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Abstract

In this thesis we have presented multi-resolution approaches to the problem of reconstruction
and detection of objects from tomographic measurements. Such problems are commonly
encountered in many applications including medical imaging, non-destructive testing and
evaluation, astronomy, geophysics, and oceanography. We have focused our efforts mainly on
the case where the tomographic data are sparse and noisy. In this case the Radon transform
derived results based on continuous and noise-free data break down and the reconstruction
and detection tasks become more challenging. We have demonstrated the effectiveness
of the multi-resolution framework for regularization of such ill-posed reconstruction and
detection problems, and in particular have developed highly efficient and, at the same time
statistically optimal multi-resolution-based algorithms for reconstruction and detection of
objects from both sparse as well as noisy data. The specific contributions of the thesis are:

9 A framework for multi-resolution representation of objects matched to tomographic
data

* A fast, iterative multi-resolution reconstruction method in the above framework

e Statistical prior models for the object constructed directly in the multi-resolution
data-domain that lead to efficient regularized reconstructions that are no more com-
plex than the corresponding unregularized reconstructions

* A method for obtaining multi-resolution reconstructions from dense data with the
same computational complexity as the highly efficient filtered back-projection method

* A fast method for discrimination of fractal fields directly from sparse and noisy data

* A fast data-domain method for detection of anomalies superimposed on a fractal-
textured background
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Chapter 1

Introduction

In this thesis we present a multiresolution approach to the problem of reconstruction

and detection of objects from tomographic measurements. Such problems are com-

monly encountered in many applications including medical imaging, non-destructive

testing and evaluation, astronomy, geophysics, and oceanography [39,44]. The pur-

pose of this chapter is to present an outline of the thesis, and also to highlight the

main contributions made by this thesis to the field of tomography. The chapter is

organized as follows. In Sections 1.1 and 1.2 we briefly state the problem of recon-

struction and detection of objects from tomographic data. We mention a few typical

applications where these problems arise, and describe the existing, commonly used

methods to solve these problems. In Section 1.3 we discuss the factors that motivated

us to develop a multiresolution framework to tackle such problems. We then highlight

the main contributions of our research in Section 1.4. This is followed by an outline

of the thesis in Section 1.5 where we give a brief description of the following chapters.

Finally, we devote Section 1.6 to differentiate our work from other related work in

multiresolution tomography.

1.1 Object reconstruction from tomographic data

The problem of reconstructing an object from tomographic measurements is also re-

ferred to as tomography [8,39,44,55]. Here the goal is to reconstruct the cross-section
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of an object given measurements that are strip-irdegrals of some property of the

object. For example, in trar-smissior. tomography using X-rays, the measurements

consist of integrals of the attenuation coefficient of the object for X-rays along strips

which represent the path of the X-rays through the object. In the case of emissior.

tomography, the measurements are the strip-integrals of the concentration of some

radioisotope that has been introduced into the object prior to imaging. If the strips

over which the tomographic data have been integrated are thin (and thus are approx-

imated by line integrals), then the data are said to be the Rador. trar..Sform of the

object [39,44]. Further, the strip-integral data at different locations, but at the same

orientation, are collectively referred to as a projectior...

The need for tomography arises in a variety of applications. For example, in

the medical field, tomography provides a non-invasive method for detecting both

anatomical and functional abnormalities within the human body [44]. In an example

of non-destructive testing and evaluation application, tomography is used to inspect

materials for defects both during and after production [1, 7, 20, 25, 44, 46, 47, 71, 73].

In another example, the age of a tree may be non-destructively evaluated through

tomography [62]. In oceanography, the temperature of the various layers of the ocean

is determined by acoustic tomography [48,61]. In general, tomography can be classi-

fied into two categories depending on whether the strips over which the tomographic

data have been integrated are straight or curved [44]. In diffractior. tomography, for

example using acoustic waves [23,56,60], the strips are curved and are defined by the

path of the probing entity. In this thesis, however, we only concern ourselves with

a second category of tomography, namely r-or-diffractior. tomography, in which the

strips are straight. Examples of this latter category include the commonly used imag-

ing modalities like CT, MRI, PET, and SPECT [39,44]. Further, we Emit ourselves

to the reconstruction of 2-D cross-sections from 1-D projections.

Next, we turn our attention to the conventional reconstruction techniques for

tomography. In general, the quality of the reconstruction in tomography is a function

of the quality and the quantity of the strip-integral data [8,16,45,65,77]. If the data

are noise free and dense (i.e. the strips are thin and the projections cover the object
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at a large number of different angles) then fast algorithms based on the exact Radon

inversion formula, Eke the filtered back-projection (FBP), can be used to reconstruct

the object.

The FBP [8,39,44, 51] is the most commonly used method for image reconstruc-

tion from high quality and dense tomographic data. This reconstruction technique

is based on an important result for Radon transform, which states that the recon-

struction obtained by back-projection of the projection data is a blurred version of

the object, with the blurring function given by 111wl in the frequency domain. Thus

the object can be reconstructed by applying a 2-D JwJ filter on the back-projected

image. Due to another property of the Radon transform, this reconstruction is iden-

tical to the one obtained by first filtering the projection data at an angles by a 1-D

JwJ filter, and subsequently back-projecting these filtered projections. This latter re-

construction technique is referred to as the FBP, and the 1-D filtering operation on

the projection data is commonly known as the ramp-filtering operation. As men-

tioned previously, a major limitation of the FBP technique is that it fails to produce

reasonable reconstructions if the projection data are sparse and/or noisy.

If the projection data are sparse, then one has to resort to matrix based recon-

struction methods [52-54]. These techniques require more computations than the

FBP since solutions of very large, generally ill-conditioned systems of equations have

to be computed. A first example of such matrix based reconstruction techniques is

the algebraic reconstructior. technique (ART). In ART [37-407 447 751, the object is

expanded in the standard rectangular pixel basis. The coefficients of expansion of the

object in this basis are related to the strip-integral data through a matrix which is

sometimes referred to as the projection matrix. The projection matrix, although very

large, is sparse because each strip intersects only a small number of object pixels. This

sparsity is exploited by a Kaczmarz-like method which is utilized to solve the matrix

equation for the object expansion coefficients. The Kaczmarz method is an iterative

method for solving a system of equations where an initial guess is cyclically projected'

'This should not be confused with the term projection that is frequently used (including in this
thesis) for tomographic data.
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onto the hyperplanes represented by the rows of the system matrix (the projection

matrix in this case). If the system of equations is consistent, then the Kaczmarz

method converges to the minimum norm solution given by the pseudo-inverse of the

system of equations [75]. The computational complexity of the Kaczmarz method is

proportional to the number of non-zero elements in the system matrix, and the con-

vergence depends critically on the order in which the rows of the system matrix are

accessed, and also on the choice of some relaxation parameter (to be explained later).

These choices have a substantial effect on the convergence because the projection ma-

trix is quite ill-conditioned. In contrast, if the system matrix were well-conditioned,

then the ordering scheme and the relaxation parameter would have little effect on the

convergence of the Kaczmarz algorithm.

A second matrix based method for sparse data tomography problem is the natural

pixel (NP) method [9,10,24]. Here the object is expanded in a basis using the same

strips along which the projection data are collected, resulting in object expansion

coefficients that reside in the projection domain. This is in comparison to ART where

the expansion coefficients (i.e. object pixel values) are defined in the object space. As

a result, the NP representation is free of the model errors which arise in ART due to

the rectangular pixel representation. This benefit comes with a cost however: whereas

the projection matrix in ART is sparse, the corresponding system matrix in the NP

method, relating the object expansion coefficients and the projection data, is full.

This is because the elements of the NP system matrix are the areas of intersection

of the data strips, and most of these are non-zero. Thus if the Kaczmarz method is

used to solve the system of equations arising in the NP representation, it results in

a computationally intensive reconstruction algorithm. Besides, as in ART, the NP

matrix is also quite ill-conditioned which implies that the usual problems of choosing

an appropriate ordering scheme and the relaxation parameter are encountered if the

Kaczmarz method is used.

Finally, if the projection data are noisy, the standard reconstruction techniques

(FBP, ART, and NP) described above yield unacceptable results. This generally

reflects the fact that more degrees of freedom are being sought in the reconstruc-
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tion than are really supported by the data, and hence some form of regularization

is required [3,21,27,28,33,34,36,39,44,49,50,55,69]. Conventionally, this problem

of reconstruction from noisy projection data is regularized by one of the following

techniques. First, the FBP ramp filter may be rolled off at high frequencies thus

attenuating high frequency noise at the expense of not reconstructing the fine scale

features in the object. This results in a fast, though ad hoc, method for regulariza-

tion if we have dense data. Similarly, in ART, a fast, ad hoc form of regularization

is achieved by stopping the iterations prematurely, before an excessive fitting of the

solution to the noisy data occurs. In contrast to the above two ad hoc approaches,

an alternate form of regularization is to solve for a maximum aposteriori probability

(MAP) estimate [76] of the object based on a 2-D (spatial) Markov random field

(MRF) prior model. This latter approach results in a statistically regularized recon-

struction which allows the inclusion of prior knowledge in a systematic way, but leads

to optimization problems which are extremely computationally intensive.

1.2 Object detection from tomographic data

In some applications using tomographic data, the goal is not to reconstruct the entire

cross-section, but is to simply detect the presence of an object. Example of such

applications include the detection of cracks and other defects in materials [25, 73],

and the detection of lesions in medical images [30]. The conventional methods for

detecting objects from the projection data fall under two broad categories. In the first

category, the entire cross-section is first reconstructed using any of the conventional

techniques, and then post-processing is done on the reconstructed image to detect

the object (for example as in [301). Leaving the computational issues aside, a major

disadvantage of this approach is that when the projection data are sparse and/or

noisy, the reconstruction of a complete image generally suffers from severe artifacts

and distortion that can easily obscure the anomaly or result in false alarms. These

reconstruction artifacts can be removed by appropriate regularization at the expense

of additional computational burden. This approach can, however, smooth out the
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anomaly and hence once again make it undetectable. In the second category of

detection methods [66], these problems associated with the reconstruction of the entire

field are avoided by developing detection techniques directly in the data-domain.

These methods, however, assume that the objects are parameterized (for example by

size, shape, location, and number) and thus are limited in scope.

We also include another application in this category of object detection, in which

a fractal object is to be detected based on it's fractal dimension. This application

is motivated from the medical field, where a change in fractal dimension is used

to differentiate between normal and abnormal conditions in many different contexts

including diagnosis of Ever abnormalities [11]. Conventionally, for this application,

the fractal dimension is calculated by estimating the slope of the power spectrum

of the averaged projection data from all angles. Again, a major disadvantage of

this approach is that it may give inaccurate results when the projection data are

incomplete and/or noisy, and a more nearly optimal method may do better.

1.3 Motivation for a multiresolution framework

for reconstruction and detection

We next discuss the factors that motivated us to develop a multiresolution 2 approach

for solving the problems of reconstruction and detection of objects from tomographic

data. In general, a multiresolution framework is desirable for the solution of these

problems for a variety of reasons.

First, the multiresolution framework is a natural choice for regularizing in-posed

reconstruction problems where the projection data are incomplete and/or noisy. If

these ill-posed problems are solved at the finest resolution, the resulting solution

suffers from severe artifacts because of the attempt to reconstruct more degrees of

freedom than are supported by the data. However, a reconstruction at a coarser

scale results in an implicitly regularized solution, and is obtained at no additional

2In this thesis we use the terms multiresolution and multiscale interchangeably with the under-
standing that high resolution corresponds to fine scales.
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cost in a multiresolution framework for image reconstruction. Further, the multiscale

framework lends itself to simple statistical prior models for the object, constructed

directly in the multiscale domain, that capture the intuition that for ill-posed recon-

struction problems the lower resolution reconstructions are more reliable that their

higher resolution counterparts. Later we will see that not only are these models con-

ceptually simple, but they also result in fast explicit regularization techniques. In

fact, the MRF prior models mentioned earlier in context of conventional regulariza-

tion7attempt to impose a similar smoothness constraint in the object space. However

MRF models result in reconstruction algorithms that are much more computationally

complex than our regularized reconstruction methods.

A second motivating factor for using the multiscale framework is that the projec-

tion data under consideration may be naturally acquired at multiple resolutions, e.g.

if data from detectors of differing resolutions are used. In fact this scenario is com-

mon in medical imaging where multi-modality data, for example from CT, MRI and

nuclear medicine, are often used to obtain the best information about the object. A

specific example of this is the case where high resolution information from anatomical

images is used to improve the reconstruction of low resolution functional images [31].

Further, in addition to the data, the phenomenon under investigation may itself be

naturally multiscale. For example, in the medical -field self-similar or fractal models

have been effectively used for the liver and lung [11, 12,781.

In addition, it may be that, even if the data and phenomenon are not multiscale,

our ultimate objectives are multiresolution in some way. For example, even though

our data may be acquired at a fine level we may actually only care about aggregate or

coarse scale quantities of the field. Such is often the case in ocean acoustic tomography

or functional medical imaging. Conversely, if we are only interested in imaging high

frequency details within the object (for example, boundaries) [72], then we may wish

to directly obtain these features by extracting only the finer scale information in the

data. Or, indeed 7 it may be that we want to use different resolutions in different

areas - e.g. in nondestructive evaluation of aircraft we may want to look for general

corrosion over an entire plane, but focus attention on certain suspect rivets to look
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for cracks [1]. Using conventional techniques we would first have to reconstruct the

entire field and then use post-processing to extract such features.

A final compelling motivation for the use of multiresolution methods is that they

lead to extremely efficient statistically-optimal algorithms for object detection di-

rectly from the projection data. As we show later, this is due to the fact that the

data covariance matrices corresponding to an important class of (object) background

texture models, become extremely sparse in the multiscale framework.

1.4 Main contributions of the thesis

In this section we highlight the significant contributions made by the thesis to the

problem of reconstruction and detection of objects from tomographic data.

The first contribution of this thesis is the development of extremely efficient tech-

niques for multiresolution object reconstruction from both dense and sparse tomo-

graphic data. Specifically, for dense data, the reconstructions at multiple resolutions

are obtained with the same computational complexity as the highly efficient FBP;

however in contrast to FBP, our algorithms also provide reconstructions at multiple

resolutions and remain just as efficient when they are regularized to account for noise.

In the case of sparse data, these multiresolution reconstructions are obtained much

faster than the conventional sparse data reconstruction techniques, namely the ART

and NP approaches.

The second contribution of this thesis is to present an iterative technique for

reconstruction from sparse data, which is an alternative to the conventional ART. This

technique produces reconstructions which are insensitive to the choice of the ordering

scheme and the relaxation parameter. The latter are critical for convergence in ART

and have to be carefully selected. Further, since the iterations in our technique are

performed in a multiscale extension of the NP domain, the resulting reconstruction is

free of the model errors which arise in ART due to the rectangular pixel representation.

Finally, the reconstructions at multiple scales can be accessed from our iterative

technique at no additional cost.
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The third major contribution of this thesis is the development of a particular class

of stochastic prior models for ill-posed reconstruction problems. These prior models

are specified directly in the multiscale projection domain and result in extremely

efficient estimation algorithms. In particular, our regularized reconstructions based

on these prior models are obtained with the same computational complexity as the

unregularized reconstructions. Also, for the case of dense data, the regularization

using the above class of prior models is equivalent to a particular way of rolling-off

of the ramp filter. This provides a statistical interpretation to the ad hoc rolling-off

of the ramp filter in the FBP, and also provides a recipe for designing statistically-

optimal filters to provide such roll-off.

The final major contribution of this thesis is the development of efficient, multi-

scale data domain techniques for object detection. We consider both of the detection

problems mentioned earlier, namely the problem of detecting the presence of an ob-

ject or anomaly in a textured background and also the problem of discriminating a

fractal object based on it's fractal dimension. In the first case, we concern ourselves

with identifying anomalies superimposed on a fractal background. We develop fast,

statistically-optimal techniques for zooming-in on the anomaly. In the second case,

we devise a method that is able to discriminate between two fractal fields with differ-

ent fractal dimensions, from sparse data even in the presence of substantial amount

of measurement noise. This discrimination is based on fast likelihood calculations for

multiscale models for the hypothesized fields.

1.5 Thesis outline

The thesis is organized as follows. In Chapter 2 we give an overview of the background

material that is essential for the development of our multiresolution framework for

reconstruction and detection. We start by mathematically formulating the tomogra-

phy problem and then present the theory underlying the conventional reconstruction

techniques, namely FBP, ART, and NP. Subsequent to this, we present some results

from estimation theory that we use extensively in the following chapters. After this
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we introduce the concept of wavelet transform-based multiresolution representations

of signals and, finally, we close the chapter by describing other related work in mul-

tiresolution tomography.

In Chapter 3 we develop our multiresolution framework for tomographic recon-

struction. We do this by building on the NP representation through a multiscale

transformation of the NP strips. As mentioned previously, the standard NP system

matrix, relating the object expansion coefficients and the projection data, is full. The

use of wavelet bases results in a transformation matrix which is sparse. In addition,

the coarsest scale elements of this matrix capture any ill-conditioning arising from the

geometry of the imaging system. We exploit this feature to partition the multiscale

system matrix by scales and obtain a reconstruction procedure that only requires

inversion of a well-conditioned and sparse matrix. Moreover, the different scale com-

ponents of the proposed multiscale reconstruction method induce a corresponding

multiscale representation of the underlying object and, in particular, provide esti-

mates of (and thus information about) the field or object at a variety of resolutions

at no additional cost. This also provides a natural framework for explicitly assessing

the resolution-accuracy tradeoff which is critical in the case of noisy data. In con-

trast to the standard NP method, we are able to extend our multiscale reconstruction

technique to the case of noisy projections to obtain a statistically regularized, multi-

scale MAP object estimate. We do this by realizing that for ill-posed problems the

lower resolution (i.e. the coarser scale) reconstructions are often more reliable than

their higher resolution counterparts and by using prior statistical models constructed

directly in the multiscale domair. which capture such intuition. Our multiscale MAP

regularized reconstructions are no more computationally intensive than our unregu-

larized multiscale reconstructions. Finally, we exploit the sparsity of the multiscale

system matrix to develop an extremely efficient method for reconstructing the fine

scale features (for example, edges and boundaries) in the object.

In Chapter 4 we concern ourself with the development of an efficient reconstruc-

tion algorithm that takes advantage of the sparsity and conditioning of the multiscale

system matrix from Chapter 3. Specifically, we use the Kaczmarz method to solve
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the sparse and well-conditioned system of equations that arises in our multiresolution

NP framework. We refer to the resulting reconstruction technique as the multiscale

projection-domain ART (MPART) and present it as an alternative to the conven-

tional ART. We show that the MPART reconstruction is relatively insensitive to the

ordering scheme and the relaxation parameter, which are critical for convergence in

ART. We further show that, even though the sparsity of the multiscale system matrix

and the projection matrix of ART are similar, the smaller magnitude elements in the

former can be thresholded to zero to obtain reconstructions that are a reasonable

approximation to the true reconstruction. These approximate WART reconstruc-

tions are obtained with substantially less computations and storage than the exact

reconstructions. We show that similar approximate ART reconstructions obtained

by thresholding the smaller elements in the projection matrix suffer from severe arti-

facts. Finally, in the case of noisy projection data, we develop an extension to MPART

that computes the MAP estimate from Chapter 3. This MAP estimate is obtained

with essentially the same computational and storage complexity as the unregularized

MPART reconstruction.

In Chapter 5 we specialize our multiscale framework from Chapter 3, which is

geared towards sparse data, to yield fast reconstructions from dense data. We do

this by operating on the ramp filter matrix of the FBP rather than the NP system

matrix. As it turns out, the matrix representation of the resulting multiscale ramp

filtering operator is approximately diagonal. This enables us to formulate an efficient

multiscale tomographic reconstruction technique from complete data where the recon-

structions at multiple scales are obtained with the same computational complexity as

that of the FBP reconstruction method. Further, in the case of noisy but dense data,

we show that the MAP estimate developed in Chapter 3 is equivalent to a rolling-off

of the FBP ramp filter in a statistically-optimal manner. Again, this MAP solution

is obtained with the same computational complexity as the FBP method.

In Chapter 6 we concern ourself with the likelihood discrimination of fractal-

textured objects with different fractal. dimensions. We show that the data covariance

matrix corresponding to these objects is extremely sparse in the multiscale domain,
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thereby leading to fast likelihood calculations. Further, we use the recently introduced

class of multiscale stochastic models defined on trees to realize accurate approxima-

tions of the data covariance matrices corresponding to fractal fields. These tree-Eke

models have the advantage that they lead to fast likelihood calculations. We show

that the resulting likelihood method is able to discriminate fractal fields from sparse

data even in the presence of a substantial amount of noise.

In Chapter 7 we consider the problem of detecting anomalies that are superim-

posed on a fractal-textured background. Rather than solving this problem in the

object space, we tackle this problem in the multiscale data domain. We first calcu-

late the data covariance matrix corresponding to the fractal background, and then

perform a chi-square test on the data to detect anomalies. We show that, since the

multiscale domain results in an extremely sparse fractal-field data covariance matrix,

a fast way of localizing the anomaly to a few candidate pixels is to perform a chi-

square test on the data by using only the diagonal elements of this covariance matrix.

Once the candidate pixels have been identified, a maximum-likelihood (ML) estimate

of the field intensity is obtained at only these candidate pixel locations. This results

in an extremely fast and, at the same time, a nearly statistically-optimal method for

zooming-in on the anomaly.

We conclude the thesis in Chapter 8, in which we also identify a few topics for

future research.

1.6 Other work related to this thesis

Wavelets have been recently applied for tomographic image reconstructions by other

researchers as well. Our work contrasts with these other multiscale tomography ap-

proaches which either concentrate on the complete data tomography problem [64,671

or assume prior knowledge of the object edges to reconstruct an object from incom-

plete data [68]. In addition, in the approaches [64, 67, 68] the object is expanded

in a 2-D wavelet basis for the original spatial domain and the resulting coefficients

of this expansion are then calculated from the projection data. In contrast, in our
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multiscale approach which is fundamentally based on the incomplete data NP frame-

work, a 2-D multiscale representation is obtained by a 1-D wavelet expar-sior.. of the

strips. This has the advantage that our multiscale basis representation of the object

is closer to the measurement domain than other multiscale representation techniques.

One consequence is that our algorithms for multiscale reconstruction are extremely

efficient. Another consequence is that our framework also allows for the simple and

efficient solution of statistically regularized problems at no additional cost when the

projection data are noisy.

Besides the above mentioned work, DeStefano and Olson [22], and Berenstein and

Walnut [5] have also used wavelets for tomographic reconstruction problems, in par-

ticular to localize the Radon transform in even dimensions. Through this localization

the radiation exposure can be reduced when a local region of the object is to be im-

aged. Our multiresolution framework for tomography contrasts with the work in [22]

and [5] in that the latter approaches expand the object in a 2-D wavelet basis and,

further, do not provide a framework for multiscale reconstruction, which is the cen-

tral theme here. In addition, our reconstruction procedure also localizes the Radon

transform, though we do not stress this particular application in this thesis.
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Chapter 2

Preliminaries

In this chapter we present the background material that is essential for understanding

the development of our multiresolution framework for reconstruction and detection

of objects from tomographic data. The chapter is organized as follows. In Section 2.1

we present a mathematical formulation of the image reconstruction problem in to-

mography. Following this, in Section 2.2 we describe a few conventional methods

for image reconstruction, namely the filtered back-projection (FBP) reconstruction

technique, the algebraic reconstruction technique (ART), and the natural pixel (NP)

method. In Section 2.3 we state relevant results from detection and estimation theory.

This is followed by Section 2.4 where we describe the commonly used methods for

obtaining regularized reconstructions from noisy data. In Section 2.5 we present the

wavelet-transform based technique for multiresolution representation of signals. Fi-

nally, in Section 2.6 we summarize other existing work in multiresolution tomography.

Sections 2.A and 2.B contain certain technical details.

2.1 Tomographic measurements

In tomography the goal is to reconstruct an object or a field, f, from strip-integral

data [8,39,44,55]. For simplicity, in this paper we only consider the 2-D parallel-beam

imaging geometry. Here the data consists of parallel, non-overlapping strip-integrals

through the object at various angles (refer to Figure 2-1). Each angular position
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corresponds to a specific source-detector orientation. Suppose we have NO positions

between O' and 180' and N, parallel strip-integrals at each angular position. Let us

label the observation corresponding to strip i at angular position k by y(m), where

m = (k - I)N, + i. Furthermore, let S,.,, (u, v) be the indicator function of the strip-

integral corresponding to this observation so that S.. has value one within that strip

and zero otherwise. Given this notation, the measurements without noise are given

by:

Y(M) =ff f (U, v) S,,,(u, v) du dv, M NoN,, (2.1)
n

where (u, v) are the usual rectangular spatial coordinates, and the integration is

carried over a region of interest 0 which represents the field-of-view of the imaging

system. In tomographic literature, the term projectior.. is commonly used to refer to

the collection of strip-integral data at the same angular position. Thus the projection

yA: at angle k is defined by the following N, vectorl:

y((k - 1)N. + 1)

A y((k - I)N, + 2) (2.2)

L Wk - 1)N. + NO J

To summarize, in tomography the image reconstruction problem amounts to

solving for the object f(uv) from (2.1), given the strip-integral data fy(m),,m

1, . . . , No N, 1, or alt ernatively the proj ection dat a f yk, k -_ 1, . . . , No 1.

2.2 Conventional reconstruction techniques

We turn our attention next to a few commonly used techniques for image recon-

struction from tomographic data. We first describe two matrix-based techniques for

reconstruction from sparse data, namely the ART and the NP reconstruction method.

'In subsequent sections we will use the same notation yk to denote the measurements in (2.2)

with additive measurement noise.
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projection at angle 1 (k=1)

"N

S S
1 8

Figure 2-1: The strip-integral measurements of an object (shaded) at two different
angular positions (k = 1 and k = 2). Also shown are three basis functions, Si, S8,

and S16, which are the indicator functions of the corresponding strips. Each angular
projection is composed of N. -_ 8 strips in this example.
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We then move on to the FBP technique which yields accurate reconstructions only

from dense data.

2.2.1 The algebraic reconstruction technique (ART)

In ART [37-40,44], the object f (u, v) is expanded in the standard rectangular pixel

basis:
Np

f (U, v) 1] f (n)b.(u, v) (2.3)
n=1

where bn(U, V) is the indicator function of pixel n, f (n) is the coefficient in this

expansion of the object corresponding to basis function b"'(u, v), and Np are the total

number of pixels used in the object representation. For simplicity, we assume that

the object is represented on a N, x N, square pixel grid (where recall that N, is the

number of parallel strips in each angular projection), and hence Np = N. Now by

substituting the ART object representation equation (2.3) into the strip-integral data

expression (2.1), we obtain:

N,2

E Tnf (n), m NoN, (2.4)
n=1

with

T,.n = ff bn (U, v) S, (u, v) du dv, m = 1; ... ) No N,,; n =: 1) ... ) N,2, (2.5)
n

where fl is the field-of-view of the imaging system. Finally, by collecting together the

data in (2.4), we get the following overall observation equation:

y = Tf, (2-6)

where the overall data vector y has length NoN., f is a N,,2 vector containing the

object expansion coefficients If, n = N,2,1, and T is a NoN. x N.2 projectior..

matrix, the (m, n)-th element of which is given by Tnn (see (2.5)). The tomography

problem thus reduces to solving for the object coefficients f from (2.6), given the data
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Figure 2-2: The grayscale plot (black corresponds to the maximum value and white
to the minimum) of the projection matrix T for an imaging geometry defined by
No = N, = 32. The matrix is of size 1024 x 1024. Note that T is sparse.

y which are gathered along strips in T. We refer the reader to Figure 2-2 where we

show the 1024 x 1024 projection matrix' T corresponding to an imaging geometry

with No = X, = 32. Note that the projection matrix, although very large, is sparse

because each strip intersects only a small number of object pixels.

This sparsity is exploited by a Kaczmarz-like 3 projection4 method that is used

to solve the system of equations (2.6) for the object coefficients f. This method

consists of cyclically projecting an initial guess for f, say f('), onto the hyperplanes

'Refer to Section 2.A for details on the formation of the projection matrix T.
'The standard Kaczmarz method has no provision for relaxation. The variant used by ART,

however, incorporates relaxation. For clarity, we will refer to the latter simply as the Kaczmarz
method with the understanding that it includes relaxation.

'This is not to be confused with the term projection that is frequently used (including in this
thesis) for tomographic data.
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defined by the observation equations (2.4). In the -first iteration all the NON, obser-

vation equations are cycled through, and the second iteration is started by projecting

the result of the first iteration onto the hyperplane defined by the first observation

equation y(l) == & T1,J (n). This process is repeated until convergence is achieved.

Specifically, the following recursion is used for calculation of the object coefficients:

f (i+') = f W + r(k)(Y(k) - T(k)f W )T(k)T, k = (i)mod(NoN,,) (2-7)
T(k)T(k)T

where P) is the ith estimate of f, T(k) refers to the k-th row of T, and r(') is the

relaxation parameter for the k-th iteration 5 , with 0 < r(k) < 2. Once convergence is

achieved for the solution of the object coefficients f, the reconstruction is obtained

from (2.3). It can be easily seen from (2.7) that the computational complexity per

iteration of ART is proportional to the number of non-zero elements in the matrix

T. Also, since only a row of T is required for each step of the recursion (2.7), the

Kaczmarz method results in a storage efficient algorithm [391.

We discuss next the parameters in the ART recursion (2.7) that have significant

influence on the rate of convergence of the solution f [40]. The first choice is of the

ordering scheme used for rows of T in the recursion (2.7). As (2.7) currently stands,

the rows of T are accessed in a sequer-tial order. However, if at each step the row is

accessed that has the largest angle to the subspace spanned by all the rows of T used

in the previous steps of the same iteration, the convergence can be improved. This

is exactly the motivation behind a recent ordering scheme proposed by Herman and

Meyer [401. However, an improved convergence is seen even with a rar-dom ordering

scheme [40], where the rows of T are accessed in a random fashion. Another critical

choice for convergence is that of the relaxation parameter r(") for iteration k. This

value is determined by experimentation on test images which are similar in some sense

to the image that is to be reconstructed [40]. We point out to the reader that if the

system of equations (2.6) is consistent, and if the matrix T is well-conditioned, then

'In the standard Kaczmarz method no relaxation is used, i.e. the relaxation parameter r(k) is
set to one for all iterations k. As a result (2.7) corresponds exactly to projection of f(') onto the
hyperplane defined by y(k) _- T(k)f only if r(k) = 1.
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the choice of the ordering scheme for the rows of T, and the relaxation parameter will

have no effect on the convergence of the reconstruction. In practice, since T is not

well-conditioned, these choices are critical for convergence. This gives us a preview

of things to come. In Chapter 4 we will present an efficient method for isolating

and removing the ill-conditioning in the projection matrix T. As a result, we will

perform the Kaczmarz recursions of the type (2.7) on a system of equations where

the system matrix is well-conditioned. This will result in our modified ART algorithm

being relatively insensitive to the ordering scheme and to the choice of the relaxation

parameter. This gain will r-ot be at the expense of any additional computations per

iteration7 since our well-conditioned matrix will have a similar sparsity as that of the

ART projection matrix 6 T.

Finally, there are two important sources of inconsistency in the system of equations

(2.6) used by ART. The first is due to the presence of measurement noise. The second,

which has been a source of some controversy in the past [37,38], is due to the fact that

there is a mismatch between the rectangular pixel representation (2.3) used by ART

and the strip-integral measurements of the object. In particular, reconstruction errors

result in ART because the object estimate is required to have the same value within

each pixel, whereas the measurements are a function of the variations of object within

the pixel. The NP representation [9, 101, which we discuss next, was introduced to

remove this second inconsistency arising due to the standard rectangular pixel object

representation in ART.

2.2.2 The natural pixel (NP) object representation

In the natural pixel object representation [9, 10], the object is represented in the

same basis functions (i.e. strips IS .. (u, v)J) along which the strip-integral data y are

6As an example, for an imaging geometry with No = N, = 32, the projection matrix T has
a condition number of 2.3 x 1016. Our method for removing the ill-conditioning, however, results
in a matrix with a condition number of 1.3 x 103. In addition, since the two matrices have a
similar percentage of non-zero elements (- 6.5%), the computational complexity per iteration of the
Kaczmarz method is same for the two cases.
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collected. Thus:
NqN.

Auv) - E x(n)S,,(uv), (2-8)
n=1

where x(n) is the coefficient of expansion of the object in strip Sn(uv). Now by

substituting the NP object representation equation (2.8) into the strip-integral data

expression (2.1), we obtain:

NeN,

y(m) E C..x(n), M -_ 1,...,N9N, (2.9)
n=1

with

Cnn = ff Sn (U) v) S,,, (u, v) du dv, M -_ 1� ... ) No N,,; n = 1) ... ; No N,

(2.10)

where fl is the field-of-view of the imaging system. Finally, by collecting together the

projection data in (2.9), we get the following overall observation equation:

Y - CX, (2.11)

where y is the overall data vector of length NoN, x is a NoN. vector containing the

expansion coefficients �Xnn -_ 1,...,NoNJ, and C is a NqN, x NqN, matrix, the

(M, n)-th element of which is given by Cnn (see (2. 10)). Thus in the NP representa-

tion, the tomography problem reduces to solving for the object expansion coefficients

x from the data y according to (2.11), and then obtaining the reconstruction f (u, v)

from (2.8). We point out to the reader that the NP representation is exactly matched

to the data since it uses the strips, rather than square pixels, as basis functions (c.f.

(2.8)). It is due to this very reason that the NP representation is free of the pixel

errors that arise in ART due to the rectangular pixel object representation. Finally,

even though no assumption about the discretization of the object on a rectangular

pixel grid is needed to solve for x from (2.11), once the coefficients x have been cal-

culated, a discretization of (2.8) is needed to display the reconstruction. The reader

can easily verify that the discretization of (2.8) on a N, x N, pixel grid results in the
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reconstruction:

f = T TX, (2.12)

where the (m, n)-th element of T is given by (2.5), and f is the vector containing the

object expansion coefficients in the rectangular pixel basis (c.f. (2.3)). Note that (2.12)

can be interpreted as the back-projection operation [44] where the object coefficients

x are back-projected along the basis functions T to obtain the reconstruction f.

Unfortunately, solution of the system of equations (2.11) for the coefficients x,

as required by the NP method, is complicated by the fact that the NP matrix C is

large and full (refer to Figure 2-3 for a picture 7 of C for an imaging geometry with

No = N, = 32). The elements of C are the areas of intersection of the strips defined

by the basis functions T (see (2.10) and Figure 2-4). Most of these areas are not

zero and hence the matrix C is full. The large size of C makes it difficult to solve

for x directly from (2.11). In [9,10,241 this problem is circumvented by two different

approaches. The first is to use iterative techniques and a suitable initial value to

solve for X. However, since the NP matrix C is not sparse, these iterative techniques

result in reconstruction algorithms that are inefficient. The second approach is to

concentrate on some specific imaging geometries which result in a matrix C that

can be directly inverted in a computationally efficient manner. The problem with

the second approach is that these imaging geometries may not be practical. A final

major difficulty in obtaining the NP reconstruction is that there is an inherent non-

uniqueness in the NP object representation arising from it's tie to the data acquisition

process, which results in C being rank deficient or at best being badly conditioned

for most imaging geometries'. None of the NP related work [9,10,24] discusses this

conditioning issue brought on by the non-uniqueness of the NP representation.

We discuss next the origin of the non-uniqueness in the NP representation that is

responsible for the ill-conditioning of C. To simplify the discussion, we assume C =

TT T which, apart from discretization effects, is always true. Further, we partition

7Refer to Section 2.A for details on the formation of the NP matrix C.
'For example, for an imaging geometry with No = N, = 32, the 1024 x 1024 matrix C has a

condition number of 1.4 x 105.
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Figure 2-3: The grayscale plot (black corresponds to the maximum value and white to
the minimum) of the NP matrix C for an imaging geometry defined by No -- N, = 32.
The matrix is of size 1024 x 1024. Note that C is full.
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Figure 2-4: The elements of the matrix C are the areas of intersection of various
strips. One such area of intersection, corresponding to two strips delineated by bold
lines, is shown shaded. The matrix C is full as most of these areas are non-zero.
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the projection matrix T into components at different angles, corresponding to the

following partitioning of the observation equation (2.6):

Y1 T,

Y2 T2
(2.13)

L YNe J L TN, J

where Tk is an N, x N,,2matrix, the rows of which represent the discretized strips at

angle k, and recall that yk are the projection data at angle k (c.f. (2.2)).

The ill-conditioned nature of the matrix C can now be easily understood at an

intuitive level if one assumes an in-finite field-of-view for the imaging geometry (rather

than the finite rectangular field-of-view we show in Figure 2-1) so that edge effects are

absent. Recall that the columns of TkT are the basis functions of the NP representation

at angle k, c.f. (2.13). Now the sum of all the columns of T T equals the sum of all the

columns of TT since both correspond to the same indicator function of the field-of-k2

view. This simply reflects the physical fact that both of these sums correspond to the

DC value of the object field. Thus the same underlying object can be represented in

a variety of ways, corresponding to different allocations of its DC component to the

different angular basis sets. Hence the representation (2.12) is non-unique, T T does

not have full column rank, and C - TT T is not invertible. For the case of our finite

field-of-view the above discussion is exact only if k, andk2 correspond to projections

at O' and 900 due to nonuniform edge effects. Even when the projections are not

exactly at right angles however, while not dropping rank, C is quite ill-conditioned.

The above discussion provides us with a preview of things to come. In Chapter 3,

we use wavelet bases to transform the NP strips S into a multiscale framework. The

use of wavelet bases, in addition to providing a multiscale framework, enables us to

overcome the above limitations of the NP reconstruction. In this wavelet transformed

domain the multiscale system matrix corresponding to C is sparse. Further, the

coarsest multiscale basis function at any angle k turns out to be the sum of all the
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columns of T T responsible for the ill-conditioning of the resulting multiscale matrix.

We exploit this feature to partition the multiscale system Matrix by scales to obtain a

reconstruction procedure that requires inversion of only a wen-conditioned and sparse

matrix.

2.2.3 The filtered back-projection (FBP) technique

The filtered back-projection (FBP) reconstruction technique [8,39,44,51] is the most

commonly used method for image reconstruction from dense tomographic data. It

is based directly on the Radon inversion formula which is valid (i.e. yields exact

reconstructions) only when a continuum of noise-free line integral projections from

all angles are used [441. In practice, as indicated in (2.1), we only have access to

sampled projection data which are collected using strips of finite width. In this case,

the quality of the FBP reconstruction is a function of the quality and fineness of the

corresponding projection data used. We refer the reader to [8, 16, 45, 65] for details

on sampling requirements for the Radon transform.

In the FBP reconstruction, the object is expanded in a non-orthogonal basis that is

closely related to the data acquisition process and the coefficients of this expansion are

then found from local processing of the data in each angular projection. In particular,

as in the NP method, the estimated object is represented as a linear combination of

the same functions S,.,,(u, v) along which the projection data are collected. Similar to

(2.12), a discretized version of this representation may be obtained as:

No
f -_ T TX T T (2.14)

A: Xk1
k=1

where the N, vector xA: contains the object coefficient set at angle k, and TI, is the block

of the projection matrix associated with discretized strips at angle k (see (2.13)). Note

that, as in the NP case, (2.14) can be interpreted as the back-projection operation

where the object coefficients xi, are back-projected along the basis functions Tk at

each angle k and then the contributions from all No angles are added to get the

overall reconstruction f.
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To complete the reconstruction the coefficients xA, must now be determined. The

standard FBP method calculates them for each angle k according to the Radon inver-

sion formula by filtering the projection data yk at that particular angle with a ramp

filter [44]. Thus, for a fixed angle k:

xk = Ryk, (2.15)

where the matrix R captures this ramp-filtering operation (refer to Figure 2-5 for a

picture of R for an imaging geometry with N,, = 64, and to Figure 2-6 which is the

fast Fourier transform (FFT) of a central row of R). Thus (2.14) and (2.15) together

represent the two operations used in the standard FBP reconstruction.

By collecting the object coefficient and data vectors at different angles we obtain

the following overall equation which reflects the identical and independent processing

from angle to angle performed on the projection data by the FBP method:

R 0 ... 0

0 R ... 0
X Y. (2.16)

0 0 ... R
L J

An important point to note in the above equation is that the matrix R is fixed and is

not a function of the imaging system (i.e. the quality and the quantity of the acquired

projection data). It is this simple, regular structure in the explicit formula (2.16) that

results in the computational efficiency of FBP. Note that in the NP reconstruction,

since the matrix C is full, the processing of data is not independent from angle to

angle, in contrast to FBP. The advardage of the NP reconstruction over the FBP

is that since the matrix C is calculated for each specific acquisition geometry, the

reconstruction can be customized for any imaging system, so that a complete set of

angular projection data is neither assumed nor required for adequate reconstruction

as it is in FBP. Recall that the FBP method, which is based on the Radon inversion

formula, yields exact reconstructions only when a continuum of noise-free Ene-integral
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Figure 2-5: The grayscale plot (black corresponds to the maximum value and white
to the minimum) of the FBP ramp-filter matrix R for an imaging geometry defined
by N, -_ 64. The matrix is of size 64 x 64.
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Figure 2-6: The FFT of a central row of the FBP ramp-filter matrix R for an imaging
geometry with N, - 64.
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data are available.

2.3 Results from estimation and detection theory

In this section, we mention a few relevant results from the theory of estimation and

detection of signals from noisy data. We use these results extensively, first while devel-

oping regularization techniques for reconstruction from noisy data, and subsequently

while developing detection algorithms in the multiresolution framework.

2.3.1 Maximum-likelihood (ML) and maximum-aposteriori

probability (MAP) estimation

Consider noisy observations g of a signal h, of the form:

g = Ah + n, n , JV(O, A,,) (2.17)

where n is the additive noise vector, and the notation z - Af(m, A) denotes a Gaussian

distribution of mean m and covariance matrix A. We thus assume the noise vector n

to be Gaussian, with mean 0 and covariance An-

The maximum-likelihood (ML) estimator of h, given noisy observations g and the

distribution for noise n, is given by [761:

6L max [p(glh)]
h

arg min [(g - Ah)T A-1(g - Ah)]n
h

(AT A-'A)-'A TA-1g) (2.18)n n

where p(.) refers to the probability density. The estimation error in the ML case is

defined as:

eML A h - �ML, (2.19)
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and it can be shown that the ML estimator is unbiased, i.e.

A
bML - E[eMLIh] - 07 (2.20)

where the notation E[z] refers to the expected value of z. Finally, the error covariance

for the ML estimate is given by:

la
AML E[(e - bML)(e - bML)'Ih]

(A TA-'A)-'. (2.21)n

The ML estimator assumes no statistical prior knowledge about the signal h. The

maximum-aposteriori probability (MAP) estimate, which we discuss next, provides a

method for incorporating such prior information.

