LINEAR ESTIMATION OF BOUNDARY VALUE STOCHASTIC PROCESSES
by
Milton Bernard Adams Jr.

Sc.B. Brown University (1971)
Sc.M. Brown University (1972)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF SCIENCE
AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1983

© Milton Bernard Adams Jr.

Signature of Author -
Department of' Aeronautics & Astronautics, Date

Certified by

—_ - w—— — —y
L4

Thesis Supervisor

Certified by ]
Vi Thesis Supervisor

Certified by

Thesis Supervisor

Accepted by

Chairman, Departmental Graduate Committee

[--4



LINEAR ESTIMATION OF BOUNDARY VALUE STOCHASTIC PROCESSES
by
Milton Bernard Adams Jr.

Submitted to the
Department of Aeronautics & Astronautics
on January 21, 1983,
in partial fulfillment of the requirements for
the degree of Doctor of Science

ABSTRACT

The linear minimum variance estimator for a broad class of linear
boundary value stochastic processes is derived. This class includes boundary
value processes governed by linear ordinary and partial differential and
difference equations and contains initial wvalue processes as a subclass. The
estimator has been derived by an application of the method of complementary
models introduced by Weinert and Desai [1], and notable is the fact that no
Markov properties have been required. The product of the derivation is a
representation of the estimate and estimation error in differential operator
form. By taking this differential form as a starting point, efficient and
numerically stable methods for implementing the estimator have been formulated
for the cases of 1-D continuous parameter and 1-D and 2-D discrete parameter
boundary value stochastic processes. These solutions are shown to be similar
to two-filter methods for implementing the smoother for causal 1-D processes
[19,20]. A Methodology for developing implementation schemes for the
estimator of 2-D continuous parameter boundary value processes is presented.
This methodology is based on operator transformations of the estimator
dynamics to achieve either a diagonal or triangular form. It is shown that
the existence of transformations leading to these decoupled forms is

conditioned on the existence of solutions to certain operater Riccati
equations.
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CHAPTER 1: INTRODUCTION

SECTION 1.1
PROBLEM MOTIVATION AND THESIS GOALS

Most of the natural laws of physics can be expressed as either ordinary
or partial differential equations [5], e.g. Newton's law of cooling, Newton's
laws of motion, Maxwell's equations governing the basic relations of classical
electricity and magnetism and the Navier-Stokes equations of fluid motion.
Although the differential equations associated with the above mentioned laws
are generally well-defined, in any practical situation there may be
uncertainties in the coefficients of these differential equations and/or in
external processes which act as driving functions. 1In addition, it is often
the case that there are uncertainties in the boundary values required for the
complete specification of the underlying processes. Each of these
uncertainties, in turn, results in uncertainties in our knowledge of the value
of the process throughout the spatial region and/or time interval of
interest.

There are many situations in which large errors in our knowledge of the
Qalue of a process are undesirable. As two examples, consider the control of
the temperature of a steel slab during annealing and the control of the shape
of a highly flexible orbiting antenna. In the first case, one will have
little success in controlling the temperature distribution to some desired
profile if the actual temperature of the slab is poorly known. In the second
case, unknown solar pressures and temperature variations dque to changes in the
orientation of the antenna with respect to the sun will cause the antenna to
deform from its desired shape. One's ability to correct for these
deformations is dependent on how well the deformed shape itself can be
estimated. Another example is provided by the fact that poor knowledge of the
earth's gravitational field is a principal source of navigation error in
highly accurate inertial navigation systems. In an effort to improve our

knowledge of the value of a process (i.e., to reduce the uncertainties),

w
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measurements, which themselves will be in error due to imperfect measurement
devices, are taken. A natural question is: given measures of the uncertainty
in the boundary wvalue, of the uncertainty in the external driving function and
of the uncertainty in the measurements, how does one combine all of this along
with the measured values to produce the best (in some sense) estimate of the
underlying process? This brings us to the topic of this thesis: estimation of
boundary value stochastic processes.

For those laws of physics which are stated in terms of partial
differential equations, the most general form of each describes the transient
(time-dependent) behavior of an underlying process at every point in some
prescribed spatial region. Due to this space-time characteristic, a full
specification of the value of the process throughout the region for future
times requires both constraints on the value of the process at the boundary of
the region for all time and knowledge of the value of the process over the
entire region at an initial time (an initial condition). Processes with this
type of boundary condition will be referred to as initial-boundary-value
processes. In many cases, however, one is interested in the value of the
process only after a temporal steady-state condition has been reached (i.e.,
the value of the process throughout the region of interest is
time-independent); For those cases, the process can be completely specified
in the region simply by defining constraints on the process at the boundary of
the region. To differentiate between the time-independent processes and those
with time variations, we will refer to the former as purely-boundary-value
processes as opposed to initial-boundary-value processes. When it is not
necessary to distingquish between the two, we will simply say boundary-value
processes. Similarly, processes governed by ordinary differential equations
with a specified initial condition will be referred to as initial value
processes and those specified by a two-point boundary condition (one at each
end of an interval) will be referred to as two-point boundary-value
brocesses.

As advertised in the title, in this thesis we address linear estimation
of boundary value stochastic processes. Linear is a key word, and it has been
added to indicate that we have limited our study of the estimation problem in

the following ways. First, we consider estimation of processes satisfying




linear ordinary and partial differential and difference equations with
uncertain inputs which are modelled formally as white noise. Second, the
observations are limited to linear functions of the underlying process with an
additive white measurement error. Finally, the estimate of the process is
restricted to being a linear combination of the observations, and our
objective is to find the linear combination which results in the minimum
variance estimation error. 1In addition, it will be assumed that all random
variables have a Gaussian probability density distribution. 1In this case, the
linear minimum variance estimate is also the conditional mean. The following
simple example of a noncausal 1-D processl, which is considered in detail in
Chapter 3, serves to illustrate all of this. Estimation of 1-D noncausal

processes of this type was first suggested by Krener [17].

Example: A Cooling Rod

Consider the 1 ft long copper cooling rod depicted in Figure 1.1. At
each end it is attached to a heat source at nominal temperature Tg., and
along its length it is bathed in a coolant at nominal temperature T,. For

this example it is assumed that temporal variations in coolant temperature are

ceeeeenn coolant - T Siasanss
eensses e C esssv o

.Source.|/////////Cooling Rod////////]//////| Source: Figure 1.1.1

.. .. o T os i
...Ts... coolant - Tc Cooling Rod

—
l
0

negligible. Let £ represent position along the rod and x(f) represent the
deviation of the temperature of the rod from T, the nominal coolant

temperature. It can be shown (cf. Section 3.6.1) that in temporal

steady-state the temperature deviation x(f) satisfies2
a*xw) 2
——H -~ m x(L) = u(L) (1.1.1)
a

] Here one-dimensional (1-D) refers to processes with a one dimensional
independent variable. Multidimensional refers to a multidimensional
independent variable.

2 Equations and fiqures are numbered as follows:

(Chapter# . Section# . Equation or Figure# within the Section).

10



where u(f2) is a white noise with variance E[u(f2)u(2')] = Q(2)8(2 - 2') which
models the spatial variations in coolant termperature from the nominal T

and m2

is a model parameter which is a function of the diameter of the rod,
the thermal conductivity of the rod and the rod-to-coolant heat transfer
coefficient. In addition to the dynamics in (1.1.1), we also need a boundary
condition in order to completely define the probability law for the stochastic
process x(f) on the interval [0,1]. The following two-point boundary

condition is the appropriate one for the configuration depicted in Figure
Telal:

(TS - Tc) + vo = x(0) (1.1.2a)

and

x(1) (1.1.2b)

(T -T ) +v
s c 1

where vg and v, are zero mean independent Gaussian random variables both

with variance 02

which represent constant variations of the source
temperature from the nominal Tg-

The measurements will be modelled as
yi) =x(0) + Q) (1.1.3)

where r(f ) is a spatial white measurement error with variance R(2)§(2 - 2').

A final assumption is that u, r, vy and v, are pairwise uncorrelated. The
estimation problem is: Given the probabilistic description of the underlying
random processes and the values of the observations y(£) on [0,1], what is the

linear minimum variance estimate of x(2) on [0,1]? =

Before discussing our approach to the solution of this estimation
problem, we will briefly review some previous related work on linear
estimation of stochastic processes. At the beginning of this section we made
a distinction between what we called purely-boundary-value problems and
initial~boundary-value problems. This distinction provide§ a framework for
putting previous work on linear estimation in perspective with what we aim to
accomplish in this thesis. In particular, the minimum variance linear
estimation problem for causal stochastic processes in one and higher

dimensions has been solved (see for instance, [6] and [10]). By causal, we

11



mean 1-D initial value processes and, in higher dimensions,
initial-boundary-value processes. Notable in the derivation of these
estimators is the use of the Markov property for these causal processes

( see [15] for a specific discussion of this for the 1-D case). In this
thesis we formulate and solve the linear minimum variance estimation problem
for a class of processes which includes both the causal stochastic processes
mentioned above and noncausal processes specified by purely-boundary-value
problems. As the class of processes we consider contains both causal and
noncausal processes, the derivation of our estimator has necessarily not
required any Markov properties. Because it is the estimation of
purely-boundary-value processes that is completely new, our discussions will
often be concentrated on these processes. In addition, we will often employ
processes of this type in our examples, e.g. the cooling rod example above.
Finally, we note that our differential operator solution yields a new
estimator structure for multidimensional causal processes in comparison to
those previously obtained [6].

By describing the process to be estimated, the boundary conditions and
the measurements in a general operator form, we will be able to develop,
within a single framework, the equations for the estimate and estimation error
for not only continuous parameter processes3 governed by linear ordinary and
by linear ordinary and partial difference equations. The general form of the

problem we address is given by:

Dynamics: Lx = Bu (1.1.4)

Boundary Condition: v = be (1.1.5)
and

Observations: y =Cx +r (1.1.6a)

where x is the process to be estimated, L is a linear differential or
difference operator, u is a white input process, v is the random boundary

value for x, V is a linear operator, x, contains x and perhaps its

3 . . . . .

A continuous parameter process is one whose independent variable, e.g. time,
takes on values in a continuum. Similarly, a discrete parameter process is
one for which the independent variable takes on discrete integer values.

12



derivatives on the boundary of the region of interest, y and y, are
observations and r and rp are observation noise. Note that the dynamics,
boundary condition and observations of our example can be written in this form

if we let C and B be unity and define
L=._——_m ’ (1'1.7)

X, as the vector ( (") implies d( )/ak ):

ﬁk(of
x(0)
xb = x(1) ’ (1.1.8)
x(1)

and V as the 2X4 matrix

vV = 0 0 1 0 . (1.1.9)

Our solution to the estimation problem is based on a significant
extension of the method of complementary models introduced by Weinert and
Desai in [1] where they formulate the smoother for 1-D causal processes.

In the context of our problem the complementary process Z = {z, zb}, is
defined to be that process which is orthogonal to the observations Y = f{y,

Yb} and when combined with the observations, the two span the space spanned
by all of the underlying processes which define the problem ,i.e.

= {u, v, r, rb}. The key to the derivation is the development of an
internal differential realization for the complementary process which is in
the same form as that for Y in (1.1.4) through (1.1.6). Critical to the
development of this differential realization for Z has been the recognition of
the role played by Green's identity. Augmenting the differential realizations
for Y and 2 into a single system and inverting that system gives a system with
input {Y, 2}, output the underlying process I and an internal process which
contains the process to be estimated x as a component. Projecting the
solution of the inverted system onto the span of Y (i.e. setting Z to zero
since Z and Y are orthogonal) yields the a differential realization of the
estimator. Having the estimator expressed in differential form provides an

excellent starting point for developing methods for its implementation.
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The derivation of the differential operator governing the estimate is the
first of three major goals of this thesis. The actual implementation of the
solution (i.e., computing the estimate) poses different problems depending on
whether the process to be estimated is continuous or discrete, 1-D or
multidimensional. Thus, the second major goal of the thesis is to formulate
efficient and numerically stable methods for implementing the solution to the
estimate equation. To that end, we first consider 1-D discrete and 1-D
continuous parameter boundary value processes and develop forward/backward
two-filter implementations for each. These solutions are shown to be similar
in many respects to two-filter smoothers developed for causal processes [19],
[20], and most importantly, they are shown to have the same stability
properties as the causal smoother solutions. Under fairly general conditions
we are able to transform the estimator for 2-D discrete parameter processes
(solutions of 2-D partial difference equations) into an equivalent, but high
order, 1-D discrete parameter boundary value problem which can also be
implemented in a two-filter form. In certain cases this high order 1-D
Process can be decomposed into a system of low order 1-D processes which,
again lend themselves to a numerically stable two-filter implementation.

The last of the three major goals of this thesis is to unify the
development of efficient and stable two-filter methods of implementation of
the estimator into a single operator framework. Although some significant
questions remain unanswered with respect to this unification problem, in this
thesis we make a some major progress toward its resolution. In particular, we
first show that the two-filter solutions for 1-D problems represent a
diagonalization of the differential operator governing the estimator
dynamics. Given this insight we are able to construct a methodology for
developing (infinite dimensional) two-filter schemes for implementing the
estimator for 2-D continuous parameter processes. In the course of our
investigation of operator diagonalizations we also present a potentially more
efficient method based on trianqularization of the estimator dynamics. It is
shown that a special case of this triangularized solution corresponds to
smoothers for one and multidimensional causal processes developed by the

innovations approach [6], [33].
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SECTION 1.2

THESIS SUMMARY

In Chapter 2 linear estimation via the method of complementary models is
introduced considering a simple static estimation example. Following the
simple example, we apply the concept of complementary models to develop the
differential operator form of the estimator for linear boundary value
stochastic processes. A key to the derivation of this estimator is the use of
Green's identity in developing an internal differential realization of the
so-called complementary process. Having developed the general form of the
estimator equations, we apply them to formulate explicit realizations of the
estimators for two examples. The first example is for a 2-D continuous
parameter process satisfying Poisson's equation on the unit disk, and
we find in this case that the partial differential equation representing the
estimator is in the form of a fourth order biharmonic equation. The second
example is for a 1-D discrete process satisfying an nth order difference
equation with a two-point boundary condition. In this case, the estimator is
shown to be given by a 2nth order two-point boundary value process whose
dynamics (but not its boundary condition) are identical to those of the
smoother for discrete causal processes.

Having obtained an expression for the estimator, we turn to the question
of implementation. In Chapter 3, we begin our investigation of implementation
of the estimator solution by considering the estimator for an nth order 1-D
continuous parameter boundary value stochastic process. First we develop a
special two-filter (one forward and one backward) form of the general solution
for such processes. Then, applying the differential operator solution derived
in Chapter 2, we show that the estimator for the nth order boundary value
process is a 2nth order boundary value process whose dynamics are specified
in terms of the same Hamiltonian matrix as that of the smoother for causal
processes [30]. By diagonalizing the dynamics, we are able to apply the
special two-filter form of the general solution developed earlier in the

chapter. Establishing the stability of each of the filters in this two-filter
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solution, we attain our goal of formulating an efficient and numerically
stable method for implementing the estimator. In the last part of the chapter
we derive some matrix differential equations for computing the covariance of
the estimation error and present numerical results for the covariance analysis
of the cooling rod estimation problem introduced in Section 1.1.

In Chapter 4 we present an alternative method for developing the
estimator for an nth order 1-D boundary value process x(t). This
alternative approach is based on establishing a Markov model for x(t), so that
we can employ standard Kalman filtering and associated smoothing algorithms to
provide the estimate we seek. The Markov model is constructed by the
methodolgy introduced by Castanon et al in [37]. It is shown that a Markov
model for the TPBVP x(t) is a linear system of order greater than n whose
internal state process is a Markov process and whose output is the boundary
value process x{(t). A second topic of Chapter 4, somewhat unrelated with the
first, is an alternative derivation of the two-filter implementation
formulated in Chapter 3. This alternative derivation is carried out by
viewing the estimation problem for x(t) as a linear scattering problem.

The estimator implementation problem for 1-D discrete boundary value
processes is addressed in Chapter 5. The organization of this chapter is
nearly identical to that of its continuous counterpart, Chapter 3. However,
because the dynamics of the estimator are found to be in descriptor form [35],
the problem of formulating a stable two-filter implementation by diagonalizing
the estimator dynamics differs significantly from the diagonalization problem
in the continuous case. This problem is resolved by considering the class of
equivalent descriptor representations of the estimator and determining
conditions for diagonal forms in that class. As in the continuous case, we
also consider an alternative formulation of the two-filter solution from a
scattering viewpoint.

Chapter 6 is a study of the estimator and its implementation for 2-D
discrete boundary value stochastic processes. We begin by introducing a 2-D
discrete dynamical model, referred to as the nearest neighbor model (NNM).

By way of an example, we demonstrate how the NNM can be employed to describe
general discrete 2-D partial difference equations. Next we investigate the

general solution for the NNM and show that for a large class of processes the
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general solution can be expressed in a 1-D two-filter form. Under slightly
more restrictive conditions we show that an FFT-based transformation, which we
construct by extending the results of Jain and Angel [36], can be applied to
decompose the 1-D two-filter solution into a system of low order 1-D
two-filter problems. Having studied the basic properties of the NNM, we turn
to the formulation of its estimator. First the Green's identity for the NNM
is derived. This enables us to apply the operator solution from Chapter 2 and
to write the estimator equations in the form of a 2-D difference equation.
Transforming this difference equation to a NNM, we determine the conditions
for the existence of 1-D two-filter forms discussed above. 1In the last
section of the chapter we formulate the estimators for two 2-D discrete
examples, one a purely-boundary-value process and the other an
initial-boundary-value process. In each case we show that a 1-D form exists
and that the FFT-based transformation can also be applied so that it is
possible to implement the estimator for these processes by a system of low
order 1-D two-filter problems. The estimator for 2-D discrete
initial-boundary-value processes in the form of a system of decoupled low
order two-filter forms differs from those previously obtained for 2-D discrete
causal processes.

Chapter 7 is the last technical chapter of the thesis and our objective
there is to unify the diagonalization procedures employed in earlier chapters
to develop efficient methods for implementing the estimator. The chapter
begins with a discussion of equivalent differential operator representations.
It is shown that both the 1-D continuous and 1-D discrete two-filter solutions
can be derived as diagonal differential operator representations of the
estimator. A key step in these derivations is the determination of the
operator transformations which ultimately lead to a diagonal form. We then
extend the 1-D continuous results to a 2-D process governed by a parabolic
partial differential equation and show that a similar operator diagonalization
of the estimator dynamics is possible. The question of decoupling the
boundary conditions for this example remains, in part, unanswered.
Furthermore, when we consider the general class of 2-D continuous parameter
boundary value processes, we find that the question of existence of the

diagonalizing operator transformation (actually the existence of solutions to
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operator Riccati equations) is extremely difficult to answer. The resolution
of this question for the general case is left to future research. In
addition to diagonalization, we also study triangularization of the estimator
dynamics. It is shown that in the 2-D continuous case triangularization can
lead to an efficient form for implementation of the estimator which avoids
some of the problems that are encountered for diagonalized forms.

The major contributions of the thesis are summarized in Chapter 8.
Following the summary we present some suggestions for further research which
include weakening of the assumptions under which our boundary value estimator
has been derived and extensions of our efforts to obtain efficient methods for

solving the estimator equations for other problems.
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CHAPTER 2: ESTIMATOR FORMULATION via THE METHOD OF COMPLEMENTARY MODELS

SECTION 2.1
INTRODUCTION

In this chapter we present a substantial extension of Weinert and Desai's
[1] method of complementary models for minimum variance linear estimation.
Weinert and Desal showed that the fixed interval smoothing problem for causal
one-dimensional1 processes described by linear state equations driven by
white noise could be solved by introducing the so-called complementary
process. The complementary process has the property that it is orthogonal to
the observations and that, when combined with the observations,
containsinformation equivalent to the initial conditions, driving noise and
measurement noise, i.e. all of the underlying variables which determine the
system state. Here we generalize this idea and show how to employ the method
of complementary models to solve estimation problems for both discrete and
continuous parameter boundary value stochastic processes in one and higher
dimensions. These processes include those defined through ordinary and
partial linear differential equations and ordinary and partial linear
difference equations and may be either causal or noncausal. By employing
operator descriptions for these processes we are able to unify the development
of the estimators for this wide variety of processes within a single
framework. The major contribution of this chapter is a differential operator
representation for the estimator which applies to all of the cases mentioned
above. A key step in the derivation of the differential operator
representation of the estimator is our formulation of a differential operator
representation for the complementary process.

To help clarify our presentation we carry along two examples throughout.
‘One example is a 2-D process governed by Poisson's equation with a white
noise driving function. The other is a 1-D discrete two-point boundary value

process. The emphasis in this chapter is on the development of the

1 The terminology one-dimensional (1-D), two-dimensional (2-D) or

multidimensional process is used here to indicate that the dimension of the
independent variable for the process is one, two or multidimensional.
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differential representation for the estimator. In later chapters we consider
implementation of the estimator solution for various classes of processes.
For instance, in Chapter 3 we study 1-D continuous pararmeter boundary value
stochastic processes and address the details of the implementation and
structure of their estimator and the computation of its error covariance.

In Section 2.2 we review the complementary models approach to linear
estimation and motivate this approach by its application to a static problem
of estimating a random vector. Following the example, the approach is
generalized to second order stochastic processes by way of a restatement of
the Projection theorem. Section 2.3 serves to introduce some notation which
we employ for representing boundary value stochastic processes and their
correlation functions. Utilizing this notation, we state the general form of
the estimation problem for which we ultimately develop a solution. In Section
2.4 we present an operator representation for the complementary stochastic
process associated with the general problem stated earlier. 1In that section
we offer a proof that this operator representation satisfies the properties of
a complementary process as defined in Section 2.2. In Section 2.5 a general
form for the internal differential realization for the complementary process
is derived. Given this realization, we are able to formulate an internal
differential realization for the estimator. Using this recipe for the
operator representation of the estimator, in Section 2.6 we present
differential realizations for the estimators for the 1-D and 2-D examples.

Finally, some observations and concluding remarks are offered in Section 2.7.
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SECTION 2.2

LINEAR ESTIMATION AND COMPLEMENTARY STOCHASTIC PROCESSES

2.2.1 A Static Example

Before presenting the derivation of the estimator for a general class of
noncausal stochastic processes, we illustrate the application of this approach
for a familiar static problem of estimating a random vector. This example
provides motivation for the complementary model approach in general, and in
that there are many parallels between this static example and the more general
problem we will ultimately address, the example also provides insight into the
structure of the operator solution we obtain later.

Let C be an (n+p)-dimensional, zero mean random vector partitioned into

nxX1 and pX1 dimensional vectors x and r respectively as

x| € n*
g = (2.2.1a)
r| € px1
with invertible covariance matrix
X 0]
L= % . (2.2.1b)
0] I
r
Let y be a p-dimensional observation (p<n)
y =MZC (2.2.2a)

where My, is the pX(n+p) matrix partitioned into a p*n matrix H and the n*n

identity matrix I as
] (2.2.2b)
with H full rank p. That is, we have the familiar linear observation:

y = Hx + r . (2.2.2c)
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The vector to be estimated, x, can also be expressed as a linear function of

C:

where

mo=[1i0] . (2.2.3b)

Since both x and y are defined in terms of it, T will be referred to as the

underlying random vector.

We show below that one way to calculate the linear minimum variance

estimate of x given y is by establishing a complementary random vector z which

has the following properties: 1) It is a linear function of the underlying

random vector [
zZ =M ; - (2.2.4)
2) It is orthogonal to the observation y

Elyz'] =0 . (2.2.5)

3) It is complementary with respect to y in that the augmented system

y M
z Mz

is invertible.

Define the inverse of M as N and partition it compatibly with the

dimensions of the vectors y and z as

M =N (NN ] (2.2.7)
Yy zZ

and denote the products of these partitions with y and z as

z =N (2.2.8a)
y "y

and
T =N =z . (2.2.8b)

22



Then 7 can be written as the sum of orthogonal components
C= ; + C . (2-2:8(:)

It follows from the orthogonality of &, and %; and from the Projection
theorem that Cy is the linear minimum variance estimate of C given y (the

projection of T onto span(y)), and that

x =MZC (2.2.9)
Xy

is the linear minimum variance estimate of x given y. In addition,

from (2.2.3a), (2.2.8¢c) and (2.2.9) the estimation error can be written as a
function of C,:

X =X - X (2.2.10)

M C
X Z

Thus the estimation error is the linear minimum variance estimate of x given
Ze
All of this is of little use if the matrix M, is not known. It is
shown in the Appendix that the three conditions stated above enable us to
derive the following general expression for the nX(n+p) matrix M,:
-1

M =T[1I: -LHZI ] (2.2.11)
Z X r

where T is any invertible n*n matrix (indicating the obvious fact that the
complementary process is only defined uniquely up to a choice of basis). We
will see in the next section that the key to extending the method of
complementary models to more general stochastic processes is the
interpretation of the transpose of H in (2.2.11) as an adjoint mapping.

By performing the augmentation and inversion indicated in (2.2.6)
through (2.2.8), the underlying process can be written as a linear function of

y and z. If we define P as the matrix

1

p= (2 +mz
X Y

1~ , (2.2.12a)

then inverting the matrix M defined by substituting (2.2.2b) and (2.2.11) into
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(2.2.6) gives the following expression for

X P -1 P -1 -1
;= = |- -|H'X 'y + |- - Zx T =z . (2.2.12b)

r I-HP £ -HP

From (2.2.3b) and (2.2.9) the estimate of x is given by
- -1
X = PH'Zr vy . (2.2.12c)

From (2.2.10) the estimation error is

~

-1 -
x =PL T 1z
x

or substituting for z from (2.2.4) and (2.2.11)

x =PI 'x -®m'I 'yl . (2.2.124)
X Y

A direct calculation from (2.2.12d) and the defintion of P in (2.2.12a) gives

the error covariance as

E{;;‘} =P . (2.2.12e)

In summary, this static example illustrates the basic concepts of the
method of complementary models. We have shown that two of the key elements in
the development of the estimator are (1) the knowledge of the form of M, and
(2) the ability to easily invert the augmented system (2.2.6) to obtain the
underlying variables C as a function of the observations y and the
complementary process z. In the remainder of this section we formalize this
approach to linear estimation as a restatement of the Projection theorem.
Subsequently, we apply this theorem to establish an operator form for M,
which is appropriate for the general class of noncausal processes mentioned in

the introduction.

2.2.2 The Projection Theorem Restated

Here we consider linear estimation for second order stochastic
processes. Let L;(dP) denote the Hilbert space of finite variance random

variables (on some given probability space). Let I denote an index set. A
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second order process over I is a set of elements in L,(dP) indexed by I:

¢(a) € Ly(aP), a € I. (2.2.13)

The closed linear span in L5(dP) of ¢ (as @ ranges over I) will be denoted
by Sp(¢). The space of second order processes over I will be denoted by
Ly(I;dP). Linear mappings between two such spaces will be called second

order operators.

With these definitions we can generalize the static example as follows.
Define the underlying process as a second order process over a specified index
set IC

L H P = . eloe
[ 2(IC dp) SC (2.2.14)

The process to be estimated X, the observations Y and the complementary

process Z are defined via second order linear operators acting on :

X=MT; M:S ~»>L (I ;ap) = 8 (2.2.15a)
X X C 2 x X
Y=MC; M:S_ >L (I ;dp) =8 (2.2.15b)
y y 4 2y y
and
Z=MC; M:S_~>L (I ;dp) =S8 (2.2.15c)
)4 zZ C 2 z z

where M, and MY are known and M, must be chosen (if possible) so that
the following conditions are satisfied:

Orthogonality:

E[Y(2)Z(B)] = O for all a € Iy, B € Iz (2.2.16)

Complementation:

With M defined as the augmented second order operator

M

M = y (2.2.17a)

M
z

the relation between T and {Y,Z}:

Mg (2.2.17b)
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is invertible. This implies that Sg and Syx SZ are isomorphic.

Assume that M, can be found so that these conditions are satisfied.
Partitioning the inverse of the augmented system (2.2.17) as we did for the

static example (M~1= N = [NY:NZ]), we will define the components of % as

Cy = Ny Y (2.2.18a)
and

Cz = NZ Z (2.2.18b)
so that

g = Cy + Cz . (2.2.18¢c)

Projection Theorem: Given X, Y, and T as defined above and given an operator

M, and corresponding process Z which satisfies the stated
orthogonality and complementation conditions, then

i) the linear minimum variance estimate of § given Y is

L =c (2.2.19)

ii) the linear minimum variance estimate of X given Y is

>
[}
=

Y

(2.2.20)

iii) the estimation error is the linear minimum variance estimate of X

given Z

X = M ; (202-21)
X

MNMZE .
X zZ z

The proof follows from the same simple arguments used for the vector case
in the static example. We remark that the theorem is applicable to processes
defined on multidimensional index sets. 1In the next section we provide an
example of such a processs.

The simple notation used to express the linear minimum variance
estimate of X as a linear mapping of Y belies the complexity of the effort

which may be required in (1) determining the form of the operator M, (2)
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augmenting and inverting to obtain M~! and (3) implementing the solution.
In the static example discussed in this section, a simple matrix form for M,
allowed for a direct inversion of the augmented system, yielding a simple form
for the estimator and error equations. As one would expect, these three steps
become substantially more difficult to accomplish in the more general case
where we consider second order stochastic processes. For the estimation
problems considered here, the mapping My in (2.2.15b) will be assumed to be
of the same form as its matrix counterpart in the static example, i.e. MY =
[H : I]. Here I is the identity operator, and its action on the underlying
process { produces the additive noise component to the observations. The
operator H can be viewed as an input-output map describing the effect of the
system dynamics. After introducing some notation and posing the general
statement of the estimation problem in the next section, the first of the
three issues stated above is addressed in Section 2.4 where a general operator
representation for M, is developed in the form of an input-output map. It
will be shown that the form of the map M, follows from that of the matrix
M, for the static example in (2.2.11). 1In particular, if one interprets the
transpose of the matrix H in (2.2.11) as its Hilbert adjoint and appropriately
interprets Zx and Zr as operators, then the operator form for M; is of
exactly the same form.

As we have just stated, a direct generalization of our static example
is stated in terms of input-output representations for the observations and
the complementary process. Unfortunately, working with these
representations does not lead to a convenient or easily computed solution to
the second step listed above, that is the augmentation of the observations
with the complementary process and the inversion required to determine the
estimator. However, by extending the approach taken by Levy et. al in [9],
we will find that this second step is quite easily accomplished by working
with internal differential realizations for the observations and complementary
process. The internal realization for the observations is provided directly
by the problem statement. We will see that an internal realization for the
complementary process requires an internal realization for the Hilbert adjoint
of H, H*, A critical developement in our research has been the recognition
that Green's identity (cf. Section 2.5.1) is the key to formulating an

internal realization for the Hilbert adjoint map H* in terms of the
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operators involved in the internal description of the observations. Given
these internal realizations, we are able to perform the augmentation and
inversion yielding an internal differential realization for the estimator. We
feel that this representation for the estimator is an important one. 1In
particular, if one directly applies the projection theorem to problems of the
type which we consider here, the results are generally in the form of integral
equations (e.g. Wiener-Hopf integral equations) which must be factored in some
way in order to produce a realization for the estimator. 1In contrast, our
solution, obtained via the method of complementary models, directly yields a
differential realization of the estimator.

Much as in the case of causal processes described by finite-dimensional
state equations, these realizations provide an excellent starting point for
the construction of efficient algorithms for implementing the optimal
estimator. This last step, determining estimator algorithms, is the subject
of the remaining chapters of this thesis. As can be seen from those
chapters, it is a decidedly nontrivial step to go from an internal realization
to an efficient implementation of estimators for the variety of problems

considered in this thesis.
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SECTION 2.3

MATHEMATICAL BACKGROUND AND THE GENERAL PROBLEM STATEMENT

The noncausal stochastic processes for which we will be developing an
estimator can be divided into two classes: 1) those with a continuous-valued
independent variable and 2) those with a discrete-valued independent
variable. More specifically, the processes in the first class are solutions
of linear stochastic (partial) differential equations. Those in the second
class are solutions of linear stochastic (partial) difference equations. In
the first two parts of this section we introduce differential operator
representations for each of the classes. By employing similar notation in the
descriptions of each, we will be able to unify later discussions. An example
will be provided for each of the two classes, and these examples will be
carried along throughout the rest of the chapter.

The purpose of the development in this section is to describe general
recipes for constructing complementary processes and, more importantly, for
expressing the solutions to an extremely broad class of estimation problems
involving processes with independent variable of one and higher dimensions.

In order to highlight the basic concepts underlying these recipes, we will not
discuss in detail the technical conditions that must be satisfied in order for
our most general boundary value problems to be well-posed (i.e. for existence
and uniqueness of solutions to the specified stochastic differential
equations) but rather we will, in effect, assume that these conditions are
met. Clearly, in any application one must verify the appropriate conditions,

and we will illustrate this for our two examples.

2.3.1 Continuous Parameter Stochastic Processes

Differential Operators and Green's Identity

Our stochasitc differential equations are defined in terms of
differential operators acting on Hilbert spaces of square-integrable functions

as follows. Let {§y be a bounded convex region in RN with smooth
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boundary [11]. The space of nX1 vector functions which are square-integrable

on QN is represented by L;(QN). Let L be a formal1 differential operator
defined on D(L), the subspace of sufficiently differentiable elements of

n
Q
L2( N)' so that

n
L: D(L) > LZ(QN) (2.3.1)

Note that D(L) is dense in L;(QN). With BQN denoting the boundary of ﬂh,

define a boundary condition associated with L through the mapping

\
. Ny
V: D(L) ~» L2 (BQN) (2.3.2)

where the dimension n,, is briefly discussed below.
We will say that the pair (L,V) leads to a well-posed boundary value
problem if the differential operator A formed by augmenting the formal

differential operator L and boundary mapping V

L

A = (2.3.3a)
v

has a unique continuous left inverse:

A =TI 3 (2.3.3b)

We denote the components of the left inverse by

i

#

u v

where

. th . 10y
Gu. Lz(QN) + D(L) and GV. L2 (BQN) > D(L) . (2.3.34d)

1 The term formal differential operator will be used to denote operators

which simply represent differentiation of a function. We will reserve the
term differential operator to denote the combined action of a formal
differential operator along with an appropriate boundary condition (see
(3.3a)). That is, a differential operator implicitly defines an input-output
map obtained by solving a well-posed boundary value problem.
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In this case, the equation

Ax = [3] (2.3.4a)

with u and v in the domains of G, and Gy, respectively, has a unique

solution which can be written as

Xx =G u+G v . (2.3.4b)
u v

Thus for a given set of inputs u and v, X is unique and varies continuously
with those inputs. The value of the vector dimension ny in (2.3.2) which is
required for a well-posed problem depends on the type and order of the
operator L and the dimensions N and n. As mentioned earlier, we will assume
that we have well-posed problems here. As discussed next for the examples,

equation (2.3.4b) is the Green's function solution of (2.3.3).

Example 1:(Poisson's Equation) To illustrate the preceding development we
consider Poisson's equation in R2 with {, the unit disk and with a
Dirichlet boundary condition. In this case the formal differential operator
is the Laplacian V2 and its domain is the space Cj(fl3) of scalar (i.e.

n=1) functions on 92 with bounded continuous second partials.

. > Q ; =V e Je
L C2(92) L2( 2) Lx b (2.3.5a)

The boundary operator V is the restriction of x to its values on the boundary

of 92:

V: C2(92) > L2(392) ; Vx = X 390 (2.3.5b)

(here n; = 1). The Green's function solution for the pair Lx=u and Vx=v,
where u and v are in the ranges of L and V as specified in (2.3.5), is shown
in [3] to be given in polar coordinates as follows. Define the kernels gy
and g, as

1 (1 - 02)
gv(p,B;B) =57 ° (2.3.6a)

1 - 2pcos(B - B) + 02
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and

{ p2 - 2pYcos( 6 - B) + Y2 }

1
gu(p,e;Y,B) = 5 log . (2.3.6b)

am 1 - 2pYcos(6 - B) + 92Y2

The solution x is given by

2T 2T 1
x(p,8) = [ g (p,0:B)v(BYAB + [ [ g (5,67, BulY,BdYdaB . (2.3.6¢c)
o V o o "

Note that the boundary value contribution to the solution in (2.3.6c) has been
written as an integral over the interval [0,27]. This is, of course, an

integral over the boundary of the unit disk, i.e. the unit circle.

As indicated in the previous section, Green's identity applied to the
internal dynamics of the process to be estimated plays a key role in the
construction of an internal realization of the complementary process and
ultimately in the inversion required to solve the smoothing problem. In
general, when it exists, Green's identity is obtained from integration by
parts of the the N-fold integral specified by the following inner product:

<Lx,>\>n .
Q
L2( N)

This yields Green's Identity in the form

<Lx,>\>n = <x,Lf>\>n + boundary term . (2.3.7)
LZ(QN) LZ(QN)
Here Lt is also a formal differential operator of the same order as L and is
referred to as the formal adjoint differential operator. The boundary term is
in the form of an integral over the boundary 38{y. This integral involves the
processes x and A and perhaps their derivatives evaluated on 30y. In

general, the precise form of (2.3.7) is

1.
<Lx, A> = <x,L A> + <xb,EAb>H

N n (2.3.8)
L, (&) L, (&) b

where xp, and A, are elements of a Hilbert space Hp of processes defined
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on 3y and E:Hp*Hp. In particular, these processes are defined through

the action of an operator Ap:

n
Ab:Lz(QN) +Hb (2.3.9a)
4 A L] L]
xb bx (2.3.9b)
A = A A. . . 3
o X (2.3.9¢)

The nature of Hy, Abr and E all depend upon L and QN- Green's identity

for ordinary differential operators can be found in [4] (also see Chapter 3 of
this thesis); for elliptic, hyperbolic and parabolic second order partial
differential operators see [3] and Chapter 7. In addition to the
well-posedness assumption on (L,V), we will also restrict ourselves to

operators L and regions )y that admit a Green's identity.

Example 1 Continued:

Recall that in this example x is a scalar function (so that n=1), and

2 is the unit disk. Performing the integration by parts on

<V2x,A> = ff (sz(s,t))k(s,t)dsdt (2.3.10a)
L2(92) 92

it can be shown that the Laplacian V2 ig formally self-adjoint [3], i.e.

<V2x,A> = <x,V2K> + boundary term . (2.3.10b)

The boundary term, for this example is expressed as follows. With x,

the normal derivative of x along 9%y, define the function x, as

X}aq Tx(1, 9
X = Abx = N|, or in polar coordinates xb(e) = ! . (2.3.11)

X x (1,9)
n n

Thus, in this case x;, is an element of the Hilbert space

2
Hb = L2(892)
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with inner product

2T
<w,z>. = (1/2m) [[w (8)z_(8) + w_(8)z_(8)]as . (2.3.13)
H 1 1 2 2
b 0
The function Ay is defined in terms of A in the same fashion as x, in

(2.3.11). Furthermore, the action of the operator E in this case is simply

2
multiplication of elements of L2(392) by a 2%X2 matrix which we also denote

by E. Specifically,

E = - (2-3-14)

Combining these, we have that the boundary term in Green's identity for this

example 1is

2m
]
<x BN > =57 [ (s ex(1, 8- x(1,0 M1, 8) Jae . (2.3.15)
1239, 0

Operator Representations of Stochastic Processes

While we have so far been discussing deterministic functions, we can use
the same formalism to describe stochastic processes. In particular, we will
be concerned with stochastic processes defined as in (2.3.4b) where u and v
are input stochastic processes. As is usually done, we will often represent
such processes via a stochastic differential equation written as in (2.3.4a).

