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Abstract

Computerized Tomography has a wide variety of applications in diverse fields such as med-
ical imaging, non-destructive testing, oceanography, and security inspection. Much of the
past focus in tomographic imaging has been to develop algorithms that produce high res-
olution images from the projection data. For a variety of reasons, including limited sensor
availability and noisy projection data, it is often impossible to produce a high resolution
image. This thesis focuses on those situations when only sparse, noisy projection data are
available. We present finite parameter estimation algorithms to reconstruct the vertices of a
binary polygonal object from geometric information extracted directly from the projection
data. Specifically, we develop three algorithms to reconstruction binaxy polygonal objects
from measurements of knot locations (location of the projection of a vertex of the object in
the projection data) and measurements of chords (thickness of the object). Both of these
measurements can be extracted directly from the projection data. The chords correspond
to the magnitude of the projection data and the knot locations correspond to the positions
of abrupt change in the slope of the linear spline function that results from the projection
of a binary polygonal object. The first algorithm incorporates each view sequentially, in
increasing angular order. The second algorithm allows views to be incorporated in any
angular order. The third, and final, algorithm is a nonlinear optimization algorithm that
uses the output of either the first or second algorithm as its initial guess. Additionally
the. final chapter addresses situations where the extraction of the knot location data from
the projections is incomplete (i.e. missing knot location measurements). At each stage of
our analysis we demonstrate the performance of the algorithms with simulations of various
reconstruction scenarios.
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Chapter 1

Introduction

1.1 Motivation

Many algorithms have been developed to reconstruct a multidimensional function from its

projections. In tomographic imaging, widely used methods such as filtered backprojection

and Fourier methods [3,4] are used to reconstruct high resolution images in a variety of

applications [4]. Although these methods produce high quality images, they require a large

number of projections and a relatively large signal-to-noise ratio (SNR).

In applications such as oceanography [10] and non-destructive testing, the number of

projection angles is often severely constrained. The availability of sensors to obtain the

data often limits both the number of projections and the angular spacing of the views.

Often data can only be collected over a limited angular range. In addition, the projection

data are usually noisy. In cases of low SNR or incomplete data, a high resolution image is

virtually impossible because classical reconstruction algorithms introduce artifacts during

the reconstruction process. The goal in this case may be to try to estimate the boundaries

of the object. Because the traditional high resolution algorithms break down when only

sparse, noisy projection data are available, these techniques are no longer effective in this

situation.

Additionally, in a number of computerized tomography problems, the ultimate goal is

not a high resolution image, but simply to characterize the size and shape of the object

being imaged. The approach in the past has been to use a classical image reconstruction

algorithm to obtain the image and then extract the edges of the object with some kind

13



of edge detector. More recently, however, a number of algorithms have been developed to

extract the object directly from the projection data [5,9,12,14,16,17]. In cases of low SNR

or incomplete data, the second methodology is the preferred approach because the artifacts

introduced by the classical reconstruction algorithms during the reconstruction process make

the application of standard signal processing techniques ineffective. Further, post-processing

of a reconstructed image is also difficult because the noise in the reconstructed image is

colored even when the noise in the projection data is white.

A robust algorithm to detect object size and shape may also be used as a pre-processor

to provide a priori information to a high resolution image reconstruction algorithm. For

example, the reconstruction algorithms developed by Prince [12] or Milanfar [9] assume

prior geometric information about the object to be reconstructed. Thus, the emphasis in

the pre-processor is not on a high resolution image, but on a robust estimate of the object's

shape. This emphasis is especially true if the projection data are noisy.

Therefore, in some applications it is either not desirable or not possible to produce

a high resolution image from projection data. Classical methods of tomographic image

reconstruction may not be the best approach in these situations. Instead, it is desirable to

implement an estimation algorithm that characterizes the shape of the object from sparse

and noisy projection data.

The objective of this thesis is to investigate finite parameter, geometric-based recon-

struction algorithms for binary polygonal objects from sparse and noisy projection data.

The primary focus will be to formulate a robust algorithm to reconstruct the vertices of a

polygon from knot location and chord length measurements of the projection data.

1.2 Contributions and Organization

The work presented in this thesis makes contributions in the following areas:

e Introduces several algorithms that extend the work of Milanfar [9], Prince [121, Rossi [14],

etc. in geometric-based reconstruction techniques. Specifically, by extracting geomet-

ric information related to the vertices and chord length (thickness of the object) of the

object directly from the noisy projection data, we estimate the vertices of a convex,

binary polygonal object.
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* Supports the work of Prince [12] and Milanfar [9] in showing the usefulness of geomet-

ric information extracted directly from the noisy Radon transform data to reconstruct

a convex, binary polygonal object.

e Links the multitarget tracking problem of radar to the tomography problem of recon-

structing the vertices of a polygonal object, allowing many of the techniques and algo-

rithms developed in the radar context to be implemented in a tomography problem.

In addition, this work recognizes that the geometric constraints of the tomography

problem can be used to simplify the multitaxget tracking algorithmic approaches.

o Develops several algorithms to reconstruct objects from sparse, noisy data. In addi-

tion, the algorithms allow limited angle or non-uniformly spaced projection data.

9 Develops an algorithm that deals robustly with missed detections, or missing data

measurements.

This thesis is organized as follows. Chapter 2 begins with background information and

definitions utilized in the remainder of the thesis. Chapter 3 presents relevant previous work

and the problem geometry considered in the remainder of this thesis. Each of the following

three chapters treats a different reconstruction algorithm. Chapter 7 provides methods for

dealing with data inconsistencies (missing data measurements). Finally, conclusions and

future work are surmnaxized in Chapter 8.
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Chapter 2

Definitions and Problem

Statement

This chapter provides a brief overview of concepts and definitions that will. be used in

subsequent chapters. We begin with a review of the major concepts of M-ary Maximum

Likelihood (ML) hypothesis testing (Section 2.1.1), ML estimation (Section 2.1.2), and the

Generalized Likelihood Ratio Test (Section 2.1.3) . Next, in Section 2.1.4 we define some

of the major concepts of tomography including the Radon transform and support lines.

Finally, we review definitions of knot locations and chord length and relate these values to

the projection data available in tomography problems in Section 2.1-5. Having completed

a review of the background definitions and concepts, Section 2.2 is a statement of the

reconstruction problem considered in this thesis.

2.1 Definitions

2.1.1 M-ary Hypothesis Testing

An M-ary hypothesis testing problem assumes there are M hypotheses Ho, Hi, HM-1

with a priori probabilities Pi -- Pr(Hj). Given the set of conditional distributions

PyJHi(YJHi) of the observation data, y, the objective is to specify a decision rule that

chooses the optimal hypothesis based on measurement data and a specified cost criterion.
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In general, the expected cost of choosing hypothesis k is defined:

M-1
E (Ck) E CkjPr(Hjl y = Y) (2.1)

j=O

where Ckj is the cost of choosing hypothesis k if hypothesis j is the true hypothesis and

Pr(Hjl y = Y) is the probability that hypothesis j is the correct hypothesis given the

measurements y = Y. The optimal decision rule, which minimizes the cost function

defined in Equation (2.1), is given by:

d(Y) = Hk if for all Hi :A Hk

E (Ck) < E (Ci) (2.2)

When all the hypotheses are considered equally likely a priori and all possible errors are

penalized equally by letting:

Ckj 0 ifi=j

1 ifi54i

the problem is termed a Maximum Likelihood (ML) rule. The result of Equation (2.2) then

reduces to:

d(Y) = Hk if for all Hi :� Hk

Pr(Hj I y = Y) < Pr(Hj I y Y) (2.3)
j:Ai

or

d(K) = Hi, if for all Hi Hk

Pr(Hkl y = Y) > Pr(Hil y = Y) (2.4)

Using Bayes rule, we note that

Pr(HA, I y = Y) p,,jHjYj Hk)Pr(Hk) (2.5)
';lPyIH-(Yl Hj)Pr(Hj)3=
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which can be substituted into Equation (2.4) to obtain

PyIH,,(Kl HA:)Pr(Hk) > PyjHj(rj Hi)Pr(Hi) (2.6)
EM-1 p,,IH,(YI Hj)Pr(Hj) Em-lp�,IH,(Yj Hi)Pr(Hj)

j=O j=O

Using the fact that the denominator of Equation (2.6) is a normalization constant indepen-

dent of Hk and that all hypotheses are equally likely a priori, the ML decision rule reduces

to

d(Y) = Hk if for all Hi :� Hk

PYJH�,(Yj Hk) > PyjHj(Yj Hi) (2.7)

or

d(Y) Hk if for all Hi Hk

,C(Y) PYIH, (El Hk) > (2.8)
PyjHj(Yj Hi) -

where C(Y) is termed the likelihood ratio. This decision rule is used to obtain the optimal

ML estimate of the hypothesis given the measurements y = Y.

2.1.2 ML Estimation

In a ML estimation problem', the value to be estimated, x, is assumed to be an unknown

quantity (i.e. non-random). Also, the ML estimation problem assumes that the probabilistic

model relating the value to be estimated, x, and the observations, y, is known. Under these

assumptions, the ML estimate is defined as the value of x that makes the observations

y = Y most likely

kML(Y) = argmax pyl.(YI X) (2.9)
X

In addition to problems where x is truly a non-random but unknown vector (Willsky [19] uses

the example of chemical flow rates), this assumption is often made in estimation problems

where x is random but its probabilistic distribution p,,(X) is unknown.

'Complete derivations of these results can be found in [19].
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For the specific case of a linear Gaussian problem, the observation equation is defined

y = Ax + v (2.10)

where y is a vector of observations, A is the system matrix relating the observations to the

desired vector x, and v - N(O, R) is zero-mean Gaussian noise. From Equation (2.10), with

the additional assumptions that x is unknown and v is jointly Gaussian, it is apparent that

y is also jointly Gaussian with

MY1. = AX (2.11)

AYIX R (2.12)

In this case, Equation (2.9) becomes

-iML(Y) = arg max N(Y; AX, R) arg min [(Y - AX T 1X X -) R- (Y - AX)] (2.13)

where N(Y; AX, R) denotes the normal distribution evaluated at y = Y with mean AX

and covariance R. This reduces to

-'ML (Y) = (A TR-'A)-'A TR-1Y (2.14)

with the corresponding error covariance

AML = (A T R-'A)-' (2.15)

2.1.3 Generalized Likelihood Ratio Test

In this section we extend the work of the Section 2.1.1 to include an ML hypothesis test

2based on a Generalized Likelihood Ratio . In addition to the assumptions made previously

(Section 2.1.1), this formulation assumes that each of the proposed hypotheses is also a

function of a non-random vector 0. that may be different for each hypothesis Hk being

considered. In the Generalized Likelihood Ratio Test, ML estimates of Ok are calculated

(using the equations of the previous section) for each hypothesis by assurmng that it is the

2Complete derivations of these results can be found in [18].
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true hypothesis and these estimates are used in a likelihood ratio test as if they were the

correct values. Thus, the likelihood ratio becomes

(El Hk, 0
IC9(y) PyJHhA& (2.16)

PylHi'4, (Y I Hi,

and the decision rule becomes

d(Y) Hk if for all Hi Hk

PvJH,,i,(YI Hkl-O*)
ICg (Y) (2.17)

P i,(YI Hi, O.ylHi,

given measurements y -_ Y.

2.1.4 Radon Transform and Support Functions

Tomographic imaging is concerned with the reconstruction of a two-dimensional (2D) image

from a set of 1D projections. The Radon Transform relates a 2D function f (x, y) to its 1D

set of projections g(t, 0). This relationship is defined for every t and 0 by

g(t, 0) = fR2 AO) Y ) 5(t _ W _ [VC, Y]T ) dzdy (2-18)

and

w = [cos(O), sin(o)]T (2.19)

The function 9(t, 0) is termed the 2D Radon Transform of f Further, the function g(t, 0)

at a particular angle 0 defines the Projection of f at angle 0 denoted by go(t). Figure 2-1

depicts the relationship between the function f(xy) and its projection go(t) at angle 0.

The sinogram of f is the image formed from the values of g(t, 0) plotted as intensity values

over the range -oo < t < +oo, 00 < 0 < 1800.

An interesting property of the Radon transform is the fact that projections taken 180'

apart are related by

g(t, 0) = g(-t, 0 + 180') (2.20)
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Figure 2-1: Relationship of the Radon Transform Parameters.

Therefore, to reconstruct an object from projections, data is only required over a 180'

angular range because of the consistency requirement of Equation (2.20).

The line integral of f at a particular t and 0 along the line L(t, 0) is depicted in Figure

2-2. Further, the line integrals that form the projection gq(t) axe taken along a set of parallel

lines that are denoted by Le(t). The support values are the two extrema, t- and t+, that

define the set Lq(t). The lines corresponding to these two values of t are termed support

lines (refer to Figure 2-1).

Although Equation (2.18) is theoretically invertible for a large class of functions f (X, y),

in most practical applications an exact inversion is impossible because of the physical con-

straints of the system. For example, in medical imaging factors such as patient dosage and

sensor availability limit both the number of line integrals per projection and the number

of projection angles. Thus, practical tomography problems have both a finite number of

angles and a finite number of fine integrals. The primary focus of computerized tomography

is to find an approximate or pseudo-inverse for the Radon Transform when projections are

given for finite t and 0.

21



Y

WM

f(XY)

X

Figure 2-2: The Line L(t, 0).

2.1.5 Knot Locations and Chord Lengths

The projection of a binary polygonal object is a piecewise-linear spline function (see Fig-

ure 2-1). Each knot location, or position of abrupt change in the slope of the spline func-

tion [81, in the projection corresponds to.the location of the projection of one of the vertices

of the object. Except in degenerate cases where two vertices lie along the same line perpen-

dicular to the projection, in each projection of the polygon the number of knots is equal to

the number of vertices of the object. Figure 2-3 shows the relationship between the knot

locations and the vertices of a polygonal object. From this diagram, it is apparent that

the outer knot locations (zl and z4 in the figure) also define the support values described

previously. The chord length of a binary object is the thickness of the object along the line

L(t, 0). In the projection of a binary object, the magnitude of the projection at a particular

location go,, (ti), is equal to the chord length of the object along the line L(ti, 01'). Therefore,

the projection of a binary object is simply a collection of chord lengths of the object. From

the above discussion, it is apparent that chord length measurements and knot locations

are closely related geometrically in both Radon and object space. Figure 2-3 shows the

relationship between a 4-gon f (x, y), its 1D projection go (t), the knot locations, and chord

lengths. Further, as Figure 2-3 demonstrates, the chord lengths at the support values axe

22



object Key:-Knots:
knots - Knot Locations: z I, z2, z3, z4

- Chord Lengths: C I, C2

projection

go (t)

Figure 2-3: Relationship of Object, Projection, Knots, and Chords.

always zero.

2.2 Problem Statement

This thesis formulates reconstruction algorithms from sparse, noisy projection data. Specif-

ically, the algorithms reconstruct binary polygonal objects using measurements of knot

locations from the projection data". Additionally, chord length measurements are incorpo-

rated to provide a more robust estimate of the object.

The problem of reconstructing a polygonal object from knot location data is one of

data association. That is, given a set of ordered knot locations z1(0) < Z2(0) ... < Z" (0)

from a projection, ge(t), the correspondence of the knots to the vertices of the object is

unknown without knowledge of the object. In the first view, we arbitrarily assume that

zl(01) corresponds to the unknown object vertex a, Z2(01) corresponds to the unknown

object vertex b, etc. Thus, the knot to vertex correspondence in the first view of a 4-gon

can be summarized by abcd. As the angular view changes, so does this association of the

ordered knot locations to the object's vertices. For example, in view I of Figure 2-4 the

'The idea of reconstructing polygonal objects from knot locations is a natural extension of the work of
Prince [12] who used support lines to reconstruct the convex hull of an object. Chapter 3 details previous
work in this and other related areas.
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Figure 2-4: Example of Data Association of Knot Locations to the Vertices of an Object.

association of zl(01), Z2 (01), and z3(01) to object vertices would be labeled abc (consistent

with the notation defined above). Therefore, the first knot, zl(01), corresponds to vertex

a in the object. Referring again to Figure 2-4 we note that in the second view, however,

the first knot, zl(02) corresponds to vertex c in the object. Thus, the knot locations have

effectively "switched" their correspondences with the object. The knot location to vertex

association in the second view can be summarized by cab because Z1 (02) corresponds to

vertex c in the object, Z2(02) corresponds to vertex a in the object, andZ3 (02 )corresponds

to vertex b in the object. We define a switch in two knots to occur when two vertices in the

object lie along the same line, perpendicular to the projection. Prior to two knots switching,

the knot locations more closer together with increasing 0. Finally, when the two vertices of

the object are aligned along the same line, the knot locations for the two vertices are the

same and the knot associations switch when 0 increases. In a reconstruction algorithm from

knot locations the knot to vertex data association must be determined at each projection.

Figure 2-5 shows the geometry of a noise-free reconstruction scenario. In the absence of

noise, the knot locations of only three angular projections are needed to exactly triangulate

the views and determine the vertices of the object. However, one misplaced knot can have

tremendous effects on the overall reconstruction. Figure 2-6 demonstrates that movement of
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Figure 2-5: Object Reconstruction from Knot Location Data From 3 Noise-Free Views.

one knot location produces an inconsistent triangulation. The triangulation is inconsistent

because there are only two points where three knot positions intersect to define a vertex

location (instead of the three required to determine the vertices of the triangle).

The problem posed in this thesis is the following: Given noisy knot locations from spaxse

and noisy projection data, it is not possible to exactly triangulate the knot locations to de-

termine the vertices of the polygon. Thus, the association of the knot location data to the

vertices of the object from view-to-view is unknown. The objective of this investigation

is to formulate an estimation algorithm that will incorporate knot locations, chord length

data, noise statistics and prior geometric information to produce a robust estimate of the

vertices of the object. This work seeks to reduce the effects of noise by using a hypothesis

testing algorithm to robustly estimate the vertices of the polygon from noisy, inconsistent

data. Each possible data association (within the constraints outlined by the algorithm) is

considered a possible hypothesis and the objective is to determine the most likely hypoth-

esis (using ML techniques) and determine the estimate of the object's vertices based on

this hypothesis. The inclusion of chord length into the reconstruction algorithm enhances
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Figure 2-6: Inconsistent Triangulation of an Object Due to a Single Misplaced Knot Mea-

surement.

the performance by using these data measurements to help determine the optimal data

association hypothesis.
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Chapter 3

Problem Formulation

Having defined the relevant terminology and problem statement in Chapter 2, we now move

on to discuss related research and provide a more detailed explanation of the problem for-

mulation. We begin in Section 3.1.1 by reviewing some of the more recent methods to detect

object boundaries from topographic data and describing related research in stochastic es-

timation of objects from topographic data. Section 3.1.2 continues the review of relevant

previous work by relating the topographic reconstruction problem considered in this thesis

to the multitarget tracking problem of radar. The second half of this chapter discusses

some of the common issues related to the algorithms contained in this thesis. These in-

clude: assumptions (Section 3.2.1), triangulation geometry (Section 3.2.2), noise models

(Section 3.2.3), initial view (Section 3.2.4), and performance measures (Section 3.2.5).

3.1 Previous Work

3.1.1 Related Research in Computerized Tomography

Recent Work in Boundary Detection Algorithms

In this section we briefly review some of the recent work used to detect object boundaries

in topographic imaging. Because the boundary detection of objects is the ultimate goal of

many computerized tomography applications, a number of algorithms have been developed

to detect edges and boundaries from topographic data. Two different approaches can be

used to detect edges of an object. The first is a two step procedure that reconstructs t1le

object and then detects the boundary from the reconstructed image. In the second method,
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the boundaries of the object are obtained directly from the projection data. In the presence

of noisy or sparse projection data, the second method is often preferred because the artifacts

produced by classical algorithms during the reconstruction process render the application

of standard edge detection methods on the image ineffective. In addition, even if the noise

on the projection data is white, the reconstruction process produces an image with colored

noise. Because of this, much of the recent work in computerized tomography has focused

on this second approach to boundary detection.

Srinivasa et al [16] propose a method of edge detection of internal and external object

boundaries without first reconstructing the object. They base their analysis on the use of

the Marr-Hildreth edge detection operator, A2G(x, y), which uses the Gaussian function

for filtering and the Laplacian for differentiation and detects edges by zero crossings in the

filtered data. Instead of applying this edge detector to the reconstructed image, Srinivasa

et al show that by taking the Radon transform of the Marr-Hildreth operator at each view

angle, p,9(t) = R(A2G(x, y)), they can convert the 2D convolution step required to detect

edges in an image to a 1D convolution in Radon space. They then combine this 1D function

with the reconstruction filter, r(t), and apply this "new" filter to the projection data in each

view. After filtering each view, the filtered projections are then backprojected to obtain

the function, ill (Xy). Edges are then detected by determining the zero crossings in the

resulting image. This method requires a large number of projections and Srinivasa et al

consider only the noise free case.

Similarly, Thirion [17] proposes internal and external object boundary detection without

image reconstruction. In his work, Thirion develops a technique which he terms geomet-

ric tomography to reconstruct object boundaries. His methodology is to reconstruct object

boundaries directly from the sinogram data. Basically, he performs an edge enhancement on

the sinogram, detects the "oriented dual curves" corresponding to inner and outer bound-

aries of the object, and reconstructs the object's boundaries from the dual curves. Thus, the

object boundaries are reconstructed directly from the sinogram data. In his work, Thirion

considers only the noise free case with dense sinogram data. In the presence of even small

amounts of noise it may be difficult in many cases to extract the dual curves necessary for

his edge detection algorithm.

The primary departure of this thesis from the work mentioned above is that sparse
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and noisy projection data is assumed. Further, it is also assumed that noise statistics and

possibly some a priori geometric information axe available. Unlike Thirion, the approach

will be to reconstruct a polygon with a finite number of vertices. Because the sinogram of

each vertex is a sinusoid, it should be easier to detect these known functions in the noisy

sinogram data than it would be to detect the unknown "oriented dual curves" that Thirion

enhances in Ms noise-free algorithm.

Related Research in Stochastic Estimation of Objects

Geometric estimation of objects from noisy tomographic data have been approached with a

number of methods. Rossi and Willsky [15] used a finite parametric approach to characterize

the size, shape, and orientation of objects. The primary methodology in this approach is a

ML parameter estimation formulation. The accuracy of the estimate was evaluated using

the Cramer-Rao lower bound on the variance of the estimates. The results of this study

showed that size and orientation can be estimated more accurately than elongation and

that estimates of orientation require a minimum elongation that is inversely related to the

measurement SNR. Bresler and Macovski [2] extended this work to 3D reconstructions.

The primaxy focus of this thesis is an extension of the work of Prince and Willsky [11,12].

Instead of a finite parameter approach, they propose a number of reconstruction algorithms

to characterize the size and shape of the object based on support line measurements of noisy

projection data. Given the support lines at known angles equally spaced from (O', 360'],

noise statistics, and a priori information such as relative smoothness, Prince and Willsky

formulate the reconstruction as a constrained optimization problem. The algorithms use

vaxying degrees of a priori geometric information. The formulations range from a ML

estimate to a mini-max algorithm that maximizes the minimum discrete radius of curvature

of the object. Further, Prince [12] proposes a knot location method which models each

projection as a continuous piecewise-linear waveform. Using Kalman filtering techniques, he

formulates a method to detect the two extreme knot locations, t- and t+, which correspond

to the location of the support lines. This thesis will continue the work of Prince by using

the additional information of the internal knot locations and chord length information to

formulate a robust estimate of the size and shape of the object.
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3.1.2 Relationship to Radar Multitarget Mracking Algorithms

In addition to the aforementioned work in tomography, the reconstruction of the vertices

of a binary polygonal object from knot location measurements is very closely linked to

the multitarget tracking problem of radar. The geometry of the tomography problem can

be viewed in two ways: (1) as a stationary object with measurements taken at different

angular positions or (2) as a rotating object with measurements taken at a single, fixed

view. Although both geometries are equivalent (see [5]), the former is the more accepted

framework for tomography problems as this is the method generally used to collect the

data. By viewing the vertex reconstruction problem using the latter geometry, however,

the close association to the single-sensor multitarget tracking problem becomes apparent.

In this framework, the association of knots to object vertices is analogous to the association

of radar reports to targets. Further, the vertex locations of the tomographic reconstruction

problem correspond to the target locations of the radar problem.

In a single-sensor multitarget tracking problem, the objective is to collect radar data,

associate the reports to targets, and estimate the locations of the targets. The problem

consists of two distinct stages: data association and target estimation. In the knot recon-

struction problem formulated in this thesis, the association of the knot location data to

the vertices of the object from view-to-view is unknown. Like the multiple target tracking

problem, the problem is one of data association; unlike the radar problem, however, there

are knot correspondences that are impossible because of the geometric constraints imposed

on the behavior of the vertices of a polygon. Further, the tomography problem is simplified

because issues of "target maneuverablility" and dynamics are not necessary when we view

the object as stationary with views taken at different angular positions; while in the radar

context, the targets are free to move in and out of the field of view at different speeds

relative to each other.

