
sharp jump. Consequently, there is spread in the edge estimates as windows which
are farther away from the bed boundary continue to find a portion of the ramp
cross-section.

As the value of o? increases the amount of scatter in the edge estimates increases
in the three figures. This is a result of the algorithm being less sure of low contrast
edges in the assumed presence of more noise. In particular, the boxed region of
Figure 5.6 corresponds to a clear, but low contrast, bed boundary in Figure 5.2. As
can be seen, for 02 = .1 this boundary is fairly clustered, however, less so than for

0? = .01. For 0% = 1.0 this bed boundary completely disappears.
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Figure 5.5: Edge Estimates for o = .01.
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The following two figures, Figure 5.8 and Figure 5.9 illustrate edge estimates
based on the algorithm suggested by (5.13). Here it has been assumed that the
value of o? is much less than the number of data elements in either group separated
by the edge. In Figure 5.8 02 = .01 and in Figure 5.9 it takes the value 0% = 1.0. It
is not surprising that the results in Figure 5.8 look identical to those in Figure 5.5.
The value for 0% used in generating these two pictures is .01. Since the number of
data elements in a set can be no less than 1 the assumption that o? is much less
than the number of elements of either set is satisfied. However, for 0% = 1.0 we have
a situation where sometimes the number of group elements approaches the value
of o%. The approximation used to obtain (5.13) does not hold under this condition
which is reflected in the additional scatter observed in the estimates of Figure 5.9.
The final example of this section is illustrated in Figure 5.10. Here a markedly
different approximation is used. First, the log term of (5.13) has been discarded.
Second, the weighted sum of sample variances in (5.13) has been changed so that
it is an unweighted sum of sample variances.

The rationale for the algorithm is as follows. The weighting of the sample
variances by the number of elements in their respective groups has an effect on the
estimation procedure. This effect tends to favor edge estimates which are closer to
the center of the data window. Consequently, since our data windows are small, the
edges tend to be biased away from strong bed boundaries when these boundaries
intersect the window far from its center.

The illustration of the unweighted sum of sample variances algorithm is shown
in Figure 5.10. The value of o? is assumed to be very small since, as stated, the
log term of (5.13) has been discarded. As can be seen, the estimates are much
more clustered than in the previous figures. It is this algorithm which is used in
the discussion of algorithms for global line estimation described in the remainder
of this chapter.
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Figure 5.8: Edge Estimates for 0? < |S;i|, ¢ = 1,2, 02 = .01
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5.4 Global Line Fitting by Clustering

In Sections 5.1 and 5.2 we discussed modeling and estimation of local edges. As was
illustrated in Section 5.3 the edge estimation procedure produced estimates for large
data sets by using a moving window. These edge estimates were highly clustered
along bed boundaries. The objective of this section is to reduce the quantity of edge
estimates. This is accomplished by fitting straight lines to appropriate portions of
the edge estimates. The line fitting serves to compress the information in the data
by identifying the edges (and consequently dips) between layer boundaries.

The type of data we have considered in this thesis consists of an unknown number
of layers and, consequently, our methods must be independent of this knowledge.
Our method of global line fitting of local edge estimates begins by clustering local
edges together. Edges which seem likely to belong to the same global line are
clustered together. Each group of local edge estimates is then fit by a line which is
a least squares fit of the edges.

An examination of Figure 5.4 reveals the underlying goal of the clustering
portion of the algorithm. As can be seen, the pixel locations seem to be groupable
in terms of how their respective edges cluster around the major bed boundaries in
the data. One intuitively reasonable grouping is illustrated in Figure 5.11. The
objective, then, is to find some rules which allow us to partition the data elements
into such groups.

The grouping part of the algorithm begins by choosing an element of the data
array. This element has a dip and edge estimate associated with it. The algorithm
then finds all the elements which adjoin the first element and which satisfy certain -
constraints. This is followed by checking adjoining elements of the elements adjoin-
ing the first element. In this way a region is grown from a single element which
consists of elements which have characteristics similar to the first element.

The above-mentioned constraints are as follows. First, the value of dip cannot
drift too far from the first element’s dip. Second, the distance between local edges
estimates of adjoining elements must be less than some specified value. Finally,

the geometry of edge estimates belonging to adjoining elements must satisfy certain
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Figure 5.12: Types of Edge Geometries

conditions.

The geometric conditions which must be satisfied by edge estimates are il-
lustrated in Figure 5.12. Figure 5.12 illustrates adjacent pairs of data elements
(represented by squares). Also illustrated are the edge estimates associated with
the data elements. The edges are connected to the data elements by lines starting
in the data element center and terminating at the edge center. The connecting
lines represent dip directions. The function of the geometric condition is to rule
out groupings of elements which satisfy the dip and edge distance constraints but
from geometric considerations should not be clustered together. The illustration
in Figured 5.12c depicts a situation where the dip is equal and the edge locations
are close. However, the connecting lines point in opposite directions. Under these
conditions it seems evident that the data elements should not be clustered together.
The geometries in Figures 5.12a-b are acceptable. The rule for deciding whether
the geometry is acceptable or not is as follows. Project the edge locations onto the
line connecting the data elements. If both edge projections fall between the data
element locations or if both fall to the same side of one of the data element locations

then the geometry is acceptable (Figure 5.12a and b). If one edge projection falls




CHAPTER 5. EDGE MODELS FOR LAYERED DATA 194

on one side of both data elements and the other edge projection falls on the other
side of both data elements then the geometry is unacceptable (Figure 5.12c).
Consequently, each element of a cluster must satisfy three conditions with at
least one other neighboring element in the cluster. For these two elements we
denote the pixel locations by p; and p;, their respective dip values as d; and d;, and

the edge locations as e; and e;. The first two constraints are
di-d; >ty (5.14)
les — e;] < t. (5.15)

where t; and ¢, are positive constants. The final constraint is that the projections

fi = (ei—p)-(p; —pi)
fi = (e —p)-(p; — i)
p = (pi—m)-(pi—pi) (5.16)

may not configure such that f; <0 and f; > por f; <0and f; > p.

After all the elements associated with the first cluster have been identified, a
new cluster is started. The new cluster is begun by choosing a data element which
is not assigned to any cluster yet. Then a cluster is grown from this new data
element. In this way the entire data set is partitioned into sets of elements which
contribute to an individual global line.

The second stage of the algorithm performs a least squares fit of a line to the
edge elements in each group. The least squares fit of a line is a simple computation
to make. For example, assume that one of the edge groups consists of a set of edge

locations {(z:, )|t = 1,2,...,N}. We desire to find the parameters (a,b) such that

E = f:e,-z = f:(y.- — az; — b)? (5.17)

=1 =1
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is minimized. The values of (a, ) which minimize E are (see [7])

a = izy/x:l::r: (5.18)

b = fy—ajl, (5.19)
1 N

f; = — : 5.20

Z N2 ® (5.20)
L s

by = S22 U (5.21)
! Ni:l
R 1 XN

Ay = ‘ﬁ(zziyi)—ﬁzﬁy (5.22)
=1
o 1 XN

See = (@) - (B2)° (5.23)
=1

The length of the line is also determined by the edge locations {(z:,y:)|¢ =
1,2,...,N}. The line is terminated at the two edge locations which have the most
extreme projections onto the least squares line. Figure 5.13 illustrates the procedure.

One might suggest a modification to the above least squares estimation of the
slope a. Since we have the estimated dip values for each of the elements in a cluster
group we can use this information to obtain an estimate of the slope associated to
the cluster. For example, if d is the average dip of the cluster then a reasonable
estimate of the slope is @ = —d,/d, where d, and d, are the z and y components
of 3, respectively. However, such a procedure is subject to bias errors in the
estimated local dip values. If for some reason many of the local dip estimates
are not perpendicular to the bed boundary (see Figure 5.14) then the global slope
estimate obtained by averaging these dips will also be biased. Consequently, it is
more sensible to rely on the global information contained in the clustered elements
to obtain the slope estimate than it is to rely on the local dip estimates. This
conclusion has been born out by our experimental observations. Another possibility,
of course, is to use some convex combination of the two methods for estimating the
slope. The weighting on the two estimates would then reflect our prior confidence
on the reliability of the two methods.