In general for the problems of interest here the operators Gy and Gy
are integral operators over {jy and 9y respectively2 with plecewise

continuous kernels. That is, they are integral operators of the form

n m
G: LZ(F) +L2(I‘)

(GE)(t) = [, g(t,s)f(s)ds  ; t,5 €T (2.3.16a)

where I may be either {iy or 9y and ds is the corresponding
2

The only exception is in the case N = 1, in which §jy is an interval and

3{ly consists of its two endpoints. In this case G, reduces to a matrix
operating on the vector v.
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infinitesimal area element. Here we have underlined the independent variables
t and s to emphasize the fact that they are multidimensional indices belonging
to the region I's The adjoint of this operator is of the same form as

(2.3.16a) but with kernel

9*(3.5) =g'(s,t) . (2.3.16b)

By extending the class of kernels to include the multidimensional Dirac delta

function, 5(375), over I, we can express products of the form

g(t)f(t) t eT (2.3.17a)

as

(GEN(£) = [, a(t)8(t-s)f(s)ds . (2.3.17b)

Note that in the case in which I' = 3%y, the Dirac delta function §(t-s)
represents the measure on the manifold 9{y which is concentrated at the
point t and has unit value.

In addition to the operatofs described above we will also encounter

n m
integral operators which map LZ(F) into R and are of the form

Gf = [} g(s)Ef(s)ds (2.3.18)
and those of the form of the adjoint of (2.3.18) which mame into;L (T):

G £)(s) = g'(s)f : (2.3.19)

Each of the integral operators in (2.3.16) through (2.3.18) can be applied to
mean-square continuous processes with the output being either a mean-square
continuous process or a finite variance random vector. In the case of the
operator defined in (2.3.19), if the input is a finite variance random vector,
then the output is a mean-square continuous process.

We can formally extend the domain of the operators in (2.3.16a) and
(2.3.18) to include white noise as follows. Consider those operators with T =
QN- In this case, as in [12], we can define Wiener integrals with respect
to multidimensional Wiener processes. Similar to the one-dimensional case,

these multidimensional Wiener integrals can be represented formally by
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multidimensional white noise integrals. Specifically, let w(t) denote an

N-dimensional white noise process with
Elw(t)w'(s)] = 0o(t)68(t-s) . (2.3.20)

(Here § is again the N-dimensional delta function.) We will use the following
white noise integral representation

IQ g(t,s)w(s)ds (2.3.21)

N

to denote the Wiener integral over {iy with respect to the kernel g. With g
continuous, (2.3.21) defines a mean-square continuous process. Note that the
critical property of such white noise integrals is the following: If we
define two processes x and y as

x(t) = g g, (t,s)w(s)ds  and y(£) = [, g9,(t,s)w(s)as ,
N N

then their correlation function is given by

Elx(t)y' (D] = [ g, (t,5)0(s)g)(T,5)ds . (2.3.22)
N
In an analogous fashion, we can define white noise integrals over the
smooth, closed (N-1)-dimensional manifold BQN. Specifically, if we now let

w(t) denote a white noise process on BQN and if we write

x(t) = fBQ g1-(3,5)w(§)d§ and y(t) = IBQ gz(E'i)W(i)dE , (2.3.23a)
N N

then

Elx(£)y' (D] = [0 g, (£,5)0(s)g}(s, Tds (2.3.23b)
N

where in this case ds represents an infinitesimal area element on 3QN. Note
that if the support of g (t,*) and gp(t,*) in (2.3.23) are on subsets

of BQN which are homeomorphic to a subset of an (N-1)-dimensional region
then the integrals in (2.3.23) are precisely the same as those in (2.3.22)
except on a space of dimension (N-1). For this reason, we will often
represent the covariance function of a white noise process on 3y exactly as
in (2.3.20) where in this case the Dirac delta function on 9§y is to be

interpreted as described previously.
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Applying this formalism, we will consider the differential equation in
(2.3.3a) with white noise inputs as a formal representation for the
mean-square continuous process defined via the integral representations in

(2.3.4b) where u is now an nX1 vector white noise over {§ with covariance

Efu(t)u'(s)] = Q(t) 8(t-s) ' t,s € Q (2.3.24a)

and in problems for which N > 1, v is an nyX1 vector white noise process
over 9}y with covariance

Elv(o)v' (D] = I (1) §(1-0) , Loedq . (2.3.24b)

If N=1, for example when {§y is the interval [0,T] so that Yy = {o, 1},
then v is simply an nyX1 random vector with covariance matrix I,.

Throughout this thesis we will assume that both I[; and Q are continuous
in their arguments. Thus, given the continuity assumptions for the
integration kernels in the Green's function solution and the continuity of Q
and I,, x will be mean-square continuous. For the example of Poisson's
equation on the unit disk, the dynamics in (2.3.5a) and the Dirichlet boundary
condition in (2.3.5b) formally represent a 2-D random field x when the input u
is a 2-D white noise over the unit disk and v is a 1-D white noise on the unit

circle or, equivalently, on the interval [0,27].

Correlation Operators

In this subsection we introduce some notation for representing the
correlation functions of mean-square continuous stochastic processes as
operators on Hilbert spaces of deterministic functions. In particular, the
correlation functions of these stochastic processes can be viewed as kernels
of such operators. 1In addition, we will also associate the correlation and
cross-correlation functions of processes generated by second order mappings of
the type discussed above with kernels of composite operators. Although we
make use of this notation in stating the general estimation problem, its true
worth will become evident later in Section 2.4.1 where we formulate an

operator representation for complementary processes.
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The correlation function of a mean-square continuous process can be
viewed as the kernel of an operator as follows. Let z(t) be a mean-square

continuous process on fly. Its correlation function
L (t,s) = Elz(t)z'(s)] (2.3.25)

is continuous on {yX{§y and as such can be considered the kernel of an
operator, which we will denote by I,, of the same type as in (2.3.16a).
Similarly, the correlation function for the white noise process w in (2.3.20),

L (trs) = Q(x)8(t-s) (2.3.26)

can be viewed as the kernel of an operator Zw. In addition, the covariance
matrix of a random vector can be viewed as an operator on a finite-dimensional
space. Indeed, each of the operators defined in (2.3.16) through (2.3.19) can
be associated with the cross-correlations of zero mean processes with each
other or with random vectors.

More generally, the correlation functions of stochastic processes defined
by a second order mapping of the type in (2.3.16) through (2.3.19) can be
represented in terms of the composition of operators as follows. For example,
let r(s) be a mean-square continuous process with correlation operator L.

Let the process z(t) be defined by

z(t) = (6r)(t) = [g g(t,s)r(s)as . (2.3.27)
N

The correlation function of z and the cross-correlation function of z and r

are the kernels of the operators

and

Z = Z G . (2.3.28b)

These are easily checked by directly computing the corresponding kernels from
(2.3.27a). Note that these formulas are valid when r is either a second order

process or a white noise process.
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2.3.2 Discrete Parameter Stochastic Processes

In a parallel but much briefer fashion we define the class of discrete
parameter stochastic processes to be considered. In order to unify later
discussions to include both classes, we employ much of the same operator
notation in describing the discrete process as was used to describe the
continuous processes.

Let Iy denote the space of n-tuples (iq,«..,iy) where each of the
ix is an integer. Let §§y be a bounded region in Iy and let l;(QN)
be the space of square-summable nX1 vector sequences on QN. For the
discrete case, L represents a formal linear difference operator. As we will
see below in the example, the support of the sequences in the range of a
difference operator will be different from the support of those sequences in
its domain. By properly defining the boundary set 3QN, one can define the
support of the sequences in the range of the formal difference operator as the
union of {y and 9fyy (Again, the example will help clarify this point).

Thus L is the mapping

n n

Let V be an operator mapping3

. 12 Ny
V: 12(9N U BQN) > 12 (BQN) (2.3.29b)

where, as in the continuous case, the value of the dimension n, is such that

the difference operator formed by combining L and V

L
A= (2.3.29¢)
v

has a unique left inverse, i.e. so that the problem is well-posed.

As in the continuous paramenter case, when N = 1, the range of the boundary

. . n
operator is simply R V.
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As in the continuous case, we will consider only those L and ﬁh which

admit a Green's identity of the form

<Lx,>\;n(Q | = <X'L+}‘in(9 | + <xb,E>\b>Hb (2.3.30)
2N 2N

where LT is the formal adjoint difference operator and the nature of E,
Xp, and the Hilbert space Hp all depend on L and QN- Much as in the
continuous case, xp has support on 39{, and Hp is a Hilbert space of
square-summable sequences with support on BQN. In contrast to the
continuous case, Green's identity is not typically employed in the solution of
boundary value difference equations, and therefore, it is not usually found in
texts on difference equations. However, it can be derived in the same manner
as its continuous counterpart, the difference being that integration by parts
is replaced with summation by parts. The Green's identities for one~ and
two-dimensional difference operators are derived in Fhapters 5 and 6,
respectively. Below we present the Green's identity for a particular 1-D

example.

Example 2:(1-D Discrete Boundary Value Problem) Let x be an nX! vector

1-D discrete process, and let D denote the 1-D delay

(Dx)k =X (2.3.31)

k-1 '

Consider the 1-D difference operator

-1
L =(D I-Aa) ; (Lx)k = xk+1 - Akxk . . (2.3.32)

If we define {; = [0,K-1] and its boundary as 9§y = {0,x}, then the range

and domain of L are properly specified by

L

n n
12[Q1 U 391] > 12[91]

or

)

n n
12[0,K] > 12[0,K-1] .
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This example already illustrates one important point. Due to sequencing
issues for discrete dynamics, it will in general be the case that 9%y is
neither disjoint from nor a subset of . The Green's identity for this

example is

1.
<Lx, A> = <x,L M + <x, ,EA > (2.3.33)
1710,K-1] 1210,%-1] b7 bipan
2 2
where the formal adjoint difference operator is
b=z -ad™ ;o = x - A'x (2.3.34)
= ’ S N RS ’ e
the boundary process is
*o
= A =
» T % (2.3.35a)
%K
and E is a 2nX2n matrix partitioned into n*n blocks as
-I 0
E = . (2.3.35b)
0 I
Combining these definitions, the Green's identity can be written as"
K-1 K-1
- A IA = )\ - A'A | - ')\ + ')\ . eJe
kz:o(xkﬂ i) e k—zo( D (2.3.35¢)

We will assume a two-point boundary condition for this discrete example

as follows. With V the nX2n matrix:

14 (203.36&)

the product

v =1V xb (2.3.36b)

defines a two-point boundary condition (here v € RD, j.e. ny; = n). Let

®[i,k] denote the transition matrix for A in (2.3.27). Then it can be shown

Actually this is Green's identity written in terms of a shifted process.
See Chapter 5 for details.
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that the pair (L,V) is well-posed if the nXn matrix

0 K
F =V + V &[K,0] (2.3.36c)

is invertible [6].

Returning to the general discrete case, a formal representation for a

second order discrete stochastic process x is given by

= = ; A' n 9 n nv
Ax X ; 2 1,08 03 ) > (15(R) x 1,V(39,) )

where u is now an nX1 vector discrete white noise process over §y and v is a

second order discrete process whose support is contained in d{j.

2.3.3 The Estimation Problem Statement

The process to be estimated is either defined on a continuous or discrete
index set as described in the first two parts of this section. In stating the
estimation problem, we unify the discussion to include both classes.

Let L be a formal linear differential or difference operator with range
R(L) and domain D(L), where elements in each are nX1 vector functions with
index set {ly. Let B(t) be an n*m matrix with t € §iy. For the continuous
parameter case B(t) is assumed continuous in t. Let Hp be the Hilbert
space of np*1 vector functions whose support is the boundary 9. Recall
that the dimension np is determined from Green's identity for L and Sog e
Let V be a mapping from H, to R(V) where the nature of the range space R(V)
is determined by the well-posedness condition for the pair (L,V) (see, for
example, (2.3.29) and the discussion that follows this equation). As opposed
to the more general form Vx = v for the boundary condition, we will restrict
the boundary condition to be defined in terms of x, as indicated in
(2.3.37b) below. For example, in the discrete case we will consider only
those operators V defined in (2.3.29b) which map sequences on 9fjy and

therefore can

be thought of as having lg(BQN) as their domain (see Example 2, and in
particular (2.3.36), for a specific illustration of such a map V).
Let u be an mX1 vector white noise on {}y with an invertible correlation

operator Q. Let v be an nyX1 vector second order process over 39N,
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uncorrelated with u and with invertible correlation operator HQ. Then the

the process to be estimated is formally defined by

with boundary condition

VX =V . (2.3.37b)

The observations are defined as follows. Let C(t) be a pXn matrix,
t € §iy. For the continuous parameter case it is assumed that C is continuous
in t. Let W be an operator mapping elements of Hp into R(W), a space of
n,*1 vector functions defined over the index set 9. Let r be a pXl
vector white noise over iy with invertible correlation operator R, and let
rp be a nyX1 vector process with invertible correlation operator I§. It
will be assumed that u, v, r and rp are mutually uncorrelated. The set
of observations of x is given by:

y=Cx +r on QN (2.3.38a)

and

Yy = be + r, on 39N . (2.3.38b)

We will need to make some assumptions with respect to the relationship
between the operators V and W. The importance of these assumptions will
become apparent later in our development of Hilbert adjoint systems in Section
2.5.1. As explained in the 1-D continuous case studied in Chapter 3, one
consequence of these assumptions is that no element of the boundary
observation yj, can simply be absorbed into updating the boundary value v
alone. That is, the boundary measurement contains information about the part
of %y not captured by Vxp. In particular, we will assume that W and V are
linearly independent, i.e. for any linear operators M, and M, whose range
spaces are identical and whose domains are the range spaces of V and W

respectively, we must have

MV+MW =0 iff M =0 and M =0 . (2.3.39%a)
v w w
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Furthermore, we will assume that if the operator obtained by augmenting V and

\'
[ W J (2.3.39b)

is not invertible, then there exists an operator W, such that

W as

v

W (2.3.39c)
w
c

is invertible.
OQur estimation problem is to find the linear minimum variance estimate

of x given the set

y=1{vy, v} . (2.3.40)

To transform this problem into notation similar to that used for the static

example, let the inverse of (2.3.37) be denoted by

Xx =M . (2.3.41)

This is simply the Green's function solution from (2.3.4b) written in
different notation. Recall from (2.3.9b) that x, = 4, x, so that the

combined observation in (2.3.40) can be written as

- M + . (2.3.42)

H = M (2.3.43)
wA
b

and specify the underlying process as
[ u

= . (2.3.44a)
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then the observations can be expressed in a form similar to (2.2):

=[m:z]zg . (2.3.44b)

Below we illustrate the problem statement for each of our two examples. 1In
the succeeding sections, we formulate the solution to this class of problems
in a differential operator form with y and y, as the input and boundary

condition respectively and the estimate of x as an element of the output.

Examples

Continuous case:(Example 1 continued) In this case {i; is the unit disk and

points within the disk will be represented by index variables s,t € §.
Points on the unit circle 99, will be denoted by an angle 8 € [0,2T], Let u
be a scalar white noise over {l; with continuous covariance parameter Q(s).
Let v be a scalar white noise over 98l with continuous covariance parameter
IL,(08) (which, of course, is periodic with period 2W). Let B(s) be a
continuous function on {5 and V(9) be a nonzero continuous function on

92y, The process to be estimated is formally defined by

V2x(s) = B(s)u(s) (2.3.45a)
with boundary condition (in polar coordinates)
v(0)x(1,0) = v(6) . (2.3.45b)

Let r be a scalar white noise over {3 and rp be a scalar white noise over
38y with continuous covariance parameters R(s) and [};(0) respectively.
Let C(s) be a continuous function on £ and W(9) be a nonzero continuous
function on 915, The observations are defined by

y(s) = C(s) x(s) + r(s) on 92 (2.3.46a)

and
(2.3.46b)

]
-_
.

yb(e) = W(e)xép,e) + rb(e) ;P
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The estimation problem is to find the least squares estimate of X given y on
2 and yp on its boundary. Note that since the augmented operator
v v(9)

x, =| - -
W 0

0 x(1,9)
x£1,9)

W(0)
is invertible, there will be no complementing operator W, as in (2.3.39c).

Discrete case:(Example 2 continued) Recall that §; is the set of integers

[0,K-1], and 391 is the set {O,K}. Let u be a mX1 vector white noise over
29 with nonsingular covariance matrix Qg, k € {y. Let v be a nX1 random
vector with nonsingular covariance matrix I[,. Let By be an n*m matrix and
Ay be a n*n matrix both on {4, and let V be a full rank nX2n matrix with
nxn partitions [VO:vK], The process to be estimated is defined by the
difference equation

Xk+1 = Akxk + Bkuk (2.3.47a)

with a two-point boundary condition
K
v=Vzx_ + VX . (2.3.47 )

To define the observations, let r be a pX1 white noise over {; whose
covariance matrix Ry is nonsingular on {4, and let rp be a gX1 random
vector with nonsingular covariance matrix Ij. Let Cx be a p*n matrix on
9 and let W be a full rank gX2n matrix with gq < n, with the rows of W
linearly independent of the rows of V and with gXn partitions: [WO:wK],

Then the observations are given by

= + 9 2.3- 8
Y, Ckxk T on ( 48a)
along with the random vector
0 K
Yy, = W Xy + W X+ r, . : (2.3.48b)

For both examples the input processes u and v and the observation noises r

and rp are all assumed to be mutually uncorrelated. For this example, when
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g < n, the augmented (n+q)*X2n matrix in the following equation

% = |- == - (2.3.49)

will not be invertible. Thus, to attain an invertible matrix we must choose
Wo as an (n-q)*2n matrix whose rows are linearly independent of the rows of
V and W so that

v

W

w
(o]

is invertible. As we will see in Section 2.5.4, we only need to actually

construct such a matrix in those cases for which I, is singular.
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SECTION 2.4

OPERATOR FORM FOR M,

Based on the matrix form for M, established for the static example in
Section 2.2.1, in this section we present an expression for a mapping of the
underlying process defining our estimation problem, and we then prove that the
resulting process satisfies the orthogonality and complementation conditions
required of the complementary process. Only the continuous parameter case is
addressed here; however, with a few obvious changes the same arquments can be
adapted to the discrete parameter case. Indeed, since all discrete stochastic
processes can be represented by a (possibly very large) random vector, the
matrix representation for M, from the static example in Section 2.2.1 is

itself applicable for the discrete case.

2.4.1 An Operator Representation for the Complementary Process

It will be convenient to partition the underlying process [ into two parts

denoted by &1 and %3. The first part &; corresponds to the boundary
value and input process, and the second part ) represents the additive

noise on the observations:

_ | _
C1 v

z = - -] = - - . (2.4-1)
C2 r
b

The covariance parameters of the elements of C are assumed to be continuous
and the covariance parameters and covariance matrices are all assumed
invertible. As discussed previously, the second order statistics of ¢ can be

defined by way of a correlation operator. The range and domain of this
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operator are identical and are defined by way of the following spaces:

s. = 12 x1.Y(3q) (2.4.2a)
1 2N 2 N o
_ p q
s, = LZ(QN) x LZ(BRN) (2.4.2b)
and
= X . de
s s, s, (2.4.2¢c)

As discussed earlier in Section 2.3.1, when 93{y is finite (i.e. when N = 1),
the Ly spaces of functions over 0dfjy should be replaced by the Euclidian
spaces R"V and RY, The correlation operator Iy is the self-adjoint
invertible mapping

ZC: S > S (2.4.3a)

which we will express in partitioned form as

X = . (2.4.3b)

The observations are defined via the operator MY
M : S > S (204-43.)
y 2

where from (3.40b)

M =[H:1 ] . (2.4.4b)

Y=MZC

(2.4.5)

Il
=2}
_.ﬁ
+
|
N
L]
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Theorem: (Complementary Process) Let M, be the mapping

; Mz: S »8 (2.4.6a)

where

H* is the Hilbert adjoint of H in (2.3.40),

I is the identity on S1 '

and

2_1 is the inverse of ZC in (2.4.2).

4

Then the stochastic process given by the second order mapping

Z =M T : (2.4.6b)
Z

is the complementary process for the observations Y in (2.4.4), i.e. Z
in (2.4.6b) satisfies both the orthogonality and complementation

conditions as prescribed in our restatement of the projection theorem.

Proof:

Orthogonality: This condition requires that the correlation between

elements of Y and Z are zero, or equivalently that the kernel of the

correlation operator

*
Z =M Z MZ (2.4.78.)

is identically zero. Substituting from (2.4.4) and (2.4.6), Zyz can be

written as

™
]
—
jas
.

H
—
™
™
|
=

vz : z “c (2.4.7b)

verifying the orthogonality condition.
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Complementation: In order to prove the complementation condition, we will

need the following lemma [7] which is the multidimensional version of a basic

result from the theory of Fredholm integral equations.

Lemma: Let {§ be a multidimensional index set. Let s and t be index
variables in {iy. Let g{t,s) be a symmetric ( g(t,s) =g(s,t) )
continuous kernel defining an integral operator

G:Lo(Sy) * Loy (Sky)
with G having no negative eigenvalues. Then the operator (I + G) has a
unique inverse of the same form: (I + G)~! = (I + K), where the

kernel of the integral operator K is also symmetric and continuous.

To establish the complementation condition it is sufficient to show that

the augmented map M given by (see (2.2.17a))
M = ; M: S > 8 (2.4.8a)

is invertible. Substituting for My and M, we have the explicit

representation for M

H : I
M = - - - - . (204.8b)
_2—1 H*z-;]
1 2

Assuming the existence of the inverses in its partitions, the following

operator can be shown by direct calculation to be the inverse of M

ZC H*(ZC + HZC H*)-1 —(221 + H*ZE1H)-1
-1 1 2 1 1 2
M = - - - - - - - - - (2.4.9)
g, (3, +mz w")7 oM S
2 72 1 1 2
i.e. MM =Mt M1 .
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The lemma is invoked to establish the invertiblity of the operators

(z, +8I ®H') ana (2 + & I 'H)
C2 C1 C1 C2

by the following argument. Rewrite these two operators as

— X -
2/2(1 + 5V 2w 1T1/2)11/2

(2.4.10a)
C2 2 C1 2 ;2
and
-1/2 1/2 % _=1_.1/2 y.=1/2
z L z z I . 4.
. ( + [ HI_HI ) . (2.4.10b)

1 1 2 1 1

If we choose symmetric continuous kernels for the square roots in (2.4.10a,b),
then the kernels of the operators in the parentheses will be symmetric,
positive and continuous, and the lemma ensures the aforementioned

invertibility.

2.4.2 An Operator Representation for the Estimator

Recall from the Projection theorem that the estimator (2.2.20) for x is

given by

XX
It
=
=

(2.4.11)

By substituting for M~1 from (2.4.9), we obtain an explicit operator

representation for the estimator:

x=mM | - - (ZC +uz 1)y . (2.4.12)

Similarly, it can be shown that the estimation error (2.2.21) can be expressed

as a linear function of the underlying process ¢

x =M - - (252 + HZC1H ) I S P T LY S (2.4.13)
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A direct implementation of the estimator in (2.4.12) requires a realization of
the indicated inverse. As an alternative, in Section 5 we obtain a
realization for the estimator without explicitly performing this inversion.

As we indicated in Section 2.2, Green's identity plays a critical role in this
formulation. In particular, by invoking Green's identity we will be able to
formulate a differential realization of the Hilbert adjoint H*, yielding a
differential realization of the complementary process Z. We will find that
augmenting the differential operator representation for Y with that for Z
results in a system which is easily inverted to give a differential operator

representation of the estimator and estimation error.

2.4.3 M For I  Singular
4 ‘,1

There are cases of interest for which there may be a singular correlation
operator for either the input process or boundary condition. For example, in
Section 2.6.3 we consider the example of a 1-D periodic process for which the
boundary condition is, by the nature of the process, known without error. 1In
this section we state a form for the operator M, which does not require the
invertibility of ZC1' An outline of the proof of the orthogonality and
complementation conditions is given. We remark that although the form for
M, presented earlier in (2.4.6a) could be derived directly from the one
given below in this section, we have deliberately separated the two. As we
will see later, the estimator for the case when ZC1 is singular is
somewhat more complex than that for the case when it is nonsingular.

The action of the following operator on the underlying process (cf.
(2.4.6b)) defines the complementary process and does not require the

invertibility of ZC1‘
M =[-T:2 ®Z ] (2.4.14)

The orthogonality condition for the complementary process formed in this way

is easily established by the same approach taken in (2.4.7a,b). The
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complementation condition is proved by showing that the inverse of

MY H I
M = - - - - % :1 (2.4.15)
M -1 ZC H ZC
z 1 2
is given by
* * N\ - - -
Eon (S +uru ) {1+ wy)
1 C C g 4 c
- 1 2 1 1 2
M = - - -_ -— —* -1— -_— - - - * :1 :1 (2.4-16)
2, (2, + w2 w) H(I+ZCHZCH)
2 2 1 1 2

The existence of the inverse of the operators in the left hand column of
(2.4.16) is established in (2.4.10a). The existence of the inverse required
in the right hand column is proved by invoking the operator version of the

matrix inversion lemma [13] to write:

* =1 =1 * * =1
(1+z B H) =1-I H(: +H ®H ) H . (2.4.17)
g, L, g” Ve, e

Note that the form of M, in (2.4.6a) is obtained by operating on the left of
(2.4.14) by the inverse of ZC1’
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SECTION 2.5

A DIFFERENTIAL OPERATOR GOVERNING THE ESTIMATE

In this section we derive a differential operator representation for the
estimator. The key to its derivation is the formulation of a differential
operator representation for the complementary process whose I/O map is given
in (2.4.6). It is in the formulation of this differential representation for
the complementary process that the Green's Identity introduced in Section 2.2
pPlays an important role. With differential representations for both the
process to be estimated and the corresponding complementary process, we will
find that the augmentation and inversion steps (cf. Section 2.2.3) required in

the formulation of the estimator become trivial.

2.5.1 The Hilbert Adjoint System

In the previous section we proved that the complementary process is given
by

z=] -1 1H]|I ¢ . (2.5.1a)

Substituting from (2.4.1) and (2.4.3) into (2.5.1a), we can view the

complementary process as an output signal plus noise:
. (2.5.1b)

Our objective in this section is to formulate an internal realization for the
input-output map H*. The internal process in this realization is defined by
a differential operator whose input process and boundary condition are the
inputs to H*.

To determine an internal differential realization for H*, we
temporarily leave the stochastic setting. That is, throughout the rest of
this subsection all processes should be considered as elements of Hilbert

spaces of deterministic functions rather than stochastic processes.
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The internal realization for the input-output map H is

Lx = Bu (2.5.2a)
be= v (2.5.2b)
¢ Ccx u
q) = = iue- q) = H . (2.5-3)
¢b be v

Each of the maps L, B, V, C and W has been defined in Section 2.3.3. It will
be convienient to define the spaces containing u and v as D;; and Dy
respectively so that the domain of H can be written as D(H) = D, XD,.
Similarly, define the range spaces containing the output elements ¢ and ¢,
as R¢ and R¢b so that the range of H is R(H) = R¢XR¢b.

The Hilbert adjoint of H is defined to be that operator which maps from
the range of H into the domain of H

1’: R(H) > D(H) (2.5.4a)

and for which the inner product identity

*
<HE, N> =<g,H ™ (2.5.4b)

R(H) D(H)

is satisfied for arbitrary £ and N in D(H) and R(H) respectively [8].
The first step in determining an internal realization for H* is to
rewrite (2.5.4b) in a more convenient form. Since the input u in (2.5.2a)

enters only through the action of B, we can decompose H as

H=H (2.5.5a)

If we denote the range of B by Rg, then H: (Rg*Dy,) > R(H). Given this

decomposition of H, its adjoint H* can be decomposed as

H = ' H . (2.5.5b)
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If we denote the input process by

g = | (2.5.6)
v

and if we partition N, which is an element of R(H) = R¢XR¢b and denote

its partitions as

uy u, €R¢

11
3
~

(2.5.7)
vy v}‘GRd)b

then substituting (2.5.5b) and (2.5.7) into the right hand side of (2.5.4b)

gives

B 0 ~ u
* A
<HE, > = <E, , H >
0 I Vi
Bu "'* u;\
= < , H > . (2.5.8)
v vy

A ~ ~ v *uA A€ RB
= H ; (2.5.9)
4
Yy Va Y, €D,

and substituting for Bu and v from (2.5.2a) and (2.5.2b), (2.5.8) becomes

<HE, N>

Lx, A> + <V >
<Lx, A> < xb.¢b

*
<Lx, A> + <xb,V ¢b> . (2.5.10)

Finally, by noting from (2.5.3) that

we can rewrite the left hand side of (2.5.10) so that the inner product
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identity in (2.5.4b) can be expressed as

* *

*
<x,C u,> + <x, M v,> = <LX, > + <x,,V > , (2.5.11)
A b A b

b

Up to this point we have simply combined some new notation along with
that for the internal representation for H to re-express the inner product
identity'(2.5.4b). The next step is more substantial and is a key one in the
development of the internal realization for H*, In particular, we employ
Green's identity from (3.18) to replace <Lx,A> in (2.5.11). Then (2.5.4b) can
be written in terms of the formal adjoint differential (difference) operator

Lt:

* + * *
<x, [C u, - L 9\]> = <x, [Ekb + Vv wb - W VA]) . (2.5.12)

Although the Hilbert adjoint H* is a unique map, there exists a family
of equivalent internal differential realizations. Using the notation
introduced above, we will verify one internal realization for H* with input
n and output Y = {¢,¢b} by showing that it satisfies (2.5.12).

Let W, be one of the family of operators which complements V and W

(see equation (2.3.35c)), in that

-V

r = W (2.5.13)

is invertible (as will become clear shortly, we have included a minus sign in
defining ' for convenience). Employing the inverse of I and the operator E in
the boundary term of Green's identity (2.3.13), define the partitioned

operator

= (r")'e . (2.5.14)



This leads to an expression for E that will be useful later:
& *
A + ch)\c + W VA o (2.5.15)

The following theorem establishes an internal differential realization for

H*.
Theorem: (Hilbert Adjoint System) An internal differential realization for the

input-output map
¥ = =H (2.5.16a)

is given by an internal process A satisfying

with boundary condition

A = (2.5.160)

] B A

¥ = = . (2.5.16d)
A
% "\

Proof: With the dynamics of A given by (2.5.16b), the left hand side of
(2.5.12) is zero. To show that the right hand side is also zero, we employ
(2.5.16d) and the first row of (2.5.16¢c) to rewrite the right hand side of
(2.5.12) as

* *
<X, [EAb +V Y -w vyl> = <X, [E+vw, -w VA])\b> . (2.5.17a)
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Substituting for E from (2.5.15) gives

* * *
A - = A 5.
<, [E EAANEN v, > kW, A> (2.5.17b)

A further substitution from the second row of (2.5.16c) completes the proof:

* *
axs [BA + vy -wv, b=, 0 (2.5.17¢)

b b’

= 0 .
Thus (2.5.12) is satisfied with both the left and right hand sides identically
zero., Although this differential realization is not unique due to the degrees

of freedom in choosing W., we will show that the estimator itself is

invariant with respect to the choice of W, as it must be.

2.5.2 Augmentation and Inversion

The internal differential realization for H* in (2.5.16) defines a

representation for the complementary stochastic process in (2.5.1a) as:
. *
=] -1:m |20 ¢ (2.5.18)

In this subsection we augment the internal realization for (2.5.18) with that
for the observations to get an internal differential realization for the

combined system:
= MC : M = . (2.5.19)

We then invert this realization to obtain an internal differential realization
for the estimator.

The differential form for the augmented system in (2.5.19) is

- . (2.5.20a)
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with boundary condition

__v_ _V_:_ 9
b
0 = 0 V>\c A (2.5.20b)
=1
b rb 0 : Vﬁ
and outputs
y [ ¢ o x 0 I u
= . + 1 on QN (2.5.20c)
z 0 B A -0 0 r
BA w oo %, I 0 v |
= + ¥ on BQN. (2.5.204)
Zb 0 W)‘ }\b 0 —IIV rb

As indicated by (2.5.19), the inverse system we seek is one with {Y,2} =
{Y,Yb,z,zb} as input and ¢ = {u,v,r,rb} as output. To this end,
following the apprcach taken by Levy et al for the 1-D causal case in [9], we

first solve for the elements of { by inverting the output equations (2.5.20c¢)
and (2.5.204):

_ _ - ( . _
u -Q 0 z 0 OB b4
_ + (2.5.21a)
r 0 I y -C 0 A
v ] [ 0 17 z I —.0 I w x ]
A
( = v bl v b . (2.5.21b)
- A
rb i 0 I__ yb __W 0 b
L = . - .

Substituting these expressions into the dynamics and boundary conditions in
(2.5.20a) and (2.5.20b) yields an internal differential realization of the

inverse system with dynamics:

*
L : —-BQOB b4 -BQ : O z

F -7 7 \ a7 (2.5.22)
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and with boundary condition:

po— - _1 ]
zZ, - v Wy
- - —t= - xb
0 = 0 : V)\C . (2.5.23)
-1 17T T A
I :
b yb b w VA b

This boundary condition can be simplified so that its dependence on We
VA, and V), is eliminated. Recalling the relation between these
operators and E in Green's identity from (2.5.15), it can be shown that
operating on the left of (2.5.23) by [-V*:Wc*:w*] gives the boundary
condition as

*

[ W*H;1yb -ve |= w*H;1w + V*H;1V P E | Xb, . (2.5.24)

The estimator is the solution of (2.5.22) and (2.5.24) projected onto
Sp(Y), i.e. the solution with 2z = {z,zy} = o:

* ~
L : -BOB ||x 0
-*-_:]- -l = ; ~ = % "4
CR C: L A CR vy (2.5.25a)
* -1 * =1 * -1 . °
Il = I Il :
Wy = [wiw o+ vy i E ] b (2.5.25b)
A
b

The estimates of the elements of the underlying process g, if desired, can be
computed form the output equations (2.5.21a) and (2.5.21b) evaluated at the
solution of (2.5.25) and with z and Zp equal to zero. Note that since L and
Lt are of the same order, the order of the estimator is twice that of L.

Also note the remarkable fact that in addition to the original problem
statement, we only need to know E and LT from Green's identity in (2.3.13)

to completely define the differential realization for the estimator. In
Appendix 2B we show how the estimator boundary condition (2.5.25b) changes

when the process boundary condition v is nonzero mean.
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2.5.3 The Estimation Error

The estimation error

~ ~

X =X - X (2.5.26)

is obtained as the solution of (2.5.22) and (2.5.24) projected onto Sp(z)
rather than Sp(Y). Here we formulate a differential realization of the
estimation error which is driven by 7 whose probability law is known. The
second order statistics of the estimation error can be computed from those of
£ using this relation.

Recall from the restatement of the Projection Theorem in Section 2.2.3

that

X =MM = MM ' g . (2.5.27)

That is, Z has been replaced by its representation given in terms of GC.
Consider the boundary condition (2.5.24) projected onto Sp(Z), i.e. (2.5.24)

evaluated with yp equal to zero:

vz = [ WIlw+ Vv g ] (2.5.28)
b b v o b 2o
A
b
Substituting for zy from (2.5.23b)
-1
= A =1 «5
2 =M% TN Y (2.5.29a)
and using the basic definition:
A = A - }\ . .
b b b ! (2.5.29Db)
(5.28) becomes
v [wn VI i B+ viw, f v, ] ] 5
v v = b W + v . + A, - A Tb . (2o .30)
A
b
A
b
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To eliminate the dependence on W), V) and V). as we had done for the

estimator, recall from (2.5.15) and (2.5.16b) that
* * *
E+V WA =W VX + WcV}‘c ’ (2.5.31a)
-~ " »
A = A A)y =1 «5.
vy b VA( bt b) W Tp (2.5.31Db)
and - * ~ -
A = A )\ = Y . .
W Ve = WoVac (A, + b) 0 (2.5.31¢)
From these three equations we can write
* ]; * * ] \ i
[E+vw, b=[wv)\+wcv>‘[b— b
W [w" "y ];\ 2.5.32
- b rb - V)\+ WC )\C b r ( .50 )
and substituting into (2.5.28), the boundary condition becomes
L * =1 L * -1, j
H - I[ = H H : . e Je
[vvv wbrb] [wbw+vvv E ] X, (2.5.33)
-A
b

~

We have chosen 'Ab instead of Ab to highlight the similarity between the

structure of the boundary condition for the estimation error in (2.5.33) and

that of the estimator in (2.5.25).

The projection of (2.

*
L : —-BOB

*
L

]

I
CR C:

Replacing z from (2.5.20c)

* -1
z=BA-0Q u '
employing
A= A=A

5.22) onto Sp(Z) gives the error dynamics as

-BQz
= - - . (2.5034)
0
(2.5.35a)
(2.5.35b)
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2.

and recalling from (2.5.20a) that the dynamics of X are given by

LA=CR r ’ (2.5.35¢c)

*
L : -BOB X Bu
- - = - " = - - . (2.5.36)
[ - *
C R 1c: 'l -A -C R 1r

Thus (2.5.33) and (2.5.36) completely define the estimation error in
terms of ¢ = {u,v,r,rb} whose probability law is known. In addition, the
dynamics and boundary conditions of the estimation error have been shown to be
similar to those of the estimator. One should be able to take advantage of
these similarities when computing the estimate and its error covariance. For
example, see the discussion of the implementation of the estimator and the
computation of the error covariance for the 1-D noncausal process in Chapter

3.

5.4 Special Case: I, Singular

In Section 2.4.3 we presented a model for the complementary process which
did not require the invertiblity of the covariance parameters Q and I,

(i.e. the invertibility of ZC1)' In this section we define the estimator
for the case when HV is singular.

By augmenting with the complementary process defined through (2.4.14) and
inverting, it can be shown that we arrive at the same dynamics for the
estimator as obtained previously in (2.5.22). However, the boundary condition
for the inverted system is slightly different than that in (2.5.23). 1In

particular, the boundary condition in this case is:

Il - . I
_vfb v L VYA X
0 = 0 5 V . (2.5.37)
o o Ac A
2 -1 T 7 b '
I
b b p " Va
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As we had done for (2.5.23), we will rewrite this boundary condition in terms

of the operator E found in Greeen's Identity. Let Y be the partitioned

operator:
I 0 0
v
¥ = 0o I O (2.5.38a)
0 0 I

with the partitions compatible with those of T in (2.5.13). Let © be the

operator

*_1

0=VYT . (2.5.38b)

Then recalling (2.5.15), we can write the boundary condition (2.5.37) as

I - .
_Vfb _V . Xy
0 = 0 . CGE (2.5.39)
217 - 1'. Ab
m -1__:
b Yb b s

as

0 -v
- - - s b
-1 - 1_. )‘b
n -1_:
b ’b b .

Following arguments similar to those in Section 2.5.3 and applying
(2.5.38), it can be shown that the estimation error dynamics for this case are

the same as those in (2.5.36), while the boundary condition is

-V -V
- - - - b
0 = 0 . ©E - . (2.5.41)
-1° “ 1T ')‘b
- 0wt
rb b W:
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The boundary conditions in (2.5.40) and (2.5.41) may appear to be in as
simple a form as their counterparts for the case when I, is invertible.
However, the requirement to invert I'* in order to compute © in (2.5.38b)
makes the boundary conditions derived in this subsection considerably more
complex. Furthermore, in this formulation of the boundary condition, the
operator W., one of the partitions of I', has not been eliminated. Since the
estimator and error equations must be independent of the choice of Wo it
should be possible to reduce our formulation to one which is independent of
this choice. This remains an open question at this time. Nevertheless, we
will see in an example of a periodic process in Section 2.6.3 that the form of
the boundary condition presented here is useful in deriving the estimator for

a particular case when I, is singular.
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SECTION 2.6

THE ESTIMATE EQUATIONS FOR THE TWO EXAMPLES

By considering the two examples introduced earlier, we demonstrate the
ease with which one can apply (2.5.25) to obtain an internal differential
representation for the estimator of a noncausal stochastic process. We show
that the estimator for the process governed by Poisson's equation takes the
form of a fourth order biharmonic equation. 1In the case of the 1-D discrete
boundary value process, it will be shown that a special case of the solution
we obtain from (2.5.25) is a well-known form of the solution for the
fixed-interval smoother for 1-D discrete causal processes [10]. 1In addition,
in Section 2.6.3 we apply the solution for the estimator when 2;1 is

singular to a discrete 1-D periodic process.