Still, these two problems are very similar and many of the estimation techniques devel-

oped in the radar context are applicable to this problem. Many algorithms, both optimal

(Bayesian) and sub-optimal, have been formulated to solve the multitarget tracking prob-

lem. A number of these algorithms are based on an adapted form of a hybrid state esti-

mation problem (see [1,6,7,13]) which proposes a simultaneous solution to a discrete-state

estimation problem (data associations) and a continuous-state estimation problem (target
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locations). The reconstruction algorithms developed in this thesis are very similax to these

hybrid state algorithms. The vertex reconstruction problem is viewed as a discrete-state

data association problem where each hypothesis corresponds to a possible association of

knot measurements to vertices. Similaxly, it is also an estimation problem to determine the

vertex locations. Thus, much of the methodology of these multitaxget tracking problems

can be applied to the vertex reconstruction problem.

In addition to formulating the problem as the simultaneous estimation of the discrete

valued hypotheses (data associations) and continuous valued "targets" (object vertices), the

algorithms used in this thesis also include the target tree approach described by Kurien et

al [7] to represent the possible data associations. Purther, if the number of vertices in the

object is unknown a priori, the knot location data may contain "false alarms" as formulated

in the radar problem. Thus, the object reconstruction can be extended to include the global

hypothesis techniques used in the Track-Oriented approach of multitaxget tracking [7].

Because of the huge number of possible hypotheses, the screening and pruning tech-

niques developed in the multitarget approaches are also implemented in the reconstruction

algorithms in this thesis. More specifically, the screening technique called gating, which

limits the measurement space within which the reports for targets are expected to lie, can

be used to Emit the data associations for the object vertices in views that are taken in close

angular proximity because the knot switches are constrained by the object's geometry (see

Chapter 4). Also, pruning techniques such as the N - scan approximation described by

Kurien [6] can be used to limit the total number of hypotheses.

3.2 Problem Development

3.2.1 Assumptions

In the reconstruction algorithms developed in this thesis there axe a number of underlying

assumptions concerning both the a priori object information and the acquisition of input

data.

In terms of a priori geometric information, we assume that the object to be recon-

structed is a binary, convex polygonal object with a known number of sides. Although

convexity is not required to reconstruct the vertices, it is necessary when determining the
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Figure 3-1: Non-Unique Connection of the Vertices of a Non-Convex Object.

Figure 3-2: Unique Connection of the Vertices of a Convex Object.

unique connection of the vertices of the object. Figure 3-1 shows how 5 vertices can be

connected to form two different non-convex objects. The connection of the vertices of a

convex object, such as the object in Figure 3-2, is unique. The chord length measurement

data can be effectively used to disambiguate the possible vertex connections but this in-

volves a more complex reconstruction analysis. After the vertices have been estimated, all

possible connections of the vertices would have to be evaluated using the chord length data

to determine the optimal connection. Thus, in the interests of reducing model complexity

we consider only convex objects.

The second set of assumptions concern the acquisition of the measurement data. First,

we assume that the tomographic projections are taken at known angular views over the

range [O', 180'). Second, we assume that the knot location measurements have already

been extracted from the projection data independently of the algorithms developed in this

thesis, for example using a procedure similar to the work of Mier-Muth and Willsky [8].

In an actual tomographic reconstruction scenario, the system would be similar to that of

Figure 3-3. The noisy projection data (or chord length measurements) would be input

into a knot extraction algorithm which would produce knot location measurements and

their corresponding noise statistics. These data, along with the original projection data,
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Figure 3-3: Application of Reconstruction Algorithms to Tomographic Imaging.
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Figure 3-4: Reconstruction Scenario Considered in this Work.

would then be used as the input to one of the reconstruction algorithms developed in this

thesis. We assume in this thesis that the pre-processing (knot extraction) has already

occurred. Thus, the inputs to our system are noisy knot and chord measurements. The

block diagram of the system modeled in this thesis is shown in Figure 3-4. The knot and

chord measurements are generated from the underlying object and perturbed with additive

white Gaussian noise (see Section 3.2.3 for a discussion of the noise models applied to the

data). This simulated data set is then used as the input to the reconstruction algorithms

developed in this thesis.

3.2.2 Triangulation Geometry

In the noise free case, any three views can be used to triangulate the knots and reconstruct

the vertices of a polygonal object (see Section 2.2). When noise is present in the knot loca-

tion measurements, however, the views that are chosen have a huge impact on the quality

of the reconstruction. As an example of this, Figure 3-5(a) shows the triangulation (noise-

free) of views taken in close angular proximity while Figure 3-5(b) shows the triangulation

of widely separated angular views of the same object.

From these figures, it is apparent that if the same amount of noise were added to both

reconstruction scenarios, the error would be much more significant in the case of the views

taken in close proximity. Thus, the triangulation geometry is improved by taking widely
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Figure 3-5: Example of Triangulation Geometry of Views in Close Proximity Versus Views
Taken at Wide Angular Spacing.

spaced angular views. From an algorithmic viewpoint, however, the advantage in con-

sidering views in close proximity is that the number of knot location switches that can

occur for view-to-view is greatly reduced (i.e. the gating techniques described in Section

3.1.2); therefore, the number of hypothesized data associations is reduced and the overall

complexity of the reconstruction algorithm is reduced. Because both geometries have advan-

tages and disadvantages, Chapter 4 presents an algorithm that incorporates closely spaced

views sequentially (poor triangulation geometry, reduced model complexity) while Chap-

ter 5 presents an algorithm that incorporates views non-sequentially (better triangulation

geometry, increased model complexity) -

As a final note, another advantage of the algorithms developed in this thesis is that they

allow reconstruction over any angular range with any angular spacing (i.e. non-uniform

spacing is allowed). Most classical reconstruction techniques require views over a full an-

gular range with uniform spacing. This advantage is important for applications such as

non-destructive testing where views are sparse and angular separations axe generally non-

uniform.
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3.2.3 Noise Models

In this section we resolve some of the issues concerning the assumptions of noise models

used as input to the algorithms developed in this thesis.

Consistent with previous stochastic models of sinogram data [9, 12, 14], we assume

throughout this thesis that the available sinogram data, or equivalently chord length data,

are discrete samples of g(t, 0) corrupted by additive white Gaussian noise of known intensity.

Specifically, for each chord our observation is given by

Mj (00 = g (tj, Oi) + V (tj 3 00, 1 < i < k, 1 < j < p (3-1)

where k is the total number of projections, p is the number of chord measurements per view,

and v(tj, Oi) are independent, identically distributed (i.i.d.) Gaussian random variables with
0,,2

known variance "'.

One difficulty in characterizing the amount of noise added to the chord data is that

every chord in every view has a different magnitude. Thus, it is not possible to characterize

the signal-to-noise ratio (SNR) easily. In this thesis we will use an approach similar to those

used by Prince [12] and Milanfar [9]1. We define the SNR per sample on the chord length

data as

Eij 9 2(tj, Oi) / d
SNR = 10 log C'2 (3.2)

where d = k x p is the total number of chords length measurements and o,,2,, is the variance

of the i.i.d. noise v in the observations.

In order to completely characterize the noise on the knot locations, knowledge of the

method used to extract the knots from the projection data is necessary. Assuming that this

data extraction is complete, the knot extraction algorithm would provide the noise statistics

of the knot measurements in an ideal reconstruction scenario. Because this algorithm would

extract the knots directly from the projection data there would undoubtedly be a correlation

between the noise on the knot locations. and the noise on the chord length measurements.

1 The only departure from the formulation used by Milanfar is that we use the traditional base 0 logarithm
instead of the natural logarithm used by Milanfar
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In the absence of a specific knot extraction algorithm, we assume in this work that the noise

on the knot measurements is additive Gaussian noise (for simplicity). To set the level of

noise on each knot we use the following intuitive formulation

0'2 (0,) K o-,,2, _ 1 <i< k) 1 <j<n (3.3)zj JASjl2Mj

where

,yet2 (0,) noise variance on knot location measurement zj(Oi)

K scaling constant

,y,2 = noise variance on chord length measurements

JAsjJ = absolute change in slope at knot location measurement zj(Oi)

Mi = distance measure between adjacent knot locations

and k and n are the total number of projections and number of knot locations per view,

respectively. This equation can be interpreted as follows. The noise variance on knot j is

proportional to the variance of the noise on the chords, denoted u,2,,, to capture the idea

that higher errors in the chord measurements will translate to higher errors in the knot

location measurements during the knot extraction process. It is inversely proportional to

the magnitude of the change in slope, I Asj I, at the knot location because a large change in

slope should make it easier to extract the knot. Further, it is also inversely proportional to

the distance Mj between the knot being extracted and the adjacent knots (for example, see

M2 in Figure 3-6). For the case of external knots, Mj is defined as twice the distance from

the nearest knot (for example, see M4 in Figure 3-6). The implication is that the greater

the separation between adjacent knots, the easier it is to extract the knots.
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To determine the value of the constant K we somewhat arbitrarily assign a value such

that the average standard deviation of knot location noise terms is 1.5 times greater than

the standard deviation of the noise on the chords

K(l a�,j (0i)) = 1.5o,, (3.4)

or

K - 1.5o,,d (3-5)
Eij (7-i (00

where d = k x n is the total number of knot location measurements. Although we have

attempted to base this noise model on estimation principles, this model is admittedly some-

what arbitrary. Some adjustment to the knot location noise model may be required with

the application of a specific knot extraction algorithm. The idea here is to get a rough

approximation of the relative performance of the algorithms.

The noise models presented here are used throughout this thesis for the generation of

data. Reconstructions are performed for scenarios where these applied noise statistics are

assumed known and also for cases where the noise model for the chords is known and

the noise on the knots is assumed id.d. with the variance equal to The i.i.d.

model is a nonrealistic model in that it assumes no information is available from the knot

extraction algorithm about the relative "goodness" of one knot measurement compared

to another. From the statistically-based GLR knot-location method used by Prince [12]

to detect the support knots from projection data, we know that in reality more precise

statistical information would be available from the knot extraction algorithm. Therefore,

we consider this i.i.d. model a worst case assessment of the algorithm's performance.

3.2.4 Initial View - A Max-Min Approach

A major concern for the algorithms developed in this thesis is the correct assessment of the

data association of the ordered knot locations measurements to the object's vertices. If the

algorithm wrongly assigns this association, the wrong hypotheses will be retained and the

optimal solution will never be reached. In order to provide an initial view into the algorithm

with a favorable triangulation geometry, the algorithm begins by searching through all
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possible views and starts the algorithm with the view that maximizes the minimum (Max-

Min) separation between adjacent knot location measurements. Using the property of the

Radon transform given by Equation (2.20), the views that occur prior to the Max-Min view

axe appended to the original data such that their new angular position is 0,,,,,, O"Id + 180'

and the knot location measurements and chord length measurements axe altered to be

consistent with the requirements of Equation (2.20). The hope in this approach is that

the Max-Min view and the views in close proximity to it will provide a good triangulation

geometry and the algorithm will staxt off by retaining the correct hypotheses. In addition,

we note that if all hypotheses are retained at each step of the algorithm, the initial view is

unimportant because the optimal hypothesis is never deleted from the possible hypotheses

retained at each step of the algorithm.

3.2.5 Performance Measures

Two measures are used to evaluate the performance of the reconstruction algorithms. The

first is the Hausdorff distance, a metric on the set of all convex sets, K. The second is

the Symmetric Difference measure, a geometrically based measure of the difference between

two convex sets. Both offer insight into the quality of the reconstruction; yet, both have

deficiencies in their ability to quantify the "closeness" between the true object and its

reconstruction. In this section each method is presented and its merits and deficiencies are

noted.

In the algorithms that follow, the reconstructions are performed by minimizing the L 2

norm on measurements in the Radon Space. Regardless, however, the minimization of

reconstruction error in the object space is of direct interest in quantifying the quality of the

reconstructed object. Although it sometimes produces ambiguous results, the Hausdorff

distance is appealing because it is a metric on K. The Symmetric Difference measure is

attractive because it is a geometrically intuitive measure of the difference between two

convex sets. The one disadvantage of the Symmetric Difference measure is that it is not

a "metric" (or a true measure of the distance between two sets). Because both measures

have benefits and deficiencies, we will incorporate both measures into our analysis of the

reconstruction results thus allowing a more comprehensive analysis of the algorithms.
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Hausdorff Distance

The Hausdorff distance is a true metric on the set of all convex sets K in the metric space X;

it is attractive because it offers a mathematically based definition of the distance between

two convex sets.

To describe the Hausdorff distance we first need to define a few terms of metric spaces.

First, the notion of distance between two sets in a metric space X is defined as

d(FG) = inf I d(xy) I z E F, Y E GI (3-6)

where F and G are subsets of the metric space. Further, a ball around a set is defined

B (F, p) -_ I X E X I d(z, F) < p} (3.7)

where p > 0. Figure 3-7(a) shows an example of a baJ1, B(F, PF), around the set F.

Using these definitions, the Hausdorff distance is defined

AH (F, G) = inf f p I F C B(G, p) and G C B(F, p)} (3.8)

An intuitive explanation of the Hausdorff distance can been seen in Figure 3-7. Figure 3-

7(a) shows the minimum amount, PF, that F would have to be "uniformly expanded" so

that G could be contained in it. Similarly, Figure 3-7(b) shows the minimum amount, PG,

that G would have to be expanded to contain F. The Hausdorff distance is the maximum

of these two "minimum inflation factors".

The primary deficiency of this metric is that it can produce non-intuitive results for

some convex sets. An example of such a result is shown in Figure 3-8. Figure 3-8(a) shows

the Hausdorff distance between the two sets F and H. Similarly, Figure 3-8(b) shows the

Hausdorff distance between the same set F and a new set G. Although G and H are

significantly different to the eye, both have the same Hausdorff distance when compared

with the set F. Thus, this metric can be somewhat misleading in quantifying the quality of

a reconstruction. Therefore, a second measure of distance is introduced to provide a more

geometrically intuitive performance measure.
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Figure 3-8: Hausdorff Distance Inconsistency.
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Figure 3-9: Example of the Symmetric Difference Measure.

Symmetric Difference Measure

The second method used to quantify the performance of the reconstruction algorithms is

the Symmetric Difference measure. Unlike the Hausdorff distance which is a metric on

K, the set of all convex sets, the Symmetric Difference measure has no simple distance

interpretation. Instead, it is a geometrically based measure on the difference between two

convex sets. This measure is defined

AS(F, G) = y(FAG) = IL[(F U G) (FnG)] (3.9)

where F and G denote convex sets and the operator y(-) denotes the area of the argument.

Figure 3-9 shows two sets F and G and their corresponding Symmetric Difference measure.

A final note on the performance analysis is the manner in which we will use these

distance measures. In order to make reconstruction results comparable, the measurements

are generated as a percent. For the Hausdorff distance the percent Hausdorff error is defined

% Hausdorff error = AH(S' X 100% (3-10)
AH(S' 0)

where S corresponds to the true object, 9 corresponds to the reconstruction, and 0 denotes

the set composed of the single point at the origin. Similarly, the Symmetric Difference error

is defined

% Symmetric Difference error = AS(S' S- X 100% (3.11)
Y(S)

These error measures provide a means to quantify the quality of the reconstructions for the

algorithms developed in Chapters 4, 5, 6, and 7.
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Chapter 4

Sequential Reconstruction

Algorithm

With this chapter we begin a sequence of three chapters dedicated to the reconstruction of

the vertices of two dimensional (2D) binary polygonal objects from knot location and chord

length data. We start in this chapter with the most structured of the three algorithms:

an estimation algorithm that incorporates knot location measurements sequentially, with

increasing angular position. Chapter 5 extends the algorithm to incorporate views non-

sequentially. Finally, in Chapter 6 a full nonlinear estimation algorithm that reconstructs

polygonal objects from knot locations and chord length measurements is developed. In all

three of these chapters the number of vertices is assumed known and each knot location

measurement corresponds to exactly one vertex in the object. Finally, Chapter 7 deals with

the problems of inconsistent data measurements (missed knot detections).

This chapter begins in Section 4.1 with the presentation of the methodology and overview

of the Sequential Reconstruction Algorithm. The next three sections detail each of the three

distinct stages of the algorithm. Specifically, we present data association in Section 4.2,

vertex estimation in Section 4.3, and data processing in Section 4.4. Finally, sample re-

constructions and Monte-Carlo simulations axe presented in Section 4.5 and conclusions in

Section 4.6.
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4.1 Overview of the Algorithm

This chapter is concerned with the reconstruction of binaxy polygonal objects from measure-

ments of the knot locations of an n-gon (assuming that the number of sides is known). As

outlined in Section 3.2.1, we assume that the projections are taken at known angular views

and that the knot locations have been extracted from the projection data independently

of this algorithm using a procedure such as that of Mier-Muth and Willsky [8]. Also, for

simplicity we assume that all objects are binary and convex as discussed in Section 3.2.1.

Throughout this chapter we will make extensive use of the definitions and terminology

presented in Chapter 2 and problem formulation of Section 3.2.

The algorithm developed here incorporates the measurements of the knots at each view

sequentially, with increasing angular position. The geometry of this problem can be viewed

as a fixed (rigid) object with tomographic measurements taken at different views; equiva-

lently, the problem can be viewed as measurements taken at a single, known viewpoint of

an object rigidly rotating at a fixed velocity and viewed at equal time intervals (see [5]).

By viewing the vertices with a fixed viewpoint geometry, the problem can be related to the

single-sensor multitarget tracking problem (see section 3.1.2). In this framework, the asso-

ciation of knots to object vertices is analogous to the association of radar reports to targets.

Further, the vertex locations of the tomographic reconstruction problem correspond to the

target locations of the radar problem. Thus, like the radar multitarget tracking problem,

this reconstruction problem is also developed by estimating both discrete and continuous

values. Unlike the radar problem, there are a number of simplifying assumptions because

of the geometry of the problem.

Figure 4-1 depicts the block diagram of the methodology used in this algorithm. Ba-

sically, the algorithm is a three stage process. In the first stage, all possible associations

of knot location measurements to vertex locations are enumerated to form discrete-valued

states or hypothesis. Once all of the possible data associations are determined, the second

stage of the algorithm estimates the vertex locations for each discrete hypothesis under

the assumption that it is the correct hypothesis. Finally, in the third step, the algorithm

determines the likelihood that each hypothesis is correct given measurements of the knot lo-

cations and chord lengths. The likelihood ratios of these hypotheses are then used to prune

the set of all possible discrete hypothesis for the next step of the algorithm and obtain the
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Figure 4-1: Block Diagram of Sequential Reconstruction Algorithm.
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Figure 4-2: Knot Location Data.

optimal estimates of the vertices.

4.2 Part I : Data Association

In the problem of object reconstruction from knot locations, each knot corresponds to a

vertex in the object. Prior to the reconstruction, however, this correspondence is unknown

and the problem is one of data association. If the knot locations in the first view (01 = 00)

are associated to vertices a, b, c, and d as shown in Figure 4-2 (and denoted abcd), the goal

is to determine the possible data association switches that can occur in these knots as the

-views are varied from 01 -_ O' to 0, = 1800 - A (assuming m projections are available and

180'
M

Because of the geometry of the problem, there are a number of constraints in the allow-
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Figure 4-3: Relationship of Knot Location Data at 01 = O' and 0 = 180'.

able knot switches that can occur if the knots are viewed as a continuous function of 01:

A. As shown in Figure 4-3, if the knots in the projection at 01 = O' are labeled a, b, c,

and d, these knots occur in the reverse order in the final projection at 0,,,+, = 1800.

Thus, for the case of a 4-gon a knot association hypothesis that starts with abcd must

end with dcba.

B. A switch in two knots- occurs when two vertices lie along the same line, perpendicular to

the projection. Therefore, for an n-sided object, exactly n(n - 1) switches occur over

a complete and continuous 360' range of projections. Further, because each switch

of vertices occurs exactly 180' apart (because the vertices must lie along the same

line) , n(n-1) switches occur in the range from 01 = O' to On+l = 1800. Therefore, in2

a 4-gon exactly 6 knot location switches will occur.

C. Because two vertices have to be aligned on a line perpendicular to the projection for

the knots to switch, it is not possible for two knots to switch twice in a row (i.e. you

can't undo what was done in the previous step) with increasing 0.

'Note that the examples are given for the case of a 4-gon but can be naturally extended to the general
case of an n-gon
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Using these geometric constraints and the fact that the views input into this algorithm lie

in close angular proximity, we assume for the Sequential Algorithm:

1. The following gating approach is used in this algorithm: from view-to-view the angular

increments are small enough so that only adjacent knots can switch.

2. We have to account for the possibility that from one view to the next, no knots will

change position.

One final note, for notational convenience we denote a switch in the associations of knots

in positions j and j + 1 by (j, j + 1). For example, the hypothesis abcd --* bacd would be

denoted (1, 2) because the knot associations in positions 1 and 2 have switched. Also, no

change in the knot associations from one view to the next is denoted NC.

Given the above constraints, the enumeration of all possible knot association hypotheses

can be shown in a tree. The root of the tree corresponds to the initial association of the

knots to the vertices in the unknown object. We label the first measurement abcd which

denotes that knot location measurements zi - Z4 correspond to the unknown vertices a - d,

respectively (for a 4-gon). Each branch of the tree corresponds to the inclusion of a new

set of knot location measurements and gives the possible way in which the knot to vertex

associations may have changed since the last measurement. An example of the hypothesis

tree for a 4-gon is shown in Figure 4-4. We can see from this tree that the number of possible

hypotheses grow significantly with added views, even given the geometric constraints of

this problem. Further, the complexity of this tree increases substantially as the number of

vertices in the object increases. A pruning algorithm to reduce the number of hypotheses

is introduced in Section 4.4.

Using the notation of the Multitracker algorithm developed by Kurien [6] we let q,� denote

one particular association or hypothesis of the first k views of knot location measurements

k ,to the vertices of the object. Each potential hypothesis for the object, qi , is represented

on the hypothesis tree by a trace of successive branches from the root of the tree to a

branch representing the incorporation of the kth measurement. For example, the path

traced out in crashed lines in Figure 4-4 represents the hypothesis q 3 (assuming that the1

r = 17 potential hypotheses are labeled from the top clown), which corresponds to the knot

location hypothesis abcd --+ badc --+ badc. Therefore, each sequence q� gives one possible
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matrix

V X1 X2 Xn

Y1 Y2 ... Yn

For each view Oj, the assumed model relating the vertices to the knot location data is

z(Oj) = h(V, Oj) + a(Oj) (4.1)

where

Z(Oj) [Zl(Oj) Z2(0j) ... Zn(Oj)] Z1 (0j) < Z2 (0j) < ... < Z.(Oj)

row vector of noisy, ordered knot location measurements

V vertices of the object(defined above)

h(V, Oj) nonlinear function of the vertices

and n(Oj) - N(O, Aj) is a vector independent Gaussian noise process with the variance on

each knot as defined in Section 3.2.3 so that Aj is a diagonal matrix. The vector h(V, Oj)

can be represented by

h(V, Oj) -- sort(c(Oj)V) (4.2)

where C(Oj) -- [cos(Oj), sin(Oj)] is the projection matrix at angle Oj, c(Oj)V is the projection

of the vertices, and sort(.) is an operation that sorts the vertex projections in order of

increasing value. Thus, the problem is a nonlinear function of the vertex locations.

If the measurements at each view are combined (stacked), the overall measurement

equation becomes

Z" = [IT(Ol) 14KT(02) I ... I �KT(OA')]T (4.3)

= H(V) +A(

where

H(V) = [e(V, 01) I e(V, 02) e(V, Ok)]T

JV = [RT(Ol) I RT(02) ... I RT (Ok )]T
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The objective of this algorithm is to estimate V given Zk and the noise statistics. Because

H is a nonlinear function of V, this problem is inherently nonlinear.

The formulation proposed in this chapter is a hypothesis testing algorithm which will

linearize the estimation problem with respect to V at each stage by assuming that the

association of the knot locations to the vertices is known. Later, in Chapter 6, we return

to the full nonlinear problem and consider a nonlinear approach to estimating the vertices

from Equation (4-3).

If we now assume that the knot associations qi� are known, Equation (4.1) can be written

as:

ZPA = c(OAVPj(qi ) + n(Oj) (4.4)

where

c(Oj) [cos(Oj), sin(Oj)]

Pj(qi') permutation matrix dependent on the data associations

The term c(Oj)V is the location of each vertex in the projection (i.e. the knot locations)

while Pj(qik) is a permutation matrix that orders the knot locations based on the hypothe-

sized set of data associations given by q�. The correspondence of the knot measurements,

z(Oj), to the vertices of the object is lost without knowledge of Pj. This equation is now

linear with respect to the vertices, V, and an estimate of V can be obtained using ML

estimation techniques.

First, we post-multiply each measurement equation by the appropriate permutation

matrix

Z(oj)p-l( k 1 k.7 c(Oj)V + n(Oj)P, (q,q, (4.5)

or

.i(Oj) c(Oj)V +,h(Oj) (4.6)
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where

Oj) = Z(Oj)P, ') = [il(Oj), i2(0j),---, i.(Oj)]

Oj) = n(Oj)P, ') = [k(Oj), ii2(0j), ft.(Oj)l

Note that Pj is always invertible because it is a permutation matrix. Recalling that each

column of V is a vertex of the object, we can separate the problem into n separate estimation

problems (one for each vertex) and estimate each vertex, Y,", separately using the ML

estimate equation defined in Section 2.1.2. Therefore, the measurement equation for each

vertex becomes

L. = CL. + gm (4.7)

where

)]TZn [-4.(01), im(02), im(Ok

C [C(O,)T, -C(02 )T'...' -C(Ok )T]T

1XM Ym ]T

9,n [fim (01), fim (02), fim (Ok )]T

and the ML estimate of V is calculated using Equation (2.14) from Section 2.1.2

km(Zm) = (CTR-'C)-'CTR-lzm (4.8)M M

where the covariance matrix Rn is obtained by taking the appropriate terms from each

diagonal Aj matrix (since the noise is uncorrelated and the matrix Pj simply changes the

ordering of the knot measurements)

4.4 Part III: Data Processing

Because of the enormous number of possible hypotheses that occur as views are added, it

is necessary for computational purposes to prune the number of possible hypotheses as new

data are added. Further, we also require a procedure to determine the best data association

hypothesis and thus the optimal estimate. For these reasons, a method of evaluating each
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hypothesis is incorporated into the algorithm. The quality of each proposed hypothesis is

evaluated using the ordered knot location measurements Zk, the ML estimate f7 from Part

II, and chord length measurements collected over the same angular range.