The next section illustrates the use of the global edge estimation procedure.
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Figure 5.13: Least Squares Fit of Line to Data Where Line Boundaries are Deter-
mined by Extreme Projections of Data
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Figure 5.14: Edge Which is Not Perpendicular to Dip
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5.5 Examples of Global Line Estimation by Clus-

tering

In this section we illustrate the algorithm described in Section 5.4. The input data
to the algorithm is the data set illustrated in Figure 5.10. Three examples are
discussed in this section. These examples illustrate the behavior of the clustering
threshold parameters for edges and dip.

In each of the ensuing examples we choose an edge and dip threshold. The edge
threshold is the maximum distance between any edge in a cluster and the seed edge
for that cluster. The dip threshold is the value for which all the dips in the cluster
must have inner product less than or equal to with that of the seed dip. These two
threshold values are referred to as t. and ¢4 (see (5.14) and (5.15)), respectively.

The first example is illustrated in Figure 5.15. In this example the values of
the cluster thresholds are t, = .9999 and tq; = .9999. These two threshold values
are significant for the following reasons. The pixels of the original data are of unit
distance from each other. Consequently, edges which fall right at the center of their
windows will not be clustered together with ¢, = .9999. The value of ¢4 is chosen so
that only data elements with identical dip are clustered together. The dip values
of the data in Figure 5.3 are discretized to values of m/51. Consequently, since
cos(m/51) = .9981, when t; = .9999 the dips within a cluster must all have the
same value.

As can be seen in Figure 5.15 the global line estimates consist of lines which
range in length from small lines to lines which almost span the image. The number
of clusters obtained for this figure was 380 and the clusters consisting of a single
element are not displayed. Figure 5.16 is an overlay of the estimates in Figure 5.15
on the raw data. As can be seen, the estimates nicely superimpose on the bed
boundaries of the data.

The example of Figure 5.17 illustrates the global line estimates for ¢, = .75 and
tqy = .9999. Clearly, most of the lines become shorter due to the more stringent
constraints imposed on cluster membership. The number of cluster groups for this

example was 724.

e e e b
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Figure 5.15: Global Line Estimate for ¢; = .9999 and t. = .9999
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Figure 5.16: Overlay of Global Line Estimates on Raw Data
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Figure 5.17: Global Line Estimates Using ¢, = .75 and ¢4 = .9999
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The final example is illustrated in Figure 5.18 where the cluster thresholds are
te = 1.5 and t; = .86. In this example both thresholds have been changed to
dramatically increase membership of cluster groups. The total number of cluster
groups in this example was 34. Since the thresholds are greatly relaxed the cluster
groups contain many more elements and consequently produce global line estimates
which are highly biased. Too many elements are contained in many of the cluster
groups to obtain satisfactory results from the least squares line fitting performed in
the algorithm.

The global line estimation algorithm described in Section 5.4 does produce some
reasonable compression of the dip and edge estimates for certain values of ¢, and ¢,.
More compression can be had, however, only at the price of substantial bias in the
line estimates. Furthermore, the cohesiveness of the line estimates obtained in the
global line estimation algorithm is low. It could be desirable to tie together lines
which are associated to the same bed boundary so that only long lines exist. This
would be an improvement in the cohesiveness of the global line estimates. The next
section addresses this goal by introducing an algorithm which employs a bank of
Kalman filters on the raw edge and dip data. Later, the output of the global line

estimation algorithm is used to drive the Kalman filter bank algorithm.

5.6 Edge Tracking Using the Kalman Filter

The results in Sections 5.4 and 5.5 are encouraging. The objective of these sections
is to show how to compress the quantity of local edge estimates obtained from
algorithms proposed in Section 5.2. The edges are somewhat compressed by the
algorithms of Section 5.4 however the degree of compression must be limited.
Specifically, if the algorithms of Section 5.4 are used to obtained too high a degree
of compression then a high degree of bias is present in the fitted lines. This is
because the algorithm attempts to fit straight lines to clusters of data. If the
clusters are large due to loose thresholds then there is some chance that the cluster
is associated with a curved line. The straight line fit to this will then necessarily be

biased. When the thresholds are tight relatively straight lines are broken up into
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Figure 5.18: Global Line Estimates Using t, = 1.5 and t4 = .86
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many pieces. These pieces lead to global line estimates which lack cohesiveness due
to the fact that the lines are not connected.

The objective of this section is to describe an algorithm which produces a more
cohesive grouping of the edges into global line estimates. This is accomplished using
a modified version of an edge tracking algorithm described in [1]. The method
employs a bank of Kalman filters which track edges from one side of the data set
to the other.

The output of the algorithm in Section 5.3 yields locations of local edge esti-
mates. These estimates consist of the edge locations. The edge orientations (slopes)
are already known from dip estimation algorithms described in Chapter 4. A bank
of Kalman filters is used in this section to track these local edge estimates. Fach
of the Kalman filters is governed by the same dynamics and observations model.
This model is described first and is followed by a discussion on how the model is

implemented to accommodate the local edge estimates of Section 5.4.

5.6.1 Edge Tracking Model

The edge tracking model is simple. It consists of discrete dynamics and observation

equations. They are as follows

Ty = Fzp+w,
11
= 0 1 ] Zy + wy (5.24)
Y, = mtu (5.25)

where z, is a two-vector for which the first element is the edge location and the
second element is the edge slope. The dynamics (5.24) state that the edge location
at k41 is equal to the edge location at k plus the slope at k (which is appropriate if
the horizontal distance from location k to k+1 is unity). Furthermore, the slope at
location k + 1 is the same as that at location k subject to the addition of dynamics
noise wy. This allows our filters to track lines that vary somewhat from straight

lines. The observation equation (5.25) is simply the state vector in additive noise,
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v,. Both w, and v, are assumed to be zero-mean, white, Gaussian processes which
are mutually independent of each other.
The covariance matrices of w, and v, need to be specified. These covariance

matrices are denoted @ and Ry, respectively, and in this model take the forms

[ gl ©

Q=|"" (5.26)
| 0 g2 |
SR

Ro=|"* (5.27)
| 0 1'2), ]

5.6.2 The Kalman Filter Equations

Since the model in Section 5.6.1 is for a two-dimensional state vector the Kalman
filter equations are easily obtained. The Kalman filter equations are composed of

three parts. There are the initialization equations
z(11) =z, (5.28)

p(1]1) = p (5.29)
where z, is the initial state estimate and p, is the 2 X 2 error covariance matrix
associated with z;.

The next part of the Kalman filter equations consist of the prediction updates

B(k-+10k) = Fa(klk)
11].
- 1, l-g(k|k) (5.30)
plk+10K) = Fo(klk)FT + Qs

I p(k|k)[1 0]+[q1" 0 ] (5.31)

| 0 1| 11 0 g2

Finally, there are the observation update equations

2(k[k) = 2(klk — 1) + Kily, — 2(k[k — 1) (5.32)
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p(klk) = [I - Ki]p(klk — 1) (5.33)

Kp = p(klk—1)[p(k|k — 1) + Re] ™

le 0 -1
— ]] (5.34)

= p(klk—1)[p(k|k —1) + o

where Ry is as in (5.27).
The next sub-section describes how the Kalman filter equations of this section
are applied to the data (i.e. the edge locations and slopes). The issues addressed

are concerned with specifying the observations in (5.25) and covariance values in
(5.26) and (5.27).

5.6.3 Edge Tracking with the Kalman Filter Bank

The Kalman filter equations of Section 5.6.2 specify filtering for a single state
process. The edge data generated by the algorithms of Section 5.2 consists of many
state processes. We are interested in identifying the individual processes as well as
tracking each process. This is accomplished by running a bank of Kalman filters,
one filter for each process. However, there are two issues which must be resolved to
accomplish this goal. The first issue concerns representation of the data in a form
suitable for the Kalman filtering. The second issue deals with how observations of
the data are assigned to the individual Kalman filters. This section discusses the
first issue and the next section discusses the second.