2.6.1 2-D Continuous Case: Poisson's Equation (Example 1)

The problem statement has been given in Section 2.3.3 by equations
(2.3.45) and (2.3.46). As we have done previously for this example, s denotes
an index variable representing elements of the unit disk, and 8 represents
elements of [0,2r ] which we have identified with 305+ Substituting for Lt
in the estimator solution (2.5.25) from (2.3.10a), we obtain the estimator

dynamics as

A

vZ . ZB%(s)ols) x(s) 0
- - - - - ~ = - __ e Y(S) . (2.6-1)
c2(s)r " (s): v2 A(s) c(s)R™ (s)

Note from (2.3.45b) and (2.3.46b) that the boundary condition and boundary

observation can be expressed by functions on [0,2r] as

(Vx, )(®) = [ V(®) i 0 ]xb(e) (2.6.2a)
and

(Wx, )®) = [ 0 : W(@) ]Jx (8) (2.6.2b)
where we recall that x,'(8) = [x(1,6),xn(1,9)]. Using this expression and

substituting for E from (2.3.14), it can be shown that the boundary condition
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for (2.6.1) is (in polar coordinates evaluated at p = 1)

A ~

0 vz(e)H;19>= ol |x(e, 8 0 =1 |xge ®
- --1 - 6 = - - - - ~ + 5 e --'1 'é HE ~ 0(2.603)
w(e)ﬂb e)yb( ) 0 : 1| A(e, 0) W )ﬂb (6): o Aép,e)

-

When B2(s)Q(s) > 0 for all s, we can solve for A in (2.6.1) as

A ~

As) = [B2(s)o(s) ] V2 x(s) ) (2.6.4)

Substituting (2.6.4) back into (2.6.1), we find that the estimator dynamics

are given by the biharmonic equation:

~

{[B%(s)10()]™" + c2()rT () ]V x(s) = c(s)R N (s)y(s) .  (2.6.5)

With 3/dn denoting the normal derivative and substituting from (2.6.4), the

boundary condition in (2.6.3) can be rewritten as

~ S

0= H;1(9)x(p,9) - (373 {[B%(0, ®a(p, ) 7192 x(p, 6)} (2.6.6a)
and

~

W(e)zxn(p,e) + Hb(a)[Bz(D,e)Q(p,e)]_1V2 x(p, 6) (2.6.6b)

W(e)yb(e)

evaluated at p = 1. We investigate methods for implementing this solution in
Chapter 7. Indeed, one could employ one of the many available numerical

techniques such as finite difference approximations [14].

2.6,2 1-D Discrete Case: Two-Point Boundary Value Process (Example 2)

Again we simply substitute from the problem statement in equations
(2.3.47) and (2.3.48) and from (2.3.34) and (2.3.35b) for L' and E into

(2.5.25) to obtain the estimator dynamics

- 1
X+ B BB | % . o

-1
el N 1 A
M CxBi Ok ¢ By K+1 Kk

(2.6.7a)
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and boundary condition

| I [ I - v L - °
0! v0 I 1v0+ w0 I 1WO: -I X v0 Il 1VK+ w0 I 1WK: 0 X
w H-1y _ _ v _ _ _b el 0 + _ v b . K
' = - . T 1" Tt 1T e T .
Wb b vE I 1v0+ W I 1WO: 0 A v 1VK+ Wt 1wK: I A
v b 0 v b K
(2.6.7b)

If we consider the special case of no boundary observation yp (i.e.
WO = wK = 0) and an initial condition for x (i.e. VO = 1, VK = 0),

then the boundary condition in (2.6.7b) becomes

0 I -1 X 0 0 X
= vi {01+ WK ) (2.6.8)
A A
0 0 0 0 0 I <

This boundary condition along with the dynamics in (2.6.7a) is recognized as
the well-known solution for the fixed-interval smoother for causal discrete

1-D stochastic processes [10].

2.6.3 1-D Discrete Case: A Periodic Process

To illustrate the case when I, is singular, we consider a 1-D discrete
periodic process. The dynamics of this process are the same as those

introduced earlier except for the following periodicity constraints:

Ak+K = Ak ’ (2.6093)
and
uk+K = uk . (2.6.9¢c)

Along with (2.6.9), the following boundary condition guarantees that x repeats
itself with a period of K:

0 = XO - xK (2.6.10a)
l.e-
V=I[T1I:-I] (2.6.10b)
and
]-[ = 0 ° (2.6.100)
v
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We also assume for the moment that there is no boundary observation.

As discussed earlier in Section 2.5.4, the estimator dynamics for the
case when I, is singular are the same as those in (2.6.7a) above. From
(2.5.40) it can be shown that in this case the boundary conditions for the
estimator can always be put in the following form (i.e. for any admissable

choice of W)

X
= AO + AK . (2.6.11)
A - A
0 0 I 0 0 I <

If there is some additional a priori information about the zero mean
random variable Xg, then it can be included as a boundary measurement as
follows. Let Il be the a priori variance of Xge Then the boundary

measurement
y, =0=[1I:0 ]xb - rb ' (2.6.13a)

i.eo W = [ I:0 ] ’ (206.13b)

where the variance of rp is Ilj, will account for this information in the
estimator. When yp in (2.6.13) is included, the boundary condition for the

estimator of the periodic process becomes (from (2.5.40)):

0 I 0 X -1 0 X
= ] 0 + X . (2.6.14)
- A - A
0 0 I o 0 I K

As shown in Chapter 5, solutions for discrete two-point boundary value
problems representing the estimators in these last two sections can be
implemented via a two-filter form similar to two-filter forms of the smoother

for causal processes.
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SECTION 2.7

CONCLUSIONS

Through an extension of the method of complementary models [1], we have
developed a procedure for writing the estimator for both discrete and
continuous parameter linear boundary value stochastic processes in a
differential operator form. The two major steps in the development of the
estimator have been (1) the formulation of an input-output operator
representation for the complementary process in Section 2.4 and (2) the use
of Green's identity in Section 2.5 in the derivation of an internal
differential realization for this input-output map. We emphasize that at no
point in our derivations have we required a Markov representation for the
process to be estimated. The variety of problems for which our estimator
solution is applicable has been illustrated through two examples: a 1-D
discrete parameter process and a 2-D continuous parameter process.

The major advantage in specifying the estimate as the solution of a
differential equation is that this form of representation provides an
excellent starting point for the development of methods for obtaining the
estimate. This is in contrast to estimators derived by a direct application
of the projection theorem, which usually leads to integral equations (e.g.
Wiener-Hopf) requiring factorization in order to obtain an implementation.
Furthermore, we have also derived an internal differential realization for the
estimation errors in a form which is nearly identical to that for the
estimator. In Chapter 3 we apply the estimator solution formulated in this
chapter to a continuous 1-D two-point boundary value stochastic process and
develop a stable, recursive implementation for the resulting differentential
form of the estimator. 1In addition, by following the same procedures as used
to obtain the recursive estimator implementation, we develop recursions for
the computation of the smoothing error covariance. Implementation of the
estimator for discrete 1-D, discrete 2-D and continuous 2-D processes is

investigated in Chapters 5, 6 and 7, respectively.
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In addition to questions of implementation, there are also unanswered
questions which relate to the boundary conditions for multi-D problems. For
example, recall from (2.5.25b) that the boundary condition for our estimator
is defined in terms of the operator adjoints V* and W* and the inverses of
the correlation operators I, and Hb. In our 2-D example we have tacitly
avoided any complications which might arise in determining these adjoints and
inverses by choosing v and rp as white noise and by choosing V and W as a
simple scaling of the process on the boundary (see (2.6.2a,b)). It would be
of interest to investigate the estimator's boundary condition for this 2-D
example when the boundary value v is, for instance, a 1-D periodic stochastic
process on the unit circle. Another open issue concerning to the estimator
boundary condition has already been raised in Section 2.5.4. That is, it
should be possible to further simplify the expression in (2.5.41) for the
estimator's boundary condition in the case when I, is singular.

In summary, this chapter presents what we feel is an extremely useful and
broadly applicable method for deriving optimal estimators for noncausal
processes 1n several dimensions. Given this valuable tool, one is then in a
position to focus one's attention on the problem of implementing the optimal
estimator in an efficient fashion. As mentioned previously, this is precisely

the subject of Chapters 3, 5, 6 and 7.
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APPENDIX 2A

DERIVATION OF Mz FOR THE STATIC EXAMPLE

In Section 2.2.1 it was stated that the complementary process associated

with the observation vector y in (2.2.2a) is the n-dimensional random vector

zZ = MZC (2.A.1)

where, with T any invertible n*n matrix, M, is given by

M =T 1: -Z H' 2_1] . (2.A.2)
zZ X r

In this appendix we derive this general form for the matrix M.

Let M, be denoted by

M = [2 : 2] (2.A.3)

where the partitions are compatible with the partitions of Z in (2.2.1a).

With M, given by (2.A.3), M in (2.2.6) is

. (2.A.4)

Now use the orthogonality and complementation conditions stated in Section

2.2.1 to find expressions for Zy and Z,.

Complementation

This condition implies that the (n+p) X(n+p) matrix M is invertible or that

for k an (n+p) X1 vector
[‘ﬂ( = O ==> k = 0 . (2.A.5)
If we denote partitions of k by

k| «nx
SR P , (2.3.6)
r
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then Mk = 0 implies that

Hk = -k (2.Ao7a)

and

Z k = -Z k . (2.A.7b)

Substituting (2.A.7a) into (2.A.7b) we get the following condition which is

equivalent to (2.A.5)

X r X X

Orthogonality

This condition requires that the elements of y and z are uncorrelated

E[yz'] = O
z 0 ||z
b'd
= [H H I] (20A08)
0 L|lz:
r
Thus
HI z' = -L 7! (2.A.9a)
X X rr
or
-1
Z = -Z L H'Z . (2.A.9b)
r X X r
Combining (2.A.7c) and (2.A.9b) we have
-1
Z (I + ZHZZ Hk =0 ==> k =20 . (2.A.9¢c)
X X r b'4 X

Since
-1
(I + Z H'E H)
X r

is invertible, the statement (2.A.9c) is true if and only if Zy is
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invertible. Therefore, let Zy equal some invertible matrix T:

Z = T . (2.A.10a)
X

Then from (2.A.9b)

Zz = -TIHI , (2.A.10b)
Y X Y

and from (2.A.3) we obtain the expression we seek

i -1
mo= tfr -zEI ] (2.A.10c)

As mentioned in Section 2.2.1, different choices for T simply represent
different bases for the complementary process. Below we consider two values

for T which suggest the operator forms for M, used in Sections 4.1 and 4.3

Two Special Cases

(1) If we let (Here we assume I, is nonsingular)
T=—z:_1 ’
x
then
-1
M = |- :'Z
- Lol

which leads to the operator form hypothesized in Section 2.4.1

(2) Another simple form is obtained if we set
T =-I ,
then
-1
M = [—I: L H'Z ] .
z X r

This suggests the operator form employed in (2.4.14) which is

applicable when Iy is nonsingular.
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APPENDIX 2B

THE ESTIMATOR WHEN THE BOUNDARY VALUE v IS NONZERO MEAN

In deriving the estimator dynamics and boundary condition in Section
2.5.2, it was assumed that the a priori boundary condition v for the process
to be estimated was zero mean. By applying the superposition principle for
linear systems, in this appendix we determine how the estimator boundary
condition should be changed to account for a nonzero mean boundary value V.

First define this mean value as

Elv] = vO (2.B.1a)

and the difference between v and its mean as

v =v - v . (2.B.1b)
Applying the superposition principle, we can write the solution of our
original boundary value problem

= V 2.B.2b
v Xy ( )

as the sum of the solutions of the following two problems

on =0 (2.B.3a)
V0 = be (2.B.3b)
0
and
L6x = Bu (2.B.4a)
v = v be . (2.B.4b)
That is,
= 6 = . ebe
X X0 + Ox and X xbo + 6xb (2.B.5)
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The boundary value &v for the process 6x is zero mean and as such we can

apply the estimator derived in Section 2,5 to this process. First, the

measurements
y =Cx + r (2.B.6a)
and
=W + r 2.B.
Yb xb b ( 6b)

as defined in Section 2.3.4 must be rewritten in terms of 8. Define these

mean values of the measuerments as

yo = Cx0 (2.B.7a)

and

Yy = Wx . (2.B.7b)

Removing these mean values from the original measurements gives measurements

which are linear functions of 6x:

Sy = -
Yy Yy YO
and
by =y, -v¥
b b bO
= 6 . . .
W xb + rb (2.B.8b)

With measurements given in this form we are ready to apply the estimator

solution in (2.5.25) for the process Ox. The estimator dynamics are

~

A *
L : -BOB || 6x 0
-—— - _é_ - ~ = - - 6y (2.B.9a)
* - : * -1
c'rR7c i o1t A CR
with boundary condition
* 1 L * 1 - -
H 6 = H H V + E>\ . oBo
WSy (w W+ v I )be Y (2.B.9b)

Next we use the estimate of 0x to construct an estimate of X.
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The estimator for the complete process x is obtained by adding the

dynamics for xg (2.B.3a) to the first row of (2.B.%9a) and by adding both of

the following to the boundary condition (2.B.9b):

- * -1
I = I
\" - v0 v - be

0

and

* *Hf1
W Y. =W Wx .
b b0 b bo

Carrying out the addition and noting from (2.B.5) that

= +6
X XO X

and
-~ ~

X =X + (6x) y
b0 b

gives the estimator for x as:

L -BOB ||x 0
—-— —_— e - . - — N - - ——y
* *
CR 1c : L+ A C R !
with boundary condition
* -1 * -1 * 1 * -1 - -
wi + v I = I w+viIi'v + EA
b b v 0 (w b v )xb b

(2.B.10a)

(2.B.10b)

(2.B.11a)

(2.B.11b)

(2.B.12a)

(2.B.12b)

Note that the estimator dynamics remain unchanged from those originally

derived in (2.5.25a) and that the only change in the boundary condition

(2.5.25b) is the addition of the term on the left hand side containing the

nonzero mean value vg. Of course, when this mean value is zero the two

estimators are identical, as they should be.

79



CHAPTER 3: 1-D CONTINUOUS PARAMTER BOUNDARY VALUE PROCESSES

SECTION 3.1
INTRODUCTION

Both linear filtering and linear smoothing for one-dimensional (1-D),
nonstationary, causal processes have been extensively studied. Many of the
classical solutions to these problems are discussed in the review paper by
Kailath [1]. The derivations of these solutions have relied heavily on the
Markovian nature of the models for these 1-D processes [2]. However, inasmuch
as stochastic processes in higher dimensions (random fields) are typically
noncausal and consequently are not Markovian in the usual sense, their estim-
ators cannot be derived through a direct extension of these 1-D derivations.
Thus linear estimation problems for noncausal processes require new
approaches. One such new approach has been developed in Chapter 2 where we
extended Weinert and Desai's [1] method of complementary models. This
extension allows us to write equations governing estimates for a broad class
of noncausal processes in one and higher dimensions. 1In this chapter,we build
upon this solution procedure in order to perform a detailed investigation of
the smoothing problem for 1-D noncausal processes.

The processes that we consider are governed by the linear noncausal 1-D
dynamic models introduced by Krener in [16]. 1In his study of these models, he
has developed results on controllability, observability and minimality and has
solved a deterministic linear control problem. In addition, he has posed the
fixed-interval smoothing problem for these systems [17] and has derived
integral equations for both the weighting pattern and error covariance of the
optimal smoother. Working directly with these equations he has had success in
obtaining a dynamic realization of the smoother for a special "stationary-
cyclic" class of these models [18]. 1In this paper we begin by applying the
solution for linear estimation of boundary value processes developed in
Chapter 2, and we obtain a differential realization for the optimal smoother
and the smoothing error for the complete class of 1-D noncausal processes

th

considered by Krener. For a noncausal process defined by an n order
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model, this solution takes the form of a 2nth order two-point boundary value
problem. Typically, solutions for this type of boundary value problem are
given in the Green's function form [3], and the smoother implementation
implied by this form is such that the estimate at each point in the interval
of interest is obtained by numerical quadrature over the entire interval. As
an alternative, in this chapter we develop a two-filter implementation for our
smoother which is remarkably similar to, and of nearly the same complexity as
two-filter implementations developed for the fixed-interval smoother for
causal processes [19,20]. As we will show, the advantage of such a two-filter
form is that the estimate at each point in the interval is obtained through a
linear combination of stable forward and stable backward recursions rather
than numerical quadrature.

This chapter is organized as follows. In Section 3.2 the linear
stochastic differential equation and boundary conditions which define the
noncausal 1-D process that we study are presented.Along with the model for
this process, two forms of the general solution are outlined and the matrix
differential equation governing the evolution of the process covariance is
given. The fixed-interval smoothing problem for this model is described in
Section 3.3. 1In Section 3.4 we formulate a two-filter implementation of the
smoother by applying a decoupling transformation to the smoother dynamics
which are specified by the complementary models solution. Transformations of
this type have previously been applied to the smoother for causal processes by
Kailath and Ljung [21] and Desai [22]. A discussion of the properties of the
smoother for some special cases including causal processes and a class of
systems related to Krener's [23] "separable" systems is given in Section 3.5.
In Section 3.6 we apply our smoother solution to a noncausal model
representing a cooling fin. Finally, Section 3.7 contains some concluding

remarks.
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SECTION 3.2

LINEAR STOCHASTIC TWO-POINT BOUNDARY VALUE PROCESS (TPBVP)

3.2.1 The General Solution

The model for the one-dimensional boundary value stochastic process we
consider here was introduced by Krener in [16]. The process is governed by an
nth order linear stochastic differential equation together with a specified
two-point boundary condition. Accordingly, the process will be referred to as
a linear stochastic two-point boundary value process or TPBVP. This linear
boundary value process has been used to model a variety of space-time
processes in temporal steady-state including the deflection of a beam under
loading [3], the deflection of a rotating shaft [24] and the temperature
distribution in a cooling fin [25]. (See the example in Section 3.6.)

As we have shown in Chapter 2, the formal structure of the linear
stochastic differential equation governing the complementary process is
defined by way of the structure of a related deterministic differential
equation. For this reason, in Chapter 2 and here in Chapter 3 we find it
convenient to employ the white noise formalism for representing linear
stochastic differential equations. Let u(t) be a mX1 white noise process with
covariance parameter Q(t). Let v be a nX1 random vector, independent of u(t),
with covariance matrix I[,. The n*1 boundary value process x(t) is governed

on the interval [0,T] by

x(t) = A(t)x(t) + B(t)u(t) (3.2.1a)

with boundary condition

It will be assumed that A and B are continuous on [0,T] and that all random
variables are zero-mean since the contribution of any nonzero mean can be
added separately by invoking superposition. See Appendix 3B for a further

discussion of nonzero mean boundary values.

82



It is instructive to derive one fdrm of the general solution for (3.2.1)
as the approach we take in this derivation will be used later. The form of
the solution which we obtain differs from the usual Green's function solution
(e.g. see [16]). Specifically, this derivation which is posed in the
terminology of linear systems theory highlights the role of a process which we
will denote below by x0, Let ®(t,s) be the transition matrix associated
with A(t). If x(0) were known, then x(t) could be represented in the

variation-of-constants form

x(t) = ®(t,0)x(0) + xo(t) (3.2.2a)

where x0(t) is the solution of (3.2.1a) with x0(0) = 0:

t
«2(£) = [ @(t,s)B(s)u(s)ds . (3.2.2b)
0

Substituting from (3.2.2a) at t = T into the boundary condition (3.2.1b), we

can write

v - vix2e) = [v° + vTecT,0) Jx(0) . (3.2.3a)

For a well-posed problem, there will be a unique x(0) for a given v and u on

[0,T]. Thus well-posedness requires that the n*n matrix

T
F = v° +vTo(T,0) (3.2.3b)

be nonsingular. With F invertible, we can solve for x(0) as

x(0) = F ' (v - v'x°(1) ) . (3.2.3c)

Substituting x(0) into (3.2.2a) gives the general solution for (3.2.1a,b) as

x(t) = o6, 00F (v -vx(T) ) + x0(8) . (3.2.4)

The Green's function form of the general solution can be obtained from (3.2.4)
by combining the two integrals representing ®(t,0)F~1vTx0(T) and xO(t)

into a single integral over [0,T].
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The noncausal nature of the TPBVP x(t) is clearly displayed if we

correlate the value of x at t = 0 with future values of the input u:

E{x(0)u'(t)} = -F-1VT¢(T,t)B(t)Q(t) t € [0,T] : (3.2.5)

Thus, the nth order model in (3.2.1) is not Markovian, and consequently
Kalman filtering and associated smoothing techniques are not directly
applicable.

It is often the case for a TPBVP that the system dynamics matrix A in
(3.2.1a) will have both positive and negative eigenvalues (see the example in
Section 3.6). In these cases, when implementing a solution for x0(t) in
(3.2.2b) as an initial value problem, the positive eigenvalues may cause
numerical instabilities. Below, as an alternative, we present a second form
for the general solution of (3.2.1) which leads to a numerically stable

implementation. Consider the equivalent process obtained by transforming x as

xf(t)
xb(t)

where the transformation matrix T(t) is chosen so that 1) the dynamics of the

system model in (3.2.1) become decoupledlz

xf Af 0 xf Bf

xb 0 Ab xb Bb

(3.2.6b)

I
+
c

and 2) Af is exponentially stable in the forward direction and Ay is
exponentially stable in the backward direction. For "time"-invariant systems
this is always possible by assigning those modes associated with eigenvalues
greater than or equal to zero to Ar and those less than zero to A,. For
time-varying dynamics, it may be difficult to determine the dynamics and
boundary conditions for a transformation T(t) which transforms the system
dynamics into this form. However, we will find that by invoking results
obtained previously for smoothing solutions for causal processes we can

overcome this difficulty for the systems of interest to us later in this

1 When there is no risk of confusion we will often omit explicit reference to

the independent variable, i.e. A(t) > A.
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The boundary condition for the transformed process will be written in the
following partitioned form:
o . .0 T . T
v = Ve iV ] x(0) + [vf vy ] X (T) . (3.2.6c)
xb(O) Xb(T)

The reason for our choice of subscripts f and b, denoting forward and backward
respectively, will become apparent below.

If x¢(0) and x,(T) were known,then we could solve for xg(t) and

Xp(t) as

x (£) = @.(£,00x,(0) + xp(t) (3.2.7a)
and 0

x (t) = Qb(t,T)xb(T) + % (€) (3.2.7b)

where x£0(t) is governed by (3.2.6b) with x¢0(0) = 0 and xbo(t) is
governed by (3.2.7b) with xbo(T) = 0. Following a derivation similar to

that used to obtain the general solution in (3.2.4), it can be shown that

x_(t) ®_(t,0) : O x(t)
£ f -1 T O 0.0 f "
=|- - = - Ffb(v Vexo(T) - bxb(O)) |, (3.2.8)
)
xb(t) 0 b(t.T) xb(t)
where
0 T o T 0
Feo = [ Ve + V.9(T,0) Vv + V& (0,T) ] . (3.2.9)
The TPBVP x is recovered from (3.2.8) by inverting (3.2.6a):
-1 xg (t)
xb(t)

As we will see, the two-filter form of the general solution in (3.2.8) is
the foundation for the implementation of the estimator that we develop later
in Section 3.4. The term two-filter is used to signify that the numerical
solution of (3.2.8) requires the integration of a forward process Xfo and

a backward process xbo.
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3.2.2 Covariance of the TPBVP x(t)

By a direct calculation, it can be shown that the covariance of x(t)
P (t) = E{x(t)x'(t)} (3.2.11a)

satisfies the differential equation

[ ] - L}
B = AP + PA' + BOB' - BOB' &' (T, )V F | &' (t,0) (3.2.11b)
- Q(t,O)F-1VT¢(T,t)BQB' ;

P _(0) = F_1(HV + VI (T)vE )F ! (3.2.11¢)

where 10 jis governed by

i = am® + °a + o' ; 1°%0) =0 . (3.2.114)

An alternative expression for Py which requires the solution of only

one matrix differential equation can be derived from (3.2.4) as

0 -1 T O T' 1_~-1"
P (t) =P (t) + ®¢t,0)F [IL + VP (T)V JF ' @ (t,0)
X X v X
-1.T 0 0 v
- ®(t,0)F Vv Px(t) - Px(t)VT F ! ®'(t,0) (3.2.12a)
0 . . 0 . .
where Px(t) is the covariance of x (t) satisfying
° 0
PO = APO + POA' +BQOB' ; P (0) =0 . (3.2.12b)
X x be x

An additional expression for Py can be derived from the two-filter form of
the general solution (equation (3.2.8)). However, because this expression is
somewhat complex, we will wait until later in Section 3.4 to present it in the

context of our examination of the estimation error covariance.

3.2.3 Green's Identity

It was shown in Chapter 2 that the differential realization for the
estimator is written in terms of the operators which define the Green's

Identity for the differential operator governing the dynamics of the process
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to be estimated. In terms of the notation introduced in Chapter 2, the

differential operator representing the dynamics in (3.2.1a) is

L:D(L) + R(L) ; (Lx)(t) = x(t) - A(t)x(t) (3.2.13)

where D(L) is the space of once continuously differentiable nX1 vector
functions on [0,T] and R(L) is the Hilbert space of square integrable n X1
vector functions on [0,T]. Let E be the 2nX2n matrix partitioned into nxn

blocks with:

-I 0
E = (302.14a)
0 I

and define the 2nX1 vector

x, = | X0 ) (3.2.14b)

x(T)

The formal adjoint of the operator L is [26]

@ (e) = -A(r) - Aar(e)A(e) ) (3.2.14¢)

Given these definitions, the Green's Identity for L on the interval [0,T] is

obtained directly by integration by parts, yielding

1.
<Lx, M =<x, L XA + <xb, E>\b>

n n . (3.2.15)
L,l0,T] L,[o,T] R

2n
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SECTION 3.3

PROBLEM STATEMENT

The fixed-interval smoothing problem for the noncausal process x(t)
defined earlier in Section 3.2.1 is stated as follows. Let r(t) be a pxl
white noise process uncorrelated with v and u(t) and with continuous
covariance parameter R(t). Let C(t) be a p*n matrix whose elements are
continuous on [0,T]. The observations of x(t) are given by the p*l vector

stochastic process:

y(t) = C(t)x(t) + r(t) . (3.3.1)

In addition to the observation y(t), we assume that there may be available a
boundary observation Yp defined as follows. Let ¥, be a gX1 random vector
uncorrelated with r(t), u(t) and v with covariance matrix ﬂb. Define a gX2n

matrix W partitioned into g*n blocks as

w=[w:iw] . (3.3.2a)

The boundary observation is the g*1 random vector:

Define an nX2n matrix V as

T
v = [0 vT] (3.3.3a)
so that the boundary condition in (3.2.1b) can be written as
= V 3.3.3b
Y Xy ( )

A condition imposed in Part I is the assumption that the rows of W and the
rows of V are linearly independent. The significance of this assumption is
explained as follows. If, say, the itl row of W were a linear combination

of the rows of V:

W, =MV ' (3.3.4a)
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then the ith element of Yp could be written as

=M Vx, +
y i%p T Ty,
1 1

Miv + rbi . (3.3.4b)
Thus, Yby in (3.3.4b) can be viewed as a measurement of the boundary
condition v. Without loss of generality we can assume that yj, has been
transformed so that the elements of r, are mutually orthogonal. As such,
ybi could be eliminated from the boundary observation to be used to update
our knowledge of v. This relationship between yy, and v implies that the
dimension of Yp is less than or equal to n, the dimension of v.

The concept of the boundary measurement has been introduced previously in
a simpler form (WO = 0, WT = I) into a smoothing problem for causal
processes by Bryson and Hall [27]. They included a "post-flight" measurement
and showed that this additional measurement results in a nonzero initial
condition for the backward filter in the two-filter implementation of the
causal smoother solution. Thus, the boundary measurement introduces
additional symmetry into the structure of the two-filter solution. This type
of boundary measurement has a natural analog in higher dimensions where
measurements of a random field may often be made along the boundary of the
region over which it is defined. For example, one might have observations of
temperature on the surface of an object whose internal temperature
distribution is of interest. Measurements of gravity at the surface of the
earth or some other body provides another example.

Returning to the 1-D problem of interest here, the fixed-interval
smoothing problem is to find the linear minimum variance estimate of the

noncausal TPBVP x(t), t € [0,T], given the complete observation set Y:
Y = {yb. y(t) ¥ t € [0,T]} . (3.3.5)
In Appendix 3A we develop the estimator equations for a 1-D continuous
parameter process with the following integral form boundary condition
T
v = fV(s)x(s)ds . (3.3.6)

0

In that appendix it is shown that for this integral condition the estimator

takes the form of an integro-differential equation.
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SECTION 3.4

THE TPBVP SMOOTHER

A direct application of the differential operator representation for the
estimator developed in Chapter 2 immediately yields the TPBVP smoother as a
2nth order boundary value process. Given this two-point boundary value
process, we show how it can be transformed into a two-filter form as discussed
in Section 3.2.1. In a similar manner, we also apply the results of Chapter 2
to write a 2nth order boundary value representation of the smoothing error
and use the same transformation to develop expressions for the error

covariance.

3.4.1 A Differential Realization for the Smoother

Let the 2nX2n matrix H be given by

A : BOB!'
H = - :1 - - - . (3.4-13.)
C'R C : -A"
Let the 2nXp matrix G be given by
6]
G = - -4" . (3.4.1b)
-C'R

Then substituting into (2.5.25a), it can be shown that the smoother dynamics

are given by the 2nth order differential equation

X
= H + Gy . (3.4.2)
A A

To obtain an expression for the boundary condition for this differential
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equation, first define two 2nX2n matrices

] L) -
0 V0 I 1v0 + W Hb1wo : =1
vV = - - - - - - - (3-4.33.)
A L. [ .
X virWe s Wt e . o
v b
and
- v0 H 1vT + w0 Hb1wT : 0
Vv = - T - . L XY
<\ - T (3.4.3b)

lev+w11w s I

Then from (2.5.25b), with the transpose of the matrices V and W identified as
the operator adjoints V* and W*, the boundary condition for the smoother

can be shown to be given by

P A

o'--1
I
W by ¥ 0 x(0) T x(T)
- T T = va ~ + ka ~ . (3.4.3c)
W nb Yy A(0) A(T)

3.4.2 Hamiltonian Diagonalization

The solution of the 2nth order boundary value process in (3.4.2) and
(3+.4.3) could be implemented by either of the two forms of the general
solution derived in Section 3.2.1. However, by considering the
"time"-invariant case we can anticipate, as discussed in that section, that
there may be numerical instabilities associated with the first of those
methods. 1In the time-invariant case the eigenvalues of the 2nX2n
Hamiltonian1 matrix H defined in (3.4.1a) are symmetric about the imaginary
axis [29], i.e. there are n eigenvalues in each of the left and right half
planes. Thus, for the time-invariant case, the right half plane eigenvalues
will result in numerical instabilities for the unidirectional implementation
suggested by (3.2.4). Recall that these stability problems can be avoided in
general by transforming the smoother dynamics into the stable forward/backward
form in (3.2.8). To achieve this second form, we need a transformation which

diagonalizes the dynamics of H into two n*n blocks, one stable in the forward

1 The terminology Hamiltonian is employed for historical reasons [28].
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direction and the other backwards stable. As discussed below, this
transformation is readily obtained by adapting results from previous studies
of the smoother for causal processes.

Since the dynamics of our smoother as represented by H are identical to
those of the smoother for causal processes as originally derived by Bryson and
Frazier [30], any transformation which results in a two-filter smoother for
causal processes will also diagonalize our smoother. As mentioned earlier,
these diagonalizing transformations have been studied in [21] and [22], see
also Appendix 3B. However, choosing a diagonalizing transformation for our
problem requires special considerations not encountered in the causal case.
First, because the two-point boundary condition provides incomplete
information for both the initial and final values of the process, we will
choose a transformation which corresponds to a two-filter solution for causal
processes with both filters in information form. Second, as we will see, it
is important to choose the boundary conditions properly for the Riccati
differential equations which govern the time-varying elements of the
diagonalizing transformation. In particular, the choice that we make here
leads to an explicit representation for both the smoother and smoothing error
covariance in terms of a single critical variable. With the smoother in this
form we will be able to interpret some special cases in the next section.
Finally, as discussed later, our choice of diagonalizing transformation and
corresponding boundary conditions makes it possible to formulate a numerically
stable two-filter form for our smoother which is remarkably similar to
two-filter smoothers for causal processes.

Define the time-varying transformation T(t) as the 2nX2n matrix

partitioned in n*n blocks as

O (t) : -1

re) = | -F - - - ) (3.4.4a)

B (t : I
b( )
Let the transformed process be denoted by

~

qf(t) x(t)
qg(t) = = T(t) ~ . (3.4.4b)
qb(t) Alt)
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Also define

and

G = TG
q

so that the dynamics of the transformed process can be written as

q q
9y 9y

If we use the following form for the inverse of T:

-1 I : I P (t) : O
T (t) = | - - - = S - .- -

—Sb(t): ef(t) 0 : Ps(t)

where

-1
P_(t) = [0.(0) + 8 ()]

and if we choose the dynamics for O and 8 as

-1
- = ' ] - [
ef efA + A Gf + GfBQB Bf C'R C

and

b

-1
(¢} - ] ]
ebA + A . ebBQB eb + C'R C ’

(3.4.5a)

(3.4.5b)

(3.4.5c)

(3.4.6a)

(3.4.6b)

(3.4.6c)

(3.4.6d)

then carrying out the calculation in (3.4.5a), it can be shown that Hy is

diagonalized with diagonal blocks

H, = -[A' + 0_BOB']

o3

(3.4.6e)



and

Hb = -[A' - BbBQB'] . (3.4.6f)

Thus the dynamics of gf and qp are decoupled and are given by

-1
d¢ H + C'R vy (3.4.7a)

£

and

& =Ha - crR 'y . (3.4.7b)

If we assume for time-invariant dynamics that {A,B} is stabilizable and
that {A,C} is detectible and for time-varying dynamics that {A,B} is
uniformly completely controllable and {A,C} is uniformly completely
reconstructable, then the invertibility of Pg in (3.4.6b) is gquaranteed if
both 08£(0) and 6,(T) are nonnegative definite [29]. Furthermore, these
conditions guarantee that 6 and 8, and their derivatives are bounded and
that Hf and Hj, are forward and backward stable respectively.

Under the transformation (3.4.4a), the boundary condition (3.4.3c)

becomes
o' -1
w Iy q.(0) g _(T)
A VZ : + Vz * (3.4.8a)
L
W b b qb(O) qb(T)
where
-1
V0 = VO T (0) (3.4.8b)
qa xA
and
-1
q X

To simplify the expressions for the boundary value coefficient matrices in

(3.4.8b) and (3.4.8c), choose the following nonnegative definite initial and
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final conditions for the Riccati equations (3.4.6¢c) and (3.4.6d):

o' -1.0 0' -1.0
0 = I I .
f(0) \Y . vV + W b W (3.4.9a)
and
T' -1 T T -1 T
0 = I . 4.
b(T) \% HV V + W b W (3.4.9b)

Then defining 6, as the following n*n matrix:

v LI |
6 = VT I 1V0 + WT Il WO ’ (3.4.10)
c v b

it can be shown that the boundary value coefficient matrices can be written as

I : 0
v - S
e 8P (0): 9P (0)
c's c s
_ 0 0
= [ Vf vb ] (304.103.)
and
Qr . B
T cPs(T)' cPs(T)
Vv = - - : - -
1 0 : I
_ T . T
= [ v A ] . (3.4.10b)

Since the dynamics of gf and qp are decoupled, the only coupling
between the two enters through the boundary condition. By our choice of
initial and final conditions for the Riccati equations, we have been able to
display this coupling solely as a function of the matrix 6.

The smoothed estimate of x is recovered by inverting T(t) in (3.4.4b) so
that we obtain

~

x(t) = Ps(t)[qf(t) + qb(t)] . (3.4.11)

Following (3.2.8), an explicit expression for the two-filter solution for gf

and gy, is formulated as follows. Let qfo and qbo be governed by
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(3.4.7a) and (3.4.7b) respectively with boundary conditions: qfo(O) =0
and qp0(T) = 0. Define Fgp and % as the 2n*2n matrices

0 T R 0
Fop = [vf + Vo (T,0) F vV + vbcbb(o,'r)]
I+ 9P (M) (T,0) : O'p (T)
= cs L oS o (3.4.12)
B p (0) I+ 6P (0)2 (0,T) *Ee
c s c s b
and
Qf(t,O) : 0
be(t) = - - - - - . (304.13)
0 : & (t,T)
b r
Then the two-filter solution for g(t) is given by
o' 0 0
ag(t) o ¥ i 8P _(T)q (T) qg(t)
= &_ (t)F Ty, - I+ . (3.4.14)

1)
fb fb WT b "b

0 0
qb(t) ecPS(O)qb(O) qb(t)

The computational complexity of the noncausal smoother implementation
suggested by (3.4.11) and (3.4.14) is nearly the same as that of the
two-filter smoothers for causal processes such as the Mayne-Fraser form
[19,20]. We note, however, that before df and g can be evaluated for any
t € [0,T], both qfo and qbo must be computed and stored along with
Py and %, for the entire interval [0,T]. Thus, the required storage
exceeds that of the smoother for causal processes. Indeed, the Mayne-Fraser
solution and ours differ significantly in one aspect. That is, for our
smoother the contribution of the forward filter to the smoothed estimate at
some point t depends not only on past observations, as does the Mayne-Fraser
solution, but also on future observations through the term
ec'Ps(T)qfO(T) in (3.4.14). A similar statement applies for the

backward process.
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3.4.3 Smoothing Error

From (2.5.36), the differential realization of the smoothing error is

X X Bu
s - H R + - - - (3.4.15b)
-2 -2 c'R e

with boundary condition (from (2.5.33))

v W gl o] v x(0) x(T)
v ol . R

v = =V + Vv . (3.4.15b)

Il - Xl_A Xt_a
v W 0 b r, (0) (T)

The same diagonalizing transformation in (3.4.4a) can be applied to the error
dynamics with the result that, as we will see, the error covariance can be
computed from many of the same quantities required for computing the smoothed

estimate.