Let us assume the signal h to be random, uncorrelated with noise n, and dis-

tributed according to h A((O, Ah)- Given this prior knowledge, the MAP estimate9

of h is obtained as [761:

hMAP arg max [p(h Ig)]
h

arg max [p(glh)p(h)]
h

arg min [(g - Ah)T A-'(g - Ah) + hTA-'h]n h
h

(ATA-'A + A-')-'A TA-1g. (2.22)n h n

The estimation error in the MAP case is defined as:

eMAP -A h - 6AP 7 (2.23)

and, once again, it can be shown that the MAP estimator is unbiased, i.e.

bMAP E[eMAPI= 0. (2.24)

9Note that since we assume Gaussian distributions, the MAP estimate in our case is equivalent
to the linear least squares estimate.
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Finally, the error covariance for the MAP estimate is given by:

AMAP E[(e - bMAP)(e - bMAP)']

(AT A-'A + A-')-'. (2.25)

2.3.2 Binary hypothesis testing

In binary hypothesis testing [76], the goal is to discriminate between two hypotheses

Ho and Hi, with prior probabilities Po and Pi respectively, based on information

provided by some measurement vector g. In the Bayes risk framework, this dis-

crimination is achieved by minimizing a risk which penalizes the various errors of

mis-classification in proportion to a cost associated with the errors. Specifically, in

the Bayes framework, the binary hypothesis testing problem amounts to finding a set

Z, such that, if we decide Hi in case g C Zi, the risk is minimized. If cij is the cost

of deciding Hi when Hj is true, then the Bayes risk, which is to be minimized, is

written as:

E(c) A cooPo + coiPi + (cio - coo)PoPF - (co, - cl,)PIPD (2.26)

where PD, the conditional probability of detection, is defined as:

PD fZ1 dg p(g I Hi), (2.27)

and PF, the conditional probability of false alarm, is de-fined as:

PF dg p(g I Ho). (2.28)

The discrimination strategy that minimizes the risk (2.26) is given by the following

likelihood ratio test:

Decide Hi if : L(g) -_ Xg Hi) > (cio - COO)PO A
p(glHo) - (co, - cii)Pi

else decide Ho. (2.29)
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In case the prior probabilities Po and Pi of the two hypotheses are equal, and the

cost assignment is such that coo = cli = 0 and co, = cio, the likelihood ratio strategy

(2.29) reduces to the following maximum-likelihood decision rule:

Decide HI if : p(g I Hi) > p(g I Ho)

else decide Ho. (2.30)

Finally, the maximum-Ekehhood decision rule (2.30) is equivalent to the following

log-likelihood rule:

Decide Hi if : ln(p(gjHj)) > ln(p(gjHo))

else decide Ho. (2.31)

We consider next the form of the log-likelihood rule (2.31) for a particular case where

the two hypotheses Ho and HI are given by:

Ho g=Aho+n, n , A((O, A,,), ho , jV(O, Ao), (2.32)

HI g -_ Ah, + n, n , A((O, A,,), hi , A((O, Al), (2-33)

where the noise n is uncorrelated with both ho and hi. In this case, the log-likehhood

rule (2.31) reduces to:

I T 1 T TDecide HI if: - - ln JAAjA + A,,l - -9 (AAjA + An)-lg
2 2
1 T 1 T T

> -- lnlAAoA + Anj - -9 (AAoA +A,)-lg
2 2

else decide Ho, (2.34)

where the notation IZI refers to the determinant of matrix Z.
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2.4 Conventional regularization techniques for re-

construction from noisy data

In this section we describe the commonly used regularization techniques for recon-

struction from noisy projection data. These techniques fall into two categories de-

pending on whether they are ad hoc or statistically-based. As is expected, the ad hoc

techniques are much faster, but do not provide a statistically-optimal framework for

selecting the regularization parameters.

2.4.1 Ad hoc regularization techniques

The most familiar example of an ad hoc regularization technique is provided by the

FBP where, in presence of measurement noise, the ramp filter is rolled-off at high

frequencies [3, 39, 44] (see Figure 2-7). This is called apodizatior.. [31 and several

different windows are typically used for this purpose, for example Hann, Hamming,

Parzen, Butterworth etc. [50]. The assumption is that most of the object energy

occurs at low frequencies while the most disturbing noise-derived artifacts occur at

high frequency. The high frequency roll-off thus attenuates these components at the

expense of not reconstructing the fine scale features in the object. Since the overall

procedure is essentially the same as the original FBP method, the result is a fast

though ad hoc, method for regularization.

Another ad hoc form of regularization is seen in ART, where the iterations are

stopped prematurely before an excessive -fitting of the solution to the noisy data

occurs. This results in a smoothed, and thus a regularized reconstruction.

2.4.2 Statistically-based regularization techniques

A first example of the statisticaRy-based regularization techniques is seen in ART,

where a slightly modified version of the unregularized iterative algorithm is used to

calculate an MAP estimate of the object pixels [39]. Specifically, the following model
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Figure 2-7: The ramp-filter (solid line) for N, -_ 64, and the rolled-off version (broken
line). The roll-off is according to the Hann window.
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is considered for noisy observations (the noisy version of (2.6)):

y = Tf + n, n - Ar(O, AnINNJ (2-35)

where 1,,, refers to a z x z identity matrix. The noise vector n is thus assumed to

be zero-mean and uncorrelated. The MAP estimate of the object pixels f is then

calculated from (2.35) based on a prior model f - Ar(O, Af IN2) which corresponds to

assuming that the pixel values of f are uncorrelated. This MAP estimate is given by

(c.f. (2.22)):

f )T(Y )(fTf)]
fMAP arg min [(-)(y - T - Tf) + i.e-,

f An Af

K I )T T T + )I]-,( 1 )T Ty, (2.36)
An Af An

and is obtained by the modified ART algorithm with essentially the same computa-

tional and storage requirements as the original, unregularized ART reconstruction.

A second class of statistically-based regularization techniques calculates the MAP

estimate of the object pixels f by using more involved, correlated, Markov rar-dom

field (MRF) prior models for the object [27,28,33,49]. These prior models impose

local smoothness constraints on the object pixels by penalizing reconstructions where

the reconstructed pixel values fluctuate wildly in localized regions. The MRF class

of prior models is captured by the following Gibbs probability distributior-.:

f "i c exp (-Puffl), (2-37)

where c and 0 are constants, and U(f) is an energy function that specifies the corre-

lations between the pixel values.

As an example, for a particular nearest-neighbor MRF prior model suggested by

Geman and McClure [28], the energy function has the form:

UW .1W. - ft) + 1 41) Y" - MI (2.38)
1.'tj vf2-
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where [s, t] denotes pixels that are horizontally or 'Vertically adjacent, Is, tj denotes

pixels that are diagonally adjacent, and

(Z) - 1 + (Z/8)21 (2.39)

where 8 is a constant. Note that, since 4�(z) initially increases with z but subsequently

levels-ofF asymptotically at large values of z, the energy function (2.38) penalizes large

differences in nearest-neighbor pixel values, but still allows abrupt transitions to occur

without excessive penalty.

Finally, the use of the MRF prior models (2.37) results in MAP estimates that

are extremely computationally intensive. As an example, the MAP estimate corre-

sponding to the MRF prior model (2.37) and the noise model (2.35) has the form:

1 T
fMAP -- arg min [(-)(y - Tf) (y - Tf) + PU(f)] (2.40)

f A,,

and is obtained by using elaborate Monte Carlo techniques Eke the computationally

intensive Metropolis algorithm [271.

2.5 Wavelet transform-based multiresolution rep-

resentation

In this section we present a brief summary of the wavelet-based multiresolution rep-

resentation of 1-D and 2-D signals. The multiresolution techniques in this thesis

require only the representation of 1-D signals. However, we also discuss the form of

the 2-D multiresolution representation, which we use in the next section to bring out

the differences between our work in multiresolution tomography and other existing

work, almost all of which uses the 2-D wavelet representation. In either case, we do

not intend this as a complete treatment of the topic and intentionally suppress many

details. The interested reader is referred to any of the many papers devoted to this

topic, e.g. the excellent paper [59]. Finally, in this section, we use the terms multires-
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olutior.. and multiscale interchangeably with the understanding that high resolution

corresponds to fine scales.

2.5.1 Representation of 1-D signals

Let L 2(R) denote the vector space of measurable, square-integrable, I-D signals x(u),

and let Z denote the set of integers. A multiscale approximation of L 2(R) is a

sequence of subspaces fVjljEZ with ... V_ 1 C Vo C V, ... having the interpretation

that the projection Ajx(u) of x(u) on Vj gives the approximation of x(u) at scale

j. The scales become finer with increasing j. Now, as shown in [59], there exists a

unique function O(u) C L 2(R), called the scaliv-g fur.-dion, such that for each scale j,

10j,1(u) = -\/_2jO(2ju - WIEZ is an orthonormal basis of Vj. Thus the approximation

of the function at scale j can be written as:

Ajx(u) x(j)(1)ojj(u) (2.41)

with

X 0) (1) = < X (U), 0i'l (U) > (2.42)

where < .,. > refers to the inner product operation. The difference in information

between the approximation of the signal at successive scales j and j + 1 is captured

by the detail signal at scale j. This detail signal is obtained as the projection Djx(u)

of x(u) on the subspace Oj which represents the orthogonal complement of Vj in

Vj+,. Similar to the scaling function, there exists a function 0(u) c- L 2(R) called

an orthogor-al wavelet, such that for each scale j, f Ojj(u) = -\/_2jO(2ju - I)JIEZis an

orthonormal basis of Oj. Thus the detail signal at scale j, capturing the difference in

information between Ajx(u) and Aj+lx(u), can be written as:

Djx(u) �01(1)ojj(u) (2.43)

where

01(l) =< X(U)"OjAu) > (2.44)
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As discussed in [59], there exist functions h and g satisfying:

0(u) v1'r2_h(1)0(2u - 1)

0(u) V2-g(1)0(2u - 1). (2.45)

The discrete approximation and detail coefficients at scale j, x(j) and �U) respectively,

can then be obtained from the next finer scale discrete approximation coefficients,

XU+1)) by convolution with h and g followed by down-sampling by a factor of 2:

x(j)(1) (h x(j+1)(21))

0)(1) (g �(j+')(21)), (2.46)

where * refers to 1-D convolution. If x(j) is the vector containing the sequence x(j)(1)

and 0) is the corresponding vector of detail added in proceeding to the next finer

scale, then the recursions (2.46) are equivalent to the following wavelet ar-alysis equa-

tior-s [74]:

XW = L(j)x(j+'),

�U) = H(j)x(j+'), (2.47)

where L(j) and H(j) are matrices (linear transformations) which depend on the

sequences h and g, and hence on the particular scaling function and wavelet that are

used for multiscale representation. The operators LU) and H(j) correspond roughly

to low and high pass filters, respectively, followed by down-sampling by a factor of 2.

Beyond the recursive computation of the representation (2.46), the finer scale

discrete approximation x(j+') can be synthesized from the next coarser scale discrete

approximation and detail coefficients, x(j) and �U) respectively, by first up-sampling

by a factor of 2 followed by convolution with h and g:

XU+1)(1) h(2k - 1)x(j)(k) + g(2k - 1)�W(k). (2.48)
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The above recursion (2.48) is equivalent to the following wavelet syr-thesis equatior..

[74]:

x(j+') = LT (j) x(j) + HT(j) �(j), (2.49)

where L T(j ) and H T(j ) are the transposes (i.e. adjoints) of the same operators defined

in connection with (2.47). The operators L T(j) and H T(j) serve to interpolate the

"low" and "high" frequency (i.e. approximation and detail) information, respectively,

at one scale up to the next finer scale. The vector �W, containing the information

added in going from scale j to j + 1, is composed of the wavelet tTar.,SfOTM coefficierds

at scale '3.

Till now we have considered the representation of a continuous signal x(u). We

next describe how the continuous-signal results developed so far can be used to obtain

the multiresolution representation of a discrete signal. To begin, let us assume that

we do not have access to the continuous signal x(u) but rather to a finite number N

of its samples. We assume these samples to be the approximation coefficients xV)

of x(u) at some finest resolution J. For convenience we assume N to be a power

of 2 so that J = 1092(N). Starting from a "coarsest" approximation x(') (usually

taken to be the average value of the signal) then, it is possible to recursively and

efficiently construct the different scale approximations through (2.49) by using the

complete set of wavelet coefficient vectors f�Wj. This layered construction is shown

graphically in Figure 2-8a, where our approximations are re-fined though the addition

of finer and finer levels of detail as we go from right to left until the desired scale of

approximation is achieved. In particular, the original signal x is obtained by adding

all the inter-scale detail components �U) to the initial approximation x('). For a given

signal x the complete set of these elements uniquely captures the signal and thus

corresponds to a simple change of basis. In addition, note from Figure 2-8 that the

intermediate approximation x(j) at scale j is generated using only the corresponding

subset of the complete wavelet coefficient set (e.g. to obtain X(2) we use only x(O),

�(O), and The representation of this intermediate approximation at the original

finest scale can be found by repeated interpolation of the information in x(j) through
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Figure 2-8: (a) Tree diagram for wavelet transform synthesis. We start from a coarsest

approximation x(') on the right and progressively add finer levels of detail �U) as we

proceed to the left, thus refining the original approximation to the signal. The original

(finest scale) sequence is obtained as the final output on the left. (b) Tree diagram

for wavelet transform analysis. Starting from a finest level signal x in the left we

recursively peel ofF layers of detail �W as we proceed to the right and the next coarser

scale representation x(j).

65



the application of L'(j'), j' > j. This interpolation up to the finest scale corresponds

to effectively assuming that additional, finer scale, detail components �U'), j' > j are

zero in our representation of the signal. It is such intermediate scale approximations

and the detail necessary to go between them that give the wavelet transform its

natural multiscale interpretation, and indeed we exploit such interpretations in the

following chapters to obtain induced multiscale object representations.

In addition to the recursive computation of the approximations, it is also possible

to compute the components of the represer.-tatior.. itself (i.e. the wavelet coefficients)

recursively through (2.47) by exploiting the same multiscale structure. Figure 2-8b

shows how these wavelet coefficient vectors at each scale are obtained by "peeling

off" successive layers of detail as we proceed from finer to coarser scales (left to right

in the figure). This recursive structure yields algorithms for the computation of the

wavelet transform coefficients that are extremely efficient. For convenience in the

development to follow, we will capture the overall operation which takes a vector x

containing a discrete signal to the vector � containing all of its corresponding wavelet

transform elements f �U) I and x(') by the matrix operator W as follows:

WX (2.50)

L X(O) J

Since the transform is invertible and the wavelet basis functions are orthonormal, it

follows that W-1 exists and further that W is an orthogonal matrix, i.e. that W` =

WT. Finally, because of the highly recursive structure of the multiscale representation

algorithms in the wavelet domain, the multiscale representation operation (2.50) can

be performed in an extremely efficient manner (O(N)) [6].

From the above discussion, the matrix W captures the operation of the operators

L(j) and H(j), and thus depends on the underlying chosen wavelet. In our work in
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this paper, in addition to the Haar wavelet" we will use wavelets from an especially

popular family of these functions due to Daubechies [18], the separate elements of

which are denoted D,,, where n is an indication of the support size of the corresponding

filters contained in L(j) and H(j). Finally, since our signals are of finite length, we

need to deal with the edge effects which occur at the ends of the interval in the

wavelet transform. While there are a variety of ways in which to do this, such as

modifying the wavelet functions at the ends of the interval in order to provide an

orthogonal representation over the interval [17], we have chosen here to use one of the

most commonly used methods, namely that of cyclically wrapping the interval which

induces a circulant structure in L(j) and H(j) [29,59]. While this does introduce

some edge effects, these are of negligible importance for the objectives and issues we

wish to emphasize and explore and for the applications considered here. Further, the

methods we describe can be readily adapted to other approaches for dealing with

edge effects as in [17] and the references contained therein.

As noted above, the intermediate approximations x(j) and their finest scale rep-

resentation may be obtained by using only part of the full wavelet coefficient set

during synthesis, effectively assuming the finer scale detail components are zero. For

convenience in the discussion to follow we capture this partial zeroing operation in

the matrix operator A(j), which nulls the upper (J - j) sub-vectors of the overall

wavelet vector � and thus retains only the information necessary to construct the

approximatior.. x(j) at scale j:

A (j) block diag 0(2-T-2i)) I(2j) (2.51)

where OP is a p x p matrix of zeros and 1. is a q'x q identity matrix. Also it win prove

convenient to define a similar matrix operator D(j), that retains only the information

in � pertaining to the detail component at scale j by zeroing all but the sub-vector

"We refer the reader to Section 2.B where show the form of W for the Haar case.
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corresponding to �U):

D(j) A block diag 10(2-7-2j+�), 1(2i), 0(2j)] (2.52)

Finally, with these definitions note that we have the following scale recursive rela-

tionship for the partially zeroed vectors, in the spirit of (2.49):

A(j+') � == A(i) � + D(j) (2.53)

2.5.2 Representation of 2-D signals

We briefly describe next the multiresolution representation of 2-D signals [59]. We

only state the form of the representation and refer the reader to [59] for implemen-

tational details. Further, we consider only the special class of separable multiscale

representation where the 2-D approximation vector spaces are decomposed into a

tensor product of two identical 1-D approximation vector subspaces [59].

Let L 2(R 2) denote the vector space of measurable, square-integrable, 2-D signals

f (U, v), and let Z denote the set of integers. A multiscale approximation of L 2(R 2) is

a sequence of subspaces IVjhEZ with ... V-1 c Vo c V, ... having the interpretation

that the projection Ajf (u, v) of f (u, v) on Vj gives the approximation of f (u, v) at

scale j. Once again, as in the I-D case, the scales become finer with increasing

j. Now, there exists a unique function 0(u, v) = 0(u)o(v) (E L 2 (R 2), called the

scalir--g fur.-dion, such that for each scale j, v) = 2jo(2ju - 1, 2jv - m) =

0jJ(U)0j,.(V)J(J',)C:Z2 is an orthonormal basis of Vj. Thus the approximation of the

signal at scale j can be written as:

Aj f (u, v) f(j) (1, m) Ojl (u) Oj,. (v), (2.54)
M

with

f (j) (1, M) - < f (U, V), Ojl (U) Oj,,n (V) > (2.55)

The difference in information between the approximation of the signal at successive
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scales j and j + 1 is captured by the detail signal at scale i. This detail signal is

obtained as the projection Djf (u, v) of f (u, v) on the subspace Oj which represents

the orthogonal complement of Vj in Vj+,. If �b(u) E L'(R) is the 1-D wavelet cor-

responding to the scaling function O(u), then the following three wavelets can be

defined:

�b'(U' V) O(U),O(V)

0'(u, V) O(UMV)

0'(U'V) O(UMV), (2.56)

suchthatforeachscalejfoll,,,,,,(uv)--2jo'(2ju-1,2jv-m),O�l,,,,,,(uv)--2jo 2 (2ju-
3, 3,

1, 2jv - v) = 2i 03 (2ju - 1, 2jv - m)1(1,-)EV is an orthonormal basis of
3,

Oj. Thus the detail signal at scale j, capturing the difference in information between

Ajf (u, v) and Aj+lf (u, v), can be written as:

Djf (u, v) AV) 1 'M) V) 3�' 1,,n (U I V
M

+ EE p(2j)(l"Mw1".(U'V)
1 M

El: PV) (1, M)'e 1'M(U' V), (2.57)
1 M

where

p(j) (1, M) < f (u, V) , 'O (u, V) >

(j)(1,M) <f(U'V)',02J'm(U'V)>
P2 j,

p(j) (I'M) < f (u, V), O� J'M (u, V) > (2.58)3 .7,

U) U) U)The images pi P2 and p3 capture the object details in the vertical, horizontal,

and diagonal directions respectively and, along with the approximation image f(j),

define the separable 2-D multiscale representation.
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2.6 Existing multiresolution tomographic frame-

works

In all of the existing wavelet-based multiresolution methods for tomography [67,68],

the object is represented in a separable 2-D wavelet basis of the type described in the

last section". The coefficients of expansion in this representation are then determined

from the projection data by assuming that the data are dense and of high quality so

that the various Radon transform results hold.

Specifically, in order to obtain a 2-D multiresolution representation for the object

(or the reconstruction) the approximation coefficients f(j) (2.55) and the three detail

coefficients p(j) ) PW , and p(j) (2.58) have to be determined from the projection data.1 2 3

By a slight change of variables in (2.55) and (2.58), these approximation and detail

coefficients can be seen to be a result of the 2-D convolution of the object f(uv)

with a corresponding scaling function or a wavelet:

f W (1, m) (f (u, v) OjO(-u)Ojo(-v))(2-j1, 2-im)

(j) (1, m) (f (u, v) OjO(-u),OjO(-v))(2-i1, 2-im)Pi

AV) (1, M) U (U, V) OjO(-UAO( _V))(2-il, 2-im)

P3(j) (1, m) (f (u, v) Ojo(-u),Ojo(-v))(2-i1, 2-im), (2.59)

where ** refers to the 2-D convolution. Now, it is simple to see from (2.59) as to

how the approximation and detail coefficients can be calculated from the projection

data. Before we explain this however, let us state an elementary result for the Radon

transform of a convolution of two 2-D functions. This result says that the projection of

a 2-D convolution of two functions is the same as a 1-D convolution of their individual

projections. Thus, in order to calculate the approximation and detail coefficients in

(2.59) which define the 2-D multiresolution representation of the reconstruction, all we

"The only exception to this is the work in [64] where a radial wavelet basis is used instead of
the separable wavelet basis. In that case, the discussion in this section still holds with a minor
modification, namely that the radial wavelet basis only admits a single detail coefficient rather than
the three detail coefficients in case of the separable wavelet basis (refer to (2.58)).
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have to do is to convolve the object projection data with projections of the separable

scaling function and wavelets from (2.59), prior to ramp-filtering and back-projection.

Note however that this multiresolution framework is only valid in the dense and noise

less data scenario since it assumes that the Radon transform results hold. Thus the

existing multiscale reconstructions all of which are based on the framework described

above, break down in the case when the data are sparse and/or noisy.

In this thesis we develop an efficient reconstruction technique that provides recon-

structions at multiple scales from both sparse as well as noisy data. Our multiscale

reconstruction technique is based on the natural pixel (NP) object representation for

tomography. Since the NP representation results in a matrix based reconstruction

method which uses no restrictive assumptions on the quantity of the data, our multi-

scale reconstruction technique is valid for the case of sparse data. Further in the case

that the projection data are dense, we are able to use the Radon transform results

to specialize our already efficient NP-based multiscale reconstruction technique such

that it yields reconstructions at multiscale scales with even less computations. In

particular, our multiscale reconstructions from dense data require less computations

than those obtained from the existing methods that we just described. Finally, we

extend both our sparse as well as dense data multiscale reconstruction techniques to

yield statistically optimal multiscale estimates from noisy data with no additional

computations. This efficiency is due to the fact that in our multiscale representation

the object coefficients "Eve" in the projection (i.e. the data) domain. As we will

see later, an important and powerful class of statistical prior models for the object

is naturally captured in this multiscale projection domain. This in turn results in

simplified expressions for the estimators, which can thus be solved for in an efficient

manner in our multiscale framework.

2.-' Some practical considerations

For the examples in this thesis we do not generate the projection matrix T by cal-

culating the areas of intersection of the strips with the pixels, but for the sake of
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computational efficiency we use the Donner Reconstruction Library [501 to generate

the projection matrix. Specifically, we obtain the columns of T from the Donner

Library by reading out the projection data y corresponding to a choice of impulse

functions for the pixel coefficients f. However, since this method only yields an

approximate projection matrix T, the NP system matrix C generated by explicitly

forming the product TTT in this case suffers from gross inaccuracies. To avoid this

problem, we form C by explicitly calculating the areas of intersection between the

various NP strips. In general we observe that if the projection data are generated

according to the Donner Reconstruction Library, and if the matrix C that is formed

explicitly by calculating the areas of intersections is used for the NP reconstruction,

a misalignment error of the order of one pixel generally occurs in the resulting re-

construction.

2.B Multiscale representation matrix W for the

Haar case

We show below the form of the multiscale representation matrix W for the Haar

wavelet by assuming the finest scale J = 3 (see (2.50)):

1 -1 0 0 0 0 0 0

0 0 1 -1 0 0 0 0

0 0 0 0 1 -1 0 0

0 0 0 0 0 0 1 -1
W - (2.60)

V2_ 0 0 0 0
T2 T2 v'_2 T2

0 0 0 0 ,/2- V2_ T2 - T2

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1
L 2 2 2 2 2 2 2 2 J
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Chapter 3

Using Natural 'VVavelet I Bases And

1\4ultiscale Stochastic 1\4odels For

Tomographic Reconstruction

3.1 Introduction

In this chapter we consider the solution of ill-posed tomographic reconstruction prob-

lems where the projection data are noisy and sparse. Recall from Chapter 2 that the

conventional techniques for image reconstruction from sparse data (for example, the

natural pixel (NP) method) are.computationally intensive. In contrast, our multi-

scale reconstruction technique yields fast reconstructions from sparse data and can

be extended to yield statistically optimal reconstructions from noisy data with very

little added computational complexity. In addition, our multiresolution framework

for tomographic reconstruction is natural or desirable if the ultimate objectives are

multiresolution in some way, for example if the interest is not to fully reconstruct the

field but to gather information about aggregate (i.e. coarse scale) or -fine scale (for

example, boundaries) features of the field. Using conventional techniques we would

first have to reconstruct the entire field and then use post-processing to extract such

features.
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To develop our multiscale reconstruction technique we start with the natural pixel

(NP) object representation [9, 101 (c.f. Section 2.2.2) which was originally developed

for the sparse data tomography problem. The NP representation results in a matrix

based reconstruction method which has the advantage that the resulting reconstruc-

tions are devoid of many of the sparse data artifacts present in the FBP reconstruc-

tion. The disadvantage of the NP reconstruction, or matrix based reconstruction

methods in general, is that solutions of very large, generally ill-conditioned systems

of equations are required.

In this chapter, we build on the NP approach by using wavelet bases to transform

the NP strips. The standard NP system matrix, relating the input (the object coeffi-

cients) and the output (the projection data), is full. The use of wavelet bases results

in a transformation matrix which is Sparse. In addition, the coarsest scale elements of

this matrix capture any ill-conditioning arising from the geometry of the imaging sys-

tem. We exploit this feature to partition the multiscale system matrix by scales and

obtain a reconstruction procedure that only requires inversion of a well-conditioned

and sparse matrix. The use of wavelet bases also enables us to formulate a multiscale

tomographic reconstruction technique wherein the object is reconstructed at multi-

ple scales or resolutions. The overall reconstruction is obtained by combining the

reconstructions at different scales.

Noisy imaging problems arise in a variety of contexts (c.f. Chapter 1) and in such

cases standard matrix based reconstruction methods (including NP) often yield un-

acceptable results. These situations generally reflect the fact that more degrees of

freedom are being sought than are really supported by the data and hence some form

of regularization is required. In contrast to the standard NP method, we are able

to extend our multiscale reconstruction technique in the case of noisy projections to

obtain a statistically regularized, multiscale maximum aposteriori probability (MAP)

object estimate. We do this by realizing that for ill-posed problems the lower resolu-

tion (i.e. the coarser scale) reconstructions are often more reliable than their higher

resolution counterparts and by using prior statistical models constructed directly in

the multiscale domair.. which capture such intuition. Our multiscale MAP regular-
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ized reconstructions are no more computationally intensive than our unregularized

multiscale reconstructions.

Finally, while the work here focuses on the case of sparse data, when complete

data are available, additional efficiencies may be obtained through the use of explicit

Radon transform inversion formulas 2such as FBP. In such complete data cases, the

multiscale methodology described herein may be applied using the FBP method as a

starting point to obtain both unregularized and regularized multiscale reconstructions

with the same computational complexity as the FBP reconstruction. Such application

is described in Chapter 5.

The chapter is organized as follows. In Section 3.2 we review the relevant results

from the NP method. This is followed by Section 3.3 where we develop the theory

behind our wavelet transform-based multiscale reconstruction method starting from

the NP object representation. In Section 3.4 we build on this framework to provide

a method for obtaining MAP regularized reconstructions from noisy data. The con-

clusions are presented in Section 3.5. Appendices 3.A- 3.F contain certain technical

details.

3.2 Review of the natural pixel (NP) reconstruc-

tion results

In this section we briefly review the relevant results from Chapter 2. First, the

measurements in tomography are of the form:

Y (M) = ff f (U , v) S,,, (u, v) du dv, M = 1,...,NoNs, (3.1)
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and can be stacked to form an overall observation vector:

Yi

y Y2 (3.2)

YN,9

where yl, the projection at angle k, is defined as:

y((k - 1)N. + 1)

y((k - 1)N. + 2)
Yk (3.3)

y((k - 1)N. + N.)

In the NP representation, the object is expanded in the same strips S along which

the projection data are collected:

NoN.

f (U, v) -- E x(n)S,,(u, v). (3.4)
n=1

The above representation results in the following observation equation:

y = CX, (3.5)

where x is the overall object coefficient vector containing the coefficients f X(M), M --

NoNJ, and can be partitioned into different angle components as follows:

X1

X X2 (3.6)

L xNe J
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The elements of the matrix C are the areas of intersection of the various strips S. In

particular, the (mn)-th element of C is given by:

C. =ff S.(U, V) S.(U, v) du dv .M -_ 1) ... )No N.; n -_ 1; ... 7 NoN.. (3.7)
n

Further, as we had mentioned in Chapter 2, the matrix C can be written as:

C=TT T ) (3-8)

where T is the projection matrix containing the discretized strips (c.f. (2.5)).

In the NP method, the reconstruction problem amounts to solving for the coef-

ficient vector x from the observation equation (3.5), given the overall data vector y.

Once x is determined, the reconstruction is obtained via the back-projection spec-

ified by the representation (3.4). Even though no assumption about discretization

of the object f on the rectangular pixel grid is needed to solve for x from (3.5), a

discretization of the representation (3.4) is needed to display the reconstruction once

the coefficients in x have been determined. This discretization of (3.4) results in the

following pixel coefficients for the object (c.f. (2.12)):'

No

f -_ T TX E TkTxk, (3.9)
k=1

where TA, is the block of the projection matrix associated with strips at angle k.

Finally, it is not easy to solve the observation equation (3.5) for the coefficient vector

X, since the NP matrix C is large (N,9N, x NgN,), full, and ill-conditioned.

'Note that while in (2.12) we discretize the object on a N, x N, pixel grid, this is not essential
and indeed the discretization may be independent of the acquisition process.
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-A--3.3 - multiscale approach to natural pixel (NP)

reconstruction

3.3.1 Multiscale transformation of the NP strips

The multiscale reconstruction is motivated by the following observations. Recall that

the elements of the NP matrix C are the areas of intersection of the strip functions S

(c.f. (3.7)). If we are able to modify these strips so that they are mostly orthogonal,

then the corresponding areas of intersection will be nearly zero, resulting in a sparse

matrix and a simplified solution for the underlying object coefficients x according

to the observation equation (3.5). Specifically, suppose that we are able to modify

the strips such that they have the form shown in Figure 3-1. Each strip is a linear

combination of two NP strips, one given a positive weight and the other negative.

The new matrix relating the object coefficients and the projection data, according to

the above choice of strips, will have as its elements the (signed) areas of intersections

of the newly defined strips. It is clear from Figure 3-1 that most of these elements

will be zero due to the cancellation of the positive and the negative terms. Only those

elements that correspond to strip intersections near the edge of the field-of-view will

be non-zero. Thus we can expect this new matrix to be Sparse with the degree of

sparsity increasing with the size of the field-of-view (since the fraction of intersections

near the edge decreases with increasing field size).

The above redefinition of the basis strips with positive and negative weights is

reminiscent of the finest level of a Haar transform and in fact we can imagine repeating

the process at other levels as well. However, an important point to note is that here

the Haar transform is taken only in one direction, i.e. the direction perpendicular to

the long axis of the strip. This is the key to our multiscale reconstruction method:

we expand the basis functions JTkJ in a 1-D wavelet basis which then induces a

corresponding 2-D multiscale object representation 2. For a projection at a fixed angle

2As explained in Section 2.6, our multiscale object representation is fundamentally different
from previous multiscale-related representations for tomography (for example, [64,67,68]). In these
approaches a direct 2-D expansion of the object (i.e. a 2-D wavelet transform) is used, the coefficients
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Figure 3-1: Each of the two delineated strips from Figure 2-4 are broken down into
two substrips, having a positive and a negative weight respectively. The area of
intersection of the two strips is zero in this case due to the cancellation of the positive
(lightly shaded) and the negative (darkly shaded) terms.
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Figure 3-2: Original NP strip basis functions contained in T (shown in the top half
of the figure) and multiscale transformed strip basis functions of Tk (shown in the
bottom half of the figure) for a fixed angle k. The multiscale basis functions are
grouped into different scale components based on their spatial extent. The Haar
wavelet is used for multiscale decomposition in this example. The heavy boundaries
indicate the extent of support of the corresponding basis function and the shading
and +/- indicate the sign of the basis function over the region.

k (and N, = 8), the full Haar transform of the original strip basis functions shown in

Figure 3-2 that includes contributions from all levels will look as shown in the bottom

half of Figure 3-2. A notion of scale emerges from the use of the Haar transform. The

original strips have been broken down into a series of strips at multiple scales having

positive and negative weights. The finest scale involves strips that have twice the

width of the original strips and the coarsest scale involves strips extending over the

entire field-of-view. We call the above transformed strip functions the natural wavelet

basis because of the adaptation of the natural pixel representation. While we have

used the Haar wavelet in the multiscale transformation described above and shown

in Figure 3-2, one can imagine using a more general wavelet for the same purpose, as

discussed next.

of which are then calculated from the projection data. Refer to Section 2.6 for further details.
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In particular, let W be a matrix representation of the linear operator that performs

a I-D orthonormal wavelet transform on a discrete sequence of finite length N, (as

described in Section 2.5. 1) so that W` := WT. Further, let Wb - block diag(W) be

a block-diagonal matrix with No blocks along the diagonal, all equal to W (so that

again WC' = WbT). We define our general multiscale transformation of the strip basis

functions as:

T W6T) (3-10)

where the matrix T contains the multiscale strip basis functions at all the different

angles:
TT T T T T

2 TkT = ... ... (3.11)
No

with the matrix Tk containing the discretized multiscale strips at angle k, is given by:

TA; = WTk- (3.12)

Before proceeding, let us consider the transformed bases functions contained in T'k

in more detail. Recall from Section 2.2 that the rows of TA, are composed of the

(discretized) original strip basis functions at angle k along which the data are col-

lected. Similarly the rows of the transformed matrix Tk contain the corresponding

(discretized) multiscale object strip basis functions at angle k. The wavelet transform

operator matrix W, acting identically on each column of Tk, thus forms the new mul-

tiscale basis functions at that angle from linear combinations of the corresponding

original strip functions, where these linear combinations correspond precisely to a 1-D

wavelet transform perpendicular to the projection direction. This transformation of

the basis functions is shown schematically in Figure 3-2 (which corresponds to the

case of the Haar wavelet). The original strip basis functions (rows of Tk) are illus-

trated in the top half of the figure, while the corresponding collection of multiscale

basis functions (rows of Tk) are shown in the bottom half. Note that the number of

basis elements in the original (top half) and the multiscale (bottom half) framework

are the same, as they must be since the multiscale framework involves an orthonormal
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change of basis.

Suppose now we define the vectors:

77 W6 Y, (3-13)

W6 X, (3.14)

which contain the stacked set of wavelet coefficients of the projection data 77k = Wyk

and the object coefficients �1, = WxI, at each angle k. Then by applying (3.10) to

(3.5) we get the following relationship between the multiscale representation of the

object coefficients, �, and the multiscale representation of the data, 77:

'q = Q, (3.15)

where the multiscale system matrix C is given by:

WbCWbT = Wb(TT b (3-16)

Note that (3.16) implies that the elements of the transformed matrix C are the (signed)

areas of intersection of the various multiscale basis functions T. From our previous

discussion we expect C to be Sparse if W reflects the use of the Haar wavelet for

multiscale decomposition. Later we will see that the use of any compactly supported

Daubechies wavelet results in approximately the same sparsity as that achieved in

the Haar case.

Finally, by combining (3.14) and (3.9) we obtain the following representation of

the object in the multiscale domain:

No
f = TT� Er%. (3-17)

k=1

Note that (3.17) can be interpreted as the back-projection operation where the multi-

scale coefficients �A: are back-projected along the multiscale basis functions Tk at each

angle k, and then the contributions from all No angles are added to get the overall
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reconstruction f. Before proceeding, we note that the multiscale object representa-

tion (3.17) permits us to define object reconstructions at multiple scales, which we

discuss in Section 3.3.4.

For the development to follow it will prove convenient to order the multiscale vec-

tors q and � according to scales rather than projection angles, with the finest scale

detail terms from all projections grouped first and the coarsest scale approximation

terms grouped last. We refer the reader to Appendix 3.A for details on the order-

ing schemes, and simply state here that the re-arrangement of (3.15) results in the

following scale ordered and partitioned observation equation:

77 d_ a �d �d

C, (3.18)
L ,a L Cda Caa J L �a J L�a J

where the vectors q d and �d contain all the detail terms at various scales and angles

and are of length No(N, - 1), and the vectors 7a and �a contain the coarsest scale

approximation, i.e. the DC, terms at all angles (one for each angle) and are of length

No. Thus C. is simply a scale reordered version of C. The upper left block Cdd is a

N,9(N, - 1) x No(N,, - 1) symmetric matrix, the elements of which are the areas of

intersection of the detail basis functions (i.e. strips) at various scales and angles. The

lower right block Caa is a No x No symmetric matrix the elements of which are the

areas of intersection of the coarsest scale basis function at each angle. Finally, the

off-diagonal block Cda is a No x No(N, - 1) matrix, the elements of which are the areas

of intersection of the coarsest scale approximation basis functions and the detail basis

functions at various scales.

3.3.2 Multiscale matrix sparsity calculations

The degree of sparsity of C and C. is exactly the same because the elements in these

matrices are the same modulo a permutation. Figure 3-3, right, shows C. for an

imaging geometry with No -_ 32 angular positions and N, = 32 strips per each

angular position. We have used the Haar wavelet for this multiscale representation.
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Figure 3-3: The grayscale plots (black corresponds to the maximum value and white
to the minimum) of: Left: The natural pixel system matrix, C; Right: The multiscale
scale ordered system matrix, C,, for an imaging geometry with No -_ N. -_ 32. The
Haar wavelet is used for multiscale decomposition. The matrices are thresholded to
display elements that are equal to or greater than 2% of the absolute maximum.

Comparing with Figure 3-3, left, which shows the corresponding NP system matrix,

C, we see that C, (hence C) is considerably sparser than C. From the figure, most of

the non-zero elements in C, correspond to the coarser scale terms in the lower right

part of the matrix where field-of-view edge effects are more pronounced. We had

claimed earlier that the degree of sparsity of C increases as the size of the field-of-view

increases. This claim is validated by Figure 3-4 where we plot the degree of sparsity of

C as a function of the size of the field (No = N,). We measure the degree of sparsity by

the percentage of elements in the matrix C (or Q which are equal to or below a certain

percentage of the absolute maximum. Figure 3-4 reports the sparsity calculations

for three different values of threshold 7namely 0.0%, 0.5% and 2.0% of the absolute

maximum. It is empirically observed that setting all values in C below a threshold

of 2.0% to zero makes no visible difference to the reconstructions. From Figure 3-4,

we see that for the case of No = N, -_ 128 and a threshold of 2.0%, C is 98.75%

sparse (or, equivalently, 1.25% full). In Figure 3-5, we show the degree of sparsity

of C for No = N, = 32 achieved by the Haar wavelet and the Daubechies wavelets

D3 and D8. From the figure we see that the number of elements that are exactly

zero decrease as wavelets with larger support are used. This is expected because the
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Figure 3-4: The degree of sparsity (percentage of elements below a threshold) of

multiscale system matrix, C, as a function of No (=N,). The Haar wavelet is used here

for multiscale decomposition. Setting all elements in C below 2.0% of the maximum

to zero makes no visible difference to the reconstructions.

number of incomplete strip intersections near the edge of the field-of-view, resulting in

a non-zero value for the corresponding elements of C, increase for wavelets with larger

support. However, since a threshold of 2.0% does not affect the reconstructions, the

effective sparsity achieved by the Haar, D3 and D8 is approximately the same.

3.3.3 Multiscale object coefficient determination

Let us turn our attention next to the calculation of the object coefficients � which,

through the back-projection equation (3.17), specify the reconstruction f. Recall

that the vector � consists of the object detail and approximation coefficients, �' and

�a respectively, which are related to the projection data through (3.18). For clarity,

let us first consider the ideal case of an infinite field extent where edge effects are

absent. In this case, as argued in Section 2.2.2, the NP matrix C is rank deficient

due to the non-uniqueness of the NP representation. Thus the multiscale matrix C"
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Figure 3-5: The degree of sparsity (percentage of elements below a threshold) of

multiscale system matrix, C, as a function of threshold, for different wavelets. Here

No -- N, -- 32. Setting all elements in C below 2.0% of the maximum to zero makes

no visible difference to the reconstructions.
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(or equivalently C) is also rank deficient since it is related to C through a change of

basis. Since a unique solution does not exist in this case, a rational approach is to

seek the minimum norm solution to (3.5) or, in the multiscale domain, to (3.18). The

NP matrix equation (3.5) represents a large and full system of equations and so it is

difficult in practice to find the minimum norm solution in this case. The multiscale

relationship (3.18), however, has a structure that can be exploited to simplify the

computations. In particular, first note that in the ideal case with no edge effects,

the elements of Cd,,,, capturing the areas of intersection between the coarsest scale

approximation and finer scale detail basis functions, are identically zero'. Further,

one can show that the matrix Cdd has full rank, while the matrix C,,,, is rank deficient'.

This is hardly surprising in view of our earlier discussion in Section 2.2.2 since we

have grouped all the terms contributing to the DC value of the object (and hence to

the ill-conditioning of C or C,) in the C,,, block. Thus our multiscale transformation

has served to "compress" and isolate the non-uniqueness that is present in the NP

representation. Now, with Cda = 0, the minimum norm solution to (3.18) is easily

found since the detail and the approximation equations decouple. In particular, the

minimum norm solution is given by:

�d C-1 77 d, (3.19)
dd

a Clqa, (3.20)

where C+ is the pseudo-inverse Of Caa [32]. Thus (3.19) captures the unique part of

the solution and (3.20) provides a particular distribution of the DC components of

the object over the coefficients in �a. Before proceeding we note that since 77 d = Cdd�d

represents a large but sparse system of equations we will not, in practice, find the

solution to this system by explicitly calculating the inverse of Cdd (as suggested by

(3.19)) but rather we will exploit it's sparse structure and use any of the methods

'This is because these elements represent the area under each wavelet (which is zero) due to

the fact that the coarsest scale approximation basis functions are just indicator functions over the

field-of-view.

'In fact for this ideal case it is easy to see that Caa is an No x No matrix of ones scaled by a
constant.
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created especially to solve such sparse systems [321. In fact, in Chapter 4 we will

use the Kaczmarz method (c.f. Section 2.2.1) to solve the system of equations qd -

Cdd�'. This method will. exploit the sparsity of Cdd to yield an extremely efficient

iterative reconstruction algorithm in the multiscale framework. Further, since Cdd is

well.-conditioned, the reconstructions obtained by the Kaczmarz method will not be

affected by the choice of the ordering scheme or the relaxation parameter. Recall.

that this choice is critical for convergence in the algebraic reconstruction technique

(ART) [40].

Finally, if we assume that the object is completely contained in the field-of-view,

then we obtain the following simplification of (3.20) for �a (c.f. Appendix 3.B for

details):
�a ),,a 1(f

- ) IN,, (3.21)
No N. No N. v/-N-,

where 1P refers to a vector of length p with all elements equal to unity, and IL(f) is

the total mass under the object and is defined as:

ft(f) _ff f (U, v) du dv, (3.22)
ny

where ff is the region of support of the object, which is assumed to be completely

contained in the field-of-view of all. No projections.