4.4.1 Modeling of Chord Length Measurements

The chord length measurements as a function of the vertices, V, for each view Oj axe modeled

by:

M(OA = f W, 0A + WA (4.9)

where M(Oj) is the vector of chord length measurements at angle Oj, f (V, Oj) is a nonlin-

ear function relating the chord measurements and the vertices of the object, and v(Oj)

N(O, o,,,,I) is independent Gaussian noise as defined in Section 3.2.3.

The measurements at each view are combined (stacked) to form a single chord length

measurement equation

Mk = F(V) + T (4.10)

where

F(V) = [LT(V, 01) I fT(V, 02) 1 ... I f (V, Ok)]T

T = [i7(01) I _V T (02) ET(Ok)]T

Unlike the knot location data, the matrix f (V, Oj) does not become a linear relationship

in V once the data associations are known2. Thus, it is difficult to estimate the vertices

V even given the data associations (unlike the knot locations). However, the chord length

data can be used effectively with the knot locations to help prune the possible hypotheses

as described in the following section.

2The form of this function is rather complicated to describe. Rather than give an explicit formula, we
include an explanation and the code used to calculate the chord measurements as a function of the vertex
locations in Appendix A.
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4.4.2 Hypothesis Test

If the measurements of the knot locations and chord lengths axe combined to form the vector

XJI - [(Zk)T I (Mk)T]T, the hypotheses can be evaluated using a form of the Wary ML

Generalized Likelihood Decision Rule (refer to Section 2.1.3)

d(X) = qik if for all qi" :/ qj�
log[p., �,V(X"I qi",V(Z"J qik))] > log[p. qj , V (Z 1 �.7

xI,7�,V(XkJ k - k 1�))] (4.11)
.7

where f7(Zklqik) denotes the ML estimate of the vertices of the object given hypothesis qik

and knot measurements Zk. The primary departure of this decision rule from the standard

Generalized Likelihood Ratio Test is that the unknown non-random quantity, V, is esti-

mated from a subset of the total measurements (i.e. from the knot location measurements

but not from the chord measurements)-

After evaluating the hypotheses using the above decision rule the top T hypotheses are

retained and the remainder are discarded. In the next step of the algorithm the possible

data associations for the new data are only included for these T hypotheses and the other

hypotheses are effectively pruned from the tree. In the final step of the algorithm, the

optimal hypothesis 4, as determined by the above decision rule, is retained as the final

estimate of the true data associations. Similarly, the optimal estimate of V is the ML

estimate given that 4 is the true set of data associations. Experimental results of this

algorithm follow in the next section.

4.5 Experimental Results

4.5.1 Test Objects

Throughout the analysis of the reconstruction algorithms developed in this thesis, two

binary test objects are used to characterize the performance of the algorithms. Both objects

are 4-gons that are contained within the region defined in Cartesian coordinates by the four

points (1, 1), (1, - 1), (- 1, - 1), and (- 1, 1) (or in polar coordinates by a ball of radius p = -,F2

centered at the origin). The first object is the "kite" shown in Figure 4-5. The kite was

chosen because of its contrasting projection width as the projection angle is varied over the
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Figure 4-5: Kite Test Object.

[O', 180') allowable range. When a projection is taken along a line paxallel to its longest side,

the distance between the two support knots is roughly twice that of the distance between

the support knots taken of a projection taken at 900 rotation (shown in Figure 4-5). In

contrast, for our second object we chose the square shown in Figure 4-6. At its minimum,

the distance between the support knot locations is .701 times the distance at its maximum

(refer to Figure 4-6). Thus, although the internal knots are allowed to move arbitrarily

close together as the view changes, the width of the field containing the knots does not vary

greatly (unlike the kite). By exploring sample reconstructions of both objects, we hope to

reveal both strengths and weaknesses in each reconstruction algorithm.

4.5.2 Sample Reconstructions

Figure 4-7 shows sample reconstructions of the two test objects from 27 uniformly spaced

angulax views over the range [O', 180'). Each view contains 5 chord measurements with the

SNR levels on the chord measurements set at 10dB. The chord measurements axe uniformly

sampled over the range defined by t = [-1, 1]. Note that this results in views where some of

the chord measurements are zero (i.e. the object is not in the field of view) and conversely,

in views where the chord measurements are confined to the interior of the object (for the
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projections
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Figure 4-6: Square Test Object.

Error Measures Kite Test Object Square Test Object
True Model i.i.d. Model True Model i.i.d. Model

Hausdorff Error 16.22 36-67 32-16 44-61
Symm. Diff. Error 19.35 38.42 17-71 33-62

Table 4.1: Comparison of Errors for Sample Reconstructions Using Sequential Reconstruc-
tion Algorithm.

kite object). Note also that T-_10 hypotheses were retained in each step of the algorithm.

Given the above description, there are a total of 108 knot location measurements and 135

chord measurements used in each reconstruction. In both Figure 4-7(a) and Figure 4-7(b),

there are two reconstructions. The first one, denoted by the dashed lines is a reconstruction

in which the correct applied noise model was assumed known. In the second reconstruction,

denoted by dotted lines, the assumed model for the knot variances is an i.i.d. noise model

with Az = (1.5a .. )2I where o,,,,, is the noise variance on the chord length measurements'.

Table 4.1 shows a comparison of both the Hausdorff and Symmetric Difference errors of

these two reconstructions.

3Refer to Section 3.2.3 for a complete description of the noise models used in this thesis.
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Figure 4-7: Sample Reconstructions of Sequential Algorithm: 27 views, 10 hypothesis prun-
ing, 10dB SNR on chords.

The relative performance of both reconstructions was consistent. In both cases, the

reconstruction that assumed the correct applied noise model for the knot locations outper-

formed the reconstruction that assumed the id.d. noise model. As discussed in Section 3.2.3,

the id.d. model is viewed as a worst case performance assessment and therefore the higher

errors are expected. We note that the Non-Sequential Algorithm presented in Chapter 5

deals more robustly with this noise model and the Nonlinear Algorithm presented in Chap-

ter 6 significantly reduces the error due to the i.i.d. model assumptions.

Also, it is interesting to note that the Symmetric Difference errors were larger than the

corresponding Hausdorff error in the reconstructions of the kite; while in the reconstructions

of the square, the Hausdorff errors were larger than the corresponding Symmetric Difference

errors. This occurs because of the different criteria used to quantify the distance between

two convex sets employed by these two error measures (refer to Section 3.2.5 for a complete

description of these error measures). Although the reconstruction errors of the kite were less

than those of the square for most of the error measures in Table 4.1, this result is only for

one possible sample path. We note this behavior but defer any comparative analysis of the

algorithm in reconstructing these two objects to the Monte-Carlo analysis of Section 4.5.3.
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4.5.3 Monte-Carlo simulations

In the following sections Monte-Carlo simulations of reconstructions are used to test the

performance of the Sequential Reconstruction Algorithm. With the exception of the last

section which compares the performance of reconstructions of both the kite and square test

objects, all of the simulations are performed using the kite test object. The Monte-Carlo

simulations consist of 100 independent reconstructions for each reconstruction scenaxio.

Additionally, in each plot error bars denote the 95% confidence intervals of the sample

mean values that result from the 100 runs of the algorithm. Again, as defined previously,

all chord length data for each projection were uniformly sampled over the region t = [-1' 1].

Unless otherwise stated, T = 15 hypotheses were retained at each step of the algorithm,

5 chord measurements were taken per view, and the SNR was set to 10dB on the chord

length measurements. Reconstructions are done for cases that assume the correct applied

model for the noise on the knot location data and also for cases that assume an id.d. noise

model such that A, -_ (1.5an)'I where o-,' , is the noise on the chord measurements (refer to

Section 3.2.3 for a detailed description of the noise models used in this thesis). Finally, in

all of the simulations the projection data used to perform the reconstructions are uniformly

spaced samples over the angular region [O', 180').

Reconstruction Error as a Function of Retained Hypotheses

Figure 4-8 is a plot of the Hausdorff and Symmetric Difference errors of the kite reconstruc-

tion as a function of the number of hypotheses, T, retained in each step of the algorithm.

Each reconstruction consists of 18 views and reconstructions are performed for T = 5, 10,

15, and 20 retained hypotheses. As described previously, reconstructions are done assuming

both the correct applied noise model and the id.d. model.

As expected, as the number of retained hypotheses, T, is increased, the reconstruction

results improve. If the number of retained hypotheses is small, the algorithm cannot correct

itself after a sequence of poor projection data because the true hypothesis will already

have been pruned from the hypothesis tree. Conversely, if the algorithm where to retain

all hypotheses, the optimal estimate (as defined by the cost criterion used to prune the

hypotheses) would always be obtained. We also note that the reconstruction error drops

most dramatically when the number of hypotheses is increased from 5 to 10. This error
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Figure 4-8: Performance as a Function of Retained Hypotheses Used in Sequential Recon-
struction Algorithm.

reduction is greater than subsequent decreases (as the number of retained hypotheses is

increased) because each time that T is increased the probability that the optimal hypotheses

or one close to it will be included in the retained hypotheses also increases (i.e. this is a

case of diminishing returns).

As expected, reconstructions based on the correct applied knot noise model outperform

the reconstructions that assume an id.d. knot noise model. Another interesting implication

of Figure 4-8 is that the id.d. model seems to level off much more quickly as a function of

the retained hypotheses; implying that retaining more hypotheses will not obtain a better

estimate. This behavior can be attributed to the uniform weighting, via the inverse of

the covariance matrix of the assumed noise model, of all knot data in the cost function

regardless of the amount of noise actually present in each knot measurement(i.e. a least

squares cost criterion versus a weighted least squares cost criterion).

Reconstruction Error as a Function of Chord Measurements

In this section we analyze the effect of the number of chord measurements used to prune

the hypotheses in the Part HI of the Sequential Algorithm. Each reconstruction is based on

18 uniformly spaced views or a total of 72 knot location measurements. We set the vaxiance

on the chord length measurements to a constant value throughout this experiment. Thus,
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Figure 4-9: Performance as a Function of Number of Chords Used in the Sequential Recon-
struction Algorithm.

as the number of chord length measurements per view is varied, the SNR (as defined in

Section 3.2.3) will also change. The constant variance on the chord lengths was chosen

for the case of 10 chord measurements per view at a SNR of IOdB and the noise on the

knot locations was set with Equation (3-3) using this constant chord vaxiance. Noisy chord

data were generated for 0, 5, 10, 15, and 20 chord measurements per view. The simulation

results are shown in Figure 4-9. Figure 4-9(a) presents the Hausdorff error results while

Figure 4-9(b) presents the Symmetric Difference error results.

The overall behavior of the curves in Figure 4-9 is as expected. The reconstruction error

for both measures decreases as the number of chords used in the algorithm is increased.

Further, the most dramatic reduction in error occurs as the number of chords is increased

from 0 to 5 measurements per view. This lends credibility to the fact that the geometric

information contained in the chord data is an essential part of this reconstruction algorithm.

As expected, the reconstructions that assume the correct applied noise model (shown in the

solid lines) consistently have a lower error. An interesting observation regarding the Sym-

metric Difference error results for the i.i.d. noise model is that the Symmetric Difference

error is significantly larger than the Hausdorff error when the number of chords measure-

ments is small (refer to Figure 4-9). This implies that without an accurate knot location

noise model (as in the case of the i.i.d. model), the chord measurements are extremely
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important in reducing the Symmetric Difference error between the reconstruction and the

true object.

Reconstruction Error as a Function of SNR and Number of Views

This section presents the results of a series of independent Monte-Carlo simulations per-

formed at vaxious SNRs for different numbers of views (refer to Figure 4-10) to characterize

the effect of these parameters on the Sequential Algorithm. Reconstructions are performed

for SNRs of OdB, 1OdB, 2OdB, and 3OdB and numbers of views equal to 9, 18, 27, and 54.

Figure 4-10(a) and (b) present the Hausdorff and Symmetric Difference errors, respectively,

for reconstructions assuming the correct applied knot location noise model. Similaxly, Fig-

ure 4-10(c) and (d) present the same error measures for reconstructions assuming an id.d.

noise model for the knot location data.

There are a number of observations consistent with all of the reconstruction results pre-

sented in Figure 4-10. First, as the SNR increases the percent error decreases (as expected).

The most dramatic decrease in error occurs when the SNR is increased from OdB to 1OdB.

This result is attributed to the algorithm's inability to resolve the knot-to-vertex data as-

sociations in a high noise scenario. Another result that is corm-non to all reconstructions is

that the relative shape of the resulting curves at each SNR is the same. Thus, at a given

SNR all of the reconstruction errors behave similarly as a function of the number of views

even if the relative level is different. In addition, although the errors for both measures

decrease initially as the number of views is increased, in all cases (except at SNR=OdB)

the error increases as the number of views becomes laxge. Although this result may seem

counter-intuitive at first, it can be explained by the method used to reconstruct the objects

in this algorithm. As the number of views increases, the angular separation between views

becomes small. From one data set to the next, the views change very little. When the knot

locations are close in a particular view and noise is added to the system, the algorithm may

retain the wrong hypotheses. If the next view has the same data quality (which is expected

if the views axe taken very closely together), the wrong hypotheses continue to be retained.

If enough "bad" views are added in a sequence, the optimal hypothesis may be pruned and

discarded, lost to the algorithm forever. Thus, the algorithm returns a sub-optimal estimate

such as the results of Figure 4-10 show for large numbers of views. Figure 4-11 demonstrates
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Figure 4-11: Sequential Algorithm as a Function of Retained Hypotheses: 54 views,
SNR=lOdB, 5 Chords, T-_15 Hypotheses.

that if the number of retained hypotheses is increased the reconstruction error for scenarios

of 54 views assuming the correct noise model is reduced dramatically. As a final note, we

stress that the Non-Sequential Algorithm of Chapter 5 corrects the problem of a sequence

of poor views by reordering the angular views before they are introduced into the algorithm

(at the expense of model complexity).

Finally, we note some of the differences between the respective results of Figure 4-10.

Consistent with previous sample reconstructions of Section 4.5.2, the i.i.d. noise model

reconstructions produce a higher percent error for both the Hausdorff and Symmetric Dif-

ference measures. Note also that the results of the i.i.d. reconstructions tended to be flatter

(i.e. did not vary as much) as a function of the number of views. Although the Hausdorff

error and Symmetric Difference error curves seem to have the same relative shape in most

cases, the Symmetric Difference error values where smaller. In addition 7 there axe instances

where the two measures produce conflicting results. For example in Figure 4-10(c) and (d)

the Hausdorff error decreases as the number of views is increased from 27 to 54 views at

SNR=OdB while the Symmetric Difference error increased slightly under the same condi-

tions. These discrepancies can be attributed to the fact that each measure evaluates the

difference between two convex sets using a different criterion (see Section 3.2.5). For exam-

ple, in the sample reconstructions of Section 4.5.2, the i.i.d. kite reconstruction (in dotted

lines in Figure 4-7(a) had a smaller Hausdorff error than the corresponding reconstruction
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error for the square, while the i.i.d. square reconstruction (in dotted lines in Figure 4-7(b))

had a smaller Symmetric Difference error. Although it is axguable which of these two re-

constructions is "better", in most cases the Symmetric Difference error is a more intuitive

measure.

Reconstruction Comparison of Two Test Objects

Having completed the Monte-Carlo analysis of the Sequential Algorithm for a particular

object, the kite, we now turn to a comparative analysis. Figure 4-12 shows the Monte-

Carlo reconstruction errors for both the kite and the squaxe test objects as a function of the

number of views used in the reconstruction. Reconstructions were performed for 9, 18, 27,

and 54 views. Figure 4-12 (a) and (b) are Hausdorff and Symmetric Difference errors for

reconstructions assuming the correct applied knot location noise model while Figure 4-12

(c) and (d) are the corresponding error measures under the assumption of the id.d. noise

model.

With the exception of the Hausdorff error for the i1d. noise model (Figure 4-12(c)

the reconstruction of the kite seemed to slightly outperform that of the square for small

numbers for views while the opposite was true for larger numbers of views. This result may

be attributable to the sensitivity of some of the views of the kite to noise. Because the

kite has views where the distance between the support knots is relatively small (refer to

Section 4.5.1), this may result in a sequence of "poor" measurements that produce error in

the reconstruction at large numbers of views. In the case of the Hausdorff error of the i.i.d.

model reconstruction of Figure 4-12(c), the kite's reconstruction errors are less than the

square reconstruction errors for all numbers of views. These results conflict slightly with

the corresponding Symmetric Difference error analysis of Figure 4-12(d). Again, these dis-

crepancies are attributed to the different performance criteria of the two measures. Despite

these small differences, however, all of the curves have the same general shape. In addition,

the reconstruction errors of both objects are on the same order of magnitude. Therefore, the

algorithm does not seem to produce significantly better reconstructions for either object.
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4.5.4 Limited Angle Tomography and Non-Uniform Projection Angles

In this final section of experimental results we perform reconstructions using the Sequential

Algorithm over limited angular regions and with non-uniformly spaced' projection data.

This is an important feature of this algorithm as many classical reconstruction techniques

require uniformly spaced angular projections over the complete range [00, 1800).

Reconstruction Error as a Function of Limited Angle Projection Data

In this section we evaluate the reconstruction performance of the Sequential Algorithm over

limited angular ranges. In each reconstruction, we generate a full set of projection data (i.e.

chord measurements and knot location measurements) over the [O', 180') angular range

with 5 chord measurements per view at a SNR of 10dB. Like all previous experiments, the

chord length measurements are uniformly sampled over the range t = [-1, 1]. Next, we

perform reconstructions on subsets of the projection data over limited angular ranges using

the Sequential Reconstruction Algorithm. Specifically, reconstructions were performed over

the following angular ranges: [O', 45'), [O', 700), and [O', 90'). Each subset of projection

data contains 18 uniformly spaced views over the specified angular range. For each angular

range, 100 independent Monte-Carlo reconstructions were performed with T=15 hypotheses

retained at each step of the Sequential Algorithm.

Figure 4-13 shows the errors resulting from reconstructions of the kite as a function

of the angular range. As the results from both the Hausdorff and Symmetric Difference

errors in Figure 4-13(a) and Figure 4-13(b) demonstrate, the algorithm was able to produce

reasonable reconstructions over each angular range. As expected, the reconstruction errors

of both measures decreased as the angular range is increased. This is attributed to the

improvement in triangulation geometry obtained by spacing the views over a wider angu-

lar region coupled with the problem that the Sequential Algorithm has with retaining the

wrong hypotheses if the views are "too" close (refer to the discussion in Section 4.5.3 under

the performance as a function of SNR). Although these results show that this algorithm

is capable of reconstructing over limited angles, the success is somewhat limited because

of the relatively high reconstruction errors (although this would decrease as the SNR is

increased). However, looking ahead, we note that the results of the Non-Sequential Algo-

rithm of Chapter 5 demonstrate greatly improved overall performance, especially for small
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Figure 4-13: Performance as a Function of the Angulax Range Using the Sequential Algo-

rithm.

Error Measures True Model i.i.d. Model

Hausdorff Error (%) 10.75 14-53

Symm. Diff. Error (%) 19.88 17-05

Table 4.2: Sample Limited Angle Reconstruction Over the Range [00, 90') Using the Se-
quential Algorithm.

angular ranges.

In addition to the reconstruction errors resulting from the Monte-Carlo reconstruction

results, Figure 4-14 shows a sample reconstruction. This reconstruction was generated

under the conditions listed above with projection data over the angular range [O', 90'). As

the resulting plot shows, the algorithm was able to produce a good quality reconstruction in

the face of limitations on both the angular range and the number of projections (18 views)

in a low SNR situation (10dB). Additionally, Table 4.2 summarizes the reconstruction error

for this particular sample.

Reconstruction Using Non-Uniform Angular Spacing

In addition to the ability to reconstruct over limited angulax ranges, the Sequential Algo-

rithm also has the ability to perform reconstructions on non-uniformly spaced projection

data. Figure 4-15 shows a sample reconstruction from 27 non-uniformly spaced views over
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Figure 4-14: Sample Reconstruction Over Limited Angular Range ([O',90')) Using the
Sequential Algorithm.

the [O', 180') angular range. In this reconstruction, each projection contained 5 chord mea-

surements at a SNR of I0dB with T = 15 hypotheses retained at each step of the algorithm.

To determine the non-uniform projection angles, we started with the initial projection at

01 = O'. The second projection was at 02 -_ 3.5' and all subsequent angles were generated

with the following equation

0 70i_1 < 180' (4.12)
6

The solid line in Figure 4-15 represents the true object and the dashed and dotted lines

are the reconstructions assuming the correct knot location noise model and the i.i.d noise

model respectively. In addition, Table 4.3 summarizes the Hausdorff and Symmetric Differ-

ence reconstruction errors for these results. Although only for one sample path, these results

show the performance of this algorithm is not limited to a uniformly spaced projection data

set.

4.6 Conclusions

In this chapter, we have studied a finite parameter reconstruction algorithm to reconstruct

the vertices of a binary polygonal object from sequential measurements of knot location and
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Figure 4-15: Sample Reconstruction with Non-Uniformly Spaced Projection Angles Using
the Sequential Algorithm.

Error Measures True Model i.i.d. Model
Hausdorff Error (%) 11.19 20-84

Symm. Diff. Error (%) 7.23 22.71

Table 4.3: Comparison of Errors for Non-Uniform Angular Spacing Using the Sequential
Algorithm.
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chord length data. The reconstruction was posed as a combined hypothesis test-estimation

problem; and the proposed solution was a combination of a Generalized Likelihood Ratio

Test to solve the discrete hypothesis testing problem and Maximum Likelihood estimation

technique to solve the estimation problem. The results of this algorithm were mixed. For

relatively small amounts of data (as compared to traditional reconstruction algorithms like

filtered backprojection [4] and even the statistically based ML reconstructions of Milan-

far [9]), the results were encouraging. Although the algorithm was unable to disambiguate

the data association problem for low SNRs (OdB), it was robust for SNRs at or above 10dB.

The analysis also confirmed that the inclusion of chord length data to prune the possible

hypotheses was a useful method of reducing the error in the reconstructed object. Further,

given the reconstructions of the two test objects, the algorithm appears robust to different

types of objects. Finally, we showed that the Sequential Algorithm is capable of recon-

structing objects in situations of limited angular measurements and non-uniformly spaced

projection data.

The primary deficiency was the degradation of the reconstruction results as the num-

ber of views increased for a fixed value of retained hypotheses. This is the result of the

sub-optimal pruning algorithm implemented to reduce the total number of discrete data

association hypotheses. We showed that one possible method of combating this problem is

simply to retain more hypotheses. In the next chapter, we approach this problem with a

second method: reordering the views so that they are introduced into the algorithm non-

sequentially. Additionally, the performance of the Sequential Algorithm when the i.i.d. knot

location noise model was assumed produced significantly larger reconstruction errors than

the reconstructions that assume the correct applied model. Although we reiterate that this

model is a worst case performance assessment (refer to Section 3.2.3), these errors are im-

proved in the Non-Sequential Algorithm of Chapter 5 and significantly attenuated in the

Nonlinear Reconstruction Algorithm of Chapter 6 which uses both knot location and chord

length measurements to estimate the vertices of the object.
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4-A Generating Chord Lengths From Vertex Locations

Because the relationship relating the chord lengths to the vertices of an object is complex,

rather than giving an explicit formula to describe this relationship in this section we present

the method and the C code used in this thesis to determine the chord lengths from the vertex

locations of a binary convex object. The approach is to triangulate the object (i.e. divide

the convex object into non-overlapping triangles), take the projections of each triangle at

to, the position in the projection ga(to) where the chord length is desired, and sum the

chord lengths of all of the triangles along this position to determine the chord length of the

original n-gon. The reason for choosing this approach is twofold. First, determining the

chord length of a triangle from its vertices is trivial; second, there is a simple method to

triangluate a binary, convex n-gon into n + 1 non-overlapping triangles.