In a manner similar to (3.4.4b) let

ef(t) x(t)
e(t) = = T(t)}| ~ . (3.4.16)
e (t) -A(t)

Then the smoothing error is

~

x(t) = Ps(t)[ef(t) + eb(t)] (3.4.17)

where ef and ey satisfy the decoupled dynamics

(e
1l
=]
(1]
+
—
<D
Hh
o
1
(@]
sl
}
-
—

(3.4.18a)

and

(3.4.18b)

De
on

It

[0}
o

+
UGD

w

Q

o)

N
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Under this transformation the boundary condition takes the form (see

(3.4.104a,b))

e _(0) e (T)
v = [0 E + [WEivE] ] ¢ . (3.4.19)
f b
eb(O) eb(T)

Below we develop an expression for the error covariance. Let

Zf(t) = E{ef(t)eé(t)} , (3.4.20a)

Zb(t) = E{eb(t)eg(t)} (3.4.20Db)
and

Zfb(t) = E{ef(t)eg(t)} . (3.4.20c)

The covariance of the smoothing error can be written directly from (3.4.17) as

~ ~

E{x(t)x'(t)}

P(t)

Ps(t)[Zf(t) + I () + I () + E%b(t)]Ps(t) . (3.4.21)

We derive expressions for each of the individual covariances in (3.4.20) by
expressing e(t) in the two-filter form of (3.2.8). Accordingly, let eof
and eob be governed by (3.4.18a) and (3.4.18b) respectively with boundary
conditions: eof(O) = 0 and eob(T) = 0. Then ef and ey can be

written as

(t)

ef(t) eéPs(T)e (T) e

0

£ +

0

b(O) e

=o_(t)F {v - . (3.4.22)

fb fb

0

f

e 0
6

eb(t) cPs(O)e b

(t)
Thus the covariances in (3.4.20) can be expressed in terms of the covariance
of v, and the covariances and cross-covariance of efo and ebo.

First note from (3.4.15b) that the covariance of v, is given by

ef(o) s O

I =©g{vv'}-= -6 -
v e e

e c

. (3.4.23)

cerees

U@
~iQ
H
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The covariance of e0g¢

0 0 0!
T =
£ (1) E{ef(t)ef(t)} (3.4.24a)
satisfies
:0 0 0 -1 0
L = I L H! 0 ] ' ; = . d.
£ Hf et fo + fBQB et C'R C ; Zf(o) 0 (3.4.24b)
Similarly, the covariance matrix for ebo satisfies
°0 0 0 -1 0
Z = Z L 9 ' e - ' 7 = . oo
b Hb bt Zbe bBQB . C'R C ; Zb(T) 0 (3.4.25)
To obtain an expression for the cross-correlation:
0
L_ (t,T) t > T
0 o! fo' 7!
T = [ L)
E{ef(t)eb( )} { 0 , t< T ’ (3.4.26)

first define

-0 0 0 -
]-[ = I[ H L] e ] e - 1 . HO - . .4.
ep = Bellgy + Mg Hp + OgBOB'O - C'R C (0) =0 (3.4.27)

Substituting the variation of constants integral expressions for the processes

in the expectation in (3.4.26), it can be shown that for t > T:

0 0" 0
- - 1
Zfb(t,T) = ¢f(t.T)Hfb(T) Hfb(t)Qb(T.t) (3.4.28a)
and that
0 o'
be(T,t) = Zfb(t,T) . (3.4.28b)

Finally, combining these identities we can express

I (t) Z_(t)
I_(t) = Ele(t)e'(£)} = £ fb (3.4.29)

Z%b(t) Zb(t)
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as

8_(0)+ 0'p (T)I2(T)P (T)0 : 6rp_ (T)Z (r,0)p_ (0)9-+ or
c's f s C. c

-11°f -1
L(t)= ®_(t)F_ |- - = = - = ¢ (£)F
p 5" fb 0 B b
ecps(O)zbf(o,T)Ps(T)9c+ ec. 9 (T)+ 0 P(O)E (o)P (0)e
) o 0P (T) O (T, t)zo(t) ;oo (T)Eo (T, t)
+]F 0 - be(t)F;; -© 2 0 :
0 Z0(t) 8 p_ (0)2 ({0, 6 0 23 (o)® (0, t)ZO(t)
0 0
- Zf(t)Qé(T,t)PS(T)SC TR Lt O)P (o)eé 1
= 5" - - : - Fop Qen () o (3.4.30)
be(t'T)Ps(T)ec : Z (t)‘I> (0 t)P (0)9'

Next, note that it can be shown that the solutions of (3.4.24) and
(3.4.25) are related to O¢ and B, in (3.4.6c) and (3.4.6d) by

O ]

Zf(t) = Gf(t) - Qf(t,O)Bf(0)¢f(t,O) (3.4.31a)
and

0 1

Lo(t) = 0 (t) - ¢ (£,T)6 (T)Q (¢,T) . (3.4.31b)
That is,

0 0 0 0

Zf(t) = Gf(t) and Zb(t) = 9b(t) . (3.4.31¢)

When sz and Zbo are replaced in (3.4.30) by the expressions in

(3.4.31a) and (3.4.31b), it can be seen that the only computation required in
excess of that already performed for the smoother solution is the integration
of Mgy in (3.4.27).

Although the expression for the covariance in (3.4.30) may seem
forbidding, it does explicitly display the dependence of I, on Q:. In the
next section we discuss a special class of problems for which ec is zero.

As a preview to that discussion, we note that when 6. = 0,

i) Ffb =1
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and

ii) 8.(0) 0 22¢) ¢ o

L(t) =90 (B)|-" - : = @' (t) + | = - :- = -
€ tb 0 : eb(T) b 0 : Zg(t)

Substituting from (3.4.29), I (t) for this case becomes simply

b (¢) : o©
o =5 - - -
: 0
0 b(t)
which implies that the forward and backward error processes ef and ey, are

orthogonal and that the smoothing error covariance in (3.4.21) is

-1
P(t) = P_(t) = [Bf(t) + Bb(t)] .

Also, when 9C is zero, the noncausal contributions of the forward and
backward processes qfo and qbo to the smoothed estimate are eliminated

(see (3.4.14)). Note that all of these are also properties of the two-filter
smoothers for causal processes [15]. In the next section we will show that
for the case when ec is zero, gf and g, can be interpreted as the

forward and backward information vectors for a causal process smoother with

special nonzero boundary values for ef and Bb'
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SECTION 3.5

SPECIAL CASES

In the first part of this section we discuss some properties of the
smoother for a class of noncausal processes with special boundary conditions
and boundary observations. A subset of this class was first studied by Krener
[23]. Here we show for this class that the smoother described in the previous
section is equivalent to a previously derived smoother for causal processes.
The last topic of the section is alternative transformations which lead to two
of the popular forms of the smoother for causal processes, namely the
Mayne-Fraser and the Rauch-Tung-Striebel. The former belongs to the class of
diagonalizing transformations studied by Kailath and Ljung [21] and Desai [22]

and the latter is a triangularizing transformation [2].

3.5.1 Separable Systems

In the context of 1-D linear stochastic TPBVPs, Krener first introduced
the terminology separable to describe a class of nth order noncausal
stationary processes which are, in fact, nth order Markov, i.e. their
evolution can be described by an nth order linear stochastic differential
equation with a prescribed initial condition which is orthogonal to future
inputs. Recall that, in general, the boundary value representation for
noncausal processes which we presented in Section 3.2.1 is not a Markov
model. Along with stationarity, Krener's criteria for separability includes a
block-diagonal form for I, and the orthogonality condition: vT'v0 = o,

In fact, the slightly less restrictive condition

could have been imposed. In [2], the stationarity condition was shown to be
unnecessary so that (3.5.1) is both necessary and sufficient for the existence
of an nth order Markov model. With respect to the smoothing problem, the

existence of such a model implies that when there is no boundary measurement,
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any of the smoothers for causal processes can be applied directly to the
Markov model. Here we will extend the notion of separability to include cases
for which there is a boundary measurement and say that a system is separable
if

T

[ I
6 = vo m'y° °
C v

s H:w (3.5.2)
is zero. Note that this condition is compatible with Krener's original
condition when there is no boundary measurement (WO = WT = 0).

When ec is zero, the boundary condition in (3.4.8) becomes decoupled
(see (3.4.10)) and Fgp in (3.4.12) becomes the identity so that gf and

dp are completely decoupled with boundary conditions

o' -1

and
T' -1
I
o Yy

Based on this observation, we can interpret the smoother for the separable
case as being equivalent to Bryson and Hall's [27] problem with a
"post-flight" measurement as follows.

Here we consider the information in the boundary condition v and

observation yj, when combined into a single measurement:

_— + . (3.504)

x(T) r

v x(0) -v
Yy w b

This information will be viewed in the form of an information vector [31]. An
information vector is used to store information about a random vector when the
apriori uncertainty for that random vector (or at least some of its com-
ponents) is infinite, i.e. it is totally unkown. When sufficient measurement
information has been gathered so that the error-covariance matrix for the
random vector becomes finite, the stored information in the form of the
information vector can be transformed by the inverse of the covariance matrix

(the information matrix) to produce a finite error-variance estiatmte
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of the random vector. In (3.5.4) above we have posed the boundary condition
for {x(0),x(T)} as a measurement. In this way we can consider the aproiri
information as totally uncertain. Since v and rp are orthogonal random
variables, it can be shown that the information matrix ¢k and information

vector iy associated with (3.5.4) are

[6.(0) : 6
c
¢x = 5" 61y (3.5.5a)
c b
and
~ ] ] __ '
v WO HV1 : 0 0 w° 1
io= | - o, - = | _qr'y (3.5.5b)
X vio. oWt o L1l |y, wi | PP

where 0¢(0) and eb(T) are given by (3.4.9a,b). Separability is thus the
case when the information about x(0) contained in the combined boundary
measurement (3.5.4) is orthogonal to that for x(T), i.e. Qx is
block-diagonal. By considering (3.5.3a) as the initial value for an
information form Kalman filter for x(t) with associated information matrix
8£(0) and by considering (3.5.3b) as the information vector corresponding to
a "post-flight" measurement with associated information matrix 6,(T), we
find that separability is equivalent to a causal process with (possibly)
incomplete information about its initial value plus a post-flight
measurement. Finally, we remark that from (3.5.2) we see that even when
(3.5.1) is not satisfied it is still possible to achieve separability if the
boundary measurement is designed so that WT'Hb'1W0 cancels

vT' I, -1v0,

3.5.2 Alternative Transformations

As Kailath and Ljung [21] have noted, there exists a family of
transformations which diagonalize the Hamiltonian H (also see Appendix 3B).
In addition to diagonalization, there are other special structures for the
smoother dynamics which lead to smoother implementations which may also be of
interest. For example, here we present both a diagonalizing and a
triangularizing transformation each with appropriate boundary conditions so
that their application results in the Mayne-Fraser and Rauch-Tung-Striebel

smoothers respectively for causal processes.
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I)

I1)

Mayne-Fraser

The Mayne-Fraser two-filter smoother is obtained by choosing the

transformation
_ | I : -P(t)
b .
where P satisfies
. -1
P = AP + PA' + BQB' - PC'R CP ; P(0) = HV (3.5.6b)

and O, satisfies (3.4.9b) with boundary condition 6,(T) = 0.

Rauch-Tung-Striebel

As an alternative to diagonalization, the smoother dynamics are

triangularized by applying the transformation

=19 : _T_
T(t) = [E ; _P(t)] (3.5.7)

with the dynamics and boundary condition of P given by (3.5.6b). With
this transformation, the Hamiltonian dynamics become block-triangular
yielding the Rauch-Tung-Striebel smoother for causal processes. Later in

Chapter 7 we expand upon this discussion of triangular forms.
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SECTION 3.6

EXAMPLE: THIN ROD HEAT EXCHANGER

Thin rods or fins are commonly used as the medium for dissipating heat
from some primary source to a coolant fluid which passes over the rods [25].
We will consider the temporal steady-state heat transfer for the two
configurations depicted in Figures 3.6.1a and 3.6.1b1. That is, we will be
looking at the heat distribution for some snapshot in time when temporal

variations have settled out.

EEEEEEEE coolant - tC
E???f??s //////////////Thin ROd///////////Zj Figure 3.6.1a)
:ts(o)ZZ Thin Rod Case
- L
0 L
EEEEEEEE coolant - t EEEEEEEE
e 0 000000 c e 9 0 0 80 00
:source :V/////777/77777%in=Fin//77//]777777] ‘Source. Figure 3.6.1b)
fts(QZ:E coolant - t, fts(?Z:f Pin-Fin Case
- 1
0 L

In this section we present a probabilistic two-point boundary value
representation for the steady-state temperature distribution and heat flow
along the rod for these two cases. The corresponding deterministic TPBVP

models for these configurations in temporal steady-state can be found in most

1 Temperatures are denoted by lower case t and the independent variable,
length along the rod, by <X.
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introductory texts on heat transfer such as [25] or [32]. Following the
discussion of these models, some numerical results for a covariance analysis

of the TPBVP smoother as applied to these cases are presented.

3.6.1 The Dynamics

As is typically done [32], it will be assumed that the rod is
sufficiently thin so that in temporal steady-state the temperature of the rod
can be considered constant throughout any cross-section. Given this
assumption, the spatial dynamics of the temporal steady-state temperature and
heat flow are derived by balancing the rod-to-coolant heat energy exchange
with the along-rod heat energy conduction.

For our probabalistic approach, the coolant temperature along the rod,
tc(®), will be modelled as a constant ambient value plus a white noise
fluctuation:

tc(l) = tamb +n() (3.6.1)

Eln(t)n(s)} = 5 (2-s)

The fluctuation is meant to account for spatial variations in coolant
temperature. Note that n(f) might be a second order process which could be
modelled as the output of a shaping filter and incorporated into our state
model below via state augmentation. We have used white noise here for
simplicity in presentation.

One state variable, t(f), is defined as the difference between the rod

temperature and the coolant ambient:

The other state variable is the derivative of t(£):
_dt@®)
tw) = % . (3.6.3)
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Defining

thermal conductivity of the rod (Btu/(hr ft F))
cross~-sectional area of the rod (sg ft)

rod perimeter (ft)

rod-coolant heat transfer coefficient (Btu/(sq ft hr F))

=
no

and

m® = hp/kA

the state dynamics with t in degrees F are given by

= + n . (3.6.4)

The heat flow at any point along the rod is given by [32]
q(f) = -kAat(L) (Btu/hr) . (3.6.5)

3.6.2 Measurement Model

The dynamics in (3.6.4) are common to both the thin rod and pin-fin
configurations. Before discussing their boundary conditions, we describe the

measurement which is assumed to be available for both cases. Let

y(&) = [1:0]{t(&)| + r(L) (3.6.6)
()
E{r(2)r(s)} = RS(R-s)
represent a noisy measurement of temperature along the rod. One could
conceive of these measurements as being obtained optically by infra-red
techniques. Here we have modelled the measurement noise as white, while in

practice optical measurements might also contain some noncausal blurring which

could be accounted for via state augmentation.

3,6.3 Boundary Conditions

The two cases depicted in Figure 3.6.1 are distinguishable through their

boundary conditions. The boundary condition for the thin rod case in Figure
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3.6.1a is determined by a) the temperéture of the rod at the source:

trod(O) = ts
m t

where tp is an a priori mean, and vt(O) is a zero mean variation about

tm with variance otz(O); and by b) equating conduction and convection
at the end of the rod:

v (L) = h'A[trod(L) - tamb] + kAE(L) (3.6.7b)

where h' is the coefficient of heat transfer through the end of the rod and
Vq(L) is a zero mean random variable with variance oqz used to

compensate for errors in determining k and h' and the effect of deviations of
the coolant temperature at the end of the rod from ambient (t (L) - tamb)‘
Thus, we have the following boundary condition for the thin rod case:

(tm -tamb) + vt(O) 1 : 0f |t(o) 0 :0 t(L)
-T2 =) -:- + - - - . (3.6.7¢)
vq(L) 0:0 t(0) Ah': ak] |&(1)

Note that when vt(O) and vq(L) are uncorrelated, (3.6.7c) satisfies the
separability condition (3.5.2).

The boundary condition for the pin-fin case in Figure 3.6.1b is obtained

from (3.6.7a) at both &8 = 0 and £ = L:

(=}

(t -t ) + v (0) 1 : o] [t(o) 0 t(L)
_m_ amb’ 't =]-: - + |- : . (3.6.8)
(t -t ) + v, (L) 0: o] |t(o) 1 ()

m amb t

o

Similar to the thin rod case, if v (0) and vy (L) are uncorrelated, then
(3.6.8) would represent a separable case. However, in many pin-fin
configurations, the physical proximity of the two ends of the fin will result
in the variations Vt(o) and vt(L) being correlated. For example, consider

the correlated case represented by

v (0)|[ v _(0)iv, (1)] o
t t t - - . (3.6.9a)
vt(L) po
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In this case due to the nonzero correlation p, Gc is nonzero:
-2 2. -1
PO, (1-p7) : 0
e =V H v = - - - - - (3-6.9b)
0 : 0

resulting in a nonseparable case.

3.6.4 Numerical Results

Error covariance results are presented for the three examples. The
first is a thin rod case and the last two are pin-fin cases. For one pin-fin
case the correlation p in (3.6.9) is assumed to be zero and for the other p is
assumed nonzero. For all three examples we assume a 0.25 ft long copper rod
with outer diameter 0.1 ft: L = 0.25 ft, Dy = 0.1 ft and k = 280 Btu/(hr ft
F). The coolant is water at 100 degrees F passing over the rod at a velocity
of 5 ft/sec. These conditions correspond to a Reynolds number
Rg = 6.75x105, a Prandtl number P, =~ 4.52 and a coefficient of heat
transfer for the water of k, = 0.364 Btu/(hr ft F). Applying an
approximation from ([32], the water-to-rod convective heat transfer coefficient
is

0.0263 k R0.805 P0.31
we r

D
0

h =~

= 1180 Btu/(sq ft hr F) .

We will assume a process noise variance parameter Q = 1 Fz/ft and a
measurement noise variance parameter R = 1 Fz/ft. Table 3.6.1 lists the

uncertainties associated with the boundary conditions for the three examples.

Example ot(O) (F) ct(L) (F) cq(L) (Btu/hr) p
1. Thin rod 10.0 - 5.0 -
2, Pin-fin 10.0 10.0 - 0.0
3. Pin-fin 10.0 10.0 - 0.99

Table 3.6.1 Boundary Condition Standard Deviations

Plots of the results of the covariance analyses are presented in Figures

3.6.2, 3.6.3 and 3.6.4. Part a) of each figure shows the standard deviation
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in the smoothing error for temperature along the rod in degrees F. Part b) of
each depicts the standard deviation of the heat flow in Btu/hr which has been
calculated by scaling the uncertainty in dt/d% as indicated in (3.6.5).

The results for the thin rod case in Figure 3.6.2 show that the heat flow
uncertainty at the end of the rod, % = 0.25 ft, drops off to the boundary
condition of 5 Btu/hr. In contrast, no such drop is seen for the pin-fin
cases in Figures 3.6.3 and 3.6.4, for which the boundary condition is
specified in terms of the temperature at both ends of the rod. Comparing
between the pin-fin cases, we find that the highly correlated nonseparable
case of example 3 has a larger reduction in uncertainty at the ends of the rod
than does the separablebcase of example 2. 1In effect, the correlation allows
the estimate at each end of the rod to utilize the information available at
the opposite end. Comparing among all three examples, we find that the
uncertainties at the midpoint of the rods, £ = 0.125 ft, are about the same
for all three cases. In fact, under the stabilizability and detectability
conditions stated in Section 3.4, it can be shown for space-invariant cases
and for very large smoothing intervals that the smoothing error covariance in

the middle of the interval approaches

where ss denotes spatial steady-state values. Note that this expression for
the steady-state error covariance is independent of both the structure and
value of the smoother's boundary condition i.e. the steady-state

covariance is the same for both causal and noncausal processes.
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SECTION 3.7

CONCLUSIONS

An internal differential realization of the fixed-interval smoother for a
1-D, nth order noncausal two-point boundary value stochastic process (TPBVP)
has beenhobtained by applying the differential operator solution developed in
Chapter 2. This representation for the TPBVP smoother has been shown to have
the same 2nth order Hamiltonian dynamics as the fixed-interval smoother for
causal processes. The boundary condition for the TPBVP smoother, however, has
been found to be more complex than that for the causal process smoother. By
applying a time-varying diagonalizing transformation much like those employed
by Kailath and Ljung [21] for causal processes, we have formulated a
numerically stable nth order two-filter implementation. The simplicity of
this two-filter form is achieved by employing an information form for the
diagonalizing transformation with carefully chosen boundary conditions for the
differential equations governing its elements. The significant difference
between our two-filter implementation and that for causal processes is that in
the néncausal case the smoothed estimate at a given point in the interval is a
noncausal function of each of the forward and backward processes (see (3.4.11)
and (3.4.14)).

Our work in Chapter 2 has also provided a recipe for writing a
differential realization for the smoothing error. Through an application of
the same diagonalizing transformation, we have derived a two-filter
representation for the smoothing error as well. From this representation, we
have formulated an expression for the error covariance which is a function of
the solutions of forward and backward Riccati equations (as in the causal
process case) along with the solution of one additional matrix differential
equation.

We have also discussed the application of the TPBVP smoother to a special
class of noncausal processes which we refer to as separable, following the
terminology introduced by Krener [23]. We have shown that separability can be
interpreted in terms of the information contained in the two-point boundary

condition v in (3.3.3b) and the boundary observation yp in (3.3.2b). 1In
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particular, if the part of this information which pertains to the value of the
process at the beginning of the smoothing interval, x(0), is uncorrelated with
the information about the process value at the end of the interval, x(T), then
the system is separable. The smoother for this class of systems is shown to
be equivalent to a special form of a previously derived smoother for causal
processes with "post-flight" measurements [27].

As discussed in Chapter 2, differential realizations for estimators of

both discrete and continuous parameter multidimensional stochastic processes

can be formulated as well by the method of complementary models. The problems
associated with the implementation of those estimators are addressed in

succeeding chapters of this thesis.
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APPENDIX 3A

GENERALIZED BOUNDARY CONDITION

In this appendix we derive the Hilbert adjoint of a system whose boundary

condition and boundary measurement are of the form:
v = W& (3.A.%1a)
and

¢b = Wx . (3.A.1b)

From the spaces defined in Section 2.3.3 V, is the mapping V:D(L) - R(V) and W
ig the mapping W:D(L) » R(W). Previously we had considered boundary
conditions and boundary observations which are linear functions of the
boundary process Xps ie€. Vv = Vg and ¢y, = Wxp, i.e. we had restricted

the domains of W and V to Hy as defined in Section 2.3.3. Given a
representation for the adjoint system, we formulate the smoother for 1-D
processes with boundary condition of the form of (3.A.7a). Specifically that
boundary condition is given by the integral:

v = | V(s)x(s)ds (3.A.1¢c)

o—¢H

In deriving the differential operator representation for the estimator in
Chapter 2, we required an internal differential realization of the mapping we
had denoted by H (see (2.5.3)) and its adjoint H*. Recall that the
complementary process Z was shown in Chapter 2 to be represented by the

mapping
. *
z=[-I 1 H|I ¢ . (3.3.2)

A differential realization for the estimator was obtained by inverting the
system resulting from combining a differential realization for the
complementary process Z with that for the observations. As discussed in

Section 2.5.1 and as seen from (3.A.2), such a differential realization for
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the complementary process could be obtained directly from a differential
realization for H¥, Here we construct a differential realization for that
adjoint. We note that the mapping H is defined by (2.5.3) with the boundary
condition and boundary output replaced by (3.A.la) and (3.A.1b). Since we
will rely on the developments in Section 2.5.1, a brief review of that section
would be useful to the reader before proceeding here.

Our goal in this appendix is to present a detailed solution of the 1-D
estimation problem introduced above and thereby establish a methodology which
may be useful in solving generalizations of the smoothing problem for other
classes of processes.,

The starting point is (2.5.11) the inner-product identity through which
the Hilbert adjoint map H* with input {uA, VA} and output {¢ ' B*A} is
defined. Given the boundary condition (3.A.1a) and the output (observation)

in (3.A.1b), the inner-product identity in (2.5.11) takes the form
* * *

<x,C uy> + <X, W v,> = <Ix, A o+ x,V wb> (3.A.3a)
where V*:R(V) »+ D(L) and W*:R(W) = D(L). At this point, neither the
dynamics’ of the internal process A nor the relationship between the adjoint
system boundary output wb and the adjoint system inputs U,y and \B\ has been
specified. Their specification is the subject of what follows.

Substituting for the first term on the right hand side of (3.A.3a) from
Green's identity (2.3.18), we get

[ * * L-rA * ] _ )\ 3 3

By choosing the dynamics of the internal process A as

*

*
u)‘+Wv>\-Vle ’

1- *

L A=2¢C (3.A.4a)

the term in brackets on the left hand side of (3.A.3a) becomes zero. Given
this choice, (3.A.3b) is satisfied (i.e. both sides are identically zero) for
arbitrary x and x, only if the adjoint boundary process Ab in the inner

product on the right hand side satisfies

Ekb = 0 Y (3.A.4b)

117



First note that the condition on A; in (3.A.4b) is in general an
overspecification of the boundary condition for the dynamics in (3.A.4a). For
example, in the 1-D case L' is an nth order differential operator and E is
a full rank 2nX2n matrix so that (3.A.4b) provides twice as many constraints
as are required for a properly posed boundary condition. Thus, to obtain a
well-posed boundary value problem for A, we will split (3.A.4b) into two

conditions. The first, denoted as

E A = 0 2 (3.A05a)

is chosen so that when it is combined with the dynamics (3.A.4a) the two

comprise a well-posed boundary value problem. The second,

EA =0 , (3.A.5b)

is chosen so that Eq and E; are linearly independent and should be viewed
as an additional constraint on the solution of (3.A.4a) and (3.A.5a). Below
we will use this additional constraint in determining the as yet unspecified
relationship between the boundary output Y, and the inputs u) and vj.

Let the solution of (3.A.4a) with the boundary condition (3.A.5a) be
denoted by

A

Il
—

+ T v + T ¥ . (3.A.6)

A:AA . ealle
b (3.A.7)

Projecting (3.A.6) by (3.A.7) and applying the constraint in (3.A.5b) gives
the following condition for Y, in terms of u) and vj:

¥ = -E_A : T " . (3.A.8)

E AT [T
2 ¥ b 2b" u,i

Here we assume that a left inverse for EzAbT¢b exists (specifically, we

will find that it exists for the 1-D case we consider later) and denote that
left inverse by
e AT, =1 . (3.4.9)

v

(.o T
2b Yy’ T2by
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Finally, define the partitioned operator [W, ! W,] as

L
W Wl = —(EZAbI‘Ipb) EzAb[I'uA:: r [ (3.4.10)

A

so that combining (3.A.8), (3.A.9) and (3.A.10) we have the relation we seek

b= s W oITA (3.A.11)
: v

This completes the specification of the internal differential realization

of the Hilbert adjoint system:

D ics: s [ -v'w o+ [wo-viw (3.A.12a)
ynamics: = a9 <V .A.12a
Boundary Condition: E1Ab_= 0 (3.A.12b)

*
Outputs: Y =B A (3.A.12c)
u
= : W A A,
b= W 3 W] ’ (3.A.124)
Va
or as an input-output map:
‘P * 11)\
= H . (3.A.12e)
lpb V}\

Next we apply this form of the Hilbert adjoint system to define the smoother

for a 1-D process with an integral form for its boundary condition.

Example:

Consider the nX1 vector 1-D stochastic process x satisfying

x(t) = A(t)x(t) + B(t)u(t) (3.A.13a)

where u is an mX1 white noise process with covariance parameter Q(t). The

boundary condition for (3.A.13a) is an n*1 vector v with covariance matrix
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ﬂv and represents an integral of the process x over the interval [0,T]:

V(s)x(s) ds . (3.A.13b)

<
]
o —H

(Note that this is of the general form defined by (3.A.1))
In a derivation similar to that performed in obtaining a general solution for
the two-point boundary condition, it can be shown that the general solution

for (3.A.13a) and (3.A.13b) is given by

x(t) = o(t,00F v - £} + x%(t) (3.A.13c)

where x0 is the zero-initial-condition solution of (3.A.13a), F is the nxn

matrix

V(s)®(s,0) ds (3.A.134)

|
]
O «—13

and E0 is given by a running integral of x0:
t
0
£ty = [ vis)x(s) as . (3.2.13e)
0

As in the two-point boundary value problem, the invertibility of F is the
well-posedness condition for this problem.
The smoothing problem we investigate here is to find the minimum variance

estimate of x(t) as described above given the pX1 observation
y(t) = C(t)x(t) + r(t) (3.A.14)

on the interval [0,T] where r is a white observation noise with covariance
parameter R(t).

We begin by defining the complementary process by way of the Hilbert
adjoint system as specified in (3.A.2). 1Invoking the duality between the
input of H* and the output of H, we note that since there is no boundary
observation (no constant vector component of the output of H) there will be no
constant vector component of the input to the adjoint system (i.e. no v)).

Recalling that (LtA)(t) = -dA(t)/dt - A'(t)A(t) and substitituting into
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(3.A.12), we have that the internal process of the adjoint system is governed

by

AME) = -A(EIME) - C'(E)u,y(t) + V' ()Y (3.A.15a)
with output

Y(t) = B'(t) A(t) (3.A.15b)

and where Y, is as yet undetermined (i.e. W, has not yet been found).

To specify the functional form for y,, we start by decomposing
EMp, = 0 into a boundary condition for (3.A.15a) and a constraint as
discussed earlier. For the 1-D case, we have seen that E is a 2nX2n matrix

and Ab is a 2n*1 vector given by
-I 0

0] I

and

X = |20) .

> I

The condition that EAy = 0 is decomposed as follows:

Boundary Condition: A(0) =0 (3.A.16a)
and
Constraint: AMT) =0 . (3.A.16b)

The solution of (3.A.13a) with boundary condition (3.A.16a) is

t t
Alt) = —fQA(t,s)C'(s)uA(s)ds + fék(t,s)v'(s)ds ¢b . (3.A.17a)
0 0

(®) is the transition matrix associated with -A'.)

Noting that

‘P}\(t,s) = &' (s,t) (3.A.17b)

121



we can rewrite (3.A.17a) as

t t
A(t) = —f®'(s,t)C'(s)uA(s)ds + f@'(s,t)v'(s)ds ¢% . (3.A.17c)
0 0

To apply the constraint (3.A.16b), recall the definition of the matrix F in
(3.A.13d), so that (3.A.17c) can be written at t = T as

T
MT) = -Je'(s,T)C"(s)u,(s)ds + (0, TIF" ¥ . (3.A.18)
0
The constraint in (3.A.16b) specifies that A(T) is zero. Thus, if we define
Wy as the operator
-1 T
Wwa =F  9(T,0) [0 (T, T)C'(T)(T)AT (3.A.19)
0
then combining (3.A.16b) and (3.A.18) and inverting, we can solve for Y, as

a function of the input uj):
. (3.A.20)
This completes the description of the internal differential realization for

the Hilbert adjoint map H*,

As stated earlier, the complementary process Z is defined in terms of

*
H" as

z = [-1} H*]Z?c (3.A.21a)

where for the 1-D problem considered here the underlying process T is

u
c = v (3.A.21b)

r

and the kernel of the correlation operator ZC is the covariance of

Q(t)8(t-s): 0 : O _ _

L (t,s) = 0 - 0 . (3.A.21¢c)
C R S A
0 0 iR(t)S(t-s)
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As in Chapter 2, we denote the components of the complementary process as

2z

N
]
L]

” (3.A,.,214d)

b

Given the definition (3.A.21) and the internal differential realization of the
adjoint map H* in (3.A.15) and (3.A.20), we can write the complementary

process as the output of the following system:

A= -Aa'A —c'R Tr 4+ V'Wu(R_1r) (3.A.22a)
-1
2z =B'A -0 u (3.A.22c)
—w (R ) T’ 3
zb =W, r) - oV . (3.A.224)

Augmenting (3.A.22) and (3.A.13) and inverting so that {Y; z, zb} are
inputs yields

s A : BOB' 0 -BQ : O oz
=\|- - - §- - - + ===y + |- - i-- _1T
-1 : -1 : z + I [v(s)x(s)ds
A C'R C : -A' A -C'R 0o : V' b v,
(3.A.23a)
with boundary condition
T 1 T 1
-z = f V(s)x(s)ds - II F! Q'(T,O)f $'(s,T)C'R (y -Cx)ds (3.A.23b)
v b v
0 0
and
0 = A(0) . (3.A.23c)

The smoother is the solution of (3.A.23) conditioned on the observation y

(i.e. with z = 0 and z = 0):

X A : BOB'|[x 0 0
d=- - -2 - +---fy+ - - - - - - (3.A.24a)
PN H A T ~
-1, -1 -1
A c'R™'c i -a' ||A -C'R v [v(s)x(s)ds
0
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with boundary condition

~ T ~

T
0 =/ V(s)x(s)ds - T F' '@ (T,0)[ @ (s,T)C'R™ ' (y - Cx)ds (3.A.24b)
0 v 0
and
0 = A(0) . (A024C)

The integro-differential equation and boundary condition in (3.A.24) can
be transformed to an ordinary differential equation as follows. First define

a constant process by:

.
~

with boundary condition

~ Y ~ ~ ~

T
v(0) = [ V(s)x(s)ds (i.e., v(t) = v(0) =v ). (3.A.25b)
0

Given the initial condition (3.A.24c) and substituting from (3.A.25), we can
write
~ t 1 -~ t 1 ~
At) = =o' (s, t)C'R™' [Cx(s) - y(s) Jds + fcb'(s,t)v'rlv ds v . (3.A.26a)
0 0
Evaluating (3.A.26a) at t = T, premultiplying by HVF"1¢'(T,0) and
recalling that ( see (3.A.18))

F' = ®'(s,0)V'(s)ds ’ (3.A.26b)

O —H

it can be shown that (here we use the constraint (3.A.16b) that A(T) = 0)

T A -~
0 = -IIVF'_1<I>'(T,0) [ e(s,T)C'R ' [cx - yds + v . (3.A.26¢)
0

Substituting from (3.A.26c) into the boundary condition (3.A.24b) and
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augmenting the system in (3.A.24) with that in (3.A.25), gives the smoother as

X - B g BOBL: 0 ix -2
) 1 : 1 13 1
AMl=fcr cio-a :vID Al + |-c'r |y (3.A.27a)
v 0 i 0 ¢t 0 v 0
with boundary condition
0 0:1I | 0 [ 0 i
T T_TiT T A0) ~ -0 - T 7
O o |-Toilol) - P T . (3.A.27b)
T ~
A(T)
0 0:0 I - v(s)x(s)das
0

We remark that the boundary condition (3.A.27b) results from premultiplying
the boundary condition obtained directly from the augmentation described above

by the nonsingular matrix:

-HVF'"1®'(0,T)§ 0io

1t

01

o

Since ; is constant, a forward/backward two-filter implementation can be
obtained by applying a diagonalizing transformation to the upper left 2n>X2n of
(3.A.27a).

It is likely that with further work this approach can be refined. 1In
particular, a primary goal would be to reduce or eliminate the manipulations
required to obtain the operator [W, : W;,] whose action on u) and v
defines the adjoint system boundary output Y,. This simplification may be
possible by a morevjudicious choice of decomposition of EAy into a boundary
condition and constraint. In our example, we have somewhat arbitrarily chosen

the decomposition in (3.A.16).
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APPENDIX 3B

THE CLASS OF HAMILTONIAN DIAGONALIZING TRANSFORMATIONS

To specify the entire class of transformations which lead to two-filter
forms for the smoothing equations, we proceed as follows. Omitting specific
reference to the independent variable t, the dynamics of the smoother for an
nX1 vector process x on the interval [0,T], are given in the notation of

Section 3.4.1 by

L

A BOB'||x 0
Jd = Jere -A' + 1Y (3.B.1a)
A A -C'R
or in abbreviated notation
X = HX + Gy . (3.B.1b)

Although the principal subject of this appendix is the description of the
complete class of diagonalizing transformations, we will also discuss the
estimator boundary conditions in terms of those for the smoother for causal
processes. We have chosen this case for notational convenience. For a causal

process, the boundary condition for (3.B.1a) is written as

0 I -HO x(0)| _ |0 o] [x(T)
0 0 0 ||A(0) 0 I|| AMT)

(3.B.1¢c)

where Il is the covariance matrix of x(0). The objective is to find a system
which is equivalent to (3.B.1) but which has been totally decoupled (i.e. both
dynamics and boundary conditions) into two nth orger processes, one forward
and one backward. Of course, total decoupling is only possible for separable
cases such as causal processes (see Section 3.5.1). That is, we seek an

equivalence transformation T such that the transformed process q:

(3.B.2a)

Q
Il
I
x|
> > M >
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has dynamics of the form

g = _ + | Ely (3.B.2b)

and a boundary condition of the form

-1
ol =% O[]+ o o Tfae®

0 0] 0 qb(O) 0 MT qb(T)

(3.B.2c)

The reason for choosing the above notation for the boundary condition will
become clear soon. The only real requirement is that the matrices denoted by
Lo"1 and MT‘1 be nonsingular. This guarantees that the initial value

for gf and the final value for qp are completely specified. It is
straightforward to show that under (3.B.2a) the dynamics in (3.B.2b) are given

by

= 40 4 THT . (3.B.3a)

By equating the boundary conditions in (3.B.1¢c) and (3.B.2c), we obtain a

two-point boundary condition for (3.B.3a):

I -
0 0 0 0
and
° 9 - Olr(m™ . (3.B.3c)
0 M 0 I

With T partitioned as

Lf(t) Mf(t)

T(t) = Lb(t) Mb(t) (3.B.4a)

and rewriting (3.B.3a) as

t = of T - TH |, (3.B.4b)
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it can be shown that the elements of T are governed by two sets of coupled

matrix differential equations:

-1
-— - - 1
Lf = Afo LfA MfC R C (3.B.5a)
" = - ' ' eDoe
M. = AM. - L.BOB' + M.A (3.B.5b)
and
-1
— - - [
Lb =ATL LbA MbC R C (3.B.6a)

"o T AM

The boundary conditions for the differential equations can be obtained from

(3.B.3b) and (3.B.3c) as

LbBQB' + MbA' . (3.B.6Db)

Lf(O) L , and Mf(O) =-L I (3.B.7a,b)

0] 00

Lb(T) 0 , and Mb(T) =M . (3.B.8a,b)

T

Thus, (3.B.5), (3.B.6), (3.B.7) and (3.B.8) completely specify the class of
transformations which lead to a two-filter implementation of the smoother.
However, there are other considerations that we can state but for which we
have no complete solution. The following properties are desirable to ensure
numerical stability in the implementation of the two-filter solution:

1) Stable forward and backward dynamics for Ag and Ay
respectively.

2) Stable coupled differential equations for computing the elements of
T since they enter as gains on the observations:

. A 0 Mg -1
q = a | + M C'R vy .
b b

It would be nice to be able to specify the class of stable Ag and A, for
which the second property holds. Of course, one can investigate specific
cases such as choosing Mg = M, = constant = Identity matrix. In this
case, Af and Ap can be determined directly from (3.B.5b) and (3.B.6b) and
substituted into (3.B.5a) and (3.B.6a), yielding Riccati equations for Lg
and Ly,
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CHAPTER 4: ALTERNATIVE APPROACHES TO THE TPBVP SMOOTHER

SECTION 4.1
INTRODUCTION

A solution to the smoothing problem for an nth order TPBVP was obtained
in Chapter 3 by an application of the estimator developed from the method of
complementary models. That solution was shown to be a 2nth order boundary
value process, and a two-filter implementation was formulated by diagonalizing
the 2nth order dynamics. In this chapter we show that constructing a Markov
model for the TPBVP x(t) by the methodology introduced by Castanon et
al [37] provides an alternative means for formulating the smoothing
equations. In particular, given a Markov model which we construct by this
approach, filtering and smoothing can be accomplished by the classical Kalman
filtering and associated smoothing algorithms. We will find that the Markov
model obtained directly from this procedure has order 2n. A condition for
model order reduction is established and related to Krener's separabiltiy
condition discussed earlier in Chapter 3. In addition, we investigate two
ways of incorporating the boundary measurement yj into the Markov modelling
framework. One is to include yp as a post-flight measurement into a
smoothed solution for x(t). The other is to include it in a filtered solution
by establishing a Markov model which incorporates yj, as a priori
information.