The development to this point has focused on the ideal case in which field-of-view

edge effects are absent. In any practical situation the field is finite and such effects

arise. However, as we discuss below, they have minimal impact on the preceding

development. First, due to these edge effects the off-diagonal block Cda in (3.18) is no

longer zero. It will in general have a few non-zero elements corresponding to the areas

of intersection of the basis functions near the domain boundary (see Appendix 3.C for

numerical bounds on the absolute values of elements in Cda for the Haar case). Even

though a variety of methods exist for modifying the solutions (3.19) and (3.20) to

5account for this neglected coupling , our experience is that practical reconstructions

'For example, in Appendix 3.E we use the matrix inversion lemma [41] to refine the estimate of
�d in (3.20) by introducing the first and second order Cda coupling.
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based on (3.19) and (3.20) (which assume Cd,,, = 0) are visually indistinguishable from

ones where a correction is made for the coupling. As a result we use (3.19) and (3.20)

in our multiscale algorithm and for all the reconstructions we present in this chapter.

The other impact the inclusion of edge effects has is to change the structure of

C.,. In particular C,,, is no longer truly singular (unless we take views exactly 90'

apart) though it is nearly so. In any case, C,,, is still a circulant matrix with row sums

nearly equal to the case when the edge effects are neglected (c.f. Appendix 3.D), and

hence (3.21) is still valid. Finally, since the edge effects have no significant impact on

the matrix Cdd, the latter still has full rank and is well-conditioned.

From the preceding discussion we see that the inclusion of edge effects correspond-

ing to a practical imaging geometry have no significant influence on the structure of

the reconstruction algorithm that we had developed for the ideal geometry. We thus

present next the algorithm for obtaining our NP-based multiscale reconstructions that

uses the ideal approximation where the edge effects are ignored.

Algorithm 1 (Multiscale Reconstruction)

1. For a giver. choice of wavelet, form the sparse multiscale matrix C = Wb C Wb'

(the multiscale counterpart of the original NP matrix C). Re-arrarge the ele-

ments ir. C according to scales (c.f Appendix 3.A) to form C,. The block Cdd

ir. C, Zs associated with the detail-detail couplirg (c.f (3.18)).

2. Fir-d the multiscale observations q by takir..g the 1-D wavelet transform of the

projection data, 77 = Wby. Re-arrange the elemer..ts ir. i7 accordir..g to scales to

obtair. 77dar..d 77a, the multiscale detail ar. d the coarsest scale approximation data

sub-vectors respectively (c.f Appendix 3.A).

3. Calculate the coarsest scale approximation object coefficier. tS a= (11(NoN,))?7 a

4. Calculate the multiscale detail object coefficient vector � d by solvirg the sparse

and well-cor-ditior-ed system of equations 77d = Cdd�d.

5. Calculate the overall observation vector � by re-arrar.-gemer.-t of �a ar..d �d ac-

cordirg to projection ar-gles (c.f Appendix 3.A). The k-th block �k of � is now
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associated with ar-gle k (c.f (3.6)).

6. For each angle k, back-project �A, along the correspondirg multiscale basis fur-c-

tior.-s TA, Tk%.

T Combir-e the object cor-tributions from the individual back-projections at each

ar-gle to obtair. the overall recor-structior., f = Ek Tk'�A,.

3.3.4 Object reconstruction at multiple scales

So far we have simply transformed the representation of the original finest scale

object f (c.f. (3.17)). But the discussion in preceding sections together with the

development in Section 2.5 suggests how to use our new multiscale representation

�1, and corresponding basis functions TA: to obtain a multiscale decomposition of the

object estimate in the original space. Such a multiresolution decomposition can be

obtained through (3.17) by using a series of approximations x(j) to x1, at successively

finer scales, thereby inducing a series of corresponding approximate representations

of the object. In particular, we defir.-e the j-th scale approximation f U) to f as:

NoA ETT
A: (A(j) �k), (3.23)

k=1

U)where recall that the elements (A(j) �k) of the i-th scale approximation xk are ob-

tained by zeroing the finer scale components in the vector of 1-D wavelet transform

coefficients of �1, as discussed in Section 2.5 (c.f. (2.51)). Thus the approximation f U)

uses only the j coarsest scale components of the full vector �k. Similarly, by Af U) we

denote the additional detail required to go from the object approximation at scale j

to that at scale (j + 1), which is given by:

A Ne
Af EE.T (D(j) �k), (3.24)

k=1

where recall that the detail vector (D(j) �k) is obtained by zeroing all but the corre-

sponding level of detail �(j) in �k (c.f. (2.52)). Combining the object approximationk

90



and detail definitions (3.23) and (3.24) with the scale recursive relationship (2.53) we

see that the object itself satisfies the following scale recursive relationship, whereby

the object approximation at the next finer scale is obtained from the approximation

at the current (coarser) scale through the addition of the incremental detail at this

scale, just as for the 1-D case treated in Section 2.5:

f U+1) = f U) + Af W. (3.25)

Note that our multiscale object representation given in (3.23) and corresponding

scale recursive construction (3.25) is induced naturally by the structure of the indi-

vidual 1-D wavelet-based multiscale decompositions at each angle k and is not simply

a 2-D wavelet transform of the original object estimate f. In other words, we are not

simply relating the coefficients of a 2-D multiscale decomposition of f based in the

original object domain to those of a 1-D decomposition of the data in the projection

domain, but rather we are allowing a multiscale projection domain decomposition to

ir..duce a corresponding, and thus naturally well matched, multiscale object represen-

tation. In particular, the j-th scale approximation of the object f(j) is created as

a linear combination of the corresponding j coarsest multiscale basis functions (c.f.

Figure 3-2) summed over all angles k (note that the coefficients finer than level j in

(A(j) �k) are zero and use the object definition (3.23)). As can be seen, our resulting

object representation lives close to the projection domain in which data is gathered,

with advantages in efficiency as we will see.

Beyond simply finding a finest scale object estimate as described in Algorithm 1,

we thus also have a method to reconstruct the underlying object at mult' le resolutior.-S

through (3.23), (3.24) and (3.25) and thus for easily obtaining information about the

object at multiple scales. In particular, if an approximation f(j) at scale j is desired,

then in Algorithm 1 we need only replace �1, by (A(j) �k) in Step 6 and 7. In particular,

this simply amounts to zeroing detail components in �1, which are finer than scale j.

Further, if instead we want to reconstruct the detail Af W added at a particular scale,

we need only replace �1, by (D(j) �k) in Step 6 and 7 of Algorithm 1. Similarly, this
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Figure 3-6: The grayscale plot (white corresponds to the maximum value and black
to the minimum) of the 32 x 32 phantom used for reconstructions.

simply amounts to zeroing all but the desired scale of detail �k�(j) in �k.

3.3.5 Examples

In Figure 3-8 we show reconstructions f U) at various scales j, of the 32 x 32 phantom

shown in Figures 3-6 and 3-7, from projection data collected at No -_ 32 angles with

N, -_ 32 strips per angular projection. The D3wavelet is used for multiscale recon-

struction (i.e. in the definition of W). For this reasonably dense data case we expect

the FBP and the finest scale, multiscale reconstructions to be similar since the NP

and the FBP solutions converge in case of dense data. This is precisely what is seen

in Figure 3-8 and confirmed in Figure 3-9, which shows a section through the recon-

structions. Finally, in line with the multiscale nature of our reconstructions, notice

that the information about the phantom becomes more focused as we proceed from

coarse to fine scales. In Figure 3-10 we show the corresponding detail reconstructions

Af U) at various scales. Note that the finest scale detail reconstruction Af 0) (bottom

row, middle in the figure) contains information about the edges and boundaries in

the phantom.

In Figure 3-11 we show an example of a sparse data case. Here we reconstruct the

phantom at different scales using No - 5 angular projections with N, - 32 strips in

each projection, and the D3wavelet for multiscale decomposition. We also show the

corresponding FBP reconstruction for comparison. In this sparse data case our NP-

based multiscale reconstructions are free of many of the finest scale artifacts which

arise in the FBP reconstruction. The figure also illustrates the resolution-accuracy

tradeoff that is inherent in reconstructions from sparse data, wherein the coarse scale
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Figure 3-7: The intensity map of the 32 x 32 phantom shown in Figure 3-6. The
numbers shown are intensities of respective regions.

Figure 3-8: Reconstructions at various scales using the D3wavelet and No N. 32.
Top row, left: f('). Top row, middle: f (2) . Top row, right: f(3) Bottom row, left:
f(4). Bottom row, middle: P). Bottom row, right: FBP reconstruction.
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Figure 3-9: A horizontal section through the phantom (solid line), the FBP recon-
struction (circles), and the multiscale reconstruction (broken line).

Figure 3-10: Detail reconstructions at various scales, Af(j), using No = N, -_ 32 and

the D3 wavelet. Top row, left: Af('). Top row, middle: Af(1). Top row, right: Af(').

Bottom row, left: Af N. Bottom row, middle: Af W.
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Figure 3-11: Reconstruction at various scales using the D3wavelet and No - 5 and
N, -_ 32. Top row, left: f('). Top row, middle: f M. Top row, right: f(3) . Bottom
row, left: f M. Bottom row, middle: f ('). Bottom row, right: FBP reconstruction.

reconstructions have less artifacts due to sparse data effects at the expense of reduced

resolution.

Finally, in Figure 3-12, we show the finest scale detail reconstruction obtained by

making the assumption that Cdd is an identity matrix. Such an assumption neglects

all cross-scale and cross-angle terms in Cdd resulting in an even simpler inversion

procedure. In the same figure we also show for comparison the reconstruction based

on finest scale detail from Figure 3-10 which uses no approximation of Cdd. We can

see from the figure that if the goal is edge reconstruction, it is enough to approximate

Cdd by an identity matrix. This reduces the computational complexity even further.

Such an edge oriented reconstruction, based on an identity assumption for Cdd in the

multiscale framework, only requires 1-D wavelet transformation of the strip integral

data and subsequent back-projection of just the fine scale coefficients.
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Figure 3-12: Finest scale detail reconstructions using No = N, = 32, and the D3

wavelet. Left: Using entire Cdd, Ptight: AssumingCdd to be the identity matrix.

3.4 Regularized multiscale natural pixel (NP) re-

constructions

In this section we consider the estimation of an object f from noisy projection ob-

servations. We extend our multiscale reconstruction method presented in Section 3.3

to obtain statistically regularized estimates. This regularized solution is obtained

by first solving for the maximum aposteriori probability (MAP) estimate [76] of the

multiscale object coefficient vector, �, based on observations (3.15) and a certain

naturally derived multiscale prior model and then back-projecting these multiscale

coefficient estimates along the corresponding multiscale basis functions as before.

In the presence of noise our original observations (3.1) become:

Y(M) =ff f (U) v) S .. (u, v) du dv + n(m), n(m) - M(O, A), (3.26)

where the noise n(m) is taken as additive, white Gaussian, and the notation z

M(m, A) denotes a Gaussian distribution of mean m and covariance A. By substitut-

ing the object representation equation (3.4) in (3.26), as was done in the noise-free

case, we obtain the following equation:

Nt7N.

y(m) Cnix(i) + n(m). (3.27)

Finally, by collecting together the data in (3.27), we obtain the following overall
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observation equation (the noisy version of (3.5)):

y = Cx + n, n - JV(O, AINN.) (3.28)

where INN, refers to a NON. x NqN, identity matrix.

The multiscale decomposition of (3.28) using (3.14) and (3.16), followed by re-

arrangement in scales as described in Section 3.3.1, results in the following partitioned

equation (the noisy version of (3.18)):

77d Cdd CT �d Vd
da

+ (3.29)
L 71aJ LCda Caa J L �a J L a J

where the vector [(Vd)T (Va)T]T - Ar(O, A1NNJ contains the (similarly partitioned)

elements of the multiscale noise vector v = Wbn. Note that the assumption of uncor-

related noise from angle to angle and strip to strip in the original projection domain

results in uncorrelated noise from angle to angle and multiscale strip to multiscale

strip in the multiscale domain, since Wb is an orthonormal transformation.

Recall from Section 3.3.3 that in the ideal case with no edge effects the off-diagonal

blocks Cda in (3.29) are identically zero. More generally, as mentioned in Section 3.3.3,

due to finite field effects these blocks are not exactly zero, however reconstructions

which assume these to be zero are visually indistinguishable from those that do not.

As a result, in the development to follow we neglect these field-of-view edge effects

and assume Cda = 0 in our formulae.

3.4.1 Prior model for the multiscale object coefficients

In order to find the MAP estimate of the multiscale object coefficients �, we need

a prior statistical model for these quantities. We describe next a prior model that

captures significant information about the underlying object and at the same time

results in estimation problems that are computationally tractable. In particular, we
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assume �' and �a to be distributed according to:

�d
Ad 0

JV 0) (3-30)
L �a J L 0 Aa J

i.e. we assume �d and �a to be Gaussian, zero mean, independent, with variance Ad

and Aa respectively. For the variance of the approximation coefficients a, capturing

the prior DC behavior of the object, we choose

Aa )IN, (3.31)

with E sufficiently small (i.e. E -- * 0) to prevent a bias in our estimate of the average

(DC) behavior of the coefficients �, letting them be determined instead by the data.

For the variance of the detail object coefficients �d we use a self-similar prior

model which is obtained by choosing the elements of the detail vector �(j) (i.e. the

wavelet coefficients) at angle k and scale j as independent, Ar(O' 0,2 2-Pi) random

variables [801. The parameter p determines the nature, i.e. the texture, of the resulting

self-similar process while o,2controls the overall magnitude. This model says that

the variance of the detail added in going from the approximation at scale i to the

approximation at scale j + I decreases geometrically with scale. If p = 0 the resulting

finest level representation (the elements of xk) corresponds to samples of white noise

(i.e. the components of xk are completely uncorrelated), while as p increases the

components of xi, show greater long range correlation. Such self-similar models are

commonly and effectively used in many application areas such as modeling of natural

terrain and other textures, biological signals, geophysical and economic time series,

etc. [11, 12, 58, 78, 801. In addition, since the observatior.- r.-oise power is uniform

across scales or frequencies, the geometrically decreasing variance of the prior model

implies that the projection data most strongly influences the reconstruction of coarse

scale features and the prior model most strongly influences the reconstruction of

fine scale features. This reflects our belief that the fine scale behavior of the object

(corresponding to high frequencies) is the most likely to be corrupted by noise. The
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above self-similar prior model results in a diagonal covariance matrix Ad for the

detail coefficients �d, the elements of which depend on the regularization parameters

p and a 27 i.e. the texture and the overall magnitude, respectively. In particular, if

J - 1092(N,) is the scale at the finest level then:

Ad - 0-2 block diag 2-P(J-'42,-�N, 1 2 -p(J-2) 12.7-2N& INO (3.32)

3.4.2 NP Based Multiscale MAP Estimate

The MAP estimates of �d and �a based on the observations (3.29), the prior model

(3.30-3.32) (with E --+ 0), and assuming Cda -_ 0 are given by:

(AA-' + C2 )-lCddqd, (3-33)
d dd

�a C+,qa,
aa (3-34)

where in (3.34) we have used the fact that as c --+ 0, (XEIN, + Ca2.)-'Caa --+ Ca'a (We

justify this in Appendix 3.F). Note that the estimate of the approximation coefficients

�a from (3.34) is the same as we had earlier in the unregularized case (3.20). Thus

the only change in the reconstruction algorithm from the noise-less case is that a

different expression for �d as given in (3.33) is now to be used for calculation of an

estimate of the detail vector �d . Further, since (AA-' + C2 ) is still a sparse matrixd dd

due to the compression achieved in the multiscale domain, fast and efficient recursive

;'dalgorithms [63] can be used to solve for � in (3.33). In fact, in Chapter 4 we will use

the variant of ART due to Herman [391 (c.f. Section 2.4.2) that computes the MAP

estimate corresponding to white observation noise and an uncorrelated prior model, to

;'dsolve for � from (3.33). This solution will be obtained with the same computational

and storage requirements as the solution for the unregularized coefficients d from

(3.19). Finally note that in obtaining the MAP estimates (3.33) and (3.34) we have

assumed Cda to be 0. The inclusion of the effects of this neglected coupling into the

MAP estimates is straightforward, as discussed in Section 3.3.3.

We present next the algorithm for obtaining the MAP regularized multiscale re-
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constructions.

Algorithm 2 (Regularized Multiscale Reconstruction)

1. For a giver.. choice of wavelet, form the sparse multiscale matrix C = Wb C Wb'

(the multiscale counterpart of the original NP matrix C). Re-arrarge the ele-

mer-ts ir. C according to scales (c.f Appendix 3.A) to form C,. The block Cdd

ir. C, is associated with the detail-detail coupling (c-f. (3.18)).

2. Choose the model parameter A specifying the variance of the observatior. r-oise

process.

3. Choose the multiscale prior model parameters a 2 ard p specifyir-g the magritude

and the texture of the model, respectively, and generate the prior covariance

matrix Ad through (3.32).

4. Fird the multiscale observatiors 77 by takir-g the 1-D wavelet trarsform of the

projectior. data, q Wby. Re-arrarge the elements ir. q accordirg to scales to

obtair. the qd ar-d the multiscale detail ar-d the coarsest scale approximation

data sub-vectors respectively (c.f Appendix 3.A).

5. Calculate the MAP estimate of the coarsest scale approximatior. object coeffi-

cients, (11(NN,,)),qa.

�'d6. Calculate the MAP estimate of the multiscale detail object coefficient vector

by solvir-g the sparse and well conditioned system of equations (AA-' + Cd2d)?7dd

Cdd�d.

7. Produce the MAP estimate � of the overall observatior, vector � by re arrarge-

merd of i� ard e accordirg to projection argles (c.f Apper-dix 3.A). The block

�k ir. is associated with ar-gle k (c.f (3.6)).

8. For each argle k, back-project & alorg the correspondir-g multiscale basis fur-c-

tior.s Tk, TIT�A:.
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9. Combir-e the object contributions from the ir-dividual back-proJections at each

ar-gle to obtair- the overall MAP reconstructior, 1 = Ek TAT& -

As before, we may also easily obtain regularized reconstructions of the object at

multiple resolutions by using (3.23) and (3.24) together with the MAP coefficient

estimates &. In particular, to obtain the approximation f-W at scale j then we need

only replace & by (A(j) &) (corresponding to simply zeroing some of the terms in

�k) in Step 8 and 9. Similarly, the corresponding object detail components AfU) at

scale j may be obtained by using (D(j) &) in place of & in these steps.

3.4.3 Examples

We next show the reconstructions obtained using our regularized multiscale method in

the presence of noise. The noise-free projection data are generated from the phantom

of Figure 3-6 and are then corrupted through the addition of independent, zero-mean

Gaussian noise to yield our observations y. We use a signal-to-noise ratio (SNR) of 5

dB for our example reconstructions, defined as:

SNR (dB) = 10 log JJTf 11 2 (3.35)

A. No N,,

where A,,, is the variance of the additive noise, and Tf are the noise-free projection

data. Finally, in all multiscale reconstructions we show here the Daubechies D3

wavelet is used in the definition of the multiscale decomposition matrix W.

The -first example, shown in Figure 3-13, demonstrates reconstructions from noisy

data using the ur.-regularized multiscale approach of the previous section. The pro-

jection data are collected at No = 32 angles with N, 32 strips per angular projec-

tion. The variance of the additive noise used is A,,, 3.61 X 103 which results in a

SNR value of 5 dB. This figure shows the various scale approximate reconstructions

f(j) corresponding to the unregularized Algorithm I for the complete range of scales

j = 11 ... 15. As before, the approximations become finer from left to right and top

to bottom (so that the upper left frame is f(') and the bottom middle frame cor-

responds to f(')). The bottom right frame shows the standard FBP reconstruction

101



Figure 3-13: Reconstructions at various scales using the D3 wavelet and No = N. = 32
from 5 dB SNR projection data. Top row, left: f M. Top row, middle: f (2). Top row,
right: f (3) . Bottom row, left: f('). Bottom row, middle: f (5) . Bottom row, right:
FBP reconstruction.

based on the noisy data. The figure illustrates the resolution-accuracy tradeoff in-

herently captured in the multiscale framework and confirms the point that even in

the unregularized case, information from noisy observations can be focused by stop-

ping the reconstruction at a coarse scale, for example scale 4 (bottom row, left in

the figure). The finer scale detail contribution Af (4) is evidently mainly noise which

obscure the object features.

We next show estimates generated by our multiscale MAP regularized method.

Figure 3-14 shows the FBP, unregularized finest level multiscale, and MAP regularized

finest level multiscale reconstructions from projection data collected at No = 32 angles

with N, -_ 32 strips per angular projection. The variance of the additive noise used is

A,, -_ 3.61 x 10' which results in a SNR value of 5 dB. In both the standard FBP and

the unregularized finest level multiscale reconstruction the noise almost completely

obscures the object. In contrast, in the regularized solution (which is obtained with

essentially the same computational complexity as the unregularized solution) the

details of the object are now visible. In both of the regularized reconstructions the

overall magnitude of the prior model o- 2 = A,, = 3.61 X 103 and the variance of the

model observation noise A = A,, -_ 3.61 x 103 , however the reconstructions differ in the
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Figure 3-14: Reconstructions with No - N. 32 and 5 dB SNR projection data.
From left (a) FBP reconstruction, (b) Unregularized finest level multiscale reconstruc-
tion, (c) Regularized finest level multiscale reconstruction with A - o-' = 3.61 X 103

and p = 0.5, and (d) Regularized finest level multiscale reconstruction with A = 0- 2 -

3.6 1 X103 , and p = 1.

decay rate of detail variance across scales, p. From Figure 3-14 and Figure 3-15, which

shows a section through the reconstructions, we see that as is expected, an increased

regularization (i.e. smoothness) results when the value of p is increased from 0.5 to I

(corresponding to a smoother prior texture) keeping other parameters fixed.

Figure 3-16 shows the FBP, and the finest scale unregularized and the finest scale

MAP regularized multiscale reconstructions from sparse (No = 5, N, = 32) and noisy

(SNR 5 dI3, A,, - 3.65 x 10') projection data. Again, note the ability of the multiscale

regularization algorithm to pull out features of the phantom even when the data is

extremely limited in both quality and quantity.

3.5 Discussion

In this chapter we have developed a multiscale tomographic reconstruction technique

based on the natural pixel (NP) approach, that provides reconstructions from sparse

data yet is extremely efficient from a computational standpoint. Our multiscale tech-

nique is different from other multiscale methods in the following respects. First, our

2-D multiscale object representation is naturally induced by expanding the NP basis

functions (i.e. strips) in a 1-D wavelet basis. This is in contrast to other multiscale

reconstruction techniques which begir.. with a 2-D object representation obtained from

a full 2-D wavelet decomposition of the object space. These techniques must subse-

quently relate the inherently 1-D projection data to these fundamentally 2-D object
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Figure 3-15: A horizontal section through the phantom (solid line) and the various

reconstructions of the previous figure.

Figure 3-16: Reconstructions with No = 5, N, = 32 and 5 dB SNR projection

data. From left (a) FBP reconstruction, (b) Unregularized finest level multiscale

reconstruction, and (c) Regularized finest level multiscale reconstruction with A

A,, = 3.65 x 103 p = 0.35 and o- 2 = 1.83 X 103.
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coefficients. In contrast, the multiscale representation resulting from our approach,

arising as it does from the projection strips themselves, is much closer to the mea-

surement domain. The result is a highly efficient method to compute our multiscale

object coefficients.

In addition, based on this wavelet-based multiscale framework, we have proposed

a statistically-based multiresolution MAP estimation algorithm. This method pro-

vides statistically regularized reconstructions from noisy data, and does so at multiple

resolutions, at no more effort thar. is requiredfor the standard unregularized method.

This approach, based on the construction of prior models directly in scale-space,

allows for the inclusion of natural, self-similar prior models into the reconstruction

process. These prior models not only impose a classic smoothness constraint on the

resulting reconstruction, but also accurately represent several textures including nat-

ural terrain and biological structures such as Ever and lung. We have showed that

such self-similar prior models are captured very easily in our multiscale framework by

assuming that the multiscale object coefficients are uncorrelated from angle to angle

and from multiscale strip to multiscale strip.

Finally, while the prior model for the multiscale object coefficients that we use

in this chapter assumes these coefficients to be independent from angle to angle,

we would intuitively expect the coarse scale object coefficients at different projection

angles to actually be highly correlated with each other, and further for this correlation

to decrease at finer scales. Such generalizations of the self-similar prior model used

in this chapter are briefly discussed in Chapter 8.
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&A The angle and scale ordering schemes

The wavelet transformed data and object coefficient vectors'q and respectively, are

ordered according to projection angles as shown below:

771

77 772 (3-36)

L '7Ne J

(3.37)

J

where 77A: and �k are the wavelet transformed data and object coefficient vectors,

respectively, at angle h. These vectors are of the form (c.f. (2.50)):

(J-1)
77k

77k (3.38)
(0)77k
(0)

L Yk J

(3-39)0
k

(0)
L k J

where qU) and 4j) are vectors of length 2i and contain the scale j detail coefficientsk k

in 71k and �A, respectively, and y(O) and x(O) are the corresponding coarsest scale ap-k k

proximation coefficients.

Let P be the orthogonal permutation matrix (i.e. P' = P-') which when applied

to the angle-ordered vectors q and �, results in their scale-ordered counterparts 77,
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and �,, respectively:

(3.40)

P�. (3.41)

The scale-arranged multiscale data and object coefficient vectors 'q, and respec-

tively, are of the form:

77 (J-1)

77a (3.42)
770

L 77a J

(3.43)
(0)

L �a J

where the vectors 77U) and �U) contain the scale j data and object coefficients, respec-

tively, from all Nq angles:

U)
771

U)
U) 772

77 (3.44)

U)
L77N9 J

U)
1

U) 2 (3.45)

L No J

and 77a and �a contain the corresponding coarsest scale a 'proximation coefficients
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from all angles:

(0)
Y1

(0)
77a Y2 (3.46)

(0)
L J

(0)
X 1

(0)
�a X2 (3.47)

(0)
L X Nt7 J

The multiscale scale-ordered vectors 77, and �, can also be written in terms of detail

and approximation components as follows:

77d
(3.48)

L aj

�d

(3.49)
�a

Finally, the scale-ordered version of the multiscale observation equation (3.15) is

obtained as follows:

P77 (PCP')P�, i.e.

77- C-�-- (3.50)

&B Justification of (3.21)

If there are no edge effects, all elements of the No x Ng matrix Caa are equal to N,.

Thus the row SUM Of Caa, which is same for all the rows, is given by:

r = No N,,.

108



If the object is completely contained in the field-of-view, then all No coarsest approx-

imation data coefficients are equal, and are given by:

(3.52)

where 1P refers to a vector of length p with all elements equal to unity, and a(f) is

the total mass under the object (c.f. (3.22)). Finally, as proved in Section 3.13.1, if

C,,,, is circulant, as is the case here, then:

Ca+alN, 1 Nt,, (3.53)
r

where r is the row SUM Of Caa. Now (3.21) is obtained by combining (3.5l)-(3.53).

3.B.1 Proof of (3.53)

Theorem 1 If Caa is a N,9 x No symmetric, circulant matrix, with row sum equal to

r, i.e.

CaalN, = rlN,,, (3.54)

where 1P refers to a vector of length p with all elements equal to unity, ther. the row

sums of the pseudo-ir.-verse Of Caa are all equal to 1/r, i.e.

Ca+alN, = 1 INg, (3-55)
r

where C+ refers to the pseudo-ir.-verse Of Caa-

Proof Since the matrix Caa is circulant, it can always be diagor-alized as follows [19]:

Caa - F'DF, (3.56)
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where * denotes complex conjugation, and F is the (Nq x No) matrix represen-

tation of the discrete Fourier transform operation:

F 1 exp [-j(27r/Na)] ... exp [-j(27r-1Nq)(No - 1)]
VIN-o

I exp [-j(27r1No)(No - 1)] ... exp [-j(2-7r1No)(No - 1 )2]

(3-57)

The matrix F has the following properties:

F -_ F T (3-58)

and

F*F = FF* L (3-59)

The matrix D in (3.56) is diagonal. We refer to the diagonal elements of D as

f di, i = I,-, Nal, i.e.

D _- diag (di, d2, dN,,). (3.60)

The constant row sums of C.,, can now be obtained as:

VrNq

0
r1N, = C.. IN,= (F*DF)IN, = F*D dilN, (3-61)

0

implying that:

di = r. (3.62)

Since the elements of C,,, are real and positive, so is the row sum r, implying

that di is also real ar-d positive.
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The Takagi factorization of C,,,, [41], which is a special form of the singular value

decomposition for symmetric matrices, is given by:

" - UMUT
C. , 7 (3.63)

where the columns of U are the eigenvectors of C,,,.C.*., and M is a diagonal

matrix, the diagonal elements of which are the non-negative square roots of the

eigenvalues of C,,,C.*.. It can be shown from (3.56) that:

(C..C.*.)F = F(DD*) (3.64)

which implies that:

U = F, (3-65)

and

M = (DD* )1/2. (3-66)

From (3.58), (3-63), (3.65), and (3.66), the Takagi factorization of C,, reduces

to:

C. = F(DD* )1/2 F. (3.67)

Finally from (3.60), (3.62), (3.66), (3.67), and the definition of pseudo-inverse:

NIN--o 1

0 V"N-o 0
C��lNe = (F*M+F*)IN, F*M+ )F* (1)1N,.

Id, I r

0 0
L j L j

(3.68)

This completes the proof.



&C Demonstration that the elements in Cd,, are

mostly negligible for the Haar case

Suppose the NP strips are given by:

fS.' M--1,...,NoNsJ, (3-69)

and suppose the corresponding multiscale detail strips are given by:

JZ(j), k--l,...,No- j-111111J-1; n=1,...,2jJ1 (3.70)

and the coarsest scale approximation strips are given by:

fz,(O), k=1,...,NoJ, (3.71)

where k is the angular position, j is the scale, n is the shift within the scale, and

J - 1092(N,) is the finest scale. Given the definitions above, the elements of the

matrix Cd,, are the areas of intersection of the multiscale detail strips JZ(j) I and thekn

coarsest scale approximation strips JZ(O)J. We use the notation:

< Z(O) '7U) (3.72)
k 7 -1,n

to refer to the area of intersection of the coarsest scale approximation strip at angle

k and the n-th detail strip at scale j and angle 1.

It can be shown by elementary geometry that for the Haar case the maximum

absolute value in Cd,, corresponds to < Z(O) Z(1) > or < Z(O) Z(1) >, where the an-k1 ' k2,1 k1 ) k2,2

gular positions k, and k2 are separated by 450. This value is equal to (I - 5vr2-/8)N,,

0.12N,, (recall that the maximum value in C = N,). The majority of the terms in Cd,'

correspond, however, to the areas of intersection with fine scale strips, and are even
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much smaller. As an example, for projections k, and k2, and for a scale j such that:

1 - 1092(20 - a), (3.73)

where

a sinO+cosO-I, (3.74)

,3 sin 0 cos 0, (3.75)

and 0 is the angle between ki and k2 (00 < 0 < 900)', the following bound apphes:

(0) Z U) j/2 P 16pI < (2 +< ZA:1 ' k2,- > + 2 (3.76)4 a

where

P (3.77)

In Figure 3-17 we plot the variation of the bound (3.76) on the elements of Cd,, as a

function of angle 0 and scale j. We point out that the bound expression in (3.76) is

only valid for a certain angular range for each scale j (c.f. (3.73)). In particular for

the case j -- 1 the bound is not applicable for any value of 0. As a consequence, we

have set the bound values outside the permissible angular range to zero in the figure.

One can see from the figure that the bound achieves a maximum value at the coarse

scale j -- 2, which is approximately 7% of the absolute maximum in Cd,,. For fine

scales, however, the bound value is much lower, implying that most of the fine scale

elements in Cd,, are negligible.

'It is enough to consider 00 < 0 < 900, as for 900 < 0 < 1800 the same bounds apply. For 0 -- 00
or 900, the areas of intersection < Z(0) -F'7(j) -L > are identically zero.
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Figure 3-17: The plot of the variation of the bound (3.76) on the elements of Cd" as

a function of angle 0 and scale j. The bound expression in (3.76) is only valid for a

certain angular range for each scale j (c.f. (3.73)). In particular for the case j -- 1 the

bound is not applicable for any value of 0. As a consequence, we have set the bound

values outside the permissible angular range to zero in the figure.
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&D The matrix C,,,,, for the finite-extent rectan-

gular field-of-view

The matrix C,,,, has the following form:

* Z10', Z10' > < Z'0'I Z2(0) > < z?), Z'(0) > ... < Z(o) z '(0) >

(0) Z(o) (0) (0)(0) (0) > ... < ZI I ZN&Z2(o), Z1(o) > < Z2 2 > < ZI I ZI
Caa

0) (0)

L ZN(,), Z10) > < ZN,, Z2(o) (0) (o (0) > ... < ZN(,,,, ZN
(3.78)

where the notation < a, b > refers to the inner product of, or equivalently, the area

of intersection of a and b, and Z(o) refers to the coarsest scale approximation strip at

angle k. The diagonal elements Of Caa, f < Zk(o), Zk(o) >, k - 1, 2.... I No 1, represent

the area of the field-of-view at different angles, and are all equal. Further Caa is

symmetric (i.e. < Z(o) 9'(0) >=< Z(o) Z'(0) >) due to the commutivity property ofk1 '-k2 k2 I A:1

the inner product operation. Also, by elementary geometry:

< Z(O) 9"(O) Z(o) Z(o)
k1 ' _k2 1 ' k2-kl+l >' (3.79)

and, if 0 is the angle between projection 1 and k,

sin 0 + cos 0 - I
sin 0 cos 0 )N, if k such that 00 < 0 < 900,

< Z(o) Z(0) >- N,, if k such that 0 = 0) goo (3-80)

< Z(o) Z(o) _k > if k such that 900 < 0 < 180'.1 ) N,9+2

Finally, it can be shown from (3.79) and (3.80) that Caa is Circulant.

From (3.80), < Z(o) Z(o) > achieves a minimum value equal to 2(v�2_ - I)N.

0.83N,, when k corresponds to a projection at 450 or 1350. The maximum value of

< Z(o) Z(o) > is N. when k corresponds to projections at 00 or 90'.
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The constant row sum r of C,,, is given by:

No < ZM ZM >
r = E 1 I k (3-81)

k=1

From (3.81) and (3-80), the row sum r is equal to 14.2N, for No = 16, and is equal

to 28.3N, for Ng = 32. For most applications, it is enough to approximate r as:

r -_ No N.. (3-82)

Note that the above row sum is the same as the row sum of C,,,, for the ideal geometry

where there are no edge effects.

&E Introduction Of Cda coupling in the estimate

of the multiscale object coefficients

We first calculate the approximation coefficients , aby neglecting the Cda coupling

(i.e. by assuming Cda -_ 0). Recall that for the ideal, infinite-extent field-of-view case,

all elements in Caa were equal. This circulant structure Of Caa was responsible for

a simplified expression for �a in the ideal case. Now, as shown in Section 3.D, the

matrix Caa remains circulant in the finite-extent rectangular field-of-view case. Hence

athe same techniques as in the ideal, infinite-extent case can be used to calculate

In particular,

�a = (1),,a
)lN,, (3.83)

r r V,'N-,

where 1P refers to a vector of length p with all elements equal to unity, r is the

constant row sum of the circulant matrix Caa, and ji(f) is the total mass under the

object. Now, as shown in Section 3.1), the row sum r _- NON, which results in the

following expression for �a (the same as the one we had for the ideal case):

(3.84)
No N. ,rN-,,
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We next calculate the detail coefficients �' by using the expression (3.84) for the

approximation coefficients �a , and by incorporating the Cda coupling. To begin, once

the approximation coefficients have been determined, the observation equation (3.18)

has the following form:

77d Cdd CE �d

1N, Cda Caa ( IN--�)1N, (3-85)v 1rN-, No N,

�d
Cdd S (3.86)

Cda r1N,
L NON,, -�,fN-, J

where s a vector containing the row sums of CL and recall that r N,9N, is the

row SUM Of Caa. By adding the last No equations in the above matrix partitioned

equation, we get:

d �d
77 Cdd S (3.87)

0 ST N02N,
VIN-. . - J

The following expression for the detail coefficients �d' which incorporates the Cda

coupling, can now be obtained by applying the matrix inversion lemma [41] to the

matrix partitioned equation (3.87):

TCil d

�d = C�1, d VIN--.d qd _ C-1S (3-88)
dd TC-1.5 N192N,

.15 dd

Note that if there is no Cda coupling then s = 0, and we obtain our ideal estimate

�d = C�Iqd.

We next present an example that demonstrates the fact that the accuracy of

the finest scale multiscale reconstruction improves with the introduction of the Cda

coupling. For this example we consider the reconstruction of the 32 x 32 phantom

shown in Figures 3-6 and 3-7 both with and without the introduction of the Cda

coupling, from projection data gathered at No = N, - 32. In Figure 3-18 we show a
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Figure 3-18: A horizontal section through the phantom (solid line), the FBP recon-
struction (circles), and the multiscale reconstructions obtained with (dashed line) and
without (dash-dotted line) the introduction of the Cd,, coupling.

central section through both the multiscale reconstructions of this phantom which are

obtained by neglecting the Cd,,, coupling (dash-dotted line) and by incorporating the

Cd,, coupling (dashed line) respectively. Note from the figure that the reconstruction

obtained by incorporating the coupling is closer to both the phantom as well as the

FBP reconstruction than the one which ignores this coupling.

3X Justification of (3.34)

The MAP estimate of �a corresponding to the observation equation (3-29) (assuming

Cda = 0):

a= Caa �a + Va, Va - Ar(O, AIN,), (3.89)
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and the prior model (c.f. (3.31)):

�a JV(O, Aa - (-)IN,)) (3.90)
IE

is given by:

(XEIN, + Ca2a)-lCaa , a. (3.91)

Since Caa is a symmetric, circulant matrix, it can be written as (c.f. (3.67)):

Caa = FMF (3.92)

where F is the matrix representation of the discrete Fourier transform operation, and

M is a real, diagonal matrix. Since Caa and W are real matrices, we have:

Caa F*MF Caa, (3.93)

and

Caa = CaaCaa = F*MF*FMF. (3.94)

By substituting (3-93) and (3.94) in the MAP estimate (3.91), and using (3.59), we

get:

�a (XEIN, + F*MF*FMF)-'F*MF *,,a

(A61N, + F* M2 F)-'F*MF?7a

(F*(AcIN, + M2 )F)-'F*MF

F * (AE IN, + M2 )-'MF *,7a

Gqa, (3-95)

where

A + m2yl
G F*(AcIN, MF* (3.96)

F*QF*, (3.97)
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with
+ M2) -I M.

QA' (AE IN, (3-98)

Assume that the diagonal matrix M has first c diagonal entries non-zero corresponding

to a rank of C for C..:

M -_ diag (Ml, M2, Mc,01 ... I 0). (3.99)

By substituting (3.99) in (3.98) we obtain:

M2 McQ = diag( ml 10, ... I 0 (3.100)M 2+ Ac' M2 + Ac'' ' ''M2+ Ac1 2 C

Now if E. ---> 0, then from (3.100):

Q --+ M+, (3.101)

and from (3.97):

G F*M+F*. (3.102)

But from (3.92):

C�L F*M+F*. (3-103)

Thus, from (3.95), (3.102) and (3.103), as E -- � 0:

--+ C"q'. (3.104)
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Chapter 4

A 'VVavelet Transform-Based

1\4ultiscale Projection-Domain

Algebraic Reconstruction

Technique A4PART

4.1 Introduction

Recall that in Chapter 3 we had developed a multiscale reconstruction technique

based on the natural pixel (NP) representation for tomography. This multiscale

technique had resulted in a sparse system of equations which, in addition, could be

naturally partitioned by scales such that the reconstruction procedure required the

solution of only the well-conditioned block. In this chapter we develop an efficient

iterative technique to solve such a sparse and well-conditioned system of equations

that arises in the multiscale framework. This iterative technique enables us to obtain

reconstruction estimates at multiple scales from sparse and/or noisy data with very

little storage or computational complexity.

Specifically, in this chapter we use a Kaczmarz-like method (c.f. Chapter 2) to

solve the sparse and well-conditioned system of equations that arises in our NP-based
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multiscale framework. Recall that the computational complexity of the Kaczmarz

method is equal to the number of computations required in each iteration times the

number of iterations needed for convergence. Further, the computations required per

iteration are proportional to the number of non-zero elements in the corresponding

system matrix, and the number of iterations needed for convergence are a function of

the condition number of the same matrix. Thus 7 since the multiscale system matrix is

both sparse as well as well-conditioned, the Kaczmarz method provides an extremely

efficient technique for obtaining the solution of the multiscale system of equations.

We point out that the same Kaczmarz method that we implement in this chapter

arises as the basis of the algebraic reconstruction technique (ART) where it is used

to solve for the object pixel coefficients from the system of equations defined by the

projection matrix. As a result we consider our iterative method as an alternative

to ART and refer to it as the multiscale projection-domain algebraic reconstruction

technique (MPART)l. The MPART, however, holds several advantages over ART.

The NP representation used in MPART is free of the model errors arising in the rect-

angular pixel object expansion used by ART. Moreover, while the projection matrix

of ART is generally ill-conditioned, MPART uses a relatively well-conditioned ma-

trix. This amounts to the MPART reconstruction being relatively insensitive to the

relaxation parameter and the ordering scheme, which are critical for convergence in

ART. Further, even though the ART and the MPART system matrices have approxi-

mately similar sparsity, the smaller magnitude elements in the latter can be effectively

thresholded to zero without affecting the quality of the resulting reconstruction. This

implies that similar quality ART and MPART reconstructions may be obtained by

using substantially fewer elements in the MPART matrix than in the ART matrix.

This translates into MPART requiring substantially less computations per iteration

than in the case of ART. Further, MPART yields reconstruction estimates at multi-

ple scales for free, which can be used for object feature extraction directly from the

'The term projection-domain is used to describe the algorithm because the NP method represents
the object in the domain where the strip-integral data (commonly referred to as the projection data)
resides.
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strip-integral data.

Finally, Herman [39] has proposed a variant of ART that computes the maximum

aposteriori probability (MAP) solution for the object coefficients from noisy measure-

ment data, based on a prior model that assumes these coefficients to be uncorrelated.

This regularized solution is obtained with essentially the same computational com-

plexity and storage requirements as the original ART. Similarly, in the presence of

noise, we are also able to extend our MPART to yield regularized reconstructions with

no additional computations or storage. These regularized reconstructions are based

on the same self-similar prior model for the multiscale object coefficients that we

had developed in Chapter 3. Recall that such a self-similar model is captured in our

framework by assuming that the multiscale object coefficients are uncorrelated, and

also that the variance of the coefficients decreases geometrically from coarse to fine

scales. This prior model not only imposes the classical smoothness constraint, but also

results in fractal-like models for the object. Such models have been used extensively

to capture terrain and biological structures such as liver and lung [I 1, 12, 78, 80].

The chapter is organized as follows. In Section 4.2 we review the relevant ART

and the NP results from Chapter 2. In Section 4.3 we outline the main points of

our NP-based multiscale object representation from Chapter 3 and develop MPART.

We then present some example reconstructions illustrating the salient features of

MPART. In Section 4.4 we describe the extension of MPART that generates regular-

ized reconstructions in the presence of measurement noise. Section 4.5 concludes this

chapter.