As described in Section 2.1.5 the projection of a binary polygonal object is a piecewise-

linear spline function. For a triangle, that simply means that each projection is itself a

triangle as demonstrated in Figure 4-16. Therefore, to completely specify the projection

of a triangle, we only need to determine the knot locations zi, Z2, and Z3, and the chord

length h at the internal knot location (refer to Figure 4-16). From these values, we can

determine the equations of the two lines on either side of the internal knot location and

thus determine the value of the projection at any value of t in the projection go(t). AR

of these values can be easily obtained from the vertices of the triangle. Referring again to

Figure 4-16, we note that if projections are taken of the three vertices of the triangle two

of the values correspond to the support, which define the base b, and the third projected

vertex corresponds to the internal knot location Z2. To completely specify the projection,

we need only determine h. Using the fact that the area of the object and the area under

the projection are the same (this is a well known property of the Radon transform), we can

determine h or the value of the projection at the internal knot by using the equation of the

area of a triangle

1
A = _bh (4.13)

2
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Figure 4-16: The Projection of a Triangle.

or

h = 2A (4.14)

b

where A is the area of the triangle (easily obtained from the vertices of the object), b is the

base of the triangle (defined by the support knots), and h is the chord length or value of the

projection at the internal knot location Z2- With these values, the entire projection of the

triangle is defined and to calculate any desired chord length value we simply determine on

which side of the internal knot the chord measurement lies and evaluate the correct equation

of the line. It is obvious for an object with more sides (think of a square for example) this

approach will not work because the determination of the chord lengths at the internal knot

location is not as simple as the case of the triangle.

The second reason for choosing this approach is that the triangulation of a convex n-gon

is trivial (procedure below). Once we have the non-overlapping triangles, the projections of

the triangles at the desired position to are taken and the sum of the n + I chord lengths of

the triangles determine the chord length of the overall object. This surm-nation is possible

because the Radon transform is a linear operation.
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In summary, the overall approach is the following:

1. A vertex's angular position can be defined by the angular position of a vector from the

origin to the vertex (assuming that the origin is located inside of the polygon). For a

convex object, ordering the vertices in increasing angular order defines the connection

of the vertices to form the object. We begin by ordering the vertices of the convex

n-gon in increasing angular order to define the connection of the vertices.

2. The x and y coordinates of all of the vertices are then averaged to define the center

of mass of the object. For a convex object, the center of mass in guaranteed to lie

within the object.

3. The object is then triangulated by talking the ordered vertices of the object in pairs

and the center of mass to form n + 1 non-overlapping triangles from the object. An

example of this procedure is shown in Figure 4-17.

4. To determine the chord length at a particular location to in the projection go(t),

the projection of each triangle is taken at the required position and the sum of the

projections of the n + 1 non-overlapping triangles at this position forms the chord

length of the overall object at to.

5. Step 4 is repeated for each chord length calculation.

The code used to generate these results is the following:

#Include <math.h>

#include <mex.h>

#Include <std1ib.h>
/* -----------------------------------------------

function "c_chordgen"
------------------

Determines the chord lengths and knot locations of a binary

polygonal object.

Inputs:

1. "num-ver" : number of vertices in the object. 10

2. "views " : number of projection angles.

3. "theta" array of desired projection angles.

4 ver" matrix of vertices (2*num ver) [stored by ROWS],
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Figure 4-17: Triangulation of Kite Object.

5. "num-chords": number of desired chord measurements.

Outputs:

1. Ylyl 11 matrix (num ver*view3) of knot locations, each column

corresponding to a projection [stored by ROWS].

2. "chords I : matrix (num-chords *views) of chord lengths, each column

corresponding to a projection [stored by ROWS].

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 20

c_chordgen(ylchordsl,num_verviews,theta,ver,num-chords)

double ylochordslD;

double *num ver, *views;

double thetaDIverD,*num-chords;

I

double *P, *templ;

double *arr,*tridrr[3],crr[3];

double sumxsumyfixcent[2];

double *brrs[9),*AI,*t1,*pos;

double *v, *AngIe,*tde,*t2,*t3,deIta; 30

double temptri[6],chord;

double mbtemp[3],h;

int p;

int jnrt2,k,nrt,nct,num,anviews,nchordsl;

fix=*nurn chords;

nchords=(int)(fix);
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fix= *views;

nviews=(Int)(fix);

fix = *num-ver; 40

num=(int)(fix);

SUMx=0.0;

SUMy=0.0;

v=(double *)maRoc(sizeof(double)*(2*num));

tri=(double *)malloc(sizeof(double)*(num*2*3));

P = (double *)maHoc(sizeof(double)*(num * num));

templ = (double *)maIloc(sizeof(double)*(num));

brr = (double *)maIloc(sizeof(double)*(num));

arr = (double *)ma1loc(sizeof(double)*(num)); 50

Angle = (double *)malloc(sizeof(double)*(2*nviews));

t = (double *)malloc(sizeof(double)*(2*nviews*num));

tl = (double *)malloc(sizeof(double)*(3*nviews*num));

Q = (double *)malloc(sizeof(double)*(3*nviews*2));

Q = (double *)malloc(sizeof(double)*(3*nviews*num*2));

Al = (double *)maI1oc(sIzeof(double)*(num));

pos= (double *)malloc(sizeof(double)*nchords);

nrt2=2;

60

determine the center of mass of the object

for(i=Oj<numj++) J

sumx=verU]+sumx;

sumy=verU+num]+sumy;

I

cent[O]=sUMx/fix;

cent[l]=SUMY/fix;

/* order the vertices

c-convex-order(vvernum-ver); 70

matzero(P,&num,&num);

for(j=Oj<numj++) P[num*i+(num-i-l)] 1.0;

nrt2=2;

nrt=num*2;
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nct=3;

matzero(tri,&nrt,&nct);

/ * triangulate the object

for(j=Oj<numj++) 80

for(k=O;k<2;k++)

if(i==num-1 && k==1)

tri1((num-I)*6)+1]=v[O];

tril((num- 1)*6)+4]=v[num];

else

90

tri[(i*6)+k]=vU+k];

tri[(j*6)+k+3]=vU +k+num];

tri[(j*6)+2]=cent[O];

tri[(j*6)+5] =cent [1];

determine the projection matrix from the array of angles

for(j=Oj<nviewsj++) I 100

Ang1e[(j*2)]=cos(thetaU]);

Ang1e[(i*2)+I]=sin(thetaD]);

calculate the knot locations from the vertices

matmult(Angle,&nviews,&nrt2,ver,&nrt2,&num,t,&nviews,&num);

for(j=Oj<numj++) brrD]=I;

for(j=Oj<nviewsj++) f

for(k=O;k<num;k++) arr[k]=t[(j*num)+k];

piksr2(nuznarrbrr); 110

for(k=O;k<num;k++) y1[(k*nviews)+j]=arr[k];

determine the area of each of the n+ 1 triangles
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for(j=Oj<3j++) sD]=1.0;

for(j=Oj<3j++) drrD]=j+1.0;

nrt=l;

fbr(j=Oj<numj++)

for(k=O;k<2;k++)

for(1=0;1<3;1++) 120

s[(k'3)+1+3]=tri[(j*6)+(k-3)+l];

temptri[(k*3)+l]=tri[(j*6)+(k*3)+I];

de= ((-I)*s[3]*(s[8]-s[7]))+(s[4]*(s[8]-s[6]))-(s[5]*(s[7]-s[6]));

if (de < 0) de=de*(-l);

AID]=de;

matmult(Angle,&nviews,&nrt2,temptri,&nrt2,&nct,t2,&nviews,&nct);

for(1=0;1<nviews;1++)f

for(k=o;k<3;k++) crr[k]=t2[(1*3)+k]; 130

piksr2(nctcrrdrr);

for(k=o;k<3;k++) t3[(j*nviews*3)+(3*1)+k]=crr[k];

calculate the chord lengths over the range t=[-1,1] (uniformly sampled)

if (nchords==O)

matzero(chordsl,&nchords,&nviews);

else f

if(nchords==1)f 140

POS[O]=0.0;

else f

deIta=2.0/(nchords- 1);

POS[O]=-1.0;

for(j=1j<nchordsj++) posU]=posU-I]+deIta;

for(j=Oj<nchordsj++)

for(k=O;k<nviews;k++) 150

chord=0.0;

fbr(1=0;1<num;1-4-+)f

fbr(p=O;p<3;p++) temp[p]=t3[(k*3)+(l*nviews*3)+p];
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h=A1 [1] /(temp[2] -temp[O]);

if((temp[i] >= (posD]-le-3)) 8z& (temp[i] <= (posU]+1e-3)))

chord=chord+h;

else if((temp[l] > posU]) 8z& (posU] > temp[o])) f

if ((temp[l]-temp[O]) >0 )

m=(h/(temp[1]-temp[0]));

else 160

m=-(h/(temp[1]-temp[0]));

b=-m*temP[01;

chord=chord+(m*posU])+b;

else 1f((temp[1]<posU]) && (posU]<temp[2])) f

if ((temp[2]-temp[l]) >0 )

m=-(h/(temp[2]-temp[1]));

else

m=(h/(temp[2]-temp[1]));

b=-m*temP[2]; 170

chord=chord+(m*posU])+b;

chords110 *nviews)+k]=chord;

free(v); free(tri); free(P); free(tempi); free(brr); free(arr); free(Angle); 180

free(t); free(ti); free(U); free(Q); free(Al); free(pos);

#Include <math.h>

#Include <mex.h>

/ *--------------------------------------------------

function "c-convex-order"

------------------

Orders the vertices of a convex polygonal object.

Inputs: 190

1. "Ver" matrix of vertices (2*num ver) [stored by ROWS].

2. "num ver" : number of vertices in the object.
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Outputs:

1. "v YY matrix of vertices (2*num-ver) /stored by ROWS].

v=[xl x2 x3 ... xn

yl y2 y3 ... yn]

----------------------------------------------------

c-convex-order(vVernum-ver)

double voVero;

double *num_ver; 200

double *P,*tempI,*arrfix,*brr,*brr1;

int jnrnumanr2;

fix = *num-ver;

num=(Int)(fix);

P = (double *)maIIoc(sIzeof(double)*(num * num));

templ = (double *)maI1oc(sizeof(double)*(num));

brr = (double *)maIIoc(sizeof(double)*(num)); 210

brrl = (double *)malloc(2*sizeof(double)*(num));

for(j=Oj<numj++) brrD]=j+1.0;

nr= 1;

nr2=2;

matzero(P,&num,&num);

for(j=Oj<numj++) P[num*j+(num-j-1)] 1.0;

/ * determine the angle of each vertex

for(j=Oj<numj++) 220

temp1D]=atan2(VerD+num],VerU]);

sort the vertices

piksr2(numtemplbrr);

/* order the vertices */

matmult(brr,&nr,&numP,&num,&num,brrl,&nr,8znum);

230

for(j=0j<numjj-�-+)
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a=(int)(brr1U]);

vU]=Ver[a-1];

vU+ni1m]=Ver[a- 1+num];

free(P); free(templ); free(brr); free(brrl);

I

#include <stdio.h> 240

/*----------------------------------------------

function "matzero"

------------------

Zeros out a matrix.

Inputs:

1. "matrixl The first matrix.

2. "nrl " Number of rows in above.

3. "ncl " Number of columns in above.

-------------------------------------------------

matzero (matrixl, nrl, ncl) 250

double *matrixl;

int *nri, *ncl;

int ij;

for ( i = 0 ; i <= (*nrl)-i ; i++

for ( j = 0 ; j <= (*ncl)-l ; j++

MatriX11 (*ncl)*i + j 0.0;

return; 260

#include <stdio.h>

/*----------------------------------------------

function "matmult"

------------------

Multiplies two (double) matrices.

Inputs:

1. "matrixl The first matrix.

2. Py nrl Number of rows in above. 270
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3. "ncl " : Number of columns in above.

4- "matrix2": The second matrix.

5. 'nr2 " : Number of rows in above.

6. "nc2" : Number of columns in above.

Output$:

1. "matrixr": The result of matrixl *matrix2.

2. "nrr " : Number of rows in above.

3. 'ncr" : Number of columns in above.

--------------------------------------------------

matmult (matrixl, nrl, ncl, matrix2, nr2, nc2, matrixr, nrr, ncr 280

int *nrl, *ncl, *nr2, *nc2, *nrr, *ncr;

double *matrixl, *matrix2, *matrixr;

int i, j, k;

double sum;

* Check for size compatibility.

if ( *ncl != *nr2 ) f

fprintf( stderr, "ERROR in MATMULT: Matrix size mismatch\n"

exit(l);

290

/* The size of the multiplied matrix.

*nrr = *nrl;

*ncr = *nc2;

*Multiply the matrices.

for ( i = 0; i <= (*nri)-l; i++

for ( j 0; j <= (*nc2)-l; j++

sum 0.0;

for ( k = 0; k <= ( *ncl)-1; k++

sum += matrixi[ (*ncl)*i + k matrix2[ (*nc2)*k + i

300

matrixrl ( *nc2)*i + j sum;

return;

END function "matmult -- - - - - - - - - - - - - - - - - - - - - -

---------------------------------------------

79



function "piksr2" 310

----------------

Sorts 2 arrays. Sorts array arr[l ... n] into ascending numerical

order by straight insertion, while making the corresponding

rearrangement of the array brr[i ... n]

Inputs:

1. 'n" size of arrays arr and brr

2. "arr" array to be sorted

3. "brr" array to be sorted

Output$: 320

1. "arr" sorted version

2. 'brr" sorted version

piksr2(narrbrr)

int n;

double arrD;

double brrD;

int ij; 330

double a;

double b;

for (j=lj<nj++)

a=arrU];

b=brrD];

i=j - 1;

while (i >= 0 arr[i] > a)

arr[i+1]=arr[i];

brr[i+1]=brr[i];

i- 340

arr[i+1]=a;

brr[i+l]=:b;
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Chapter 5

Non-Sequential Reconstruction

Algorithm

In this chapter we develop a second algorithm, which we term the Non-Sequential Recon-

struction Algorithm, to reconstruct binary polygonal objects from knot location data and

chord length measurements. Unlike the reconstruction algorithm developed in Chapter 4,

the algorithm developed in this chapter allows views of knot location data to be introduced

into the reconstruction algorithm in any angular order. In Section 5.1 we outline the general

framework of the Non-Sequential Reconstruction Algorithm and how its methodology differs

from the Sequential Algorithm developed previously. Next, Section 5.2 describes the criteria

used to generate the possible hypotheses at each stage of the reconstruction and presents a

general overview of the algorithmic procedure. Finally, Section 5.3 presents sample recon-

structions and Monte-Carlo simulations of this algorithm and Section 5.4 summarizes our

conclusions on the results of this algorithm.

5.1 Overview of the Non-Sequential Algorithm

Like the previous chapter, this chapter is concerned with the reconstruction of binary polyg-

onal objects from measurements of the knot locations of an n-gon (assuming that the number

of sides is known); unlike the previous chapter, the views are introduced into the algorithm

non-sequentially. As outlined in Section 3.2.1, we assume that the projections are taken

at known angular views and that the knot locations have been extracted from the pro-

jection data independently of this algorithm using a procedure such as that of Mier-Muth
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and Willsky [8]. Also, for simplicity we assume that all objects are binary and convex as

discussed in Section 3.2.1. Throughout this chapter we will make extensive use of the defi-

nitions and terminology presented in Chapter 2 and problem formulation of Section 3.2. In

addition, many of the definitions and procedures introduced in Chapter 4 for the Sequential

Algorithm are also used for the Non-Sequential Algorithm.

Essentially, the methodology of the Non-Sequential Algorithm is the same as that of the

Sequential Algorithm developed in Chapter 4. The general framework is a multi-stage esti-

mation algorithm that simultaneously estimates cliscrete-valued states, or data association

hypotheses, and continuous-valued estimates of the vertices of the object based on these

discrete hypotheses (refer to the block diagram of Figure 4-1). In fact, the only difference

between these two algorithms is the method used in Stage 1 (see Section 4-2) to evaluate

the possible data associations and form the set of discrete hypotheses.

Instead of appending each new view right after the last projection (i.e. in close angular

proximity), this algorithm allows new projection data to be inserted at any angular location

over the [O', 180') allowable angular range. The primary advantage of incorporating views in

any order is that the triangulation geometry (see Section 3.2.2) of this algorithm is greatly

improved by introducing views into the algorithm at wide angular spacing. Unlike the

Sequential Reconstruction Algorithm which uses a gating approach to limit the allowable

knot switches by assuming that only adjacent knots can switch their data association with

the vertices of the object from one view to the next, the Non-Sequential Algorithm allows

any switch as long as it is possible given the geometry of the tomography problem. Because

of its ability to accept any angular separation, this algorithm can also be used for limited

angle reconstructions or reconstructions with few but widely spaced views. As a result of

the increased flexibility, however, the number of possible hypotheses is increased and the

evaluation of the possible hypotheses is slightly more complex.

5.2 Generation of Data Association Hypotheses

In the Sequential Reconstruction Algorithm developed in the previous chapter, the number

of possible knot-to-vertex associations (and ultimately the number of proposed hypotheses)

was severely limited by the geometric constraints of reconstructing a binary polygonal object

coupled with the assumption that the projection angles were closely spaced. Because views
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were assumed to be added into the algorithm in close angular proximity, a gating approach

was used to constrain the number of hypotheses by allowing only adjacent knot-to-vertex

data associations to switch from one view to the next. Although the Non-Sequential Al-

gorithm cannot use this gating technique (because there can be large angulax separations

between adjacent views), the number of possible data associations can still be greatly re-

duced from the n! vertex permutations that can occur in an n-sided object. If the knots

in the projection data are viewed as a continuous function of 0, the following geometric

constraints that were first described in Chapter 4 (and repeated here for convenience) are

still valid':

A. If the knots in the projection at 01 = O' axe labeled a, b, c, and d, these knots occur in

the reverse order in the final projection at 0,+1 = 180'. Thus, for the case of a 4-gon

a knot association hypothesis that starts with abcd must end with dcba.

B. A switch in two knots occurs when two vertices he along the same line, perpendicular to

the projection. Therefore, for an n-sided object, exactly n(n - 1) switches occur over

a complete and continuous 360' range of projections. Further, because each switch

of vertices occurs exactly 180' apart (because the vertices must lie along the same
n(n-1)line), 2 Switches occur in the range from 01 = O' to 0,+1 = 180'. Therefore, in

a 4-gon exactly 6 knot location switches will occur.

C. Because two vertices have to be aligned on a line perpendicular to the projection for

the knots to switch, it is not possible for two knots to switch twice in a row (i.e. you

can't undo what was done in the previous step) with increasing 0.

In the absence of a gating approach such as that used in Chapter 4, the above criteria

are used to develop the following "rules" to determine the allowable knot orderings and

possible hypotheses at each insertion of data 2:

1. If a projection is inserted between two views that have the same knot-to-vertex asso-

ciation, the inserted view must also have that ordering.

This follows from a combination of constraints A, B, and C. If two views have the

'Note that the examples are given for the case of a 4-gon but can be naturally extended to the general

case of an n-gon

2Again, these examples are given for the case of a 4-gon but can be naturally extended to the general

case of an n-gon
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same set of knot-to-vertex associations and a view is inserted between them, the only

way that the inserted association could be different is if the knots associations switch

and then switch back again. Over the 3600 angular range two vertices of an object are

aligned, and therefore switch associations, exactly twice (i.e. only when they lie along

the same line). Further, because they must be along the same line we know that the

knot switches in the two vertices of the object will occur exactly 180' apart. Thus,

in order for the knots to switch and then switch back again, the angular range would

have to be greater than 1800. Because we consider only the range [O', 180') this is not

possible. Therefore, a view inserted between two views with the same knot-to-vertex

association must also have that set of associations.

2. Once a knot-to-vertex association has been used somewhere in a hypothesis, it can

never occur again after the knots switch from that position.

This follows from the analysis under rule 1. An angular separation of greater than

180' is required for the knot-to-vertex associations to switch and then switch back.

3. If a knot-to-veTtex association is used somewhere in the proposed hypothesis path, its

reciprocal cannot be used anywhere in the hypothesis (with the exception of the initial

and final associations). From the consistency requirements of the Radon transform

(refer to Equation (2.20)) we know that the knot locations must adhere to the following

property:

z(Oi) - [zi(Oi) ... z,,(Oi)] = [-z,,(Oi + 180') zi(Oi + 180')] (5-1)

and from the geometry of this problem (refer to Figure 4-3) this corresponds to an

exact reversal of the knot-to-vertex associations. Thus, if the knot associations switch

at exactly Oi, the switch to the reciprocal of the knot-to-vertex associations occurs

at exactly Oi + 180'. Because we consider a range of less that 180' the reciprocal

ordering cannot be a valid association over the range that we consider. The one

exception to this rule is the first set of data associations, abcd. Because the knots

switch to form this set of associations prior to the initial view at 0 = O' the reciprocal

set of associations dcba will occur before 0 reaches 180'.
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4. Each hypothesis must start with abcd and end with dcba.

This rule follows directly from constraint A.

ly n(n-15. On 2 ) knot switches are allowed to occur in each hypothesis path. After this,

only the data associations adjacent to the inserted knot projection are allowed.

This rule follows directly from constraint B.

These rules are only a subset of the possible rules that can be derived to determine the

allowable data associations given the geometry of this problem. They are meant only to

provide a simple and efficient means of reducing the total number of hypotheses that must

be considered at each stage of the algorithm. A precise statement of the space defining the

set of valid data associations is still an open issue.

As an example of an application of rules 1-5 consider the 3 hypotheses given in the

first column of Table 5.1. The data associations for each hypothesis are listed in increasing

angular order in the first column and the arrow represents the point at which we wish to

insert a new set of projection data. Without any regard for the geometry of this problem,

there would be 4! or 24 possible permutations of a, b, c, and d that could be used to represent

the data association of the 4 vertices to the 4 knot location measurements that could be

added to each hypothesis. The center columns of Table 5.1 show which views can be

eliminated with the implementation of the 5 rules. In fact, looking at the last column,

which gives the allowable knot location data associations for this point of insertion into

each of the hypotheses we see that the number of potential associations has been reduced

from 24 to 18, 1, and 2 for the respective 3 hypotheses. Note also, that as the assumed

hypothesis becomes larger and more defined that the number of possible data associations

that can be inserted greatly diminishes. In fact, after the n(n- 1) switches are chosen (such2

as the third hypothesis given in the table), only the 2 data associations adjacent to any

inserted view are allowed.

Using the above "rules", the possible data associations are enumerated in a hypothesis

tree similar to the one used in the Sequential Algorithm of Chapter 4. The primary difference

is that the views are not in increasing angular order as you move from the root to a branch

of the tree. Instead, as you move through the tree, the data associations are listed in the

order that they are introduced into the algorithm (which doesn't necessarily correspond to

increasing angular order). Each branch in the tree must keep track of the angle at which
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Associations Eliminated by Respective Rule
Hypothesis Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Possible Data Assoc.

abcd cdab cabd dacb
F-1.,# adcb acdb dabc
bacd dbca cadb adbc abdc abcd
bdac dcba acbd cdba cbda cbad
dbca bdac dcab bdca dcda bcad
dcba dbac badc bacd
abcd
bdac

All except bdac
bdac bdac
dcba
abcd

bacd AR except
badc abcd abcd
bdac and bacd
dbac bacd
dbca
dcba

Table 5.1: Example Evaluations of Possible Knot Location Data Associations.
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the projection data is inserted. Note also that because at least three projections axe needed

to triangulate the knot location data and form an object, the algorithm must retain all

possible permutations of the knot location data until three views are obtained. Therefore,

for the second view, n! permutations of the knot location data must be considered regardless

of the angular position. An example of a hypothesis tree for a 4-gon is shown in Figure 5-1.

As with the Sequential Algorithm of the previous chapter, the initial knot location data

is arbitrarily assigned to the unknown vertex locations as abcd. Note that this tree is

significantly more complex than the corresponding tree given for the sequential algorithm

(see Figure 4-4). Each branch of the tree gives the association of the knots chosen for that

particular angle. Like the hypothesis tree developed in Chapter 4, a path from the root

kto a branch of the tree represents one possible hypothesized set of data associations, q,

while q' = [q', q...... qk.] represents the set of all r hypotheses up to the kth measurement.1 2

Unlike the previous chapter, however, these data associations must be reordered to put

them in increasing angular position. For example, the hypothesis q 4 which is represented2

by the the set of data associations traced out in dashed lines in Figure 5-1, represents the

hypothesis abcd --+ abcd --+ abcd -4 bacd when reordered.

As mentioned previously, apart from the difference in the generation of the data asso-

ciation hypotheses, the format of the Non-Sequential Algorithm is the same as that of the

Sequential Algorithm. Thus, the algorithm consists of three distinct stages: generation of

data association hypotheses, estimation of vertex locations, and evaluation of data asso-

ciation hypotheses. The block diagram of Figure 4-1 summarizes these stages. Using the

above data association rules with each set of knot location data, the algorithm evaluates

the set of possible associations for each existing hypothesis qk-1, 1 < i < T in the hy-

pothesis tree and determines what knot associations are possible for the kth measurement

given the geometric constraints outlined above (and demonstrated in Table 5.1). This set

of valid associations forms the set of hypotheses q k which corresponds to Stage 1 of the

reconstruction algorithm. Stages 2 and 3 of the algorithm, which evaluate and prune the

hypotheses, are performed using the same method as the Sequential Algorithm (see Sections

4.3 and 4.4). Again, chord length data are used in addition to the knot location data to

prune the possible hypotheses by using the likelihood ratio tests defined by Equation (4.11).

All of the calculations and evaluation procedures are identical to those of the Sequential
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abcd abcd

bacd - - - - - - - - - - - - abcd = q 4
0000 2

abdc abcd

abcd

cdba abcd

dcab abcdbacd

abdc

dcba abcd

0
abcd 0

0

cdba

abcd
dcab bacd

abdc

0
dcba dcba 0

0

cdba
dcab
dcba

01= CP 0 = 600 0 = 12d' 0
2 3W

Figure 5-1: Hypothesis Tree for Non-Sequential Reconstruction Algorithm.
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Algorithm with the exception of the determination of the discrete hypotheses, as described

above. Experimental Results of this algorithm follow in the next section.