As stated above, the two-filter implementation of the smoother developed
in Chapter 3 has been derived by diagonalizing the 2nth order smoother
dynamics. In the second part of this chapter, we study this smoothing
solution from a scattering viewpoint as has been done previously for the
smoother for causal processes [38]. Our investigations in the scattering
framework provide an alternative derivation of a two-filter implementation of
the smoother. 1In addition, we construct a scattering diagram for the TPBVP
smoother which, unlike that for the smoother for causal processes, is found to
require feedback of information from each end of the interval [0,T]. It is
anticipated that this diagram will provide a starting point for pictorial
derivations of new results pertaining to the TPBVP smoother similar to those

derived for the smoother for causal processes in [9].
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SECTION 4.2

THE 1-D SMOOTHER VIA MARKOV MODELI.ING

4,2.,1 Introduction

In Chapter 3 it was demonstrated that the nth order model for the TPBVP
x(t) is not a Markov model. 1In particular, it was shown that the correlation
between the initial value of the process x(0) and any future value of the
input white noise process u(t) is nonzero. Since most of the theory for
estimation and control of stochastic processes has been developed for Markov
models, the algorithms developed to implement this theory are not directly
applicable to the TPBVP model described in Chapter 3. For this reason it is
desirable to also have a Markov representation for this noncausal process. 1In
particular, a Markov model would provide an alternative to the TPBVP smoothing
procedure studied in Chapter 3.

In this section we define a class of linear Markov models in state space
form and show that the TPBVP x(t) can be represented as a linear function of
the internal state of a model in this class. The procedure we follow for
constructing the Markov model is based on the methodology introduced by
Castanon et al in [37] for causal processes with predictive information.

Given the Markov model obtained from this constructive procedure, we
demonstrate how in certain cases the order of the model can be reduced. In
particular, the conditions for model order reduction are shown to be related
to the concept of separability that was first introduced by Krener [23] and
that was discussed earlier in Chapter 3 in reference to special two-filter
forms of the TPBVP smoother solution.

In general, two-point measurements such as the boundary measurement ¥b
defined in (3.3.26) are not accomodated by Kalman filtering and associated
smoothing algorithms. However, because the state vector for the Markov model
that we construct for the TPBVP x(t) contains both the process itself x(t) and

its initial condition x(0), we will find that the boundary measurement Yb
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can be viewed as a post-flight measurement as considered in [27]. 1In this
manner the information in yp can be incorporated into the smoothed estimate
of x(t) on the interval [0,T]. Alternatively, if we wish to include the
information in this boundary measurement into a filtered estimate, this
requires the construction of a different Markov model which incorporates Yp
as a priori information. Again, employing the methodology developed in [37],
we are also able to derive this second type of Markov model.

We begin this section by introducing some notation and mathematical
preliminaries and by stating the form of the linear Markov model which will be

used throughout the rest of the section.

4.2.2 Markov Models

The notation and terminology used in this subsection are taken from Wong
[39]. Let the sigma field generated by a collection of random variables

{Si' i€ I} be denoted by
S = o{si, ier} . (4.2.1)
A random variable s is said to be adapted to S if s is completely determined

by (measurable with respect to) the collection of events contained in S, i.e.

s is adapted to S if
E[s| S ] =5s . (4.2,2)

An increasing family of sigma fields {St} is one for which information is

cumulative, i.e. for t > T => Sy DSt.

Definition Given an increasing family of sigma fields {St}, a stochastic
process s(t) is an St-martingale if (i) s(t) is adapted to S¢, i.e.
s(t) = E[s(t)|s¢] and (ii) Sy contains no information about the forward

incrementsl of s(t), i.e. E[ds(t)|s¢] = O.

1 Here all increments are defined by forward differences, i.e.
ds(t) = s(t+dt) - s(t), 4t > 0.
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Definition The model

dz(t)

F(t)z(t)dt + G(t)dw(t) (4.2.3a)

x(t) H(t)z(t) (4.2.3b)

is a Markov model for x(t) with respect to an increasing family of sigma

fields {F.} if

(i) z(t) is adapted to Fy
and

(ii) w(t) is an F¢-martingale.

Note: Since Fy is increasing and since z(t) is adapted to Fy, then x(t) is

also adapted to Fy and

Xt = o{x(T), 0<T<t } C Ft . (4.2.4)

Clearly, Fi can be no smaller than Xy. In the following, we will choose
either Fy = X¢, or we will choose Ft as the union of X{ and the sigma
field generated by the boundary measurement, Fr = X V c{yb}.

The dynamics and output equation in (4.2.3a) and (4.2.3b) provide a
sample path description of x(t) for a given initial condition z(0). To
complete the probabilistic description of x(t), we require the a priori
distribution of z(0). We will delay the discussion of this prior distribution
until after we have established the nature of the equations corresponding to
(4.2.3a) and (4.2.3b) for the TPBVP. Note that the linearity in (4.2.3)
represents a very specific from of Markov model. However, by construction, we
will show that this structure is sufficient for a Markov representation of the

TPBVP x(t).

4.2.3 A Markov Model for the TPBVP x(t) by Decomposition of dw(t)

In this section, x(t) represents the nX1 TPBVP which was introduced
earlier in Chapter 3. In that chapter the dynamics of x(t) were formally
expressed as a linear differential equation driven by white noise. Here we
will write this process as the following stochastic differential equation

driven by Wiener increments dw(t):

dx(t) = A(t)x(t)dt + B(t)dw(t) (4.2.5a)
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(E[dw(t)dw'(t)] = Q(t)dt) with two-point boundary condition

v = V0%(0) + vix(T) . (4.2.5b)

The boundary value v with covariance matrix I, is assumed to be orthogonal
to the increments dw(t) for t € [0,T]. Following the approach taken in
Chapter 3, we will express the solution to (4.2.5a) and (4.2.5b) in terms of
x0(t), the zero initial condition solution to (4.2.5a):

t

<0(t) = [e(t,s)B(s)aw(s) . (4.2.6a)
0

Given (4.2.6a), the solution to (4.2.5a) and (4.2.5b) is

x(t) = (£, 00F ' [v - vix° (1) ] + = (¢) (4.2.6b)
where F is the nXn matrix

T
F = V0 + v &(T,0) . (4.2.6c)

This form of the solution will be referred to often in our development of a
Markov models for x(t).

As a preview we will outline the general procedure to be followed in
constructing a Markov model for the TPBVP x(t). Given a sigma field Fy to
which x(t) is adapted, the Markov model with respect to F¢ is constructed in

the following steps:

(1) Adapt the Wiener increments dw(t) to Fi by computing

aw(t) = E[dw(t) F,] . (4.2.7)

(ii) Invoke the Doob-Meyer martingale decomposition theorem [40] to

establish that

aw(t) = aw(t) - aw(t) (4.2.8a)

is an Fy-martingale increments process i.e.(w(t) is an
Fi-martingale) whose quadratic variation is identical to that of

the original Wiener increments dw(t):

E[d&(t)d;'(t)] = Eldw(t)dw'(t)] = Q(t)dt . (4.2.8b)
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(iii) Replace dw(t) in the differential equation (4.2.5a) by

aw(t) = daw(t) + dw(t) (4.2.9a)

to get the alternative representation

dx(t) = A(t)x(t)dt + B(t)dw(t) + B(t)dw(t). (4.2.9b)

(iv) Finally, we will find for the particular case considered here,
i.e. where x(t) is the TPBVP and where we choose Fy = X{, that
the second term on the right hand side of (4.2.9b) can be expressed

in the form

B(t)dw(t) = éx(t)x(t)dt + B(t)x(0)dt . (4.2.10)

If we define z'(t) = [x'(t),x'(0)] and note that z(t) is adapted to
Ft = Xt and that w(t) is an Fi-martingale, then the following is a
Markov model for the TPBVP x(t)

~ ~

A(t) B(t) B(t)]| ~
dz(t) = z(t)dt + dw(t) (4.2.11a)
0 0 0
x(t) = [ I : 0 Jz(t) (4.2.11b)
where
A(t) = A(t) + Ex(t) ) (4.2.11¢)

For the case when we choose to construct a Markov model with respect to the
larger sigma field Fy = X¢ V O{Yb}' the expression in (4.2.10) will
contain an additional term which is linear in Ype

For the case Fi = X¢, the prior distribution for
z'(0) = [x'(0),x'(0)] is determined from the prior distributions for the
boundary condition v and the Wiener process w(t) which define x(0) through
(4.2.6b) evaluated at t = 0. Later when adding the boundary measurement to
Ft, the prior distribution for x(0) will be determined in a Bayesian manner
as suggested in [37]. In particular, in this second case the prior

distribution for x(0) is obtained by updating the distribution for x(0) based
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Recall that before any of the steps in the construction of the Markov
model can be taken, the sigma field Fy must be identified. Our first choice
will be the smallest possible sigma field, i.e. Fy = X{. To determine the
sigma field Xy, define the increasing sigma field generated by the Wiener

process w(t) on the interval [0,t] as

Wt = o{w(-r) ; T € [o,t]} (4.2.12)

and define the sigma field generated by the value of x at t = 0 by

X, = o{x(0) } . (4.2.13)

By reference to the initial value solution to (4.2.5a) given by the variation
of constants formula ( x(t) = ®(t,0)x(0) + x0(t) ), it is easy to see that
x(t) is adapted to the sigma field generated by the combined events in Wi

and Xj. The sigma field generated by this union of events is written as

t 0

With Ft equal to Xt in (4.2.14), it can be shown that the model for
x(t) given by the stochastic differential equation in (4.2.5a) with boundary
condition (4.2.5b) is not Markov by showing that dw(t) is not an

Fy-Martingale, i.e. by computing the expectation

Eldw(t) Ft 1 (4.2.15)

and showing that it is nonzero. An explicit expression for the nonzero value
of this expectation will be computed later in the course of our construction
of a Markov model for x(t) (see step (i) above). 1In particular, steps (i) and
(ii) comprise the decomposition of dw(t) into an Fy-Martingale and a part
which is predictable with respect to Fy. The decomposition is achieved
through the computation in (4.2.7).

As discussed below, the mechanics of the decomposition of dw(t) are
simplified if F¢ is expressed in orthogonal components. In particular, by a
Gram-Schmidt procedure we will orthogonalize Xp with respect to Wy so that

Fy can be written as the following direct sum

~

F, =W & X 4.2.16
t t o,t ( )
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where the random variables which generate X;  are orthogonal to those which
generate Wy (i.e. {w(T) ; T E [O,t]}. The orthogonalization is performed by
computing the conditional expectation of x(0) given Wiy and then subtracting
that computed value from x(0). This leaves a difference which is orthogonal
to all elements of Wiy. Let the part of x(0) which is predictable with
respect to Wy be denoted by

x(0;t) = E[x(0) Wl (4.2.17a)

Evaluating the expression for x(t) in (4.2.6b) at t = 0 and recalling that the
boundary value v is orthogonal to w(t), it is straightforward to show that

-

2(05t) = —FVEo(T, £)x° (t) . (4.2.17b)

The component of x(0) which is orthogonal to W is given by the "error":

x(0:t) = x(0) - %(0;t) . (4.2.18a)

Substituting (4.2.17b) into (4.2.18a) gives

x(05t) = x(0) + F Wro(T, £)x°(t) . (4.2.18b)

Thus,

§0't = ofx(0; )} . (4.2.19)

Given the orthogonality of the components of Fi in (4.2.16), the

expectation in (4.2.7) can be written as the sum of two terms:

dw(t) = E[dw(t) F ] = Elaw(t)| W, + Elaw(t)| x4 ] . (4.2.20a)

Since Wiener increments are orthogonal, the first of these two terms is zero.
Replacing the sigma field in the second term by the single random variable

from which it is generated, (4.2.20a) simplifies to:

daw(t) = E[dw(t){ x(0;t)] . (4.2.20b)
Thus the orthogonalization of the sigma fields has allowed us to express

(4.2.7) as the expectation in (4.2.20b) which is conditioned on a single term.
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The evaluation of this and other conditional expectations in this section
are all made under the Gaussian assumption stated in Chapter 1. Under the

Gaussian assumption, (4.2.20b) is given by

~

dw(t) = Elaw(t)x'(0;t)] [Elx(0;t)x'(0;£)1 ]~ %(0st) . (4.2.20c)

To simplify the notation, denote the expectations in (4.2.20c) by

K _(4.t)dt = Eldw(t)x' (0;t)]

—Q(t)B'(t)@'(T,t)VT'F_1 dt (4.2.21a)

and

I(t) = E(x(0;¢)x'(0;t)]

-1 T(.0 0 T' 5 -1"!
=F [HV + v {I(T) - &T, )T (£)&'(T,t) v JF (4.2.21b)
where HO, the covariance of xo, is governed by
ﬁO = AHO + HOA' +BQB' ; HO(O) =0 . (4.2.21¢c)
By noting that
-1.0 -1.T

we can premultiply x(0) in (4.2.18b) by this expression for the identity to
get

~

x(0;t) = Fo

vOx(0) + FIWTS(T, t)x(t) . (4.2.22b)

Combining (4.2.20c), (4.2.21a), (4.2.21b) and (4.2.22a), the expectation in
(4.2.20b) can be written as

~

aw(t) = Kw(t)20-1(t)F-1[V0x(0) + VIO(T, £)x(t) Jat . (4.2.23)

This is the linear form described by (4.2.10) in step (iv) of the outline of

the method for constructing our linear Markov model.
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The Markov model is obtained by substituting the expression for the

predictable part of the Wiener increments in (4.2.23) into (4.2.5b). If we

define
N -1 -1._T
A(t) = A(t) + B(t)Kw(t)):O (t)F VvV &(T,t) ' (4.2.24a)
" -1 -1.0
B(t) = B(t)KW(t)Z0 (t)F Vv (4.2.24b)
and
£ =x(0) , (4.2.24c)

then the dynamics of the Markov model for (4.2.5a) and (4.2.5b) are given by

~ ~

dx(t) A(t) B(t)||x(t) B(t)]| ~
= at + dw(t) . (4.2.25)
ag 0 0 13 0

The initial condition for (4.2.25) has mean and covariance

x(0) 0 x(0) I IL
E = and E [x(O)'EE'] -1° 0 (4.2.26a)
£ 0 € HO HO

where [l is the covarance of x(0). An expression for Il is found from

(4.2.6b) evaluated at t = 0 and the prior statistics of v and w(t) to be

- 1 -1
I, =F 1[IIV s vl (vt Jr . (4.2.26b)

4,2.4 A Reduced Order Markov Model

The order of the Markov model given by (4.2.25) is 2n, twice the
dimension of the TPBVP x(t). Krener [23] has shown that under a
"separable-stationary" condition there exists a Markov model of order n.
Below, under general conditions, we derive a reduced order model whose order
lies between n and 2n. Specifically, the Markov model order n, can be
reduced to n plus the rank of the matrix product VT'HV‘1VO. In the
course of the derivation we generalize Krener's condition for separability and

and show that is can be interpreted soley in terms of this product.
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The basis for the model order reduction we study here is the recognition
that if the coupling term é(t) in (4.2.25) is not full rank, then we need not
include the full n-vector &£ in the state of the Markov model. Denote the rank
of this coupling term by n., and assume that we can write the n*n coupling
matrix as the product of an n*n, matrix Bp(t) and a constant ng *n matrix
B as

(The subscripts L and R signify left and right respectively.) In a moment we
will investigate the mechanism for obtaining this type of decomposition. For

now, we assume that one exists. If we define an n.X1 random vector Y as
‘Y - BRE ’ (4.2.28a)

then we can immediately write an (n+nc) order representation of the Markov

model in (4.2.25) as

dx(t) A(t) B, ()] |x(t) B(t)| ~
at + dw(t) . (4.2.28b)
ay 0 0 Y 0

To achieve the decomposition in (4.2.27), first recall the expression for

the coupling matrix given earlier in (4.2.24b):

B(t) = B(OK ()2 (£)F V" ) (4.2.29a)
If we define
0 0
I(t) =TT (1) + &7, )T (£)®' (T, t) , (4.2.29b)

then by substituting for each of the terms in (4.2.29a) it can be shown that

B(t) 1.0

-B(t)Q(t)B'(t)@'(T,t)VT'[HV vt Ny

“B(t)O(£)B' (£) &' (T, t) [T + VT'H;1VTF(t)]_1VT'ﬂ;1VO . (4.2.29¢)
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Let 9. denote the product
0 =v I v (4.2.30a)

and denote its rank by ng

n_ = rank(ec) . (4.2.30b)
Clearly, ec can be expressed as the product of full rank matrices eL and
Or of dimension n*n. and ne*n respectively

6 = 696 . (4.2.30b)
c L R

This leads to the form of decompostion of B(t) in (4.2.27) that is required
for the reduced order model in (4.2.28). Specifically, this decomposition is

given by:

BL(t)

SB(£)O(£)B' (£) @' (T, £) [T + V. 1'[;1VTI'(t) ! 8. (4.2.31a)

and

B =6 . (4.2.31b)
R R

Substituting these expressions into (4.2.28a) and (4.2.28b) gives the reduced

order (n, = n + ng) Markov model we seek.

Separability

Recall that a TPBVP is referred to as separable if it has an nth order
Markov model representation. We obtain such a model by the decomposition
described above when n, = 0 (or equivalently when ec = 0). Thus, here we
will say that a system is separable when 6. is zero. Krener's condition for
separability (in addition to stationarity) is that VT, V0 and I, are of

the form (with identical partitioning for each matrix)
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and

n =1V . (4.2.32)

v

Thus, Krener's condition for separability is a special case of the condition
ec = 0 (with no stationarity restriction). 1In addition, note that this
condition is the same condition we obtained in Chapter 3 for the case of no

boundary measurement.

4.2.5 Markov Models and the Boundary Measurement vy

Given the Markov model derived in the previous section, Kalman filtering
and associated smoothing algorithms can be employed to optimally process
observations of the form y(t) = C(t)x(t) + r(t). In our statement of the
smoothing problem for the noncausal TPBVP in Chapter 3 we also included an

additional "boundary" observation of the form

= Wox(O) + WT;(T) + r (4.2.33a)

b b .
Although, this type of two-point observation is not accomodatad within the
Kalman filtering framework when dealing with a Markov model whose internal
state contains x(t) alone, because the internal state of the Markov model that
was developed earlier in this section contains both x(t) and x(0), we can
include (4.2.33a) as a post-flight measurement. That is, if we recall that

€ = x(0), we can simply rewrite (4.2.33a) as

T. 0 ] x(T)

y = [ w:iw +r . (4.2.33b)
g

b b

Thus, ¥y can be viewed as an observation of the state of the Markov model in
(4.2.26) at the endpoint of the interval [0,T].

If we are to include the information in Yp in the estimate of x(t)
through the post-flight measurement (4.2.33b), we find that the Markov model
order reduction discussed in Section 4.2.4 must be reconsidered. Recall that
in reducing the model order we replaced the nX1 vector state element & by the
lower dimensional vector Y as defined in (4.2.28a). With this substitution,

we will not in general be able to write Yp @as a post-flight measurement in
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terms of the reduced order state. However, if we constrain the choice of the
reduced order state element Y as discused below, then ¥p can be written as a
post-flight measurement. Specifically, the matrix By which defines the
augmented state component Y in (4.3.28a) must be chosen in such a way that

WO is a linear combination of its YOWS, le€.,

0 0 0 0
W =W = W_B =W . 2.
x(0) g . RE YY (4.2.34a)

This ensures that the boundary measurement yj; can be written as a linear

combination of the reduced order state vector at t = T:

T : 0
vo = W E W 4o (4.2.34b)
b Y b
Y
where
0 0 . 0 0
W = WYBR (i.e. WYY =W &) . (4.2.35)

Thus, for a reduced order model By must satisfy both (4.2,35) and (4.2.30b).

In the next subsection, we investigate an alternative approach for
handling the boundary measurement whereby it is included as a priori
information when forming the Markov model. This approach has been motivated
by the work of Castanon et al in [37]. 1In particular, by including y} as a
priori information, we no longer need to consider it as a separate

measurement.

4.2.6 A Markov Model w.r.t X4 Plus the Boundary Observation

There may be cases wﬁzh the boundary observation is known as part of the
a priori information. For instance, in [37] x(t) is a causal process
modelling the trajectory of a vehicle, and the boundary observation represents
some predictive information with respect to the vehicles destination at a
known time T, i.e. vy, = x(T) + Irne In order to include that information
into a filtered estimate of the vehicle's trajectory, a Markov model was
constructed to include this predictive information. In this section we will
extend those results and consider the case where x(t) is a boundary value
process and the predictive information yj is a two-point boundary

measurement as in (4.2.33a).
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Here we construct a Markov model for the TPBVP x(t) with respect to the
expanded sigma field containing both X{ and the sigma field generated by the

boundary observation. Let

Y, = c{yb} . (4.2.36)

The expanded sigma field of interest here will be denoted by

or substituting from (4.2.16)

G ={x v wt} vy . (4.2.37b)

0,t b

Following the steps for the construction of a Markov model, we transform the
TPBVP dynamics in (4.2.5a) to those of a Markov model by decomposing the
Wiener increments process dw(t) into a Gi-predictable process and a
Ge¢-martingale increments process. First, we continue the Gram-Schmidt
procedure and orthogonalize Y, in (4.2.37b) with respect to the two
orthogonalized sigma fields Wt and £ « As before, this is accomplished

o,t
-predictable part. Specifically, that

~

. v W
by removing from b its { & v xO,t}

predictable part is given by
v, (t) = E[y_ l Xy o V W, ] . (4.2.38)

The difference

yb(t) =Yy, - yb(t) (4.2.39a)

represents the information in Yy not contained in {XO tV Wt} and generates a
r
sigma field
= 0 el

Y = ol 0} (4.2.39b)

which is orthogonal to both Xo & and Wt' Thus, given yb(t) we can write Gg
14 B

in orthogonal components as

G = X + W + Y . (402.40)

t 0,t t b, t
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Before computing the decomposition of dw(t) with respect to Gy, we must

derive an expression for yb(t). The first step is to compute yb(t) in

(2.38). Due to the orthogonality of the sigma fields in (4.2.38), we can
write

Yb(t) = E[yb x(0;t)] + E[yb Wt] . (4.2.41)

To make the computations in (4.2.41) more manageable, we will write Yp in
orthogonal components as follows. Replacing x(0) and x(T) in (4.2.33a) by

(4.2.6b) evaluated at £t = 0 and t = T, it can be shown that

Pwl o F F_1VT] - - -

v, = [FF b

b +r (4.2.42a)

where

0 T
Fb =W + W &(T,0) . (4.2.42b)

With x(0;t) given by (4.2.18b) and using the expression for Yp above, it can

be shown after some manipulation that

~ ~

T T -1t -1
y (£) = [szo(t) - W I(t)V F ]ZO (t)x(0;t)

+ [ - FbF'1vT]¢(T,t)x°(t) (4.2.43)

where Zg(t), the covariance of x(0;t), is given in (4.2.21b) and T(t) is
defined in (4.2.29b).

The difference yb(t) is found by employing the expression for yb in

(4.2.42), the expression for yb(t) in (4.2.43) and the expression for x(0;t)
in (4.2.18b) to give by (after considerable manipulation)

y, (£) = WAt + [T - A0V - (T, £)x (e) )] + r, (4.2.44a)

where

Me) = Tov' 1+ Vet |7

T -1 T -1 T 1
[1 + Tew’ I v re)v I . (4.2.44b)
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0 0
If we note that T(t) in (4.2.29b) is the variance of x (T) - &®(T,t)x (t), then

the variance of yb(t) can be written directly from (4.2.44a) as

I (t) E[yb(t>yg(t)] (4.2.45)

WTA(t)HVA(t)WT. + [T - A(t)vT]I'(t)[I - A(t)VT]' + Hb .

~

Given the expressions for yb(t) and its covariance, we are ready to
compute the Gi-predictable part ofAdw(t). Using the superscript asterisk to
differentiate this estimate from dw(t) in (4.2.7), the Gi-predictable part
of dw(t) is

~ )
dw (t) = E[dw(t) Yb,t

] + E[dw(t) wt] + E[dw(t) l. (4.2.46a)

X0, t
Noting that the second term is zero and replacing the sigma fields in the

remaining two nonzero terms by their associated random variables, (4.2.46a)

becomes
aw*(t) = E[dw(t) ;(O;t)] + E[dw(t) ;b(t)] . (4.2.46b)

By employing the expression for x(0;t) in (4.2.22b), the first term in
(4.2.46b) can be shown to be given by

Eldw(t) | x(0;t)] = -Q(t)B'(t)q"(T,t)vT'[“v +wTT(e)vT' ]

v0x(0) + VTO(T, )x(t) Jat . (4.2.47)

(This expression is, in fact, the same as (4.2.23) but written in slightly
different notation.) The second term of (4.2.46b) requires a bit more

effort. However, with a modicum of perseverance, it can be shown that

Elaw(t) | y, (£)] = Eldw(t)y} (£)] 5 (t)y, (€) (4.2.48)

T

= Q(t)B'(t) @' (T, t) [I - A(t)vT]-zb

°{yb - [#° —wTace)v® Ixco) - Wi -Ae)vT Je(T, £)x(t) Jat
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In order to express B(t)dw*(t) in more compact notation, define (see (4.2.10))

B (t) = -B(t)o(e)n' () (m,e) VT 1+ vir(e)v™ |7O
+ (1 -A(t)vT]'§;1(t)[w° - wAaevC ]l L, (4.2.49a)
B;(t) = -B(t)Q(t)B'(tW(T.t){VT'[T!V s Vvt YT
+ [1 - A(t)VT]'i£1(t)wT[1 - M) (T, t) (4.2.49Db)
and
* Ty, ~1
K (t) = B(t)Q(t)B'(t) @' (T, t) [I - Mt)V ]'zb (t) (4.2.49¢)
so that
B(t)dw" (t) = {B:(t)x(t) + B (£)x(0) + K;(t)yb}dt . (4.2.494)
Finally, substituting
aw(t) = aw*(t) + aw*(t) (4.2.50a)

into the dynamics of the TPBVP x(t) in (4.2.4a) gives the dynamics for the

Markov model of x(t) with respect to the expanded sigma field Gy in (4.2.37)

as
dx(t) A*(t) B* (t) | [x(t) K (t) B(t)| -,
= dat + ybdt + dw (t) (4.2.50b)
daé 0 0 € 0 0
where
A*(t) = A(t) + ﬁ;(t) (4.2.50c)
and
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As discussed earlier, the prior distribution for the initial condition of
the internal state of the Markov model in (4.2.50b), i.e. [x'(0),x'(0)]1', is
the distribution of x{(0) conditioned on Yps Under the Gaussian assumption,
thié distribution is completely defined by the conditional mean and
conditional variance which are computed as follows. Let

v

vV = - " - (4.2.513.)
%0 (t)

where from the prior distributions for v and w(t)

E[V] =0 (4.2.51b)
and
H\) = E[vv']
I 0
=1V . (4.2.51¢)
0}
0 I (T)

If we define

- T
Hy = F "1 § T , (4.2.52)
then it can be shown from (4.2.8b) that
x(0) = Hov . (4.2.53)
With
_ -1+ T -1_.T
H = [FbF t W - F,F 'V ], (4.2.54)

it can be shown directly from (4.2.42a) that the boundary measurement can be

expressed as a linear observation of V:

Y = HV+r, . (4.2.55)

Since x(0) is a linear function of V, the conditional mean and variance of
x(0) given Yp can be computed from the conditional mean and variance of V.

The conditional mean of V given Yp is
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where

-1
=1 ' I ' - «2e
K, Ay [Hb o+ Hb] (4.2.56b)
The conditional variance of V is

-1 -1 -1
= H ' I[ . L[] .
v|yb [ s TR Hb] (4.2.57)

Therefore, the distribution of x(0) conditioned on Yp is

1) . (4.2.58)

0

N[Hov , HOHVI

Yy
This completes the description of the Markov model for the TPBVP x(t) with
respect to the expanded sigma field Gg.

To obtain a reduced order model, we proceed as we had done earlier. That
is, we seek a decomposition of the coupling term g*(t) in (4.2.4%9a). That is,
we seek a decomposition of the form

~

* ~x

= e L] L]
B (t) BL(t)eL o (4.2.59a)
where

8 = 6.6 . (4.2.59)

Unfortunately, due to the complexity of the terms in (4.2.49a), we have been
unable to achieve a factorization of this form.

In summary, the Markov model developed in this subsection makes it
possible to include the information in the boundary measurement ¥p in a
forward filtered estimate of the TPBVP x(t). This has been accomplished by
augmenting the sigma field with respect to which the Markov model is derived
to include the sigma field generated by Ype In contrast, the Markov model
which was developed in Section 4.2.3 required that Yp be included as a
post-flight measurement so that the information in this measurement is

incorporated in the smoothed estimate of x(t).
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SECTION 4.3

A SCATTERING APPROACH

4.3.1 Introduction

Scattering theory refers to the study of the propagation
(reflection and transmission) of waves through a medium. Ljung et al.
[38] found that the linear smoother for causal stochastic processes has
a natural interpretation in the framework of linear scattering theory.
This discovery has inspired a number of studies [9,33,41)] which have
produced both new results and insights into old results related to the
smoother for causal systems. As explained in [9], many of these
results are obtained through simple pictorial derivations using the

basic superposition property of linear systems.

After discussing the basics of linear scattering theory in
Section 4.3.2, we show in Section 4.3.3 that any two-point boundary
value system of the type discussed in Chapter 3 can be viewed in the
scattering framework. In general, these scattering pictures will
contain feedback paths. Since both the causal system smoother and the
noncausal system smoother can be represented as two-point boundary
value systems (cf. Chapter 3), both have scattering interpretations.
However, due to the simple structure of the boundary conditions for the
causal system smoother, feedback is not required, as evidenced in the
previously mentioned studies. By studying the properties of the TPBVP
smoother in the scattering framework, we find that the two-filter type
of implementation developed by Hamiltonian diagonalization in Chapter
3, is a natural form of solution obtained from the scattering
representation. In addition, by formulating a scattering picture for
the TPBVP smoother, we provide a starting point for pictorial
derivations of new results of the type preformed in [9] for the

smoother for causal processes.
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4.3.2 Preliminaries for Linear Scattering

The form of 1-D linear scattering picture that we will use is
described as follows. Let r(t) be a rightward propagating wave and
2(t) be a leftward propagating wave which interact within a scattering
medium as depicted in the block diagram in Figure 3.3.1. The
input/output relation for this scattering interaction will be denoted
by

r(T) r(t) a (T, t)
S(T,t) + ) (4.3.1)
L(t) 2( 1) a (T, t)

where g% and g~ are internal sources and S is the scattering

matrix:

A(T,t) B(T,t)
S(T,t) = (4.3.2)
C(T,t) D(T,t)

with A and D representing transmission operators, and B and C
representing reflection operators. Later in Section 3.3.3 we will show
that Figure 3.3.1 must be augmented to include feedback when

illustrating the scattering picture for a TPBVP.

Scattering Medium S(T,t) '

—

r(t) A(T,t)

> r(T)

~®
7]

- |
q

C(T,t) B(T,t) '

2(t) < 45 D(T,t) N MT

Figure 4.3.1 Linear Scattering Picture
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The medium in Figure 4.3.1 represents only a single layer of a
composite scattering medium. To compute the effect of scattering

through two cascaded layers as depicted in 3.3.2, we introduce the star

product [42] and the dot sum [41]. Let Sy and S; and qq and
do be the scattering matrices and internal sources, respectively, of
layers 1 and 2. The combined scattering of these two layers will be

represented by

r - A By Lo >
| ' |
q, |
C1 C2 B2
\ i
2 < (ﬁ— P, gt
Layer 1
Figure 4.3.2. Cascade of Two Layers
where the combined scattering matrix Sq5 is computed as the star
produét of Sy and Sj:
S,.= S_ * «3.4
12 2 S1 (4.3.4)
A(I -BcC) A : B, +AB (I -CB) D
2 172 1 i o2 21 271 2
c, +D.C (I -BcC) 'a, ; D.(I - C.B) 'D
1 172 12 1 ' 1 21 2
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and the combined internal source vector q12 is given by the assembly

sum of q1 and q2 which we denote by

9,,= 9,0 q, (4.3.5a)

and which can be written as the following linear combination of dq

and g,
A (I -B.C ) : 0 I : A (I -B.C) B
2 172 : P02 172 1
942 - - - - ; - f' 94 * |- 'f - - - T ; qy -
-D,(I - C,B) C, i I 0 i D (I-C,B)
(4.3.5b)

4.3.3 Scattering for the TPBVP

Here we present a general discussion of scattering for a
two-point boundary value process. The results we obtain are applicable
to all linear two-point boundary value problems. Later we will apply
these results to the special case of the smoother derived in Chapter
3. In this section a two-point boundary value process will be
represented by an ny)*1 vector partitioned into ny*1 and n )X

vectors x(t) and A(t) as

x(t)
A(t)

(ngA = ngy + n)). The TPBVP is denoted in this way rather than
simply by x(t) because later the partitions will be identified with
those of the TPBVP smoother (see (3.4.2)). The linear differential
equation defining the dynamics of the TPBVP will be written in

partitioned form as

= + u (4.3.6a)

>
>
>

with two-point boundary condition denoted by

x(0) x(T)
+ [V : VT . (4.306b)

A(0) A(T)
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Here we assume that the boundary condition meets the well-posedness
conditions for the existence of a unique solution [x(t), A(t)l. In the
following two subsections our discussion of the scattering interpre-
tation of this process is separated into two parts: one part for the

dynamics in (4.3.6a) and the other for the boundary condition in

(4.3.6b).

The Dynamic Layers

Following the approach taken in [9], we show how the dynamics in
(4.3.6a) can be manipulated to derive corresponding differential
equations for the scattering matrices and internal sources depicted in
the scattering diagram of Figure 4.3.3. Temporarily, it will be
assumed that the inputs x(0) and A(T) in Figure 4.3.3 are known.

Later we will describe how these inputs are determined by considering

the boundary value v.

——— x(t)
X(0) ——— L = x(T)
S(t,0) S(T,t)
q(t,0) A(t) q(T,t)
AO) e o le——— A(T)

Figure 4.3.3. TPBVP Scattering (Dynamic Layers)

To obtain initial-value differential equations for S(t,0) and
q(t,0), first consider the following discrete-step approximation for

(4.3.6a)

A A A
x(t+4) I+Ax Alx x(t) Bx ,
= + u(t)A + 0(4%)
A(t) —A)\XA I-a,4 A(t+D) -B,
4 +
S(t+A, t) q(t+4,t)

(4.3.7)
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If we define the partitions of S as

s (t, ) S A(t: D)
s(t, 1) = (4.3.8)
Sy (s T) S)(t, D)
and note that
S(t+A, T) = S(t"’A't) * S(t' T) ’ (4-3.9)

then differential equations for the elements of the partitions of

S(t,T) in (4.3.8) can be found from the definition of the derivative:

4 [ste, ] _ 1im  s(t+4, D - s(t, D

dt A>0 A °

(4.3.10)

Carrying out the star product operation in (4.3.9), substituting the
result into (4.3.10) and taking limits yields the coupled matrix
differential equations for the partitions of S(t, T) [43](also see

Appendix 4B for the details of this kind of derivation):

S (t,1) = [A(t) - S ,(t, DA, (£)] S_(t, 1) ;o s.(T T =1,
X x x A Ax X X
Sx)t(t'T) = Ax(t)Sx}‘(t, T) - Sx}\(t, T)Ax(t) + AX)‘(t)

- Sxk(t'T)A)\x(t)sx)\(t' T) ; Sxk( T, T) = 0,
Sxx(t'T’ = 'Sk(t'T)AAx(t)sx(t'T) ; SXK(T’T) =0

and
§>‘(t.T) = =5,(t,0) [A,(t) + A}\x(t)SxA(t, T)] pos)T T =1 .
(4.3.11a,b,c,d)
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Differential equations for the sources are found in a similar

fashion. Compute g(t+4, T) via the assembly sum
g(t+4, T) = g(t+ld,t) o g(t, 1) . (4.3.12)

Then, taking limits (see (4.3.10)) gives the following vector

differential equations for the internal sources

o+ +
a (6 = [a (0 - s e0a @ 70 + [B(£) -5 (8, DB, (t) Ja(e)

;g (T,T) =0 (4.3.13a)
and
.- +
a (5,7 = -S,(t, T [a, (£)g (£, T) + B, (t)u(t)]
i g (1,10 =0 . (4.3.13b)

Values for S(t,0) and q(t,0) in Figure 4.3.3 are found by solving
(4.3.11) and (4.3.13), with the initial conditions specified at T = 0.
Derivations similar to those used to formulate (4.3.11) and (4.3.13)
can be used to obtain final-value differential equations for S(T,t) and
q(T,t) in the second layer of Figure 4.3.3. These derivations are
carried out in Appendix 4A.

Before moving to the discussion of the boundary layers, expres-~
sions for x(t) and A(t) are derived from the scattering picture in
Figure 4.3.3. That is, we solve for x(t) and A(t) as a function of the
inputs x(0) and A(T) and the sources gq(t,0) and g(T,t). First,

consider the scattering equations implied by the left and right media:

x(t) x(0)

= S(t,0) + qg(t,0) (4.3.14a)
A(0) A(t)
x(T) x(t)

= S(T,t) + gq(T,t) . (4.3.14Db)
A(t) A(T)
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These two equations can be combined into a higher dimensional equation

which we will represent by

A(0)

x(T)

If we define

and

x(t;

A(t)

I (v) =
x

Fx(t)

—

x(0)
¥| v +
*1rcm)

[ q*(t,0)]
g (t,0)

¥
U gt (T, t)
q-(Trt)

I - le(t'o)skx(T't)

I- S)\X(T.t)sx)\(t,o)

r

(4.3.14c¢c)

(4.3.144)

(4.3.14e)

then it can be shown that the coefficient matrices in (4.3.14c) are

¥ = |-

T (t) :
X .

Sx‘t'o’sxx(T't’rx‘t’

1

1 :

S (t,0)
X

S (T,t)sS_(t,0)
X X

SAX(T,t)Sx(t,O)
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SxA(T't)

SA(T,t)

Sx(t,O)SA(T,t)

Sxx(t'O’SA(T't’

sx(T,t)sxA(t,O)FA(t)

Tx(t)

1

1

(4.3.14f)

(4.3.14q)



and

I 0 0 S, A(ts0)
0 I 0 SA(t,O)
¥ = . (4.3.14h)
q
S (T,t) 0 I 0
X
SA (T,t) 0 0] I
X

Substituting these into (4.3.14c) gives the following expressions for

x(t) and A(t):

x(t)

-1 + -
I (t) {Sx(t,O)x(O) + gt (t,0) + 8 ,(£,0)[5,(T,£)MT) + g (T, )1}

-1
At) = T,(t) {S}\(T,t))\(T) +a7(T,t) + S, (T,£)[S_(£,0)x(0) + at(t,0)1}

(4.3.15a,b)

Later when we identify the elements of the scattering matrix and the
internal sources with variables associated with the smoother, it will
become clear that equation (4.3.15a) for x(t) corresponds to a form of
two-filter smoother solution. Thus the two-filter form of the solution

is a natural one associated with the scattering point of view.