4.2 Background

In this section we briefly review the relevant algebraic reconstruction technique (ART)

results and also the results from the natural pixel (NP) reconstruction technique that

we had presented in Chapter 2. These results will prove to be essential for the

development and understanding of MPART.
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4.2.1 Tomography setup

Recall that in tomography the observation corresponding to strip I at angular position

k is given by:

Y(M) f (U) v) S,,,(u, v) du dv, m = 1,... , NoN., (4.1)

where S, (u, v), with m = (k - 1)N, + i, is the indicator function of the strip integral

corresponding to the observation y(m). For simplicity, as in the previous chapters,

we assume a 2-D parallel-beam imaging geometry. Here the data consists of parallel,

non-overlapping strip integrals through the object at various angles (c.f. Figure 2-1).

Recall that such an imaging geometry is defined by No angular positions and N,

parallel strip integrals at each angular position.

4.2.2 Conventional ART

In ART [39,441, the object f(uv) is expanded in a standard, N. x N, rectangular

pixel basis:
N.2

f (U, v) E f (n) bn (u, v), (4.2)
n=1

where bn(U, V) is the indicator function of pixel n, and f f (n)J are the pixel coefficients

of the object. Now by substituting the ART object representation equation (4.2)

into the expression for the strip-integral data (c.f. (4.1)), we obtain the following

expression for the overall observation vector y which contains the set of strip integral

data fy(m), m = I,-, NoNJ:

y = Tf, (4.3)

where T is the NoN,, x N,2 system projection matrix, the (m, n)th element of which

is given by:

Tnn = ff bn (U) v) Sn (u, v) du dv, m = 1) ... ) No N,,; n -_ 1) ... ) N,,2. (4.4)
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We refer the reader to Figure 2-2 where we show a picture of the 1024 x 1024 projection

matrix T for an imaging geometry with No - N, = 32. Note that the projection ma-

trix, although very large, is sparse because each strip intersects only a small number

of object pixels.

The sparsity of the projection matrix T is exploited in ART by the Kaczmarz

projection 2 method that is used to solve the system of equations (4.3) for the object

coefficients f. This method cyclically projects an initial guess for f, say f('), onto

the hyperplanes defined by:

f f JT(k)f = y(k)J, (4.5)

for k -_ 1,...,NoN,,, where T(k) is the k-th row of T, and y(k) is the k-th data

sample. To begin, the initial guess f 0) is projected onto the hyperplane corresponding

to k -_ 1 in (4.5) to obtain the solution f (1). This solution is in turn projected onto

the hyperplane corresponding to k -_ 2 to obtain the solution f (2) . This process is

repeated until all NaN. hyperplanes have been exhausted and a solution f(NON-) has

been obtained. This completes the first iteration in ART. The second iteration is

started by projecting the result of the first iteration onto the hyperplane represented

by k = 1 in (4.5). These iterations are continued until convergence is achieved.

Specifically, the following recursion is used in ART to obtain the (i + 1)-th estimate

of the object coefficients from the corresponding i-th estimate:

f (i+l) = f W + r(k) Y(k) - T(k)f W T(k)T, k -_ (i)mod(N9N.,), (4.6)
T(k)T(k)T

where f () is the i-th estimate of f , T(h) refers to the k-th row of T, and r(') is the

relaxation parameter for the k-th iteration 3, with 0 < r(") < 2.

Recall from Chapter 2 that the computational complexity per iteration of ART is

proportional to the number of non-zero elements in the projection matrix T. Recall

'This is not to be confused with the term projection that is frequently used (including in this
thesis) for tomographic data.

3The recursion (4.6) corresponds exactly to a projection of f M onto the hyperplane defined by
(4.5) only if r(k) = 1. This case with r(k) -_ 1 corresponds to the standard Kaczmarz method. In
general other choices of r(k) are used to speed convergence.
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further that the number of iterations required for convergence of the solution f (')

in ART is critically dependent on the condition number of T. The convergence is

fast if the matrix T is well-conditioned. On the other hand, if T is ill-conditioned,

the convergence is slow and, in addition, is critically dependent on the choice of

the ordering scheme used for rows of T, and also on the relaxation parameter [40].

Note that as (4.6) currently stands, the rows of T are accessed in a sequential order.

However, if at each step the row accessed is that which has the largest angle to

the subspace spanned by all the rows of T used in the previous steps of the same

iteration, the convergence can be improved. This is exactly the motivation behind a

recent ordering scheme proposed by Herman and Meyer [401. However, an improved

convergence is seen even with a random ordering scheme, where the rows of T are

accessed in a random fashion. To obtain a fair comparison between ART and MPART,

we will present ART reconstructions using not only a sequential ordering scheme

but also a random ordering scheme and the ordering scheme proposed by Herman

and Meyer. The second critical parameter affecting convergence is the relaxation

parameter r(') for iteration k. This value is typically determined by experimentation

on test images which are similar in some sense to the image that is to be reconstructed

[40].

In Section 4.3 we will present an efficient method for isolating and removing the

ill-conditioning in the projection matrix T. As a result, we will perform Kaczmarz

recursions of the type (4.6) on a system of equations where the system matrix is

well-conditioned. This will result in our modified ART algorithm being relatively

insensitive to the ordering scheme and to the choice of the relaxation parameter.

This gain will not be at the expense of any additional computations per iteration,

since our well-conditioned matrix will have a similar sparsity as that of the ART

projection matrix 4 T.

4As an example, for an imaging geometry with No = N, = 32, the projection matrix T has
a condition number of 2.3 x 1016. Our method for removing the ill-conditioning, however, results
in a matrix with a condition number of 1.3 x 103. In addition, since the two matrices have a
similar percentage of non-zero elements (- 6.5%), the computational complexity per iteration of the
Kaczmarz method is same for the two cases.
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4.2.3 The Natural Pixel Object Representation

There are two important sources of inconsistency in the system of equations (4.3)

used by ART (c.f. Chapter 3). The first is due to the presence of measurement noise.

The second is due to the fact that the form of the rectangular pixel representation

(4.2) used by ART is inadequate for accurate representation of the measurements of

a real physical object. In the NP method [9, 101 this second inconsistency arising

due to the standard rectangular pixel object representation in ART, is removed by

representing the object in the same functions (i.e. strips IS,,,(u, v)J) along which the

strip integral data y are collected. In particular:

NON,

f (U) V) = 1: Xn Sn (U, V), (4.7)
n=1

where x,, is the coefficient of expansion of the object corresponding to strip Sn(u, v).

Now by substituting the NP object representation equation (4.7) into the expres-

sion for the strip-integral data (c.f. (4.1)), we obtain the following expression for the

overall observation vector y which contains the set of strip integral data fy.'M -

1, NoN, 1:

Y - CX, (4-8)

where C is a No N, x No N. matrix, the (m, n)-th element of which is given by:

C. = ff Sn (U, V) S. (U, v) du dv, M = 1) ... )No N,,; n -_ 1) ... ) No N,,. (4.9)

Finally, even though no assumption about the discretization of the object on a rect-

angular pixel grid is needed to solve for x from (4.8), once the coefficients x have

been calculated, a discretization of (4.7) is needed to display the reconstruction. As

a result of this discretization the reconstruction is obtained as:

f = T TX, (4.10)
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where T is the projection matrix containing the discretized strips (c.f. (4.4)), and f is

the vector containing the object expansion coefficients in the rectangular pixel basis

(c.f. (4.2)).

As mentioned earlier, the NP representation is free of the model errors which arise

in the standard rectangular pixel representation of the object. However, this benefit

comes with a cost - namely the NP matrix C is full'. The Kaczmarz method for

solving the NP system of equations (4.8) thus results in a computationally inefficient

algorithm. In the next section we transform the strip-integral data y and the object

coefficients x in a wavelet-derived multiscale basis. Recall from Chapter 3 that this

results in a Sparse multiscale system matrix. In addition, any ill-conditioning in

the NP matrix C is compressed into a few coarse scale elements of the multiscale

matrix. We exploit this feature to partition the multiscale system matrix by scales

such that the Kaczmarz method utilizes a well-conditioned matrix. This results in

our reconstruction algorithm being relatively insensitive to the relaxation parameter

and the ordering scheme, which are critical for convergence in ART.

4.3 Multiscale Projection Domain ART

4.3.1 Theory

We begin the development of MPART by outlining the main results from Chapter 3

regarding the multiscale transformation of the NP representation. Let W be a N,, x N,

matrix which when applied to a 1-1) vector of length N. = 2J, results in a vector

containing the wavelet representation of the original 1-D vector (c.f. Section 2.5 )6.

The matrix W represents the choice of a specific wavelet and scaling function that are

used for multiscale representation. We assume these to be orthonormal which results

in W being orthogonal, i.e. W-1 - WT. If we define a block diagonal matrix Wb

'The elements of C are given by the areas of intersection of the strips (see (4.9)) - since most of
these areas of intersection are non-zero, -C is full. We refer the reader to Figure 2-3 which shows a
picture of C for an imaging geometry with Ng = N, = 32.

'Recall that the wavelet representation operation can be performed in an extremely efficient man-
ner. In particular, representation of a vector of length N, can be obtained in O(N,) multiplications.
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consisting of No blocks along the diagonal, all equal to W, then Wb is also orthogonal,

with WC' -_ WbT. This matrix Wb when applied to a 1-D vector of length NON, (for

example the data vector y or the object coefficient vector x) results in a wavelet

representation of all No components of the vector.

Now, given Wb, the NP observation equation (4.8) can be transformed to a wavelet

representation as follows:

Wby (WbCWT
b WbX)l i.e.,

Q, (4.11)

where q -_ Wby is the wavelet representation of the data vector, and C is the trans-

formed system matrix which contains elements at multiple scales. It was shown in

Chapter 3 that most of these elements are zero, resulting in a Sparse C. Specifically,

the elements in C representing the fine scale couplings between q and �, are mostly

zero. However the sub-matrices of C representing the coarse scale couplings have a

larger fraction of non-zero elements. But since the fraction of -fine scale terms in C

is much larger then the coarse terms, the overall sparsity of C is governed mostly by

the former. Equation (4.11) can be rearranged in scales (with the finest scale detail

terms from all angles placed first and the coarsest scale approximation terms placed

last) and written in a partitioned form as:

d cdd cT �d �d
77 da Cdd 0 (4.12)

77a L Cda Caa �a 0 Caa �a

where the vectors q d and �d contain all the detail terms at various scales and angles

and are of length No(N, - 1), and the vectors 77a and �a contain the coarsest scale

approximation, i.e. the DC terms at all angles (one for each angle) and are of length

No. The upper left block Cdd is a No(N, - 1) x No(N, - 1) symmetric matrix, the

elements of which are the areas of intersection of the detail basis functions (i.e. strips)

at various scales and angles. The lower right block Caa is a No x No symmetric matrix

the elements of which are the areas of intersection of the coarsest scale basis function
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at each angle. Finally, the off-diagonal block Cd,, is a No x N9(N, - 1) matrix, the

elements of which are the areas of intersection of the coarsest scale approximation

basis functions and the detail basis functions at various scales, and are r-egligible.

It was shown in Chapter 3 that there exists a non-uniqueness in the NP repre-

sentation, and that this non-uniqueness is fully captured in the multiscale framework

by the sub-matrix C,,,. Thus while the multiscale matrix C is ill-conditioned, the

sub-matrix Cdd is relatively well-conditioned. As an example, for the parallel beam

geometry shown in Figure 2-1 with N,9 -_ N,, = 32, the condition number of sub-matrix

Cdd is 100 times less' than that of the matrix C. Moreover, the sub-matrices in Cdd

corresponding to fine scale details are much better conditioned than their coarse scale

counterparts. This is shown in Figure 4-1 where the sub-matrix in Cdd corresponding

to finest scale detail (i.e. scale 4) couplings betweenqd and �d has a condition number

of 10.17, and this condition number gradually increases as the coarser scale detail

couplings are included. We also refer the reader to Figure 3-3 for a picture of the

matrix
CT

C a Cdd da (4.13)

Cda Caa

which, as mentioned earlier 7 is a scale-rearranged version of the multiscale matrix

C. One can see from Figure 3-3 that the fine scale sub-matrices in C are extremely

sparse, with the sparsity decreasing at coarser scales.

Similar to the observation equation, the NP back-projection equation (4.10) can

also be transformed to a wavelet representation:

-_ (Wb T bX) = T T�, (4.14)

where Wbx is the wavelet representation of the object coefficient vector, and

8T _- WbT are the transformed basis functions

To summarize, in the wavelet-transformed NP representation the tomography

'The matrices C and Cdd have condition numbers of 140, 000 and 1, 287.50, respectively, in this

example.
'Refer to Chapter 3 for an example of these transformed basis functions.
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Figure 4-1: The condition number of various multiscale sub-matrices in Cdd.
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problem reduces to solving for the detail and approximation object coefficients, �d

and �a respectively, from (4.12), and subsequently back-projecting these along the

corresponding transformed basis functions according to (4.14). Since the off-diagonal

block Cda in the wavelet-transformed observation equation (4.12) is effectively zero, the

detail and approximation equations decouple to yield a small (No x NO) ill-cor-ditior-ed

system of equations:

,,a - CaX,

and a large (No(N,-l) xNo(N,-1)), sparse and well-conditioned system of equations:

77d = Cdd�d. (4.16)

Since (4.15) is ill-posed, we solve for �a, the object approximation coefficients at the

coarsest scale, by calculating the minimum-norm solution to (4.15). This solution is

given by' (c.f. Chapter 3):

�a = C��,qa 1(f 1N,, (4.17)
No N. VIN-.

where C�� is the pseudo-inverse Of Caa, 1N, refers to a vector of length N'9 with all

elements equal to unity, and liffl is the total mass under the object. What remains

now is to solve for the detail vector �d from (4.16). Since Cdd is sparse, we use the

Kaczmarz method to iteratively solve for �d:

�(i+i) = �M + r(k)(77(k) - C(h)0))C(h)T, h = (i)mod(No(Nr, - 1)), (4.18)
C(k)C(k)T

where r(k) is the relaxation parameter for the k-th iteration with 0 < r(') < 2, and,

for notational simplicity, we simply refer to the k-th row of Cdd as C(k), to the k-th

element in q d as 77(k), and to the ith estimate of �d as �(').

Thus to summarize, our MPART reconstruction consists of solving for the coarsest

scale object coefficients from (4.17), solving for the detail object coefficients by using

'This assumes that the object is completely contained in the field-of-view.
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the Kaczmarz method (4.18), and back-projecting these approximation and detail

coefficients along the corresponding transformed basis functions according to (4.14).

Note that in the recursion (4.18) the rows of Cdd are accessed in a sequential order.

As in the case of ART, we will also present MPART reconstructions obtained by

accessing the rows of Cdd in a random order. However, since Cdd is well-conditioned,

the rate of convergence of the MPART reconstruction using this random ordering

scheme will not be much different than the one obtained by using sequential ordering.

We point out that, as suggested by Figure 4-1, there is a tradeoff between the

rate of convergence in MPART and the number of scales desired in the reconstruc-

tion. In particular, the convergence if extremely fast if only the fine scale features

in the reconstruction are desired. This is because the block of the matrix C that

represents the coupling between fine scale coefficients in the data and in the object,

is extremely'well-conditioned. However this condition number gradually increases as

coarser couplings are included, thereby leading to slower convergence if coarser scale

information in the object is also to be reconstructed. Motivated by this, we propose

in Chapter 8 a modification of MPART where a faster convergence rate can possibly

result through the introduction of a scale-recursive structure. In any case, even if

information at all scales is desired, and even if the scale-recursive structure is not

used, the convergence in MPART is still much faster than ART because the overall

MPART matrix Cdd, including contribution from all scales, is much better conditioned

than the ART projection matrix T.

Finally, the form of the back-projection (4.14) induces a multiscale object repre-

sentation. As an example, if only a coarse estimate of the reconstruction is desired

then only the coarse scale object coefficients � have to be back-projected. Similarly,

if the interest is to reconstruct only the fine scale features in the object (for example,

edges and boundaries), then only the fine scale object coefficients are to be back-

projected. To motivate this, we will present an example in the next section where we

will reconstruct an object at multiple scales. Again, we refer the reader to Chapter 3

for details on the mathematical formulation of the multiscale representation.
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4.3.2 Examples

We next present some example ART and MPART reconstructions. In an of the re-

constructions we present in this paper, we start the ART and MPART iterations with

a zero initial guess, and we measure the fidelity of the reconstructions by calculating

the relative reconstruction error, defined as:

Relative reconstruction error = III_ f112 (4.19)
HA 2

where f is the vector of rectangular pixel expansion coefficients of the object, and

f is the vector of corresponding reconstructed coefficients. The latter are calculated

from (4.3) in the case of ART and from (4.14) in the case of MPART. Finally, in

MPART, we select the wavelet representation matrix W such that it reflects the use

of the Daubechies D3 wavelet [18].

In the next few examples we demonstrate that the MPART reconstructions can

be obtained with substantially less computations that the corresponding ART re-

constructions. To begin, recall that the computational complexity of the Kaczmarz

method is proportional to the product of the number of computations required in each

iteration, and the number of iterations needed for convergence. Further, the compu-

tations required per iteration are proportional to the number of non-zero elements in

the corresponding system matrix. Thus MART can be made more efficient relative

to ART by either accelerating the convergence of the solution or by making the sys-

tem matrix more sparse. In fact, as we demonstrate next, the efficiency of MPART

arises as a result of both of these factors. First we show examples which demon-

strate that the MPART reconstructions converge faster than the corresponding ART

reconstructions. We subsequently show that, even though the ART and the MPART

system matrices have approximately similar sparsity, the smaller magnitude elements

in the latter can be effectively thresholded to zero without affecting the quality of the

resulting reconstruction. This implies that similar quality ART and MPART recon-

structions are obtained by using substantially less elements in the MPART matrix

than in the ART matrix. This translates into MPART requiring substantially fewer
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computations per iteration than in the case of ART.

To begin, we present an example that demonstrates that the MPART reconstruc-

tions converge faster than the ART reconstructions, and that the rate of convergence

in MPART is not significantly affected by the choice of the relaxation parameter and

the ordering scheme. Figures 4-2 and 4-3 show a 32 x 32 phantom, and Figures 4-4

and 4-5 show ART and MPART reconstruction errors for this phantom as a function

of iteration number for different values of relaxation parameter. The relaxation pa-

rameter is kept constant from iteration to iteration". Besides presenting the ART

results for sequential ordering, Figure 4-4 also shows the ART error values for random

ordering as well as the ordering scheme recently proposed by Herman and Meyer [40].

These ordering schemes have been known to speed the convergence of ART and re-

sults using these are included to obtain a fair comparison between ART and MPART.

Similarly, in Figure 4-5 we show WART error values for both sequential and random

ordering schemes. From Figures 4-4 and 4-5 we note that the reconstruction error in

MPART converges in a fewer number of iterations than in ART. Further the steady

state relative error value (= 0.1) in MPART is half the corresponding value (= 0.2) in

the case of ART. In addition, one can observe that the rate of convergence in MPART

is insensitive to both the relaxation parameter as well as the ordering scheme. This

is in contrast to ART where, from Figure 4-4, the reconstruction error converges

at different rates depending on the choice of relaxation parameter and the ordering

scheme. Finally, since the sparsity of the ART and MPART matrices T and Cdd are

approximately the same (93.9% and 93.5% respectively), the ART and MPART recon-

structions shown in this example are obtained with similar computational complexity

per iteration.

The next few examples demonstrate that the smaller magnitude elements in the

MPART system matrix can be thresholded to zero without affecting the quality of the

10The convergence of ART can be significantly improved if instead of using a constant relaxation
parameter for different iterations, the relaxation parameter is optimized as a function of iteration
number by using test images that are representative of the image that is to be reconstructed. One
such optimization scheme is described in [40]. However, for the purpose of this paper we do not
vary the relaxation parameter with iteration since one of the goals of this paper is to show that the
convergence of MPART is relatively insensitive to the relaxation parameter.
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Figure 4-2: The grayscale plot (white corresponds to the maximum value and black
to the minimum) of a 32 x 32 phantom that is used for comparing ART and MPART
reconstructions. The projection data are gathered using a parallel beam geometry
with No = N, = 32.

corresponding reconstruction. A similar thresholding in case of the ART projection

matrix results in reconstructions that suffer from severe artifacts. As mentioned

earlier, this translates into MPART requiring substantially less computations per

iteration than ART.

Figure 4-6 shows ART (using the ordering scheme of Herman and Meyer) and

MPART reconstruction errors as a function of iteration number for a relaxation pa-

rameter value of 0.5. The error values are shown both for exact ART and MPART

reconstructions (where the exact matrices T and Cdd are used) and for approximate

reconstructions where the smaller magnitude elements in the corresponding system

matrices are thresholded to zero. We threshold the two matrices such that they result

in a similar sparsity (97.4% and 97.3%) and hence in similar computational complexity

per iteration. We note from the figure that, as compared to ART, there is a graceful

degradation in the MPART reconstruction when the smaller magnitude elements in

the corresponding matrices are neglected. Since the computational complexity per

iteration of the Kaczmarz method is proportional to the number of non-zero elements

in the system matrix, this approximate reconstruction is obtained with far fewer com-

putations than the exact reconstruction. Specifically, in this example 2.5 times less

computations are required when using the approximate matrices instead of the exact

counterparts.

Figures 4-7 and 4-8 show a 64 x 64 phantom, and Figure 4-9 shows the errors in

ART and MPART reconstructions for this phantom after 6 iterations as a function

of the relaxation parameter. The matrices T and Cdd are thresholded to a similar
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Figure 4-3: The intensity map of the 32 x 32 phantom shown in Figure 4-2. The
numbers shown are intensities of respective regions. The projection data are gathered
using a parallel beam geometry with No = N,, = 32.

137



ART -- Sequential ordering ART Random ordering
0.4 0.4

Relax par = 0.5 - Relax par = 0.5
Relax par = 0.7 - - Relax par = 0.7 - -

2 Relax par = 0.9 2 Relax par = 0.9
0.3 (D 0.3C:

.0 .2
----------------

0.2 0.2CDC:0 0

Ir 0.1 0.1

0 5 10 0 5 10
Iteration Iteration

ART Herman and Meyer ordering
0.4

Relax par = 0.5
Relax par = 0.7 - -

0 Relax par = 0.9I-
(D 0.3
C:
0

0.2-
C:0
(D
rr 0.1

0 5 10
Iteration

Figure 4-4: The reconstruction error values for ART as a function of iteration number
for different values of the relaxation parameter. The 32 x 32 phantom shown in
Figure 4-2 is used for reconstruction. The relaxation parameter is assumed constant
in between iterations. The ART matrix T is 93.9% sparse.
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Figure 4-5: The reconstruction error values for MPART as a function of iteration

number for different values of the relaxation parameter. The 32 x 32 phantom shown

in Figure 4-2 is used for reconstruction. The relaxation parameter is assumed constant

in between iterations. The MPART matrix Cdd is 93.5% sparse.
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Figure 4-6: The reconstruction error values for ART and MPART as a function of it-

eration number for the 32 x 32 phantom shown in Figure 4-2. The value of relaxation

parameter used is 0.5. Results are presented both for exact ART and MPART matri-

ces (sparsity 93.9% and 93.5% respectively) and for approximate matrices (sparsity

97.3% and 97.4% respectively).

140



Figure 4-7: The grayscale plot (white corresponds to the maximum value and black
to the minimum) of a 64 x 64 phantom that is used for comparing ART and MPART
reconstructions. The projection data are gathered using a parallel beam geometry
with N9 = N, = 64.

sparsity value so that these methods have similar computational complexity per iter-

ation. It can be seen from Figure 4-9 that the MPART method results in much lower

reconstruction errors than ART. In addition, the reconstruction errors in MPART

are once again insensitive to the relaxation parameter. In Figure 4-10 we show a sec-

tion through the "best" approximate ART and WART reconstructions (i.e. recon-

structions obtained using the relaxation parameter that results in least error) after 6

iterations, corresponding to the phantom in Figure 4-7. Note that the MPART recon-

struction is much closer to the phantom than the corresponding ART reconstruction.

The reconstructed pixel values in ART "overshoot" the phantom and, as a conse-

quence, the ART reconstruction in this case suffers from severe streaking artifacts.

Finally, we note that in the approximate ART reconstructions (where we threshold

the lower magnitude elements in the projection matrix T to zero) the random order-

ing scheme and the ordering scheme of Herman and Meyer result in very similar error

values. An example of this is seen in Figure 4-9. Thus from now on we only use the

random ordering scheme for approximate ART reconstruction results.

Figures 4-11 and 4-12 show a 128 x 128 phantom, and Figure 4-13 shows the errors

in ART and MPART reconstructions for this phantom after 5 iterations as a function

of the extent of approximation on the corresponding matrices T and Cdd. As before, we

approximate these matrices by thresholding the smaller magnitude elements to zero

and measure the extent of approximation by the percentage of non-zero elements

left in the matrices after the thresholding operation. The random and sequential

ordering schemes are used respectively for ART and MPART reconstructions. From
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Figure 4-8: The intensity map of the 64 x 64 phantom shown in Figure 4-7. The
numbers shown are intensities of respective regions. The projection data are gathered
using a parallel beam geometry with No = N, = 64.
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Figure 4-9: The reconstruction error values for ART and MPART for the 64 x 64
phantom (c.f. Figure 4-7) after 6 iterations as a function of relaxation parameter.
Thresholds are applied to the ART matrix T and the MPART matrix Cdd such that
the resulting matrices have the same sparsity (1.5% non-zero elements) and hence the
two reconstructions are obtained with the same computational complexity.
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Figure 4- 1 0: A section through the "best" approximate ART and MPART reconstruc-

tions (i.e. reconstructions obtained by using the relaxation parameter that results in

least error) after 6 iterations, corresponding to the phantom in Figure 4-7.
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Figure 4-11: The grayscale plot (white corresponds to the maximum value and black
to the minimum) of a 128 x 128 phantom that is used for comparing ART and MPART
reconstructions. The projection data are gathered using a parallel beam geometry
with No = N, = 128.

Figure 4-13 we see that, as expected, the ART and WART error values converge if

the corresponding exact matrices are used for reconstruction. However, the WART

error values increase very slightly as more approximate versions of the matrix Cdd are

used for reconstruction. This is in comparison to ART where the reconstruction error

increases significantly with each approximation to the projection matrix T. Thus, as

an example, the WART reconstruction obtained by using 0.1% elements in Cdd has

the same error as the ART reconstruction obtained by using 1% elements in T. The

former, however, requires 10 times less computations and storage than the latter.

So far, for the purpose of comparison with ART, we have only presented the

MPART reconstructions at the finest scale. However, as mentioned before, there

exist applications where either a coarse scale reconstruction is desired, or the aim

is to simply reconstruct the edges or boundaries in the object. This can be easily

incorporated into the framework of WART without any additional computations

by back-projecting the object coefficients only at the desired scale(s) in (4.14). An

example of this is presented in Figure 4-14 where we show the reconstruction of the

128 x 128 phantom of Figure 4-11 at multiple scales after 5 iterations of MPART.

The value of relaxation parameter used is 0.5, and the matrix Cdd is thresholded such

that it contains 0.76% non-zero elements. Note the focusing of information as the

reconstructions proceed from coarse to the fine scales. In Figure 4-15 we show the

finest scale detail reconstruction of the same phantom. This reconstruction represents

the difference in information between the finest and next to finest scale reconstructions

of Figure 4-14, and captures the edges and boundaries in the phantom.
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Figure 4-12: The intensity map of the 128 x 128 phantom shown in Figure 4-11. The
numbers shown are intensities of respective regions. The projection data are gathered
using a parallel beam geometry with No = N, = 128.
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Figure 4-13: Reconstruction errors for ART (random ordering) and MPART (sequen-

tial ordering) after 5 iterations as a function of the percentage of non-zero elements in

T and Cdd. The lower magnitude elements in these matrices are thresholded to zero.

The 128 x 128 phantom shown in Figure 4-11 is used for reconstruction, and a value

of 0.5 is used for the relaxation parameter.
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Figure 4-14: MPART reconstruction of the 128 x 128 phantom at multiple scales
after 5 iterations. The value of relaxation parameter used is 0.5, and the matrix Cdd

is thresholded to 0.76% non-zero elements. The reconstructions progress from coarse
to fine scale from left to right and top to bottom. The reconstruction in the bottom
row is at the finest scale.

Figure 4-15: The finest scale detail reconstruction of the 128 x 128 phantom. This
reconstruction represents the difference in information between the finest scale and
the next to finest scale reconstructions from the previous figure.
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4.4 Extension of MPART to account for noisy

data

We next present an extension of MPART that computes the maximum aposteriori

probability (MAP) reconstruction estimate for the transformed object coefficients �

from noisy data, with essentially no extra computational or storage requirements.

This estimate is based on a fractal-like prior model for the object which is easily

specified in the wavelet transform framework. Again, we refer the reader to Chapter 3

for details about this prior model - here we deal mainly with the implementational.

aspects.

We model the noisy data as:

Y* -ff f (U, v) Sn(u, v) du dv + n(m), M = I,-, NoNj;, (4.20)
n

where we assume the additive noise In(m), m = 1, . . . , N,9 N. I to be Gaussian, zero-

mean, uncorrelated, with variance A. After discretization of (4.20) on a N, x N,

pixel grid followed by wavelet transformation, and coupled with the assumption that

the elements of the off-diagonal block Cd,, (c.f. (4.12)) are negligible, we obtain the

following observation equation (the noisy version of (4.12)):

77d Cdd 0 �d d
+ - , (4.21)

L 7aJ L 0 Caa J L �a J L a J

where the vector [(v d)TI(Va)T]T - Ar(O, AINN.) contains the elements of the multi-

scale noise vector v = Wbn. To find the MAP estimate of �d and �a we also need

a prior statistical model for these quantities. We assume these to be distributed

according to:

�d /V O' Ad 0 (4.22)
�a 0 Aa

i.e. we assume �d and �a to be Gaussian, zero mean, independent, with variance Ad
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and A. respectively. For the variance of the approximation coefficients �', capturing

the prior DC behavior of the object, we choose

A. = (I)IN, (4.23)
E

with c sufficiently small (i.e. E -* 0) to prevent a bias in our estimate of the average

(DC) behavior of the coefficients �, letting them be determined instead by the data.

For the variance of the detail object coefficients �', as we showed in Chapter 3, a

reasonable choice is to assume Ad to be a diagonal matrix, with the diagonal elements

decreasing geometrically from coarse to fine scales. This not only imposes a classic

Pdsmoothness constraint on the resulting solution � [58], but also results in a fractal-

Eke prior for the object f [80]. These priors have been used effectively to model

natural terrain as well as biological structures such as Ever and lung [11, 12, 78, 80].

Specifically, a fractal-like prior for the detail object coefficients is obtained by choosing

Ad as (c.f. Chapter 3):

Ad = o-'blockdiag 2-P(J-142,-�N, 1 2 -p(J-2)12,_.N, IN, (4.24)

where o- 2 is the overall magnitude, and p controls the texture of the resulting prior

model.

The MAP estimates of �d and �a based on the observations (4.21), and the prior

model (4.22-4.24) (with e -- � 0), are given by (c.f. Chapter 3):

�a = C��,qa' (4.25)

= arg min[ 1 (77d- Cdd�d)T (,qd- Cdd �d) + (�d)T A-' �d]. (4.26)
d A d

Note that the MAP estimate for the approximation coefficients �a in (4.25) results

in a similar expression as we had used earlier for the case of no noise (4.17). Thus

the only calculation that is now different is that of the detail coefficients, which are

obtained from (4.26). We next describe an efficient method for calculation of the detail

coefficients in (4.26). This implementation is based on a method due to Herman [39].
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In [39] Herman describes an efficient method that calculates the MAP estimate of

a vector h, given observations of the form:

g = Mh + q, q - jV(O, AI), (4.27)

and the following prior model:

h , jV(O, 1). (4.28)

Specifically, it is shown in [39] that the MAP estimate of h from (4.27) and (4.28) is

the same as the minimum norm solution for h from the following equation:

U
I )m -)g, (4.29)

h A
L J

where u is a dummy variable. Thus in [39] the MAP estimate of h is obtained by

using the Kaczmarz method to solve the augmented system of equations (4.29). This

solution is obtained with essentially the same computational complexity and storage

requirements as the original unregularized estimate. Further, the computations re-

quired per iteration of this method are again proportional to the number of non-zero

elements in the matrix M, and the conditioning of M dictates whether the choice of

the ordering scheme and the relaxation parameter has significant affect on conver-

gence.

Recall that our detail observations are of the form:

77 - cdd�d + Vd, Vd - jV(O, A1N,,(N,_1)), (4.30)

and the prior model for the detail object coefficients in our case is given by:

�d - A((O, Ad), (4-31)

where Ad is the diagonal matrix reflecting the fractal prior. Now the observation

(4.30) and the prior model (4.31) in our case can be cast into the form (4.27) and
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(4.28) by making the following associations:

M = CddA 1/2 (4.32)
d

h = A -1/2�d' (4.33)
d

d
9 - 77 (4.34)

Once these associations have been made, the efficient method due to Herman can

then be used to solve for the MAP estimate of h. Once this value is determined, the

MAP estimate of �d is calculated from (4.33). Note that since Cdd is sparse and Ad

is a diagonal matrix, the pre and post-processing steps in (4.32) and (4.33) require

only a very few additional computations. The benefit of our regularization approach,

once again, hes in the fact that extremely sparse but accurate approximations to Cdd

can be formed by thresholding the smaller magnitude elements to zero. The use of

these approximate matrices substantially lowers the computation count per iteration.
1/2Further since Cdd is well-conditioned, the matrix M - CddAd is also well-conditioned.

This translates into a fast convergence to the MAP estimate in our case, with a rate

of convergence that is not significantly affected by the choice of the ordering scheme

and the relaxation parameter.

Figure 4-16 shows regularized reconstructions of the 64 x 64 phantom in Figure 4-7

from noisy data (No = N, = 64) after 5 iterations. The matrix Cdd is thresholded

to 1.5% non-zero elements, and a value of 0.5 is used for the relaxation parameter.

The noise-less strip-integral data are first generated from the phantom and are then

corrupted through the addition of Gaussian, zero-mean, uncorrelated noise such that

the signal-to-noise (SNR) ratio of the resulting noisy data is 5 dB. We calculate the

SNR according to the formula:

SNR(dB) = 10'10g JITfl 12 (4.35)
A.NoN.'

where Tf is the noise-free data, NON, is the length of the data vector, and A,, is

the variance of the additive noise. For the phantom used in this example, and for
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Figure 4-16: Reconstructions of the 64 x 64 phantom from 5 dB SNR data after 5
iterations. The matrix Cdd is thresholded to 1.5% non-zero elements, and a value of
0.5 is used for the relaxation parameter. The variance of the additive noise A,, =
8.5 x 10'. Left: Unregularized MPART reconstruction. Middle: Regularized MPART
reconstruction with A - 8.5 x 103, p - 0.5, and a' - 3.5. Right: Regularized MPART
reconstruction with A = 8.5 x 103, p -_ 1, and o- 2 = 3.5.

a SNR of 5 dB) A,, = 8.5 x 103. In Figure 4-16 we show the unregularized MPART

reconstruction, as well as two regularized reconstructions corresponding to values

of 0.5 and 1, respectively, for the texture parameter p in (4.24). The value of the

regularization parameter u 2, which governs the overall magnitude of the prior model

(4.24), is kept constant at 3.5, and the variance of the model noise A is chosen to be

equal to A,, = 8.5 x 10' in these regularized reconstructions. We can see from the

figure the ability of the regularized solution to pull out features even in the presence

of substantial amount of noise. Also, as is expected, an increasing regularization can

be seen to result when p is increased from 0.5 to 1, keeping o- 2 constant.

4.5 Discussion

In this chapter we have used the Kaczmarz method to iteratively solve the system of

equations that arises in the NP-based multiscale framework. The Kaczmarz method

takes advantage of both the sparsity and the well-conditioned nature of the multiscale

equations and as a consequence results in an extremely efficient method for obtain-

ing reconstructions from sparse and/or noisy data. Since the conventional algebraic

reconstruction technique (ART) is also based on the Kaczmarz method, we have pre-

sented our multiscale iterative technique as an alternative to ART and we have thus

referred to the latter as the multiscale projection-domain ART (MPART). In MPART,
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the object is expanded in a wavelet-transformed natural pixel basis and the expan-

sion coefficients are related to the projection data through a multiscale system matrix

which has approximately the same sparsity as the projection matrix used in ART.

However, we are able to partition the multiscale system matrix by scales such that the

Kaczmarz method operates on a relatively well-conditioned matrix. This is in con-

trast to ART where the Kaczmarz method operates on the system projection matrix

which is quite ill-conditioned. This translates into the WART reconstructions being

relatively insensitive to the system matrix row ordering schemes and to the choice

of the relaxation parameter. These factors are critical for convergence in ART and

have to be carefully selected. Since the sparsity of the multiscale system matrix in

WART and the system projection matrix in ART are similar, the WART and ART

reconstructions are obtained with similar computational complexity per iteration.

However, we are able to obtain approximate WART reconstructions which come

exceedingly close to the true object, by thresholding the lower magnitude elements

in the multiscale system matrix to zero. These approximate WART reconstructions

are obtained with substantially less computations than the exact reconstruction. A

similar approximation applied to the projection matrix results in ART reconstruc-

tions that suffer from severe artifacts. Another advantage of using WART is that it

yields reconstruction estimates at multiple scales with no added computational com-

plexity over the full reconstruction of the object. These estimates can be used for

object feature detection directly from projection data. Further, the convergence in

WART is extremely fast if only the fine scale features in the reconstruction are de-

sired since the fine scale block of the multiscale matrix is extremely well-conditioned

and at the same time is extremely sparse. Finally, we have extended our WART to

yield regularized reconstructions in the presence of noise. These regularized WART

reconstructions are obtained with essentially no additional computational or storage

complexity, and are based on the fractal-like prior model for the object that we had

developed in Chapter 3.
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Chapter 5

An FBP-Based 1\4ultiresolution

Reconstruction Technique

5.1 Introduction

In this chapter we present a multiresolution approach to the problem of reconstructing

an object from dense tomographic projections. Recall that in Chapter 3 we had

developed a NP-based multiresolution framework for reconstruction of objects from

sparse data. This framework had enabled us to obtain multiresolution reconstructions

from sparse data with substantially less computations than the original NP method.

If the projection data are dense, however, additional efficiency may be gained by

adapting our multiresolution framework from Chapter 3 to the filtered back-projection

(FBP) reconstruction technique, the latter being the most commonly used method

for image reconstruction from dense tomographic data (c.f. Section 2.2.3).

The FBP and the NP methods share the same object representation, i.e. the object

is expanded in the same strips along which the projection data are collected. The only

difference between the two methods is how the expansion coefficients are calculated

from the projection data. In the NP method this calculation is complicated by the

fact that the coefficients at a particular angle not only depend on the data at that

angle, but also on the data at all other angles. In the FBP method, however, the

dense nature of the data results in a simplified expression for the calculation of these
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coefficients. Specifically the coefficients at a particular angle are obtained by filtering

the projections at the same angle with a ramp filter. Since the object representation

is the same in the NP and the FBP, our NP-based multiscale object representation

from Chapter 3 is still valid in the FBP case. However, in the FBP framework, we

use a multiscale transformation of the ramp-filtering operation to obtain the object

coefficients of the multiscale representation. As it turns out, the matrix representation

of the resulting multiscale filtering operator is approximately diagonal. This enables

us to formulate an efficient multiscale tomographic reconstruction technique that

has the same computational complexity as that of the FBP reconstruction method.

Perhaps more significantly, however, the different scale components of our proposed

multiscale reconstruction method induce a corresponding multiscale representation of

the underlying object and, in particular, provide estimates of (and thus information

about) the field or object at a variety of resolutions at no additional cost. This

provides a natural framework for explicitly assessing the resolution-accuracy tradeoff

which is critical in the case of noisy data.

Noisy imaging problems arise in a variety of contexts (c.f. Chapter 1) and in such

cases standard techniques such as FBP often yield unacceptable results. These situa-

tions generally reflect the fact that more degrees of freedom are being sought than are

really supported by the data and hence some form of regularization is required. Con-

ventionally, as we had mentioned in Section 2.4, the problem of reconstruction from

noisy projection data is regularized by one of the following two techniques. First, the

FBP ramp filter may be rolled off at high frequencies thus attenuating high frequency

noise at the expense of not reconstructing the fine scale features in the object [3,50].

This results in a fast, though ad hoc, method for regularization. The other common

method for regularization is to solve for a maximum aposteriori probability (MAP)

estimate of the object based on a 2-D (spatial) Markov random field (MRF) prior

model [34,69] in the original object domain. This results in a statistically regularized

reconstruction which allows the inclusion of prior knowledge in a systematic way,

but leads to optimization problems which are extremely computationally intensive.

In contrast to these methods, we are able to extend our multiscale reconstruction
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technique in the case of noisy projections to obtain a multiscale MAP object esti-

mate which, while retaining all of the advantages of statistically-based approaches, is

obtained with the same computational complexity as the FBP reconstruction. This

MAP estimate is based on the same self-similar prior model for the multiscale object

coefficients as the one we had used in the NP case. Recall that such a self-similar

model is easily captured in the multiscale framework by a diagonal covariance ma-

trix for the multiscale object coefficients, and that it is this diagonal structure that

is responsible for the efficiency of the MAP estimate in the NP case. Similarly, in

the FBP case, the use of the above self-similar prior statistical model also leads to

efficient multiscale MAP estimates.

The chapter is organized as follows. In Section 5.2 we review the relevant results

from the FBP reconstruction technique. In Section 5.3 we develop the theory behind

our wavelet-based multiscale reconstruction method starting from the FBP object

representation. In Section 5.4 we build on this framework to provide a fast method

for obtaining MAP regularized reconstructions from noisy data. The conclusions are

presented in Section 5.5. Appendix 5.A contains certain technical details.

5.2 Review of the filtered back-projection (FBP)

reconstruction results

In this section we briefly review the relevant FBP results from Chapter 2. First, the

strip-integral data in tomography are of the form:

Y(M) =ff f (U) v) S,.,.,(u, v) du dv, m, NoNs, (5.1)
n

where f is the object, S,,,(u, v) is the indicator function of the m-th strip, No is the

number of angular positions, and N. is the number of strips in each angular posi-

tion. The strip-integral data corresponding to same angular position are collectively
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referred to as a projection. The projection yk at angle h is thus defined as:

y((k - 1)N,, + 1)

y((k - 1)N. + 2)
Yk (5.2)

y((k - 1)N,, + N.) J

The discretization of the observation equation (5.1) on a N, x N. pixel grid results

in the following expression for the projection yk (c.f. (5.2)):

Yk = Tkf' (5.3)

where the rows of the matrix TA, contain discretized strips at angle h.

The FBP method uses the same object representation as the NP method. In

particular, the object is expanded in the same strips S along which the projection

data y are collected:
NoN.

AU 7V) E x(n)Sn(u) V). (5-4)
n=1

The discretization of (5.4) on a N, x N, pixel grid results in the following expansion

coefficients (i.e. pixel values) for the object:

No

f = ETkTXk, (5-5)
k=1

where xk are the object coefficients at angle k.

In the FBP method, which yields exact reconstructions only from noise-free dense

data, the object coefficients xk at each angle k are obtained by ramp-filtering of the

projection yA, at the same angle. Thus:

xA, = RyA, (5.6)

where R is the matrix representation of the ramp-filtering operation. Once the expan-

sion coefficients f xAJ have been calculated, the reconstruction f is obtained through
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the back-projection specified in (5.5). Finally, in case of noisy projection data, reg-

ularized FBP reconstructions are obtained by roffing-off the ramp filter in R at high

frequencies in an empirical manner.