The Kalman filter equations in Section 5.6.2 are for discrete observations of the
data. Consequently, the data must be located on a discrete grid. The edge estimates
produced by the algorithms in Section 5.2 are converted to absolute locations in the
image and then are assigned to discrete locations on an N x N grid. The edge
locations are represented on the N x N grid via an N X N matrix. If an edge exists
at grid point (k,!) then a one is entered into the (k,!)** matrix location. The grid
locations with no edges associated are represented by zeros in the corresponding
matrix locations. Another N X N matrix contains the slopes of these edges where

the slopes are obtained by computing the appropriate ratio of the dip components.
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Four other N x N matrices are required. These matrices contain the associated
entries of the noise variances g1, ¢2;, rl;, and r2;. The parameters g1, and ¢2;
are noise variances for the dynamics equation (5.24). These parameters must be
chosen. The performance of the edge tracking algorithm will depend on the values
chosen and more about this is discussed in a later section. For the moment it is
sufficient to say that, for our purposes, g1, and ¢2; are constants independent of
location.

The variances r1; and r2;, however, reflect our confidence in the estimates of
the k** edge location and its slope, respectively. Since the estimates of the edge
location and its slope (derived from the dip) are obtained by maximizing likelihood
functions we can say something about the error variances associated with these
estimates.

Our method of determining a bound on the error variance of estimates is by
computing the Cramer-Rao lower bound. The Cramer-Rao bound is a lower bound
on the error variance for an estimate. In the case of a linear estimation problem the
Cramer-Rao lower bound is “tight”. That is, the Cramer-Rao bound is equal to the
error variance for linear estimation problems. Furthermore, in the linear estimation
problem the expected value of the log-likelihood function is a down-turned quadratic
of the form

y=—a(z—-b)*+c (5.35)
where ¢ is the height of the maximum, b is the location of the maximum (that is
the ML estimate of the parameter), and 1/(2|a|) is the Cramer-Rao bound.

Our procedure for obtaining r1; and r2; is to fit a quadratic of the form (5.35)
to the sample likelihood functions computed in determining the ML estimates of
edge locations and dip. The value of 1/2|a| is then taken to be our estimate for
the error variance. This is not equivalent to computing the Cramer-Rao bound,
however, it is similar in character. The procedure computes a as a least squares fit

to the sample likelihood function in the vicinity of the maximum. That is

a

min E = main{f:[y.- —c—a(z; — b)?*} (5.36)

=1

where b and ¢ are assumed to be known from computation of the ML estimate. The
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value of a is obtained by differentiating E with respect to @ and setting the result

to zero.
%=_zz[y,_c-a — b)?)(z:i — b)* =0 (5.37)

Solving (5.37) yields
Tty — ) (zi — b)?
Ei 1(1?. )4l

Summarizing this section, we have converted the edge estimate locations to a

a=

(5.38)

discrete N X N grid. Associated with each edge location are five other parameters:
the slope value of the edge (obtained from dip estimates), the dynamics noise
variances gl and g2, (chosen values), and the observation noise variances r1; and
r2 (computed from sample log-likelihood functions). The next section discusses

how observations of edges are assigned to Kalman filters.

5.6.4 Assigning Edge Estimates to Kalman Filters

As described in the previous section the edge locations are discretized to an N x N
array. The Kalman filter bank tracks edges from one side of the array to the
other. The question discussed in this section concerns how edges are assigned to
the Kalman filters.

The bank of Kalman filters is initialized using the edge estimates on one side
of the data array. Since the array is N x N there can be no more than N tracks.
Consequently, the Kalman filter bank consists of N filters. In our implementation
the left hand column of the data array is used to implement the Kalman filter bank.
If an edge exists at the k** position of the column then a Kalman filter is initialized
there. The initial state values are simply the estimates (the edge location k and its
corresponding slope) themselves. The initial error variance matrix is the diagonal
matrix consisting of the estimated values for r1; and r2; (discussed in Section 5.6.3).
If no edge exists at the k** position then no filter is initialized there.

The next step of the algorithm consists of using the prediction update equations
in (5.30) and (5.31) on the Kalman filters which have been initialized. The Kalman

prediction update equations produce the best estimates of the edge and slope values
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in the next column given the data in the present column. Furthermore, the error
variance associated with these estimates is obtained.

The next stage of the algorithm is the critical step. The second column from
the left contains edge locations and their slopes as well as error covariance values.
The question is how to assign these values to the initialized Kalman filters. Several
possibilities exist. For each Kalman filter it must be decided whether or not an
edge can be assigned to it. For each edge it must be decided which Kalman filters
it may possibly be assigned to.

The assignment of edges to Kalman filters can be formulated as an optimal hy-
pothesis testing problem. However, the algorithm presented here does not perform
hypothesis testing. Rather the algorithm presents a simple heuristic procedure for
making the edge assignments.

The first step of the procedure does the following. For each of the Kalman
filters the prediction updates and their error covariances are used to determine
regions of the next column of the array where edges are predicted to be. That
is, the I** Kalman filter looks in a window of the next column which is centered
at the prediction update for the edge location of that filter (see Figure 5.19).
The window width is proportional to the square root of the error variance of the
prediction update. Thus, the I** Kalman filter looks in the range [Z4,1x(1) —
apk+1|,,1/2(1,1),@,,_,_1',,(1) + aprsap/?(1,1)] for the existence of edges. If an edge
is found then it is similarly checked to see whether the slope is in the window
[Zk+1x(2) — ﬂpk+1|,,1/2(2,2),ik+1|,,(2) + ﬂp,,+1|,,1/2(2,2)]. An edge in column k + 1
satisfying these conditions is a candidate observation for this Kalman filter.

The procedure of manufacturing windows for the Kalman filters based on the
prediction update equations yields the observations for the filters. However, there
are conflicts which must be resolved. The possible situations include no observations
for a filter, exactly one observation for a filter, many observations for a filter, and one
observation shared by more than one filter. We have used the following procedure
for handling these situations.

First, we insist on one edge per Kalman filter. If no edge exists for the /** Kalman

filter then it is updated by prediction only for up to h steps. If no edge is found in
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Figure 5.19: Kalman Prediction Window
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these h steps the filter is terminated at the first prediction only update. If edges
exist which are unassigned to any Kalman filter they are used to initialize new filters.
An edge which belongs to only one window is assigned to the associated Kalman
filter. Finally, the edges which could belong to several filters due to overlapping
windows are assigned based on optimizing a weighted innovation process. That is,
for each possible edge belonging to each possible window the following function is
computed

| Kely, — 2(k|k - 1)]|2 (6-39)

Over the entire set of edges which could belong to more than one filter, the edge and
filter pair which minimize (5.39) are assigned to each other. Once this assignment
is made that edge can be assigned to no other filter and that filter can have no
other edge. The remaining filters are assigned edges in an identical fashion, always
forming the next pair which minimizes (5.39).

The final stage of the algorithm performs the observation updates of the Kalman
filters using the observation assignments of the previous stage. This in turn is
followed by the prediction update stage again, etc, until the entire N x N array is

traversed. The next section illustrates this procedure with some examples.

5.7 Examples of Edge Tracking Using a Kalman
Filter Bank

This section illustrates the features of the Kalman filter bank algorithm described
in Section 5.6. There are many parameters involved in the use of the Kalman
filter bank algorithm. The objective of this section is to present some of the major
characteristics of the algorithm.

The Kalman filter model presented in Section 5.6.1 is controllable and observ-
able. Consequently, the filter characteristics are well behaved. The major charac-
teristics of the Kalman filter bank algorithm are functions of the relative amounts
of noise getting into the dynamics and observations of the model. The ratio of

dynamics to observations noise controls the balance between the prior assumptions
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concerning the model validity and the confidence in the observations of the data.
The other parameter of interest is the one specifying the number of updates by
prediction only that are allowed before termination of a line.