5.3 Experimental Results

In this section, we present some sample reconstructions and Monte-Caxlo simulations of the

proposed Non-Sequential Reconstruction Algorithm. As with the Sequential Algorithm, we

perform our analysis on two test objects: a "kite" and a square (refer to Section 4.5.1,

Figures 4-5 and 4-6). There are a number of specifications that axe common to all of the

reconstructions performed in the following sections.

First, at the start of each reconstruction the initial view is determined by the Max-Min

Approach defined in Section 3.2.4. If the Max-Min view is labeled ji = O', the views are

then divided by angular range into three sets with roughly the same number of views (i.e.

[O', 60'), [60', 120'), and [120', 180'))'. The views axe taken from each set one by one and

added into the algorithm such that the separation between the new data and the views

input into the algorithm at the last pass through the three sets of views is maximized. For

example, the first three views are approximately at j, = O', �2 = 60', and j., = 120'. For

the next view, we return to set 1 and pick the view that is as close to 30' as possible (i.e.

midway between j, and �2)- Similarly, for the 5th view the projection angle is chosen from

set 2 such that the view is midway between the views at j2 and j3. This continues until all

of the views are input into the reconstruction algorithm.

Second, as with the Sequential Algorithm, the chord measurements are uniformly sam-

pled over the region defined in Radon space by t = [-1, 1]. Again, as stated in the previous

chapter, this results in views where some of the chord measurements are zero (i.e. the

object is not in the field of view) and conversely, in views where the chord measurements

are confined to the interior of the object (for the kite object).

0,,2The noise on the chord measurements is i.i.d. Gaussian noise with vaxiance " and

the corresponding noise on each knot location measurement is given by Equation (3.3).

Reconstructions are performed for cases where the correct applied knot location noise model

3These angular ranges are approximate and depend on the angular separation of the views in the projec-

tion data.
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is assumed known and also for cases where the assumed model is an id.d. model with

covaxiance A,, - (1.5o-,,,)'I where o,,,,, is the variance of the noise on the chord length

measurements'. Finally, as described in Section 3.2.5 the percent Hausdorff error and

percent Symmetric Difference error are used for the performance analysis.

5.3.1 Sample Reconstructions

This section contains results of sample reconstructions using the Non-Sequential Algorithm.

Note that for all of these results the true object is depicted by solid lines while the recon-

structions are represented by dashed or dotted lines. The sample reconstructions of this

section use the same data set used to generate the sample reconstructions of the Sequential

Algorithm (refer to Section 4.5.2). For both objects, the squaxe and the kite, noisy chord

length and knot location data were generated so that the SNR on the chord length data

was set to IOdB. Additionally, projection data was taken at 27 equally spaced projections

over the interval [00, 180') with 5 chord measurements in each view. Thus, each object had

a total of 108 knot location measurements (used to estimate the vertices and prune the

hypotheses) and 135 chord measurements (used to prune the hypotheses).

Figure 5-2(a) shows the sample reconstruction of the kite. Two reconstructions are

shown: the dashed line represents the reconstruction generated assuming the correct applied

noise model on the knot measurements while the dotted line represents the reconstruction

assuming the id.d. noise model. Similarly, Figure 5-2(b) shows a sample reconstruction

of the square. Like the kite reconstruction, the dashed line represents the reconstruction

assuming the correct applied noise model while the dotted line represents the i.i.d. model

reconstruction. Table 5.2 summarizes the Hausdorff error and Symmetric Difference error

for both sample reconstructions.

As in the Sequential Algorithm, the reconstruction errors assuming the correct applied

noise model were significantly less that those assuming the i.i.d. model for all of the cases.

This result is expected as the id.d. model weighs all knot location data equally in the cost

criterion used to determine the optimal hypothesis regardless of the amount of noise actually

applied to the knot. As a result, poor measurements axe considered to be as important as

4Refer to Section 3.2.3 for complete descriptions of the noise models and SNR definition used in this
thesis.
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Figure 5-2: Sample Reconstructions of Non-Sequential Algorithm, 27 views, 10 hypothesis
pruning, 10dB SNR on chords.

Error Measures Kite Object Square Object
True Model i.i.d. Model True Model i.i.d. Model

Hausdorff Error 6.57 20.41 15-79 19.22
Symm. Diff. Error 8.08 32-66 10.67 24.19

Table 5.2: Comparison of Errors for Sample Reconstructions Using Non-Sequential Algo-
rithm.
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measurements with little noise which results in a degradation in the reconstruction quality

in most cases. It is interesting to note that for the Non-Sequential Algorithm, the kite

reconstruction has lower error measures for the correct assumed -model while the square has

lower error measures for the i.i.d. assumed model. As in the previous chapter, we acknowl-

edge this result but defer any comparative analysis of the performance of the algorithm

in reconstructing these two objects to the Monte-Carlo analysis of Section 5.3.2. In addi-

tion, we note that the overall performance of this set of reconstructions was far superior

to those of the Sequential Algorithm shown in Table 4.1 (the same input data was used

in both reconstruction algorithms). In all error measures, the Non-Sequential Algorithm

produced smaller reconstruction errors. In particular, both the Hausdorff and Symmetric

Difference errors in the correct assumed model reconstructions were nearly halved in the

Non-Sequential reconstruction results.

5.3.2 Monte-Carlo Simulations

In the following sections Monte-Carlo simulations of reconstructions are used to test the

performance of the Non-Sequential Reconstruction Algorithm. As in the previous chapter,

all simulations are performed using the kite test object (with the exception of the last

section which is a comparison of reconstructions of the kite and square). The Monte-Carlo

simulations consist of 100 independent reconstructions for each reconstruction scenario. In

each plot error bars denote the 95% confidence intervals of the sample mean values that

result from the 100 runs of the algorithm. As defined at the beginning of this section, the

chord length data from each projection are uniform samples over the region t = [-I, 1].

Further, reconstructions are done for cases that assume the correct applied noise model for

the knot location data and also for cases that assume an i.i.d. model '. The projection data

for all simulations are uniformly spaced samples over the angular region [O', 180'). Finally,

unless otherwise stated, T -_ 15 hypotheses are retained in each step of the algorithm, 5

chord measurements are taken per view, and the SNR on the chord length measurements

is set to 1OdB.

r'Refer to Section 3.2.3 for a complete discussion of the noise models used in this thesis.
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Figure 5-3: Performance as a Function of Number of Retained Hypotheses at Each Step of
the Non-Sequential Reconstruction Algorithm.

Reconstruction Error as a Function of Retained Hypotheses

Figure 5-3 shows the performance of the Non-Sequential Algorithm as a function of the

number of retained hypotheses, T, at each step of the algorithm. The projection data

for each reconstruction consists of 18 views (for a total of 72 knot measurements and 90

chord measurements). Reconstructions were performed for T= 5, 10, 15, and 20 retained

hypotheses. Figure 5-3(a) is a plot of the Hausdorff error while Figure 5-3(b) is a plot of the

Symmetric Difference error. In both plots, the solid line corresponds to the reconstruction

assuming the correct applied model while the dashed line corresponds to the reconstruction

assuming the i.i.d. model.

As expected, the number of retained hypotheses is inversely related to the reconstruction

error. Unlike the Sequential Algorithm, these results do not display a huge reduction in

the error as the number of hypotheses is increased. Instead, all of the error curves are

somewhat flat and decrease relatively linearly as T is increased over the range from 5 to 20.

This result is attributed to the improved triangulation geometry introduced by altering the

order in which the views are entered into the algorithm. Basically, the algorithm is able

to recognize the optimal hypothesis even when only a few hypotheses are retained at each

step of the algorithm (unlike the Sequential Algorithm).

Consistent with the results of the previous section, the reconstructions that assume the

93



correct applied noise model clearly outperform the reconstructions that assume the i.i.d.

model. Further, despite the differences in the relative error, all of the curves have the same

shape as a function of the number of retained hypotheses.

In addition, we also note that the level of error in the Non-Sequential Algorithm re-

constructions is considerably less than those of the Sequential Algorithm for all of the

performance measures. For example, in Figure 5-3(a) the percent Hausdorff error for the

reconstruction assuming the correct applied noise model (solid line plot) ranges from 16.62%

error with 5 retained hypotheses to 14.75% error with 20 retained hypotheses. The cor-

responding result for the Sequential Algorithm (shown by the solid line in Figure 4-8(a))

ranges from 26.64% error with 5 retained hypotheses to 17.99% error with 20 retained

hypotheses. These results are representative of the performance comparisons of the recon-

struction results of Figure 4-8 and Figure 5-3. This supports the claim that the improved

triangulation geometry of the Non-Sequential Algorithm results in better reconstructions

given the same input data.

Reconstruction Error as a Function of Chord Measurements

In this section we analyze the performance of the Non-Sequential Algorithm as a function of

the number of chord measurements used in the reconstruction algorithm. Each reconstruc-

tion is based on 18 uniformly spaced views or a total of 72 knot location measurements.

We set the variance on the chord length measurements to a constant value throughout this

experiment. Thus, as the number of chord length measurements per view is varied, the SNR

(as defined in Section 3.2.3) will also change. The constant variance on the chord lengths

was chosen for the case of 10 chord measurements per view at a SNR of 1OdB and the

noise on the knot locations was set with Equation (3.3) using this constant chord variance.

Noisy chord data were generated for 0, 5, 10, 15, and 20 chord measurements per view

and the resulting Hausdorff and Symmetric Difference reconstruction errors are plotted in

Figure 5-4 (a) and (b), respectively. As in the previous section, the solid line represents

reconstructions assuming the correct applied knot location noise model while the dashed

line represents reconstructions assuming the i.i.d. noise model.

The overall behavior of the curves in Figure 5-4 is as expected. The reconstruction error

for both measures decreases as the number of chord measurements used in the algorithm is
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Figure 5-4: Performance as a Function of Number of Chords Used in the Non-Sequential
Reconstruction Algorithm.

increased. As with the Sequential Algorithm, the most significant drop in error occurs as

the number of chords is increased for 0 to 5 samples per view. Again this lends credibility

to the importance of the chord measurements in determining the optimal hypothesis. As

with the performance analysis of the Sequential Algorithm, all of the error curves behave

similarly as a function of the number of chord measurements and the reconstructions that

assume the correct applied knot location noise model outperform the reconstructions that

assume the i.i.d. model. Further, as described in Section 4.5.3 of the previous chapter, the

Symmetric Difference error is much more sensitive to the number of chord measurements,

especially in the id.d. model reconstructions.

There are a number of significant differences between the reconstruction results pre-

sented here and the corresponding results of the Sequential Algorithm of Chapter 4. First,

the relative level of error for all of the reconstruction scenarios is significantly less for the

Non-Sequential Algorithm. Again, this is attributed to the improved triangulation geome-

try of the Non-Sequential Algorithm. The second difference is that the reconstruction errors

assuming the correct knot location noise model are a much stronger function of the number

of chord length measurements per view in the Non-Sequential Algorithm. This implies that

the combination of the improved triangulation geometry coupled with the chord measure-

ments help the algorithm to recognize the optimal hypothesis. This claim is particularly

95



supported by comparing the reduction in both the Hausdorff error and the Symmetric Dif-

ference error as the number of chords is increased from 0 to 5 in the results assuming the

correct noise model of Figure 4-9 and Figure 5-4. As these results demonstrate, the error

reduction (for both measures) is much greater for the Non-Sequential Algorithm.

Reconstruction Error as a Function of SNR and Number of Views

This section presents the results of a series of independent Monte-Carlo simulations per-

formed at various SNRs and numbers of views (refer to Figure 5-5) to characterize the effect

of these parameters on the Non-Sequential Algorithm. Reconstructions axe performed for

SNRs of OdB, 10dB, HO, and 3OdB and numbers of views equal to 9, 18, 27, and 54.

Figure 5-5(a) and (b) present the Hausdorff and Symmetric Difference errors, respectively,

for reconstructions assuming the correct applied knot location noise model. Similarly, Fig-

ure 5-5(c) and (d) present the same error measures for reconstructions assuming an i.i.d.

noise model for the knot location data.

There are a number of observations that are consistent with all of the results presented

in Figure 5-5. The first observation is that the most dramatic decrease in error occurs

when the SNR is increased from OdB to 10dB. As with the Sequential Algorithm, the Non-

Sequential Algorithm is still unable to resolve the knot-to-vertex data associations in a high

noise scenario. The second observation corm-non to all reconstructions is that all of the error

curves behave similarly as a function of the number of views. Each error curve decreases

initially and then flattens out as a function of the number of views for each SNR. Thus,

at a given SNR all of the reconstructions behave similarly as a function of the number of

views even though the relative error levels vary as a function of the SNR.

There are also a number of differences in the reconstruction results of Figure 5-5. The

first is that the results that assume an i.i.d. knot location noise model are slightly larger

than those that assume the correct applied noise model (as expected). The second differ-

ence is that at a SNR--OdB the Hausdorff error is higher than the Symmetric Difference

error in both reconstruction cases. This difference is attributed to the different method of

characterizing the distance between two convex sets employed by the two error measures

(refer to Section 3.2.5).
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Finally, we comment on the differences between the reconstruction errors of the Non-

Sequential Algorithm presented here and those of the Sequential Algorithm presented in

Figure 4-10 in the previous chapter. The most obvious difference between these results is

that the Non-Sequential Algorithm results do not degrade as the number of views becomes

large. This difference occurs for two reasons. First, because of the improved triangulation

geometry of the Non-Sequential Algorithm obtained by the non-sequential reordering of the

views. Second, unlike the Sequential Algorithm, the Non-Sequential Algorithm does not

have the problem of retaining the wrong hypotheses due to a series of poor views in close

angular proximity that the Sequential Algorithm has (refer to Section 4.5.3). Additionally,

we note that the relative level of error in all of the Non-Sequential reconstructions is less

for all numbers of views and SNRs. Consistent with that observation, for the same number

of experiments, the error bars of the Non-Sequential Algorithm are smaller implying that

the variance of the estimates is also smaller.

Reconstruction Comparison of Two Test Objects

Having completed the Monte-Carlo analysis of the Non-Sequential Algorithm for a particular

object, the kite, we now turn to a comparative analysis. Figure 5-6 shows the Monte-Carlo

reconstruction errors for both the kite and the square test objects as a function of the

number of views used in the reconstruction. Figure 5-6 (a) and (b) are Hausdorff and

Sym.metric Difference errors for reconstructions assuming the correct applied knot location

noise model while Figure 5-6 (c) and (d) are the corresponding error measures under the

assumption of an i.i.d. noise model.

The first observation that is common to all plots of Figure 5-6 is that the reconstruction

of the kite outperformed that of the square for both the Hausdorff and Syn-unetric Difference

error under both reconstruction scenarios (i.e. assuming the correct applied knot location

noise model and assuming the i.i.d. noise model). This is attributed to the fact that three

of the vertices of the kite are relatively close together. If the algorithm is off slightly, the

reconstruction errors do not suffer as much as in the reconstruction of the square where

the vertices are widely spaced. The difference in error seems to be more prevalent in the

Hausdorff error measures. This is probably because a slight rotation and elongation of the

square can cause large errors in the percent Hausdorff error. Regardless of these differences,
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however, the reconstruction errors of both objects seem to converge as the number of views

is increased for both the Hausdorff and Symmetric Difference errors.

Another interesting observation is that the performance of both objects degrades by

approximately the same amount as the assumed model is switched from the correct applied

knot location noise model to the i.i.d. model. Thus, the noise modeling errors do not seem

to effect one object more than the other.

The primary difference between the reconstructions presented in this section and the

corresponding section of Chapter 4 is that the error decreases for large numbers of views in

the Non-Sequential Algorithm. Again, this is attributed to the non-sequential ordering of

views. An additional result of this improved triangulation geometry is that the performance

of the kite is consistently better than that of the square for the Non-Sequential Algorithm.

Thus, poor triangulation geometry seems to have a greater effect on the elongated kite

object. In addition, consistent with the results of the previous section, for the same number

of experiments the error bars of the Non-Sequential Algorithm are smaller than those of the

Sequential Algorithm, implying that the variance of the estimates is smaller.

Despite the differences in the reconstruction errors of these two objects, the error plots

of the kite and the square have the same general shape as a function of the number of

views. Further, the reconstruction errors of both objects have the same order of magnitude.

Therefore, as in the case of the Sequential Algorithm, the Non-Sequential Algorithm does

not produce significantly better reconstructions for one object over the other.

5.3.3 Limited Angle Tomography and Non-Uniform Projection Angles

In this final section of experimental results we perform reconstructions using the Non-

Sequential Algorithm over limited angular regions and with non-uniformly spaced projec-

tion data. As stated in the previous chapter on the Sequential Algorithm, this is an impor-

tant feature of this algorithm as many classical reconstruction techniques require uniformly

spaced angular projections over the complete range [O', 180').
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Reconstruction Error as a Function of Limited Angle Projection Data

In this section we evaluate the reconstruction performance of the Non-Sequential Algorithm

over limited angular ranges. In each reconstruction, we generate a full set of projection data

(i.e. chord measurements and knot location measurements) over the [O', 1800) angular range

with 5 chord measurements per view at a SNR of 10dB. Like all previous experiments, the

chord length measurements are uniformly sampled over the range t = [-I, 1]. Next, we

perform reconstructions on subsets of the projection data over limited angular ranges using

the Non-Sequential Reconstruction Algorithm. Specifically, reconstructions were performed

over the following angular ranges: [O', 20'), [00, 35"), [00, 450), [00, 70c), and [O', 900). Each

subset of projection data contains 18 uniformly spaced views over the specified angular

range. For each angular range, 100 independent Monte-Carlo reconstructions were per-

formed with T=15 hypotheses retained at each step of the Non-Sequential Algorithm.

Figure 5-7 shows the reconstruction error results of reconstructions of the kite over

limited angular ranges. As the results from both the Hausdorff and Symmetric Difference

errors in Figure 5-7(a) and Figure 5-7(b) demonstrate, the reconstruction errors decrease

significantly as the maximum angular view is increased, with the greatest drop occurring for

the increase from 20' to 30'. This result is attributed to poor triangulation geometry over

the smaller angular ranges. In addition, we note that when the view range reaches 45' both

the Hausdorff and the Symmetric Difference error measures appear to level off as a function

of the angular range. This result occurs for the reconstruction assuming the correct applied

noise model and also for reconstruction assuming the i.i.d. noise model. Thus, the algorithm

appears to obtain a robust estimate for the kite (for the case of 18 views) if the view range

is greater than 45'. Also, although the relative level of the id.d. reconstruction is larger for

both measures, we note that it behaves exactly as the correct model as a function of the

view angle range.

In addition to the reconstruction errors resulting from the Monte-Carlo reconstruction

results, Figure 5-8 shows a sample reconstruction resulting from a single sample path. This

reconstruction was generated under the conditions listed above with projection data over

the angular range [O', 90'). As the resulting plot shows, the algorithm was able to produce

a good quality reconstruction in the face of limitations on both the angular range and the

number of projections (18 views) in a low SNR situation (10dB). Additionally, Table 5.3
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Figure 5-7: Performance as a Function of the Angular Range Using the Non-Sequential
Algorithm.

Error Measures True Model i.i.d. Model
Hausdorff Error (%) 7.32 16.95

Symm. Diff. Error (%) 12-97 24.20

Table 5.3: Sample Limited Angle Reconstruction Over the Range [O', 90') Using the Non-
Sequential Algorithm.

summarizes the reconstruction error for this sample path.

In addition to the above experiment, we performed a second set of Monte-Carlo simula-

tions over the range [O', 45'). For this case, 100 reconstructions were performed for cases of

4, 5, 9, 18, and 27 views. The remainder of the parameters (chord length, SNR, etc.) were

set exactly as in the previous experiment.

The results of this experiment, shown in Figure 5-9, show that the limited angle re-

construction errors decrease as a function of the number of views used to perform the

reconstruction for the Non-Sequential Algorithm. As the number of views were increased

while holding the angular view range at 450, both the Hausdorff and Symmetric Difference

errors decreased significantly. In addition, although the reconstruction errors assuming the

i.i.d. noise model are higher (as expected), the behavior as a function of the number of views

is consistent with the reconstructions assuming the correct applied noise model. Overall,

the results of Figure 5-9 are significant in that they show that the Non-Sequential Algorithm
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Sequential Algorithm.

behaves robustly under limited angle reconstruction scenarios.

Reconstruction Using Non-Uniform Angular Spacing

In addition to the ability to reconstruct over limited angular ranges, the Sequential Algo-

rithm also has the ability to perform reconstructions on non-uniformly spaced projection

data. Figure 5-10 shows a sample reconstruction from 27 non-uniformly spaced views over

the [O', 180') angular range. In this reconstruction, each projection contained 5 chord mea-

surements at a SNR of I0dB with T = 15 hypotheses retained at each step of the algorithm.

To determine the projection angles, we started with the initial projection at 01 = O'. The

second projection was at 02 = 3.5' and all subsequent angles were generated with the

following equation

0i = 7 0i_1 < 180' (5.2)
6

The solid line in Figure 5-10 represents the true object and the dashed and dotted lines

are the reconstructions assuming the correct knot location noise model and the i.i.d noise

model, respectively. In addition, Table 5.4 summarizes the Hausdorff and Syn-unetric Differ-

ence reconstruction errors for these results. Although only for one sample path, these results
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Figure 5-10: Sample Reconstruction with Non-Uniformly Spaced Projection Angles Using
the Non-Sequential Algorithm.

Error Measures True Model i.i.d. Model
Hausdorff Error (%) 15-91 24.21

Symm. Diff. Error 17-75 22.76

Table 5.4: Comparison of Errors for Non-Uniform Angular Spacing Using the Non-
Sequential Algorithm.
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show the performance of this algorithm is not limited to a uniformly spaced projection data

set.

5.4 Conclusions

In this chapter, we extended the finite parameter reconstruction algorithm of the previous

chapter to allow views to be added into the algorithm non-sequentially. At the expense of

a slightly more complex method of evaluating the discrete hypotheses, the new algorithm

resulted in both increased flexibility (views can be input into the algorithm over any angular

range in any angular order) and improved reconstruction performance (as measured by the

Hausdorff and Symmetric Difference percent errors) -

In every reconstruction scenario the Non-Sequential Algorithm results outperformed

those of the Sequential Algorithm of the previous chapter. The overall performance of

this algorithm was consistent and produced robust object estimates for relatively small

amounts of projection data. In addition to producing better reconstructions, the Non-

Sequential Algorithm also supported the results of the previous chapter in the assessment

of the importance of chord length measurements in improving the hypothesis selection

performance. Unlike the Sequential Algorithm, the results of the Non-Sequential Algorithm

did not degrade as the number of views increased for a fixed number of retained hypotheses.

The Non-Sequential Algorithm was also less sensitive to the number of retained hypotheses

at each step of the algorithm. Additionally, the reconstruction error for both the Hausdorff

and Syrm-netric Difference errors approached a limiting value as each of the parameters

(number of hypotheses, number of chords, number of views) was increased. This implies a

fixed level of performance for a given amount of noise in the measurements. Finally, the

Non-Sequential Algorithm showed a marked improvement over the Sequen"dal. Algorithm in

its ability to perform robust estimates over limited angular regions. In the next chapter, we

seek to overcome this limiting threshold by using the output of the Sequential Algorithm or

Non-Sequential Algorithm as input to a nonlinear reconstruction algorithm that reconstructs

the object's vertices from knot location and chord length measurements.
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Chapter 6

Nonlinear Reconstruction

Algorithm

This chapter presents the third and final reconstruction algorithm developed in this thesis.

Unlike the previous two algorithms, this algorithm is a fully nonlinear reconstruction algo-

rithm that uses both knot location and chord length data to estimate the vertex locations

of a convex, binary polygonal object. Section 6.1 presents an overview of this algorithm

including initialization, cost criterion, and a block diagram of the overall reconstruction

scenario. Sample reconstructions and Monte-Carlo simulations are presented in Section 6.2

and conclusions regarding the results of this algorithm are found in Section 6.3.

6.1 Overview of Nonlinear Algorithm

In this chapter we develop a nonlinear estimation algorithm to estimate the vertices of a

binary polygonal object from noisy measurements of knot locations and chord lengths. Like

the Sequential and Non-Sequential Algorithms developed in the previous two chapters, the

estimate is obtained by using ML estimation techniques. Specifically, we seek the value of

the vertices, V, which makes the observed data most likely

f7mL = argmax p_,IV(XI V) (6-1)
V

where p:,,,V(XI V) denotes the conditional probability density of the observations, X, given

the vector V of vertices of the object. Because the measurements are corrupted by inde-

106



pendent, additive Gaussian noise, this formulation reduces to (refer to Section 2.1.2)

T 1VML = arg min (X - X) A- (6.2)
V XIV(X - X)

where 1 and A_,I,, denote the mean and covariance of the conditional density p..,IV(XI V).

In the previous algorithms developed in this thesis, vertex estimates were based solely

on the knot location data and a set of discrete data association hypotheses. Under each hy-

pothesis, we found that the knot-to-vertex estimation problem was linear and Equation (4.8)

was used to determine the ML estimate of the vertices based on the knot location data.