5.3 The Multiscale Reconstruction Technique

In this section we derive our FBP-based multiscale reconstruction technique. As was

done for the NP case in Chapter 3, we start by applying the wavelet-derived multiscale

change of basis W to the discretized strips Tk in (5.5), which induces a natural

multiresolution object representation. Since the FBP method shares the same object

representation (5.5) as the NP method, this multiresolution representation is the same

as the one we had obtained for the NP case. The difference between the two multiscale

techniques, however, hes in the calculation of the coefficients of the multiresolution

representation. Recall that in the NP framework this calculation required solving the

large system of equations (2.11) where the coefficients at a particular angle were not

only related to the projection data at that angle, but also to the data at an other

angles. In the FBP framework we exploit the simplified structure of (5.6) to obtain

the multiresolution coefficients at a particular angle from corresponding multiscale

versions of the data at the same angle. Taken together these two components define

a multiscale reconstruction algorithm, analogous in structure to the FBP method.

In contrast to conventional multiresolution tomography approaches, which start with

a decomposition of the object in a 2-D wavelet basis and attempt to then -find the

resulting 2-D coefficients, our method works directly in the projection domain. The

multiscale nature of our object representation in the 2-D or spatial domain arises

naturally from the original FBP definitions and our multiscale decomposition of the

back-projection functions TA, and thus we retain the simplicity and efficiency of the

popular FBP method.
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5.3.1 Multiscale Object Representation

We start by applying a multiscale change of basis, as defined by the matrix W in

Section 2.5, to the original set of object coefficients xk at each angle k to obtain an

equivalent set of multiscale object coefficients as follows:

�k - WXA:- (5-7)

Thus, for a given choice of wavelet defining W, the vector �A: contains the correspond-

ing wavelet coefficients and coarsest level approximation (i.e. the average) associated

with xk and thus forms a multiresolution representation of this signal. More impor-

tantly, by reflecting this change of basis into the original object representation (5.5),

we naturally induce a corresponding multiscale representation of the object through

the creation of a corresponding set of transformed multiscale basis functions. In

particular, substituting (5.7) into (5.5) we obtain:

No N19
(rpT T -1 Tf E _L k W ) (WXA:) 1: T� (5.8)

where Tk = WTk is now a matrix representing the transformed, multiscale basis

functions at angle k. Recall that (5.8) is the same multiresolution representation

that we had obtained for the NP case (c.f. (3.17)). Also, recall that the rows of the

transformed matrix T1, contain the corresponding (discretized) multiscale object basis

functions at angle k. This transformation of the basis functions is shown schematically

in Figure 3-2 (which corresponds to the case of the Haar wavelet). The original strip

basis functions (rows of Tk) are illustrated in the top half of the figure, while the

corresponding collection of multiscale basis functions (rows of Tk) are shown in the

bottom half. We may naturally group the multiscale 2-D spatial basis elements into

a hierarchy of scale related components based on their support extent or spatial

localization, as shown in the figure. The basis elements defining the m-th scale in

such a group are obtained from the rows of TA, corresponding to (i.e. scaled by)

the associated wavelet coefficients &) at that scale. We can see that the basis
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functions of these different scale components, though arising from a 1-D multiscale

decomposition, naturally represent behavior of the 2-D object at different resolutions,

directly corresponding to the different scale components contained in the transformed

vector �A:. In particular, in defining the overall object f, the multiscale basis functions

at scale m and angle k are weighted by the corresponding detail component The

overall object is then represented by a superposition of such components at all angles

k, as captured in the sum in (5.8).

So far we have simply transformed the representation of the original finest scale

object estimate f. But, as in the NP case, a multiscale representation of the object

can be obtained through the multiscale representation �h and corresponding basis

functions TA:. In particular, we define the j-th scale approximation f U) to f as:

No
Tf U) A' E Ek (A(i) �k), (5.9)

k=1

where recall that the j-th scale approximation (A(j) �k) is obtained by zeroing the

finer scale components in the vector of 1-D wavelet transform coefficients of �k, as

discussed in Section 2.5. Similarly, by Af U) we denote the additional detail required

to go from the object approximation at scale j to that at scale (j + 1), which is given

by:
No

TAf U) A E Ek (D(j) �A:), (5.10)
k=1

where recall that the detail vector (D(j) �1,) is obtained by zeroing all but the corre-

sponding level of detail �(j) in �A,. Combining (5.9) and (5.10) with the scale recursivek

relationship (2.53) we obtain the following scale recursive relationship for the object,

whereby the object approximation at the next finer scale is obtained from the ap-

proximation at the current (coarser) scale through the addition of the incremental

detail at this scale:

f U+1) = f W + Af W.
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5.3.2 Multiscale Coefficient Determination

We now have a natural multiscale object representation framework through (5.9),

(5.10), and (5.11) that is similar in spirit to the FBP case (5.5). To complete the

process and create multiscale object estimates from data we must find the multiscale

object coefficients �A, (which contain all the information we need). Further we desire

to find these object coefficients directly from corresponding multiscale tomographic

observations. Aside from simply being an evocative notion (e.g. directly relating

scale-specific data features to corresponding scale-specific object characteristics), such

an approach should be more efficient, in that we would expect coarse scale object

characteristics to be most strongly affected by coarse or aggregate data behavior and,

conversely, fine scale object characteristics to depend most strongly on fine scale data

behavior. Said another way, we would expect the relationship between such multiscale

data and object elements to be nearly diagonal, and this is indeed the case.

To the above ends, we perform a wavelet-based multiscale change of basis to the

data sequences yl, similar to object oriented one in (5.8), to obtain an equivalent set

of multiscale observations:

77k Wyk, (5.12)

where, recall, W is a matrix taking a discrete sequence to its wavelet transform.

We may now easily obtain our desired direct relationship between the multiscale

representation of the data at angle k in,% and the multiscale object coefficients �1, at

the same angle by combining the two transformations (5.7) and (5.12) together with

the original FBP relation (5.6) to obtain:

�k = R 1% , (5.13)

where R = WRWT is the multiscale data filter, corresponding to the ramp filter R of

the usual FBP case. As we show through examples later, the operator R is compressed

by the wavelet operator so that R is nearly diagonal. Further, higher compression

is achieved if Daubechies wavelets D,, with larger n are used. This observation is

162



consistent with the observations of Beylkin et al [6], since R is a pseudo-differential

operator.

5.3.3 The Overall Multiscale Algorithm

We are now in a position to present our overall multiscale reconstruction method. By

comparing the FBP equations (5.5) and (5.6) to the corresponding multiscale equa-

tions (5.8) and (5.13), respectively, we see that our complete multiscale reconstruction

process for estimation of f parallels that of the standard FBP reconstruction, in that

identical and independent processing is performed on the multiscale data sets 1% at

each angle to obtain the corresponding multiscale object coefficients �k at that angle,

which are then back-projected along corresponding multiscale basis functions TA: and

combined to obtain the final object estimate. Thus our overall procedure, given next,

is no more complex than the standard FBP method.

Algorithm 3 (Multiscale Reconstruction)

1. For a given choice of wavelet, form the multiscale filter matrix R = W R W'

(the multiscale counterpart of the original ramp filter) to process the data at

each angle. R is nearly diagonal.

2. For each angle k perform the following:

(a) Find the multiscale observations 77k by taking the 1-D wavelet transform of

the projection data at angle k, qk - W yk.

(b) Calculate the multiscale object coefficient set �k = Rql, by filtering the

multiscale observations.

(c) Back-project �1, along the corresponding multiscale basis functions T , TT

3. Combine the object contributions from the individual back-projections at each

angle to obtain the overall estimate, Ek TA:T�A:.

Again as in the NP case, beyond simply finding a finest scale object estimate as

described in Algorithm 3, however, we could also reconstruct the underlying object at
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Figure 5-1: Phantom used for reconstruction experiments. The phantom is 256 x 256
and projections are gathered at 256 equally spaced angles (No = 256) with 256 strips
per angle (N,, = 256).

multiple resolutions through (5-9), (5.10) and (5.11). In particular, if an approxima-

tion f U) at scale i is desired, then in Algorithm 3 we need only replace �k by (A(j) �'k)

in Step 2c and 3. In particular, this simply amounts to zeroing detail components in

�k which are finer than scale j. Further, if instead we want to reconstruct the detail

Af U) added at a particular scale, we need only replace �k by (D(j) �k) in Step 2c

and 3 of Algorithm 3. Similarly, this simply amounts to zeroing all but the desired

scale of detail �(j) in �k. Note that such intermediate scale information about f cank

even be efficiently found by calculating only those elements necessary for reconstruct-

ing the scale of interest - i.e. all of �A, is not required. For example, if an that is

required is a coarse estimate of the object and not the full reconstruction, only the

coarsest elements of �(j) are required. Conversely if only fine scale features are to bek

reconstructed, then only the finest scale detail components of �(j) are needed.

5.3.4 Examples

We now show some examples of our multiscale reconstruction framework. Figures 5-1

and 5-2 show the 256 x 256 phantom used in the experiments of this section. Projection

data were collected at 256 equally spaced angles (No -_ 256) with 256 strips used for

each projection (N, = 256).

First we show a series of approximate reconstructions using the Daubechies D3

wavelet for the multiscale decomposition W. Figure 5-3 shows the various scale

approximate object reconstructions f(j) for the entire range of scales j = 1,... 8.
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Figure 5-2: The intensity map of the 256 x 256 phantom shown in Figure 5-1. The
numbers shown are intensities of respective regions. The projection data are gathered
using a parallel beam geometry with No = N, 256.
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Figure 5-3: Approximation reconstructions of phantom of Figure 5-1 at various scales,
using D3 wavelet. First row, left: f M. First row, middle: f ('). First row, right: f (3).

Second row, left: f W. Second row, middle: f M. Second row, right: f M. Third row,
left: f M. Third row, middle: f ('). The third row, right shows the corresponding
FBP reconstruction f for comparison. The FBP reconstruction is the same as f W,
since this is the complete reconstruction.

The approximations get finer from left to right and top to bottom (so that the upper

left frame is f M and the bottom middle frame corresponds to f (')). The bottom row,

right shows the FBP reconstruction for comparison. Note in particular, that the finest

scale approximation f (') is identical to the FBP estimate f . The intermediate scale

estimates demonstrate how information is gathered at different scales. For example,

in the scale 3 reconstruction f (3) (top right in the -figure) though only 8 of the full

256 coefficient elements in the vectors �1, are being used, we can already distinguish

separate objects. By scale 4 (middle row, left) we can start to identify the separate

bright regions within the central larger object, while by scale 5 this information is
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Figure 5-4: The detail added between successive scales in the reconstructions of
Figure 5-3. First row, left: Af(O). First row, middle: Af(l). First row, right:
Af(2). Second row, left: Af(3). Second row, middle: Af(4). Second row, right:
Af (5). Third row, left: Af (6). Third row, middle: Af (7).

well localized. Even at this comparatively fine scale we are still only using about 12%

of the full object coefficient set.

In Figure 5-4 we show the corresponding detail components Af(ln) for the same

phantom. Again, the additive detail becomes finer going from left to right and top to

bottom in the figure. Notice that the fine scale, edge based, features of the phantom

are clearly visible in the Af(4) and Af(') reconstructions (center row, middle and

right in the figure), showing that structural information can be obtained from these

detail images alone. Recall that these images provide the added information needed

in going from the object approximation at one scale to that at the next finer scale

(as provided in Figure 5-3).
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Figure 5-5: Complete finest scale multiscale reconstructions for phantom of Figure 5-1
for different approximate filtering operators. The left three frames show approximate
multiscale reconstructions using only the diagonal elements of 7Z corresponding to dif-
ferent choices of the underlying wavelet: First column = Haar. Second column = D3-

Third column -_ D8. For comparison, the right-most frame shows an equivalent ap-
proximate FBP reconstruction using only the diagonal elements of R, demonstrating
the superiority of the approximations based in the multiscale domain.

As we discussed earlier, the wavelet-based multiscale transformation of both the

representation xk and data yk also serves to compress the ramp filter matrix R so that

the corresponding multiscale filter matrix R is nearly diagonal. As we argued earlier,

this reflects the fact that coarse scale object characteristics are most strongly affected

by coarse or aggregate data behavior and, conversely, fine scale object characteristics

tend to depend most strongly on fine scale data behavior. One consequence is that

a very good approximation to the exact reconstruction procedure of Algorithm 3 can

be achieved by ignoring the off-diagonal terms of 7Z in (5.13). These off-diagonal

terms capture both intra- and inter-scale couplings. Further, this approximation to

the exact reconstruction becomes better as Daubechies wavelets D"' with larger n

are used. To illustrate this point, in Figure 5-5 we show complete (finest scale) re-

constructions f of the same phantom as before, based on the same projection data

but using a diagonal approximation to 7Z in (5.13) and Algorithm 3 for a variety of

choices of the wavelet defining W. For the reconstructions we use only the diagonal

elements of R (which account for 0.0031% of all the elements for this case) in the

calculation of �, effectively setting all off-diagonal elements to zero. Reconstructions

corresponding to Daubechies wavelets Dnwith increasing n (in particular Haar or

D1, D3, and D8) are shown from left to right in the figure. It can be seen from the

improvement in the reconstructions that the accuracy of the diagonal approximation
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becomes better as D, wavelets with increasing n are used in the definition of W.

In particular, the approximations can be seen to compare very favorably with the

standard FBP reconstruction. For comparison we also show on the far right in Fig-

ure 5-5 a corresponding approximate FBP reconstruction obtained using a diagonal

approximation to the original ramp-filter matrix R for reconstruction. It can be seen

that a diagonal approximation in the multiscale domain results in far better recon-

structions than a similar approximation in the original domain, indicating that the

multiscale transformation of data and coefficients has served to decouple the resultant

quantities.

In summary, we have formulated a 2-D multiscale object reconstruction method in

terms of approximation and detail images. This method is derived from the classical

FBP method and thus is well matched to reconstruction from projection data. The as-

sociated 2-D multiresolution object representation is induced by a 1-D wavelet-based

change of basis to the original FBP projection space object coefficients. While the

resulting representations are similar in spirit to a direct 2-D multiresolution decompo-

sition of the original object, in that approximations are produced at a series of scales

along with the detail necessary to proceed from one such approximation to the next

finer one, our approach does not correspond to such a direct orthonormal decompo-

sition. As a result it is fundamentally different from previous multiscale-related work

in tomography (for example, [64]). In these approaches such a direct 2-D expansion of

the object (i.e. a 2-D wavelet transform) is used to directly define the approximation

and detail images, the coefficients of which are then calculated from the projection

data. In contrast, all of our multiscale quantities inherently "Eve" in the projection

domain. As a result, our representation is closer to the measurement domain than

previous multiscale representations, and in particular implies that our approach is no

more computationally complex than FBP. To this point we have focused on noiseless

reconstructions. Next, we build on our multiscale reconstruction method to obtain a

fast method for computing regularized reconstructions from noisy projections.
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5.4 Multiscale Regularized Reconstructions

In this section we consider the estimation of an object f from complete but noisy

projection observations. We extend our multiscale reconstruction method presented

in Section 5.3 to obtain statistically regularized estimates which may be simply and

efficiently computed, in particular, with no more effort than is required for the stan-

dard FBP reconstruction. This regularized solution is obtained by -first solving for the

maximum aposteriori probability (MAP) estimate [76] of the multiscale object coeffi-

cients, �k, corresponding to the same multiscale, self-similar prior model we had used

in the NP case (c.f. Section 3.4), and then back-projecting these multiscale coefficient

estimates along the corresponding multiscale basis functions.

The presence of noise in projection data leads to reconstructions by the FBP

method that are unacceptable and thus require some form of regularization. The

traditional approach has been to simply roll-off the ramp -filter used in the standard

FBP reconstruction at high frequencies. This is called apodization [31 and several

different windows are typically used for this purpose, for example Hanning, Hamming,

Parzen, Butterworth etc. [50] (c.f. Section 2.4.1). The assumption is that most the

object energy occurs at low frequencies while the noise-derived artifacts occur at

high frequency. The high frequency roll-off thus attenuates these components at the

expense of not reconstructing the fine scale features in the object. The result is a

fast, though ad hoc, method for regularization. The other traditional approach to

regularizing the noisy data problem is statistically based. This method starts with a

statistical model for the noisy observations based on (5.3):

yk -_ Tkf + nA,, (5.14)

where nk is taken as an additive noise vector at angle k. This observation model is

then coupled with a 2-D Markov random field (MRF) prior model [34,69] for f to yield

a direct MAP estimate of the object 1 (c.f. Section 2.4.2). While statistically based,

thus allowing the systematic inclusion of prior information, the 2-D spatially-local

MRF prior models used for the object generally lead to optimization problems that
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are extremely computationally complex. As a result, these methods have traditionally

not found favor in practical applications.

In contrast to the above two techniques, we will develop a multiscale MAP object

estimate that, while retaining all of the advantages of statistically-based approaches,

is obtained with the same computational complexity as the FBP reconstruction. To

accomplish this, we continue to work in the projection domain, as the FBP method

does, and build our statistical models there, rather than in the original object domain.

As in Section 5.3, we then allow the resulting projection domain coefficients to induce

a 2-D object representation through the back-projection and summation operations.

To this end we start with an observation equation relating the noisy data yk to the

FBP object coefficients xk, rather than the corresponding 2-D object f as is done in

(5.14). Such a relationship may be found in the FBP relationship (5.6), which in the

presence of noise in the data becomes:

yk = R-lxk + nk, nk - Ar(O, An,,), (5.15)

where, recall R is the FBP ramp filter operators I the notation z - Ar(m, A) de-

notes a Gaussian distribution of mean m and covariance A. In particular, we assume

Ank = AA,1N., i.e. that the noise is uncorrelated from strip to strip but may have

different noise covariances at different angles, capturing the possibility that the data

at'different projections may be of differing quality (e.g. due to different sensors or

imaging configurations). Further, we assume that the noise is uncorrelated from angle

to angle, so that nA, is independent of nj, k z� j. This model of independent noise in

the projection domain is well justified for most tomographic applications.

As in Section 5.31 for purposes of estimation we desire a relationship between

multiscale representations of the data, object coefficients, and noise. Working in the

multiscale transform domain will again allow us to obtain induced multiresolution

'Note that (5.15) assumes that R-1 exists. For the case where R represents an ideal ramp filter
this will indeed not be the case, as this operator nulls out the DC component of a signal. For filters
used in practice, however, this inverse does exist and the expression given in (5.15), based on such
a filter is well defined. Details may be found in Appendix 5.A.
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estimates of the object. Such a multiscale oriented relationship between the. quantities

of interest can be found by combining (5.15) with the multiresolution changes of bases

(5.7) and (5.12) based on W (defined in Section 2.5) to obtain:

N + VA:, vk - A((O, AJ, (5.16)

where vA, WnA: is the multiscale transformed noise vector at angle k with A�'k

WA,,k W' AkIN, as its corresponding covariance. This equation relates our ob-

served noisy multiscale data 71A, to our desired multiscale object coefficients �7' through

the multiscale filtering operator R. Note that the assumption of uncorrelated noise

from angle to angle and strip to strip in the original projection domain results in

uncorrelated noise from angle to angle and multiscale strip to multiscale strip in the

multiscale domain, since W is an orthonormal transformation.

5.4.1 The Multiscale Prior Model

To create a MAP estimate of the multiscale object coefficients �/', we win combine

the observation equation (5.16) with a prior statistical model for the desired unknown

multiscale coefficient vectors �i,. Multiresolution object estimates and the detail be-

tween them can then be easily obtained by using the resulting MAP coefficient es-

timates & at multiple scales in the multiscale object definitions (5.9) and (5.10), as

was done previously in Section 5.3.

We use the same self-similar prior model for the object detail coefficients as the

one we had used for the NP case in Section 3.4 which we review here. Recall that

such a self-similar model can be obtained by assuming that the variance of the detail

added in going from the approximation at scale j to the approximation at scale j + 1

decreases geometrically with scale, i.e. by choosing �(j) (the wavelet coefficients at

each scale) as independent, JV(O, o-'2-Pj) random variables [80]. The parameter p

determines the nature, i.e. the texture, of the resulting self-similar process while o- 2

controls the overall magnitude. If p -_ 0 the resulting finest level representation (the

elements of xA:) correspond to samples of white noise (i.e. are completely uncorrelated),
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while as p increases the components of xk show greater long range correlation. Such

self-similar models are commonly and effectively used in many application areas such

as modeling of natural terrain and other textures, biological signals, geophysical and

economic time series, etc. [11, 12,58,78,801.

In addition to defining the scale varying probabilistic structure of the detail com-

ponents of �A:, we also need a probabilistic model for the element of �A: corresponding

to the coarsest scale approximation of xk, i.e. x(o). This term describes the DC or

average behavior of xi, of which we expect to have little prior knowledge. As a re-

sult we choose this element as A((O,'Q), where the (scalar) uncertainty i� is chosen

sufficiently large to prevent a bias in our estimate of the average behavior of the

coefficients, letting it be determined instead by the data.

In summary, we use a prior model for the components of the multiscale coeffi-

cient vectors �A: which is defined directly in scale-space and which corresponds to a

self-similar, fractal-like prior model for the corresponding object coefficients xA:. In

particular, this model is given by �k , M(0, A�J with �k independent from angle to

angle and where:

A�,, blockdiag[Q(J-1)'...'Q(1)'Q(0)' 41, (5.17)
Q (m) 0.22-p7nl V..

Again, this model not only assumes that the sets of multiscale object coefficients, �k'

are independent from angle to angle but also that these coefficients are independent

ftom scale to scale, that they are independent and identically distributed within a given

scale, and finally that their variance decreases geometrically proceeding from coarse

to fine scales. Obviously other choices may be made for the statistics for the multi-

scale ob .ect coefficients, and we discuss some particularly interesting possibilities in

Chapter 8. The choice we have made in (5.17) while simple, is wen adapted to many

naturally occurring phenomenon. In addition recall that, since the observation noise

power is uniform across scales or frequencies, the geometrically decreasing variance of

this prior model implies that the projection data will most strongly influence the re-

construction of coarse scale features and the prior model will most strongly influence
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the reconstruction of -fine scale features. This reflects our belief that the fine scale

behavior of the object (corresponding to high frequencies) is the most likely to be

corrupted by noise. Finally, our choice of prior model in (5.17) results in efficient pro-

cessing algorithms for the solution of the corresponding MAP estimate, in particular

with no more complexity than the standard FBP reconstruction.

5.4.2 The Multiscale MAP Estimate

We are now in a position to present our overall algorithm for computing a MAP [76]

multiscale object estimate &. Since the data at each angle 71A: and the corresponding

prior model for �k are independent from angle to angle, the MAP estimates of the

vectors �k decouple. In particular, the estimate of �A, at each angle, based on the

observations (5.16) and the prior model (5.17) is given by:

+ R-T R-TA` A-"R-1 A` 77k;

(5.18)

where the regularized multiscale filter operator R is defined in the obvious way. This

regularized filtering matrix is exactly analogous to the unregularized filtering operator

R of (5.13) for the noise free case. In this regularized case, however, R now also

depends on both the noise model A,,,, and the prior object model Ae, If the noise

variance is low relative to the uncertainty in the prior model (so A` is large) then

will approach R and the estimate will tend toward the standard unregularized one.

Conversely, as the noise increases, R will depend to a greater extent on the prior

model term A4 and the solution will be more regularized or smoothed.

Finally, as in the noise-less case, the resulting object estimate lis then obtained by

back-projecting the estimated multiscale object coefficients �k along the corresponding

multiscale basis functions Tk and combining the result. The overall structure of this

regularized -reconstruction parallels that of the original FBP method, and therefore

is of the same computational complexity as FBP. In summary, our overall, efficient

regularized multiscale estimation algorithm is given by the following procedure, which
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parallels our unregularized multiscale reconstruction algorithm:

Algorithm 4 (Regularized Multiscale Reconstruction)

1. Find the regularized multiscale filter matrix R (the multiscale regularized coun-

terpart of the original ramp filter) by doing the following:

(a) For a given choice of wavelet, form the unregularized multiscale filter ma-

trix R = W R WT as before.

(b) Choose the model parameters Ak specifying the variances of the observation

noise processes and thus defining A,, c -f (5-1 6).

(c) Choose the multiscale prior model parameters o-2, p and i� specifying the

magnitude and texture of the model and the uncertainty in its average value,

respectively, and generate the prior covariance matrix A�" through (5.17).

(d) Form R A-' +,R-TA-1'R-1 R-T A`
ek Uk I Vk

2. For each angle k perform the following:

(a) Find the multiscale observations qk by taking the 1-D wavelet transform of

the projection data at angle k, ql, = W yA:.

(b) Calculate the regularized multiscale object coefficient set �k = Rnl' by fil-

tering the multiscale observations.

(c) Back-project & along the corresponding multiscale basis functions Tk, TkT&.

3. Combine the regularized object contributions from the individual back-projections

at each angle to obtain the overall regularized object estimate, F'k TkT& -

As before, we may also easily obtain regularized reconstructions of the object at

multiple resolutions by using (5.9) and (5.10) together with the MAP coefficient

estimates &. In particular, to obtain the approximation f-W at scale j then we need

only replace & by (A(j) &) (corresponding to simply zeroing some of the terms in

in Step 2c and 3. Similarly, the corresponding object detail components AIU) at

scale j may be obtained by using (D(j) &) in place of �k in these steps.
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While Algorithm 4 is already extremely efficient, in that 2-D multiscale regular-

ized object estimates are generated with no more complexity than is needed for the

standard FBP method, additional gains may be obtained by exploiting the ability

of the wavelet transform operator W to compress the FBP filtering operator R. Re-

call, in particular, that the (unregularized) multiscale -filtering matrix 7Z = WRW'

is nearly diagonal, with this approximation becoming better as Daubechies wavelets

D,, with increasing n are used in the specification of W. Based on our assumptions,

the matrices A�, and A,,,, specifying the prior model and observation covariances re-

spectively, are already diagonal. If in addition R` were also a diagonal matrix, then

from (5. 18) we see that R itself would be diagonal, with the result that the "filtering"

in Step 2b of Algorithm 4 would simply become point by point scaling of the data.

To this end we will assume that the wavelet transform W truly diagonalizes R by

effectively ignoring the small, off-diagonal elements in R'. That is, we assume 2

R` -_ diag(rl, r2.... I rN.), (5.19)

where ri are the diagonal elements of IZ-1. Now let us represent the diagonal prior

model covariance matrix as A�, = diaglplP2, - - - PN.], and recall that A., = Ak IN, -

Using these quantities together with our approximation to R` in the specification

of the estimate (5.18) yields an approximate expression for 6,:

ri r2 rN,

liag r2 + (Ak/pl)' r 2 + (Al,/P2) r2 + (Ak/p 77k)
1 2 N. N.)

A -
Rnk, (5.20)

where the approximate MAP filtering matrix j� is defined in the obvious way. Our

experience is that when W is defined using Daubechies wavelets of order 3 or higher

(i.e. using D3, D4,---), the estimates obtained using R in place of the exact regularized

filter R in Algorithm 4 are visually indistinguishable from the exact estimates where

2One can imagine another level of approximation where we set the off-diagonal elements of R
itself to zero prior to inversion rather than those of R'. This further approximation results in
reconstructions which are visually very similar to what we obtain here.
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R-' is not assumed to be diagonal. Indeed, it is actually this approximate filtering

operator j� that we use to generate the example reconstructions we show next.

Before proceeding, however, let us examine our MAP regularized filtering operator

in more detail to understand how our multiscale MAP estimation procedure relates

both to the standard FBP method and the empirical regularization obtained through

apodization of the FBP filter. The MAP estimates �k induce corresponding estimates

iik of the original object coefficients xi, through the change of basis (5.7) and, similarly,

,% and yk are related through (5.12). Thus, the multiscale MAP estimation operation

specified by (5.18) imposes a corresponding relationship between the original finest

scale quantities iik and yk, given by:

WTRW
HA: - ( ) NO - Reff yk; (5.21)

where the effective multiscale MAP regularized filtering matrix R,,ff is defined in the

obvious way. The effect of this MAP regularized filter can now be compared to the

standard FBP or apodized ones. The behavior of the matrix operator R"ff can be most

easily understood by examining its corresponding frequency domain characteristics.

To this end, in Figure 5-6 we plot the magnitude of the Fourier transform of the central

row of the effective regularized matrix Rff corresponding to a variety of choices of the

model or regularization parameters Ak (the noise variance) and p (the decay rate across

scales of the added detail variance) for fixed o,-' -- 1 (overall prior model amplitude)

and Q = I (prior model DC variance). We also plot, with heavy lines, the magnitude

of the Fourier transform of the corresponding central row of the standard FBP ramp

filter matrix R for comparison. From Figure 5-6, we can see that in the multiscale

MAP framework regularization is basically achieved by rolling off the ramp filter at

high frequencies, the same principle as used in the ad hoc, apodization regularized

FBP reconstructions. We also see that decreasing the observation noise variance A'k

for a fixed prior model structure p, or conversely, increasing the variance of the detail

added in proceeding from coarse to fine scales in the prior model (i.e. decreasing p)

for a fixed observation noise variance Ak, leads to decreased regularization as reflected
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Figure 5-6: The Fourier transform of the central row of Rff for different values of
regularization parameters p and Ak, illustrating the effect of the multiscale regularizing
filter in the frequency domain. In each of the subplots, the V-shaped heavy line
corresponds to the standard FBP ramp -filter and the four curves from top to bottom
correspond to p = 0.5 (solid line), 1.0 (dashed line), 1.5 (dashdot line) and 2.0 (dotted
line) respectively (in some subplots some of the lines overlap). In all cases we fixed
O" 2 = 1(the overall prior model amplitude) and 1 (the prior model DC variance).
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in decreased high frequency attenuation. This behavior is reasonable, in that in the

first case, the data becomes less noisy while in the second the uncertainty in the prior

model becomes larger. In both these cases one would want to put more reliance on

the data (i.e. less regularization).

In summary then, our multiscale based regularization approach, though derived

from statistical considerations and possessing all the advantages of such methods

(e.g. the ability to incorporate prior knowledge in a rational way, the ability to do

performance analysis and understand the relative importance of various sources of

uncertainty, etc.), obtains results at no greater (and in some cases with substantially

less) computational complexity than standard unregularized or ad hoc approaches.

In addition, we obtain, essentially for free, estimates at multiple resolutions and thus

the ability to extract information from data at multiple scales.

5.4.3 Examples

Next we show some examples of reconstructions using our multiscale methods in the

presence of noise. The same 256 x 256 phantom shown in Figure 5-1 was used for

all experiments. In each case projection data for the phantom were again generated

at N,9 = 256 equally spaced angles with N, = 256 strips in each projection. These

noise-free values were then corrupted through the addition of independent, zero-mean

Gaussian noise to yield our observations. The variance A,, of this additive noise

depended on the experiment and was chosen to yield an equivalent signal-to-noise

ratio (SNR) of the resulting observations, defined as:

N f 112
SNR (dB) = 10 log r1k=111 11Tk (5.22)

A.NoN.

where, recall, TIJ is the noise-free projection data at angle h. Finally, in all multiscale

reconstructions we show here the Daubechies D3 wavelet was used in the definition

of W for the reconstruction.

The first example, shown in Figure 5-7, demonstrates reconstruction from noisy

data using the unregularized multiscale approach of Section 5.3. A value of 5.5 x 10'
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Figure 5-7: Reconstructions of phantom of Figure 5-1 from 5 dB SNR projection data
based on unregularized Algorithm 3 using D3wavelet. Reconstructions are shown at
various scales demonstrating the smoothing effect that can be achieved. First row,
left: f M. First row, middle: f M. First row, right: f(3). Second row, left : f(4).

Second row, middle: f ('). Second row, right: f W. Third row, left: f M. Third row,
middle: f N. The standard FBP is shown in the third row, right for comparison.
The FBP reconstruction is the same as f ('), since this is the complete unregularized
reconstruction.
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was used for the variance A,, of the added noise, which resulted in a SNR value of

5 dB. This figure shows the various scale approximate object reconstructions f(j)

corresponding to the unregularized Algorithm 3 for the complete range of scales

M = 11 ... 8. As before, the approximations become finer from left to right and

top to bottom (so that the upper left frame is f (') and the bottom middle frame cor-

responds to f (')). -The bottom right frame shows the standard FBP reconstruction

based on the noisy data. Since f (') corresponds to the unregularized complete finest

scale reconstruction it is also the same as the standard FBP reconstruction based on

the noisy data for this case. The figure illustrates the resolution-accuracy tradeoff

inherently captured in the multiscale framework and confirms the point that even in

the unregularized case, information from noisy observations can be focused by stop-

ping the reconstruction at a coarse scale, for example scale 5 (center row, middle in

the figure). The finer scale detail contributions AP), j > 5 are mainly noise which

obscure the object features (c.f. Figure 5-8). In particular, in the finest scale recon-

struction (i.e. the standard FBP reconstruction) the object is almost completely lost

in the noise.

Next we show estimates generated by our multiscale MAP regularized estimation

method discussed in this section. Figure 5-9 shows the various scale approximate
_W corresponding to our multiscale MAP estimate of

object reconstructions f �A, using

noisy data with same SNR (i.e. SNR = 5 dB) as in Figure 5-7. The MAP estimate

was generated using the extremely efficient approximate expression (5.20), which, for

the Daubechies D3 wavelet we are using, was indistinguishable from the corresponding

estimate based on the exact expression (5.18). Again the approximations become finer

from left to right and top to bottom in the figure. For these reconstructions we chose

the modeled observation noise variance as A,, = 5.5 x 10'. For the statistical model

parameters of the prior, the decay rate across scale of the added detail variance was

chosen as p = 1.5, the overall magnitude of the prior was set to o- 2 - I 1 1 and the

variance of the prior model average value was 1. The effect of the regularization

can be readily seen in its ability to suppress noise in the finest scale reconstruction.

For comparison, the standard FBP reconstruction for this case is given on the bottom
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Figure 5-8: The detail added between successive scales in the reconstructions of
Figure 5-7. First row, left: Af(O). First row, middle: Af(l). First row, right:
Af(2). Second row, left: Af(3). Second row, middle: Af(4). Second row, right:
Af(5). Third row, left: Af(6). Third row, middle: Af(7).
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Figure 5-9: Multiscale MAP regularized reconstructions at various scales of phantom
of Figure 5-1 from 5 dB SNR projection data using D3wavelet. The values of the
statistical model parameters used are AA, -- 5.5 x 10', p = 1.5, c-' = 11, 1. First
row, left: f First row, middle: f . First row, right: f . Second row, left: f
Second row, middle: f Second row, right: f . Third row, left: f . Third row,
middle: f N. For comparison, the standard FBP reconstruction for this case is given
in the third row, right. The improved ability of the regularized reconstructions to
extract information is demonstrated.
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rOW7 right in Figure 5-9. In addition, the multiscale nature of the information focusing

can be seen in the scale evolution of the estimates. In particular, there appears to

be little difference between scale 5 and finer scale estimates in the figure, suggesting

that little additional information is being obtained in proceeding to such finer scales,

that the additional degrees of freedom being added at such finer scales are not really

being supported by the data, and thus that we should stop the reconstruction at

this coarser scale. This observation is confirmed in Figure 5-10 where we show the

detail reconstructions corresponding to the regularized reconstructions of Figure 5-9.

Further, estimates at scale 5 and coarser appear quite similar to the corresponding

unregularized estimates in Figure 5-7, showing that these coarser scale estimates are

dominated by the data and are not very dependent on the prior model at this point

anyway.

Finally, in Figure 5-11, we show a series of finest scale multiscale MAP regular-

ized reconstructions, corresponding to different choices of the prior model texture as

determined by the parameter p. The same phantom as before is used, but we use ob-

servations with a SNR of -10 dB (much worse than used above). The standard FBP

reconstruction is shown for comparison in the far right image of the figure. The object

is completely lost in the FBP reconstruction at this extreme level of noise. The MAP

reconstructions are shown in the first three frames of the figure, with a smoother,

more correlated prior model being used as we proceed from left to right. The specific

multiscale MAP model parameters were chosen as follows. The observation noise

variance was chosen as Ah = 1.7 x 107 . The overall prior model magnitude was set

to O-' = 17 while the prior model DC variance was set to Q -_ 1. The prior model

texture parameter p took on the values fO.5,1.0,1.51. The increased smoothness in

the prior can be seen to be reflected in increased smoothness of the corresponding

estimates. Note also the ability of the algorithm to pull out at least the global object

features in the presence of this substantial amount of noise. Again, the more highly

smoothed reconstructions (corresponding to higher values of p) appear quite similar

to the coarser level, unregularized reconstructions shown previously, showing that we

are really accessing the coarse level information in the data.
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Figure 5-10: The detail added between successive scales in the reconstructions of
Figure 5-9. First row, left: Af(O). First row, middle: Af(l). First row, right:
Af(2). Second row, left: Af(3). Second row, middle: Af(4). Second row, right:
Af (5). Third row, left: Af (6). Third row, middle: Af (7).

Figure 5-11: Multiscale MAP regularized reconstructions of the phantom of Figure 5-
1 at the finest scale from -10 dB SNR observations for different choices of prior model
texture, p, with AA: 1.7 x 107, 0-2 = 17, and q = 1, are shown in the first three
frames: Frame 1: p 0.5. Frame 2: p = 1.0. Frame 3: p = 1.5. For comparison the
standard FBP reconstruction is shown in the last frame on the far right.
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5.5 Discussion

In this chapter we have specialized our NP-based multiscale tomographic reconstruc-

tion technique from Chapter 3 to yield fast reconstructions at multiple scales in the

case when the projection data are dense. We have achieved this by adapting our

multiscale framework from Chapter 3 to the efficient filtered back-projection (FBP)

reconstruction technique. The result is a highly efficient method to compute our mul-

tiscale object reconstructions, in particular, no more complex than the widely used

standard FBP method. Yet, unlike the FBP method, our multiscale reconstructions

also provide a framework for the extraction and presentation of information at mul-

tiple resolutions from data. Further, our resulting multiscale relationships between

data and object allow extremely simple approximations to be made to our exact rela-

tionships with virtually no loss in resulting image quality, thus further improving the

potential efficiency of our approach. Such approximations are not possible with the

standard FBP method, as they result in severe artifacts.

In addition, based on this wavelet-based multiscale framework, we have proposed

a statistically-based multiresolution MAP estimation algorithm. This method pro-

vides statistically regularized reconstructions from noisy data, and does so at multiple

resolutions, at no more effort than is required for the standard FBP method. This

approach, based on the construction of prior models directly in scale-space, allows

for the inclusion of natural, self-similar prior models into the reconstruction pro-

cess. In contrast, conventional statistically-based regularization methods, utilizing

MRF-type prior models constructed directly in (finest scale) object space, lead to

extremely complex and taxing optimization problems. The result has typically been

that such statistically motivated methods have been shunned in practice in favor of

fast, though ad hoc, approaches. Our results provide a bridge between these two

extremes. Further, in providing estimates at multiple resolutions, our results provide

tools for the assessment of the resolution versus accuracy tradeoff, wherein we ex-

pect coarser scale features of data to be more accurately determined than finer scale

ones. Though we did not exploit this ability in the present paper, our formulation
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also allowed for the possibility of combining data from projections of fundamentally

different quality, through the specification of different noise variances AA, at different

angles. The resulting estimates do not correspond to a simple FBP or even rolled off

FBP reconstruction, yet are easily obtain in our framework. Further, as before, our

multiscale MAP approach leads to algorithms which are amenable to an additional

level of approximation, with resulting improved efficiency, again at virtually no loss

in corresponding reconstruction quality. Finally, the self-similar prior model that we

use in this chapter assumes that the sets of multiscale object coefficients, �k, are in-

dependent from angle to angle and scale to scale, and that they are independent and

identically distributed within a given scale. Obviously other choices may be made

for the statistics for the multiscale object coefficients, and we briefly discuss some

particularly interesting possibilities in Chapter 8.
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5.A Details about the formation of FBP ramp-

filter matrix R

In this work we take the matrix R to represent the practical FBP -filtering operator.

In the ideal case, this FBP ramp filter operation is given by:

Fj-V' HN FN, (5.23)

where FN is a N x N matrix representing the 1-D Fourier transform operation on a

sequence of length N, and HN is a N x N diagonal matrix containing ideal high-pass

(Cramp" filter coefficients for a length N sequence. The matrix HN has a diagonal

entry of 0 since it gives zero weight to the frequency cell centered around 0. Thus the

ideal ramp filter coefficient matrix HN, and hence the matrix (5.23), is not invertible.

In practice, however, to avoid dishing (i.e. interperiod interference) and DC artifacts,

a filtering operator R is used which is constructed according to [44]:

MT,R MF�NH2NF2N (5.24)

where F2N is a 2N x 2N matrix representing the 1-D Fourier transform operation

on a sequence of length 2N, H2N is a 2N x 2N diagonal matrix containing the

corresponding ideal ramp filter coefficients, and the N x 2N zero-padding matrix M

is given by

M = 0 IN 0 (5.25)

If we define H to be the equivalent N x N practical ramp filter coefficient matrix

such that:
MT,R=Fi-V'HFN MF�NH2NF2N (5.26)

then H can be seen to be given by:

_' H2N F2N MT F;1.

FN M F�N (5.27)
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One can show that H is a diagonal matrix and the diagonal elements of H are almost

identical to HN except that H gives small positive weighting to the frequency cells

centered around 0 (refer to [44] for a plot of the diagonal elements of H). Thus H

has no 0 diagonal entry, resulting in an invertible R = F-1HF. The only issue that

remains now is of the conditioning of such a R. The above procedure for computing

R results in a relatively well-conditioned matrix, with the condition number of R

ranging from 24 for N = 16 to 389 for N - 256. Intermediate values of N result

in condition numbers between 24 and 389. In the work of this paper we use this

practical, and thus invertible, filtering operator given in (5.26) for all calculations.
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Chapter 6

Discrimination Of Fractal Fields

From Tomographic Data

6.1 Introduction

In this chapter we consider the problem of discrimination of fractal fields, with dif-

ferent fractal dimensions, directly from the noisy tomographic projection data. This

application is motivated from the medical field, where a change in fractal dimension

is used to differentiate between normal and abnormal conditions in many different

contexts, including diagnosis of liver abnormalities [11].

The conventional method for solving this problem consists of discriminating the

fractal fields based on the slopes of the averaged power spectra of their projections [11].

The rationale for this method is derived from a Radon transform result which is valid

only in the case of noise-free, continuous-data. In practice, the data may be noisy and

sparse and in this case the above discrimination procedure may not yield accurate

results.

In order to avoid any restrictions on the quality and quantity of the projection

data, we formulate our discrimination problem in a discrete hypothesis testing frame-

work. The solution to this problem is given by the maximum-log-Ekehhood discrimi-

nation rule and, since we make no restrictive assumptions on the data, this solution

is valid for both noisy as well as sparse projection data.
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If attempted either directly in the measurement or object domain, the problem of

discriminating fractal fields through likelihood calculations is, however, complicated

by the fact that inverses and determinants of large, full, and generally ill-conditioned

fractal-field data covariance matrices are required'. In principle one can imagine

using an extension of results from tomographic imaging of random fields [42,43] to

find whitening transformations for the covariance matrices in order to remove these

complications in the likelihood calculations. However, since the results in [42,43] are

valid only for the noise-free continuous-data case and in practice the data are sampled

and may be noisy, this procedure results in an inexact whitening transformation, a

fact that we demonstrate subsequently.