Addressing the trade-off between observation and dynamics noise we refer to
Figures 5.20-5.23. Each of the figures illustrates the use of the Kalman filter bank
algorithm where the input data is the dip data of Figure 5.3 and the edge data
of Figure 5.10. Figures 5.20-5.22 illustrate the algorithm for specified values of
observation and dynamics noise. Figure 5.23 uses observations noise estimated
from the raw data as described in Section 5.6.3.

In Figure 5.20 the observation noise and dynamics noise have covariances which
are equal and the values of these covariances are set to gl = r1; = 1. and ¢2; =
r2;y = .5. The value of the window scale parameter , «, is set to unity in this
example and in all of the remaining examples. The maximum number of prediction
only updates is h = 6.

The performance of the Kalman filter bank estimates in Figure 5.20 is good.
For the most part edges have been tracked for extended distances. In many regions
several edges are tracked which are very close to one another due to the spread
in the original local edge estimates. There are a handful of points in Figure 5.20
which are the locations of local edges which were not successfully tracked to any
other local edge. This is due to the failure to find appropriate edges located in the
prediction windows of the Kalman filters associated to these edges.

Figures 5.21 and 5.22 are estimates from the Kalman filter bank algorithm
for increased dynamics noise and increased observation noise, respectively. In
Figure 5.21 the dynamics noise covariance is g1, = 1000. and ¢2; = 500. whereas
the observation noise covariance is rly = 1. and r2; = .5. As might be expected,
the algorithm gives more weight to the observation than the model dynamics under
these conditions. Consequently, the tracks illustrated in Figure 5.21 look noisier
than those in figure 5.20.

In Figure 5.22 the observation noise covariance is r1; = 1000. and r2; = 500
whereas the dynamics noise covariance is gl = 1. and ¢2; = .5. Here the estimates

are much smoother than those in Figures 5.20 or 5.21. The reason for this is that the
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Figure 5.20: Kalman Filter Bank Estimates for qly = r1y = 1., ¢2; = r2; = .5, and
h=6



CHAPTER 5. EDGE MODELS FOR LAYERED DATA 214

Figure 5.21: Kalman Filter Bank Estimates for g1, = 1000, ¢2;, = 500, r1; = 1.,
r2,=.5,and h =6
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filters are more confident of the model dynamics than they are of the observations.
Consequently, the estimates are more likely to conform to long straight lines.

Figure 5.23 is similar to the previous figures, however, here the values of r1; and
r2; are estimated and as such are not constant valued. The estimated values for r1;
and r2; enter into the Kalman filter equations in the computation of the Kalman
gain. In this way the confidence of the local edge estimates is directly accounted
for in the way they are weighted in the observation update equation.

Comparison of the results in Figure 5.20, 5.22, and 5.23 is interesting. In
Figure 5.20 the values for the covariance of the observation noise is small and
so the estimated lines are noisy. In Figure 5.22 the values for the variance of the
observation noise is high and consequently the estimated lines are smooth. However,
the estimated lines are overly smooth and depend too heavily on the initial edge
estimates at the left side of the figure. The estimates in Figure 5.23 find a nice
middle ground. This is due to the use of the estimated values for r1; and r2; which
gives rise to an appropriate scaling and balance for the observation noise in the
filtering algorithm.

The final example of this section illustrates the effect of the prediction only
threshold parameter, h. In the previous examples of this section h = 6. In
Figure 5.24, h = 18. As can be seen in the figure the performance of the algorithm
is most notable for the extended tracking of edges. In particular, there are several
tracked edges which extended across regions for which it appears there should be
no edges. However, the value of the prediction only threshold parameter is so large

in this case that connections are made between local edges which are very far apart.

In conclusion, this section illustrates how a cohesive global line algorithm can be
achieved using a Kalman filter bank. However, in comparison with the results of the
global line estimation algorithm of Section 5.4, very little compression is achieved.
The next section shows how both compression and cohesiveness can be obtained by

employing both methods in conjunction with each other.
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Figure 5.22: Kalman Filter Bank Estimates for r1, = 1000, 2, = 500, ¢1; = 1.,
q2k=.5,andh=6
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Figure 5.23: Kalman Filter Bank Estimates for r1; and r2; estimated, gl = 1.,
g2y = .5,and h =6
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Figure 5.24: Kalman Filter Bank Estimates for ¢l = r1;y = 1., ¢2; = r2; = .5, and
h =18
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5.8 Combining Groupings with Kalman Filtering

As was seen from the examples in Section 5.7, the Kalman filtering approach for
obtaining global line estimates has some undesirable features. These have to do
with the fact that there is very little compression of the local edge estimates by
using the Kalman filter approach!. The desirable features of the Kalman filtering
approach are the cohesiveness of the global line estimates.

The Kalman filter global line estimates are in contrast with the grouping es-
timates illustrated in Section 5.5. The grouping estimates realize quite a bit of
compression from the local edge estimates. However, the cohesion of lines is poor.

This section shows how combining the two techniques, Kalman filtering and the
grouping estimates, can yield a high degree of compression and cohesion in the
global line estimates. The method is quite simple. It proceeds by performing the
grouping estimate first. The output of the grouping estimate is then converted
to a form acceptable as input to the Kalman filter algorithm. The output of the
Kalman filters then consists of a compressed (due to groupings) and cohesive (due
to Kalman filtering) estimate of the global lines.

The conversion from the output of the groupings estimate to input acceptable
to the Kalman filters is simple. The groupings’ output consists of pairs of points
representing the endpoints of straight lines. These endpoints are discretized to
the N x N grid used in the Kalman filtering algorithm. Furthermore, for each
column between the pair of converted endpoints there is a grid row location which
is associated to an edge on this line.

In this way, all the straight lines from the groupings output are converted to edge
locations in the N x N array for the Kalman filtering algorithm. The associated
slope values come from the slope of the lines. The values for the error variances
are chosen in the same manner as described in Section 5.7. The following example
illustrates how this combination method performs.

Figure 5.25 shows the output of the Clustering-Kalman filtering algorithm. The

inputs to the clustering algorithm are the edge and dip estimates of Figures 5.10 and

1There is some compression due to the discretization of local edges to an N x N grid.



CHAPTER 5. EDGE MODELS FOR LAYERED DATA 220

5.3, respectively. We used the clustering parameters t, = .9999, t; = .9999 which
produced output identical to f.ha.t in Figure 5.15. The clustering algorithm output
is utilized by the Kalman filter bank algorithm. The parameters of the Kalman
algorithm are ql;y = r1; = 1. and ¢2; = r2; = .5 and h = 6.

As can be seen by comparing Figure 5.25 to Figure 5.15, the cohesiveness of the
output has been greatly improved. Comparison of Figure 5.25 to Figure 5.20 shows
that the compression of the edge estimates has also been greatly improved. An
additional modification can be made to the Clustering-Kalman filtering as we have
described it. The output of the Clustering algorithm has some groups which consist
of a single element. The objective of the Clustering algorithm is to compress the edge
estimates by clustering them into groups which can then be fitted by straight lines.
Fitting lines to cluster groups containing few elements is more prone to errors than
fitting lines to cluster groups containing many elements. Consequently, singleton
groups can be interpreted as consisting of spurious edge estimates which one might
not want to use as input to the Kalman filter stage of the algorithm. The results
of Figure 5.26 illustrate the output of the Kalman filter bank when the singletons
in the Clustering algorithm output have been discarded. As can be seen the results
in Figure 5.26 are a bit smoother and less cluttered than those of Figure 5.25. If
one accepts the interpretation of singleton groups as spurious edge estimates then
the reduction in clutter is no surprise. The Kalman filter bank algorithm avoids
tracking edges which belong to no global edge. On the other hand, it is possible
to have singleton groups which correspond to legitimate edges. An example of this
would be a local edge located at the knee of a sharply curving global line. In this
situation, the local edge is an important part of a global line which one would
not want to discard since it would help to maintain the cohesiveness of the global
line in the Kalman filtering algorithm. The loss of an important singleton may be
overcome by increasing the value of h, the prediction only parameter. As will be
seen in Chapter 6 the discarding of singletons is a useful modification.