The existence of the solution (4.3.14c) hinges on the
invertibility of Px(t) and Fk(t) in (4.3.144,c). In the smoother case
considered in Section 4.3.4 , existence is guaranteed by uniform
complete controllability and observability. That is, the Riccati
equation solutions SyA(t,0) and SyxA(T,t) will be symmetric and
strictly negative definite and strictly positive definite,

respectively, under the controllability and observability assumptions.
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The Boundary Layers

Up to this point we have ignored the contribution of the
boundary condition in (4.3.6b). Actually, close inspection of the
solution for x(t) and A(t) in (4.3.15) reveals that we have assumed
knowledge of both x(0) and A(T), e.g. a special case of the two-point
boundary condition. In general, these two values will not be known
explicitly, and, as indicated below, we must use the boundary condition

to solve for them.

In solving for [x(0), A(T)] two cases will be considered. We

start by first rewriting the boundary condition (4.3.6b) as

x(0) x(T)
0 : T :
[ Vx : VA] = Vea T [ V: : Va] (4.3.16)
A(T) A(0)
Case 1
0 : Ty ., . .
If [Vx : VA] is invertible, then (4.3.16) can be solved

directly for [x(0), A(T)] as

x(0) Mx MxA x(T) Mxv
= + Vo (4.3.17a)
X
A(T) My, My [|AO My
where
Mx MxA Mxv
= _[v° i VT)‘]_1 [vT: v(;] and = [v% V'I;‘]-1 .
M M X X M X
Ax A v (4.3.17b)

This allows us to complete Figure 4.3.3 with left and right boundary
layers and feedback of x(T) and A(0) as depicted in Figure 4.3.4.
Alternatively, these two boundary layers could be combined into a
single left or right boundary layer directly from (4.3.17a) which is

already in the scattering form of (4.3.1).
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x(0)

XA

<f\§
-
e

A(0)

x(t) x(T) -
il e
S(t,0) S(T,t) 1 0
_ ka Mlvv 0
g(t,0) g(T,t)
M“x !
A(t) A(T) |

Figure 4.3.4.

Case 2

When [VO
X

solving for [x(0),

0
TPBVP Scattering Picture for [Vx

T .
VA] Invertible

T
VA] is not invertible, there are two approaches to

A(T)].

The first approach discussed is the most

direct. Although, it does not readily lend itself to a scattering

diagram, it does lead to a form of the forward/backward two-filter

solution for the TPBVP as developed in Chapter 3.

The second approach,

although indirect, allows us to complete the scattering picture with

feedback loops as we had done in Figure 4.3.4 for Case 1.

Indeed, the

second approach is actually a method of transforming a Case 2 problem

into a Case 1 problem.

First write [x(T), A(0)] as the output of the scattering

equation for the entire interval [0, T].

x(T)

A(0)

s (T,0) S A(T,O)
X X
SAX(T,O) S,(T,0)
+
s(T,0)
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x(0)

A(T)

+

q+(T,0)

q_(T'O)

+
q(T,0)

(4.3.18)



Using (4.3.18) to replace [x(T), A(0)], (4.3.16) can be written as

x(0)

[ [W° 3§ T

T :
X A :

T : 0
]+ [vx Povys(ro Vo - [vx V(;]q(T,O).

A(T)
(4.3.19)

The matrix in brackets on the left hand side of (4.3.19) will be
invertible if the boundary value problem (4.3.6) is well-posed. That
is, this matrix is the scattering equivalent of the matrix F in
(3.2.36). Premultiplying (4.3.19) by the inverse of this matrix
inverse yields a solution for [x(0), A(T)] as a linear function of the

internal sources and the boundary value V¢ A Denote the inverse by

F: = | [vi v'i‘] + [Vz V?\]S(T,O) } (4.3.20a)

and define

+ -

F F F

R F-1 and *q ) = -F_1[VT§ Va] .
- s et . s X

Av A g (4.3.20b)

Inverting (4.3.19) gives:
x(0) F Fl 3 | EG )
= vt | 32 N . (4.3.20c)

A(T) F )y F)q F)q q (T,0)

Substituting from (4.3.20c) into (4¢3.15a) we obtain the following

expression for x(t)

x(t) = 1‘;1(t){ [Sx(t,O)va + Sxx(t,O)SA(T,t)F)‘V]Vx)\
+ [Sx(t,O)F;q + Sxk(t,O)SA(T,t)F;q]q+(T,O)
+ [Sx(t,O)F;q + SxA(t,O)SA(T,t)F;q]q-(T,O)
+8_,(t,0)q (T, t)

+a(t,0 } (4.3.21)
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If we solve for gt (t,0) in the forward direction from the initial
value problem in (4.3.13a) with g*(T,0) its value at the endpoint T,
and if we solve for g~ (T,t) as the backward solution to (4.A.11b) in
Appendix 4B with g~ (T,0) its value at the initial point O, then
(4.3.21) represents a forward/backward two-filter solution for the
TPBVP. Unfortunately, this solution is not posed directly in terms of
the outputs [x(T), A(0)] of the dynamic scattering layer (depicted in
Figure 4.3.3); and thus, this form of the solution provides no
straightforward way to augment Figure 4.3.3 as we had done for Case 1
(Figure 4.3.4).

Although it does not directly lead to a scattering picture, the
form of the solution in (4.3.21) has a number of notable properties.
First, it provides the mechanism for a forward/backward implementation
of the general solution for a TPBVP without having to explicitly
determine a decoupling transformation. Of course, solving the Riccati
equations for S)y and Sy ) represents the identical computational
problem to that of solving the Riccati equations for the elements of
the decoupling transformation (see (3.4.6)). Second, the solution in
(4.3.21) makes it clear that the inputs u(t) can be processed
independently of any knowledge of the boundary conditions.
Specifically, the solution of the differential equations for the
forward and backward processes gt(t,0) and q~(T,t) makes no use of
the boundary value v or the form of the boundary condition.

An alternative solution from which we can construct a scattering
picture is derived indirectly using the approach taken for Case 1.
Recall that the solution in Case 1 required that [Vz : Va] be invert-
ible. In general, well-posedness only guarantees that the partitioned

matrix:
: T
v, v,] (4.3.22)

is full rank n so that the ranks of V0 and VT, ng and np, satisfy

n.+n > n (4.3.23)

xA °
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Until now, no assumption has been made concerning the dimensions of the
partitioning [x(t), A(t)] of the TPBVP in (4.3.6). Indeed, any vector
TPBVP could be arbitrarily partitioned to obtain the form (4.3.6). We
will show that an appropriate choice of partitioning of the TPBVP will
guarantee that [x(t), A(t)] can be transformed to an equivalent process
insuch a way that the invertibility condition is met for the boundary
condition for that transformed process. First note that we can always
partition the nyA*1 boundary value process so that the dimensions of

x and A are less than the ranks of VO and VT

n

dim(x) n , (4.3.24a)
X — 0

A

n, dim(}) < n, (4.3.24Db)

and so that the overall dimension of the TPBVP is the sum of the two

n = dim(x) + dim(A) . (4.3.24c)
XA

Next consider a time-varying equivalence transformation

x(t) T (t) T ,(t)||x(t)
X X
- = (4.3.25a)
A(t) Ty (t)  Tp(t) [|At)
Tb(t)
with the inverse denoted by
-1
T = . e e
L () T, (t) (4.3.25b)
Let
"0 - 0 0 - 0. 0
= H T = H eJe
[vx vy ] () [vx vx] (4.3.26a)
and
T _ T T - oT it
- E T = E . ede
v [vx vy ] () [vx N (4.3.26b)
Then under Ty, the boundary condition is transformed to
~0 §x(0) x(T)
Vxl = VO + GT . (4.3.27a)

X(0) AT)
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The key is to choose T, at t = 0 and t = T to shift the linearly
independent columns of VO and VT (see (4.3.22)) so that

0 i yT
[ 59T ]
is invertible. Thus, the problem can be transformed to Case 1. In
particular, if we reorganize terms in (4.3.27a) to get an equation

analogous to (4.3.16), i.e.

~ ;(T)
Ver " [Gi : Vg]

A(T) x(0)

- wp |20
[VO . VT] x(0)

< - A » (4.3.27b)

then the invertibility of the transformed equation allows us to write

(4.3.27b) as

x(0) M My x(T) M
X xv
= + v . (4.3.27c)

~ ~ ~

Y " A
A(T) M) My || A€0) My X

Note that an application of the equivalence transformation in (4.3.25a)
for all times t will require a transformation of the dynamics as well.
However, we now show that it is not actually necessary to transform the
dynamics.

We start by developing a scattering representation for the
transformation in (4.3.25a). Consider (4.3.25a) at t=0 and its
inverse which we will write in partitioned form as

x(0) Tx : TxA x(0)

S R | e (4.3.28)
T F T Aoy

A(0)

Selecting the first row of (4.3.28) and the second row of (4.3.25a)

gives

T (0)x(0) + T .(0)A(0) (4.3.29a)
X XA

x(0)

i(0) = TAx(O)X(O) + TA(O)A(O) (4.3.29b)
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which can be represented by the two scattering layers in Figure 4.3.5.

1 .
: ' A | S|
) o 1 x| : _ x(0)
T Lo 0 A
! 5 poun | B e R L
} 0 1 To|l I 7, £9) o ||
[ 0 % ] | 0 : I .
- t !C I ;(0) ! / !
A(0) l I 1 T & T.AIO) l 1(0)
g 3 L

Figure 4.3.5 1L,,(0), The Scattering Representation of TL(0).

This has a simple interpretation as the transformation of a transmis-
sion operator to a scattering operator. That is, if the transformation
(4.3.25a) is viewed as a transmission operation [9], then Figure 4.3.5
is the scattering representation of its transmission matrix. A similar
picture can be developed for this transformation at t = T, Tp(T). As

a shorthand, these scattering representations will be denoted by

x(0) x(0)
- = Zb(O) (4.3.30a)
A(0) A(0)
and
x(T) %(T)
= zb(T) . . (4.3.30b)
A(T) A(T)

Employing (4.3.30a) and (4.3.30b) leads to the two equivalent
scattering pictures for the transformed dynamics as shown in Figure
4.,3.6., Combining the dynamic layers from Figure 4.3.6 and the feedback
representation of the effect of the transformed boundary condition from
Figure 4.3.4, we get the scattering picture for the transformed process
(;,X) in Figure 4.3.7. Of course, Z,(0) and I,(T) could be

combined with the other boundary layers via the star product to

simplify Figure 4.3.7.
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;(0) x(T)

lstz.0)

Cxco) BT | N

Figure 4.3.6. Equivalent Pictures for [S(T,0)

x(0)

A (0)

), (0)

x(0)

A(0) -

x(T) '
's(T,0)
N Sy (T) )
aT.0)| () AT
, g(T,0)].

x(T)

We have gone to the trouble of developing a scattering represen-

tation for a TPBVP so that in the next section we can view the special

case of the noncausal smoother in this framework.

In particular, we

have developed a picture (Figure 4.3.7) which maintains the dynamics of

the original, untransformed process so that the dynamics and boundary

conditions for the TPBVP smoother can be analyzed separately.

Having a

complete scattering picture for the TPBVP smoother provides a starting

point for pictorial derivations of decentralized processing, map

combining and map updating as performed for the smoother for causal

processes in [9].

x(T) ] x(0) x(0) x(t) x(T) x(1) . (T
| My ¥ | oo ! A1
= /f( v 5(t,0) s(r,t)| — 5
v = y . = .
0‘ 0 0 Mea E:bm) zb('r) Hlx /v 0
,L/ T qlt,0) q(T,t) 7 |- !
— I " v M, ~
A (0) A (0) A(0) ACE) A (T) A(T) A (0

Figure 4.3.7.

Scattering for the general TPBVP:
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4.3.4 Scattering Picture for the TPBVP Smoother

Here we specialize the scattering results obtained in the
previous subsections for a TPBVP written in the general partitioned
form in (4.3.6) to the special case of the smoother derived in Chapter
3. 1In the same way that the discussions of the dynamical contribution
and the boundary value contribution for the scattering representation
of a general TPBVP were separated, we will separate the discussions of
the Hamiltonian dynamics and the boundary conditions for the smoother.
Since the Hamiltonian dynamics are identical for both the noncausal and
causal system smoothers, we can simply review some previously published
results pertaining to the dynamics which were derived in the context of
the causal system smoother ( see e.g. [9, 38 and 41]). The discussion
of the boundary layers includes both the boundary contribution to the
two-filter solution in (4.3.21) and a transformation of the type given
in (4.3.25) which leads to a scattering diagram for the smoother in the

form of Figure 4.3.7.

Dynamic Contribution

In Chapter 3 the smoother dynamics were shown to satisfy

2 A BOB' | | x 0
= + Y . (4.3.31a)
ij c'r-1c -a || -c'r-1

The partitions in (4.3.31a) are associated with those in (4.3.6) as

A =A, A, =-A', A

-1
— ] — 1
. A A BQB and A C'R C . (4.3.31b)

o =
Denote the elements of the scattering matrix in (4.3.8) whose

differential equations are given in (4.3.11) by

¢O(t,0) S (t,0) (4.3.32a)
f X

0
Pf(t) sxx(t,o) (4.3.32b)
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0
Wf(t) 'Sxx(t'T) (4.3.32c)

and

0 0,
wf(t,T) S,(t, 1) = ®f (t, T) . (4.3.234)

Substituting this notation into the differential equations in (4.3.11)

gives
*0 _ .0, 0 , 0.,.-1.0 0 _
Pf(t) = P.A' + AP_ + BQB P.C'R CP; ; Pf(O) =0 (4.3.33a)
20 0_..0 0
= - ¢ H = e Je
¢f(t,0) (A - K.C)O ; ¢f(o,0) I(4.3.33b)
and
*0 0 -1_0 0
= ¢ @ H = eJe
wf(t) e 'CR Co ; wf(o) 0 (4.3.33c)
where
0 0.,.-1
Kf(t) = P.C'R . (4.3.34)

0
The solutions to (4.3.33) correspond to the covariance matrix P

£ the

. . 0 co. . 0
transition matrix Qf and the observability matrix Wf for the
Kalman filter whose initial condition is known to be exactly zero at
t = 0. The internal sources also have an interpretation in this

setting.
Substituting from (4.3.31), (4.3.32) and (4.3.33) into (4.3.13a)

and (4.3.13b) gives differential equations for the internal sources:

]
o

ot + 0 + +
qf(t) = Agg + Kf(Y - qu) ; qf(O) (4.3.35a)

0 -1 + -
- ] L} - -
¢f C'R (y qu) ; qf(O)

I
o

&;(t) (4.3.35b)
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where

q;(t) = q'(t,0) and q;(t) =q (t,0) . (4.3.35¢)

Thus q;(t) is the estimate for the Kalman filter with zero initial
condition, and qE(t) is a running integral of its innovations

process. We emphasize again that no matter what the boundary
conditions are for the smoother dynamics (4.3.31), the forward
scattering dynamics can be represented by this zero-initial-condition
Kalman filter. The reverse scattering dynamics have a similar
interpretation in terms of a backward Kalman filter in information form
[41] as follows. Denote two of the elements of the scattering matrix

S(T,t) by

0
9“t)=—SkULt) (4.3.36a)

Qg(T,t) = §,(T,t) (4.3.36b)
and the lower partition of the internal source q(T,t) by

g (t) =q (T,t) . (4.3.36c)

Substituting this notation into the final-value differential equations

derived in Appendix 4A results in

0 0 0 -1 0 0 0

—e = 'e e 1 - 9 'B H e = . -
N A'6 + B+ C'RC \BOB'O ;6 (T) =0 (4.3.37a)
.0 - - ' 0 ] 0 . 0 =
b = [Aa ebBQB ]<I>b ; rbb(T,T) =1 (4.3.37b)

and

& = -[a' - 6%BoB'1q” - c'R 'y i g (T) = 0 . (4.3.37c)

b b b 9

Reviewing the two-filter formula in (4.3.21), we find that the
solutions to these differential equations and those in (4.3.33a),

(4.3.33b) and (4.3.35a) represent all of the dynamical components of
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the two-filter solution. Comparing these dynamical parts to the
two-filter solution in Chapter 3 obtained by diagonalization of the
Hamiltonian, it can be shown that the solution developed here
corresponds to the case when the the diagonalizing transformation is

chosen to be

I —Pg(t)
T(E) = , (4.3.38)

0
9b(t) I

which is similar to the diagonalizing transformation suggested in the
proposal for this thesis [2]. In the next section, we use the
smoother's boundary condition to complete the specification of the
two-filter solution and also to construct a scattering picture for the

smoother.

The Boundary Value Contribution

The boundary condition for the TPBVP smoother is given in
(3.4.8a). Associating that boundary condition with the notation in

(4.3.6b), we have

-1

=w'Il «3.
VoA W LYy (4.3.39a)
[0_(0)] -1
0
Vv = ...f— - ’ V(i = - - (4.3.39b)
X
0
c
and
-0 ] o
T
vi= -S| Va = |- - (4.3.39¢)
e (m 1
b
where, employing the notation introduced in Chapter 3,
| B L
6.(0) = vO I 'v0 + w "W (4.3.40a)
£ v b
v o v
0 (T) = v I 'vT + W MW (4.3.40c)
b v b

169



and

L ' 10
6 = vT HV1VO + WT Hb W . (4.3.40c)

Recall that the form of the two-filter solution in (4.3.21) is

dependent on the inverse of the matrix Fg in (4.3.20a):

F = {[VZ Pvy) e+ [v: : Vi]S(T,O)} . (4.3.41)

Employing the notation from (4.3.26) and (4.3.41), S(T,0) for the case

of the smoother can be written as

0 : .0
¢f(T,o) : Pf(T)
S(T,O) S = = = = - P = -— . (4.3.42)

Substituting (4.3.42) and (4.3.39) into (4.3.39) results in the

following expression for Fg

0 0 0 0
8 g1 8 . O -
f(0) + c¢>f(T,0) + b(0) : CPf('r) ¢b(T,0)
F =J- - - - - - - - -1 = = = - - = l.(4.3.4323)
0 : (0]
) :
ec + b(T)<I>f(T.O) HE g eb(T)Pf(T)

Using the notation from (4.3.20b), define

F : Ft F- . 9 -1
S F_ and *d Ll -F_ ¢ .(4.3.43b)
+ e 3]
Flv qu A b(T) 0

Combining (4.3.35), (4.3.37) and the expression for Px in (4.3.144),

the two-filter solution in (4.3.21) for the special case of the TPBVP
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smoother is

- 0 0, . 1-1 0 0 0 )
x(t) = [I + Pf(t)eb(t)] { [(Df(t,O)va + Pf(t)(pb(T't)F)\v]w Hb Yy

0 + 0, .0 + o+

+ [d>f(t,0)qu + Pf(t)(I)b(T,t)F)q]qf(T)
0 - 0 0 - -

+ [oge, 0+ ple)g (,0)F) Jap(0)
0 -

+ Pf(t)qb(t)

+ q;(t) . (4.3.44)

Thus, by working entirely within the scattering framework, we
have been able to derive a two-filter implementation of the TPBVP
smoother. WNote that this form of the solution as represented by
(4.3.44) shows that a change in the value of the covariance of either
the boundary value v, Hvr or the covariance of the error in the
boundary observation ry, I, is easily incorporated into the
solution simply by a change in the value of the matrix Fg in
(4.3.42). This is analogous to the methods for incorporating a change
in the value of the covariance of the initial condition for causal
process smoothers derived in [1] and [38]. BAgain, the solution in
(4.3.44) corresponds to the two-filter solution developed in Chapter 3
for the special case that the diagonalizing transformation i1s chosen to
be T(t) in (4.3.38).

As discussed earlier, alghough it has been derived from a
scattering perspective, the two-filter solution in (4.3.44) does not
lend itself to a simple pictorial description via a scattering
diagram. Recall that in order to construct a scattering picture for a
TPBVP (in this case the TPBVP smoother) it is required that the

partitioned matrix (see (4.3.16))

0 : T
vy = [vx : vy ] (4.3.45)

(or a transformed version as in (4.3.26)) be invertible. Substituting
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from (4.3.39), the untransformed matrix Vg for the smoother is

ef(O) 0
vV, = (4.3.46)

6 I
C

which is not in general invertible since 8£(0) is not necessarily
full rank. Thus, the smoother falls into Case 2 as defined earlier in
this section, and we must find a transformation which transforms Vg
as described in (4.3.26) so that the transformed version is
invertible. To obtain a transformed version which is invertible,
consider the transformations

6.(0) -1

Tb(O) = (4.3.47a)
eb(O) I

I
H

Tb(T) (4.3.47b)

where it happens that Tp(0) is the value of the Hamiltonian
diagonalizing transformation in (3.4.4a) at t = 0. Note that these
transformations have not been chosen by any constructive procedure.
They are merely one of many possible choices which result in a
transformed version of Vg which is invertible as described below.

Applying these transformations as indicated in (4.3.26a) and
(4.3.26b) with the inverse of TL(0) in (4.3.47a) given by

I I PS(O) 0

T;(O)‘ = , (4.3.48)
_eb(o) efw) 0 P_(0)

we find that the transformed version of (4.3.46) is

0_-1 : T
- [Vbe (0) i v, |

0: T
= [vx vy ]
I 0
= (4.3.49a)
6 p_(0) I
C s
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which is invertible with inverse

~ I 0
=1
VB = . (4.3.49b)
-9 P (0) I
c s

Substituting into (4.3.27b) for the special case of the smoother and
with the transformations given by (4.3.47a) and 4.3.47b), the matrices
in (4.3.27c) can be shown to be

M_ I 0
) = (4.3.50a)
M, -0 p (0) I
vV C S
and
-0 .
M M ) - : 0
- ~ Tl - - - - - -3 - - - « (4.3.50b)
8 g - 8 : -6
ka MA cPS(O) . b(T) : cPS(O)

Finally, substituting the partitions of (4.3.50a) and (4.3.50b) into
the scattering picture in (4.3.7) gives a scattering picture for the

TPBVP smoother.
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APPENDIX 4A

DIFFERENTIAL EQUATIONS FOR ELEMENTS OF THE SCATTERING MATRIX
AND INPUT SOURCES

In this appendix we derive final value differential equations which can
be solved backwards to obtain elements of the scattering matrix S(T,t) and
input source q(T,t). Following the same procedures taken here, one can derive
the initial value differential equations for S(t,0) and q(t,0) in (4.3.11) and
(4.3.13)., The notation used in this appendix has been defined previously in
Section 4.3.3.

The differential equation for S(T,t) will be obtained from the limit

(overdot implies differentiation with respect to t)

S(T,t) = lim s(t,t) - s(nt - 4) (4.A.1)

A >0 A

We start by formulating an expression for S(T,t-4) as follows. Consider the

scattering picture in Figure 4.A.1. The cascade of layers depicted there is

x(t)
x(t-0t) — —x(T)
S(t,t - 4) S(T,t)

a(t,t - 4) a(T,t)
At=-At)¢— | l«——— A(T)
A(t)

Figure 4.A.1 Scattering Picture for S(T,t-A)

is computed by the star product operation as
S(Trt - A) = S(Trt) * S(tlt - A) (4.A.23)
with source given by the assembly sum

q.(Trt - A) = q(T,t) (o} q(t:t - A) . (4.A-2b)
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To obtain an expression for the infinitesimal layer S(t,t-A) consider the

approximations of the the derivatives in (4.3.6a):

x(t) = x(t-8) + A[Ax(t)x(t) + A S(RME) + Bx(t)u(t)] + 0(A?) (4.A.3a)

and

M=) = A(t) - Ala, (t)x(t) + AA(t)A(t) + BA(t)u(t)] + 0(A%) ., (4.A.3b)

Ax

If we replace x(t) in the right hand side of each of these expressions by

x(t) = bk(t) + x(t-2) + o(a%) (4.A.3¢c)
then to order A we can write

B A A ] A
x(t) I + AX Axk x(t-4) Bx

- - - - = - + u(t)d + o(8?) (4.A.4a)
A(t-0) AL TS A,A A(t) =B,

which is the scattering representation we seek:

x(t) | x(t-0)] )
= S(t,t-4) + q(t,t=8) + o(8%) . (4.A.4b)

A(t-D) A(t)

If we denote the partitions of S(T,t) by

S
S« XA

S(Tlt) = ’ (4.A053.)
SAX SA

then with the expression for S(t,t-4) in (4.A.4a) the star product in (4.A.2a)

can be shown to be given by

S(T,t-4A) = (4.A.5b)

-1 -1
- A A : -

SX[I A )8 7'+ a b P Syt SxAxA[I S) B, 0 s 0

AL A4 (T -ays, [1-a,5, 8" (T+ad i-nanr-s,a a]s

Ax AT Ak x A7 Ax x A X 7x A A
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Substituting (4.A.5a) and (4.A.5b) into (4.A.1) and employing the
approximation
[1 -ma]™" =1+ Mo (4.3.6)

for each of the inverses in (4.A.5a), it can be shown that the elements of

S(T,t) are governed by

s_(T,t) = -sx(r,t)[Ax(t) + Ax)\(t)s)q:(T't)] S (1,1 =1  (4.A.7a)
Sx)\(T't) = _sx(T't)AxA(t)SA( T,t) "le( T,T) = 0 (4.A.7b)
SAX(T’t) = A&t)SAX(T’t) - S)\X(T't)A}((t) - S)\X(T,t)AXA(t)S)\X(T't) + A)X(t)

;S, (T, T) = 0 (4.A.7c)
Ax

and

S,(T,t) = [Ax(t’ - S}\X(T,t)AxA(t)] i$,(T,T) = I . (4.A.7d)

Similarly, denoting the partitions of q(T,t) by

gt(T,t)

q(T,t) = (4.A.8)
q_( Tlt)

and computing the assembly sum in (4.A.2b) with g(t,t-A) as in (4.A.4a), it

can be shown that

-1
. - A A A
I: [I A 8), "1+ A DA,
+ |- =t = = - - - - - - - - lq(T,t) .  (4.n.9)
-1
o i (I - ay0) [1 - SAXAX)‘A]
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Differential equations for the partitions of the source are found by taking

the limit
q(T,t) = 1lim alt,t) - a(tt - 4) , (4.A.10)
A >0 A

yielding

.t - +

q (t,t) = -a_,(t)g (7, t) = B_(t)u(t) ;g (T, T) = 0 (4.A.11a)

X X
G (rt) = [aye) - s, (nea 0 T (ne) + [s, (1,68 (£) + B(t) Jat)

For the case of a TPBVP defined on the interval [0,T], these differential
equations could be initialized at T = T and solved backwards to t = 0. This
would provide the variables required in the two-filter form of the solution in

(4.3.21).
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CHAPTER 5: DISCRETE PARAMETER BOUNDARY VALUE STOCHASTIC PROCESSES

SECTION 5.1
INTRODUCTION

The class of discrete parameter linear two-point boundary value
processes that we study in this chapter was previously introduced as an
example in Chapter 2 to illustrate linear estimation by the method of
complementary models. In that earlier chapter the dynamics, boundary
condition and measurements were defined, and the difference equation and
boundary condition for the smoother were established. 1In this chapter we
review the discrete TPBVP model description, study the properties of its
solution, formulate recursions for computing its covariance matrix, and
develop a two-filter implementation for its smoother. For ease of reference,
some of the material previously introduced in Chapter 2 to describe the 1-D
discrete TPBVP and its smoother is repeated in this chapter.

The material in this chapter for the discrete TPBVP parallels that of
Chapter 3 for the continuous parameter TPBVP. We begin by presenting the
dynamics and boundary condition for the nth order discrete stochastic TPBVP
and then derive a forward/backward form of the general solution. Employing
this form of the general solution, we develop matrix difference equations
which are used to compute the process covariance. We saw earlier in Chapter
2 that the Green's identity is a critical element in the specification of the
differential realization of our estimator. In this chapter we derive the
Green's identity for this model which we had stated and used in Chapter 2 in
defining the smoother.

Given Green's identity, we showed in Chapter 2 that the smoother for an
nth order descrete TPBVP is a 2nth order boundary value problem. In the
continuous parameter case we found in Chapter 3 that a numerically stable
implementation of the smoother could be obtained by diagonalizing the smoother

dynamics into an nth order forward process and an nth order backward
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process. In this chapter we investigate this type of dynamical decoupling for
the discrete process smoother from two points of view: one is based on the
so-called descriptor representation [35] for the smoother dynamics and the
other has its foundations in the scattering framework introduced in Chapter

4,

We will find that the derivation of a diagonal or decoupled
representation for this discrete process smoother is somewhat more complex
than the corresponding derivation for the continuous case presented in
Appendix 3B. The two cases differ in that the smoother dynamics for the
continuous case are in the standard state-space form, and consequently, the
entire class of equivalent dynamical representations (including the decoupled
form) can be obtained through an equivalence transformation of the underlying
process. On the other hand, the dynamics for the discrete process smoother
are not in state-space form but are in descriptor form as mentioned above. As
we will see, the specification of the complete class of equivalent dynamical
representations for the descriptor form requires an equivalence transformation
of the underlying process along with one other transformation which is applied
directly to the difference equation. Nevertheless, we will find that an
equivalence transformation similar in form to the one used to obtain a
diagonal representation for the continuous case is applicable in the dynamical

decoupling for the discrete case as well.
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SECTION 5.2
1-D DISCRETE LINEAR STOCHASTIC TPBVP

5.2.1 The Model

In this section we repeat the description of the model for the 1-D
discrete linear stochastic TPBVP which was introduced earlier in Chapter 2 as
an example. Let uy be an mX1 white sequence on [0,K-1] with covariance
matrix Q. Let Ap and Bg be sequences of n*n and n*m matrices
respectively on [0,K-1]. Let V be an nX2n matrix written in n>*n partitions as
[VO : VK], and let v be an nX! random vector uncorrelated with u and with

covariance matrix I[,. Then the discrete TPBVP satisfies the difference

equation:

e T A%t B » (5.2.1a)

with two-point boundary condition

0 K

The differential realization of the smoother developed in Chapter 2
requires an operator representation of the process dynamics and boundary
condition. Here we repeat the operator description given earlier in Chapter
2. Let the set of points between 0 and K-1 be represented by 91 = [0,K-11,
and let the the boundary of this region be defined as 9% = {o0,k}. with D
representing the unit delay, the dynamics of the nX1 vector process are given

by the first order difference operator:
n n
: 2 o8 > Q
L 12( 1 u 1) 12( 1)
defined notationally as
-1
L=(D I-2)

and operationally as

(Lx)k = xk+1 - ﬁ(){k . (502.23.)
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Viewing the matrix V as the operator

V: R > R 2 (5.2.2b)

the dynamics and boundary condition in (5.2.1a) and (5.2.1b) can be expressed

as
Lx = Bu (5.2.3a)
vx =V (5.2.3b)

where

*o0

b
Xx

o
I

(5.2.3c)

5.2.2 The General Solution

The general solution for (5.2.1a) with boundary condition (5.2.1b) is
derived in much the same manner as the general solution for the continuous
parameter TPBVP in Chapter 3. That is, we start by defining x0 as the

solution to (5.2.1a) with a known zero initial condition:
0 i ®(k, §+1)B.u (5.2.5)
x - 33

where ® is the transition matrix which can be computed by the recursion

o(k+1,3) = Ak¢(k.j) ; ®(3,3) =1 . (5.2.6)

Next, note that the solution for x given the initial value Xy can be written

in terms of x0 in (5.2.5) as

0
xk = Q(k,O)xO + Xk . (5‘2-7)

If we substitute for xg from (5.2.7) evaluated at k = K into the boundary
condition in (5.2.1b), then an expression for X9 can be found in terms of

0
the boundary value v and xx at the endpoint k = K as

Xy = F_1[v - VKxg] (5.2.8a)

where the n*n matrix F is given by1

F=v + vo(x,0) . (5.2.8b)

1 As in the continuous case, invertibility of the matrix F is the
well-posedness condition for the boundary value problem in (2.1a) and (2.1b).
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Combining (5.2.7) and (5.2.8a) gives an expression for the general solution as

-1 KO
X = o(k,0)F [v - Vix,

0

k L] (5.2.9)

]+ x

Just as in the continuous case, there will be systems for which the
dynamics in (5.2.1a) are not stable, and consequently, the implementation of
the general solution in (5.2.9) will be susceptible to numerical error buildup
for large intervals [0,K]. These numerical errors can be avoided if we can

find an equivalence transformation of the type

x| -
b,k

Tkxk (5.2.10a)

which decouples the dynamics in (5.2.%a) as

= A + B o2
e ke £,k°F,k £,k k (5.2.10b)

and

= A + B o2
5,k = b,k b, k+1 b,k k (5.2.10c)

in such a way that Ag is forward stable and Ay is backward stable. The
construction of such a decoupling transformation for the smoother dynamics is
the subject of Sections 5.3.2 and 5.3.3 of this chapter. Under a

transformation as in (5.2.10a), the boundary condition in (5.2.4b) takes the

form
0 01])x K K1lx
v = [vf. vb] £,0| + [vf. vb] £,K (5.2.10d)
*b, 0 *p, K
where
0 .07 _.0 -1 K K7 _.K =1
[vf. vb] =voT, and [vf vb] =V T, . (5.2.10e)

Employing this forward/backward representation of the TPBVP, we can
derive an alternative to the general solution in (5.2.9). In particular,

0
as the solution to (5.2.10b) with zero intitial condition and x

define x b, k

0
f,k
as the solution to (5.2.10c) with a zero final condition. With ¢f the
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transition matrix associated with Af and with &, the transition matrix

associated with Ay, define

Qf(k,O) : 0

and

K 0 K
+ V8(K,0) & V@ (0,K) + V] . (5.2.11b)

P = [v°
b b

fb £

Then, in a derivation similar to that used to obtain (5.2.9), it can be shown

that the solution to (5.2.10) is given by

£,k

-1 K O 00 X
= @ - - . 3 .
% fb(k)Ffb{v fof,K Vbxb,O} + f,k (5.2.11¢)
b,k x0
b,k

Applying the inverse of the transformation in (5.2.10a), the original process
Xk 1s recoverd by
b
-1
x =T xf'k . (5.2.114)
b,k

In this way, we have have constructed a stable, forward/backward two-filter
recursive implementation of the general solution for the model in (5.2.1a) and

(5.2.1b).

The Green's Function Form

Traditionally, solutions for two-point boundary value problems are given
in the Green's function form. The Green's function form of the general
solution for our discrete TPBVP can be found from (5.2.9) by combining the
summation expressions for xo and xo. In particular, with the discrete

k K
Green's function given by

[1 - ok, 00F v o(x,x) Jock, 5+1)B, 5 0 < 3 < k-1
G(k,3) = { ] , (5.2.12a)

_<I>(k,0)F-1VK<I>(k,j+1)Bj ik <3 < K1
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the general solution for (5.2.4a) and (5.2.4b) can be shown to be

K-1
-1
= @ k,o F G k,. . . 502.12b
X, (k,0)F v + ) G( 3)uy ( )

=0
If the Ay are invertible at each point in [0,K-1], then the discrete Green's
function G in (5.2.12a) can be put into a form which parallels that of the
continuous case as given in [17]. Specifically, under this invertibility
condition the term in brackets in (5.2.12a) can be written as
-1_K -1 =1 K
[1 - ®(k,0)F Vv &(K,k)] = &k,0)F [F® (k,0) - V &K,k) ]
-1.0,.-1
= &(k,0)F Vv & (k,0) . (5.2.13a)

Substituting this expression back into (5.2.12a), the top term becomes
. -1.0 . .
G(k,3) = ¥(k,0)F Vv <I>(o,3+1)13j i 0 <3 < k-1 . (5.2.13b)

This term plus the term for k<j<K-1 in (5.2.12a) gives a discrete Green's
function which is in a form similar to that of the Green's function for the

continuous case as given in [17].

5.2.3 Process Variance

It will be shown later in Section 3 of this chapter that the smoothing
error dynamics can be transformed to the forward/backward form of equation
(5.2.10). 1In this subsection we present equations which allow us to compute
the covariance matrix for processes represented in that dynamically decoupled
form. Our starting point is the expression for the general solution in
(5.2.11c). Recall that the boundary value v is orthogonal to up throughout
[0,K-1]. Thus, v is also orthogonal to each of the xg and xg terms in that
expression for the general solution. With this in mind, it is straightforward

to see that the covariance of xy can be written as a linear combination of

I[,, the covariance of v, and the following three covariances:

0 _ .0 o0,

(1) P (n,k) = E[xf'nxf’k] , (5.2.14a)
0 _ 10 o0,

(2) P, (n,k) = E[xb’nxb’k] (5.2.14b)
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and

0 o o,
(3) P {n/k) E[xf,nxb,k] . (5.2.14c)

Difference equations are established for each of these three covariances in
Appendix 6A for a general multi-point boundary condition (of which this
two-point condition is a special case). These difference equations are
derived by substituting the summation representations for

0 0
X %nd x ée.g. see (5.2.5)) into each of the expectations in (5.2.14). From
that appendix, we have that:

0 0
(1) Pf(n,k) = Qf(n,k)Pf(k,k) (5.2.15a)
where
Po(k+1 k+1) = &_(k+1 k)Po(k k) ®'(k+1,k) + B_ . Q B' ; PO(O 0) =0 (5.2.15b)
£ ! T F ’ £ f ! £,k%%k £,k ' £ ! - i
(2 22(n,k) = P°(k, k)@ (k,n) (5.2.163)
b n, - b 4 b 2 el e a
where
PO (k=1,k-1) = & (k=1,K)P°(k,k) &' (k=1,k) + B. . O B' . 3 PO(K,K) = 0 (5.2.16b)
b ! T b ! b’ b ' b,k*k b,k ' b’ - i

and (3) for n > k

0 0 0
=1 o - ¢ Il 2
be(nlk) fb,l’l b(kln) f(nlk) fb,k (5 2 17a)
where
1° = 6_(k+1,K)I0. @' (k+1,k) + B, 0B _ ; I° =0 . (5.2.17b)
fb,k+1 £ ! fb,k b ! f,k*k b,k ' fb,0
For n S_k,
P0 (n,k) =0 (5.2.17¢c)
b n, = . .2.17C
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Given these three covariances, the covariance of x:

= 1
Pk E[xkxk]
= m X ' R =1
T {E[*¢,x [xf'k.xb'k]}Tk (5.2.18a)
*p,k
can be written as
POk, k); O
R -1 _1| = = ' ____: - - - -1
P = T, {Qfék)Ffbﬂvabéfék) + E(k) + E(k)' + O(k) + - }Tk
0 EPb(k,k)
(5.2.18b)
where
- -1 K- 0 0 0 0! 0
E(k) = -¢fék)Ffb{Vf[Pf(K,k) + PféK,k)] + Vb[Pfék,O) + pb(o,k)]} (5.2.18c)
and
B 1]
P2k, k) : pO(x,0)]]vE
_1[1( O] f : fb f
=0 : - - - - = - []- - . 2.
O(k) eGP, Lvpev : (5.2.18d)

Ol

: 0
PféK,O) : Pb(0,0) vb

Thus, the covariance of the brocess xp can be computed for any point k given
the solution of the three matrix difference equations (5.,2.15), (5.2.16) and
(5.2.17).