The chord length data, in addition to the knot location data, were used to prune the set of

discrete data association hypotheses.

Unlike the previous method, however, the Nonlinear Algorithm developed in this chapter

obtains the estimate defined by the cost criterion of Equation (6.2) from measurements of

knot locations and chord lengths. The measurement equations relating the knot location

measurements, Z, and the chord length measurements, M, to the vertices of the object were

first defined in Section 4.3 and Section 4.4. We repeat them here for convenience

Z = H(V) + Ar

M = F(V) + T

where H and F are system matrices that rely nonlinearly on the vertices V, and, JV and T

axe independent Gaussian noise processes with covariances A,, and A, respectively. If these

two equations are stacked to form a single measurement equation, the resulting equation

becomes

X z H(V) + Ar (6.3)

M F(V) + T

and the mean and covariance matrix corresponding to the conditional probability density

function p,,IV(XIV) are

(V) (6.4)

L F(V) J
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A,� 0
A.IV (6.5)

0 Am

Note that A,,, A., and hence A.,IV are diagonal matrices because of the assumptions of

independent noise on the chord length and knot location measurements'. If we substitute

the above values into the ML estimation equation given by Equation (6.2), the ML estimate

of the vertices can be written

T
Z H (V) A,� 0 Z H (V)

VML = axg min
V M F(V) 0 Am M F(V)

= arg min (Z - H (V))T A-'(Z - H(V)) + (M - F(V) )T A` (M - F(V)) (6.6)Z m
V

which is a Weighted Nonlinear Least Squares Error (WNLSE) formulation. The terms of

the matrix A-' , which is a diagonal matrix because of the assumption of uncorrelated noise,XIV

comprise the weights in the least squares formulation. Because the inverse covariance matrix

is often considered a measure of "information", the interpretation of A-' as weightingV

matrix makes intuitive sense.

Because of the nonlinear dependence of the system matrices H and F on the vertices

of the object, this problem is a highly nonlinear minimization problem. Our approach to

solving Equation (6.6) given measurements of chord lengths and knot locations is via a

nonlinear optimization routine that will minimize Equation (6.6) with respect to V given

measurement data, noise statistics, and an initial guess, f�. Because the search space is

2n dimensional for an n-gon, the cost criterion given by Equation (6-6) is a complicated

cost function. To avoid problems of differentiability of the cost function, we use the Nelder-

Mead nonlinear optimization algorithM2 to minimize Equation (6.6) with respect to V. This

algorithm was chosen because of its ability to deal robustly with highly discontinuous cost

criteria. Further, as a nonlinear function of a multi-dimensional vector, we expect the cost

criterion given by Equation (6.6) to be plagued by numerous extraneous minima. Thus, to

determine the global minima, a good initial guess is essential. We use the output of either

the Sequential Algorithm of Chapter 4 or the Non-Sequential Algorithm of Chapter 5 to

'Refer to Section 3.2.3 for a complete description of the noise models used throughout this thesis.
2This algorithm was implemented via the Matlab function FMINS.
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Figure 6-1: Block Diagram of Nonlineax Reconstruction Scenario.

provide the initial estimate of V to used in this Nonlinear Algorithm.

A block diagram of the reconstruction scenario is shown in Figure 6-1. As described in

Section 3.2.1, chord length and knot location data are obtained from the underlying object

and perturbed with additive, independent Gaussian noise (hence the knot and chord genera-

tion block in Figure 6-1). The Sequential Algorithm or Non- Sequential Algorithm estimates

the vertices of the object via the simultaneous solution of a discrete-valued hypotheses test-

ing problem and a continuous-valued ML estimation problem. As outlined in Section 4.3,

by conditioning on the discrete data association hypotheses the knot location measurement

equation is a linear function of the vertices of the object. Thus, the ML estimate of each

vertex for a given hypothesis can be obtained using Equation (4.8). Both knot location

and chord length data are used to prune the set of discrete data association hypotheses

at each step of the algorithm with the likelihood ratio test given by Equation (4.11). The

estimate of V corresponding to the optimal hypothesis (and based on knot location data

alone) is then used as the initial estimate for the Nonlinear Algorithm. This initial guess,

V, and the original noisy knot location data and the chord length -data are then input to

the Nonlinear Reconstruction Algorithm, which finds the vertex estimates by minimizing

the ML cost criterion of Equation (6-6) based on measurements of both knot location data

and chord length data and produces the final estimate f7. Experimental Results of this

algorithm follow in the next section.
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6.2 Experimental Results

As with the previous two reconstruction algorithms, the performance of the Nonhneax Re-

construction Algorithm is tested with a combination of sample reconstructions and Monte-

Carlo simulations. There are a number of specifications that are common to all of the

reconstructions performed in this section. As before, the kite and square test objects first

described in Section 4.5.1 axe used to test the reconstruction algorithm. The initial esti-

mates of the vertices of the object that are input to the Nonlineax Algorithm are obtained by

using either the Sequential Reconstruction Algorithm of Chapter 4 or the Non-Sequential

Reconstruction Algorithm of Chapter 5. The id.d. knot location noise model (presented

in Section 3.2.3) is assumed for all of the reconstruction of this chapter. In addition, a

number of assumptions used in the previous two chapters also hold for the this chapter;

namely, the Max-Min Approach (described in Section 3.2.4) is used to determine the initial

view, the chord measurements are uniformly sampled over the region t = [-1, 1], and the

percent HausdorfF error and percent Symmetric Difference error (described in Section 3.2.5)

are used to characterize reconstruction performance. Additionally, for the Non-Sequential

Algorithm, the reordering of views outlined in Section 5.3 is used throughout this chapter

when the Non-Sequential Algorithm is used to calculate the initial guess.

6.2.1 Sample Reconstructions

This section contains results of sample reconstructions using the Nonlinear Reconstruction

Algorithm. Note that for all of these results the true object is depicted by solid lines, the

initial guess is represented by the dash-dotted lines, and the final nonlinear reconstruction

is denoted by dotted lines. The sample reconstructions of this section use the same data

set used to generate the sample reconstructions of the Sequential Algorithm (refer to Sec-

tion 4.5.2) and the Non-Sequential Algorithm (refer to Section 5.3.1). For both objects, the

square and the kite, noisy chord length and knot location data were generated so that the

SNR on the chord length data was set to 10dB and in each reconstruction the assumed knot

location noise model was the i.i.d. model described in Section 3.2.3. Projection data was

taken at 27 equally spaced angles over the interval [O', 180') with 5 equally spaced chord

measurements over the range t = [-1, 1] in each view. Thus, each data set had a total of

108 knot location measurements and 135 chord measurements.

110



1.5 Tru; Object
True Object Initial Estimate
Initial Estimate

Nonlinear Recon.
.... Nonlinear Recon.

0.5 - 0.5 -

0 0

-0.5 - -0.5 -

:T5 -11 -0.5 0 0'5 1 1.5 .5 -1 -0'5 0 0.5 1 1.5
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Figure 6-2: Sample Reconstructions of Nonlinear Algorithm (Seq. Alg. initial guess), 27
views, 10 hypothesis pruning, 10dB SNR on chords.

Error Measures Kite Test Object Square Test Object

V. f7 V. v

Hausdorff Error 36.67 10-75 44-61 15-66
Symm. Diff. Error 38.42 11-51 33-62 11-66

Table 6.1: Comparison of Errors for Sample Nonlinear Reconstructions - Sequential Algo-
rithm Initial Guess.

Figure 6-2 (a) and (b) show sample reconstructions of the kite and square using the

Sequential Reconstruction Algorithm to generate the initial guess. Table 6.1 summarizes the

Hausdorff error and Symmetric Difference error for the sample reconstructions of Figure 6-

2. Similarly, Figure 6-3 (a) and (b) show sample reconstructions of the kite and square

using the Non-Sequential Algorithm to generate the initial guess. Table 6.2 summarizes the

Hausdorff error and Symmetric Difference error for the sample reconstructions of Figure 6-3.

As the results in Table 6.1 and Table 6.2 summarize, the Nonlinear Reconstruction

Algorithm significantly improves the reconstruction results of both objects from initial esti-

mates provided by either the Sequential or Non-Sequential Algorithm. The reconstruction

errors of the initial estimates were halved in nearly all of the cases. Additionally, the non-
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(a) Kite Reconstruction (b) Square Reconstruction

Figure 6-3: Sample Reconstructions of Nonlinear Algorithm (Non-Seq. Alg. initial guess),
27 views, 10 hypothesis pruning, 10dB SNR on chords.

Error Measures Kite Test Object Square Test Object

V. f7 V. f7

Hausdorff Error 20.41 8.88 19.22 12-60
Symm. Diff. Error 32.66 9.52 24.19 12.61

Table 6.2: Comparison of Errors for Sample Nonlinear Reconstructions - Non-Sequential
Algorithm Initial Guess.
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linear reconstructions for each object have nearly the same errors, regardless of whether the

Sequential and Non-Sequential Algorithm was used to generate the initial estimate of the

objects vertices (although the Non-Sequential Algorithm does perform slightly better in all

of the cases). Yet, despite the similax levels of error, as a comparison of the reconstructed

objects of Figure 6-2 and Figure 6-3 show, the reconstructions for each object are slightly

different for different initial estimates of the vertex locations. This implies that the cost

function of Equation (6.6) is indeed a complicated function with numerous local minima.

For example, referring to the square reconstructions of Figure 6-2(b) and Figure 6-3(b) we

note that although both reconstructions had the same measurement data, they had different

initial vertex estimates and ultimately converged to different final estimates of the vertices.

Despite this, both reconstructions produce reconstruction errors that axe very close for both

the Hausdorff and Syrnmetric Difference errors.

The reconstruction errors of the kite were less than those of the square for this sample

path in all of the Nonlinear Reconstruction results. Again, we acknowledge this result but

defer comparative analysis of the performance of the algorithm in reconstructing these two

objects to the Monte-Carlo results of Section 6.2.2.

6.2.2 Monte-Carlo Simulations

In the following sections Monte-Carlo simulations of reconstructions axe used to test the

performance of the Nonlinear Reconstruction Algorithm. As in the previous chapter, all

simulations are performed using the kite test object (with the exception of the last sec-

tion which is a comparison of reconstructions of the kite and square). The Monte-Carlo

simulations consist of 50 independent reconstructions for each reconstruction scenario. In

each plot error bars denote the 95% confidence intervals of the sample mean values that

result from the 50 runs of the algorithm. The initial estimates of the vertices of the object

are generated using the Non-Sequential Algorithm with the i.i.d. assumed knot location

noise model'. The projection data for all simulations are uniformly spaced samples over the

angular region [O', 180'). Finally, unless otherwise stated, T = 15 hypotheses axe retained

in each step of the Non-Sequential Algorithm, 5 uniformly spaced chord measurements over

the range t = [-1, 11 are taken per view, and the SNR on the chord length measurements

3Refer to Section 3.2.3 for a complete discussion of the noise models used in this thesis.
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Figure 6-4: Performance as a Function of Number of Chords Used in the Nonlinear Recon-

struction Algorithm.

is set to 1OdB.

Reconstruction Error as a Function of Chord Measurements

In this section we analyze the performance of the Nonlinear Reconstruction Algorithm as

a function of the number of chord measurements used in the reconstruction algorithm.

Each reconstruction is based on 18 uniformly spaced views or a total of 72 knot location

measurements. We set the variance on the chord length measurements to a constant value

throughout this experiment. Thus, as the number of chord length measurements per view is

varied, the SNR (as defined in Section 3.2.3) will also change. The constant variance on the

chord lengths was chosen for the case of 10 chord measurements per view at a SNR of 1OdB

and the noise on the knot locations was set with Equation (3.3) using this constant chord

variance. Noisy chord data were generated for 0, 5, 10, 15, and 20 chord measurements per

view and the resulting Hausdorff and Symmetric Difference reconstruction errors are plotted

in Figure 6-4 (a) and (b), respectively. The solid line represents reconstruction errors of

the initial estimate generated from the Non-Sequential Algorithm while the dashed line

represents reconstruction errors from the Nonlinear Reconstruction Algorithm.

The error measures of Figure 6-4 behave as expected as a function of the number of

chord measurements. The Nonlinear Algorithm reduces the overall reconstruction error
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for both the Hausdorff error and Symmetric Difference error. Further, as expected, as the

number of chord length measurements increases, the difference between the reconstruction

errors of the initial estimate and those of the final nonlinear reconstruction become more

pronounced. This occurs because the Nonlinear Algorithm uses the information in the chord

measurements to obtain the estimate of the vertices while the Non-Sequential Algorithm

(used to generate the initial estimate) only uses chord length to prune the possible discrete

data association hypotheses. Thus, with more chord data, the Nonlinear Algorithm obtains

a better estimate while the initial estimate from the Non-Sequential Algorithm levels off as

the number of chords increases because it has obtained the best estimate that it can reach

from the set of discrete hypotheses.

As with the reconstruction results of the first two algorithms, the greatest reduction in

error (for both error measures) occurs when the number of chord measurements is increased

from 0 to 5 samples per view. This makes sense in the Nonlinear Algorithm for two reasons.

First, the Non-Sequential Algorithm produces a better initial estimate for the Nonlinear

Algorithm (as shown in Figure 6-4); second, because the Nonlinear Algorithm uses chord

length data to estimate the vertex locations (unlike the algorithms developed previously).

Therefore, at the first inclusion of chord measurements we expect that the estimate would

improve significantly. As the error curves of Figure 6-4 demonstrate, the Hausdorff error

and Symmetric Difference error from the Nonlinear Algorithm are halved as the number of

chords is increased from 0 to 5 measurements per view.

Reconstruction Error as a Function of SNR and Number of Views

This section presents the results of a series of independent Monte-Carlo simulations per-

formed at various SNRs and numbers of views (refer to Figure 6-5) to characterize the effect

of these parameters on the Nonlinear Algorithm. Reconstructions axe performed for SNRs

of OdB, 10dB, 2OdB, and 3OdB and numbers of views equal to 9, 18, 27, and 54. Figure 6-5

presents the Hausdorff and Symmetric Difference errors for both the initial estimate (gen-

erated from the Non-Sequential Algorithm) and the nonlinear reconstruction for four cases:

(a) SNR = 0 dB, (b) SNR = 10dB, (c) SNR = 2OdB, and (d) SNR = 3OdB.

There are a number of interesting observations regarding the results presented in Fig-

ure 6-5. The first observation is that all of the error curves, whether from the initial estimate
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Figure 6-5: Performance as a Function of Number of Views Used in the Nonlinear Recon.
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or the nonlinear reconstruction, behave similarly as a function of the number of views. As

expected, each error curve decreases as the number of views is increased. Additionally, the

reconstruction error decreased as a function of increasing SNR for all plots (as expected).

We also note that the Nonlinear Reconstruction Algorithm produces significantly better

reconstructions as measured by the Hausdorff error and Synunetric Difference error for all

cases except those at an SNR equal to OdB. Consistent with the results of the previous

section, we see that the nonlinear reconstruction results halve the errors for cases of 18, 27,

or 54 views (with a slightly smaller error reduction in the case of 9 views). Thus, the sample

reconstructions of Figure 6-2 and Figure 6-3 axe representative of the kind of error reduction

possible with the nonlinear algorithm (as noted in the previous section, the reconstruction

errors are nearly halved in the sample reconstructions of Section 6.2.1). In addition, for

the same number of experiments the error bars of the Nonlinear Algorithm's results are

smaller, implying that the variance of the estimates is smaller. As for the reconstruction

results at a SNR of OdB, the errors are also consistent with the results of the previous two

chapters. The initial estimate provided to the nonlinear optimization algorithm is too far

away from the true vertices of the object, supporting the claim that a good initial guess is

important for the nonlinear optimization routine. Additionally, the knot location and chord

length measurements may be too noisy to resolve this problem. As a result, the algorithm

produces results that have reconstruction errors on the same order of magnitude as the

initial estimate.

Nonlinear Reconstruction Without Knot Location Measurements

In this section we present Monte-Cax1o simulations of the Nonlinear Reconstruction Algo-

rithm that use the Non-Sequential Algorithm to generate the initial estimate but use only

chord length data in the nonlinear optimization routine to minimize the cost criterion given

by Equation (6.6). This approach was taken because the i.i.d. knot location noise model is

a poor characterization of the noise actually added to the system.

Figure 6-6 (a) and (b) show the resulting percent Hausdorff and Symmetric Difference er-

rors resulting from this experiment. Each reconstruction contained 5 chord measurements in

each view with the SNR set at 10dB. As shown in the figure, reconstructions were performed

with 9, 18, and 27 views. In both plots the solid line is the error in the initial estimate which
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Figure 6-6: Nonlinear Reconstruction Without Knot Location Measurements.

is generated from the Non-Sequential Algorithm, the dashed line represents reconstructions

using both knot location and chord length data in the nonlinear reconstruction, and finally

the dash-dotted line is the reconstruction errors for the nonlinear reconstruction using only

chords in the reconstruction. As the Hausdorff error and Symmetric Difference error of Fig-

ure 6-6 demonstrate, both of the nonlinear reconstructions produce better estimates than

the initial estimate generated by the Non-Sequential Algorithm. In fact, for small numbers

of views, the results were almost identical. As the number of views increased, however, the

reconstructions without knot location data produced higher reconstruction errors for both

measures. This shows that despite the badly mismatched model for the knot location noise,

the knot location measurements produce valuable geometric information and add to the

overall nonlinear reconstruction results.

Nonlinear Reconstruction With Top T Hypotheses

We alter the format of the Nonlinear Reconstruction Algorithm in this section slightly.

Instead of initializing the nonlinear optimization with the estimate corresponding to the

top data association hypothesis in the Non-Sequential Algorithm, we perform T nonlinear

reconstructions initialized with the estimates corresponding to the top T data association

hypotheses that result from the Non-Sequential Algorithm. After all of the nonlinear recon-

structions are complete, the estimate that minimizes the cost criterion of Equation (6.6) is
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Figure 6-7: Nonlinear Reconstruction Without Top T Hypotheses.

chosen as the final estimate. The approach is taken so that the addition of chord length data

in the nonlinear estimate can have even greater impact on choosing the optimal estimate.

Each reconstruction contained 5 chord measurements per view with the SNR on the

chord length measurements set at 1OdB. This corresponds to a total of 72 knot location

measurements and 90 chord length measurements. Further, 10 hypotheses were retained

at each step of the Non-Sequential Algorithm. The estimates corresponding to the final

10 hypotheses of the Non-Sequential Algorithm are used as the initial estimates to the

Nonlinear Algorithm, and the reconstruction with the smallest resulting error is kept as the

final estimate. Figure 6-7 (a) and (b) are plots of the Hausdorff and Syrmnetric Difference

errors, respectively, that resulted from this analysis. In both plots, the solid line represents

the reconstruction error of the top estimate provided by the Non-Sequential Algorithm,

the dashed line represents the results from the Nonlinear Algorithm using only the top

hypothesis from the Non-Sequential Algorithm, and finally the dash-dotted line represents

the results from performing nonlinear reconstructions on all 10 hypotheses and choosing

the one with the smallest error. As shown in Figure 6-7, this simulation was run for 9, 18,

and 27 views.

As the results of Figure 6-7 demonstrate, the reconstruction obtained by choosing the re-

construction that minimizes the cost function of Equation (6.6) from the top 10 hypotheses

outperformed the reconstruction using only the top initial estimate from the Non- Sequential
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Figure 6-8: Comparison of Kite and Square Test Objects for Nonlinear Reconstruction
Algorithm: SNR--IOdB, T-_15 retained hypotheses, 5 chord measurements per view.

Algorithm (as expected). It is also interesting to note that for both error measures, the

relative decrease in reconstruction error was the same amount, independent of the num-

ber of views. Again, this result demonstrates the importance of the initial estimate in the

Nonlinear Algorithm. For each nonlinear estimate generated from the initial estimate corre-

sponding to one of the top 10 hypotheses of the Non-Sequential Algorithm the measurement

data was identical. The only difference was in the initial estimate. Yet, as the results of

Figure 6-7 show, this initial estimate is important when trying to minimize the cost function

of Equation (6-6).

Reconstruction Comparison of Two Test Objects

Having completed the Monte-Carlo analysis of the Nonlinear Reconstruction Algorithm for

a particular object, the kite, we now turn to a comparative analysis. The reconstructions

were performed with 5 chord measurements per view and the SNR on the chord mea-

surements set at 10dB. As stated previously, the initial estimates were obtained from the

Non-Sequential Algorithm assuming an id.d. noise model on the knot location measure-

ments. Reconstructions were performed for 9, 18, 27, and 54 projections. Figure 6-8 shows

the Monte-Carlo reconstruction errors for both the kite and the square test objects as a

function of the number of views used in the reconstruction.
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Consistent with the results of the previous chapter, the initial estimates generated from

the Non-Sequential Algorithm for the kite object have slightly smaller reconstruction errors

than those of the square. The nonlinear reconstruction curves, shown in dashed lines for

the kite and dash-dotted lines for the square in Figure 6-8 axe basically shifted versions of

the initial estimate error curves. Therefore, the overall improvement in the reconstruction

of each object over the initial estimate is approximately the same. It is interesting to

note that there are greater discrepancies between the reconstruction errors for the kite

and square in the Hausdorff errors of Figure 6-8(a) than the corresponding Symmetric

Difference errors of Figure 6-8(b). This is attributed to the fact that a slight elongation

and rotation of the square can have a significantly large effect on the Hausdorff error while

the change in the Symmetric Difference error is less severe. Overall, however, the initial

reconstructions of both the kite and the square have the same relative amounts of error (as

discussed in Chapter 5) and the improvement over this initial estimate due to the Nonlinear

Reconstruction Algorithm is approximately the same for both objects.

6.3 Conclusions

In this chapter we extended our reconstruction approach to a full nonlinear estimation al-

gorithm from knot location and chord length data. The approach was to use the output of

either the Sequential Algorithm of Chapter 4 or the Non-Sequential Algorithm of Chapter 5

as the initial estimate to a nonlinear optimization routine which minimizes the cost func-

tion given by Equation (6-6) using the noisy knot location and chord length measurements

and the corresponding noise statistics for each data set. Note that despite the assumption

throughout this experiment of the i.i.d. noise model on the knot location data (which we

consider to be a worst case assessment of the algorithm's performance), the results showed a

vast improvement in the reconstruction quality as compared to both the Sequential Recon-

struction Algorithm and the Non-Sequential Algorithm (in terms of the percent Hausdorff

and Symmetric Difference errors). This improvement is attributed to the incorporation of

the chord length measurements (which we model with the correct applied noise model),

which have a significant impact on the estimate of the vertex locations of the object.

Overall, the Nonlinear Algorithm significantly reduced the reconstruction errors as mea-

sured by both the Hausdorff error and Symmetric Difference error. For the sample recon-
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structions of Section 6.2.1 the Nonlinear Algorithm halved the percent error measures for

both the Hausdorff and Symmetric Difference errors in nearly all of the cases. As expected,

the Monte-Carlo reconstruction experiments also showed a vast improvement over the cor-

responding errors obtained using the Sequential or Non-Sequential Algorithms alone. The

Nonlinear Algorithm was able to significantly reduce the reconstruction error for all ex-

periments except the cases where the SNR was OdB. For this OdB case, the algorithm was

unable to recover from the poor initial estimate (here the resulting errors were essentially

the same as the errors in the initial estimates). In summaxy, the percent reconstruction er-

ror decreased as the number of chords increased, number of retained hypotheses increased,

number of views increased, and the SNR increased (as expected in all cases). Additionally,

the performance of the algorithm had a strong dependence on the chord measurements

when the number of chord measurements per view was small. In addition to containing

important information to regularize the reconstruction problem, the chord measurements

are extremely important because of the poor assumed noise model on the knot location

measurements. The algorithm incorrectly weights the importance of the knot measure-

ments and thus make the correctly weighted chord measurements extremely important in

determining the optimal estimate of the vertices. Despite the poor modeling of the knot

location data, we found that the knot location data still had a positive impact on the overall

reconstruction quality. We also note the importance of the initial estimate on the perfor-

mance of the reconstruction algorithm. As results of the Monte-Carlo analysis retailing the

top T hypotheses from the Non-Sequential Algorithm showed, lower reconstruction errors

can be obtained from the same data set solely by varying the initial estimate input to the

Nonlinear Reconstruction Algorithm. Finally, in the comparison of the two test objects, the

Nonlinear Algorithm reduced the reconstruction error for both objects by approximately the

same amount. Basically the Nonlinear reconstruction error curves were shifted (lower) ver-

sions of the error curves of the initial estimates. Thus, consistent with the results presented

in the previous chapter on the Non-Sequential Algorithm, the result of the comparison of

the reconstructions of the two test objects showed that the Nonlinear Algorithm did not

produce significantly better reconstructions for either object.
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Chapter 7

Resolving Data Inconsistencies

1\4issl'ng Knot 1\4easurements

This chapter returns to the Non-Sequential Reconstruction Algorithm of Chapter 5 and

presents an adapted version of this algorithm, which we term the Extended Non-Sequential

Algorithm. The Extended Non-Sequential Algorithm is capable of dealing with missed de-

tections, or missing knot location measurements in the projection data. This chapter is

organized as follows. Section 7.1 describes the underlying assumptions of this problem.