There is an additional post-processing technique that is discussed in this section.
The results in Figure 5.25 can be improved by performing some additional combining

of the estimated lines. The procedure looks through the set of lines which are the
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Figure 5.25: Combined Clustering-Kalman Filtering Algorithm ¢, = t; = .9999,
qly =71l =1.,q2, =712, =.5,and h=6
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Figure 5.26: Combined Clustering-Kalman Filtering Algorithm ¢, = t; = .9999,
qly =1l = 1., ¢2; = r2; = .5, and h = 6 with Singletons Discarded
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Figure 5.27: Averaging of Overlapping Lines

output of the combined Clustering-Kalman filtering algorithm. For each line, the
endpoints are examined to determine whether either endpoint is close to another
line. Under two conditions which are illustrated in Figure 5.27 we perform some
extra processing. In Figure 5.27a the top portion of the figure illustrates two lines
for which the lower line has both of its endpoints near the upper line. In this case
the two lines are combined by averaging the two lines between the endpoints of the
lower line and attaching this to the remaining segments of the upper line. This
produces the new line (a combination of the two old lines) which is illustrated in
the lower portion of Figure 5.27b.

In Figure 5.27b a similar processing technique is illustrated. The difference here
is that one endpoint of the lower line is close to the upper line whereas the other
endpoint of the lower line is not. However, one of the endpoints of the upper line

is close to the lower line. Consequently, the procedure retains the left portion of
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the lower line and the right portion of the upper line. The middle portion is the
average of the upper and lower portions.

Performing this averaging of lines requires an evaluation of the closeness of end-
points to lines. Therefore, a closeness threshold, /., must be chosen. Furthermore,
since the raw data consists of layered beds (which should have long bed boundaries),
short lines are discarded upon obtaining the output of the averaging procedure. The
discarding of short lines relies on a line length threshold, ;.

Figure 5.28 illustrates the averaging procedure applied to the data of Figure 5.25.
The thresholds take values I, = 1.5 and l; = 4 where the units are in pixels. As can
be seen, a substantial simplification in the global line estimate has been realized.

To close this section one further example is presented. A less complicated data
set is used for this purpose. The raw data is illustrated in Figure 5.29. This is real
data which consists mainly of beds inclined at essentially the same angle. One of
the beds, however, has a non-planar boundary. The remaining beds all have fairly
planar boundaries. The beds are of varying thicknesses.

Figures 5.30 and 5.31 illustrate the dip estimate (using the SPROJ algorithm
of Chapter 4) and the local edge estimates obtained using the unweighted sum of
covariances method. Figure 5.32 is the output of the Clustering-Kalman filtering
algorithm described in this section. Finally, Figure 5.33 illustrates the line-averaging
technique applied to the data of Figure 5.32.

Notice that throughout the procedure the results are cleaner than those asso-
ciated with the data set used to generate Figure 5.25. This is due mainly to the
clean, well defined nature of the beds in the raw data. The local edge estimates
are highly clustered about the bed boundaries making the clustering and Kalman
filtering algorithms highly effective.

To conclude this section we present some of the edge estimation techniques dis-
cussed in this chapter on a piece of noiseless synthetic data. This data is illustrated
in Figure 5.34. The local dip and edge estimates are illustrated in Figures 5.35 and
5.36, respectively. As expected these estimates represent the bedding information
in the data very well. Figures 5.37 and 5.38 illustrate the clustering and subsequent

Kalman filtering of the local edge data. Finally, Figure 5.39 contains the line-
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Figure 5.28: Line Averagingl. = 1.5and l; =4
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Figure 5.30: Dip Estimates



CHAPTER 5. EDGE MODELS FOR LAYERED DATA 228

Figure 5.31: Local Edge Estimates
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Figure 5.32: Output of Clustering-Kalman Filtering Algorithm
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Figure 5.33: Averaged Lines
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averaged version of the data in Figure 5.38. As can be seen, when the data is
closely related to the model from which our signal processing algorithms are based,

the results are very good.

5.9 Conclusions

The objective of this chapter has been to estimate bed boundaries. This has been
accomplished by proposing a two-stage edge estimation algorithm. The first stage
depends upon a local edge estimation algorithm which is based on an edge model
related to the dip models of Chapter 4. The second stage produces global line
estimates using the classic methods of clustering and Kalman filtering.

As has been shown in the examples a substantial amount of compression is
obtained from the local edge estimates. This compression has been achieved while si-
multaneously producing cohesive bed boundaries from the raw data. Consequently,
the results of this chapter form a stepping stone towards another goal, namely the

extraction of higher level features such as patterns in bedding, etc. from the raw
data.

5.10 Appendix: Determinant of X =1+ €]
We show that the N x N matrix X has determinant det(X) = ¥ + NeV~! when
Xy=1+¢€l (5.40)

The proof is by induction and requires an auxiliary matrix, Y. The matrix Yy is
identical to Xy with the exception of its (1,1) element. This element is unity in

the Yy matrix whereas it is 1 + € in the Xy matrix.

Theorem 3 The matriz Xy has determinant €¥ + NeV~1 and the matriz Yy has

determinant ¢V 1,
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Figure 5.34: Noiseless Synthetic Data
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Figure 5.36: Local Edge Estimates
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Figure 5.37: Clustering of Local Edge Estimates
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Figure 5.38: Kalman Filtering of Cluster Groups
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Figure 5.39: Line-Averageing of Kalman Filter Output
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Proof 3 The determinant of the 2 X 2 matrices X, and Y, ts as follows:

1 1
det te = €+ 2
1 1+e_
1 1
det = ¢ (5.41)
1 1+e_

Assuming that det(X,) = €" + ne®! and det(Y,) = "1 we ezamine the determi-

nants of Xpy1 and Yny1. The determinant of X,y 1s

(1+e 1 -+ 1 |
1 14+¢€¢ --- 1
det(Xp41) = det . ) ] (5.42)
1 1 - 14¢

Ezpanding the determinant of X,,1 by cofactors along the first column we obtain
that

det(X,41) = (1 + €) det(X,,) — ndet(Y,) (5.43)
The determinant of Yn41 18
(1 1 1]
1 1+€ --- 1
det(Ynt1) = det | . ) (5.44)
1 1 «vr 146
Again, expanding by cofactors yields
det(Yn41) = det(X,) — ndet(Yy) (5.45)

Substitution of the assumed values for X, and Y,, into (5.43) and (5.45) yields
det(Xns1) = (14 €)(€" +ne™t) — ne™?
= € (nt1)e (5.46)
and

det (Yn+1)

(En + nen—l) _ nen—l

= €" (5.47)
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Consequently, the theorem 1s proved.



Chapter 6

Analysis of Data Features With
More Than One Scale

In the preceding chapters much attention has been given to techniques which have
relied on specifying a neighborhood set or window size. These specifications are
intimately related to the spatial scale at which our analysis can proceed. For features
which occur at large spatial scales small neighborhoods or windows produce erratic
results. However, increasing the size of these windows dramatically increases the
computational burden of our methods.

This chapter is a case study centered around a piece of synthetic data. The
synthetic data has features at two scales and is observed in additive white noise.
The objective of the study is to show how to separate the two scales of data and
effectively analyze the data at each scale utilizing some of the techniques presented
in Chapter 4 and 5

The chapter is composed of the following sections. Section 6.1 presents the
synthetic data set used in the study. Section 6.2 discusses block averaging as a
means of analyzing the large scale features of the data. Section 6.3 discusses a
method of identifying regions in the data of smaller scale. Section 6.4 analyzes
a small scale segment of data. Section 6.5 uses the techniques discussed in this

chapter on some real data and Section 6.6 concludes this chapter.