5.2.4 Green's Identity

When the 1-D discrete TPBVP was introduced in Chapter 2, it was stated
that the Green's identity for discrete processes could be obtained from

summation by parts of the inner product2

K-1
<Y,Lx> = ) Y (LX)
13[0,K-1] k=0
K-1
= Y Y(x -Aax) . (5.2.19)

k=0 kT k+1 k 'k

The reason for using Y instead of A, as we have used in earlier discussions
of Green's identity, will be made clear shortly.
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Summation by parts can be interpreted as the counterpart of integration by

parts as follows:

Integration by Parts Summation by Parts

T T T K-1 K-1

fudv = uVL - fvdu z uk+1(vk+1- vk) = (ukvk— uovo) - z vk(uk+1- uk)
0 0 k=0 k=0 (5.2.2)

The term on the right hand side of the identity for summation by parts in
(5.2.20) has been obtained simply by shifting the index of summation on the
left hand side and adding (uyvyx-ugvg) to account for the shift. To

put (5.2.19) into the form of (5.2.20), we perform the same type of index

shifting to write

K-1 K-1
- A ] = ' - - ! + ! . ol
Lo, k) Ve zxk”{k-1 R R A (5.2.21)
k=0 k=0
Defining
1-
L =DI - A', (5.2.22a)
X, = . , Yb = YK_1 and E = o I . (5.2.22¢,4,e)

Green's identity can be written directly form (5.2.21) as

.f
<Lx, Y> = <L Y,x> + <xb,EYb>

n n (5.2.23)
12[0,K—1] 12[0,K—1] R

2n

We have used Y here in deriving Green's identity rather than XA because,
as we will see later (and as we saw earlier in Chapter 2), the smoother can be
expressed in a simpler form if written in terms of a shifted version of Y,

which we denote by A:

A. = ...A'—' . el
- Yk (i.e DY) (5.2.24a)
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In terms of the shifted process A, Y, is given by

A
o=y =)0 i (5.2.24b)

Given Green's identity as expressed in (5.2.22a) through (5.2.23), in the next

section we establish an internal difference realization of the smoother for

the 1-D discrete TPBVP.
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SECTION 5.3

THE SMOOTHER AND TWO-FILTER IMPLEMENATION

5.3.1 The Smoother and Smoothing Error

The observations for the discrete 1-D fixed-interval smoothing problem
have been described earlier when we introduced the 1-D discrete problem as an
example in Chapter 2. For convenience, we repeat that description here. Let
Cx be a p*n matrix on [0,K-1], and let W be a full rank g*2n matrix with
g<n, with the rows of W linearly independent of those of V in (2.3) and with

g*n partitions:

w=[w W] . (5.3.1)

Let ry be a pX1 white noise process over [0,K-1] whose covariance matrix
Ry 1s nonsingular on [0,K-1]. Let rp be a g%X1 random vector with
nonsingular covariance matrix Il,. In addition, u, v, r and r, are assumed

to be mutually orthogonal. The observations are defined by a process Yk

Yk = Ckxk + rk on [0,K-1] (5.3.2a)

and a g*X1 boundary observation

vy = be + rb . (5.3.2b)

The minimum variance estimator of x given the observations y and Yp can
be written by substituting the notation defined in this chapter into the
operator form for the estimator in (2.5.25). 1In this case, the adjoints of B,
C, W and V are all simply given by matrix transpositions. The formal adjoint
difference operator Lt, the matrix E, and Xp and Y, (temporarily Y will
be used in place of A) have all been determined in the derivation of Green's
identity and are given in (5.2.22a) through (5.2.22d). The resulting smoother

dynamics are given by

- L}
S B BBl [ *x 0
R = - —-1— .:— - - R <+ - :1 yk (5.3.3&)
N . t '
Y1 xR Okt A Y CxRx
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with boundary condition

- PN

-1 =1 -1 X Y
LI = v LI} - .3,
Wiy = [wiCw + v IV Yo + [ -1 (5.3.3b)
X Yk-1

As mentioned earlier, it will be convenient to write the smoother in
terms of the shifted process A defined in (5.2.24). 1In this way the apparent
four-point boundary condition in (5.3.3b) becomes a two-point boundary
condition. Furthermore, when we specialize to the case of causal processes as
in the example in Section 2.6.2, the smoother takes the traditional form of
the discrete fixed-interval smoother (see e.g. [33]). Thus, in terms of A and

M (5.3.3a) and (5.3.3b) become

A ~

- |
k41 By POB%Bx | 1*x 0
X = - - - - - -], N CEE (5.3.4a)
-1 . -1
A - v ]
K CkRx x Ay K1 xRk
and
] ] - 1 - ] - [} - "
w0 =1 v0H1v0+w0H1w0 -If]x V0H1VK+WOH1WK 0 {|x
ﬂb Yyp= o v_ __ b ol L. v_o _ - b 7 [Tk
1 1 - 1 -— 1 - 1
WK K0 1 o 0 o 1A KTV L W e 1
v b 0 v b K

(5.3.4b)

In the next two subsections we investigate methods for decoupling (5.3.4a)
into a forward/backward two-filter form similar to that obtained in Chapter 3
for the continuous case.

The smoothing error dynamics and boundary condition are defined by the
operator equations (2.5.36) and (2.5.33). When written in terms of the

shifted variable A, these equations become

- - - - - - + - - - (5.3.5a)

190



with boundary condition

] - ] — ] — 1 -
vo Il 1vO + WO Il 1WO: -I X V0 I 1vK + wo IL 1WK: 0 X
v = |- Vo_ _ _ b o + v b Xt (5.3.50)
v _ " = T ~ Ter T 1T T % Tq4o%T T ~ e e
e VKH1V0+W H1W0:0 -A VKH1VK+WKH1WK: Il|-A
b o] v b K
where
1 1 -—
V0 : —WO HV1 : 0 v
vy = |- i = - - - - (5.3.5¢c)
K! K! -1
. - . I
vV : =W 0 b rb

The same techniques that we develop for decoupling the estimator dynamics in
(5.3.4a) can also be applied to decouple the error dynamics in (5.3.5a).
Given this decoupled form, the error covariance can be computed via the matrix

recursions formulated in the previous subsection.

5.3.2 Decoupling via The Descriptor Representation

Descriptor Form Representations

The first of the two approaches which we investigate for decoupling the
smoother dynamics is based on the smoother dynamics written in the so-called
descriptor [35] or generalized state-space [44] form. In this subsection we
introduce this dynamical representation and discuss the class of equivalent
representations for dynamics which are written in this form. Eventually, we
will show that one such equivalent representation of the smoother dynamics is
the decoupled form we seek.

Consider an nX1 vector process X, whose dynamics are governed by1

H1,kxk+1 = H2,kxk + Gkuk (5.3.6)

where uy is’an m*1 input, Gk is an n*m matrix and Hq yx and Hy x are
n*n matrices neither of which is necessarily invertible. Therefore, (5.3.6)
cannot in general be reduced to the standard state-space form by

premultiplying by the inverse of either H; or Hy.

L In this subsection x and u will be used to represent a generic internal

state process and input process, respectively.
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Next we consider the class of dynamical representations which are
equivalent to (5.3.6). The form of equivalent representation we present below
can be inferred from Luenberger's study of descriptor forms in [35]. 1In
particular, consider the following equivalence transformation defining the

transformed process q:

q =T x (5.3.7a)

where Ty is invertible for all k of interest. Under this transformation,
the dynamics in (5.3.6) become

-1
By kT 1Tk

-1
= H2,ka q + Gu . (5.3.7b)

However, unlike the case for standard state-space representations, this
transformation does not lead to the most general equivalent representation for
(5.3.6). To see this, consider premultiplying (5.3.7b) by an n>*n matrix Fy
which is invertible for all k. This results in an equivalent descriptor form

representation of the system in (5.3.6) of the following general form:

~ ~ ~

" = H * G 5.3.
1,k k41 2,k% T Y% (5.3.8a)
where

. - FH T (5.3.8b)

1,k "k 1,k k+1 ' .3.

" -FH T (5.3.8¢)

2Ik - k 2,k k «Je0OC
and

= R . (5.3.8d)

k k k

In the next section we determine the matrix sequences Fy and Ty which

transform the TPBVP smoother dynamics into the desired decoupled form.
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The Smoother in Descriptor Form

The smoother dynamics can be written in descriptor form by a simple

rearrangement of the terms in (5.3.4a):

* - 1
I :-B. QB ||x A

-1
A ! :
ckRk Ck

I

A

+

0

-C'R

-1

k k

Yy

(5.3.9a)

or identifying this representation with the notation of the previous section:

A

»

k + G

2,k kY

>

k

(5.3.9)

In order to decouple (5.3.9a) into forward and backward recursions, we must

find sequences Fy and Ty which transform (5.3.9a) into the form

I 0

0

qf,k+1

By, x|, k+1

Af,k

0

so that gf satisfies a forward recursion

De k4

= B
Be e,k * Be,

and gy, satisfies a backward recursion

q

= A
b,k b,k b, k+1

- B
b, kY k

More specifically, we seek F) and Tx where

¢ x
9p, x
B x
= F
5 k
b,k
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(5.3.10a)

(5.3.10b)

(5.3.10c)

(5.3.11a)

(5.3.11b)



and such that the dynamics are decoupled:

® - 1
T BBl T 0
F - - T 2 = (5.3.11¢)
k 0 . —ar k+1 0 A
: k b,k
P 1O Pex ©
Fk - - 1— f- - Tk = . (5-3.11d)
1 H
CkRk Ck. I 0 I

The relations which define Fyp and Ty are derived from the decoupling

constraints in (5.3.11c) and (5.3.11d) as follows. Denote the partitions of F

and T by
F?1 Ffz T?1 T?z
Fk = Xk " and Tk = " K . (5.3.12)
Fo Fao To1 T

Postmultiplying (5.3.11c) by Tg4q and (5.3.11d) by Tx and then working
through the algebra, it can be shown that the partitions of Fp, T) and

Tr4+1 satisfy the following eight relations:

k+1  _k+1 . k
T12 = T11 BkaBk + Af,kTuAk (5.3.13a)
A Tk+1 = -A Tk+1B QO B' + Tk ! (5.3.13b)
b,k 22 b,k 21 k%% k 22Ak
k k+1 k =1
= ' . .
T21 Ab'kT21 Ak + T22CkRk ck (5.3.13c)
k k+1 k -1
- L]
Af’kT” = T11 Ak + Af,kT12CkRk Ck (5.3.13d)
k k+1
i1 = Ty (5.3.13e)
k k
F12 = Af,kT12 (5.3.13f)
k k+1
F21 = Ab,kT21 (5.3.13qg)
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and
F =T . (5.3.13h)

Of course, these equations define the entire class of decoupling
transformations, and are functions of some desired forward and backward
dynamics Ag and Ap. As we had done in the continuous case in Chapter 3,
we can find stable Ag and Ap by recalling a known stable forward/backward
two-filter form of the smoother for the causal case. In particular, if we

choose two of the partitions of T to be constant:

k k+1
Tk = Tk+1 =1I (5.3.14b)
22 22 *0e

and denote the varying partitions by

k
ef k = T11 (5.3.14c¢)
7
and
k
%, x = To ’ (5.3.14d)
14

then it can be shown by substituting these values into the eight equations in
(5.3.13) that

-1 -1 -1
6 = 3] 1 ' ' .3,
£, k+1 [Ak( £,k T SRy Cpd B * BkaBk] (5.3.15a)

1

-1 -
= e ' L) L]
£,% ef'k+1Ak( £,k + CkRk Ck) (5.3.15b)

D
I

-1 -1
] e (] e 1 3.
BT+ 0 e tPr2B) %,k T SRk Ok (5.3.16a)

i
I

-1
. e y . L]
b,k = Pk F O k1B By) (5.3.16b)
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k
= e L ] L ]
F11 £, K+ (5.3.17a)

F12 = _Af,k (5.3.17b)

-— e L]
21 = Pb,kx b, k+1 (5.3.17¢c)

and

F =1 - (5.3-17d)

Substituting for Fp from (5.3.17) into (5.3.11b), we have for this special
case that

1 -1
5] 6 ' '
£,k £x012k O,k SR S SRk

- - = - - = - = = - - = = . (5.3.18)

-1
el |
Bh,k xR

In summary, with Tp given by (5.3.14) and Fyp as in (5.3.17), the

transformed smoother process is given by

A

e, x £,k k
= ~ (5.3.19a)

6 A

9y, x b,k I k

with dynamics

= A + B .3.
£,x%f, x £,k (5.3.19b)

Yy

qf,k+1 k

q. Y. (5.3.19c)

- B
q b, k+1 b,k k

= A
b,k b,k

where Ag, Ap, 9¢, ©,, Bf and By, are defined in (5.3.15), (5.3.16)
and (5.3.18).

The boundary conditions for the forward and backward processes are
obtained by applying the transformation (5.3.19a) to the smoother boundary
condition (5.3.4b). If we rewrite (5.3.4b) exactly as we had done for the

boundary condition in the continuous case (see (3.4.8a)), il.e.

~ - A

-1 0 |x X
V1 =
WLy = Vsl of o+ Vik R . (5.3.20)
A A
0 K
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Then with

0 0o -1

Vq = Vx}\TO (5.3.217a)
and

K K -1

Vq = V’x)\TK ’ (5.3.21b)

the coupled boundary condition for gf and qp is

_ q q
- 1Y _ PO Eo] , X|TEK

] ] . (5.3.21C)
r 1

Again, following the development of the boundary condition for the
continuous case, we choose the boundary conditions for the recursions for Gf

and 9, in (5.3.15a) and (5.3.16a) as

o' -1.0 o' -1.0
e = I[ W H . L]
£,0 v 3 vV o+ L W (5.3.22a)
K' -1 ' -1 K
e = H H W Y . .
b, K \Y 3 V + W L (5.3.22b)
Also define
vo- ' =10
0 = VK Il 1v0 + WK I w (5.3.22c)
c v b
and
-1
= e e . ] .
P. X ( _— b'k) (5.3.22d)

v.o=[v.: vg ] (5.3.23a)

where it can be shown that

I 0
o |- - - o |- - -
Ve = lop ' Ve = |ep (5.3.23b)
c s,0 c s,0
and
K K K
vy = [ ve v, ] (5.3.24a)
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where one can show that

K e<l:Ps,K K e<':Ps,K
ve = |-"="= v, = |- ='= . (5.3.24b)
0 I

In summary, the discrete smoother is implemented in a two-filter form by
solving for the dynamically decoupled forward and backward processes df and
dp as described by the general solution in (5.2.11c). Note that the
boundary condition for gf and qp required by that solution is given by
(5.3.21c). In order to compute that general solution and in order to invert
the transformation in (5.3.19a) to obtain the smoothed estimate from the
computed values for gf and qj,, we must also solve the Riccati equations in
(5.3.15a) and (5.3.16a) for 9 and 6, and compute the transition matrices
for Af and Ay in (5.3.15b) and (5.3.16b). Each of these latter

computations can be performed off-line.

The Smoothing Error

The smoothing error dynamics in (5.3.5a) can be put into a descriptor
form which is similar to that for the smoother dynamics (5.3.9a). With the
error dynamics in descriptor form, the same transformations (T and Fy)
described in (5.3.14) through (5.3.18) which were used to decouple the
smoother dynamics (see (5.3.19) can also be applied to decouple the error
dynamics. Of course, these same transformations would also be applied to the
smoothing error boundary condition in (5.3.5b). Given this decoupled form for
the error dynamics, the smoothing error covariance can be computed via the
matrix difference equations in (5.2.14) through (5.2.18). 1In particular, with
8¢ and eb satisfying the dynamics in (5.3.15a) and (5.3.16a) and boundary

conditions in (5.3.22a) and (5.3.22b), define the transformed error process by

3] -
®f,x £,k I *

= ~ . (503025)

6 Y
®h, k b,k I %

The dynamics of ef and ep are decoupled in precisely the same way as the

transformed smoother in (5.3.19b) and (5.3.19c). Performing the algebra, it
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is readily shown that transformed error processes ef and ep satisfy
=1
= e ' ! eJ e
®f,k+1 - PE,k%Ek T OUE ke Bk % Y AR Tk (5.3.26a)

and

e +

-1
- ]
CkRj( rk . (5-3.26b)

= 6
b,k - ,k%b,k+1 T Pb,k b,k+1 k%

The two-point boundary condition in (5.2.29) is transformed to

v_ = [vg:vg] :f'o + [vl;:vlé] :f’K (5.3.27)
b,0 b,K

where the coefficient matrices are the same as those found in the smoother

boundary condition in (5.3.23) and (5.3.24).

Thus, by working with the descriptor form representation for the smoother
and smoothing error equations we have been able to parallel all of the
decoupling operations that were carried out for the continuous case in Chapter
3. Although decoupling the discrete smoother dynamics in descriptor form
requires not only an equivalence transformation (which was sufficient for
decoupling in the continuous case) but also the transformation Fp in
(5.3.17) which operates directly on the dynamics as described by (5.3.8b) and
(5.3.8c), the resulting two-filter smoother solution and filter error
covariance computations are nearly identical in form to their continuous
counterparts. In the next section we consider an alternative representation
for the smoother, namely the scattering form, and show that the decoupling can

also be achieved from that point of view.

5.3.3 Decoupling via Scattering

Both the smoother and the smoothing error dynamics as written in (5.3.4a)
and (5.3.5a) are in the scattering form described by (4.3.1). In the case of
the smoother (smoothing *error) the forward2 moving process 1is

x (x) and the backward moving process is A (-A). Thus, an alternative to

investigating the dynamical decoupling in the descriptor form as we have

2 In keeping with the forward/backward terminology, we will use
forward and backward instead of leftward and rightward.

19¢



done in the previous section i1s to investigate the decoupling within the
scattering framework. To this end, we begin this section by discussing
equivalence transformations and show that they can be represented as identity
layers in the scattering framework. Given this representation, we illustrate
how these transformations can be employed to achieve the desired dynamical
decoupling of the forward and backward processes. We note that in contrast to
our investigation of the scattering representation for the continuous TPBVP
smoother, we do not seek to derive a scattering picture for the discrete
process smoother. Rather, our intent here is to study equivalence
transformations from a scattering point of view. Nevertheless, one could
follow the same developements as those used to obtain a scattering diagram in
the continuous case in Section 4.3 to formulate a scattering diagram for the

discrete smoother as well.

Equivalence Transformations as Scattering Layers

Consider a process with dynamics written in the scattering form as

X X
S = moo[LE |+ e (5.3.28)

k k+1
where H(k) 1s the scattering matrix and p{k) is the input source. As
discussed previously in Chapter 4, the scattering picture for (5.3.28) is

depicted as in Figure 5.3.1.

k H(k) k+1

o(k)
et — A

Figure 5.3.1. Scattering Picture for (5.3.28)

Next, consider an equivalence transformation of the form

g x
Teki T, Ak (5.3.29)
92,x x

(i.e. Ty is invertible for all k of interest). A scattering representation
for the transformation in (5.3.29) is developed as follows. Since the input

to (5.3.29) is {xk,Ak}’and the output is {q1’k,q2,k}, the
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transformation must be represented as a cascade of scattering layers as
pictured in Figure 5.3.2. The issue now is to express S(k) in Figure 5.3.2 in

terms of T(k). As a first

Identity Layer

Figure 5.3.2. Scattering Picture for the Equivalence Transformation (5.3.29)

step, note that the scattering matrix S=1(k) in the figure is simply the

matrix inverse of S(k), i.e.

q X
A1'k = st)| " (5.3.30a)
q
k 2,k
and inverting
X _ q
92,k k

In each of (5.3.30a) and (5.3.30b) the sources are zero. Thus the cascaded
action of S(k) and S~1(k) is an identity layer as indicated in the figure.

If we denote partitions of Ty by

T T
T = | . . (5.3.31a)
T21 T22

and following the notation introduced in Chapter 4 denote the partitions of

S(k) by

S (k) S_(k)
s(k) = | B B , (5.3.31b)

sc(k) SD(k)
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then from (5.3.29), (5.3.30a) and (5.3.30b),

algebra (also see Redheffer [43]) that T, S and S~1 are related by

-1 -1
S,(k) = s_(k)S_(k)S (k); S (k)S ' (k)

Tk=—-1-_____.-_1__ '
-SD (k)SC(k) : SD (k)
-1 -1]
k' k k k
Tir = TyaTon Tori TioTo)
s(k) = |- - -, - - - - - -
21 =1
k : k
“Toa To Too
and
[ -1
k
» s i T Tg
S I R T I .
k kK k
To1T1n '(T21T11 12 ¥ Tzz)

To determine the effect of an equivalence transformation on the

scattering dynamics,

5.3.3a.

it can be shown after some

(5.3.32a)

(5.3.32b)

{(5.3.32c)

consider the cascade of layers depicted in Figure

By inserting an identity layer of the type depicted in Figure 5.3.2

between each of the layers in Figure 5.3.3a, we get the "equivalent" layers

shown in Figure 5.3.3b.

which was previously

X
k
ot Koy ™ H(k-1) Hk) [ Fk+1 °
) pk-1) | p(k) N
e e A~ )j( k+1 °

Figure 5.3.3a. Untransformed Cascade of H(k) and H(k-1)
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*k-1 *k q1,klr *k Kk+1
U k=17 -1 ~a(x-1) =, HOO [ 1 ke
S(k-1) oy |5 ‘ s™ (k) o) S(k+1)

q ~— — e J
2,k-1 2,k+1
Ao A qu' A At

-— ’ - H ’
H (k=1), P (k=1) | g PR

Figure 5.3.3b. Equivalent Layers Hq(k) and Hq(k—1)

introduced in Chapter 4, the equivalent layer Hq(k) can be expressed as

either

[s(k+1) * H(K)] * 57 (k) (5.3.33a)

H k
( )
or

S(k+1) * [H(K) * 57 (k)] . (5.3.33b)

k
Hq( )

Of course, both (5.3.33a) and (5.3.33b) are equally valid representations for
Hq(k). However, performing the star product operation in different

sequences leads to vastly different expressions for Hq(k) in terms of the
partitions of S(k), s=1(kx) and H(k). Later in our investigation of
decoupling of the smoother dynamics we will find both forms useful.
Similarly, the source pq(k) can be expressed by the assembly sum (see
(4.3.5)) of the zero sources in the transformation layers S(k) and S~'(k)

and the source p(k):

P (k) [o(sx+1)) 0 o) ] 0 g(s™ (k) ) (5.3.34a)

or

P (1) g(sk+1)) o [ptk) o g(s™ (x))] . (5.3.34b)

Here the zero sources (denoted by slashed zeros) are represented with explicit
arguments S(k+1) and S~1(k) in order to avoid confusion when performing the

assembly sum operations.
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Diagonalization of H(k)

In this section we determine the form of the transformation layers S(k)
which decouple the smoother dynamics into forward and backward processes. If

we define

A, BB
Hk) = |- = - —:i- - - (5.3.35a)

and

p(k) = - - - Y 7 (5.3.35b)
-1 k
xRk

then the smoother dynamics in (5.3.4a) are written in scattering form as

X X

REAN IEETINY DL S . (5.3.36)
A A

k k+1

These dynamics can be diagonlized by an application of an equivalence
transformation of the type discussed in the previous subsection as follows.

Tet S(k) be a transformation layer which defines a new process via

q
R N b ) (5.3.37)
A

X 9p, k

From (5.3.33a) (or alternatively from (5.3.33b)) the scattering matrix for

this new process is given by
-1
H(K) = ( s(k+1) * H(K) ) * S (k) . (5.3.38a)

The two processes df and dp will be decoupled forward and backward
processes repectively if we can find a sequence of S(k) such that Hy is of

the form

Hf(k) 0

H (k) = . (5.3.38b)
a 0 Hy (k)
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We can construct such a sequence as follows. Consider S(k) partitioned

as in (5.3.31b):

SA(k) SB(k)

S(k) = . (5-3.39&1)
Sc(k) SD(k)

If we assume that Sp(k) is invertible, then the inverse of S(k) can be

written in partitioned form as

=1 -1 -1
s, k) (1 + S40k) MKk)S_ (K)S, (x) ) : S, (k)S (k) Ak)
s (k) =]- - - - - = = - = - - := - - - - -| (5.3.39)
-1 :
—A(k)sC(k)sA (k) : Ak)

where
-1 -1
Ak) = ( s, (k) - 8,(k)S, (k)S_ (k) ) . (5.3.39¢)

The relations which define the dynamics of the sequence S(k) are found by
carrying out the indicated star product operations in (5.3.38a) and setting
each of the resulting partitions of Hq equal to the partitions of the

desired diagonal form in (5.3.38b). Unfortunately, due to the nature of the
expressions resulfing from the star product operations, this results in four
unwieldy nonlinear algebraic equations. For instance, equating the lower left

partition to zero gives the relation
-1 -1 -1 -1 -1
0 = Ak)S (k)S, (k)+ M) ¥(T + s, (kK)S (k) ¥)"'s (x) (1 + S, (k) Mx)S (k)s, (k) )
(5.3.40a)

where

' -1 ' ' -1
¥ = [-c (R G+ Aksc(k+1)(1 - B Q BIS_(k+1) ) Ak] . (5.3.40b)

Efforts to simplify the expression in (5.3.40) along with the three other
relations obtained from the remaining three partitions of Hq have met with
little success. However, if we investigate a special case as we had done in

the continuous case and again in the case of the descriptor form in Section
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5.3.2, then progress can be made. Specifically, we employ the same expression

for Ty used in Section 5.3.2, e.g.

T = . (5.3.413.)

In this case, the relations between the transformation matrix Ty and the
transformation layer S(k) and its inverse S~1(k) in (5.3.32a) and (5.3.32b)

respectively give expressions for S(k) and its inverse as

6 0 . -
£kt bk 7T
-0
b,k I
and
-1
I I 0 0
-1
S (k) = - -- - - - f'k -1 . (5.3.41C)
0 : 0 + 0 )
b,k f,k b,k f,k

Recursions for ef and eb are found by employing the expressions in
(5.3.41a) and (5.3.47b) and (1) computing the upper two partitions of Hg by
the star product sequence in (5.3.33b) and (2) computing the lower two
partitions by (5.3.33a). Following (1) and (2), it is straightforward to show
that these recursions are identical to those found earlier when working with
the descriptor form in (5.3.15a) and (5.3.16a). In addition, as one would
expect, Hge and Hp take the same form as Af and Ay in (5.3.15b) and
(5.3.16b).

An expression for the source Pq is computed by a similar procedure.
That is, compute the upper partition of the source by (5.3.34b) and the lower
partition by (5.3.34a). In this way, one obtains expressions for the
partitions of the source which are identical to Bf k¥x and -Bp xVk

with Bf and By given by the partitions of (5.3.18).
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SECTION 5-4

CONCLUSIONS

As is true of smoothers for causal processes, we have seen that the
smoother for the discrete noncausal TPBVP is in many ways similar to the
smoother for the continuous case. However, decoupling of the smoother
dynamics to obtain a two-filter implementation for the discrete case has been
shown to be quite a different problem than its continuous counterpart. The
reason for this difference is that the smoother dynamics in the discrete case
can be written in either descriptor form or scattering form but not the
standard state-space form. We have shown that the standard methods for
transforming state-space dynamics by means of equivalence transformations are
not sufficient for attaining the most general form of equivalent descriptor
form dynamics. However, by investigating equivalent systems in the descriptor
and scattering forms, we have been able to determine decoupling
transformations.

In studying equivalent systems in the descriptor and scattering forms, we
found that working with the descriptor form led to much more manageable
algebra than working in the scattering framework. This is primarily due to
the complexity of the star product operation used in combining scattering
layers. In particular, working with the descriptor form, we have been able to
completely specify difference equations defining the entire class of
transformations for decoupling the smoother dynamics. On the other hand, we
found when considering these transformations as scattering layers, that the
resulting nonlinear algebraic relations were unmanageable. Nevertheless, in
each of the two cases when we reverted to a special structure for the
transformation (as we had also done in the continuous case), we were able to
completely specify difference equations defining the decoupling transformation

sequence.
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CHAPTER 6: 2-D DISCRETE PARAMETER BOUNDARY VALUE PROCESSES

SECTION 6.1
INTRODUCTION

The nearest neighbor model (NNM) for discrete 2-D random processes
describes a class of first order linear 2-D difference equations and is
discussed in detail in Section 6.2. This model has proved useful in modeling
a variety of 2-D stochastic processes. For example, Jain and Angel [46],
found it applicable for modelling 2-D images whose brightness levels have a
nonseparable covariance. More generally, by considering vector processes, it
will be shown in Section 6.2 that virtually all linear 2-D difference
equations, including finite difference approximations of hyperbolic, parabolic
and elliptic linear partial differential equations, can be put into the NNM
form. Although the dynamics represented by the NNM are inherently noncausal,
we will see that this model can be used to model "space-time" 2-D discrete
dynamics which are causal in one index and noncausal in the other.

In Section 6.2 we present various forms of the general solution for the
NNM. Each of these forms of the general solution suggests a different method
for computing the solution of the NNM. The discussion begins with what we
will refer to as the matrix inversion method. Although this form of the
solution does not lead to the most efficient implementation, it is
conceptually the simplest and as such provides a straightforward way in which
to state a well-posedness condition for any given boundary condition for the
NNM. In establishing this well-posedness condition, we will find that the
Dirichlet condition (knowledge of the process on the boundary of the region of
interest) plays a fundamental role which is analagous to the role played by
the initial value for 1-D processes in determining the well-posedness
condition for a two-point boundary condition (see Sections 3.2 and 5.2). In
particular, recall that in the 1-D case the well-posedness condition stated
that knowledge of both the specified two-point boundary condition and the
input over the interval of interest should uniquely determine the initial
value of the process. In this chapter, we consider boundary conditions that

are not necessarily of the Dirichlet type (e.g. they may be initial values or



values of the first spatial differences along parts of the boundary). What we
will find, however, is that well-posedness for such a boundary condition for
the NNM implies that given the boundary condition and the value of the input
over the region of interest, one can compute the Dirichlet condition.

Having employed the matrix inversion method to establish a well-posedness
condition, we study other methods which lead to computationally more efficient
solutions. Each of these solutions is based on solving the 2-D model in a 1-D
fashion. In particular, under fairly general conditions, the 2-D discrete NNM
dynamics can be written as a 1-D recursion of large vector dimension. Given
the dynamics in this 1-D form, we then must transform the boundary condition
for the 2-D NNM into a compatible 1-D description. It is shown that a 2-D
boundary condition for the NNM becomes a multi-point boundary condition for
the 1-D process, i.e. it is a condition on the process at many points within
its interval of definition. A stable forward/backward implementation of this
1-D boundary value problem is discussed. Under slightly more restrictive
conditions we find that the 1-D process can be decoupled into a system of low
(vector) dimensional processes by an FFT-based transformation. This
decoupling is achieved by an extension of a technique that was introduced by
Hockney for discrete elliptic 2-D processes [47] and later was applied by
Angel and Jain to a 2-D estimation problem [46].

Applying the estimator solution developed in Chapter 2, we obtain the
optimal linear smoother for processes described by NNMs. In particular, we
will show that the smoother for an nX1 vector process obeying a NNM (i.e. an
nth order discrete process) takes the form of a 2nth order NNM. We also
discuss the conditions for which the smoother dynamics can be transformed to
1-D recursive form. In Section 6.3 we present two examples of the discrete
2-D smoother. The first is an example of a process whose dynamics are given
by the finite difference approximation of Poisson's equation with a Dirichlet
boundary condition. We show how the discrete 2-D dynamics of the smoother for
this process can be, as discussed above, put into 1-D recursive form and
subsequently decoupled into a system of lower dimensional 1-D problems. The
second process that we study is governed by 2-D dynamics that are causal in

one index and noncausal in the other. After writing these dynamics in the
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nearest neighbor model form, we immediately obtain the smoothing equations in
NNM form. For this second example, we will find that no 1-D recursive form
can be written for the 2-D NNM smoother dynamics because certain invertibility
conditions are not met. However, with some manipulation, we are able to
rewrite the 2-D NNM smoothing dynamics as a high (vector) dimension 1-D
scattering form. It is shown that this 1-D scattering form is amenable to the
same FFT-based decoupling transformation as applied to the 1-D recursive form
of the first example. An application of this transformation results in a
system of low order 1-D scattering dynamics of the type studied in Chapter 5.
By applying the diagonalizing methods developed in Chapter 5, these 1-D
scattering dynamics can be transformed to decoupled stable forward and
backward recursive forms. Thus, although we are not able to transform the
original NNM smoother dynamics for this mixed causal/noncausal process to a
1-D recursive form, we are able to achieve a 1-D scattering form which we can

ultimately manipulate into a low order stable forward/backward recursive form.

210



SECTION 6.2

THE NEAREST NEIGHBOR MODEL

6.2.1 The Nearest Neighbor Model

Let uj4 be an mX1 vector 2-D white noise process with nonsingular

covariance

E{uijuﬁl} =0 Gikajl . (6.2.1a)

A discrete nX1 vector 2-D stochastic process, X, will be said to satisfy a

nearest neighbor model if its dynamics are of the form1

A + B ; 2
4xi,j+1 uij (6.2.1b)

A + A + A_X, .
S R T I B R T 108 B S S
(lr:l) €S = [1II_1]X[1IJ-1] (6.2.1C)

+

where I and J are integers which define the extent of the lattice S.

Figure 6.2.1 depicts the depedence of X{§ on its neighbors as described in

(6.2.1b)

j+1 —_— ]
¥

j - L] -> O + -
4
j-1 —_ L

| [
i-1 i i+1

Figure 6.2.1 Nearest Neighbor Dependence

In discussing the various types of boundary conditions we will consider
for (6.2.1b), it will be useful to define the boundary region 9S as the four

edges of the lattice S as shown in Figure 6.2.2. 1In particular, the set of

1 Here we assume that the A, are constant. Allowing variations in i and j
of these coefficient matrices would require more than the already overwhelming
notation used in this chapter.
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points comprising 9S is given by the union of the points in these four edges:

35 = {(i,9) + i =0, 3 = 1,2,000,3-1} 0 {(i,9) ¢ 1 =1, § = 1,2,00.,3-1}
u{(i,5) : 3 =0, i =1,2,e00,1-1} 0 {(i,9) + 3 =3, i =1,2,...,1-1}
(6.2.2)
]
)
J-1 L— L) .
. S . The points represent
. . the boundary region 0S.
1 - . L]
0 - L] . . . L] L] L] L[] . L]
A || R
01 I-11I
Figure 6.2.2 The Boundary Region 0dS
We will denote the values of the process x on oS by
%0,1 1,1 %1,0 5,3
X x X x
_ |%0,2 P12 12,0 12,0
X = | ' x = |- ' Xg = | ’ X, = |. . (6.2.3)
*0,3-1 *1,3-1 *1-1,0 *1-1,3

( L - left, R - right, B - bottom, T - top )

Before considering other forms of boundary condition for the NNM, it will be
useful to discuss the Dirichlet condition for this model. As we will see
later in this section in discussing the general solution for this model, the
Dirichlet condition plays a key role in establishing a well-posedness
condition for other forms of boundary condition. The classical definition of
the Dirichlet condition for (6.2.1b) is given as the values of the process on
the boundary region 9S as defined in (6.2.3). However, as shown in Appendix
67, if the rank np of any of the four n*n coefficient matrices Ay in

(6.2.1b) is less than n, then specifying the entirety of a corresponding one
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of the boundary vectors in (6.2.3) leads to an unnecessary overspecification
of the boundary conditions. 1In this case this boundary vector can be replaced
by a reduced-order boundary vector which is sufficient to specify the boundary
condtions for (6.2.1b). These "replacement" processes are shown in Appendix
6A to be linear combinations of the corresponding components of x on oS in
(6.2.3) and are listed below along with their dimensions. Note that the

dimensions are expressed in terms of the ranks of the Ay:

X dL n1(J-1)X1 (6.2.4a)

Xp dB n2(I—1)X1 (6.2.4b)

xR - dR n3(J—1)X1 (6.2.4c)
and

XT - dT n4(I—1)X1 . (6.2.44)

Note that when any of the np is egual to n (i.e. Ay is nonsingular), then
the replacement process and the corresponding process in (6.2.3) which it
replaces are identical.

The general form of boundary condition for the NNM that we will consider
here is expressed as a linear combination of the process x on S and the

replacement processes as follows

v=Vx+V.d (6.2.5a)
X d
where
dL
d
q = dR (6.2.5b)
B
dT

and where we have represented the value of the process on S simply as x. Note
that if V4 = 0 and Vg = I, the boundary condition in (6.2.5a) is precisely

the Dirichlet condition. We will consider the more general case in this
chapter and, in particular, the well-posedeness condition for the general

boundary condition (6.2.5a) is discussed in the next subsection.
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In the following example we illustrate how a non-NNM difference equation
can be written in NNM form. In this particular example, the boundary
conditions are taken to be Dirichlet. After illustrating the versatility of
the NNM model in some additional examples, we investigate several methods for
obtaining the general solution for processes governed by this model given a

boundary condition of the general form (6.2.5a).

Example: (NNM Modeling of a 2-D Difference Equation not in the NNM form)

Consider the noncausal dynamics for a scalar process dij satisfying

= + + + + + € . . .
D3 7 Dar, 5% Yo, 37 Y507 T, 51" T, 507 94,527 By (6.2.6)
j+1 A .
+
Jj — e« *o t .
4

-

| [ | |

i-1 i 1+1

Y

Figure 6.2.3 Dependence Relation for di4 in (6.2.6)

Figure 6.2.3 clearly illustrates that (6.2.6), as written, does not have the
precise nearest neighbor dependence depicted in Figure 6.2.1. However, if we

consider a 2X1 vector process % 5 defined by

q..
X, . = +J (6.2.7a)
J qilj-1

then its dynamics can be expressed in nearest neighbor form as

1 0 1 1 1 1 1 0 0

X.. = X +

Il NN L «(6.2.7b)

X, . .+ X, .+ X, . .+t
i,9- i+ + €
1 0 371 0 O 13 o of *J 1 ij

In this case the ranks of the coefficient matrices are n1= n3= n4=1 and n2=2.

We can see that the value of x along the entire boundary 9S would not be
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required to specify x on S by considering the trivial case where I = J = 2, so
that S is simply the point (1,1) and 9S consists of {(0,1), (2,1), (1,0),
(1,2)}. In order to specify xq,1, we find from (6.2.7b) that we need to

know the input €7 ¢, and the following values corresponding to the Dirichlet

condition in (6.2.5b):

a, = [1 : leo’1 (6.2.8a)

a, = [1 1]x2,1 (6.2.8b)

dB = x1'0 (6.2.8c)
and

dT = [1 : 0]1‘:1’2 . (6.2.84d)

It is easy to see that the values in (6.2.8) are sufficient to specify X1,

if we rewrite (6.2.7b) for (i,3j) = (1,1) as
X = a. + d_ + a_ + da + . (6.2.9)

Note that if there were a higher order input to (6.2.6) (for example, €4 +
€1,9-1 instead of €13 alone), then a NNM could be achieved by additionally

augmenting x;+ in (6.2.7a) to include €;4. a
13 1]

This example illustrates two important points. The first is that the
Dirichlet boundary condition can be specified by a process of dimension lower
than that of the process x on 9S as defined in (6.2.3). The second is that
from this simple example one can infer a method for transforming a general
discrete noncausal dynamical representation into a vector nearest neighbor
form. Indeed, this method of transforming higher order 2-D processes to a
first order vector NNM process is analogous to the transformation of 1-D
discrete ARMA models to first order vector state-space models [48]. The
following examples show how standard finite difference approximations of

second order partial differential equations can be put into a NNM form.
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Examples( NNM Forms for Finite Difference Approximations of PDEs)

For each of the examples the continuous independent variables are denoted by t
and s and these correspond to discretized variables i and j, respectively.