Section 7.2 outlines the general framework of the Extended Non-Sequential Reconstruction

Algorithm and how it differs for the original Non-Sequential Algorithm, describes the crite-

ria used to generate the possible hypotheses at each step of the reconstruction, and presents

a general overview of the algorithmic procedure. Section 7.3 explains the criteria used to

remove knot location measurements from the projection data during the data generation

process. Section 7.4 presents sample reconstructions, Monte-Carlo simulations of this algo-

rithm, and an implementation of the Nonlinear Algorithm of Chapter 6 with the Extended

Non-Sequential Reconstruction Algorithm used to generate the initial estimate. Finally,

Section 7.5 summarizes our conclusions on the results of this algorithm.

7.1 Initial Assumptions

Like the algorithms developed in the previous three chapters, the algorithm developed in

this chapter is concerned with the reconstruction of binary polygonal objects from mea-

surements of knot locations and chord lengths. Unlike the previous chapters, however,
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the Extended Non-Sequential Algorithm incorporates the additional complexity of missing

knot location measurements. As in all previous chapters, we make use of many of the defi-

nitions and terminology presented in Chapter 2 and the problem formulation of Section 3.2.

Additionally, because the algorithm developed in this chapter is an extension of the Non-

Sequential Algorithm presented in Chapter 5, we make use of many of the definitions and

procedures introduced in that chapter.

The underlying assumptions for this chapter are essentially the same as in all other

chapters of this thesis. To review, we assume that we wish to reconstruct the vertices of a

binary polygonal object with a known number of sides from measurements of knot location

and chord length data. Also, for simplicity, we consider only convex objects as discussed in

Section 3.2.1. We assume that the projections are taken at known angular views and that

the knots have been extracted from the projection data independently of this algorithm

using a procedure such as that of Mier-Muth and Willsky [8]. In addition, we assume that

all objects are convex n-gons and that the support knots will not be missed detections.

This assumption is based on the work of Prince [12] who was able to successfully detect

the support knot locations using Kalman filtering methods. Thus, missed detections are

only assumed to occur at internal knot locations. Again, since it is outside the scope of

this thesis to actually implement a knot extraction procedure, we take the more simplistic

approach of directly generating noisy knot observations with missing data measurements.

Thus, as outlined in Section 3.2.1, our reconstruction scenario consists of two stages: the

generation/simulation of the noisy knot location and chord length data and the implemen-

tation of the reconstruction algorithm. The chord lengths and knot locations are generated

from the underlying object and perturbed with independent Gaussian noise using the noise

models specified in Section 3.2.3 and discussed later in this chapter. A block diagram of

the reconstruction scenario is shown in Figure 3-4.

We begin in the next section with a brief review of the Non-Sequential Algorithm and

explain how it must be altered to accommodate measurements with missing knots. Because

we directly generate the data, we then present the methodology used to generate knot loca-

tion data with missing measurements followed by experimental results from reconstructions

using the Extended Non-Sequential Algorithm.
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7.2 Overview of the Extended Non-Sequential Reconstruc-

tion Algorithm

Recall from Chapter 5 that the Non-Sequential Reconstruction Algorithm is a multi-stage

estimation algorithm that simultaneously estimates discrete-valued states, or data associa-

tion hypotheses, and continuous-valued estimates of the vertices of a polygonal object based

on these discrete hypotheses. There are three distinct stages in this algorithm. The first

stage enumerates all of the possible associations of knot location measurements to vertex

locations. Once the possible data associations are determined, the second stage of the al-

gorithm estimates the vertex locations for each discrete hypothesis under the assumption

that it is the correct hypothesis. Finally, the third stage uses a generalized likelihood ratio

test to determine the top T hypotheses for the next step of the algorithm. The optimal

hypothesis is the most likely hypothesis given by the ratio test and the estimate based on

this hypothesis is the optimal estimate of the vertex locations of the object. The block

diagram of this algorithm can be found in Figure 4-1. Recall also that the only difference

between the Sequential Reconstruction Algorithm of Chapter 4 and the Non-Sequential Al-

gorithm is that the Non-Sequential Algorithm allows views to be input into the algorithm

in any order. This simply amounts to a different method to determine the possible data

associations at each step of the algorithm.

The only difference between the original Non-Sequential Algorithm and the algorithm

developed in this chapter is that we now have incomplete knot location measurement data.

In terms of the algorithm, this translates into keeping track of both the association of the

hypothesized underlying knot locations to the vertices (as before) and the association of the

measurements to these ordered knot locations z, < Z2 < - - - < z,. This means that each

hypothesis must now clearly define which knot locations are missing measurements. Thus,

a missing knot location measurement is analogous to a missed detection in the multitarget

radar tracking problem [6] and simply adds another level of complexity to the discrete data

association hypotheses.

In the Non-Sequential Algorithm, at the kth step of the algorithm, the possible knot-

to-vertex data associations for the insertion of the kth view into an existing hypothesis are

evaluated with five "rules" (which we repeat here for convenience):
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1. If a projection is inserted between two views that have the same knot-to-vertex asso-

ciation, the inserted view must also have that ordering.

2. Once a knot-to-vertex association has been used somewhere in a hypothesis, it can

never occur again after the knots switch from that position.

3. If a knot-to-vertex association is used somewhere in the proposed hypothesis path, its

reciprocal cannot be used anywhere in the hypothesis (with the exception of the initial

and final associations).

4. Each hypothesis must start with abcd and end with dcba.

5. Only '(n-1 ) knot switches are allowed to occur in each hypothesis path. After this,2

only the data associations adjacent to the inserted knot projection are allowed.

Using the above data association rules with each new view of knot location data, the

k-1algorithm evaluates the set of possible associations for each existing hypothesis q, I I <

i < T and determines what knot associations are possible for the kth measurement given

the geometric constraints outlined above. This set of valid associations forms the set of

hypotheses q" which corresponds to Stage 1 of the reconstruction algorithm. Further, we

demonstrated that these associations can be enumerated in a tree (refer to Section 5.2,

Figure 5-1). A trace of successive branches from the root to a branch of the tree denotes

one possible data association hypothesis q.,� and the set of all possible hypotheses is denoted

by q" == [q", q", qk].1 2

To develop the Extended Non-Sequential Algorithm, we simply add another step to

the hypothesis generation stage. At the kth measurement, after we have determined the

possible knot-to-vertex associations using the above rules (which may be done in the absence

of data), we check to see if the kth measurement is incomplete (it has fewer measurements

than vertices). If there are fewer measurements than knot locations at that measurement,

then we also must associate with each possible knot-to-vertex association a hypothesized

measurement-to-knot association. This procedure can best be explained in terms of an

example.

Referring to the first colun-Ln of Table 7.1 we have a possible data association hypothesis

for the first 7 views. We now wish to insert the 8th view into the position denoted by the
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Hypothesis Possible Data Assoc. Final Data Assoc.
Non-Seq. Algorithm Extended Non-Seq. Algorithm

abcd abcd abcd
bacd 1101

bacd abcd
badc 1011

bdac bacd
dbac 1101

dbca ba
dcba 1

Table 7.1: Example Evaluation of Possible Knot Location Data Associations for Extended
Non-Sequential Algorithm.

arrow. Using the five rules given by the Non-Sequential Algorithm we narrow the possible

knot-to-vertex data associations to those listed in the second column. If this view contains

only three measurements, we must now associate with each of the knot-to-vertex associa-

tions in column 2, a corresponding measurement-to-knot location association. Keeping in

mind that we have assumed only the loss of internal knot location data and the fact that

both the measurements and knot locations are ordered in increasing order (i.e. we don't

have to consider all permutations of the measurements because they must be ordered in

increasing order), we need only specify which knots have measurements and which do not

to uniquely specify this association. For notational simplicity, we denote a knot location

with a measurement by a 1 and one without a measurement by a 0. For example, 1001

corresponds to measurements only at the two support knots while 1111 corresponds to a

full data set. Using this notation, the last column of Table 7.1 gives the revised Est of data

association hypotheses.

In addition, the set of all hypotheses can still be enumerated in a slightly altered version

of the hypotheses tree given in Chapter 5. Instead of just the knot-to-vertex associations at

each view, we must give both knot-to-vertex associations and measurement-to-knot associ-

ations. For example, Figure 7-1 presents an example hypothesis tree for a 4-gon. We have

assumed in this example that the first three views expanded in this tree are full sets of knot

projection data but that the fourth only has three measurements. If we compare this tree

to the corresponding tree for the Non-Sequential Algorithm (Figure 5-1) we find that the
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abed 1101
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abed q4
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1111
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bacd dcab

abdc

dcba

abed

abed I
1101f

cdba abed
1011

bacd
1101 i

dcab
bacd
1011

dcba dcba
1111

qC19

dcab
10111

dcba
10111
dcbal
IIOIJ

01= CP 0 = 600 12d' Oy= 3d'
2

Figure 7-1: Hypothesis Tree for the Extended Non-Sequential Algorithm.
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number of hypotheses at the fourth measurement is doubled because we have to account for

the possibility that the missing knot location measurement is in either the second or third

position for each of the possible knot-to-vertex associations. Yet, a single hypothesis is still

represented by a trace of successive branches from the root to a branch of the tree. For ex-

ample, the hypothesis q34 shown in clashed lines in the figure represents the data association

hypothesis (when reordered in increasing angular order):

abcd abcd abcd bacd

1111 1101 1111 1111

Thus, the problem is essentially the same as in the original Non-Sequential Algorithm

with one key difference: each hypothesis must identify both the association of the knot

locations to the vertices of the object (as before), and, the association of the measurements

to these knot locations (i.e. hypothesizing which knots are missing measurements). The

remainder of the algorithm is essentially the same as in Chapter 4 and Chapter 5. Stages 2

and 3 of the algorithm, which evaluate and prune the hypotheses, are performed using the

same method as the Sequential Algorithm (see Sections 4.3 and 4.4). Again, chord length

data are used in addition to the knot location data to prune the possible hypotheses by

using the likelihood ratio tests defined by Equation (4.11) on the observed data. All of the

calculations and evaluation procedures are identical to those of the Sequential Algorithm

and Non-Sequential Algorithm with the exception of the determination of the discrete hy-

potheses, as described above. The next section develops the method we used to remove

knots from our simulated knot location data in order to test the Extended Non-Sequential

Algorithm.

7.3 Data Generation

A missed detection is a knot location that the knot extraction algorithm is unable to detect

from the noisy projection data. In a complete reconstruction scheme a specific measure

for the likelihood of missing a detection is dependent upon the particulax method used to

extract the knots from the projection data. Since we directly generate our data, however,

we simply use two parameters to quantify two geometrically intuitive criteria for missing

detections in the noisy projection data: the absolute value of the change in slope at the
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knot location and the minimum distance to adjacent knotsi.

The knot location data generation process used in this chapter is composed of three

steps:

1. Generation of the noise-free knot locations from the projection of the vertices of the

underlying object at the desired angular locations.

2. Removal of some knot locations from the full set of projection data via the criteria

that are developed in this section.

3. Addition of independent Gaussian noise to the remaining knot location data via the

noise model outlined in this section.

We begin by developing the criteria to remove knots from the noise free projection data.

7.3.1 Knot Removal Criterion

We define the absolute change in slope at a particular knot location zi as

IASiI = Isi-1 - Sil (7-1)

where si-1 is the slope of the line segment of the projection just before the knot location and

Si is the slope of the line segment of the projection just after the knot location. The absolute

value of the change in slope is an important parameter in the ability to detect a knot. A

knot that has a small change in slope would be difficult to detect in noisy projection data

(think of the two limiting cases: first, the absolute change in slope, IASI, as it approaches

zero and second, the absolute change in slope, IASI, as it approaches infinity). For example,

Figure 7-2 is the projection of a binary polygonal object. From the projection, is obvious

that detecting the knot at location Z3 would be much easier than the knot at Z2, especially

with the addition of noise. Consistent with this intuitive assessment, the absolute change

in slope at Z3, IAS31, is greater than the absolute change in slope at Z2, IAS21-

The absolute change in slope is not the only factor that affects the delectability of knots

in the projection data however. For example, the second knot location, Z2, in Figure 7-3(a)

'These two parameters are very similar to the values in the denominator of Equation (3.3) which is used

to set the variance on the knot locations. Refer to Section 3.2.3 for the noise models used in this thesis.
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Figure 7-2: Effect of Slope on Knot Extraction.
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Figure 7-3: Effect of Minimum Separation on Knot Extraction.

and Figure 7-3(b) both have the same slope change, yet, because of the smaller distance

between the adjacent knots in Figure 7-3(a), we expect that these knots would be more

easily misidentified as a single knot instead of two. Thus, we use the minimum separation

between adjacent knot locations as our second criterion. We define the minimum separation

of knot location zi to be

Mi = min[(zi+l - zi), (zi - zi-1)] (7.2)

Because we only remove internal knot locations, there are always adjacent knot locations

on either side of zi.

We incorporate both the absolute change in slope and the minimum separation between

adjacent knots into a single threshold test for the generation of missed knots in the data:

e Threshold Test 1

If zi is an internal (noiseless) knot location and

JASiJA < ti (7.3)

knot zi is removed for the data set; if not, zi is retained.
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Figure 7-4: Effect of Symmetric Projections on Knot Extraction.

In Equation (7.3), JAsil is the absolute change in slope at knot zi, Mi is the minimum

separation defined above, and t, is an arbitrary threshold used on the set of an knot location

projection data to test the knots for removal. In this chapter, we vary the parameter ti

over the set of values 0, .75, 1.03, and 1.075 to test the performance of our algorithm.

In addition to the above threshold test, we also consider a second test to remove knot

location data. If two internal knots are close together and both fall below the threshold t,

using the test given by Equation (7.3), it doesn't make sense intuitively to remove both of

the knots. For example, in the projection of Figure 7-4, if the threshold ti were large enough,

both of these knot would be removed based solely on the criterion given in Threshold Test I

(they both have the same absolute change in slope and minimum separation), implying that

the knot extraction algorithm was unable to detect either knot location. A more reasonable

assumption would be to replace both knot locations with a single aggregate knot location.

Consistent with this logic, if two adjacent internal knot locations, zi and zi+,, fail test 1

above, a second test is performed

e Threshold Test 2

If zi and zi+1 are adjacent internal knot locations with

lAsilHi < t, and lAsi+,IjWi+l < ti

and

(Zi+1 - Zi) <- t2 (7.4)
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replace both knot locations with the new knot location:

i = (zi+1 + zi)/2 (7.5)

In this test, a second threshold, t2, is introduced. This threshold defines the maximum

allowable distance between two adjacent knots such that they are replaced by the average

knot i if they both fail Threshold Test 1. In the simulations of this thesis, we assume a

constant threshold Of t2 = .2. This value was chosen based on the fact that in most views

the width of the support of our test objects 2was , 1. Thus, the minimum distance is on

the order of 20% of the overall support width. Figure 7-4 is an example of a projection

where the average knot would replace the actual knot measurements if threshold ti is set

sufficiently large enough (and similarly t2 set to an appropriate level such that it is greater

than the distance between Z2 and z3).

In summary, we present the knot removal procedure based on the above criteria. We

consider the case of a 4-gon but this procedure is easily extended for an object with more

vertices (and thus more knot locations). For a given set of noise free knot location data,

the internal knots of a 4-gon are Z2 and z3 as shown in Figure 7-4 and the knot removal

procedure is the following:

1. Perform Threshold Test 1.

0 If I AS2 I H2 > ti and I As.3 I H3 > t1, no knots are removed from the view.

0 If I AS2 I jW2 < ti and I AS31 H3 > t1, Z2 is removed from the view.

0 If IA S2 I H2 > ti and I 'A S31,93 <- t1, Z3 removed from the view.

0 If IAS21H2 < t, and IAS31H3 < tl, Z2 and z3 are removed from the view.and

step 2 is performed.

2. Perform Threshold Test 2.

If both Z2 and z3 are being removed according to Threshold Test 1 and if (Z3 Z2) < t2,

the two knots are replaced by the "averaged" knot i such that

-; = (Z3 + Z2)/2

2Refer to Section 4.5.1 for a discussion of the test objects used in this thesis.
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In addition to the procedure and assumptions outlined above, for simplicity in our algo-

rithm we also assume that the maximum threshold, t1, for a given set of projection data is

chosen such that two full views of knot location data remain. This is required because the

initial estimate of the n vertices of the object occurs with three views and the two full views

insure that there will be at least two measurements to estimate the two parameters, x, and

y,, of each vertex (i.e. to avoid an underdetermined set of equations). Although three fun

views are necessary to uniquely define the vertices in a noise free reconstruction scenario

we do not require this because our algorithm hypothesizes all possible data associations.

In addition, we note that with increased algorithmic complexity we could do without the

requirement of two full views by waiting until enough measurements were obtained to esti-

mate each vertex (but this entails retaining all possible hypotheses until there are enough

measurements to generate the first complete estimate of all vertex locations).

Based on the above criteria, Table 7.2 and Table 7.3 summarize the vaxious thresholds,

t1, considered in this chapter and how the procedure outlined above affects the kite and

square test objects respectively with t2 set at 0.2. The tables detail for a given threshold and

number of views (assuming that the views are uniformly spaced over the range [O', 180'))

how many knot will be removed in both absolute numbers and as a percentage of the total

number of knots in the projection data. An X in any position in either of the two tables

denotes that the threshold t, is too high for the projection data to retain the required two

full views. We note that for each object at a given threshold t1, the percentage of knots

removed basically remains constant as the number of views is varied. In addition, the kite

test object is much more sensitive to knot removal at lower threshold values.

7.3.2 Noise Models

In addition to altering the knot location projection data by removing knots from the pro-

jections, we must also alter the noise model developed in Section 3.2.3 to accommodate the

new "averaged" knot locations. Basically the approach taken is as follows:

1. The variance of every original noise-free knot remains given by Equation (3.3).
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Views I Meas. on Data Set 11 t, = 0.0 t, = .75 ti = 1.03 ti = 1.075

9 Number Removed 0 3 7 x
Percent Removed (%) 0 8.33 19.44 x

18 Number Removed 0 6 15 18
Percent Removed (%) 0 8.33 20-83 25-00

27 Number of Removed 0 9 22 29
Percent Removed (%) 0 8.33 20.37 26-85

54 Number Removed 0 19 46 56
Percent Removed 0 8.80 21.30 25.92

Table 7.2: Table of Conversions for Kite Test Object - Thresholds, Number of Missing Knot
Location Measurements, Percent Missing Knot Measurements.

Views I Meas. on Data Set 11 ti = 0.0 I ti = .75 1 ti = 1.03 ti = 1-0735

9 Number Removed 0 3 5 5
Percent Removed (%) 0 8.33 13.89 13-89

18 Number Removed 0 6 10 10
Percent Removed (%) 0 8.33 13-89 13-89

27 Number of Removed 0 8 12 12
Percent Removed (%) 0 7.40 11.11 11.11

54 Number Removed 0 16 24 24
Percent Removed 0 7.40 11.11 11.11

Table 7.3: Table of Conversions for Square Test Object - Thresholds, Number of Missing
Knot Location Measurements, Percent Missing Knot Measurements.
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2. If two internal knots zi and zi+1 are replaced by the averaged knot i, the variance of

this new knot is given by:

a? = max( 2 +11 O'2 (7.6)z 17zi zi

It is arguable what the actual variance of this "new" knot would be as it depends on the

specific knot extraction algorithm, but we choose the variance defined in Equation (7.6) as a

conservative assessment of this value. After the knot extraction is complete, Gaussian noise

is added to the remaining projection data using the knot location noise model described

above and knot location and chord length measurements are input to the Extended Non-

Sequential Algorithm detailed in Section 7.2.

7.4 Experimental Results

In this section, we present some sample reconstructions and Monte-Carlo simulations of the

proposed Extended Non-Sequential Reconstruction Algorithm. As in previous chapters, we

perform our analysis on two test objects: a "kite" and a square (refer to Section 4.5.1,

Figures 4-5 and 4-6). There are a number of specifications that are common to all of the

reconstructions performed in the following sections.

First, consistent with the requirement of at least two full views of knot location data

to obtain the initial estimate of the vertices of the object in the first step of the algorithm

(refer to Section 7.3), we require that the first two views (three if possible) entered into the

algorithm contain full sets of knot location data. Thus, at the start of each reconstruction

the initial view is determined by the Max-Min Approach defined in Section 3.2.4 with the

stipulation that it contain a full set of knot location data. The algorithm then reorders

the remaining views using the procedure for the Non-Sequential Algorithm outlined in

Section 5.3 with one small deviation. After the views are divided into three angular ranges,

we move our choice for the second view position (and third view position, if possible)

the minimum distance such that it (they) will contain a full set of projection data. The

remaining views are reordered exactly as outlined in Section 5.3.

As in previous chapters, the chord measurements are uniformly sampled over the region

defined in Radon space by t -_ [-1, 1]. Again, as stated previously, this results in views
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where some of the chord measurements are zero (i.e. the object is not in the field of view)

and conversely, in views where the chord measurements axe confined to the interior of the

object (for the kite object).

The noise on the chord measurements is i.i.d. Gaussian noise with vaxiance o,,2,, and

the corresponding noise on each knot location measurement is given by the formulation

outlined in the previous section. Reconstructions axe performed for cases where the correct

applied knot location noise model is assumed known and also for cases where the assumed
model is an i.i.d. model with covariance A = (1.5o-,.n )21 where 2 is the variance of the

Z ly;�

noise on the chord length measurements. Additionally, as described in Section 3.2.5 the

percent Hausdorff error and percent Symmetric Difference error are used for the performance

analysis.

Finally, for all of the simulations that follow, we vary the knot removal threshold, t1,

over the set of values ti = 0, .75, 1.03, and 1.075. The second threshold, t2, which defines

the maximum distance at which two adjacent knot locations are replaced by their average

value, is set at the constant value of 0.2 (refer to Section 7.3 for a complete discussion of

these parameters). Table 7.2 and Table 7.3 relate the values of ti to the number of knots

removed and the percentage of knots removed for projection data containing 9, 18, 27, or

54 views for each test object. These conversions provide a more intuitive understanding of

the relationship between a given value of t, and its affect on the knot location projection

data for a given object.

7.4.1 Sample Reconstructions

This section contains results of sample reconstructions using the Extended Non-Sequential

Reconstruction Algorithm. Note that for all of these results the true object is depicted by

solid lines while the reconstructions axe represented by dashed or dotted lines. For both

objects, the square and the kite, noisy chord length and knot location data were generated

so that the SNR on the chord length data was set to 1OdB. Additionally, projection data

was taken at 27 equally spaced points over the interval [O', 180') with 5 chord measurements

in each view. The reconstructions were performed for knot removal thresholds ti of 0, .75,

1.03, and 1.075.

Figure 7-5 shows sample reconstructions of the kite at various threshold values. Two
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Thres. Error Measures Kite Object Square Object
(ti) True Model i.i.d. Model True Model i.i.d. Model

ti 0 Hausdorff 14-87 25.60 15-54 23.08
Symm. Diff. 16.06 17.46 17.91 16.17

t, .75 Hausdorff (%) 15-57 16.98 18.68 19-77
Symm. Diff. 11.27 16-55 11.31 25.42

ti 1.03 Hausdorff (%) 21-96 43.17 18.93 18.94
Symm. Diff. 21.06 37-07 20.83 11.78

ti 1.075 Hausdorff (%) 22.44 35.88 19-65 22.56
Symm. Diff. 20-74 34.86 14.23 20-65

Table 7.4: Comparison of Errors for Sample Reconstructions Using Non-Sequential Algo-
rithm.

reconstructions are shown in each plot: the dashed line represents the reconstruction gen-

erated assuming the correct applied noise model on the knot location measurements while

the dotted line represents the reconstruction assuming the id.d. noise model. Similarly,

Figure 7-6 shows sample reconstructions of the square for various threshold levels. Like

the kite reconstruction, the dashed line represents the reconstruction assuming the correct

applied noise model while the dotted line represents the i.i.d. model reconstruction. Ta-

ble 7.4 summarizes the Hausdorff error and Symmetric Difference error for both sample

reconstructions. To insure that the sample path shown was indicative of the typical perfor-

mance of the algorithm, at each threshold the sample reconstruction was chosen such that

its Hausdorff error assuming the correct applied noise model was approximately equal to the

average reconstruction error that resulted from 50 Monte-Carlo runs for that reconstruction

scenario (refer to Section 7.4.2).

Although these results are only for one sample reconstruction for each of the above

scenarios some interesting observations can be made from these results. First, as in all of

the reconstructions from previous chapters, the reconstruction assuming the correct noise

model consistently outperformed the reconstruction assuming the i.i.d. model. Referring to

Table 7.4, we also note that the differences between the corresponding reconstruction errors

assuming the correct noise model and assuming the i.i.d. model were smaller for the square.

Further, consistent with these results the correct and i.i.d. reconstructions of Figure 7-6

seemed to be more closely associated while in some of the kite reconstructions shown in

Figure 7-5 the reconstruction assuming the correct model was noticeably better than the
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Figure 7-5: Sample Reconstructions for Kite Test Object Using Extended Non-Sequential
Reconstruction Algorithm; (a) t, = 0, (b) t, = .75, (c) t, = 1.03, (d) t, = 1.075.
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Figure 7-6: Sample Reconstructions for Square Test Object Using Extended Non-Sequential
Reconstruction Algorithm; (a) t, = 0, (b) ti = .75, (C) ti = 1.03, (d) ti = 1.075.
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i.i.d. model reconstruction (refer, for example, to Figure 7-5(c)). We also note that in the

reconstructions of the kite, as the threshold increased and more knots were dropped or

averaged, the reconstructions assuming both the correct applied noise model and the id.d.

assumed noise model became more peaked and closer to a triangle. Regardless, however,

both Figure 7-5 and Figure 7-6 demonstrate that viable reconstructions can be obtained

from incomplete projection data.