In this chapter we show that the above mentioned complications in the likeh-

hood calculation, namely the necessity for calculation of determinants and inverses of

large, full, and generally ill-conditioned fractal-field data covariance matrices, can be

removed easily by a transformation of the data into the multiscale framework. The

multiscale data covariance matrices are sparse and in addition, just as in the case of

the multiscale natural pixel (NP) matrix, are naturally partitioned into ill-conditioned

coarsest scale approximation blocks and relatively well-conditioned multiscale detail

blocks. This natural partitioning in the multiscale framework eliminates the need for

costly techniques, Eke the eigen-decomposition, to remove the ill-conditioning in the

covariance matrices. After removing the redundancy in the coarsest scale block, the

likelihood calculations in the multiscale framework require the inverse and determi-

nant of ust the relativel well-conditioned, detail blocks. Moreover we simplify our

likelihood calculations even further by eliminating the need for explicit calculation of

these quantities. We achieve this by using the recently introduced class of multiscale

stochastic models defined on trees [4,13-15] to realize accurate approximations of

the detail block of the data covariance matrices. These tree-based models have the

advantage that they lead to fast likelihood calculations [57], and thus to an efficient

discrimination technique.

The chapter is organized as follows. In Section 6.2 we review a few relevant results

'This ill-conditioning is a result of the redundancy in the tomographic data representation.
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that are essential for the development of our multiscale discrimination technique. In

Section 6.3 we describe a particular class of statistically self-similar stochastic pro-

cesses that we use to model the field. In Section 6.4 we mathematically formulate the

fractal-field discrimination problem. In Section 6.5 we develop our efficient multiscale

discrimination technique. We present a few examples in Section 6.6 which confirm

the efficiency of our discrimination technique. Section 6.7 concludes the chapter.

Appendices 6.A - 6.C contain certain technical details.

6.2 Review of relevant results

In this section we briefly review the relevant results from previous chapters that are

needed to develop the framework for discrimination of fractal fields from tomographic

data. Recall that the strip-integral data in tomography are of the form:

Y (M) f (U I v) S,,,, (u, v) du dv, M = 1,...,NoNs, (6-1)

where f is the object, S .. (u, v) is the indicator function of the m-th strip, No is the

number of angular positions, and N, is the number of strips in each angular position.

The discretization of the data equation (6.1) on a N,, x N,, pixel grid results in the

-following expression:

y -- Tf, (6.2)

where T is the projection matrix the m-th row of which is the discretized strip

S,,,(uv), f is the vector containing the expansion coefficients (i.e. pixels) of the

object f (u, v), and y is the overall vector of observations and is given by:

YM

Y y(2) (6.3)

y(N,9N.) J

192



The wavelet-based multiscale representation of the observation equation (6.2) is

obtained as:

Wby = WbTf, i.e.

y = WbTf, (6.4)

where, if W is the matrix that represents a N,, vector in a 1-D multiscale basis , then

Wb is a block-diagonal matrix with Ng blocks along the diagonal, all equal to W. The

elements in the multiscale data vectorq are arranged according to angle as follows:

771

77 772 (6-5)

77N,, J

where 77k is the multiscale data vector at angle k. This vector has the form:

(J-1)
71k

77k (6.6)(0)77h
(0)

L Yk J

whereq(j) is a 2i vector that contains the scale j detail coefficients from the projectionk

at angle k, and y(O) is the corresponding coarsest scale approximation coefficient.

Recall further that in the natural pixel (NP) reconstruction method, the system

matrix C is given by:

C -_ TT T (6.7)

and is large (NoN. x NoN.), full, and ill-conditioned. The transformation of C to a

multiscale framework, however, results in a matrix C:

C = WbCWT
b (6.8)
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which is sparse and, in addition, can be partitioned naturally by scales into an ill-

conditioned, coarsest scale approximation block, and a well-conditioned, multiscale

detail block. In particular, the blocks in C which correspond to the fine scale detail

couplings between data and object coefficients, are well-conditioned. The condition

number gradually increases as the coarse scale detail elements are included.

6.3 The 11f fractal processes

In this chapter we use a particular class of statistically self-similar stochastic pro-

cesses, namely the class of so-called 11f processes', to model the different hypothe-

sized textures for the -field. Such self-similar models are characterized by their fractal

dimension and are commonly and effectively used in many application areas such

as modeling of natural terrain and other textures, biological signals, geophysical and

economic time series, etc. [1 1, 12,58,78,80]. As an example, the texture corresponding

to the surface of a normal liver may be modeled as a 11f process with a particular

fractal dimension. This fractal dimension changes in pathological cases and thus can

be used as a factor to discriminate between normal and abnormal Evers [11].

The measured power spectra' Sf(w,,,w,,,) of the field f, corresponding to a 11f

process, obeys the following power law relationship:

O'2
Sf (w" W') - f (6.9)

IWI-1

where w is the angular frequency, o-- 2 is a constant, and y is the spectral parameter.f

In this thesis we consider the simplest examples of 11f processes, namely fractional

Brownian motions. For any such process, f (u, v) has Gaussian increments with mean

2The 'T' in the 11f processes refers to frequency, and should not be confused with the notation
`P that we use in this thesis for the object. We will attempt to avoid this confusion by using the
angular frequency "w" instead of the frequency `f" wherever necessary.

'From here onwards in this chapter, as is conventionally done, we use the symbol "Sg" to denote
the power spectral density of function g. Recall that we had used the symbol "S" for strip functions
in the previous chapters. The potential for future confusion between these two definitions does not
arise here, however, as we do not refer to the strip functions again in this chapter.
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zero, and a variance that depends only on the distance between the increments, i.e.

Aul, VJ) - AU2, V2) - A((O, Ai,.,c OC ((Ul - U2 )2 + (VJ - V2 )2)1), (6.10)

where H is a parameter, with 0 < H < 1. It can be shown that [2] the "averaged"

spectral density corresponding to (6-10) satisfies (6-9), with spectral parameter 4:

-y = 2H + 2. (6.11)

The fractal dimension D which is commonly used to capture textural differences

between fractal fields, is defined in terms of the parameter H as follows:

D 3 -H. (6.12)

The fractal nature in f (u, v) arises from the property of statistical self-similarity.

The random process f(uv) is said to be statistically self-similar if it has the same

probability distribution as the scaled version a`f(auav), where a is a constant,

and H is the same parameter as in (6.10). In this chapter we only consider zero-mean

fractional Brownian processes, which are characterized just by their covariance matrix,

or alternatively by their spectral density (6.9). In this case, f (u, v) is statistically self-

similar if:

E[f (ul, VI)f(U2, V2)] = a-2'E[f (au,, avl)f (aU2, aV2)] (6-13)

It can be shown [21 that (6.13) is equivalent to the following equality that is satisfied

by the power spectra of the fractional Brownian motion process (6-9):

Sf (Wu) w,) -_ I a I -1 Sf (aw, aw,), (6-14)

implying that the fractional Brownian motion process is statistically self-similar.

'The fractional Brownian motion process is non-stationary and hence one has to resort to spe-
cialized definitions of power spectra for such non-stationary processes. The "averaged spectrum" is
one such definition and we refer the reader to [2,26] for details.
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Finally, it can be shown that the increments of a fractional Brownian process

exhibit a long-range correlation [79]. As a result, a persistent correlation is also seen

in the process itself. It is this persistent correlation structure that results in a full

covariance matrix for the fractional Brownian motion process.

6.4 Discrimination problem statement

In this chapter we consider the problem of discrimination of fractal fields from sparse

and noisy projection data. As mentioned previously, the conventional method for

solving this problem consists of discriminating the fractal fields based on the slopes

of the averaged power spectra of their projections [11]. The rationale for this method

is derived from a Radon transform result which states that the spectral parameter of a

projection of a fractal field is equal to one plus the spectral parameter of the field itself,

and that the projections at different angles are uncorrelated with each other. However

this result is valid only for the noise-free, continuous-data case. In practice the data

are sampled and may be noisy and in this case, as we shall see in Section 6.6, the

above discrimination procedure is decidedly suboptimal. In particular, the projections

at different angles are correlated due to the sampled nature of the data and one

can expect that a discrimination technique that incorporates this correlation win

perform better than the conventional method that assumes the projections to be

uncorrelated. Further, in the presence of noise, the high frequency components of

the data are mostly corrupted by noise and hence their contribution should ideally

be de-weighted in the likelihood calculation. In fact, in the case of noisy data the

conventional discrimination procedure is empirically modified in [11] by ignoring the

high frequency data samples for the purpose of calculating the slope of the power

spectra. The goal of this chapter is to develop a statistically optimal technique for

discrimination of fractal fields from both sparse as well as noisy data by incorporating

the correlation information between projections and also the statistical properties of

the additive noise.

We next begin the development of our statistically optimal technique for discrim-
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ination of fractal fields from tomographic data. We pose the discrimination problem

in a hypothesis testing framework and, for simplicity, only consider the binary case in

this chapter. Specifically, let Ai be the covariance matrix for the pixel coefficients f of

a fractional Brownian motion process f (u, v) with spectral parameter -yi (c.f. (6 .9))5.

Suppose that we have to discriminate between two fields, with spectral parameters

-yo and -yi (i.e. with fractal dimensions (4 - 0.5^1o) and (4 - 0.5-yi)) respectively, given

noisy tomographic measurements y of the form:

Ho y=zo+n, (6-15)

Hi y=zl+n, (6.16)

where the noise free data zi, corresponding to a field with spectral parameter -Yi, are

given by:

zi = Tfi, fi - A((O, Ai), i = 0) 1) (6.17)

and the noise n is white, Gaussian, with n - X(O, AIN,,N,), and is uncorrelated with

both fo and fl. The log-likelihood test [76] for discriminating between the two fields

is given by:

Decide -yi if: C(,yi) - C(^Io) > 8

else decide yo, (6.18)

where C(-yi) is the log-likelihood function corresponding to hypothesis Hi, and 8 is a

threshold parameter that controls the tradeoff between the probability of detection

(PD) and the probability of false alarm (PF). The log-likelihood C(,Yi) is given by:

1 T No N.
,C(,yi) In JAyjHi I - Y A-' In 27r i = 0, 1, (6.19)

2 2 yjHjY 2

where AyjHj is the data covariance matrix corresponding to the fractal field with

'We omit here the details on the generation of the fractal field f (u, v) and the covariance matrix
Ai, but refer the reader to Appendices 6.A and 6.B for more information.
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spectral parameter -yi, and is given by:

AyJHi -_ TAiT T + AIN, N, i -_ 0) 1) (6.20)

where recall that Ai is the covariance matrix corresponding to the fractal field with

spectral parameter -yi.

Note that the likelihood expression (6.19) requires the inverse and the determinant

of the data covariance matrix AylHi. These calculations are complicated by the fact

that the matrix AyIH, is large (N9N, x NON,,), full and, in addition, is generally quite

ill-conditioned'. Thus a straightforward implementation of the discrimination rule

(6.18) is not possible. In the remainder of this chapter we explore transformations

of the data that result in a (transformed) data covariance matrix, the inverse and

determinant of which can be calculated with relatively little effort.

Figures 6-1 and 6-2 show the field covariance matrices Ai and the corresponding

noise free data covariance matrices TAiTT for spectral parameter values -yo -_ 2 and

-yl = 3 respectively. We assume an imaging geometry with No = N, = 32 so that

the covariance matrices are of the size 1024 x 1024. One can easily confirm from

Figure 6-2 that the noise free data covariance matrices are full. In addition, these

covariance matrices do not have full rank. As mentioned previously, these features of

the covariance matrices complicate the likelihood calculations.

The likelihood calculations can, however, be simplified if one can find a transfor-

mation that can be applied to the data vector in a computationally efficient manner,

that has an easily computed determinant and, in addition, that results in a diagonal

covariance matrix for the transformed data (i.e. whitens the data). Specifically, let

Mi be a transformation such that:

[(MY)(M Y)TIH,] = MiAlHi MT D- (6.21)

'The noise free data covariance matrix (TAiTT) is generally ill-conditioned due to the ill-
conditioned nature of the projection matrix T. The covariance matrix AyIH, for the noisy data
(6.20)) is also generally ill-conditioned as long as the noise variance A is not too large.
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Figure 6-1: The grayscale plot (black corresponds to the maximum value and white
to the minimum) of the covariance matrices for the fractal fields. Top: Ao (spectral
parameter yo = 2). Bottom: Al (spectral parameter -yj - 3). The fields are 32 x 32,
which implies that the matrices are of the size 1024 x 1024.
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Figure 6-2: The grayscale plot (black corresponds to the maximum value and white to
the minimum) of the tomographic noise free data covariance matrices corresponding
to fractal fields. Top: TAOT T (spectral parameter -yo = 2). Bottom: TAjT T (spectral
parameter -yj = 3). An imaging geometry with No = N,, = 32 is assumed, which
implies that the matrices are of the size 1024 x 1024.
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where Di is a diagonal matrix. The likelihood L(-�i) thus reduces to the following

expression in the transform domain:

1 1 NeN.
Lt(-yi)=InJMiJ- InIDil- (Miy)'D-'(Miy)-� �In27r, i = 0) 172 2 i 2

(6.22)

and can be computed quite easily since all that is required now is the calculation

of the determinant and the inverse of a diagonal matrix. Besides, if the covariance

matrix AyIHi is ill-conditioned, the redundant information in the data y can be easily

removed by ignoring the elements in Di that are close to zero.

We emphasize that the challenge in the above whitening process lies in finding

an appropriate whitening matrix Mi. We must be able to find this matrix in a

computationally efficient manner, and also we should be able to apply it efficiently

to the data vector. As an example, the eigen-decomposition of the matrix AylHi

provides us with a particular whitening matrix Mi for which Mi is orthogonal so that

IMil = 1. The eigen-decomposition, however, is extremely inefficient to calculate

and, in general is dense so that calculating Miy is also computationally intensive.

Hence the eigen-decomposition cannot be used as a practical whitening tool for large

covariance matrices.

I As an alternative, one can imagine using an extension of results from the existing

literature on tomographic imaging of random fields [42,431 to find the whitening ma-

trix Mi. Specifically, it is proved in [42,43] that the projection data corresponding

to a field with spectral density 1 is whitened by a lwl'/' filter. This result can be

generalized to fractal fields with spectral densities of the form 1/lwl'Y and, without

going into details7, we simply state here that the outcome of this generalization is that

the noise free tomographic data corresponding to a fractal field with spectral param-

eter -Ii can be whitened by applying a IWI(,yi+l)/2 filter independently on each of the

projections. This amounts to choosing Mi as a block-diagonal matrix, where all the

blocks are similar and represent the discretized IWI(,yi+l)/2 filter. However, since the

results in [42,43] and in Appendix 6.C are valid only for the noise-free continuous-

7Refer toAppendix6.C for details on this.
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data case 8, this procedure results in an inexact whitening matrix when applied in

practice to sampled and noisy data. That is the transformed data covariance matrix

MiA YHmT corresponding to the above choice of whitening matrix Mi is not diagonal

and, in fact, deviates significantly from a diagonal matrix. In Section 6.6 we present

examples that demonstrate that the discrimination technique that is based on as-

suming that these non-idealities are insignificant, i.e. on neglecting all off-diagonal

elements of the matrix MiAylHiWperforms rather poorly, and only slightly better

than a straightforward guessing approach.

Figure 6-3 shows noise free data covariance matrices for spectral parameter (i.e.

values of 2 and 3 respectively that have been transformed by using the above

described procedure. An imaging geometry with No _- N. = 32 is assumed which

implies that the covariance matrices are 1024 x 1024. Note from the figure that these

matrices are not diagonal. In addition, these matrices do not have fun rank. Now if

the transformed covariance matrices were truly diagonal then, as explained previously,

this singularity would not pose a major problem since all one would do in that case

is ignore the elements in the diagonal matrix Di that are equal to zero (c.f. (6.22)).

However in this case, since the transformed matrices are not diagonal, the singularity

is not localized and can only be removed by computing the eigen-decomposition of

these matrices. This computation is costly due to the fact that the matrices are

large (NoN. x NoN,). The whitening procedure obtained by discretization of Radon

transform thus leads to absolutely no computational gain.

Finally, note that in Figure 6-3 we have shown the performance of the conventional

whitening filter for the case of noise less projection data. If the data are noisy,

however, then the performance of such a filter is AM more inaccurate. This is because
IWI(,yi+l)/2any filter of the type that is chosen to whiten the data corresponding to a

I/Iwl'fi field, actually colors the white noise in the data. Specifically, in the presence

of additive white noise in the data, the theoretical spectral density of the output of

the whitening filter is (Iwl('Yi+') + 1), where the term lwl('Yi+') is due to white noise

8This; is because the results in [42,431 assume that the various Radon transform theorems hold.
These theorems, however, break down if the data are sparse and/or noisy.
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which has been colored by the filter.

In the next section we will present an extremely efficient technique for whitening

the projection data, using a transformation for which JMi I = 1, which is valid for both

sparse as well as noisy data. Specifically, we will first represent the projection data in

a multiscale basis. We will then show that the form of the multiscale data covariance

matrix is such that an accurate approximation of it can be realized by using a class

of recently developed multiscale stochastic models on trees [4,13-15]. These models

have the advantage that they lead to a fast whitening algorithm, and hence to fast

likelihood calculations [57].

6.5 A multiscale approach to discrimination of

fractal fields.

In this section we develop a multiscale approach for fast discrimination of fractal fields

through efficient likelihood calculations. We begin by transforming the fractal-field

data into the multiscale framework. We show that this transformation results in a

sparse multiscale data covariance matrix which, in addition, can be partitioned into

a relatively well-conditioned multiscale detail block and an ill-conditioned coarsest

scale approximation block. This natural partitioning in the multiscale framework

eliminates the need for costly techniques, Eke the eigen-decomposition, to remove

the ill-conditioning in the covariance matrix. After removing the redundancy in the

coarsest scale block, the likelihood calculations in the multiscale framework require the

inverse and determinant of just the relatively well-conditioned, detail block. However

we simplify our likelihood calculations even further by eliminating the need for explicit

calculation of these quantities. We achieve this by using the recently introduced

class of multisca1e stochastic models defined on trees [4, 13-15] to realize accurate

approximations of the detail block of the data covariance matrices. These tree-based

models have the advantage that they lead to a fast whitening algorithm [57], and thus

to an efficient discrimination procedure.
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Figure 6-3: The grayscale plot (black corresponds to the maximum value and white

to the minimum) of the fractal-field noise free data covariance matrices that have

been whitened by using an extension of the continuous-data results in [42,431. Top:

Whitened noise free data covariance matrix for spectral parameter -/o = 2. Bottom:

Whitened noise free data covariance matrix for spectral parameter -tj = 3. An imaging

geometry with No = N, = 32 is assumed, which implies that the matrices are of the

size 1024 x 1024.
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We begin the development of our discrimination technique by transforming the

fractal-field tomographic data into the multiscale framework. Recall that the multi-

scale transformation of all No angular projections contained in the data vector y, is

achieved by the operation:

77 = Wb Y, (6.23)

where Wb is a block-diagonal matrix with No blocks along the diagonal all equal to

W, and W is the multiscale representation operator for a discrete signal of length N,.

Recall further that the multiscale representation (6.23) requires very little computa-

tions (O(N,9N,)). From (6.23), the multiscale data covariance matrix corresponding

to a fractal field with spectral parameter -yi is given by:

AnIHi = E[(WbY)(WbY)'IHi]

T]WT= WbE [zizT] WbT+ WbE[nn b

= E[CiCT] + E [VVT]

= E[�iCT] + AINN., (6.24)

where Ci = Wbzi is the multiscale transformation of the noise free data corresponding

to the field with spectral parameters, and v = Wbn - JV(O, AIN,,N,) is the multiscale

transformed noise vector. Note that the variance of the noise remains unchanged upon

multiscale transformation since the matrix Wb is orthogonal. Furthermore because of

orthogonality JWbJ = L

We point out to the reader that the same similarity transformation as in (6.24)

when applied to the NP matrix C (c.f. (6.8)) results in a sparse multiscale matrix

which can be partitioned by scales into well and ill-conditioned blocks. Now note from

Figure 6-2 that the structure of the data covariance matrix E[zizT] is very similar to

the NP matrix C (Figure 2-3). Thus, as in the NP case, one can expect the multi-

scale matrix E[CiCT] to be sparse and, in addition, to be naturally partitioned into

a relatively well-conditioned, multiscale detail block and an ill-conditioned, coarsest

scale approximation block. In fact, as we show later, this is what we observe, and
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Figure 6-4: The vectors Jq(j, s)J can be assumed to define the nodes of a multiscale
tree. These vectors are of length No and contain the detail coefficients at scale j and
shift s from projections at all angles.

it is this natural partitioning in the multiscale framework that helps us avoid costly

eigen-decomposition computations in order to remove the ill-conditioning in the data

covariance matrix.

After removing the ill-conditioning in the coarsest scale approximation block of the

data covariance matrix A77IHi) the likelihood calculation in the multiscale framework

requires the inverse and determinant of just the corresponding sparse and relatively

well-conditioned detail block. However, we are able to develop an efficient technique

for whitening the detail coefficients in the data that avoids even this determinant and

inverse calculation. As a first step in the development of such a technique, we propose

a particular ordering of the detail coefficients in the multiscale data vector 77.

Let qU, s) be the No vector which contains the detail coefficients at scale j and

shift s from projections at all angles'. Now, as shown in Figure 6-4, the detail vectors:

q(j, s), j = 0, 1, . . . , J - 1, s = 1, 2,..., 2i

can be assumed to define the nodes of a multiscale tree. The j-th level of the tree

'Recall that there are 2i shifts at scale j.
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consists of 2i nodes:

I 77(j, s), s 1, 2,. .. , 2i

which represent the 2i shifts of the scale detail coefficients from projections at all

angles. The full detail vector 77 d consists of all the vectors Jq(j, s)J that define the

nodes of the multiscale tree in Figure 6-4:

77(0, 1)

'q(1, 1)

,q(1, 2)
d

77 (6.25)

77U, s)

71(J - 1, 2J-1)

Finally, to complete the multiscale representation, the coarsest scale approximation

coefficients in the data have to be added to the detail vector 77 d as shown below:

77a

71,. -_ P,. 77 d (6.26)
71

where P, is the (orthogonal) permutation matrix (thus with IP, I - 1) that rearranges

the multiscale data in 77 according to the tree-ordering scheme, 'q, is the tree-ordered

data vector, and , ais an No vector that contains the coarsest scale approximation

coefficients from projection data at all angles:

(0)Y1
(0)

a Y2
71 (6.27)

(0)
L YN9 J
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Node t y
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Figure 6-5: Each node of the multiscale tree is denoted by a single index t U) S).
The notation tj refers to the parent node of t.

In order to simplify notation, let us denote each node of the tree by a single index:

t = (j, S), (6.28)

as shown in Figure 6-5. In that case tj, the parent node of t on the tree, is given by:

t! U 1, L"J), (6.29)
2

where the notation Laj refers to the integer part of a.

From (6.26), the covariance matrix A,7,lHi for the tree-ordered vector 77, is given

by:

A,7,,IHi = P,.A,71Hjp�' (6-30)

and can be partitioned into detail and approximation blocks as follows:

A E[?7a(,qa)l jHj] E [,qa(,ql)IIH,]

"7,- jHj E[?7a(?7d)TIH,]T E[,qd(,qd)T IHi] j
L

AnalHi 0 (6.31)

0 A?7diHi
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where, as in the case of the multiscale transformation of the NP matrix C, the elements

of the off-diagonal blocks are negligible. Further, any ill-conditioning in A17,jHj is

mostly concentrated in the coarsest scale approximation block A,7.IH, and, as a result,

the detail block A77djHj is relatively well conditioned. As an example, in Figure 6-6

we show a histogram plot of the absolute magnitude of elements in the off-diagonal

block E [77a (,, ')'IHi] of the covariance matrix A,7,lHi corresponding to a fractal field

with spectral parameters -_ 2. Note from the figure that the absolute magnitude of

most of the elements in the off-diagonal block is less than two percent of the absolute

maximum value in the matrix. Further for this specific example of ^jj = 2, the detail

block A77dH, has full rank even though the full covariance matrix A77, jHj is singular.

The likelihood calculation in the multiscale framework now requires the inverse of

the covariance matrix A77, jHj. This inverse can be written as:

A+ 0A` nalHi (6.32)
17', 1 Hi 0 A`

77dlHi

where + refers to the pseudo-inverse that is required here since the approxima-

tion block A,7.IH, is generally ill-conditioned. Thus the problem of inverting an ill-

conditioned covariance matrix is easily removed in our multiscale framework and all

that is required for this is the pseudo-inverse of the corresponding small (No x No)

approximation block. Moreover for the examples we show in this chapter we con-

sider the discrimination between fractal fields normalized so that they have identical

expected power irrespective of the fractal dimension. This choice allows us to focus

on the textural differences between the fields and not on DC power differences. This

choice also implies that the coarsest scale approximation block has the same statistics

under both hypotheses and thus can be ignored for the purpose of likelihood calcu-

lations without any loss in performance. We thus obtain the following expression for

our multiscale log-hkehhood L .. (-yi):

1 1 (,qd)T A-' Hi77dNo (N. - 1) In 2r i = 0, 1, (6.33)(-Yi) 2 In JA77djHj1_ 2 77dj 2
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Figure 6-6: The histogram plot of the absolute magnitude of elements in the off-
diagonal block E [,,a(,7d)T JHj] of the covariance matrix A,7,jHj corresponding to a fractal
field with spectral parameter 7i = 2. Note that the magnitude of most of the elements
in the off-diagonal block is less than two percent of the maximum value in the matrix.
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and the following discrimination rule:

Decide yj if: 'C'. (-Yl) - 'C'. (-to) > 8

else decide -yo. (6-34)

From (6.33) we see that the inverse and the determinant of the sparse and relatively

weU-conditioned detail matrix A 77 dIH, are now required for likelihood calculation. We

describe next an efficient technique for whitening the detail coefficients 'qd which

eliminates the need for explicit calculation of these quantities.

To begin, note from (6-25) and (6.28) that whitening the detail vector q' is equiv-

alent to whitening the vectors q(t) which are defined on the nodes of the multiscale

tree in Figure 6-4. Let us assume that these vectors q(t) correspond to observations

of a dynamic state-space model in scale, as shown below:

,O(t) A(t)73(tly) + B(t)zu(t),

77(t) C(*�M + vM, (6.35)

where A(t), B(t), and C(t) are No x Ng matrices, and f w(t)j and f v(t)l are inde-

pendent sets of zero-mean, white, Gaussian random vectors that are independent of

W(t) - JV(O, INg),

v(t) , A/-(O, AtIN.). (6-36)

Now if the model (6.35) holds then, as shown in [57], there exists a fast method

for whitening the vectors Jq(t)j with a scale recursive procedure corresponding to

a whitening transformation with unity determinant. This in turn results in a fast

calculation of the corresponding likelihood L .. (-yi) (c.f. (6.33)).

The efficient, tree-based likelihood calculation procedure thus involves the follow-

ing steps. First the covariance matrix A 71 djHj is realized by choosing the appropriate
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model parameters A(t), B(t), C(t), and At in (6.35). Then the whitening technique

developed in [571 is used to calculate the likelihood. There is a major issue, how-

ever, with this approach - the dynamics (6.35) imposes a particular structure on

the covariance matrix A 17 dIHi, and hence does not allow us to realize any arbitrary

covariance matrix. In particular, the structure of our fractal-field data covariance

matrices are such that an exact realization of these by using the model (6-35) is not

possible. AR hope is not lost, however, for in this case one can think of finding the

model parameters such that accurate approximations A 77 dIHi of the fractal-field data

covariance matrices A77 d1H, are realized.

Specifically, we find the parameters A(t), B(t), C(t), and At such that the vari-

ance of the node vectors (i.e. E [,q(t),q(t)T] ) and their covariance with the parent (i.e.

E [,q(t),q(t-)TJ) is exactly realized. In other words, the blocks in the realized covari-

ance matrix i� ?7 dJHi which represent E [,q(t),q(t)T ] and E[,q(t)77(tj)T] , exactly match the,

corresponding blocks in the original covariance matrix A 77 dlHi. This results in the

following choice for the model parameters, and the initial condition:

A(t) = E[C(t)C(tj)TJE+[C(tj)C(tj)T]'

[C(t)C(t)T] T[C(t)C(t-)T] 1/2B(t) = Real (E - A(t)E

C(t) = IN,,

At A 7

E [,O(O),O(O)T] E[C(O)C(O)T]' (6.37)

where + refers to the pseudo-inverse, and recall that C are the noise free data, and A

is the variance of the additive noise in the data.

We emphasize that the choice of model parameters according to (6.37) is not

unique, but is rather a function of which blocks in the covariance matrix we wish

to exactly match in the realized matrix. For example, a different expression for the

model parameters is obtained if we match the covariance between the siblings rather

than between the parents and their children. Given this, we claim that our choice of

the model parameters according to (6.37) results in a realized covariance matrix A 77 dIHi
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that is an accurate approximation of A ndIHi . As an example, we show in Figure 6-

7 the covariance matrix A 77 d1H, and the corresponding approximation A71d I Hi for a

spectral parameter value 7i = 2. We assume an imaging system with No = N, = 32

so that the matrices are of the size 32(32 - 1) x 32(32 - 1) = 992 x 992, and we

assume the data to be noise free. Further, we use the Daubechies D10 wavelet for

multiscale decomposition". One can see from the figure that the covariance matrix

A?I d1H, and the tree realized version A In d1H, are fairly similar. More important for us,

however, is how well the accuracy of this approximation is reflected in the likelihood

calculations. In the next section we demonstrate that the likelihoods calculated by

using the tree-model model (6.35) (i.e. the realized matrix A?7dJHi) are very similar to

the ones calculated using the exact covariance matrix A 77 dlHi. In other words, if we

define to be the likelihood obtained by using the tree model, then:

1 - I d TTk-1 d NO (N- - 1)-- In JA 'R dIHi I - -('q ) dlHi77_ In 27r, i = 0) 1, (6-38)
2 2 2

is a very good approximation to the exact likelihood C .. (-fi) (c.f. 6.33). We point out

to the reader that the expression for Z .. (-yi) shown in (6.38) serves only an explanatory

purpose. In reality, as mentioned previously, we use the results in [57] to efficiently

whiten the vector 77'. This in turn eliminates the need for explicit calculation of the

inverse and determinant of .4dH, as suggested by (6.38).

6.6 Examples

In this section we present examples demonstrating the effectiveness of our multiscale

technique for discrimination of fractal fields. We discretize the fractal fields on a

32 x 32 pixel grid and assume an imaging geometry with N,9 = 5 angular projections

and N, = 32 strips in each projection. Our choice for such a small number of angular

projections (i.e. 5) is based on the following considerations. First, one of the purpose

100ur experience is that the higher order Daubechies wavelets result in a more sparse A,7'IH,, and
this in turn enables a more accurate realization on the tree
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Figure 6-7: The grayscale plot (black corresponds to the maximum value and white
to the minimum) of the detail covariance matrix A 77 djHj (top) and the approximation
A 77 djH, realized on the tree (bottom) for a spectral parameter value -yj = 2. An imaging
geometry with No = N. = 32 is assumed, which implies that the matrices are of the
size 32(32 - 1) x 32(32 - 1) = 992 x 992.
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of this section is to compare the performance of our tree-based approximate likelihood

discriminator with the corresponding exact multiscale likelihood discriminator. Note

that the exact discriminator requires the calculation of inverses and determinants of

No(N, - 1) x No(N, - 1) detail covariance matrices, which becomes computationally

prohibitive in the case of a large amount of data. Thus, while our approximate tree-

based discriminator avoids this computational problem and thus can easily be applied

to larger data sets (as in [57]), comparison to the optimal discriminator requires that

we consider a problem of size that makes the exact likelihood calculation feasible.

Second, the choice of a small number of angular projections enables us to test the

performance of our discrimination technique by using extremely sparse data, Indeed

one of the objectives of this chapter is to develop a discrimination technique that

avoids the restriction on the quantity of the tomographic data.

In all the results we present in this section we use the Daubechies wavelet D10 [18]

for multiscale representations. We assume the projection data to be noisy and we

measure the magnitude of the additive noise by the signal-to-noise ratio, defined as:

SNR(dB) = 10loglo Trace(TAiT T) (6.39)
NoNA

where A is the variance of the zero-mean additive noise which we assume to be Gaus-

sian and white, T is the projection matrix, and Ai is the covariance matrix for the

fractal field corresponding to a spectral parameter value -yi. Note that TAiT T is the

covariance matrix for the noise free tomographic data. We normalize the fractal-field

covariance matrices Ai such that the noise free data covariance matrices have the

same trace for all i (i.e. for all values of the spectral parameter). This implies that

the expected power in the fractal-field data is same for all fractal fields irrespective

of their spectral parameter (i.e. their fractal dimension).

In the first few examples we concern ourselves with discrimination of fractal fields

with spectral parameter values of ^to -_ 2 and -11 = 3 respectively. We show one

particular realization for each of these fields in Figure 6-8, and in Figure 6-9 the cor-

responding filtered back-projection (FBP) reconstructions from 5 dB SNR projection

215



data is displayed. From Figure 6-9 we see that it is not possible to visually discrimi-

nate between the fractal fields from the corresponding reconstructions since the latter

are mostly corrupted by noise and sparse data artifacts. However, as will be shown

later, our tree-based discrimination technique will be able to distinguish between the

two fractal fields from 5 dB SNR data with a probability of error that is very close

to zero.

In Figure 6-10 we show likelihood results for two 32 x 32 fields with spectral

parameters -yo = 2 and -yi = 3 respectively. We corrupt the tomographic data with

additive noise such that the SNR = 5 dB. We plot the exact likelihood difference,

obtained using A 77 dlHi, L,.,, (-yi) - L .. (7o) (solid line) and the approximate difference

L.(-yi) - L.(-yo) (broken line) computed with our tree-based approximation A 77 dlHi,

for different realizations of the field and the noise. The plot in the top half of the figure

shows the likelihood differences when the field is generated according to -Y = 2 and the

plot in the bottom half is for -y -_ 3. Note from the figure that the likelihood difference

calculated by using the tree model tracks the corresponding exact difference very

closely on an individual sample path basis and thus we expect the performance of our

tree-based detection approach to be comparable to that of the optimal discriminator.

We discuss next the results of an experiment where we measure the performance

of the our tree-based likelihood discriminator for different values of the threshold

parameter 8 that controls the tradeoff between the probability of false alarm (PF) and

the probability of detection (PD). A particular measure of this performance, called the

receiver operating characteristic (ROC) curve [76], is obtained by plotting PD versus

PF. Besides displaying the ROC curve for our tree-based discrimination method, we

also show the corresponding curve for the optimal discrimination technique employing

the exact likelihood expression. Further, to compare the performance of these two

techniques with the corresponding suboptimal ones, we also show the ROC curves for

the conventional discrimination technique that is based on the slope of the averaged

power spectra of the projections [11], and the discrimination technique obtained by

using the whitening transformation (c.f. Appendix 6.C) derived from the noise-free,
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Figure 6-8: Realizations of 32 x 32 fractal fields. Top: Spectral parameter -yo 2.
Bottom: Spectral parameter -yj = 3.
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Figure 6-9: The filtered back-projection (FBP) reconstructions of the fractal fields
shown in Figure 6-8 from the 5 dB SNR projection data. Top: Spectral parameter
,yo = 2. Bottom: Spectral parameter y, = 3. Note that it is not possible to discrim-
inate between the fields from the reconstructions as the latter are mostly corrupted
by sparse and noisy data artifacts.
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Figure 6-10: The exact likelihood differenc! L .. (-y = 2) - L,(,y 3) (solid lines) and
the approximate difference L,(,y - 2) - L,(-y - 3) calculated on the tree (broken
line). The fields are 32 x 32, the SNR = 5 dB, and an imaging geometry with No 5
and N, = 32 is assumed. Top: The underlying field is generated according to -1 2.
Bottom: The underlying field is generated according to 7 = 3.
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continuous-data Radon transform results and assuming that this transformation does

indeed lead to a diagonal (i.e. whitened) covariance matrix. Before we show the

ROC results, however, let us first summarize for clarity these various approaches for

performing discrimination.

Recall that the exact likelihood discriminator is given by:

Decide 2 if : L,,,(,y - 2) - 3) > 8

else decide 3, (6.40)

and that the corresponding tree-based approximate discriminator is given by:

Decide -y -_ 2 if 2) - L .. 3) > 8

else decide -1 = 3, (6.41)

where the exact likelihood is obtained from (6.33) and the tree-based approx-

imation is obtained from (6.38).

The conventional discriminator [111 that is based on the slope of the averaged

power spectra of the projections, is given by:

Decide -1 = 2 if : Weighted least squares estimate of the slope > 8

else decide ^/ = 3, (6.42)

where, in this case, 8 corresponds to the threshold slope parameter that is used to

discriminate between the two fractal fields. Further, following the procedure outline

in [11] for noisy data, we ignore a certain number of high frequency samples for

calculation of the slope of the power spectra. We determine this number by trial and

error and choose a value that results in the best ROC performance as we vary the

threshold 8 (i.e. in the maximum area under the ROC curve).

Finally, the discriminator that is based on the whitening transformation derived
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from the noise-free, continuous-data Radon transform results, is given by:

Decide y = 2 if: Lt 2) - Lt 3) > 8

else decide -y = 3, (6.43)

where the likelihood Ct(-yi) is calculated (c.f. (6.22)) in the transform domain by

transforming the projection data by the matrix Mi the blocks of which represent

the discretized IWI(,yi+l)/2 filter. Recall that this transformation results in an inexact

whitening and hence the matrix Di in (6.22) is not diagonal. In our examples, how-

ever, we ignore the off-diagonal elements in Di for the calculation of the likelihood

,Ct(^Ii). This enables us to compare the accuracy of the whitening procedure obtained

from the Radon transform results with our tree-based whitening technique.

In Figure 6-11 we show the receiver operating characteristic (ROC) curves for all

four of the discrimination techniques that we just described. In these curves we have

also included the so-called "guessing" line, the straight line from (PDPF) = (0,O) to

(1,1), corresponding to using only pure guessing strategies. The data for the ROC

curves shown in Figure 6-11 are gathered with No = 5 and N, = 32, and the additive

noise in the data results in an SNR of 5 dB. Each point on the curve corresponds to

a number of Monte Carlo simulation runs, with the number of runs chosen such that

the estimates of PD and PF have relatively small standard deviation. To this end,

we show in the figure the error bars that depict the 95% confidence intervals for the

estimates of PD and PF. Note that these error bars are very small indicating that

our PD and PF estimates are quite reliable. Finally, to enable an easy comparison

of the various discrimination techniques, we plot all four ROC curves corresponding

to the four different discrimination techniques on the same graph in Figure 6-12. For

the sake of clarity, we do not show any error bars in this figure.

It is clear from Figures 6-11 and 6-12 that the two ROC curves corresponding to

the optimal likelihood discrimination technique and our tree-based approximation are

very similar. We can thus conclude that the gain in computational efficiency obtained

by using the tree model is not offset by any significant loss in the ROC performance.
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Further, the two figures also confirm the claims that we had made earlier namely that

the discrimination techniques that are based on direct fractal dimension estimation or

on whitening transformations developed for noise-free continuous-data Radon trans-

form results break down in the case the data are sparse and noisy. In particular note

that the ROC curves for both the conventional discrimination technique that is based

on the slope of the power spectra, and the discrimination technique that is based on

the whitening -filter obtained from a discretization of Radon transform results, are

only very slightly better than the guessing curve. On the other hand the likelihood

based techniques perform significantly better with an area under the corresponding

ROC curves that is very close to one. Further, in Table 6.1 we show the estimated

spectral parameter values obtained from the conventional technique that is based on

the slope of the power spectra of the projections. Note that while the actual spectral

parameter values of the field are 2 and 3, the conventional technique incorrectly esti-

mates these as 0.2515 and 0.3293 respectively. This again confirms that fact that the

conventional technique fails to yield accurate results if the projection data are sparse

and noisy.

Spectral parameter Spectral parameter
(Actual) (Estimated)

2 0.2515 ± 0.0062
3 0.3293 ± 0.0064

Table 6.1: The actual spectral parameter values for the field and the values estimated
by the conventional method that is based on the slope of the averaged power spectra
of the projections. The 10 highest frequency samples are ignored for the calculation
of this slope. This number is determined by trial and error and is chosen to yield the
maximum area under the ROC curve. The projection data are gathered according to
N,9 -_ 5 and N, = 32, and the SNR is 5 dB.

We next consider the manner in which detection performance is affected by the

strength of the noise corrupting the data. For these examples we again assume the

projection data to be gathered according to N,9 = 5 and N, = 32. In Figure 6-13 we

show (dashed line) a plot of the probability of discrimination error (PE) obtained by

using our tree-based discrimination technique versus the signal-to-noise (SNR) ratio.

We have assumed a value of 8 -_ 0 for the threshold parameter in the likelihood dis-
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Figure6-11: TheROCcurvesforthe32x32exampleinFigure6-10. The SNR 5 dB

and an imaging geometry with No -_ 5 and N, = 32 is assumed. The error bars depict

the 95% confidence intervals. The dashed lines in each of the subplots correspond to

the guessing curve. Top right: Exact ROC curve. Bottom right: Approximate ROC

curve using the tree model. Top left: The ROC curve obtained by the conventional

discrimination technique that is based on the slope of the averaged power spectra of

the projection data. The 10 highest frequency samples are ignored for the purpose of

calculation of this slope. This number is determined by trial and error and is chosen

to yield the maximum area under the ROC curve. Bottom left: The ROC curve

obtained by using the whitening filter that is based on the noise-free continuous-data

Radon transform results.
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Figure 6-12: The ROC curves from Figure 6-11. The SNR = 5 dB and an imaging
geometry with No = 5 and N, = 32 is assumed. Dashed line: ROC curve for the exact
likelihood test. Dotted line: Approximate ROC curve using the tree model., Dash-
dotted line: The ROC curve obtained by the conventional discrimination technique
that is based on the slope of the averaged power spectra of the projection data. Solid
line: The ROC curve obtained by using the whitening filter that is based on the
noise-free continuous-data Radon transform results.
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crimination rule for these calculations. We also show in the same figure the probability

of error versus SNR curve (dash-dotted line) obtained from the conventional discrim-

ination technique that is based on the slope of the power spectra of the projections,

and also the corresponding curve (solid line) obtained by using the whitening filter

derived from the noise-free, continuous-data Radon transform results. It is clear from

the figure that the performance of our tree-based discrimination technique even at an

extremely low SNR value of -5 dB is better than that of both the other techniques

at 5 dB.

So far we have only considered the discrimination of fractal fields with spectral

parameter values of (-yo _- 2, -yi = 3). We present next in Figure 6-14 the plots of

probability of error (PE) versus SNR for discrimination of -fields with ('Yo -_ 2, -yl =

2.5) and also for fields with (-yo = 2, ̂ 11 = 2.25). We use our tree-based likelihood

discriminator with a threshold value 8 - 0 for these plots. In the same figure we repeat

the corresponding plot from Figure 6-13 for discrimination of fields with (-Yo = 2, ̂ 11 =

3). Note from the figure that our discrimination technique is able to discriminate

between the fields with spectral parameters (,yo - 2, -yi = 2.5) from 10 dB SNR

sparse (No = 5, N, = 32) data, with a probability of error that is only 0.13 (i.e.

13%). This is impressive especially since, as we show in Figure 6-15, it is difficult

even to visually discriminate between these fields from the corresponding realizations.