240
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6.1 The Synthetic Data

The synthetic data set used in this chapter has spatial features at two scales. The
data consists of a 160 x 160 array of pixels. This is in comparison to data sets of
40 X 40 arrays of pixels analyzed previously in this thesis. The large scale features
in the data are composed of two bedded regions as is illustrated in Figure 6.1.

The upper portion of the large scale features have beds which take values :I:-zl-.
The slope of the bed boundaries is % The lower portion of the large scale features
take values +1 and have bed boundaries with slope —2. The bed thickness for both
the upper and lower portions of the large scale features is approximately 36 pixels.

The small scale features are contained in a bed in the upper portion of the
data (see Figure 6.2). These features consist of beds with alternating relative
contrast values of +.1 (i.e. these values are added to the large scale feature values)
and with boundaries having a —% slope. The thickness of the small scale beds is
approximately 5.4 pixels.

The observations of the synthetic data are made in the presence of additive,
uniformly distributed, white noise. The signal to noise ratio between the small
scale features and the noise is 20db and the ratio in power between the large and
small scale features is also 20db. The synthetic data, with additive noise included,

is illustrated in Figure 6.3.

6.2 Block Averaging for Extracting Large Scale

Features

Our intention is to perform a hierarchical analysis of the data in Figure 6.3. That
is, we first analyze the large scale features of the data followed by an analysis of
the small scale features. To analyze the large scale features of the data using the
methods already discussed in this thesis requires a method for re-scaling the data.
This is accomplished in this section by block averaging the data.

The examples presented in Chapters 3, 4, and 5 of this thesis have all been

executed on 40 x 40 arrays of data. Furthermore, the features in the data have been
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Figure 6.1: Large Scale Features
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Figure 6.2: Small Scale Features
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Figure 6.3: Synthetic Data With Features at Two Scales
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such that our techniques have been effective when using 7 x 7 windows of data for our
neighborhoods. Since the large scale beds in Figure 6.3 have bed thicknesses of over
35 pixels it should be clear that a 7 x 7 window will not be effective in analyzing
this data set. Increasing the window size is undesirable since this increases the
computational burden of our algorithms.

Block averaging of the data, however, serves our goals well. First, block aver-
aging compresses the large scale data to a scale which can be handled by our 7 x 7
window. Second, the small scale features are attenuated by the block averaging so
that they should essentially be ignored by this stage of the signal processing.

The block averaging procedure is performed as follows. The data is partitioned
into smaller blocks of data. The data within a block is averaged and then a new
data set is created where each block of the data is mapped to a single pixel of the
new data set. The pixel value in the new data set is the average of the block pixels
values in the old data set.

Figure 6.4 illustrates the block averaging procedure performed on the data set
of Figure 6.3. In this example the blocks are 4 x 4 arrays of pixels. Consequently,
since the data in Figure 6.3 is a 160 x 160 array, the data of Figure 6.4 is a 40 x 40
array of pixels. The bed thickness of the large scale features is now approximately
9 pixels and the small scale features have beds which are less than 1.5 pixels thick.
Consequently, the small scale beds have been attenuated, however, some of the
correlation structure can still be seen in the block averaged image.

The first part of our analysis of the block averaged data in Figure 6.4 is to
estimate the local dip. Using the SPROJ algorithm of Chapter 4 with a 7 X 7
moving window, the result of estimating the local dip is illustrated in Figure 6.5.

The dips in Figure 6.5 mainly follow our expectations. However, there are
regions of anomalous dip estimates caused by one of three types of situations. The
first situation is illustrated in Figure 6.6a. In this figure a 7 X 7 window is illustrated
in the lower portion of the block averaged data. As the illustration shows, the
window is totally contained in a single bed of the data. Consequently, the dip
estimate associated with the pixel at the center of this window is likely to be erratic

since there is no bed boundary to indicate the direction of maximum correlation.
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Figure 6.4: Block Averaged Date with 4 x 4 Blocks
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Figure 6.5; SPROJ Dip Estimate
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This behavior is seen along the center of beds in Figure 6.5.

Figure 6.6b is similar to Figure 6.6a in that the 7 x 7 window is totally contained
by a large scale bed in the upper portion of the block averaged synthetic data. How-
ever, a careful examination of Figure 6.4 reveals that the bed with the attenuated
small scale features still contains the information concerning the dip of these small
scale beds. This is in accordance with our previous observation concerning the block
averaging of the data in this bed. Consequently, the dip estimates associated with
windows which are contained in this large scale bed all reflect the correct dip value
for the small scale beds. The block averaging procedure is intended to reduce the
scale of the large scale features and to remove the small scale features. In this case,
the amount of block averaging is not quite enough to fully accomplish these goals
but under the circumstances is adequate, as we shall see.

The final region type is illustrated in Figure 6.6c. Here the 7 x 7 window is
located at a junction of the upper and lower portions of the block averaged synthetic
data. It should be clear that the estimated dip associated to this window will be
biased since the data within the window does not follow any of the models proposed
within this thesis. This conclusion is born out in the dip estimate of Figure 6.5.
This characteristic can also be seen in the many dip estimates made on the data of
Figure 4.4 which displays similar characteristics.

Figure 6.7 is an illustration of the associated local edge estimates for the block
averaged data in Figure 6.4. These local edge estimates cluster strongly about
the bed boundaries of the large scale features in the data. So, although the dip
estimates reflect some of the small scale features of the block averaged data, the
edge estimates do not. This is because the edge estimate window almost always
contains a portion of a large scale bed boundary. Since the contrast of the large
scale beds is much greater than that of the small scale beds, the local edge estimates
are dominated by these boundaries. The most serious scatter occurs at the corners
of beds formed where the upper and lower portions of the data meet.

Figure 6.8 shows the clustering algorithm applied to the local edge estimates
in Figure 6.7 with parameters t. = t3 = .9999. As expected, the major clusters

produce line segments following the bed boundaries of the large scale features.



CHAPTER 6. DATA FEATURES WITH MORE THAN ONE SCALE 249

7x7 WINDOW —

7x7 WINDOW ~_

7x7 WINDOW-~_|

Figure 6.6: Anomolies in Dip Estimates

EVEN

(a)

(b)

(c)



CHAPTER 6. DATA FEATURES WITH MORE THAN ONE SCALE

250

Figure 6.7: Local Edge Estimates



CHAPTER 6. DATA FEATURES WITH MORE THAN ONE SCALE 251

There are, however, several small clusters in the region of the small scale features
which follow the small scale bed boundaries. This is significant when the Kalman
filtering algorithm is applied.

Figure 6.9 is the result of applying the Kalman filter bank algorithm to the
clustered data in Figure 6.8 The singletons in Figure 6.8 (the clusters consisting of
a single point) adversely affect the performance of the Kalman filter algorithm. As
can be seen in Figure 6.9, the filters attempt to track edges away from the main
clusters. This divergence is due to the singletons. Figure 6.9 should be contrasted
with Figure 6.10 which illustrates the use of the Kalman filtering algorithm on
the output of the Clustering algorithm with the singletons discarded. As can be
seen, the Kalman filter output is much cleaner in that the edge tracking is closer to
the actual bed boundaries of the data. This illustration verifies the comments we
made in Section 5.8 concerning singletons and their effects on the Kalman filtering
algorithm.

Finally, Figure 6.11 is a processed version of Figure 6.10. Here we have combined
Kalman filtered lines and we have discarded short lines. The threshold parameters
were |, = 8 and l; = 3. As can be seen the edges follow bed boundaries well. The
most trouble is found along the boundary between the upper and lower portions of
the large scale features. Also, an edge associated with the bed boundaries in the

small scale features is apparent in the upper portion of the figure.