7.4.2 Monte-Carlo simulations

In the following sections Monte-Carlo simulations of reconstructions axe used to test the

performance of the Extended Non-Sequential Reconstruction Algorithm. As in the previous

chapters, all simulations are performed using the kite test object, with the exception of the

last section which is a comparison of reconstructions of the kite and square. The Monte-

Carlo simulations consist of 50 independent reconstructions for each reconstruction scenario

(unless otherwise stated). In each plot error bars denote the 95% confidence intervals of

the sample mean values that result from the 50 runs of the algorithm. As defined at the

beginning of this section, the chord length data from each projection are uniform samples

over the region t = [-I, 1]. Further, reconstructions are done for cases that assume the

correct applied noise model for the knot location data and also for cases that assume an

id.d. model. The projection data for all simulations are uniformly spaced samples over the

angular region [O', 180'). Finally, unless otherwise stated, T 15 hypotheses are retained

in each step of the algorithm, 5 chord measurements are taken per view, and the SNR on

the chord length measurements is set to 10dB. Additionally, each reconstruction scenario

performs analysis for cases where the knot removal threshold, t1, is 0, .75, 1.03, and 1.075

which corresponds to a 0 - 25% (for the kite object) removal of knot location measurements

from the projection data.

Reconstruction Error as a Function of Retained Hypotheses

Figure 7-7 shows the performance of the Extended Non-Sequential Algorithm as a function

of the number of retained hypotheses, T, at each step of the algorithm. The projection data

for each reconstruction. consisted of 18 views. Reconstructions were performed for T= 5,

10, 15, and 20 retained hypotheses.
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Figure 7-7: Performance as a Function of Retained Hypotheses Used in the Extended Non-
Sequential Reconstruction Algorithm.
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As expected, in the plots of Figure 7-7 as the number of retained hypotheses, T, in-

creases, the reconstruction error decreases for both the Hausdorff and Symmetric Difference

errors over the range of the threshold values. In addition, in the cases where the correct

noise model was assumed (Figure 7-7(a) and Figure 7-7(b)) the reconstruction error for all

numbers of retained hypotheses increases as the threshold, t1, increases. This is expected

because even though the knots that are initially removed from the knot location projection

data axe the most noisy (according to both our noise model given by Equation (3.3) which is

applied to the data and the knot removal procedure outlined in Section 7.3), by virtue of the

fact that we know the noise statistics exactly these knots are still valuable information to the

knot extraction process. Thus, missing knot location measurements in the reconstructions

that use the correct applied noise model result in a degradation in the reconstruction quality

(as denoted by the increasing error measures in the figure). We do note, however, that the

increase in error is gradual at first and rises more rapidly once the threshold reaches - .75.

Still, referring to Table 7.2 we see that at the laxgest considered threshold of t, -_ 1.075,

25% of the knot location data were missing from the original projection data yet the percent

errors for both measures are well below 30%.

There are a couple of key differences between the reconstructions assuming the i.i.d.

noise model and the reconstructions assuming the correct noise model (discussed above).

The first is that the relative level of error of the id.d. noise model reconstructions is greater

for all numbers of retained hypotheses and for all threshold levels (as expected). One of

the interesting things to note from the results of Figure 7-7 (c) and (d) is that many of

the reconstruction error curves decrease initially and although the curves increase as t, gets

laxger, the curves are much flatter than the. corresponding results of Figure 7-7 (a) and

(b). This too is expected. Because the id.d. model weights all knot location measurements

equally, when the threshold t, is low the most noisy knots axe missing from the projection

data and the reconstruction can improve. Thus, the reconstruction improves initially and as

t, continues to increase, the reconstruction errors start to increase as "good" knot location

measurements are missing from the knot location data set.
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Figure 7-8: Performance as a Function of Number of Chord Measurements Used in the
Extended Non-Sequential Reconstruction Algorithm.

Reconstruction Error as a Function of Chord Measurements

In this section we analyze the performance of the Extended Non-Sequential Algorithm as

a function of the number of chord measurements used in the reconstruction algorithm. We

set the variance on the chord length measurements to a constant value throughout this

experiment. Thus, as the number of chord length measurements per view is varied, the

SNR (as defined in Section 3.2.3) will also change. The constant variance on the chord

lengths is chosen for the case of 10 chord measurements per view at a SNR of 1OdB and the

noise on the knot locations was set with Equation (3.3) using this constant chord variance.

Noisy chord data were generated for 0, 5, 10, 15, and 20 chord measurements per view. The

resulting Hausdorff and Symmetric Difference reconstruction errors are shown in Figure 7-8

(a) and (b), respectively, for the case of reconstructions assuming the correct applied noise

model.

As expected, the reconstruction errors in Figure 7-8 are inversely related to the number

of chord measurements used in the reconstruction for all threshold values, tj, considered

in this experiment. Like the analysis of the previous section, the Symmetric Difference

and Hausdorff errors increase as the value of the threshold increases. In addition, we see

that the relative increase in error due to increasing the threshold values varied for different

numbers of chord measurements. For example, the Hausdorff reconstruction error for the 0
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chord measurement case increases 8.55% as tj is varied from 0 to 1.075, while the Hausdorff

error for the 20 chord measurement case increases by only 5.18% over the same range of tj

values. Thus, the inclusion of chord length is an effective method of reducing the error due

to missing knot location data measurements. We also note that this is a case of diminishing

returns as the error plots for 10, 15, and 20 chord measurements per view are very closely

clumped together. This is attributed to the fact that although the chord measurements can

have a huge effect on which hypotheses to retain as the most likely estimate of the knot-

to-vertex association, ultimately it is only the knot location data in this algorithm that

generate the estimate of the vertex locations. Finally, although we have only considered

the case of the correct assumed noise model, it is reasonable to assume that the i.i.d. model

would behave with characteristics similar to those shown in previous analysis (i.e. higher

relative errors but the same general curve shape, slightly decreasing errors for low threshold

values, etc.).

Reconstruction Error as a Function of SNR and Number of Views

This section presents the results of a series of independent Monte-Caxlo simulations per-

formed at various SNRs and numbers of views. First, we performed a set of reconstructions

to characterize the effect of noise on the Extended Non-Sequential Algorithm (refer to Fig-

ure 7-9). Reconstructions are performed for SNRs of OdB, 1OdB, 2OdB, and 3OdB with 18

uniformly space views per reconstruction. Figure 7-9(a) and (b) present the Hausdorff and

Symmetric Difference errors, respectively, for reconstructions assuming the correct applied

knot location noise model. Similarly, Figure 7-9(c) and (d) present the same error measures

for reconstructions assuming an id.d. noise model for the knot location data. Similar to the

SNR experiment, Figure 7-10 demonstrates the results of a series of independent Monte-

Carlo simulations performed with vaxious numbers of views to characterize the effect of

the number of angular views on the Extended Non-Sequential Algorithm. Reconstructions

are performed for numbers of views equal to 9, 18, 27, and 54 with the SNR set at 1OdB.

Figure 7-10(a) and (b) present the Hausdorff and Symmetric Difference errors, respectively,

for reconstructions assuming the correct applied knot location noise model. Similaxly, Fig-

ure 7-10(c) and (d) present the same error measures for reconstructions assuming an i.i.d.

noise model for the knot location data.

145



80 80

SNR = OdB SNR = OdB

70 SNR=lOdB 70 SNR=lOdB
SNR=2OdB ... SNR = 2OdB

60 SNR 3OdB 6 0 SNR=3OdB

so 50.

6
40 2 40

E

2 30 30
EL

p
20 IL 20

I--------------------- C-
10. 10.

.............. ......... w m
0 0

0 0.2 0.4 0.8 1 0 O.2' 0. 4' 0.6 0.8 1
Threshold (tI) Threshold (0)

(a) Hausdorff Error, Correct Model (b) Symm. Diff. Error, Correct Model

120 120

SNR = OdB SNR = OdB
SNR=lOdB SNR = 1OdB

100. ..... SNR 2OdB 100. ... SNR = 2OdB
SNR 3OdB SNR = 3OdB

880- 80-
Uj
zE

60- 9 60 -

E
E

40- 'E 40-

I---------------------
20- 20- - - - - - - - - - - - - - - -

.... ........... ... .. ... .........
.......... O' ......... 3 --------- X---------

0.2 0.4 0.15 0.8 1 0 0.2 0.4 0. 1, 0.8 1
Threshold (t1) Threshold (t1)

(C) Hausdor ff Error, i.i.d. Model (d) Symm. Diff. Error, i.i.d. Model

Figure 7-9: Performance as a Function of SNR Used in the Extended Non-Sequential Re-

construction Algorithm. (a),(b) Correct Noise Model; (c),(d) id.d. Noise Model

146



As expected, for a fixed number of projections, both the Hausdorff and Symmetric Dif-

ference reconstruction errors decrease as the SNR increases at all threshold values. Further,

consistent with the analysis as a function of retained hypotheses and chord length, the re-

sults of the correct noise model, shown in Figure 7-9(a) and (b), demonstrate an increase

in the reconstruction error as the threshold increases for all SNRs. In addition, we see

that the amount of the increase in error is dependent on the level of SNR. For example,

the increase in the reconstruction error for the OdB case is much more obvious than the

increases at 2OdB or 3OdB. Overall, however, the error curves were relatively flat, showing

that the reconstruction is robust even when the knot location projection data is missing as

much as 25% of the original measurements. For the case of the i.i.d. model reconstructions

(shown in Figure 7-9(c) and (d)), the errors decrease slightly for small threshold values

(consistent with previous results) and remain relatively level until the threshold gets to the

point where the percentage of knot removed becomes significant enough to adversely effect

the reconstruction. Thus, the Extended Non-Sequential Algorithm continues to produce

quality reconstructions for relatively large data losses. Even as the percentage of knots

removed is increased to 25% of the overall knot location data, the resulting increase in error

is not extreme (refer again to Figure 7-9). Finally, we note that both the i.i.d. and correct

noise reconstructions seem to approach the same reconstruction error values for both the

Hausdorff and Symmetric Difference errors as the threshold gets large.

In addition, the results of varying the number of views (refer to Figure 7-10) were

consistent with both the expected results and those obtained in previous sections. In the

reconstructions that assume the correct noise model the reconstruction errors increase as a

function of the threshold; while for the i.i.d. noise model the reconstruction errors decreased

initially and start to increase as the threshold gets large. In addition, the reconstruction

errors for both of the measures decrease as the number of views increases (as expected).

Reconstruction Comparison of Two Test Objects

Having completed the Monte- Carlo analysis of the Non- Sequential Algorithm for a particular

object, the kite, we now turn to a comparative analysis. Figure 7-11 shows the Monte-Carlo

reconstruction errors for both the kite and the square test objects as a function of the number

of views used in the reconstruction. Figure 7-11 (a) and (b) are Hausdorff and Symmetric

147



0 50

45 9 views 45 9 views
18 views 18 views

27 views
40 27 views 40

54 views
54 views

35 35

30 30

25 25

E
20 E 20

U)
0.

15, - - - - - - - - - - - - 15
7: 77:

10
10

5 5

0 0 0 0
0 0.2 .4 0 6 0.8 1 0 .2 0.4 0.6 0.8 1

Threshold (ti) Threshold (t1)

(a) Hausdorff Error, Correct Model (b) Symm. Diff. Error, Correct Model

0 50

45 9 views 45 9 views
18 views 18 views

40 27 views 40 27 views
54 views 54 views

35 35

W 30 30

25 25

E ---------------........... E20 ........ .. ....

15 15.
a.

10 10 -

5 5

0 01
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 I

Threshold (ti) Threshold (0)

(c) Hausdorff Error, i.i.d. Model (d) Symm. Diff. Error, i.i.d. Model

Figure 7-10: Performance as a Function of Number of Views for the Extended Non-
Sequential Reconstruction Algorithm. (a),(b) Correct Applied Noise Model; (c),(d) i.i.d.
Noise Model.

148



Difference errors for reconstructions assuming the correct applied knot location noise model

while Figure 7-11 (c) and (d) are the corresponding error measures under the assumption

of an i.i.d. noise model.

From the results of the analysis assuming the correct applied noise model (Figure 7-

11(a) and (b)), we see that the errors of the kite reconstruction remain relatively flat for

small threshold values and then increase significantly for thresholds greater than -0-75.

Unlike the kite, the reconstruction errors of the square are relatively flat and increase only

slightly over the entire range of threshold values. We note that for both the Hausdorff and

Symmetric Difference errors the reconstruction error of the kite exceeds that of the square

at the final threshold level of t, = 1.075. This result can be attributed to the amount of

data that is missing from each object at the various threshold levels. Referring to Table 7.2

and Table 7.3 for the kite and square respectively we see that the maximum percent missing

of knot locations for the kite at t, = 1.075 is 25% while for the squaxe the percentage of

missing data is only 13.89%.

In the id.d. reconstruction error results of Figure 7-11(c) and (d), we see that the

reconstruction error of the square is significantly higher than that of the kite at smaller

threshold levels. As the threshold increases, the reconstruction error for the square decreases

for both the Hausdorff and Symmetric Difference errors. This decrease in reconstruction

error occurs for the same reasons outlined previously. Basically, the id.d. model weights

the really noisy knot location data equal to the "good" measurements. As the threshold

starts to increase, the poor knot location measurements are the first values removed from

the projection data and the reconstruction improves. When the threshold gets high enough,

measurements that provide vital information to the reconstruction begin to be removed and

the error starts to increase again (this can be seen in the case of the kite). Because the

percentage of missing knots in the square is so low for the square, the reconstruction process

has not reached the point where the errors have started to increase again. Finally, we note

that the relative errors of the id.d. reconstructions axe higher than the reconstructions

assuming the correct noise model (as expected).
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7.4.3 Nonlinear Reconstruction Algorithm With Extended Non-Sequential

Reconstruction Algorithm Initial Estimate

In this section we use the Nonlinear Reconstruction Algorithm of Chapter 6 to reconstruct

the vertices of the object using the estimate of the vertices generated from the Extended

Non-Sequential Algorithm as the initial estimate and the chord length data and incomplete

knot location data as the measurements. Reconstructions were performed with 18 uniformly

spaced angular views over the range [O', 180') with 5 chord measurements per view at a

SNR of 10dB. As in all previous experiments, the chord measurements were uniformly

spaced over the range t -_ [-1, 1]. In addition, we assume the i.i.d. noise model in our

reconstructions (as was done in all experiments of Chapter 6). For each reconstruction

scenario, 50 Monte-Carlo reconstructions were performed at each threshold t1.

In addition, the one key difference between the implementation using the Extended

Non-Sequential Algorithm as the initial guess to the Nonlinear Algorithm is that we must

specify the hypothesized missing knot location measurements in the projection data to

the Nonlinear Algorithm. Thus, to minimize the cost function of Equation (6.6) we must

know the correspondence of the knot locations to the incomplete projection data. This

information is available in the optimal discrete data association hypothesis at the output of

the Extended Non-Sequential Reconstruction Algorithm and is passed into the Nonlinear

Algorithm along with the incomplete measurement data.

Figure 7-12 shows the reconstruction results of the nonlinear reconstruction. The solid

and dotted lines represent the Hausdorff error and Symmetric Difference error of the initial

estimates generated from the Extended Non-Sequential Algorithm. The behavior of these

error plots as a function of threshold level is consistent with the results of previous sections.

The results of the nonlinear reconstruction, shown in the dashed and dash-dotted lines for

the Hausdorff and Symmetric Difference errors respectively, demonstrate a marked improve-

ment over the initial estimates. Both nonlinear reconstruction error curves behave in the

same way as a function of the threshold as the initial estimates, but the relative error of each

reconstruction has been significantly reduced. Thus, affirming the results of Chapter 6, the

Nonlinear Reconstruction Algorithm resulted in a maxked reconstruction improvement even

when the threshold level was high and there were a laxge percentage of missing knot loca-

tion measurements. Although this reduction in error is slightly laxger for small thresholds,
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Figure 7-12: Performance of Nonlinear Reconstruction Algorithm Using Extended Non-
Sequential Reconstruction Algorithm Initial Estimate.

there is still a noticeable improvement in high threshold reconstruction scenarios. Thus,

the Nonlinear Reconstruction Algorithm again reduces the error significantly.

7.5 Conclusions

In this chapter, we extended the capability of the Non-Sequential Reconstruction Algo-

rithm of Chapter 5 to include the possibility of missing knot location measurements in the

projection data. The general reconstruction framework was still posed as a combination

hypothesis test-estimation problem but each hypothesis consisted of two associations: the

association of the knot locations to the vertices of the object and the association of the

measurement data to the knot locations. As a result, the mechanics of the algorithm re-

mained the same as in the original Non-Sequential Algorithm (i.e. the methods used to

estimate the vertices, determine the optimal hypotheses, prune the hypotheses, etc.), but

the number of possible hypotheses is increased significantly.

The results of the reconstructions in this chapter were encouraging. Even with losses of

up to 25% of the original projection data, the algorithm was still able to produce quality

reconstruction results. In addition, by retaining more hypotheses, using more chord data,

and increasing the number of views (up to a point of diminishing returns), the reconstruction

errors were decreased. We found that if the correct noise models are known, lower SNRs

are much more sensitive to the loss of data than reconstruction scenarios where only i.i.d.
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models were used. Finally, we note that the results of the nonlinear reconstruction showed

that the reconstruction error can be significantly reduced even if a large percentage of knot

location data is missing from the projection data. Thus, the Extended Non-Sequential

Algorithm was able to deal remarkably well with incomplete knot location measurement

data. This result is important in that a realistic implementation of this reconstruction

algorithm would almost certainly have to deal with missing data measurements.

As a final note, we stress that the focus of this chapter has been to characterize the

performance of the Extended Non-Sequential Algorithm when faced with the problem of

missing knot location measurements. As such, we developed a simplistic approach for

removing knots from the noise free knot location data. In reality, we expect that the

number of knots that are missed during the knot extraction process to be directly related

to the SNR of the projection data. One way of characterizing the missed detections as a

function of SNR is with the following formulation:

9 New Threshold Test 1

If zi is an internal (noiseless) knot location and

K-501M
Mi < 2 JASil(mi)-5 (7.7)

knot zi is removed for the data set; if not, zi is retained.

This uses the standard deviation of the knot location noise model (refer to Section 3.2-3,

Equation (3.3)) and the minimum separation to quantify a missed detection. As defined

previously in Section 3.2.3, K is a scaling constant, om2 is the noise variance on chord length

measurements, JAsjJ is the change in slope at knot location measurement zj(Oi), and Mj is

the distance measure between adjacent knot locations. Basically, this formulation says that

a knot is considered a missed detection if the probability of the knot switching positions

with the closest adjacent knot position is greater than 2.3%. Using this formulation in

conjunction with Threshold Test 2, Table 7.5 lists both the number of and percentage of

knots that would be removed from the kite object based on the SNR values of OCIB, 10CIB,

MM, and 30dB used in this thesis (where the SNR is computed for the case of 5 chord

measurements per view).
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Views I Meas. on Data Set 11 SNR--OdB -SNR=lOdB SNR=2OdB SNR-3OdB

9 Number Removed 17 15 2 1
Percent Removed M 47.22 41.67 5.56 2.78

18 Number Removed 33 30 5 2
Percent Removed (%) 45.83 41.67 6.94 2.78

27 Number of Removed 51 47 9 3
Percent Removed (%) 47.22 43-52 8.33 2.78

54 Number Removed 102 95 19 7
Percent Removed 47.22 43.98 8.80 3.24

Table 7.5: New Table of Conversions for Kite Test Object - SNRs, Number of Missing Knot
Location Measurements, Percent Missing Knot Measurements.
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Chapter 8

Conclusions

8.1 Concluding Remarks

In this thesis, we have developed several algorithms to reconstruct convex polygonal objects

from sparse and noisy measurements of projection data. Specifically, our techniques con-

centrated on reconstructions that use geometric-based information (chord lengths and knot

locations) extracted directly for the projection data to estimate the.vertices of the polygonal

object. We have shown in these algorithms that information that has geometric importance

in both object space and Radon space can be used to produce high quality reconstructions

in the face of limited and noisy projection data.

The first two algorithms, the Sequential and Non-Sequential Algorithms, are based on

techniques that are traditionally used in multitarget tracking problems to determine the po-

sition of targets. The methodology is a simultaneous solution to a discrete-valued hypothe-

sis testing problem (to determine knot-to-vertex data associations) and a continuous-valued

ML estimation problem (to determine the vertices of the polygon). By using knot location

measurements, which axe the locations of the projections of the vertices of the object in

the projection, we were able to use the discrete data association hypotheses to arrive at

a linear estimation problem for the vertices and the knot location measurements. This is

significant because in general the vertices of a polygonal object are a nonlinear function of

its projections (as demonstrated in the chord length analysis as a function of the vertices in

the appendix of Chapter 4). Thus, in our framework, traditional ML estimation and Wary

hypothesis testing techniques are used to estimate the vertices of the object. In addition to
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the use of the knot location data, we also incorporated t he chord length measurements into

the algorithms to prune the set of possible data associations at each step of the algorithm

and help determine the optimal data association hypothesis.

The Sequential Algorithm required views to be input into the algorithm in increasing

angular order with relatively small angular increments. It used a gating approach to limit

the number of discrete data association hypotheses by allowing only adjacent knot loca-

tions to switch associations with the vertices of the object from one view to the next. By

relaxing the restrictions on the discrete data association hypotheses considered at each step

of the algorithm, the Non-Sequential Algorithm allowed views to be incorporated into the

algorithm in any angular order. Thus, the Non-Sequential Algorithm allowed greater flex-

ibility at the expense of increased model complexity. In our analysis, we found that both

algorithms were able to reconstruct convex, binary polygonal objects in sparse and noisy

reconstruction scenarios. In addition, both algorithms were able to reconstruct objects from

projections obtained over limited angular ranges and with non-uniform spacing. In all of

these reconstruction scenarios, however, we found that the better triangulation geometry

afforded by the Non-Sequential Algorithm (due to its flexibility in allowing views to be

entered into the algorithm in any angular order) greatly reduced the reconstruction errors.

The third algorithm developed in this thesis, the Nonlinear Reconstruction Algorithm,

directly uses both knot location and'chord length data to estimate the vertices of the object

by minimizing a ML-based cost criterion. The algorithm uses an initial estimate generated

from either the Sequential or Non-Sequential Algorithms in addition to the measurement

data to minimize the cost function and arrive at the estimate of the vertices of the object.

Thus, the Nonlinear Algorithm is an extension of the work of the Sequential and Non-

Sequential Algorithms. Although the cost function is a complex nonlinear function of the

2n parameters that define the vertices of the polygon, our analysis showed that for the

case of a 4-gon the Nonlinear Algorithm was able to significantly reduce the reconstruction

error (as measured by the Hausdorff and Symmetric Difference errors) for all numbers of

views and SNRs above 10dB considered in this thesis. This result is attributed to the direct

inclusion of both chord length and knot location measurements to arrive at the estimate of

the vertex locations.

Finally, the last algorithm developed in this thesis, the Extended Non-Sequential Algo-
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rithm, expands the original Non-Sequential Algorithm to encompass situations of missing

knot location measurements in the projection data. The approach was to expand the set

of discrete data association hypotheses to consider all possible knot-to-vertex associations

(as before) and all possible measurement-to-knot associations. This algorithm is an impor-

tant extension of the original Non-Sequential Algorithm because it considers the realistic

situation that a full set of knot location projection data may not always be available in

an actual implementation of this algorithm. The reconstruction analysis of the Extended

Non-Sequential Algorithm showed that the algorithm was able to robustly deal with losses

of up to 25% of the original knot location data. Even with these laxge losses of data, the

reconstruction errors only rose slightly. In addition, we showed that if the results of the

Extended Non-Sequential Algorithm are used as the input to the Nonlinear Algorithm, the

reconstruction error can be significantly reduced.

8.2 Future Work

Because the scope of this thesis was limited in a number of ways, there are several possible

extensions of this work:

* Knot Extraction Algorithm

Throughout the work of this thesis, we have generated both the chord length and

knot location data directly from the underlying object and perturbed the noise-free

data with additive, independent Gaussian noise based on noise models developed in

this thesis. The measurements were then input into the reconstruction algorithms

developed in this thesis. A natural extension of this work is to implement a knot

extraction algorithm and provide a complete reconstruction system that would use

the actual projection data at the input and produce estimates of the vertices of the

object at the output.

9 Inclusion of False Alarms

Consistent with the analogy to the radar multitarget tracking problem, the algorithms

developed in this thesis could be expanded to include false alarms, or erroneous mea-

surements that do not correspond to actual vertices of the object, in the knot location

measurements. With the added complexity of false alarms in conjunction with the
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possibility of missed detections, the algorithm could adoptively estimate the number

of vertices of the object in addition to the estimates of their location.

Relaxation of Assumptions

To limit the scope of this thesis, a number of simplifying assumptions were made

on the objects to be reconstructed and data used. For example, the assumption of

convexity and the requirement of two full views of knot location data in the Extended

Non- Sequential Reconstruction Algorithm can be removed at the expense of increasing

the complexity of the algorithm.
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