Finally, we point out that our tree-based method is able to discriminate between

fields with very similar spectral parameter values (,yo -_ 2,,yi = 2.25) with less errors

than that obtained for the two suboptimal methods for spectral parameter values

(^Io = 2, -yi = 3) that are far apart.

6.7 Discussion

In this chapter we have considered the problem of discrimination of fractal fields

from noisy and sparse projection data. The conventional techniques for solving such

problems are based on Radon transform results that break down when the data are

sparse and/or noisy. In order to avoid any restrictions on the quantity and the quality
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Figure 6-13: The probability of error (PE) variation with the signal-to-noise ratio
(SNR) for discrimination of fields with spectral parameter values (-Yo -_ 2, -yi = 3).
The fields are 32 x 32 and an imaging geometry with No -_ 5 and N, = 32 is assumed.
The error bars depict the 95% confidence intervals. Dashed Ene: The tree-based hke-
lihood discrimination technique. Dash-dotted line: The conventional discrimination
technique that is based on the slope of the power spectra of the projections. Sohd
line: The discrimination technique that is based on the whitening filter derived from
the noise-free, continuous-data Radon transform results.
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Figure 6-14: The probability of error (PE) variation with the signal-to-noise ratio

(SNR) for the tree-based likehhood discrimination technique. The field is 32 x 32 and

an imaging geometry with No -_ 5 and N, = 32 is assumed. The error bars depict the

95% confidence intervals. Solid line: The two fields correspond to (-/0 -_ 2,,y, = 3).

Dashed line: The two fields correspond to (-yo = 2, -yj = 2.5). Dashed-dotted line:

The two fields correspond to (-yo = 2,,yi = 2.25).
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Figure 6-15: Realizations of 32 x 32 fractal fields. Top: Spectral parameter yo = 2.
Bottom: Spectral parameter -yj = 2.5.
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of the projection data, we have formulated the discrimination problem in a hypothesis

testing framework. The solution to this problem is then given by the statistically

optimal maximum-log-likelihood discrimination rule.

The problem of discriminating fractal fields through likelihood calculations is,

however, complicated by the fact that inverses and determinants of large and gen-

erally ill-conditioned fractal-field data' covariance matrices are required. This ill-

conditioning is a result of the redundancy in the tomographic data representation.

We have shown that this redundancy in the covariance matrices is captured by the

coarsest scale approximation block in the corresponding multiscale matrices, and

hence can be effectively removed in the multiscale framework. Thus the likelihood

calculations in the multiscale framework require just the inverses and the determi-

nants of the well-conditioned detail blocks in the corresponding covariance matrices.

However we have simplified our likelihood calculations even further by eliminating the

need for explicit calculation of these quantities. We have achieved this by using the

recently introduced class of multiscale stochastic models defined on trees to realize ac-

curate approximations of the detail blocks of the covariance matrices. These tree-Eke

models have the advantage that they lead to fast likelihood calculations, and thus to

an efficient discrimination technique. Our tree-based discrimination technique is thus

very close to optimal and at the same time is extremely computationally efficient.
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6.A Details on the formation of the fractal-field

covariance matrix Ai

Recall that the object f (u, v) is discretized on a N,, x N, pixel grid as follows:

N.2

f (U, v) fi bi (u, v), (6.44)

where bi(u, v) is the indicator function of pixel i. We arrange the pixel coefficients fi

according to a lexicographic ordering scheme, which implies that the pixel (a,, bi) is

represented by i -- (a, - I)N,, + bi in (6.44).

Let A denote the covariance matrix for the pixel coefficient vector f corresponding

to a fractal. field with spectral parameter -y. The correlation between the pixels (a,, bl)

and (a2, b2) (1 < (a,, bl, a2, b2) < N,) is specified by the (m, n)-th element of A, where

m (a, - 1)N. + bi, (6.45)

n (a2 - 1)N, + b2- (6.46)

This element is obtained as:

A(m, n) - expfj(w,,,a + w,,b)l + 1 N. (6.47)N.2 2 1-y/2 2JW2 +W" N. 2r
U

where

a a, - a2, (6.48)

b bi - b2, (6.49)

Wu ( 27r )CU, (6-50)
N.

W"' ( 27r )C-�" (6.51)
N.
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and

X = (C., C.) I CU = -N. + I),,,) N. _V _: -N. + N. \ f (0, 0)J. (6.52)
2 2 2 2

6.B Details on the generation of a fractal field

In order to generate a fractal field with spectral parameter -y, we start by calculating

A1/2 I the symmetric square root of the covariance matrix A for the pixels correspond-

ing to the fractal field:
/2 1/2A - Al A (6.53)

Once A1/2 is determined the vector f, which contains the pixel coefficients of the

fractal field, is obtained as follows:

f -_ Al/2,5, (6.54)

where e is a vector containing the samples of a white, Gaussian distribution with zero

mean and unit variance, i.e.

6 r,'M(0, IN.2). (6.55)

6.C Whitening transformation for continuous and

noise-free fractal-field tomographic data

Here we find a whitening transformation for the projection data corresponding to a

fractal field f with spectral density of the form:

Sf (W" W') (6.56)

where -y is the spectral parameter, and we have assumed a value of I for the constant

G'2 (c.f. (6-9)). We restrict ourself here to only noise-free and continuous tomographicf
data. In this case there exists previous work [42,43] that finds the whitening transfor-
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Figure 6-16: The two filtering operations described by the above two block diagrams
are identical.

mation corresponding to a white noise object (i.e. an object with spectral parameter

,Y = 0). In the following we generalize the result in [42,43] to arbitrary spectral

parameter values.

Let us define Ro as the projection operator at angle 0 such that the operation

Rof (u, v) results in go(t), the projection of f at angle 0. Our goal is to find a -filter with

a frequency response of the type Jw I' that whitens the projections go (t) corresponding

to a fractal field with spectral parameter -y. Obviously one can expect the filter

parameter m to be related to -y and in what follows we establish a precise relationship

between these two quantities. To begin, consider the two filtering operations described

by the two block diagrams in Figure 6-16. These operations are identical because of

a Radon transform result that states that the projection of a convolution of two 2-D

functions is just the convolution of their individual projections. Now, if we denote

the covariance of the fractal field f as A and the covariance of the filtered field f as

A, then:

(U V) , (t E[ v)f (u', v )]8(u cos 0 + v'sin 0 - t) du'dv'

90 f (U)

A U - U1 2 V - V')8(u'cos 0 + v'sin 0 - t) du' dvl
H-
11
A,(u cos 0 + v sin 0 - t, 0), (6.57)
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where the subscript " r77 in A, denotes the use of radial coordinates, and the last

equality in (6.57) follows from the central slice theorem [44]. The correlation between

the filtered projection data is given by:

E[' (t)' (t')] E[' (t')Ro 90 90 90 AU7 V)]

go f (u, v)]8(u cos 0 + v sin 0 - t) du dv

A U Cos O' + v sin O' - t', 0')8(u cos 0 + v sin 0 - t) du dv,
H-

(6-58)

where the last equality in (6.58) follows from (6.57). Finally, if S r is the spectralf

density of the field f in radial coordinates and S' is the same for the filtered field

then from Figure 6-16:

S�(W) 0) - I W S; (w, 0), (6.59)

which implies that:

2m
Ar(rO)=fIWI S;(WO)exp(jwr)dw. (6-60)

Now by substituting (6.60) in (6.58) we obtain:

E[' (t)' (t')]

go 90

f ff du dv dw I W 12m S; (W, 0) exp(jw(u cos O' + v sin O' - t')) X

8(u Cos 0 + V sin 0 - t)

2mS,(W, O') exp(-jwt')dw xf IWI f

expUW(U Cos O' + v sin 0'))8(u cos 0 + v sin 0 - t) du dv (6-61)

The expression in square brackets in (6.61) is the Radon transform of a plane wave

and can be shown to be equal to [42,431:

exp(jwt) 8(0 - 01) (6-62)

IWI
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By substituting (6.62) in (6.61) we obtain:

E[' (t)' (t')] = 8(0 - 01) 2,-IS;(W,

go 90 IWI 0) exp(jw(t - t')) dw. (6-63)

Thus the filtered projections at different angles are uncorrelated and the spectral

density Sg of the filtered projection ' (t) is given by:

S9(W7 0) = JW 12,-I S; (W, 0). (6-64)

Now if the spectral density of the field satisfies a Ilf power law with spectral param-

eter -y (c.f. (6.56)) then from (6.64) the projection data may be whitened by a filter

of the type JwJ- where:
M - ^/ + (6.65)

2
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Chapter 7

Detection Of Anomalies From

Projection Data

7.1 Introduction

In this chapter we consider a commonly encountered application in tomography, in

which the goal is not to reconstruct the entire field, but to simply detect the presence

of an anomaly. Examples of such an application include the detection of cracks and

other defects in materials [25,73], and the detection of lesions in medical images [30].

The conventional methods for detecting anomalies from projection data fall under

two broad categories. In the first category, the entire field is first reconstructed using

any of the conventional techniques described in Chapter 2, and then post-processing

is done on the reconstructed image to detect the anomaly (for example, as in [30]).

Leaving the computational issues aside, a major disadvantage of this approach is that

when the projection data are sparse and/or noisy, the reconstruction of a complete

image generally suffers from severe artifacts and distortion that can easily obscure

the anomaly or result in false alarms. These reconstruction artifacts can be removed

by appropriate regularization at the expense of additional computational burden.

This approach can, however, smooth out the anomaly and hence once again make it

undetectable. In the second category of detection methods [66], the problems asso-

ciated with the reconstruction of the entire field are avoided by developing detection
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techniques directly in the data-domain. These methods, however, assume that the

anomalies are parameterized (for example by size, shape, location, and number) and

thus are limited in scope.

In order to avoid the above problems that are associated with detection of anoma-

hes through the use of conventional techniques or the limitations in previous direct

detection formulations, we propose here a procedure that detects anomalies directly

from the projection data and, in addition, does not impose any restrictive assump-

tions on the dnomaly. Specifically, in this chapter we develop a fast data-domain

technique that detects anomalies in textured backgrounds. In particular we use 11f

fractal processes to model the background textures. These processes, as mentioned in

the previous chapters, are accurate models for a variety of textures including terrain

and several biological structures [11, 12, 58, 78, 80]. As a result, the specific detec-

tion task that we consider here is sufficiently general to encompass a wide variety of

applications, from detection of lesions in medical images to detection of defects in

materials.

As mentioned previously, our technique for detection of anomalies is based di-

rectly in the projection, i.e. in the data domain. As a first step of our data-domain

approach we obtain the statistics for the projection data that corresponds just to the

background texture. We then analyze the data to see whether it deviates significantly

from these statistics. This analysis is based on a chi-square test and enables us to

compute the confidence level at which an anomaly can be identified in the input field.

There are a few obstacles, however, to this data-domain detection approach that

must be dealt with if we are to obtain an effective algorithm. The first issue is that

without some additional structure, this technique lets us test only for the presence of

an anomaly but does not enable us to localize it. The second major obstacle is that the

chi-square test requires the inverse of the fractal-field data covariance matrix which, as

discussed in Chapter 6 is large, full and, in general, quite ill-conditioned. Recall that

we were faced with a similar difficulty in Chapter 6 where the likelihood calculations

for the discrimination of fractal-fields required the inversion of the same covariance

matrices. There, however, we were able to simplify things by a transformation to
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the multiscale framework, which not only resulted in sparse transformed covariance

matrices but also that any ill-conditioning in the matrices was concentrated in the

corresponding coarsest scale approximation blocks.

Along similar lines, we are able to remove the second obstacle mentioned in the

preceding paragraph by transforming the data to the multiscale framework and by

performing the chi-square test on the multiscale data. This transformation results in

an extremely sparse multiscale covariance matrix which we are able to partition by

scales in such a manner that any ill-conditioning in the matrix is concentrated in the

coarsest scale approximation block. Further, by using the fact that the multiscale

wavelet basis functions are localized and that the multiscale fractal-field covariance

matrix is extremely sparse, and in particular is diagonally dominant, we are able

to remove the first issue with the detection approach as well. In particular due

to the sparse nature of the multiscale covariance matrix the various elements in the

multiscale data vector are effectively uncorrelated. This, and the fact that the wavelet

basis functions are localized implies that the presence of an anomaly in a particular

region of the field can be established by performing a chi-square test on only those

transformed data samples which correspond to the multiscale strips that intersect the

test region. Further this chi-square computation is trivial since the data have been

effectively uncorrelated by the multiscale transformation. Finally, after localizing the

anomaly to a few candidate pixels based on the chi-square test, we go back and obtain

an ML estimate of the field intensity values at only these candidate pixel locations.

However, in order to obtain this ML estimate we once again take advantage of the

localization property of the wavelets and consider only the data which intersect the

candidate pixels. Assuming that the size of the anomaly is sufficiently small, the

number of candidate pixels are a small fraction of the size of the total input field.

This implies that the size of the ML estimation problem is quite small and thus

the corresponding solution can be obtained in an efficient manner. The above steps

together result in a highly efficient algorithm for detecting anomalies in the multiscale

data-domain.

The various steps of our detection algorithm can be summarized as follows. To
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begin we compute the multiscale transformation of the data. We then calculate and

store the contributions of each one of these data samples to the total chi-square value

by assuming the multiscale data to be uncorrelated, i.e. by ignoring the off-diagonal

elements in the fractal-field data covariance matrix. After this we cycle through all

the pixels in the field and test to see if these are anomalous. This test is based on

the approximate chi-square value that is obtained simply and efficiently by adding

together the contributions from only that data which correspond to the multiscale

strips that intersect the pixel. After this first pass is completed we go back and

obtain an ML estimate of the intensity values of the field at only those pixel locations

where, based on the results of the first pass, there is a high probability of finding

an anomaly. These steps result in an extremely efficient data-domain technique for

detecting anomalies in fractal textured backgrounds.

The chapter is organized as follows. In Section 7.2 we develop the theory behind

our efficient multiscale discrimination technique. Then in Section 7.3 we present a

few examples that demonstrate the efficacy of our detection approach. Section 7.4

concludes this chapter.

7.2 Theory

We assume that the field that is input to the imaging system consists of a fractal-

textured background on which one or more anomalies may be superimposed. We

characterize the anomaly by the overall region QA, and for simplicity we assume an

approximate knowledge of the size of this anomalous region as wen as a knowledge of

the minimum anomaly intensity. In practice one may have an idea of the location and

the shape of the anomaly as well, and this prior information can be incorporated into

the detection method to improve performance. However, for the detection method

that we develop in this chapter as well as the examples that we present in the next

section, we impose no restrictions on the location or the shape of the anomaly.

Specifically, let f (u, v) represent a 11f background fractal-field with fractal dimen-

sion D or with spectral parameter -/ (c.f. Chapter 6). Further let f,(u, v) represent
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an anomaly such that:

(U V) > E for (u, v) C 92A (7-1)

0 otherwise

whereQA represents the region that contains the anomaly, and E is the minimum

anomaly intensity. The field f, that is input to the imaging system can now be written

as a superposition of the background and the anomaly as follows:

f. (U) V) -_ f (u, V) + f" (u, V). (7.2)

After discretization of both the background field and the anomaly on a N, x N,, pixel

grid, where recall that N, is the number of strips in each angular projection, the

discretized input field can be written in terms of the corresponding pixel coefficients

as follows:

f. = f + L. (7.3)

The vector f that contains the background fractal-field pixels is distributed according

to:

f - X(O, A), (7-4)

and the k-th element of vector f, containing the anomalous pixels, is given by:

f.(k) > E for k E '�A (7-5)

- 0 otherwise

where the set 'PArepresents the collection of all pixels that are anomalous.

The goal of this chapter is to develop a method for detection, localization, and

estimation of anomalies from projection data. To this end, the noisy projection (i.e.

the strip-integral) data y corresponding to the input field f" are given by:

y = Tf. + n, n - A((O, AINN.), (7.6)
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where T is the projection matrix the rows of which contain the discretized strips,

n is the zero-mean, additive, white Gaussian noise in the data, and a parallel-beam

imaging geometry is assumed with Nq angular projections and N, strips in each

angular projection.

7.2.1 Anomaly detection

The anomaly detection problem can be formulated as follows. Given the data y

corresponding to an anomaly buried in a textured background, find the set of pixels

TA that are anomalous. However before we embark on solving this problem, we will

attempt to solve a different problem instead, namely given the data y decide if there

is any anomaly buried in the input field f,,. Once we have obtained a method for

efficiently solving this second problem, we will extend it to find a solution to the set

of anomalous pixels TA in the input field f,,. The second detection problem can be

restated as, given the data y find the confidence level at which the following hypothesis

that there is no anomaly in the input field, can be rejected:

Ho : f. - f. (7-7)

We next develop an efficient method that determines the confidence level at which

we can reject Ho based on the noisy projection data y.

To begin, note that under the hypothesis Ho (c.f. (7.7)) that there is no anomaly

in the input field f,,, the noisy projection data y satisfy:

Ho y = Tf +n. (7.8)

Thus in the case that Ho is true, the data vector y obeys the following statistics:

p(ylHo) - M(mylH., AyIH0)I (7.9)
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where the mean m,,IH,, and the variance AyIH,, are given by:

MylHo A E[ylHo] (7.10)

0) (7.11)

AylHo '6' E[yy'lHo] (7.12)

= (TATT+ AINN. (7.13)

The presence of an anomaly can thus be established by analyzing the data y to see

if there is an appreciable deviation from the statistics (7-9), (7.11) and (7.13). One

particular measure of this deviation is obtained by the chi-square (X2) value [35]:

X2 (Y _ MYIH.)T A-' (y - mylHo) (7.14)
ylHo

YTA` Y. (7.15)

The expected X2value (7.15) given that the hypothesis Ho is true (i.e. there is no

anomaly in the input field f,,) is equal to:

[X2 I HO] TA-' Y1E E[Y yjHo

Trace(INN.)

No N.. (7.16)

In addition, it can be shown [35] that under the assumption that NON, is not too

small', the X2value given that the hypothesis Ho is true (i.e. there is no anomaly in

the input field f,,,) obeys the following probability law:

2VF2 X�, - V/2 N, N, , M(0, 1) (7-17)

The probability law (7.17) enables us to calculate the confidence level at which Ho

'The result V�'2 X2 - -,1-2N - Y(O, 1) holds as long as the number N of degrees of freedom is

greater than around 20 [35]. In the case that N is less than this number, the standard chi-square

tables can be used instead to determine the confidence level.
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can be rejected according to the following steps. First the X' value is calculated from

the data y by using the expression (7.15). Then the confidence level is determined

from (7.17) by using the standard normal probability density tables.

The above procedure for finding the confidence level at which Ho can be rejected

is, however, complicated by the fact that the X 2 expression (7.15) requires the inverse

of the covariance matrix AyIH,,. Recall. from the discussion and examples in Chapter 6

that the fractal-field data covariance matrix AyIH,, is large, fuH, and is generally ill-

conditioned due to the ill-conditioned nature of the projection matrix T. However as

in Chapter 6, we can avoid the complications in the inversion of AylHo (c.f. (7.15))

by a transformation of the data to the multiscale framework. As we know from the

results of Chapter 6, the multiscale transformed version of the data covariance matrix

is sparse and, in addition, can be naturally partitioned by scales such that any ill.-

conditioning is captured by the coarsest scale approximation block. To this end, let

W be an N,, x N, matrix which when applied to a 1-D vector of length N. -_ 2',

results in a vector containing the wavelet representation of the original I-D vector

(c.f. Section 2.5)2. The matrix W represents the choice of a specific wavelet and

scaling function that are used for multiscale representation. We assume these to be

orthonormal which results in W being orthogonal, i.e. W` - W'. If we define a

block diagonal matrix Wb consisting of Ng blocks along the diagonal, all equal to W,

then Wb is also orthogonal, with W�-' -_ WbT. This matrix Wb when applied to the

NON, data vector y results in a wavelet representation of all No components of the

vector as follows:

'q = WbY- (7.18)

The multiscale vector q can be rearranged in scales and partitioned into detail and

approximation blocks as follows:

77a
(7-19)

77d

where the No Vector qa contains the coarsest scale approximation terms from data

'Recall that the wavelet representation operation can be performed in an extremely efficient man-
ner. In particular, representation of a vector of length N, can be obtained in O(N,) multiplications.
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at all angles, and the Ne(N, - 1) vector q dcontains the corresponding multiscale

detail terms. The X' value in the multiscale data-domain reduces to the following

expression:

X' = (,q - m,,IH.)'A-1 (,q - mnIH.), (7.20)nIHo

where m,,IHO and A,71HO are the mean and the variance, respectively, of the multiscale

data given that the hypothesis Ho is true, i.e. that there is no anomaly present in the

input field f,,. These are given by:

MnIHo WbMylHo - 0; (7.21)

A,71HO WbAyIHO WT (7.22)
b

The multiscale data covariance matrix is sparse and, in addition, can be partitioned

into detail and approximation blocks as follows:

[,,a(,,a)T [,,a(,7d)T]

A (7.23)
17IHo [,,a(,,d)T]T [,qd(,qd)T]

L E E

Aa 0
(7.24)

0 Ad

where any ill-conditioning in A,71HO is concentrated in the No x No coarsest scale

approximation block Aa and thus the No(N, - 1) x No(N. - 1) detail block Ad is

relatively well-conditioned.

The X2 expression (7.20) in the multiscale domain can now be written in terms of

the contribution from the detail term X2and the approximation term X2 as follows:d a

X2 = (?I a)T A+ ,a + (,qd)T A-' qd
a d (7.25)

A 2 2
Xa + Xd;

where A+ refers to the pseudo-inverse of matrix Aa which is required here since the

approximation block Aa is generally iII-conditioned'. Thus the transformation to

'Note that under both hypotheses, whether an anomaly is present in the input field or not, 77 a
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the multiscale framework lets us effectively overcome the problem of inverting an ill-

conditioned matrix, and all that is required for this is the pseudo-inverse of the small

(No x No) matrix A,,. Also note that since Ad is sparse and relatively well-conditioned,

the detail contribution X' to X' can be calculated with very little computational

complexity by first solving the sparse and well-conditioned system of equations AdZ

Yd and subsequently by forming the product (,qd)TZ . Finally once the X' value has

been obtained from (7.25), the confidence level at which the hypothesis Ho can be

rejected is obtained through the use of the relationship (7.17) and the standard normal

probability density tables.

To summarize, so far we have developed an efficient, multiscale-based, detection

scheme that determines if the input field contains any anomaly. This scheme, however 7

does not tell us anything about the location of the anomalous pixels. In what follows

next we take advantage of the sparsity of the fractal-field data covariance matrix XnlHo

in the multiscale domain as well as the fact that the wavelets are spatially localized

to propose an extremely efficient technique for finding the estimate f�A of the set of

anomalous pixels *A-

7.2.2 Anomaly localization and estimation

We -first propose a technique that lets us decide to a certain confidence level whether

there is any anomaly in a certain test region TT of the input field. To this end, note

that the presence of an anomaly in the region 'PT will only affect that portion YT Of

the data that correspond to the strips which intersect the region, and will have no

effect on the rest of the data YR- Thus we can partition the data vector y and the

covariance matrix AyIH,, such that the X 2 can be written in terms of contribution from

YT and YR as follows:

2 T -1
X Y AylHoy

does not have a component in the null space of Aa since the null space arises solely due to the fact
that there is a non-uniqueness in the tomographic data representation in the sense that the DC
component is the same in all angular projections. Thus a replacement of A-' by A+ (c.f. (7.25)) is
justified.
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T T =T =TR YT
YT I YR (7.26)

-xT
TR ��R YR

Now if the coupling -TR between YT and YR were negligible, then the method for test-

ing the presence of an anomaly in the region 'FT would simply amount to determining

the confidence level from the following chi-square calculation:

T=-1
YT-T YT, (7.27)

which represents the contribution from that data which corresponds to just the test

region. Recall however that the covariance matrix AyIH,, is full, which in turn implies

that the coupling 7.1 TR is appreciable. Due to this coupling, even though an anomaly

in the region '�T only affects YT, the contribution from the rest of the data YR can

not be ignored for chi-square calculation. Thus it is not possible in the original data-

domain to localize the detection of an anomaly in TT to a comparably-sized portion

of the data vector in its original basis.

The preceding discussion however provides us with a clue as to how a transfor-

mation to the multiscale framework can help us with this localization. First the

presence of an anomaly in the test region TT will only affect those multiscale data 77T

corresponding to natural wavelet bases intersecting the test region. Since the natural.

wavelet bases are of finite extent, there are only a few of these bases that intersect

this test region (assuming that the test region is comparatively small compared to

the overall image dimensions). Further, since the multiscale covariance matrix A 77IHo

is sparse, there is negligible coupling between the data which intersect the test region

and the rest of the multiscale data. This implies that the presence of an anomaly in

the test region 'FT can be established by calculating the chi-square value for only that

data which intersect the test region. We next make precise the preceding intuitive

ideas on localization of anomalies in the multiscale framework.

To begin, from now on, after having determined the presence or absence of an

anomaly in the entire input field f, we ignore the coarsest scale approximation terms
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for the purpose of localizing the anomaly. These terms provide no help in localizing

the anomaly since these correspond to the coarsest scale approximation strips that

cover the entire field-of-view and hence contribute equally to all possible test regions

in f,,. Further, we partition the multiscale detail data vector 77d as follows:

71= (7.28)

L 17Rj

where the vector 'qT contains the multiscale data that corresponds to the test region

'QT, andqR contains the rest of the elements in the detail vector'q d. The corresponding

partitioning of the detail block of the multiscale covariance matrix is given by:

Ad - AT ATR (7.29)
A T AR

L TR

and the detail contribution X' to X' can thus be written as follows:d

X2 (nd)T A-' nd
d d

T T AT ATR 77T (7.30)
77T I 77R AT AR 77R

TR

Now the cross-covariance matrix ATR is sparse and small in norm since the detail

matrix Ad is diagonally dominant to begin with due to the compression achieved in

the multiscale framework. We can thus expect that, to a good approximation, the

presence of an anomaly in XFT will have no effect on the contribution to X 2 from 77R-d

In fact this is indeed what we observe and we present an example in Figure 7-1 to

demonstrate this effect. Before we describe this example, however, let us first define

through the following equation the contribution to X 2 from the data 77T alone:d

2 A T
XT --= 77 A-177T- (7.31)

Now if there is an anomaly in the test region 'PT then, from the above discussion,
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we expect the presence of the anomaly to be reflected mostly in the contribution

XI to X'. To verify this, we plot in Figure 7-1 the values X', XI and (XI _ XI )T d d T d T

corresponding to a 2 x 2 anomaly with a uniform intensity of 3 superimposed on a

16 x 16 fractal background with spectral parameters = 2. These values are shown for

different realizations of the background texture and the additive measurement noise,

which corresponds to an SNR' of 20 dB in this example. Further, the test region

TT is chosen to coincide with the region TA that contains the anomaly. Note from

the figure that the presence of an anomaly has little effect on the (XI _ X2) value,d T

and thus the increase in X 2 due to the anomaly is entirely because of an increased

in X2, the contribution from the data 77T that intersect the test region. That isT

(XI
_ XI ) contains no useful information for determining the presence or absence ofd T

the anomaly and under either hypothesis it has essentially the same statistics, roughly

corresponding to X 2 41 77TA-177R-R- R R

We take advantage of this localization achieved in the multiscale framework to

propose next a method that efficiently zooms in on the set of anomalous pixels *A-

Specifically, in this method we use a two-step approach to anomaly localization and

estimation. In the first step, we probe each individual pixel in the field for an anomaly.

This probing is extremely fast and is based on an approximation �2 to XI where weT T

ignore the off-diagonal elements in the diagonally dominant matrix Ad. The output

of this first step is a set of pixels that have a high probability of being anomalous.

In the second step of the detection technique, we focus our computational resources

on only these candidate pixels and obtain the maximum-likehhood (ML) estimate

of the intensity values at these pixel locations. However, in order to obtain this ML

estimate we once again take advantage of the localization property of the wavelets and

consider only those data which intersect the candidate pixels. Assuming that the size

of the anomaly is sufficiently small, the number of candidate pixels is a small fraction

of the size of the total input field. This implies that the size of the ML estimation

problem is quite small and thus the corresponding solution can be obtained in an

efficient manner. The above two steps when combined result in an efficient detection

4Refer to Chapter 6 for the precise definition of the SNR.
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Figure 7-1: The plot of the detail chi-square X 2(top left), the contribution X2 fromd T

the data that correspond to strips which intersect the test region (bottom left), and
the remainder of the contribution (X2 _ X2) (bottom right), for different realizationsd T

of the background and the noise. Dashed line: Anomaly present. Solid line: No
anomaly present. The dotted lines in the subplots represent the expected chi-square
values given that there is no anomaly. The anomalous region TA is 2 x 2, and the
anomaly has a uniform intensity of 3. The test region 'PT is chosen to coincide with
'PA. Note that an increase in the 2 value due to the anomaly is entirely due to anXd
increase in X2T'
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procedure. We discuss next the two steps of our detection method in greater detail.

As mentioned previously, in the first step of our detection method we cycle through

all the pixels in the input field and probe these individually for an anomaly. This

probing is based on an approximate chi-square test where we ignore the off-diagonal

elements in the diagonally dominant matrix Ad. This approximate chi-square value

for a given test pixel p is provided by:

�2 (P) 77(k)'
T d(k) (7-32)

kE*,

where q(k) is the k-th data sample, d(k) is the k-th diagonal element of Ad, and IPP

is the set containing the indices of the multiscale detail strips which intersect pixel p.

Note that since the values (77(k)2/d(k)) can be computed and stored in memory before

we begin the actual probing process, the calculation of �2 (c.f. (7.32)) requires only

the summation of the appropriate terms and is extremely fast. This first pass enables

us thus to quickly cycle through all the pixels in the field and identify those pixels

where there is a high probability of finding an anomaly and where the computational

resources in the second step are to be focused. To this end, we store the indices of

a number NC of candidate pixels which have the NC largest jj�2 (p) Ivalues of allT

the pixels jpj. The choice of the number NC is governed solely by an approximate

knowledge of a prior bound on the size of the anomaly. Typically we would choose

NC conservatively so that typical anomalies of interest would consist of less than NC

pixels.

Subsequently, after the first pass is completed, in the second step of the detection

algorithm we go back and calculate the maximum-likelihood (ML) estimate of the

intensity values at only the NC candidate pixel locations. However, for this ML

estimation we once again use the localization property in the multiscale framework

and thus only utilize those data samples arising from multiscale strips which intersect

the NC pixels. To this end, let the (Nc) vector fc represent the intensity values

at the NC candidate pixel locations, and let the (N,2, - Xc) vector fR represent the

intensity at the remainder of the pixels in the input field. Then f,,,, the overall pixel
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intensity vector for the input field, can be partitioned in terms of these quantities as

follows:

fc (7.33)

A

Further, if we let 77C be the multiscale data arising from the multiscale strips which

intersect the NC candidate pixels and let 77R be the rest of the multiscale data, then

the following observation equation derived from (7.6) can be written in the multiscale

framework:

q = Tf, + v, v , jV(O, AINN,) (7.34)

where v is the multiscale observation noise, and the rows of the matrix T represent

the discretized multiscale strips. The multiscale observation equation (7.34) can be

written in a partitioned form as follows:

77C TC TCR fc + VC vc , IV(O, AIN,,) (7.35)

L 17R J L 0 TR J L fR i L VR i VR - Ar(O, AIN,,),

where 77C are the data which intersect the candidate pixels, 'qR are the rest of the

data, N,7,, is the size of the vector 77c, and N,7,, is the size of the vector 77R. As

we had mentioned previously, in the second step of the detection method we take

advantage of the localization achieved in the multiscale framework to obtain the ML

estimate of the candidate pixel intensities fc from only those data 'qC which intersect

the candidate pixels. To this end, the observation equation relating the quantities fc

and qc can be written as follows from (7.35):

'qC = rCfC + TCRfR + VC, vc , JV(O, AIN,,). (7.36)

Note from (7.36) that the ML estimation of the intensity fc at the candidate pixel

locations, from the data 77C is complicated by the fact that qc also includes the

(unknown) intensity contribution fR from the remainder of the pixel locations in the
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input field. However, based on the results of the first step of our detection method , we

do not expect these pixel locations to contain any anomaly, and hence the contribution

from fR is only due to the background fractal field. This fact suggests two different

approaches for compensating for the intensity fR in order to obtain the ML estimator

of fc from the data 77c. We next discuss the two ML estimators based on these two

approaches.

For the first approach to obtaining an ML anomaly estimate, the observation

equation (7.36) can be written as follows:

,qc - TCfC + (7.37)

where w is obtained by combining TCRfR and the noise vC into one single vector.

Now by using the fact that the background fractal field is uncorrelated with the

measurement noise, we obtain the following statistics for the vector w:

(TCRfR + Vr.) - JV(O, TCRAfRE T + AIN (7.38)

where note that, since the pixel locations corresponding to fR do not contain any

anomaly, the matrix Af,, is just the appropriate block of the fractal-field covariance

matrix A (c.f. (7.4)).

Finally, the ML estimator fc of fc can be calculated from the observation equation

(7.37) and the noise statistics (7.38). Note, however, that the noise W in (7.37) is

correlated with fc because fc, the intensity vector at the candidate pixel locations,

includes the contribution from both the anomaly as well as the fractal background,

and hence is correlated with the background term TCRfR. For our ML estimation

problem, however, we neglect this correlation and simply obtain an ML estimate

of fc by assuming that zu and fc are uncorrelated. This assumption results in an

extremely accurate estimation of the intensity values in fc, a fact that we demonstrate

subsequently. The ML estimate of fc from (7.37) and by assuming that zu and fc
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are uncorrelated is obtained by solving the following normal equation:

(T T A-'T,,) (TcTA-') 77.. (7.39)

Note that (7.39) represents a small (Nc x N,,) system of equations and hence the

corresponding ML solution fc is obtained with very little computation. Further, in

the future we will refer to this ML estimate ic as the nearly-optimal ML estimate

in order to distinguish it from a second sub-optimal ML estimate, which we discuss

next.

In the second approach, a sub-optimal ML estimator for fc can be obtained by

ignoring the contribution from the background fractal field fR altogether, i.e. by

considering the following approximate observation equation:

,qc - TCfC + VC, vc , Ar(O, AIN,, (7.40)

The ML estimate Ic of fc given the observation equation (7.40) is obtained by solving

the following normal equation:

(TCT TC) ic = (ECT) Iq C (7.41)

Note that since (7.41) represents a small (Nc x Nc) system of equations, the ML

solution Ic is obtained with very little computation. As we demonstrate in the next

section, this sub-optimal ML estimator fc estimates the candidate pixel intensities

fairly accurately. However, as is expected, additional accuracy is obtained by using

the nearly-optimal ML estimator fc which incorporates the statistical properties of

the fractal background fRin the ML estimation process.

Finally, once the ML estimators f, or fr have been determined, a knowledge

of E, the minimum intensity of the anomaly, can be used to threshold the pixel

estimates from the corresponding estimators which are below this intensity level to

zero. The pixel locations which correspond to a non-zero value then collectively

constitute the solution '�A to the set of anomalous pixel locations TA- Our efficient
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two step approach to the detection, localization and estimation of the anomaly can

now be summarized by the following algorithm:

Algorithm 5 (Anomaly Detection, Localization and Estimation)

1. Find the multiscale noisy fractal-field data covariance matrix for the background

under the null hypothesis A,71HO = WbAyIHOW6T) where AyIH,, = TAT T + AIN,,N,

is the noisy fractal-field data covariance matrix, and A is the variance of the

additive noise in the data. Note that the matrix A,,IH,, can be calculated off-line.

Define Aa and Ad to be the coarsest scale approximation and multiscale detail

blocks, respectively, of AIIHO. Let the diagonal elements of Ad be given by Id(k)J.

2. Transform the noisy projection data into the multiscale framework 77 = Wby.

Let 77a andq d be the coarsest scale approximation and multiscale detail blocks,

respectively, of the multiscale data vector 77.

3. Compute the total chi-square X 2 = (,,a)T A+ ,a + (,qd)T A-177d by taking advantage
a d

of the sparsity and favorable conditioning of Ad- Find the confidence level at

2which an anomaly can be assigned in the input field by using the result �_2XH

V'��NoK, - M(O, 1) - If the confidence level is greater than a certain threshold

then continue, else stop and declare the no anomaly is present.

4. In order to determine the locations of the NC candidate pixels, perform the

following steps. For each pixel p (I < p < N,2) compute the approximate chi-

square values as follows:

(a) Find the set Tp containing the indices of the multiscale detail strips that

intersect pixel p.

�2 (p)(b) Calculate the approximate chi-square value: , T PP (77(k)2/d(h)).

5. Find the locations of the pixels with Nc largest values for '� 2(p). These are theT

candidate pixels. Let the (Nc) vector fc represent the intensity values of the

field at these Nc pixel locations. Let the vector fRrepresent the intensity values

at the remainder of the pixels in the input field.

253



6. Find the nearly-optimal ML estimator 16 of fc, or the sub-optimal counterpart

fc, according to the following steps:

(a) Locate the data 77c that correspond to the multiscale detail strips which in-

tersect the candidate pixels. Let TC be that block of the multiscale projection

matrix T = WT whichTelates 77C and fc -

(bl) If Ic is desired, solve the following normal equation:

(TCTA 'Ec ) Ic -_ (TCTA -') qc.

(b2) If 1, is desired, solve the following equation: TT T) 1qC(TC C) ic = (TC

7. Based on an approximate knowledge of the minimum anomaly intensity E,
threshold the pixel estimates ' f, (fr

in which are below this intensity level to

zero. The pixel locations which correspond to a non-zero value in f, (f,,) then

collectively constitute the solution '�A to the set of anomalous pixel locations

'�A -

In the next section we present examples demonstrating the efficacy of our two-step

approach to anomaly detection in the multiscale framework. In particular, we show

the performance of our detection approach for both when we use the nearly-optimal

ML estimator (c.f. (7.39)) as well as when we use the sub-optimal estimator (7.41) in

the second step of our detection approach.

7.3 Results

In this section we present examples that demonstrate the efficacy of our two-step

approach to detection. In all the examples that we present here we discretize the

input field on a 32 x 32 pixel grid, and we assume the field to consist of a fractal

background (spectral parameter -y -_ 2) with a 2 x 2 anomaly superimposed. Given

that the size of the anomaly is equal to 4 pixels, we select a conservative value of

N, = 20 for the number of candidate pixels that are identified by the first step of our

detection method. Note that the normal equations (7.39) in the final step (or it's sub-

optimal counterpart (7.41)) will then be only 20 dimensional, representing a modest
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computational task. We further assume the projection data to be gathered according

to No = 32 angular projections and N, = 32 strips in each angular projection. Finally,

we use the Haar wavelet for the multiscale decomposition of the data vector.

In the first example we demonstrate each step of our efficient two-step detection

procedure. Further, we demonstrate the performance at the second step by using the

nearly-optimal ML estimator (7.39) as well as the corresponding sub-optimal estima-

tor (7.41). To this end, we show in Figure 7-2 the detection results corresponding

to a particular realization of the background fractal-field. For the example shown in

Figure 7-2 the 2 x 2 anomaly is located at coordinates (16,16), (16,17), (17,16), and

(17,17) in the input field, and is assumed to have a uniform intensity of 2.5 which

results in a anomaly-to-background ratio of -13 dB, defined as:

FT
anomaly - to - background ratio _- 10 log J, f. (7.42)

Trace(A)'

where recall that A is the covariance matrix for the background fractal field pixels,

and f, is the vector containing the pixel coefficients of the anomaly.

The following observations can be made from Figure 7-2. First note that the par-

ticular detection task shown in the figure is quite challenging, e.g. it is not possible

for a human observer to pick out the anomaly confidently in the input field (top row,

middle). Note however that, despite the difficulty of the detection task, the quick,

first step (top row, right) of our two-step detection approach is able to zoom-in on

the correct approximate anomaly area. This area consists of N" = 20 candidate pixels

which not only represent the anomaly, but also a few false alarm pixels. In the second

pass, however, our detection procedure removes all of the false alarms by estimating

the field intensity values at the candidate pixel locations (bottom row, middle, and

bottom row, right). In particular, note that the sub-optimal ML estimator (bottom

row, left) performs well in removing the false alarms. This performance is, however,

improved by the nearly-optimal ML estimator (bottom row, middle) which estimates

the pixel intensities to a greater accuracy than the corresponding sub-optimal estima-

tor. This difference in performance between the sub-optimal and the nearly-optimal
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ML estimators can be seen from Figure 7-3. In the figure we show the sections through

the actual input field (solid lines) and the fields that are obtained by the sub-optimal

(dash-dotted lines) and the nearly-optimal (dashed lines) ML estimators. Further, we

show the sections through the two rows that contain the anomaly (i.e. rows 16 and 17

of the fields) and also two sample rows that correspond to just the fractal background

(i.e. rows 19 and 20 of the fields). Note from Figure 7-3 that even though the pixel

intensities estimated by the sub-optimal ML estimator are reasonably accurate, this

accuracy is increased substantially by the use of the nearly-optimal ML estimator.

We next show the receiver operating characteristic curve (ROC) for our detection

technique, corresponding to the same imaging configuration as in the examples shown

in the previous figures. These curves are obtained by plotting the probability of

detection (PD) versus the percentage of false alarm pixels for different values of the

threshold intensity level. For the PD and false alarm calculations we embed the true

2 x 2 anomaly in a larger, 6 x 6 region (c.f. Figure 7-4). We assume a detection to

correspond to the event that the ML estimate of any pixel within this 6 x 6 region has

an intensity greater than the threshold (i.e. we declare a detection if our algorithm

finds an anomalous pixel in this region). The pixels which are outside this 6 x 6 region

and for which the ML estimate of the intensity level is greater than the threshold are

considered to be false alarms. This embedding of the true anomaly in a larger region

can represent a variety of situations. First, it may be that for a particular detection

application a localization error of a few pixels falls within the acceptable tolerance

level. Second, a larger embedding region around the anomaly may signify the fact

our method is not able to detect anomalies that are smaller than a certain critical

size. Finally, pixel errors in our projection-domain detection method can arise due to

an imprecise knowledge of the projection operator specified by the imaging geometry.

For example, recall that we had stated in Chapter 2 that the approximate projection

operator that we use in this thesis for computational simplicity often results in a mis-

alignment error of one pixel. Specifically, our choice in this chapter of an embedding

region of size 6 x 6 for a 2 x 2 anomaly implies that we are willing to tolerate an

anomaly localization error of 2 pixels.
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Figure 7-2: The detection results corresponding to a particular realization of the
background fractal-field (spectral parameter ^/ = 2). The projection data has an
SNR of 20 dB and consists of No -_ N, -_ 32. (a) The 2 x 2 anomaly with a uniform
intensity of 2.5 is located at pixels (16, 16), (16, 17), (17, 16), and (17, 17). (b): The
grayscale plot of the input field (black corresponds to the maximum value) consisting
of the anomaly plus the fractal background. (c) The binary plot of NC = 20 pixels
with the largest approximate chi-square value �' that are identified at the end of theT

first step. (d) The grayscale plot of the sub-optimal ML estimate values of the NC
pixels. (e) The grayscale plot of the nearly-optimal ML estimate values of the N,,
pixels. (f) The binary image displaying the result of the application of a threshold
equal to 2 to the nearly-optimal ML estimate image (e).
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Figure 7-3: The sections through the input field (solid line) and the fields obtained

by the sub-optimal ML estimation (dash-dotted line) as well as by the nearly-optimal

ML estimation (dashed line) corresponding to the detection task in Figure 7-2. The

top row corresponds to sections where the anomaly is present, and the bottom row

corresponds just to the background.