6.3 Identifying Regions With Small Scale Fea-

tures

As stated at the beginning of this chapter, the objective here is to investigate a
hierarchical approach to analyzing the data. This approach is one in which we
first analyze the large scale features and then analyze the small scale features. To
accomplish the second task we require a method for identifying the data regions

with small scale features. In this section a technique for identifying such regions is
discussed.
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Figure 6.8: Clustering Algorithm ¢, = t4 = .9999
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Figure 6.9: Kalman Filtering of Clustered Data
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Figure 6.10: Kalman Filtering of Clustered Data With Discarded Singletons
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The technique discussed in this section is a derivative of the block averaging
procedure discussed in Section 6.2. The objective of the block averaging is to reduce
the scale of the large scale features and to “wash-out” the small scale features.
However, contained in each block of data is information about the small scale
bedding features.

One method for extracting the small scale bedding information is by calculating
the block variance of the data as well as the block average. In large scale bedded
data which contains no small scale features the block variance is small. However,
where small scale bedding features exist the block variance is comparatively much
larger. This principle is illustrated in Figure 6.12. The upper 4 X 4 block of data is
in a region which contains small scale features. The middle 4 x 4 block of data is
in a region which contains no small scale features. Clearly the variance of the data
in the upper 4 X 4 block is greater than that in the middle 4 x 4 block.

There is a third type of 4 x 4 block of data in Figure 6.12. The lowest 4 x 4 block
indicated in the figure straddles two large scale beds. Consequently, the variance of
this bed is greater than the variance of a block totally contained within a large scale
bed. It is our intention to locate regions of the data with small scale features by
finding the high variance blocks of data. Consequently, the blocks which straddle
large scale beds will have misleading variances.

We can circumvent the above problem by utilizing our knowledge of the large
scale bed boundaries obtained as described in Section 6.2. For each block variance
computation the procedure determines whether one of the estimated bed boundaries
intersects this block. If the block is intersected by an estimated line then not all
the data within the block is used to calculated the block variance. As illustrated in
Figure 6.13, only data points that are on the same side of the estimated boundary
are included in the block variance computation.

Figure 6.14 illustrates this block variance computation when performed on the
data of Figure 6.3. The dark pixels in Figure 6.14 represent low variances and
the light pixels represent high variances. As can be seen the region of the small
scale bed features has a high variance compared to the regions without small scale

structure. Some of the bed boundaries of the large scale structure can also be seen.
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Figure 6.11: Output of Clustering-Kalman Filtering Algorithm With Line Averag-
ing
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Figure 6.12: Block Variance Computations
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Figure 6.13: Cross-Hatched Pixels Not Included In Block Variance Computation

This is due to errors in our estimates of bed boundary locations. However, these
boundaries occupy extremely narrow regions incompatible with finding small scale

structure.

6.4 Analyzing Small Scale Features

The previous section detailed a method for finding regions with small scale bedding
structure. In this section we analyze the small scale structure of a segment of the
data in Figure 6.3. For this purpose we examine a 40 X 40 block of the data in
Figure 6.3. This block of data is illustrated in Figure 6.15. The analysis proceeds
in a manner identical to that in Section 6.2, however, without performing any block
averaging.

First, the local dip is estimated using the SPROJ algorithm. The estimates
are illustrated in Figure 6.16. As can be seen, the dip estimates are very good in
the region where the small scale beds are located. This is in spite of the fact that

the signal-to-noise ratio is much smaller than it was when the same analysis was
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Figure 6.14: Block Variance Computation For Synthetic Data
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performed in Section 6.2 on the large scale data. In the upper left hand corner and
the lower right hand corner of the data in Figure 6.15 are large scale beds which
encroach on the small scale bedding features. These beds are of higher contrast
with the average value of the small scale beds than the small scale beds are with
themselves. Consequently, when a window of data contains part of one of these
large scale beds, the dip estimate conforms to the slope of the large scale bed. This
is clearly seen in the dip estimates of Figure 6.16.

Figure 6.17 shows the associated local edge estimates. These estimates cluster
very nicely about the small scale bed boundaries as well as at the boundaries of
the large scale beds. Many singletons exist within the large scale beds which are a
result of estimating edges where none exist.

Figures 6.18 and 6.19 illustrate the output of the Clustering algorithm followed
by that of the Kalman filtering algorithm. The Clustering algorithm uses the
parameters ¢, = tg = .9999. Figure 6.20 is a line averaged version of Figure 6.19
with I = 8 and l; = 3. Each of these procedures performs as expected and the

resulting global line estimates in Figure 6.20 are very good.

6.5 Some Real Data

This section applies the methodologies used earlier in this chapter on a real data
set. This data is illustrated in Figure 6.21. The data is a 160 x 160 array with a
complicated large scale structure. As can be seen, the small scale structure which
exists in the data has a small signal-to-noise ratio.

Figure 6.22 is a block averaged version of Figure 6.21. The blocks are 4 x 4,
and consequently, the data in Figure 6.22 is a 40 X 40 array. Figures 6.23 and 6.24
are the local dip and edge estimates of the block averaged data. The local dip
estimates capture the primarily flat bedded features of the data. The local edge
estimates are fairly well clustered about large scale bed boundaries even though the
signal-to-noise ratio of the block averaged data appears to be low.

Figures 6.25 and 6.26 are the outputs of the Clustering followed by Kalman

Filtering algorithms. Figure 6.27 shows the line averaged version of Figure 6.26
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Figure 6.16: Local Dip Estimates For Small Scale Data Features
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Figure 6.17: Local Edge Estimates For Small Scale Data Features
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Figure 6.18: Clustering of Local Edge Estimates
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Figure 6.19: Kalman Filtering of Cluster Output
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Figure 6.20: Line Averaging of Kalman Filter Output
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Figure 6.22: 40 x 40 Array Of Block Averaged Data
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Figure 6.23: Local Dip Estimates Of Block Averaged Data
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Figure 6.24: Local Edge Estimates Of Block Averaged Data
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superimposed on the data of Figure 6.21 (note that the edges have been rescaled
to fit the original data set). The line averaged global edge estimates track the bed
boundaries remarkably well considering the underlying planar boundary assump-
tions of our models and the non-planar nature of the data.

Figure 6.28 illustrates the block variance computation performed on the data
of Figure 6.21. This figure shows regions of high variance one of which is outlined
by a black square. This 10 x 10 block of variance computations corresponds to the
40 X 40 array of data from Figure 6.21 illustrated in Figure 6.29. As can be seen
in Figure 6.29 some small scale bedding structure exists in the large scale dark bed
which cuts through the center of the array.

Figures 6.30 and 6.31 illustrate the local dip and edge estimates, respectively, for
the data in Figure 6.29. The local edge estimates are most effectively clustered about
the upper and lower boundaries of the large scale bed in the data. In particular the
large bump on the lower side of this bed has local edges which are predominant.
However, some clustering of edges can also be seen along bed boundaries of small
scale structure within the large scale bed.

The small scale beds are more apparent in the output of the Clustering algorithm
illustrated in Figure 6.32. Also, these beds are emphasized in the subsequent
Kalman filtering output illustrated in Figure 6.33. The final illustration shows
the result of line averaging the Kalman filter output of Figure 6.33. The line
averaged data is superimposed on the small scale data of Figure 6.29 and displayed
in Figure 6.34. The results show that even with a very complicated data set that
the methods used can track the bed boundaries in both large and small scale beds.
However, looking at the lower portion of Figure 6.34 indicates that some of the
edge tracks in the small scale data may be spurious. This is reasonable since small
scale data tends to be of lower contrast and consequently it is more difficult to
track edges in this data. The results in Figure 6.34 could easily be post-processed

to discriminate between edge tracks which are due to high contrast data and those

which are due to low contrast data.
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Figure 6.25: Clustering of Local Edges
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Figure 6.26: Kalman Filtering of Cluster Groups
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Figure 6.27: Overlay of Global Line Estimate on Real Data
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Figure 6.29: 40 X 40 Array Of Data With Small Scale Structure
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Figure 6.31: Local Edge Estimates For Small Scale Structure
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Figure 6.32: Clustering of Local Edge Estimates
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Figure 6.33: Kalman Filtering Output
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Figure 6.34: Overlay of Global Line Estimates on Small Scale Data
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6.6 Conclusions



Chapter 7

Conclusions

The research in this thesis has been presented in the chronological order of its de-
velopment. It reflects a logical flow of ideas stemming from the problem description
presented in the introduction. We recapitulate the results of this thesis and identify
some of the remaining problems which we feel could develop into productive areas
of future research.