258



.................

j

Figure 7-4: For the probability of detection and the false alarm calculations the 2 x 2

anomaly (center square, solid lines) is embedded in a larger, 6 x 6 region (dashed

lines). A detection is assumed to correspond to the event that the ML estimate of

any pixel within this 6 x 6 region has an intensity greater than the threshold. The

pixels which are outside this 6 x 6 region and for which the ML estimate of the

intensity level is greater than the threshold are considered to be false alarms.
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Figure 7-5 shows the two ROC curves obtained by using the nearly-optimal and the

sub-optimal ML estimators respectively. Each point on the ROC curve corresponds

to a certain threshold intensity level and is obtained by averaging the number of

detections and the number of false alarm pixels from a series of Monte Carlo simulation

runs. Also on the ROC curves we show the error bars that depict the 95% confidence

intervals. The anomaly is once again assumed to span 4 pixels for this example and

is assumed to have a uniform intensity of 2.5. Note from the figure that as expected

the ROC curve corresponding to the nearly-optimal ML estimator reflects a more

accurate detection than that corresponding to the sub-optimal ML estimator. Note

further that for the case of the nearly-optimal ML estimator our method is able to

achieve a good detection rate of 87% with just 0.07% (i.e. less than one) false alarm

pixel. In the case the sub-optimal ML estimator is used, an 80% detection rate

corresponds to an average of 4 - 5 false alarm pixels.

7.4 Discussion

In this chapter we have developed an efficient data-domain approach for tomographic

detection of anomalies that are superimposed on textured backgrounds. The conven-

tional methods for these problems either first reconstruct the entire field and then use

post-processing to detect anomalies or assume an anomaly to be parameterized and

then perform the detection procedure directly in the data-domain. The problem with

the former approach is that if the data are sparse and/or noisy the reconstruction

suffers from severe artifacts that makes the anomaly very difficult to detect. The lat-

ter approach, on the other hand, imposes restrictive assumptions on the anomaly and

hence is limited in scope. We avoid these problems associated with the conventional

detection methods in our approach by working directly in the data-domain, by im-

posing no restrictive assumptions on the anomaly, and finally by using the statistical

properties of the data and the measurement noise in such a manner that our approach

results in a nearly statistically optimal detection technique which, at the same time,

is also highly efficient.
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Figure 7-5: The ROC curve for the two-step detection technique, corresponding to
different realizations of the background field (spectral parameter ^J = 2) and the
measurement noise (SNR = 20 dB). The projection data are gathered according to
No -_ N,, = 32. The error bars depict the 95% confidence intervals. The anomaly is
2 x 2 with a uniform intensity of 2.5. Solid line: Nearly-optimal ML estimator used
in the second step. Broken hne: Sub-optimal ML estimator used in the second step.
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Specifically, in this chapter we model the background texture as a 11f fractal

process and the object as a localized anomaly. We then obtain the statistics for the

projection data that corresponds to just the fractal background, and perform a chi-

square test on the actual data to see whether there is a significant deviation from

the non-anomalous statistics. If performed in the original data-domain, however, the

exact chi-square test is complicated by the fact that inversion of the large, full, and

in general quite ill-conditioned fractal-field data covariance matrix is required. As in

Chapter 6, we avoid this complication by transforming the data into the multiscale

framework. The multiscale fractal-field data covariance matrix is sparse and, in addi-

tion, is partitioned naturally into an ill-conditioned coarser scale approximation block

and a relatively well-conditioned multiscale detail block. Because of these properties

of the multiscale fractal-field data covariance matrix , the chi-square calculation can

thus be performed extremely efficiently in the multiscale data-domain.

We further specialize our detection technique so that not only does it detect the

presence of an anomaly in the input field, but it also localizes the anomaly and

estimate it's value. We do this by using the fact that the multiscale wavelet basis

functions are localized and that the multiscale fractal-field data covariance matrix is

extremely sparse and in particular is diagonally dominant. Specifically, in this chapter

we develop an efficient two-step method for localizing the anomaly in the input field.

To begin we compute the multiscale transformation of the data. Then, in the first

step of our detection method, we calculate and store the contributions of each one

of these data samples to the total chi-square value by assuming the multiscale data

to be uncorrelated, i.e. by ignoring the off-diagonal elements in the fractal-field data

covariance matrix. After this we cycle through all the pixels in the field and test to see

if these are anomalous. This test is based on the approximate chi-square value that is

obtained simply and efficiently by adding together the contributions from only those

data which correspond to the multiscale strips that intersect the pixel. Finally, after

localizing the anomaly to a few candidate pixels based on this approximate chi-square

test, we go back and obtain a nearly-optimal ML estimate of the field intensity values

at only these candidate pixel locations. However, in order to obtain this ML estimate
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we once again take advantage of the localization property of the wavelets and consider

only that data corresponding to multiscale strips which intersect the candidate pixels.

Assuming that the size of the anomaly is sufficiently small, the number of candidate

pixels are a small fraction of the size of the total input field. This implies that the

size of the ML estimation problem is quite small and thus the corresponding solution

is obtained in an efficient manner. The above steps put together result in a highly

efficient algorithm for detecting anomalies in the multiscale data-domain.
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Chapter 8

Thesis Contributions And Topics

For Future Research

8.1 Contributions

In this thesis we have explored the use of wavelet-based multiscale representation for

reconstruction and detection of objects from tomographic data. We have concentrated

our efforts mainly for the case when the tomographic data are sparse and/or noisy. In

this case the Radon transform results based on continuous and noise-free data break

down and the reconstruction and detection tasks become more challenging. We have

demonstrated the effectiveness of the multiscale framework for regularizing these ill-

posed reconstruction and detection problems, and in particular have developed highly

efficient and, at the same time statistically optimal multiscale-based algorithms for

reconstruction and detection of objects from sparse as well as noisy data. We next

summarize the salient contributions made by the multiscale techniques developed in

this thesis to the field of tomography.
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8.1.1 Multiscale reconstruction: summary of contributions

An efficient multiscale reconstruction technique from sparse/noisy data

The first contribution of this thesis is the development of an extremely efficient multi-

scale reconstruction technique from both sparse as well as noisy data. This multiscale

reconstruction technique is based on the natural pixel (NP) representation for tomog-

raphy which was originally proposed for the solution of sparse data reconstruction

problems. The NP representation results in a matrix-based reconstruction method

where the projection data and the object coefficients are related through a system

matrix that is large, full, and quite ill-conditioned. As a result the NP reconstruc-

tion technique is computationally intensive. In our multiscale method the data and

the NP coefficients are transformed into the multiscale framework and are related

by a multiscale system matrix that is sparse. In addition, we have shown that the

non-uniqueness in the NP representation, which results in an ill-conditioned system

matrix, is fully captured by the DC elements in the multiscale matrix. As a result we

are able to partition the multiscale system matrix by scales such that the resulting

reconstruction method requires the solution of just a well-conditioned and sparse sys-

tem of equations, and hence is computationally efficient. Further, the use of a wavelet

basis enables us to obtain the reconstruction estimates at multiple scales essentially

for free.

An efficient iterative method for reconstruction from sparse data

The second contribution of this thesis is an extremely efficient iterative method for

reconstruction from sparse data, which we refer to as MPART. We present this method

as an alternative to another iterative method namely the algebraic reconstruction

technique (ART) that is conventionally used to reconstruct objects from sparse data.

In ART the object is expanded in the standard rectangular pixel basis. The object

pixel coefficients are related to the data by the projection matrix, and are solved for

iteratively through the use of the Kaczmarz projection method. The projection matrix

in ART is, however, ill-conditioned and as a result the convergence of the solution
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for the pixel coefficients is slow and in addition is critically affected by the ordering

scheme in which the rows of the projection matrix are accessed by the Kaczmarz

method, and also on the choice of the relaxation parameter. In the iterative method

that is developed in this thesis, we utilize the Kaczmarz method to solve the sparse

and well-conditioned system of equations which arises in our multiscale transformed

NP framework. Due to the well-conditioned nature of the multiscale system matrix,

the convergence of the solution for the multiscale object coefficients in our iterative

technique is fast and is not critically dependent on the choice of the row ordering

scheme or the relaxation parameter. In addition, we demonstrate that our technique

requires substantially less computations per iteration than ART. These facts when

put together imply that our iterative reconstruction technique is much more efficient

than ART. Further, in our iterative technique the reconstruction estimates at multiple

scales are obtained essentially for free.

A class of stochastic models constructed in the multiscale data-domain

The third contribution of this thesis is the development of a particular class of stochas-

tic models for regularization of ill-posed reconstruction problems where the data are

noisy or sparse. These stochastic models are constructed directly in the multiscale

data-domain and lead to computationally efficient estimation algorithms that are no

more complex that the corresponding unregularized reconstruction algorithms. This

is in contrast to the conventional methods for regularization in tomography which

specify the prior model in the object-domain and which lead to extremely inefficient

estimation algorithms. In particular the data-domain prior models that we use in

this thesis not only impose a classic smoothness constraint on the object estimate,

but also perfectly capture the statistics of the object in case the object is fractal-

like. These fractal priors are accurate models for a variety of textures and hence are

commonly encountered in tomography. The fractal prior models that we use in this

thesis are captured simply and efficiently in the multiscale data-domain by a diagonal

covariance matrix, and thus result in efficient estimation algorithms.
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An extremely efficient multiscale reconstruction method from dense data

The final contribution of this thesis is a multiscale reconstruction method that is spe-

cialized to yield fast reconstructions at multiple scales from dense but possibly noisy

tomographic data. We develop this method by adapting our NP-based multiscale

framework to the filtered back-projection (FBP) reconstruction technique, the lat-

ter being the most commonly used method for image reconstruction from dense to-

mographic data. In particular, in our FBP-based technique the reconstructions at

multiple scales are obtained with the same computational complexity as the highly

efficient FBP reconstruction. We further show that the regularization obtained in

this dense data case by using the class of fractal prior models constructed directly in

the multiscale data-domain is equivalent to a particular way of rolling-off of the ramp

filter. This provides a statistical interpretation to the ad hoc rolling-off of the ramp

filter in the FBP, and also provides a recipe for designing statistically optimal filters

to provide such roll-off.

8.1.2 Multiscale detection: summary of contributions

Discrimination of fractal fields directly from noisy and sparse data

The first detection task that we consider in the thesis is the discrimination of fractal

fields directly from the noisy and sparse projection data. The conventional data-

domain method for discrimination of such fields is based on the slope of the averaged

power spectra of the projections and is derived from noise-free continuous-data Radon

transform results. This conventional method thus breaks down in the case that the

data are sparse and/or noisy. In contrast our discrimination method is robust to

both the quantity and the quality of the tomographic data. We treat the fractal-field

discrimination problem in a hypothesis testing framework. The statistically-optimal

solution to this problem is then given in terms of the likelihoods. This likelihood

calculation is, however, complicated because it requires the determinant and the

inverse of the fractal-field data covariance matrix which is large, full, and in general

quite ill-conditioned. Further, as we show in this thesis, any hope of whitening this
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matrix by using results from the existing literature is futile since these results are

valid only if the data are continuous and noise-free, and hence break down in the

case of sparse or noisy data. In contrast, in this thesis we have developed an efficient

two-step method for whitening an accurate approximation of the fractal-field data

covariance matrix. Because of this whitening we are able to efficiently compute the

likelihoods and thus are able to discriminate fractal fields from noisy/sparse data

with very little computational complexity. The first step of our two-step whitening

approach consists of representing the projection data in the multiscale framework.

We show that, just Eke the multiscale NP matrix, the multiscale fractal-field data

covariance matrix is sparse, and in addition can be partitioned by scales into ill and

well-conditioned submatrices. This in turn eliminates the need for computationally

intensive techniques Eke the eigen-decomposition to remove the ill-conditioning in the

covariance matrix. In the second step of our whitening approach we use the recently

introduced class of multiscale stochastic models defined on trees to realize an accurate

approximation of the multiscale fractal-field data covariance matrix. These tree-based

models have the advantage that they lead to fast likelihood calculations, and thus to

an efficient method for discrimination of fractal fields.

Detection of anomalies in textured backgrounds

The second detection problem considered in this thesis is the problem of detecting

anomalies in textured backgrounds. The conventional methods for the solution of

these problems either first reconstruct the entire field and then use post-processing to

detect the anomalies or assume the anomaly to be parameterized and then perform

the detection procedure directly in the data-domain. The problem with the former

approach is that if the data are sparse and/or noisy the reconstruction suffers from

severe artifacts that makes the anomaly very difficult to detect. The latter conven-

tional approach, on the other hand, imposes restrictive assumptions on the anomaly

and hence is limited in scope. We avoid these problems associated with the conven-

tional detection methods in our approach by working directly in the data-domain, by

imposing no restrictive assumptions on the anomaly, and finally by using the statis-
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tical properties of the data and the measurement noise in such a manner that our

approach results in a nearly statistically-optimal detection technique which, at the

same time, is also highly efficient. In particular we use fractal processes to model the

background textures. These processes are accurate models for a variety of textures

including terrain and several biological structures. As a result, the specific detection

task that we consider in the thesis is sufficiently general to encompass a wide variety

of applications, from detection of lesions in medical images to detection of defects in

materials. In our data-domain detection approach we first obtain the statistics for the

projection data that corresponds just to the background texture, and then analyze the

actual data to see whether it deviates significantly from this statistics. This analysis

is based on the chi-square test and enables us to compute the confidence level at which

an anomaly can be assigned in a certain test region of the input field. We further take

advantage of the sparsity of the fractal-field data covariance matrix in the multiscale

framework and also the fact that the multiscale wavelet basis functions are localized

to propose a highly efficient two-step approach for localizing the anomaly. In the first

step we cycle through all the pixels in the input field and calculate the confidence

levels at which an anomaly can be assigned in each of these pixels. This calculation

is, however, based only on the diagonal elements of the fractal-field data covariance

matrix and hence is extremely fast. Finally, after localizing the anomaly to a few

candidate pixels based on the results of the first step of our detection method, we go

back and obtain a maximum-likehhood (ML) estimate of the field intensity values at

only these candidate pixel locations. However, in order to obtain this ML estimate

we take advantage of the localization property of the wavelets and consider only that

data which intersect the candidate pixels. Assuming that the size of the anomaly

is sufficiently small, the number of candidate pixels are a small fraction of the size

of the total input field. This implies that the size of the ML estimation problem is

quite small and thus the corresponding solution is obtained in an efficient manner.

This two-step procedure results in an extremely efficient data-domain technique for

detecting anomalies in fractal textured backgrounds, and is made possible because in

our wavelet-based multiscale representation the various multiscale fractal-field data
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are approximately decorrelated.

8.2 Topics for future research

In this section we identify and briefly discuss a few potential topics for future research

that are related to this thesis.

8.2.1 Multiscale reconstruction: topics for future research

Extension to a fan-beam geometry

In this thesis we have developed a multiscale reconstruction technique that is tailored

to the case of the parallel-beam imaging geometry. However an extension to the fan-

beam case is fairly straightforward and is an obvious topic for future study. We next

outline briefly the development of a multiscale reconstruction technique for the fan-

beam geometry. To begin, consider the fan-beam geometry shown in Figure 8-1 [44].

Assume that, as in the parallel-beam case, there are No angular projections and N,

fan-beam strips in each angular projection. Let Cf be the NP system matrix for the

fan-beam case such that the elements of Cf are the areas of intersection of the various

fan-beam strips. The multiscale reconstruction procedure for the fan-beam case can

now be defined through the following equations:

� = WbX) (8.1)

'q = Wb Y, (8.2)

77 - (WbCf Wb7)� A Cf (8.3)

where if W is the matrix which represents a N, vector in a 1-D multiscale basis,

then Wb is a block diagonal matrix with No blocks along the diagonal all equal to

W. Note that the only change from the parallel-beam case is the equation relating

the multiscale object coefficients � and the multiscale data 'q. Recall that in the

parallel-beam case q and � are related by the multiscale matrix C = WbCWb' which
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is sparse and, in addition, can be naturally partitioned into a ill-conditioned coarsest

scale approximation block and a well-conditioned multiscale detail block. Similarly,

we claim that the fan-beam multiscale matrix Cf is also sparse and, in the case that

the object is entirely covered by all No projections, the ill-conditioning in Cf is also

concentrated in the coarsest scale approximation block.

The reason why the ill-conditioning in Cf is concentrated in the coarsest scale

approximation block follows from the same arguments that we had provided for the

parallel-beam case. To see why Cf is sparse, consider Figure 8-2. In the figure we

show two finest scale multiscale basis functions corresponding to the Haar wavelet.

The finest scale elements in Cf are the areas of intersection of the finest scale basis

functions of the type shown in Figure 8-2. Just as in the parallel-beam case, each such

area of intersection can be broken into positive and negative contributions as shown

in the figure. However, unlike the parallel-beam geometry, these positive and negative

contributions do not exactly cancel each other and thus the finest scale elements in

Cf are not exactly zero. Still, since in the fan-beam case the width b of the detectors

is much smaller than their distance L to the source, the lines AB and DC, and AD

and BC are nearly parallel. Thus the positive and negative contributions are nearly

identical implying that the fine scale terms in Cf are very close to zero. Hence we

expect the finest scale blocks in C and Cf to have similar sparsity. This argument

however does not hold for the coarse scale terms where the basis functions are of

larger extent (c.f. Figure 8-3). In this case we expect the coarse scale blocks in the

parallel-beam multiscale matrix C to be more sparse than the corresponding blocks

in the fan-beam matrix Cf. However, since the number of coarse scale elements is a

small fraction of the total, the overall sparsity of C and Cf will not be much different.

Extension to a cone-beam geometry

A next possible topic of future research is the extension of the multiscale recon-

struction technique developed in this thesis to the three-dimensional cone-beam case

(c.f. Figure 8-4), a con-figuration which is commonly used in many practical tomog-
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Figure 8-1: Two projections from the fan-beam imaging geometry. The circular region
in the middle represents the object.
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Figure 8-2: Two finest scale multiscale basis functions (corresponding to the Haar
wavelet) for the fan-beam geometry. The finest scale elements in Cf are the areas of
intersection of the -finest scale basis functions of the type shown here. Since the width
b of the detectors is much smaller than their distance L to the source, the lines AB
and DC, and AD and BC are nearly parallel. This implies that the positive (darkly
shaded) and negative (lightly shaded) contributions to the area of intersection are
nearly identical.
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Figure 8-3: Two next to finest scale multiscale basis functions for the fan-beam
geometry. The next to finest scale elements in Cf are the areas of intersection of the
basis functions of the type shown here. The lines AB and DC, and AD and BC may
not be nearly parallel in this case due to the large extent of the basis functions. This
implies that the positive (darkly shaded) and negative (lightly shaded) contributions
to the area of intersection may be different in this case.
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raphy scanners. Since the projections corresponding to this configuration are now

two-dimensional, a possible method for extension of our multiscale reconstruction

technique to this case consists of representing each two-dimensional projection in a

separable two-dimensional wavelet basis. As an example, we have shown in Figure 8-5

three fine scale basis functions corresponding to the two-dimensional separable Haar

wavelet. The full two-dimensional separable Haar transform of the projection consists

of inner products of the projection with basis function of the types shown in Figure 8-

5 but at multiple scales and shifts. If we denote the 2-D separable wavelet transform

operation by the matrix W, then the three-dimensional multiscale reconstruction

procedure is given by the following equations:

= Wb X) (8.4)

77 = 11VbY, (8.5)

cwT
= (I/Vb b (8.6)

where I/Vb is a block diagonal matrix with as many diagonal blocks as there are

projections, and with all diagonal blocks similar and equal to W. Further, since the

elements of the matrix C are the areas of intersection of the various cone beams,

the elements in the multiscale matrix (WbCllVbT) are the areas of intersection of the

multiscale cone beams. By an extension of the arguments which we just presented

for the fan-beam case, we can expect the finest scale elements in this matrix to be

mostly zero. Thus if only the fine scales features (for example, edges and boundaries)

in the object are to be reconstructed then for all practical purposes we can assume

the multiscale matrix to be diagonal. This fact has a major ramification in three-

dimensional angiography, which is a very important application of the cone-beam

configuration. In angiography the desire is not to reconstruct the entire cross-section

of the blood vessels but is just to obtain a reconstruction of their boundaries. We can

expect to obtain this reconstruction in an extremely efficiently manner through the

above multiscale method by assuming that the multiscale matrix is diagonal.
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01

Figure 8-4: A two-dimensional projection from the three-dimensional cone-beam
imaging geometry. The circular region represents the object.

+: + +: +1

Figure 8-5: Three fine scale basis functions corresponding to the two-dimensional
separable Haar wavelet. The full two-dimensional separable Haar transform of the
projection consists of inner products of the projection with basis function of the types
shown here but at multiple scales and shifts.
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Extension to the Poisson case

We next outline the procedure for extending our multiscale reconstruction method

to the Poisson case where the projection data are Poisson distributed random vari-

ables. For simplicity, we only consider here the case of two-dimensional transmission

tomography' [70]. To begin, assume that the input photon counts are Poisson dis-

tributed with rate AT. The output counts recorded by the j-th detector pair are then

also Poisson distributed with mean and variance given by:

A(i) -_ ATexp(-T(j)f), (8-7)

where T(j) is the j-th row of the projection matrix T, and f is the vector that

contains the object pixels. It can be shown [70] that the log-likelihood expression for

the Poisson case is given by:

N&N.

In p(A I f E [AT exp(-T(j)f ) + A(j)T(j)f + ln(A(j)!)] (8-8)
j=1

Further, as shown in [70], the log-likehhood (c.f. (8.8)) can be accurately approximated

as follows:

Inp(ylf) (y - Tf)T D(y - Tf) + c(y), (8.9)
2

where the term 4) is just a function of the data vector y the j-th element of which

is given by:

Y(j) = In( AT (8-10)
A(j)

and D is a diagonal matrix the j-th diagonal element of which is given by:

d(j) = A(j). (8-11)

'The discussion presented here applies to emission tomography as weR with some minor
modifications.
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Now by substituting the NP representation equation f = T TX in (8.9), we obtain the

following expression for the log-likehhood:

I (Y _ CX)TInp(ylx) = - - D(y - Cx) + c(y), (8-12)
2

where the NP matrix C = TT T . The MAP equation corresponding to (8.12) is given

by:

5i ar r,.Lnax [In p(xly)]
X

argmax[lnp(ylx)+Inp(x)]

(Y _ CX)T Targ max - - D(y-Cx)--X A-1x (8.13)
X 2 2 X

In the multiscale framework the MAP expression (8.13) transforms to:

[(,q _ C�)TD(,q _ C�) + �Targ min A (8-14)

where the multiscale data q is given by:

77 = WbY, (8-15)

A� is a diagonal matrix representing a fractal prior for the object coefficients, the

matrix D is given by:

D = WbDWbT, (8-16)

and the multiscale matrix C is sparse and in addition is naturally partitioned into ill

and well-conditioned blocks. The MAP expression (8.14) for the Poisson case is the

same as the expression we had for the Gaussian case, except that the matrix D is no

longer diagonal. However, since D is still sparse and so is D112, the solution � to the

MAP equation (8.14) can once again be obtained in an efficient manner [63]. Once
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this solution is obtained the reconstruction for the Poisson case is obtained as:

No
f ,rT� = ETk�A:. (8.17)

Introduction of a scale recursive structure in the multiscale iterative re-

construction algorithm

Recall that in our multiscale iterative reconstruction algorithm (MPART), we use

the Kaczmarz method to solve the system of equations that arises in the multiscale

transformed NP representation. This multiscale iterative method is devoid of many

of the convergence problems that plague ART because, as opposed to the projection

matrix used in ART, the overall multiscale system matrix is quite well-conditioned.

However, in addition, the multiscale matrix has a structure that can possibly be

taken advantage of to further speed the convergence in MPART. Specifically, recall

that the block of the multiscale system matrix that represents the coupling between

fine scale coefficients in the data and in the object, is extremely well-conditioned and

sparse. However the condition number gradually increases and the sparsity decreases

as coarser coupling are included. Thus one possible modification of the multiscale

iterative technique can be the introduction of a scale recursive structure where the

fine scale object coefficients are first solved for and then this fine scale solution is

used to guide the solution of the coarse scale coefficients. Note that the fine scale

coefficients can be solved for relatively quickly because the fine scale block of the

multiscale matrix is extremely sparse (implying fewer computations per iteration)

and well-conditioned (implying a faster convergence and hence fewer iterations to

convergence)2 . Thus one can expect that the introduction of this scale recursive

structure would speed up the overall convergence of MPART.

2In particular, recall that the finest scale block is approximately diagonal.
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Use of prior models that are correlated in angles

The class of fractal prior models that we consider in this thesis assume that the

multiscale object coefficients are independent from angle to angle. However we would

intuitively expect the coarse scale object coefficients at different projection angles

to actually be highly correlated with each other, and further for this correlation to

decrease at finer scales. Such a correlation structure across projection angles would

help us estimate at least the coarse scale object coefficients to a good accuracy even if

the projection data at certain angles are missing. The current angular independence

of the multiscale object coefficients corresponds to an overall covariance structure for

these variables which is block diagonal, and it is this block diagonality that is partially

responsible for the extreme efficiency of our current technique. Using the proposed,

more correlated prior covariance structure would correspond in this paradigm to the

addition of off-diagonal terms. At first, such a proposal would seem to make things

dramatically worse from a computational perspective, since we must now contend

with what corresponds to the inversion of a full rather than a block-diagonal matrix.

All is not lost, however, for at least two reasons, both related to the fact that we are

building our prior models directly in scale space. First, the addition of only coarse

scale correlations may be sufficient to regularize a given problem, with the result

that only a few, low dimensional, off diagonal elements need be added to the prior

model covariance (recall, at coarser scales there are far fewer model elements - e.g.

at the coarsest scale there is only one per angle). These few additional coarse scale

terms could then be aggregated into a slightly larger corresponding covariance block,

returning us to the block diagonal case, but with one block slightly larger than the

rest. More significantly perhaps, however, is that recent research has demonstrated

that certain scale-based prior models (which correspond to tree structures), though

corresponding to highly correlated fields, can lead to extremely efficient scale-recursive

estimation algorithms [4,13-15]. The variations of the prior covariance structure and

efficient solution of the resulting estimation equations constitutes a possible topic for

future research.
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Edge detection at multiple scales

Recall that the contributions of edges and boundaries in the field are enhanced in

our multiscale detail reconstructions. One possible future research topic can be to

develop post-processing techniques to extract binary edge and boundary maps from

these detail reconstructions. This would provide a method for detecting edges and

boundaries in the field at multiple scales directly from the projection data. Further we

expect that if the detail images from our NP-based multiscale reconstruction method

are utilized for this edge detection process, the resulting edge and boundary maps

would have less sparse-data artifacts than the conventional projection-based edge

detection technique [72] which is valid only in the case that the data are dense.

8.2.2 Multiscale detection: topics for future research

Performance study of anomaly detection method in case of sparse and

noisy data

A major advantage of our anomaly detection method is that it is not necessarily

limited to dense and noise less data as opposed to the conventional techniques. This

is because our method incorporates the statistical properties of the data and the

measurement noise in such a manner that it results in a nearly statistically-optimal

detection algorithm. In this thesis, however, we only considered the case of anomaly

detection from dense and noise less data. An obvious topic for future research is to

study the performance of our detection approach for the case that the data are sparse

or noisy.

Performance study of anomaly detection method in case of model mis-

match

For the anomaly detection method that we developed and analyzed in this thesis,

we assumed a perfect knowledge of the background texture. In particular, the back-

ground may correspond to a fractal texture but the fractal dimension may not be

perfectly known. Or it may be that the background does not correspond to a fractal
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texture at all. In these cases of model mismatch it is not clear as to how our detection

approach will perform, and consequently a thorough testing is needed.

A multiscale approach for zooming-in on the anomalous region

Recall that in the first step of our two-step approach to detection, we zoom-in on the

set of candidate anomalous pixels by calculating approximate chi-square values for

all the pixels by ignoring the off-diagonal elements in the fractal-field data covariance

matrix. An alternate, and probably more accurate method for zooming-in on the set

of anomalous pixels can be obtained as follows. We -first start by selecting the test

region as the entire field and perform a chi-square test on the entire multiscale data

vector to determine the presence of any anomaly in the field. In case the presence

of an anomaly is established to a certain confidence level, we subdivide the original

test region into several smaller regions. We then perform a chi-square test in each of

these smaller test regions but use only those data samples for chi-square calculation

that correspond to the multiscale strips which intersect these regions. Based on the

outcome of this chi-square calculation, a decision is made as to subdivide any of these

smaller test regions, and this process is repeated until we reach the desired finest

level.

282



Bibliography

[1] Alloys developed and computer-aided tomography used to study damage in aging

aircraft. Materials Evaluation, February 1990.

[2] M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H.-O. Peitgen, D. Saupe, and

R. F. Voss. The Science of Fractal Images. Springer-Verlag, 1988.

[3] H. H. Barrett. Image reconstruction and the solution of inverse problems in

medical imaging. In Medical Images: Formation, Handling and Evaluation, Pro-

ceedings of the NATO Advanced Study Institute on the Formation, Handling and

Evaluation of Medical Images, pages 21-22. Springer Verlag, 1992.

[4] M. Basseville, A. Benveniste, K. C. Chou, S. A. Golden, R. Nikoukhah, and A. S.

Willsky. Modeling and estimation of multiresolution stochastic processes. IEEE

Transactions on Information Theory, 38(2):766-784, March 1992.

[5] C. Berenstein and D. Walnut. Local inversion of the Radon transform in even

dimensions using wavelets. Technical Report CAM-21/93, Center For The Ap-

plications Of Mathematics, George Mason University, January 1993.

[6] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical

algorithms I. Communications on Pure and Applied Mathematics, XLIV:141-

183) 1991.

[7] T. M. Breunig, S. R. Stock, A. Guvenilir, J. C. Ellhott, P. Anderson, and G. R.

Davis. Damage in aligned-fibre SiC-Al quantified using a laboratory X-ray to-

mographic microscope. Composites, 24(3):209-2137 1993.

283



[8] R. A. Brooks and G. di Chiro. Principles of computer assisted tomography

(CAT) in radiographic and radioisotopic imaging. Phys. Med. Biol., 21(5):689-

732) 1976.

[91 M. H. Buonocore, W. R. Brody, and A. Macovski. Fast minimum variance

estimator for limited angle CT image reconstruction. Medical Physics, 8(5):695-

702, September/October 1981.

[10] M. H. Buonocore, W. R. Brody, and A. Macovski. A natural pixel decomposition

for two-dimensional image reconstruction. IEEE Transactions on Biomedical

Engineering, BME-28(2):69-78) 1981.

[11] E. B. Cargill, H. H. Barrett, R. D. Fiete, M. Ker, D. D. Patton, and G. W.

Seeley. Fractal physiology and nuclear medicine scans. In SPIE Medical Imaging

11, volume 914, pages 355-361, 1988.

[12] C-C. Chen, J. S. Daponte, and M. D. Fox. Fractal texture analysis and classifica-

tion in medical imaging. IEEE Transactions on Medical Imaging, 8(2):133-142,

June 1989.

[13] K. C. Chou. A Stochastic Modeling Approach to Multiscale Signal Processing.

PhD thesis, Massachusetts Institute of Technology, May 1991.

[14] K. C. Chou, A. S. Willsky, and A. Benveniste. Multiscale recursive estima-

tion, data fusion, and regularization. IEEE Transactions on Automatic Control,

39(3):464, March 1994.

[15] K. C. Chou, A. S. Willsky, and R. Nikoukhah. Multiscale systems, Kalman filters,

and Riccati equations. IEEE Transactions on Automatic Control, 39(3):479,

March 1994.

[161 A. M. Cormac. Sampling the Radon transform with beams of finite width. Phys.

Med. Biol., 23(6):1141-1148, 1978.

284



[17] 1. Daubechies. Progress in Wavelet Analysis and Applications, chapter Wavelet

on the interval, pages 95-107. 1992.

[18] 1. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.

[19] P. J. Davis. Circulant Matrices. John Wiley & Sons, 1979.

[201 H. W. Deckman, J. H. Dunsmuir, K. L. D'Amico, S. R. Ferguson, and B. P.

Flannery. Development of quantitative X-ray microtomography. In J. L. Acker-

man and W. A. Ellingson, editors, Advanced Tomographic Imaging Methods for

the Analysis of Materials, pages 97-110. Materials Research Society, November

1990.

[211 M. Defrise. Regularization techniques in medical imaging. In Medical Images:

Formation, Handling and Evaluation, Proceedings of the NATO Advanced Study

Institute on the Formation, Handling and Evaluation of Medical Images, pages

43-64. Springer Verlag, 1988.

[22] J. DeStefano and T. Olson. Wavelet localization of the Radon transform in

even dimensions. In Proceedings of the IEEE-SP International Symposium on

Time-Frequency and Time-Scale Analysis, pages 137-140, October 1993.

[23] A. J. Devaney. Geophysical diffraction tomography. IEEE Transactions on Geo-

science and Remote Sensing, GE-22(l):3-13, January 1984.

[24] B. Dolveck-Guilpart. Tomographic image reconstruction from a limited set of

projections using a natural pixel decomposition. In P. C. Sabatier, editor, In-

verse Methods in Action, Proceedings of the Multicentennials Meeting on Inverse

Problems, pages 54-61. Springer-Verlag, November 1990.

[25] P. Engler, W. D. Friedman, M. W. Santana, and F. Chi. Process control for

composites using computed tomography. In J. L. Ackerman and W. A. Ellingson,

editors, Advanced Tomographic Imaging Methods for the Analysis of Materials,

pages 123-128. Materials Research Society, November 1990.

285



[26] P. Flandrin. On the spectrum of fractional Brownian motions. IEEE Transac-

tions on Information Theory, 35:197-199, 1989.

[27] S. Geman and D. Geman. Stochastic relaxation: Gibbs distributions, and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and

Machine Intelligence, PAMI-6(6):721-741, November 1984.

[28] S. Geman and D. E. McClure. Bayesian image analysis: An application to single

photon emission tomography. Proc. Amer. Stat. Assoc. Stat. Comput. Section,

pages 12-18, 1987.

[29] N. H. Getz. A perfectly invertible, fast, and complete wavelet transform for

finite length sequences: The discrete periodic wavelet transform. In Proceedings

of the SPIE Annual Conference on Mathematical Imaging: Wavelet Applications

in Signal and Image Processing, July 1993.

[30] M. L. Giger, K. Doi, H. MacMahon, and F-F. Yin. Image-processing techniques

used in the computer-aided detection of radiographic lesions in anatomic back-

ground. In Medical Imaging II, volume 914, pages 635-637. SPIE, 1988.

[31] C. Gindi, M. Lee, A. Rangarajan, and I. G. Zubal. Bayesian reconstruction of

functional images using registered anatomical images as priors. In A. C. F. Colch-

ester and D. J. Hawkes 7editors, Information Processing in Medical Imaging, 12th

International Conference, IPM[ '91. Springer-Verlag, July 1991.

[321 G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins

University Press, 1991.

[33] T. A. Gooley and H. H. Barrett. Evaluation of statistical methods of image

reconstruction through ROC analysis. IEEE Transactions on Medical Imaging,

11(2):276-283, June 1992.

[34] P. J. Green. Bayesian reconstructions from emission tomography data using a

modified EM algorithm. IEEE Transactions on Medical Imaging, 9(l):84-93,

1990.

286



[35] A. Hald. Statistical Theory, With Engineering Applications. Wiley, 1952.

[36] K. M. Hanson. Image Recovery Theory and Application, chapter Bayesian and

Related Methods in Image Reconstruction from Incomplete Data. Academic

Press, 1987.

[371 G. T. Herman. Resolution in ART - an experimental investigation of the re-

solving power of an algebraic picture reconstruction technique. J. theor. Biol.,

33:213-223) 1971.

[38] G. T. Herman. ART: Mathematics and applications - a report on the mathe-

matical foundations and on the applicability to real data of the algebraic recon-

struction techniques. J. theor. Biol., 42:1-32, 1973.

[39] G. T. Herman. Image Reconstruction From Projections. Academic Press, 1980.

[40] G. T. Herman and L. B. Meyer. Algebraic reconstruction techniques can be made

computationally efficient. IEEE Transactions on Medical Imaging, 12(3):600-

609, September 1993.

[41] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,

1991.

[42] A. K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, 1989.

[43] A. K. Jain and S. Ansari. Radon transform theory for random fields and optimum

image reconstruction from noisy data. In Proc. ICASSP, pages 12A.7-1-12A.7.4,

1984.

[441 A. C. Kak and M. Slaney. Principles of Computerized Tomographic Imaging.

IEEE Press, 1988.

[45] M. B. Katz. Questions of Uniqueness and Resolution in Reconstruction from

Projections, volume 26 of Lecture Notes in Biomathematics. Springer-Verlag,

1978.

287



[461 A. Kettschau and J. Goebbels. Application of computer-tomography in industrial

problems. In R. Guzzardi, editor, Physics and Engineering of Medical Imaging,

Proceedings of the NATO Advanced Study Institute, number 119 in E, Applied

sciences, pages 257-259. Martinus Nijhoff, 1987.

[47] J. H. Kinney, M. C. Nichols, U. Bonse, S. R. Stock, T. M. Breunig, A. Guvenilir,

and R. A. Saroyan. Nondestructive imaging of materials microstructures using

X-ray tomographic microscopy. In J. L. Ackerman and W. A. Ellingson, editors,

Advanced Tomographic Imaging Methods for the Analysis of Materials, pages

81-95. Materials Research Society, November 1990.

[48] R. A. Knox. Ocean Circulation Models: Combining Data and Dynamics, chapter

Ocean Acoustic Tomography: A Primer, pages 141-188. Number 284 in NATO

ASI Series. Kluwer Academic Publishers, 1989.

[49] D. S. Lalush and B. M. W. Tsui. Simulation evaluation of Gibbs prior distribu-

tions for use in maximum a posteriori SPECT reconstructions. IEEE Transac-

tions on Medical Imaging, 11(2):267-275, June 1992.

[50] Lawrence Berkeley Laboratory, University of California. Donner Algorithms for

Reconstruction Tomography, RECLBL Library Users Manual, 1977.

[51] R. M. Lewitt. Reconstruction algorithms: Transform methods. Proceedings of

the IEEE, 71(3):390-408, March 1983.

[52] J. Llacer. Theory of imaging with a very limited number of projections. IEEE

Transactions on Nuclear Science, NS-26(l):596-602, February 1979.

[53] J. Llacer. Tomographic image reconstruction by eigenvector decomposition: Its

limitations and areas of applicability. IEEE Transactions on Medical Imaging,

MI-1(1):34-42, July 1982.

[54] J. Llacer and J. D. Meng. Matrix based image reconstruction methods for to-

mography. IEEE Transactions on Nuclear Science, NS-32(l):855-864, February

1985.

288



[55] A. K. Louis. Medical imaging: State of the art and future development. Inverse

Problems, 8:709-738, 1992.

[56] Z. Q. Lu, M. Kaveh, and R. K. Mueller. Diffraction tomography using beam

waves: Z-average reconstruction. Ultrasonic Imaging, 6:95-106, 1984.

[57] M. Luettgen. Image Processing with Multiscale Stochastic Models. PhD thesis,

Massachusetts Institute of Technology, May 1993.

[58] M. Luettgen, W. C. Karl, and A. S. Willsky. Efficient multiscale regularization

with applications to the computation of optical flow. IEEE Transactions on

Image Processing, 3(l):41-64, January 1994.

[59] S. C. Mallat. A theory of multiresolution signal decomposition: The wavelet rep-

resentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

11(7):674-693, 1989.

[60] R. K. Mueller, M. Kaveh, and G. Wade. Reconstructive tomography and appli-

cations to ultrasonics. Proceedings of the IEEE, 67(4):567-587, April 1979.

[61] W. Munk and C. Wunsch. Ocean acoustic tomography: A scheme for large scale

monitoring. Deep-Sea Research, 26A:123-161, 1979.

[62] M. Onoe, J. W. Tsao, H. Yamada, H. Nakamura, J. Kogure, H. Kawamura, and

M. Yoshimatsu. Computed tomography for measuring annual rings of a Eve tree.

Proceedings of the IEEE, 71(7):907-908, July 1983.

[63] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations

and sparse least squares. A CM Transactions on Mathematical Software, 8(l):43-

71, March 1982.

[64] F. Peyrin, M. Zaim, and R. Goutte. Multiscale reconstruction of tomographic

images. In Proceedings of the IEEE-SP International Symposium on Time-

Frequency and Time-Scale Analysis, pages 219-222, October 1992.

289



[65] P. A. Rattey and A. G. Lindgren. Sampling the 2-D Radon transform. IEEE

Transactions on Acoustics, Speech, and Signal Processing, ASSP-29(5):994-1002,

1981.

[66] D. J. Rossi. Reconstruction From Projections Based On Detection And Estima-

tion Of Objects. PhD thesis, Massachusetts Institute of Technology, October

1982.

[67] B. Sahiner and A. E. Yagle. Image reconstruction from projections under wavelet

constraints. IEEE Transactions on Signal Processing, 41:3579-3584, December

1993.

[68] B. Sahiner and A. E. Yagle. Limited angle tomography using the wavelet trans-

form. October 1993.

[69] K. Sauer and C. Bouman. Bayesian estimation of transmission tomograms us-

ing segmentation based optimization. IEEE Transactions on Nuclear Science,

39(4):1144-1152) 1992.

[70] K. Sauer and C. Bouman. A local update strategy for iterative reconstruc-

tion from projections. IEEE Transactions on Signal Processing, 41(2):534-548,

February 1993.

[71] E. Scheinman and F. L. Roder. Real-time CT of composites during destructive

testing. In J. M. Carpentar, D. B. Cline, R. Lanza, and D. F. Mildner, editors,

Neutrons, X-Rays, and Gamma Rays: Imaging Detectors, Material Characteri-

zation Techniques, and Applications, volume SPIE 1737, pages 171-183. SPIE,

July 1992.

[72] N. Srinivasa, K. R. Ramakrishnan, and K. Rajgopal. Detection of edges from

projections. IEEE Transactions on Medical Imaging, 11(l):76-80, March 1992.

[73] J. S. Steude and P. D. Tonner. Detection of free liquid in cement-solidified ra-

dioactive waste drums using computed tomography. In J. L. Ackerman and W. A.

290



Ellingson, editors, Advanced Tomographic Imaging Methods for the Analysis of

Materials, pages 111-116. Materials Research Society, November 1990.

[74] G. Strang. Wavelets and dilation equations: A brief introduction. SIAM Review,

31(4):614-627, 1989.

[75] K. Tanabe. Projection method for solving a singular system of linear equations

and its applications. Numer. Math., 17:203-214, 1971.

[76] H. L. Van Trees. Detection, Estimation, and Modulation Theory. John Wiley &

Sons,1968.

[77] J. G. Verly and R. N. Bracewell. Blurring in tomograms made with X-ray beams

of finite width. Journal of Computer Assisted Tomography, 3(5):662-678, Octo-

ber 1979.

[78] B. J. West and A. L. Goldberger. Physiology in fractal dimensions. American

Scientist, 75:354-365, 1987.

[79] C. W. Wornell. Wavelet-based representation for the 1/f family of fractal pro-

cesses. Proceedings of the IEEE, 81(10):1428, October 1993.

[80] G. W. Wornell and A. V. Oppenheim. Estimation of fractal signals from

noisy measurements using wavelets. IEEE Transactions on Signal Processing,

40(3):611-623, March 1992.

291