Chapter 3 presents a simple binary MRF model which reflects many of the
characteristics of the problem described in Chapter 1. The model can generate
sample functions which contain layers at prescribed inclinations and bed thicknesses.
It was the variety of layered structures which could be generated using these models
which convinced this researcher that MRF models would make effective tools for
our problem.

The drawback of the model in Chapter 3 is that it relies on observations of level
crossings to identify beds. That is, if the chosen level is zero, the ML estimation
algorithm based on the model looks for coherent changes in sign to identify bed
boundaries. This in turn yields information about dip and bed thickness. While
our Chapter 3 signal processing algorithms work well when the data displays this
essentially high contrast, alternating structure, it does not work well for layered
data which has more subtle variations from bed to bed.

There are several layered data problems which the models of Chapter 3 might
be eminently suited for. For example, fingerprint data consists of layers alternating

about a single level value. Also, tree rings are of a similar data type. It is likely
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that other naturally occurring data sets also exhibit the characteristics modeled by
the MRF’s of Chapter 3. Consequently, the models of Chapter 3 are well suited
for the extraction of primitive features which would serve as the inputs to more
complicated pattern recognition algorithms.

One possible path leading away from the results of Chapter 3 is a search for
modifications of the models used in that chapter which would help overcome the
level-crossing problem. One possibility is to try to incorporate a local level value
as a parameter in the model which could be jointly estimated with dip and bed
thickness. A second possibility is to perform the estimation procedure successively
at several contrast values followed by some post-processing which would integrate
the results.

Our own approach, however, was to develop another set of MRF models which
capture more of the basic nature of the problem formulation set out in Chapter 1.
Chapter 4 is the result of this reformulation.

The model of Chapter 4 captures more of the essential characteristics we expect
to see in layered data. That is, the model explicitly incorporates the idea of a
two-way correlation structure. In one direction there is long spatial correlation
and in the orthogonal direction there is much shorter spatial correlation. A major
difference between the model of Chapter 4 and the model of Chapter 3 is in the
ability of the Chapter 4 model to characterize the dip direction without relying
on the properties of data on both sides of a bed boundary. The Chapter 3 model
implicitly relies on a change in sign (level) to characterize bed boundaries, and,
consequently, to identify the dip direction. The Chapter 4 model characterizes dip
by the orientation of the major and minor correlation directions. In this regard the
Chapter 3 model looks for changes in the data characteristics in just one direction,
the direction of dip. The Chapter 4 model looks for changes in both the dip direction
and orthogonal to the dip direction. In fact the key feature of the model that is
developed in Chapter 4 is that it defines dip as the direction orthogonal to the
direction of maximal correlation. Thus, the Chapter 4 algorithms look primarily for
large positive correlations orthogonal to the dip vector. This is in marked contrast

to the Chapter 3 algorithms which look primarily for large negative correlations
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along the dip vector.

The Chapter 4 model has additional properties worthy of note. The mathemat-
ical tractability of the Chapter 4 model has allowed us to develop a sequence of
fast algorithms. These algorithms provide us with computationally efficient signal
processing algorithms and they also provide additional intuition into the nature
of the model. Furthermore, the covariance structure of the Chapter 4 is roughly
separable. The usual definition of a separable covariance structure is that it can
be expressed as a product of two one-dimensional covariance functions. That is,
for K(z,y) a separable two-dimensional covariance function there exists two one-
dimensional covariance functions R(z) and Q(y) such that K(z,y) = R(z)Q(y)-
Our Chapter 4 model is of this form only with an additional change of basis. That
is K (z,y) is separable when we perform the rotational transformation corresponding
to the dip on the z-y coordinate system.

Our implementation of the Chapter 4 model in terms of signal processing al-
gorithms took two forms. One of the implementations is in the form of a MAP
estimation algorithm which relies on SA to find the estimate. The other implemen-
tation is an ML estimation algorithm. Neither of the two implementations yields a
reduction in the quantity of data.

Part of our objective is to compress the data by extracting higher level features.
Furthermore, an essential aspect of estimating dip near bed boundaries is to identify
these boundaries and to account for them in our algorithms. Both of these objectives
are addressed in Chapter 5 which concentrates on estimation of bed boundaries.
The local and global aspects of this problem have been formulated as an edge
detection problem. The unique aspect of our own formulation of the problem is
in the incorporation of the prior knowledge of the edge orientation (due to the dip
estimates). Consequently, our local edge signal processing algorithms only need
search for the edge displacement.

We could think of the local edge estimation problem as one in which both the
edge orientation and location are part of the unknown aspects of our model. From
this perspective we would not estimate orientation (dip) first and then displacement.

Rather we would attempt to optimally estimate both simultaneously. This task
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would require some new model which might combine the model of Chapter 4 and
the model of Chapter 5. The other possibility is to perform an iterative improvement
on the dip and edge estimates. That is, given the most recent dip estimate find the
best edge estimate and vice versa. In any case we could expect some improvement
in the performance of both the dip and edge estimation algorithms by combining
the two estimation procedures.

The global edge estimation procedures presented in Chapter 5 are based on well
known signal processing procedures. The clustering and Kalman filtering algorithms
demonstrate the tractability of global edge estimation within the framework of our
local dip and edge models. The resulting global edge estimates compress the data
and estimates to a smaller set of bed boundaries. The bed boundaries contain the
pertinent dip information of the data and they serve as a stepping stone to the goal
of higher level interpretation of the data.

The final issue dealt with in this thesis is that of the efficacy of our estimation
procedures when applied to data containing features at several spatial scales. Chap-
ter 6 suggests a procedure for hierarchically processing the data. First, the coarse
scale structure in the data is processed followed by the identification of regions
in the data where fine scale structure may exist. The fine scale structure is then
analyzed in a manner similar to that of the coarse scale structure. The method we
employed relies on block averages of the data to reduce its spatial scale.

The results of Chapter 6 show how to decompose the dip estimation problem by
scale. Furthermore, this spatial scale decomposition is an important component for
extracting higher level features from the data (such as patterns of dip which can be
used to identify geological structures).

The results contained in this thesis cover a significant amount of material in the
development of models and signal processing for low level features in layered data.
There are several logical paths which could be developed as a result of this work.
The following discussion suggests four possible directions for future research.

The first possibility concerns the implications of ARC function models with
regards to the problem of beamforming [8]. There is a large body of literature

concerning methods for steering phased arrays for the purpose of estimating direc-
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- tion of arrival of plane waves. This problem has many of the same characteristics
as the layered data problem discussed in this thesis. Consequently, determination
of the formal relationship between the ARC function models of Chapter 4 and
beamforming problems would be of great interest.

The second possible line of research concerns the relationship of the anisotropic
random field models developed in Chapter 4 and isotropic random field models.
The models used in Chapter 4 can be viewed as warped versions of isotropic
random fields. That is, the models of Chapter 4 can be obtained by stretching
and rotating the coordinate axes of an isotropic random field model (say by a
linear transformation). This observation suggests the possibility of examining other
classes of anisotropic random field models obtained by other warping operations on
isotropic random fields.

The third suggestion for future research concerns error analysis of the signal
processing algorithms developed here. The models of Chapter 4 are mathematically
tractable. This is also true for the edge models in Chapter 5. Consequently, it should
be possible to analyze analytically the errors associated with the signal processing
algorithms developed in these chapters.

Finally, of great interest is the search for a cohesive framework for extracting
high level features from layered data such as specific dip patterns, sudden changes
in dip patterns, etc. An important line of future research is to incorporate the
models and algorithms presented here into a higher level scheme for modeling and

estimating these features.
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