The finite difference approximations are all based on a grid spacing which is

equal in each variable: h = At = As,

1)Wave Equation

82x
PDE: —5 o =1u
at

2

ds
The finite difference approximation is:

2 2 2
X, . = C X, . - Cc X, . -hox . - x, . ..
i+1,3 i,j-1 i,j+1 113 i-1,3 1]

where

The NNM is obtained by dividing by o4 and rearranging terms:

X,, =—, {-x + o?x -x + 2x } + =Ly
i i-1,73 i,3-1 7 Ti+1,3 1,3+1 o Yij

2)Poisson's Equation

PDE: V’x = u
The finite difference approximation is in the form of a NNM:
2
- 4)u, .
] - m%y u,

= 1/4 . o+ L. + . ., + . 2
xl] ¢/ )[xl-1lj xll]'1 xl+1rj xl'j+1

3)Biharmonic Equation

4
PDE: V'x = u

Finite difference approximation: A direct finite difference approximation
of the fourth order biharmonic equation yields a 13 term difference

equation. However, by introducing an auxillary variable z defined by

216



V2x =z, we can express V4x = u as V2z = u. This leads to a finite

difference approximation given by the coupled difference equations:

. 1 . L > S + X, .t X, L
ij ( /4)[xl—1,j xl,j—1 x1+1,3 x1,j+1

2
x ] - Iz

(1/4) [z

Z, . . .+ oz, . + z, R A
ij i-1,3 i,j-1 i+1,3 1,541

2
- (h /4)u, .
1 - m%y L
Combining x and z into the vector process

X .
x..= |
ij Z,.
1]
it can be shown that X has the following dynamics

2

S 0
X,., = 4 X, o+ X, L o+ X L+ X . .
ij { 4( 1-1,3 1,31 i+1,3 1,3+1) * 1@3 “13 }
0 1 4

.

The finite difference approximation of the wave equation in example 1 is
clearly causal in the index i. So although it can be put into the NNM form,
one must be careful to properly specify its boundary conditions. In this case
one would expect that an initial vale would be specified for the process and
its derivative, and this boundary condition will itself have to be discretized

[14] and then expressed in the form (6.2.5a).

6.2.2 The General Solution for the NNM

As in our previous studies of 1-D boundary value problems, we investigate
various methods of writing the general solution for the 2-D discrete processes
studied here in an attempt to find stable and efficient methods for
implementing the solution. Similar to the 1-D cases, our interest in
efficient methods for implementing the solution of the NNM is based on the
fact that, as we will see, the dynamics of the smoother for processes defined
by the NNM are also in the form of this model. We remark that the methods for
solving the NNM derived in this section should be of interest to a wider
audience than simply those interested in the implementation of the solution to
our smoothing problem. In particular, these methods will be useful in

implementing numerical solutions of finite difference approximations of PDEs.
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Three methods for obtaining the solution to (6.2.1b) will be discussed.
The first method, which we refer to as the matrix inversion method [49], is
conceptually the simplest of the three. However, we will see that for a large
lattice S, a direct matrix inversion becomes numerically impractical.
Consequently, this method is rarely used in practice, and here it serves
mainly to introduce some vector notation that we use in later discussions and
also to provide a means for establishing well-posedness conditions for
boundary conditions other than the Dirichlet condition.

The second method falls into the class of what are called marching
methods [49, 50]. We will see that a sufficient condition for writing 1-D
marching method representations for the dynamics of vector 2-D processes
described by the NNM is the requirement that at least one of the Ay in
(6.2.1b) be invertible. Basically, these 1-D methods represent a
transformation of the noncausal 2-D dynamics into causal 1-D dynamics of
higher order that can be solved recursively. In the past, a major criticism
of marching methods has been that they are numerically unstable [49] and,
therefore, that they also are not useful for solving the NNM on large
lattices. However, we develop here a variation of the classical marching
methods which avoids these numerical problems. This is accomplished by
introducing 1-D recursions in two directions (forward and backward), each
stable in its particular direction.

The third method for obtaining a general solution for the NNM is a
special case of the aforementioned forward/backward marching methods. In
particular, the method is modified to realize further computational
efficiencies. The basis for this modification is an application of the fast
Fourier transform (FFT) which transforms the dynamics of the 1-D process
associated with the marching method into a system of low order decoupled 1-D
processes. This decoupling transformation was first suggested by Hockney [47]
for improving the classical marching method solution for Poisson's equation,
and later by Jain and Angel [48] in solving a 2-D estimation problem. Here we
extend its application to vector processes satsifying a NNM. This extension
requires, in addition to the invertibility mentioned above, a symmetry
property. For example, if A3 were invertible, then the symmetry constraint

would require that A5 and A, be identical. This type of symmetry is not
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uncommon in NNM descriptions of physical systems.

each of the three PDEs in the examples above possess this property.

Ehe Matrix Inversion Method and Well-Posedness

For instance,

the NNMs for

The entire process x over S = [1,I-1]1%X[1,J-1] can be written as one large

vector by first forming the n(J-1)X1 vector x; and the m(J-1) X1 vector uj:

and then stacking these into

vector u:

— —

X,
i,1

L]

i,2

W eee

i,J-1

— .
u.
i

=]

i,2

o eee

i,J3-1

(6.2.10a)

the n(J-1)(I-1)X1 vector x and the m(J-1)(I-1) X1

c !

c

O s

i-1

The linear relationship between the vector x,

processes dr, dg, dg and dp is developed as follows.

n(J-1)*n(J-1) matrix in n*n partitions:

or in Kronecker product notation [51]

a0=

(Z ®A4) + (2! ®A2)
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(6.2.10b)

the input u and boundary

Let

ap be the

(6.2.11)

(6.2.11b)



where Z is the (J-1)X(J-1) matrix

_O 1 0 ........O
o 0 1 0 ..'...O
Z = L] . . o .
L O L] 1 0
. 01
O ceeeceesees O

With I(J_1)

n(J-1)*n(J-1) matrices aq and a3z as:

denoting the (J-1)X%(J-1) identity matrix, define the

® A , k=1,3 ;

3 = Plag(®dy) =I5 q) ©By

the n(I-1)*n(I-1) matrices a; and a4 as:

ooy ®B , k

and the n(J-1)*m(J-1) matrix b as

ak = Dlag(Ak) = 2,4 ;

b = Diag(B) ®B .

= La-n

Also define Hp and Hg as the n(J-1)(I-1)*n(J-1) matrices

and H_ =

O eseO H
H O e O

(6.2.12)

(6.2.13a)

(6.2.13b)

(6.2.14)

(6.2.15)

Next define the n(I-1)*n(I-1) block-circulant permutation matrix R in n>n

blocks as:

[_0 I0 ooooooooo—
0 0OIO ¢esees0
R = . o o 0 . .
. 0 « I
. 0

I es 000000000

L, O H O -

(6.2.16)

Note that postmultiplying a matrix by R causes the columns of that matrix to
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be circularly shifted or rotated to the right. Define Ig and Ip as the

n(I-1)*n(I-1) matrices

QO eee O H

0 and I

=]
H O e O

. (6.2.17)

Combining these two matrices with R we define two n(J-1)(I-1)*n(I-1) matrices

H O H O H]
w W W
w W

and H =

I-2
BR

o oo

Given these definitions we can write the

S and x on the boundary 3S as defined in

o o e
x1 aO a3 * 0
2 1 o . ° .

X = Je = Y . oa
: ....3
X1 0 a1 9

a x
a.x
* .. & __ @ 3R
+ |H_: H_:
[HL HR HB HT:| a.x
a x

. (6.2.18)

relationship between the process x on

(6.2.3) and the input u:

X Y4
X u
.2 + (I ®@Db) .2
X1-1 U1-1
. (6.2.19)

Employing the definition of x and u in (6.2.10b) and the relations between

i A.,9) in A i i 1
xL, XR' xB, XT and dL, dR, dB, dT in (6 ) in Appendix 6A, this relation

can be written in more compact notation as

X A x + Bu + Hd
X X

where
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and d is as in (6.2.5b). In Kronecker product notation, Ay and Bx can be

expressed as:

A
X

(I ®ao) + (2 ®a3) + (2! ®a1) (6.2.20c)

and

B
X

(I ®Db) . (6.2.204)

Note that we have not yet specified the boundary condition, so that 4 in
(6.2.20a) should not be confused as being a given boundary condition. Rather,
the representation (6.2.20a) and the specified boundary conditions (6.2.5a)
must be solved simultaneously in order to express x in terms of the input and
the boundary value v.

Before pursuing the general solution of (6.2.20a) for arbitrary boundary
conditions, it will be useful to first consider the special case in which the

boundary condition is the Dirichlet condition, i.e.
v =d . (6.2.21)

Given the Dirichlet condition, we can solve for x from (6.2.20a) as:
-1
x=(I-2a) [Bu+HA] . (6.2.22)
X X

As we will see below, given this solution we are in a position to study more
general boundary conditions of the form (6.2.5a).

Using this same approach, we establish the well-posedness condition for
the NNM given boundary conditions of the form (6.2.5a). In particular, recall
that in deriving a general solution for a 1-D two-point boundary value problem
that we first used the variation of constants formula to write an expression
for the process in terms of the inputs and the unknown initial value of the
process. Next this expression for the process was substituted into the
two-point boundary condition to solve for the unknown initial value in terms
of the inputs and the boundary value. Finally, we again used the variation of
constants formula but with this new expression determined for the initial
condition, yielding the general solution. In our derivations below, the

Dirichlet condition 4 plays a similar role to that of the initial value in the
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1-D derivations. Specifically, from (6.2.22), we can write an expression for

the process x given the input u and the unknown value of 4 as
-1
x = (I-2) [Bxu +H] . (6.2.23a)

To determine the value of 4 in terms of the known values of the input u and
the boundary value v, substitute the expression for x in (6.2.23a) into the

boundary condition (6.2.5a):

-1 -1
v=vV(I-A) Bu+ [V(I-a) H+V_]d . (6.2.23b)
X X bd X X d

Solving for d, we have

- -1
d=r'{v -v (1-2 )" 'B u} (6.2.23¢)
X X X
where
F=VI(I -A )_1H + V. . (6.2.23d)
X X d

Therefore, the well-posedness condition is the invertibility of F. Finally,
the general solution for (6.2.20a) with boundary condition (6.2.5a) is
obtained as a linear combination of the boundary value v and the unput u by

substituting the expression for 4 in (6.2.23c) into (6.2.23a):
-1 =1 -1 -1
x=(I-2) {HF v+ [1-8F v(I-a) ]Bu} . (6.2.24)
b4 X X be

Although this method of solving for x and determining well-posedness is
straightforward, its actual implementation may be difficult. In particular,
note that (I - Ay) is an n(I-1)(J=-1)*n(I-1)(J-1) matrix so that applying
numerical matrix inversion algorithms to obtain its inverse when I and J are
large can be impractical even when exploiting its highly structured form.
Indeed, research on the problem of explicitly inverting this matrix is ongoing
(see [49] for a survey). Of course, in any solution of the NNM (such as those

that follow) this inversion is performed implicitly.
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The 1-D Marching Method

Marching methods were originally established when it was first recognized
that the 2-D discrete approximation of Poisson's equation for scalar processes
could be transformed to a vector 1-D process (for a survey of early work in
this area see [52]). This kind of transformation has been applied by Jain and
Angel [46] in the derivation and implementation of an estimator for a
particular scalar 2-D discrete process. In this section we show that
extending this idea to writing 1-D models for the more general class of 2-D
processes obeying the vector NNM is straightforward. We will see that the
only requirement for this extension is that one of the Ay is invertible.
Assuming that this requirement is met, we can ,without loss of generality,
choose A3 as the invertible one. First we write a 1-D dynamical
representation for the 2-D NNM dynamics, and then show how the general form of
the NNM boundary condition (6.2.5a) is transformed to a boundary condition for
the 1-D representation of the process.

Given that A3 is invertible, define

A3 = A3 R (6.2.25a)

- » .

L= Ay A ;i 1i=1,2,4 (6.2.25b)
and .

B = —A; B . (6.2.25¢)

Block-diagonal matrices with the matrices in (6.2.25) as their diagonal

elements can be written using the Kronecker product as (see (6.2.13) and

(6.2.14))
;3 = (I ®p:3) (6.2.26a)
;k = (I ®P:k)
= —;3ak i k=1,2,4 (6.2.26b)
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and

b=(I®B) = -a3b . (6.2.26c)

Given these definitions, the NNM dynamics in (6.2.1b) can be written as

(we have simply premultiplied (6.2.1b) by the inverse of Aj3):

~ ~ ~ ~ ~

= A .+ A x, | + A X, . + A x, | + B u, , . 2,
xi+1,j 3xij 2xl,j-1 1xl-1,j 4xl,j+1 ulj (6.2.27)
In the same manner we can premultiply the rows of the matrix representation of
the NNM in (6.2.19) by the inverse of a3, to obtain a recursion for X; as

~ ~ ~

= ' - -
x, ., =lag+ (Z2®a) + (2 ®A2)]xi aja,x,_, - a,bu,

~ i-1

i-1
fde + ITR

-a [IBR

3 f4dT] ; 1 = 1,2,...1_1 . (6.2.28a)

with the following constraints (also see (6.A.9) of Appendix 6A)
(1) x_=x_=4d (the second equality holding (6.2.28b)
since A3 is nonsingular)

and

(2) ax =ax =f£f4 . (6.2.28c)

Here Ip and Ig are defined in (6.2.17), Z in (6.2.12) and R in (6.2.16).
These constraints are added to make (6.2.28a) evaluated for i = 1 and I-1
compatible with the matrix equation (6.2.19). Therefore, under the single
condition that one of the Ap be invertible (here we assume it is A3), we
can transform the 2-D NNM dynamics to a 1-D model.

The boundary condition for the 1-D dynamics (6.2.28) is obtained from the
general form of the NNM boundary condition (6.2.22) as follows. First recall

(6.2.5a):
3 v L
v Vxx + dd
Define partitions of Vg and Vg with dimensions compatible with the
partitions of x and d in (6.2.10b) and (6.2.5b), respectively as

v = [v ivZiiL oL L ivET]
X X @ X : . X

(6.2.29a)
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and

= \Y H \" H el
Vg [vL SR A VT] (6.2.29b)
so that the NNM boundary condition can be expressed as
I-1 5
v = i§1vxxi +vd + VA 4+ Vd +Vdl . (6.2.30)

Using the constraints on the dynamics in (6.2.28b) and (6.2.28c) we can

rewrite (6.2.30) as follows. First, from (6.2.28b) we can make the

substitution
v.d. = Vox (6.2.37a)
RR x1I ces
where
0
vV =V o (6.2.31b)
b 4 R

To replace Vidy, in (6.2.30), we require an expression for dj in terms of
Xg. In particular, the defintion of dj given in (6.A.4a) is compatible

with the constraint (6.2.28c) (see (6.A.9)):

a = [:tJ_1 ® [In1§ o] (1 ® LN (6.2.32a)

where we have used Xg = xp,. Thus, the term Vid; can be written as

0
vid = VxxO (6.2.32b)
where
Veov .. ®L : 01 [(I®¢) . (6.2.32c)
X LY"J-1 n,: 1 et

i¢
Substituting from (6.2.31b) and (6.2.32c) into the expression for the boundary

condition in (6.2.30), we have (note that the summation now ranges over [0,I])

I .
1
V= igo"xxi * Vogdrg (6.2.33a)
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where

B
dTB =14 and VTB = [V : \

Our final objective in this subsection is to write the dynamics in

(6.2.28) as a first order 1-D process. Let xi be defined as

. (6.2.33b)

X, = . (6.2.34)

Then the dynamics for xi can be written as

Xi = Axi_1 + Guu + GTBidTB (6.2.35a)
where
1 .
a3+(Z®A4)+(Z ®A2) :a, ‘
A = - - - - - = - =1, (6.2.35b)
I : 0
b
Gu= , (6.2.35¢c)
and
N i-1, i-1
-a_I_R f. : -a_I R £
3'B 2 : 3°T 4
GTBi =|. - - - i 2 _ _ . (6.2.354)

The boundary condition (6.2.33) is written in terms of the process Xi as

I .
v = .Zo[o : v; ]x_L + Vodo . (6.2.36)
l=

We will refer to this as a multi-point boundary condition in contrast to the

two-point boundary condition for the 1-D discrete process in Chapter 5.

As an example, consider the special case for which all of the Ap are

nonsingular and v is the Dirichlet condition in (6.2.5b). Since all Ay are
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nonsingular, dR = Xp = X5, dL =X = X dB = X and dT = Xor and dpg in
(6.2.33b) becomes:
X
d = .
TB
*B
By defining
I 0 0 O
0 0 I I 0 o i .
Vx = 1ol" Vx = 1o VTB =1: o and Vx =0, 1=1,2.,.I-1 ,
0 0 0 I

the Dirichlet boundary condition can be written in the form (6.2.36) as

required for the marching method.

Stable Two-Filter (Forward/Backward) Solution

Recall that in formulating the general solution for the 1-D discrete
two-point boundary value problem in Chapter 5, we diagonalized the dynamics
into a forward stable part and a backward stable part. In this way we were
able to develop a forward/backward two-filter implementation of the solution,
each filter stable in its own direction. The differences between that 1-D
discrete TPBVP and the 1-D discrete process xi whose dynamics are given in
(6.2.35a) and boundary condition in (6.2.36) are (1) the presence of dpg in
both the dynamics and boundary condition and (2) the multi-point nature of the
boundary condition. Common to both is that, in general, the poles of the
dynamics will lie both inside and outside of the unit circle. Thus, some
modes will be stable for increasing i (forward stable) and some stable for
decreasing i (backwards stable). To separate these modes, consider the class
of similarity transformations which decouple the dynamics in (6.2.35a) into

the form:

TAT = - —N— - (6.2.37)

where Ap contains only backward stable modes and Af contains all other

modes, i.e. forward stable, marginally stable and zero modes. With partitions
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compatitble with those in (6.2.37), define

X M
f,1 f i
x’l = TX, . s | = ™, and Mﬁ = W, - (6.2.38)
b, i b bi *
so that the following system is equivalent to (6.2.35a) and (6.2.36) but with
stable decoupled dynamics:

X6, " Pe¥eio1 TP T Mei e (6.2.39a)
and
X =2 x -2 'Bu -2a'M.d (6.2.39b)
b,i-1 By, b,1i By By T By Mpidq, T
and coupled boundary conditions:
I i: iq|%f
- : 'l
v = _Z [vfgvb] ol Vogdes (6.2.39¢)
i=0 b,1i
where
[ c vb] [0 ; Vi]T (6.2.39d)

The general solution for (6.2.,39) is derived in Appendix 6B in the same

way that we derived the forward/backward solution for the two-point boundary
value problem in Chapter 5.

That is, for the case of dpg = 0 we define
0
X as the solution to (6.2.3%9a) with a zero initial condition:
x0 =0 (6.2.40a)
f'o L] . a
0 . . . s
and x, as the solution to (6.2.39b) with zero final condition
xo =0 (6.2.40b)
b, I =~ ° .2
The general solution is given by (6.B.11) in Appendix 6B as a linear
combination of these processes and the boundary value v:
0
“f/n 1 SN i “£n
= @ - - ; ! . Lo
X (n)Ffb{v 'Z [ve voll o+ 0 (6.2.41)
d i=0 xb N b,n
TB ! 0



where @(n) is defined in (6.B.10) and the invertibility of Fgp (in (6.B.8))
is the well-posedness condition. Later we will see that being able to write
the 2-D NNM dynamics in a 1-D marching method form is only a sufficient
condition for the existence of a forward/backward 1-D representation. In
particular, in an example in Section 6.3, it is shown that a 1-D
forward/backward form can also be obtained from a 1-D scattering
representation of the NNM dynamics.

The two major computational problems associated with this form of the
general solution are 1) the inversion of the ngXng matrix Fgp ( ng =
(no+ng) (I-1) + 2n(J-1) ) and 2) the determination of the diagonalizing

transformation T. However, in comparison to the inversion of (I - Ay)

(whose size is of the order of the product of I and J as opposed to their sum)
in (6.2.204d) these computations are minor for large I and J . As a final
remark, we note that in addition to deriving the general solution for x¢ and
Xp in Appendix 6B, we also develop equations for computing the process

variance when the input and boundary conditions are random processes.

A More Efficient Marching Method

Although the stable marching method developed in the previous section
offers a substantial savings in computation over the matrix inversion method,
the determination of the diagonalizing transformation T (as well as the
computation of the transition matrices and recursions for the 2n(J-1) xi
processes xg and xp) can still be a considerable computational task when I
and J are large. In this subsection it is shown for a large class of NNMs
that the computational burden can be further reduced. The reduction is based
on an extension of the work of Jain and Angel in [46] where they considered a
scalar process satisfying a discretized version of Poisson's equation.

Consider the class of NNMs which have both the invertibility property
(6.2.25a), as required for the implementation of any marching method, and a
symmetry property as described below. If the index of the invertible matrix
Ay, is odd (even), then the even (odd) indexed Ay must be identical. For
example, if A3 is to be inverted to achieve the marching method form, then

the symmetry property is satisfied if

A_=A . (6.2.41)
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Given (6.2.41) and defining the symmetric tridiagonal matrix P as the sum of

Z in (6.2.12) and its transpose:
P=2Z' + 27 ' (6.2.42)

the dynamics in (6.2.28a) can be written as

~ ~

a +(P®A2); a, . u
X, = |-°- - -“i- ZIx.  +[cic -l . (6.2.43)

I i 0 TB
It can be shown that the the upper left partition of the dynamics matrix has a
special tridiagonal block-Toeplitz form that we will take advantage of
shortly. In particular, its upper and lower diagonal blocks are identical.
The action of this block-Toeplitz matrix can be viewed as that of convolving

the upper partition of Xi- with a finite impulse response (FIR) filter

1
[62]. It is, in part, this property that allows us to decouple the dynamics
in (6.2.43) by the FFT-based transformation as discussed below.

The dynamics in (6.2.43) can be decoupled into J-1 subsystems by
transforming the process in ¥X; with the transformation matrix defined as

follows. Let D be the (J-1)X{(J-1) matrix with elements
Dij = v (2/J3) sin(ijm/J) . (6.2.44)

The matrix D has two important properties [46] of which we will make use:

1) D is symmetric and orthonormal, i.e.

DD' = D'D = DD = I . (6.2.45a)
2) The matrix P in (6.2.42) is diagonalized by D:
A = DPD' = Diag{Aj}
Aj = 2cos(3T/T) ;G = 1,2, eee. I=1 . (6.2.45b)

Employing D, define a new n(J-1)X! process gj via the equivalence

transformation: g
i DRI :
q; = (D ® I)xi or q = [—0 -E-D®i]xi . (6.2.46a)
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and denote the elements of g; by the nXl partitions qiy:
i,1

i,2
L . (6.2.46b)

Q eee Q

i,J-1

Below it is shown that the dynamics of each of the di4 are decoupled
via the transformation in (6.2.46a). First we state the following basic

identities for Kronecker products [51]:

a®p) = a'®r) {a,B invertible} (6.2.47a)
(A ®B)' = (A' ® B") (6.2.47b)
and

A trivial application of these identities allows us to establish two

properties of (D ® I), the transformation in (6.2.46a):

Property 1 For any n*n matrix M, (I X M) is invariant under the following
transformation

1

(D ® I)(I ® M)(D ® I) (D ® M)(D ® 1)

(I ®M) . (6.2.48)

Property 2 For any n*n matrix M, (P ® M) is block-diagonalized by (D ® I):

(D ® I)(P ® M)(D ® I)

(DP ® M)(D ® I)

= (A @ M)
— -
A"M L]
' A M 0
= ‘ . . (602.49)
0 * L]
XJ_1M
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The dynamics of the transformed process g;i in (6.2.46a) are found in

the usual way by applying the transformation to the dynamics in (6.2.43):

q. D ® I: 0

N N N -1
1| [P®T 0 (f ®A§) +£1> ®Z;\2):-I ®z_\1 D_®f: i o_ q;
. : D® I : : D ®
a 0] I 0 0 I 99
D ® I: 0 u,
+ | - - - - [GuchBi] al- . (6.2.50a)
0 :D®TI TB
If we recall the definitions of Gy, and Gpg; in (6.2.35c) and (6.2.35d) and
let
~ ~ i-1 i-
qu = bu, - a3(1 R £.d  + IR f4dT) , (6.2.50b)
then the input term in (6.2.50a) can be written as
D®I
- U . (6.2.50C)
o | %

Noting that (D X I) is its own inverse and invoking the two properties
established above, (6.2.50a) can be expressed as

q. (I®A)) + (A®A): (I ®2)}|qg. D ®1
+1 1
Sl I I T U, (6.2.51a)
. : 0 . i

ql I q1—1 0 +

If we partition the product (D @)I)qu into nX1 vectors Ui,j as

Y51

Yi,2

T = (D ® 1)U ’ (6.2.51b)

. q-

. i

Y%, 041

and note that each of the partitions in the dynamics matrix in (6.2.51a) is

block-diagonal, we can write the dynamics of g; as J-1 sets of decoupled

233



equations representing the dynamics of its elements g; 5 (see (6.2.46b))
i,3

q... . A, + AA_: A |{a. . U, .
+1
1,3 V3 3.2, 1L + P9 = 1,2,000d=1 4(6.2.52)

qi,j I : 0 qi-1,j 0
The boundary conditions for the di 5 in (6.2.52) are obtained by an
application of the transformation in (6.2.46a) to the boundary condition in
(6.2.36).

In this decoupled representation, the task of transforming the dynamics
into stable forward/backward diagonal forms is considerably simplified.
Specifically, computational efficiencies are realized in two ways. First, the
decomposition into forward and backward processes is reduced from a
2n(J-1)-dimensional problem for the entire vector xi to the J-1 decoupled
2n-dimensional problems for the Qige The details of splitting each of the
di into a forward stable component and a backward stable component with
appropriately transformed boundary conditions are discussed in Appendix 6C.
The second is that the decoupling transformation matrix (D X I) in (6.2.46a)
is the same for all processes in NNM form with the stated symmetry condition.
Furthermore, the matrix D is related to the matrix representation of the FFT
[53], and consequently, many of the transformations required in decoupling
Xi into the di§ can be executed efficiently via the FFT. For details of
the FFT implementation also see Appendix 6C. In the next section we
demonstrate by way of two simple examples how the NNM dynamics of 2-D

smoothers can be simplified via this decoupling transformation.
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SECTION 6.3

THE NNM SMOOTHER

In this section we present the dynamics and boundary conditions for the
smoother for processes governed by an NNM and show that the smoother dynamics
themselves can be written in the NNM form. Next, conditions are established
for writing the 2-D smoother dynamics in a 1-D marching method form, and the
corresponding 1-D multi-point representation of the smoother boundary
condition is presented. The section ends with the application of the

smoothing equations to two processes governed by an NNM.

6.3.1 The Smoother

Here we consider the smoother for a 2-D discrete process governed by the
NNM in (6.2.1b) with boundary condition which we discuss shortly. The

observations are given by the pX1 vector process y:

y.. =Cx,. + r, . ;i (1L,3) €8 (6.3.1a)
1] 1] 1]

1 -—
E{rijrkl} = Rﬁikﬁjz . (6.3.1b)

In an obvious operator notation, the process dynamics in (6.2.1b) and the

observations in (6.3.1) can be expressed as

Lx = Bu (6.3.23)
and

y =Cx +r . (6.3.2b)

The operator representation for the estimator dynamics has been shown in

(2.5.25a) to be

X

L  :-BoB* 0
-— - - - -— = - - y . (6.3-3)
c*r-1c . 1t c*r-1

>

The formal adjoint difference operator L' appearing in the smoother dynamics

(6.3.3) is shown in Appendix 6D to take the form

(L*A)i = A, - A", - A'A, . - A'A -

]
] ij 3i-1,3 47i,5-1 17141, . (6.3.4)

'
2 i,j+1
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The smoother dynamics in (6.3.3) can be put into the NNM form as

follows. Define

I :-BOB' 0
A== - - - B ,=1- - (6.3.5a)
A - 4 )\ — ’ eJe
X c'rR'e: 1 % c'r”
and
A, + 0 A 0 A_: O A, : O
Ay = LU, Ay = |- Ay = ECH Ay = Ao -
1 0 : A! 0 : A! : A! : A!
3 2 A4 3 0 A1 4 0 A2
(6.3.5b)
Using these definitions we can rewrite (6.3.3) as
i3 *i1-1,3 *i,5-1 *141,3 Xi, 341
A = =l I )T [ r .
x| ~ I R ] - R R - * BeNiy
N 1 \ 2 3 4
ij i-1,3 i,3-1 i+1,3 i, j+1
(6.3.5b)

While this is not in the NNM form, it is in the descritpor equivalent and can

be put in NNM form by premultiplying by the inverse of A,). Using the

matrix inversion lemma, it can be seen that this inverse exists with:

I :=BOB' | -1 I :BOB' A : 0
-1 1
S R = | R (6.3.6)
C'R_C: I -C'R_C: I 0 : b,
where
-1 3= -1 -1
A, = (1 +BoB'C'R” C) and b, = (1 + c'R” CcBOB' ) . (6.3.7)

Thus, the NNM form for the smoother dynamics is

X. . =1 X. . X, . X, . X. .
‘i3] = Ax)\{ Ax>‘1 -3+ A Ji-1] + Ax>‘3 RAEE] BN 1,34
A A A
i3 1-1,3 1,9-1 1+1,3 1,9+
+ B . L ] L]
x)\ylj} (6.3.8)

Now we consider the boundary conditions for the process to be estimated
and the resulting boundary conditions for the NNM form of the estimator. The

boundary condition for the process to be estimated is assumed to be in the
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form prescribed in Chapter 2, i.e. v = VXp, where xp, is determined from
Green's identity. In what follows we present the expression for X, which is
determined in Appendix 6D and show that v = VX;, represents a restricted
class of the general form of NNM boundary condition (6.2.5a),

vV = Vyx + Vqd. 1In addition to x, we also require an expression for X,
(which is also determined from Green's identity) in order to write the
smoother boundary condition as specified in (2.5.25b) of Chapter 2. An
expression for A, is also given below after a short discussion of the
Dirichlet condition for the NNM smoother dynamics (6.3.8).

As discussed in Appendix 6A, for each process satisfying a NNM there
exists a minimim dimension replacement for the process on the boundary 3aS.
This replacement process plays the role of the Dirichlet condition and has
been shown in Section 6.2 to be useful in writing 1-D representations for the
2-D NNM dynamics (see (6.2.28))., In Appendix 6D it is shown that the
replacement process for {x, A} in (6.3.8) is given by the replacement processs

d in (6.2.5b) for x and the process (see (6.D.18))

g

=

3
£ (6.3.9)
3

H w T

which replaces A on 9S. 1Indeed, the elements of £ are shown in (6.D.18) to be
linear combinations of A on 9S. As we will see below, these replacement
processes are also used in the definitions of x, and A, which have been
determined from Green's identity in Appendix 6D.

In order to show that the boundary condition for the process to be
estimated, v = Vxp, can be written in the form of (6.2.5a) and in order to
write the boundary condition for the NNM smoother, we need the following

definitions from (6.D.19a), (6.D.19b) and (6.D.21) of Appendix 6D:

-dL | -XR-1_ -dB ] -XT- 1-
D = D = D = D = (6.3.10a)
L X1 R dp B XB+1 T dp

. - o _ .
5 = |.F g = | &7 g, = ® E = -1 (6.3.10b)
L ALt R Y B )\B+1J T &

e - . pu - e P
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and from the derivation of Green's identity in that appendix

(1]
t

(1]

x

and Ab = . (6.3.10c)

O U u ol
B W ow
(1]

W

=

As indicated in (6.D.13), the processes with subscripts I+1, R-1, B+1 and T-1
represent the values of x and A on the four edges (left, right, bottom and
top) contained within the lattice S (not 3S). Thus, they are elements of x
and A on S. As discussed previously, the elements of d and & represent the
replacement processes for x and A respectively along the boundary 93S. Given
these definitions, it is clear that the boundary condition v = Vxp can be

expressed as:

v = VX

E!

X d
a (6.3.11)
d

3w oH

— - -

which is in the form of (6.2.5a). Note, however, that this form of boundary
condition required for the process to be estimated is restricted to a linear
combination of the process on 9S and the process on the four interior edges of
S. This can be contrasted with the more general form in (6.2.5a) which
allowed the boundary condition to be specified in terms of X on 3 and x
throughout S. An extension to include the most general boundary condition
(6.2.5a) should be considered in the future. This would be similar to the
extension of our 1-D smoother results to include integral boundary conditions
(see Appendix 3A4).

Given that the boundary condition for x is defined as v = Vxp with
E[lvv'] = I, the smoother boundary condition is written directly from

(2.5.25b) as

-

0 = [V'H;1V::E] *p (6.3.12)

where Xxp ang Ab are defined in (6.3.10c) and E is the matrix in the
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boundary term of Green's Identity which is given explicitly in (6.D.25) of
Appendix 6D. Next we investigate 1-D marching method representations of the

2-D discrete smoother.

1-D Marching Method Dynamics

It will be possible to transform the smoother dynamics from the NNM form
(6.3.8) to the marching method form if the invertibility condition stated in
Section 6.2.2 is met. This will occur when, for instance, A and A3 are
both invertible, i.e. Ag)y and Ayg), are invertible (see (6.3.5a)).

Assuming the invertibility of these two matrices the smoother dynamics can be

written as

X. . N X, . N X. . N X. . N X, . -
) +1,3| = Axl Al,j + AxA Al,j—1 + Axk Al 1,3 + AxA A1,3+1 + BxAYij
3 2 1 4
. . A, L AL . . ..
i+1,3 i,3 i,j-1 i-1,3 i,J+1
- (6.3.13a)
where
1; -2l z; - 'a k =1,2,4 and 1; 2" B . (6.3.13b)
= ’ = = H = réy = = eJe
x>\3 x)\3 XA x)\k xk3 x)j( XA x>\3 XA

Following the derivation of the 1-D model in (6.2.35a), it can be shown that

the 1-D dynamics corresponding to (6.3.13a) can be expressed as

Xi4 - - N . %y
~ 1 . ’S
A, (1 ®Ax>\ )+ (2 ®Ax)\ ) + (2 ®Ax)\ ) : (1 ®Ax)\ ) A
i+ _ _ _ § _ B _ 4 _ - _ Z P 1 _i_
~ I 0 :
X5 i-1
Ay Ao
dT
+ GxA ibe + (I S’Bxk)yi . (6.3.13c)
TB1i a
B
EB

If, in addition, Ay and A4 were equal, then Axkz and Axk4
would be equal and the more efficient FFT-based decoupled marching method

could be applied to decouple thse dynamics into lower dimensional subsystems.
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Boundary Condition for the Marching Method Representation

The purpose of this subsection is to express the boundary condition for
the NNM smoother in a form compatible with the 1-D marching method dynamics

described in the previous subsection. From (6.3.12) we have

~

-1 -~
= 'H A . [ .
0 v . va + E Y (6.3.14)

As discussed in Section 6.2.2, when considering the marching method form, the
boundary condition in (6.3.14) should be transformed to a multi-point form

which we will express as

I ~ ~
i 4
o= Lv Il + v, (6.3.15a)
. X ~ X IS
i=0 A TB £
i TB
where
X5,
A 1 ”
et (
R dp
; xi’z ; ET
= ; and = [-= . (6.3.15b)
-~ 0 2 ~ ~
A Lre_
i . TB dB
- - = EB
X, J-1
A,
i,J-1
L N

The formulation of explicit expressions for Vik and VxXT is conceptually
straightforward but requires a great deal of additional ﬁotation.
Consequently, we have relegated the details to Appendix E. Combining this
description for the boundary condition with the 1-D dynamics in (6.3.13c),
gives a complete 1-D specification of the 2-D smoother as a multi-point 1-D
discrete boundary value problem for which a forward/backward two-filter

implementation is derived in Appendix 6B.
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6.3.2 The Smoothing Error

The operator representation for the smoothing error is rewritten here
from (2.5.36):
: ~
L :-BOB X B: O u

- - - - - = - - - (6.3.163.)

* _ * o
CR 1C : L* -A 0 :CR ! r

with boundary condition from (2.5.33)

~

* 1 L I
[v - v] = [v I vie]| %o . (6.3.16b)
-A
b
The 2-D difference equation which corresponds to the operator expression

(6.3.16a) for the smoothing error dynamics is identical to that in (6.3.8)

except for the input term:

~ ~ ~

)::L] = A_1 {

X, . X, . .o
<A Axk1 ~l—1,j + Ax)\2 343—1 + Axk3 + Axk ‘},j+1
-A, A XL Yo .
ij i-1,3 i,3-1 i,j+1
B: O U
+ |- —- - - I} . (6.3.17)
0oicr || .
1,3

Given the invertibility of both of either Ay and A3 or A and A4, one
can readily obtain the 1-D marching method representation of the error
dynamics such as those for the smoother in (6.3.13c).

Because of the similarity of the error boundary condition (6.3.16b) and
the smoother boundary condition (6.3.16), we can write the 1-D form for

(6.3.16b) directly from (6.3.15) as

. (6.3.18)

Given the 1-D representation of the smoothing error in (6.3.17) and (6.3.18),
one can compute the error variance using the matrix difference equations
developed in Appendix 6B for computing the covariance of processes with such a

1-D represenation.
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6.3.3 2-D Discrete Smoothing Examples

In this subsection we apply the results developed earlier in this chapter
to formulate equations for implementing the smoother for two examples. In
particular, we will concentrate on the development of 1-D dynamical
representations of the smoothers. Once the transformations leading to
these representations have been established, the same transformations must
also be applied to rewrite the smoother boundary conditions in a 1-D
multi-point form. As seen in Appendices 6C and 6E, formulating explicit
expressions for these boundary conditions can be quite tedious and we will not
display them explicitly here. The first example is a discrete 2-D process
whose dynamics are given by the finite difference approximation of Poisson's
equation (see Section 6.2.1). It is shown that the estimator for this problem
can be written in the NNM form with both the invertibility and symmetry
conditions satisfied. Therefore, the FFT decoupling can be applied to a 1-D
marching method representation of the smoother dynamics. The other example is
a 2-D discrete process whose dynamics are causal in one index and noncausal in
the other. This process can be interpreted as obeying the finite difference
approximation of the 1-D heat equation. We will find that because the
invertibility condition is not satisfied for the NNM representation of the
smoother dynamics. In this case, no 1-D recursive marching method
representation can be obtained. However, we will see that if we first
manipulate the smoother dynamics into a new form. 1In particular, rather than
a 1-D recursive marching method form, the smoother dynamics are put into a 1-D
scattering form (see Chapter 5) of high (vector) dimension. It is shown that
the structure of this scattering form is such that we can apply the FFT-based
decoupling transformation to obtain a decoupled system of 1-D dynamics each in
scattering form. Then, each of these low order scattering form models can be
split into stable forward and backward models by the same method used to
diagonalize the scattering form dynamics of the discrete 1-D smoother in

Chapter 5.
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Example 1: Discrete Poisson's Equation

The dynamics of the process to be estimated are given by

| + u, (6.3.19)

X = . .+ X, . + X. . X, .
i-1,3 1,j-1 1i+1,3 1,j+1 1j

.
iy ~ a4 [x

where u is a unit variance white noise (Q = I). The boundary condition is the
Dirichlet form described in (6.3.10b). The observations are simply the

process itself plus an additive noise r of unit variance:

= + . . ; S A4 . L]
yij xij r:LJ on S (6.3.20)

Therefore, for this problem each of the Ay, B, C, Q and R are scalars, and

in particular,

A, =A_=A_=2A = 1/4 (6.3.21a)

and
B=C=0Q=R-=1 . (6.3.21b)
From (6.3.8), the NNM form of the estimator dynamics are defined by way of:

A - ' A 17272 g 0

(6.3.22a)

=y
=y

and

|
~
I

1/4 0 _
<A 1,2,3,4 . (6.3.22b)

k 0 1/4

Since each of the Ay,) is invertible, we can invert any one of them to obtain
smoother dynamics which are causal in one index, leading to a marching method
form. As we had done earlier, we will invert Axk3- This choice results

in (see (6.3.13b))

. » 4 -4
A =A . A, = (6.3.23a)

xAy xA3 xA 4 4
2 ' a =-I ;k=1,2,4 (6.3.23b)

x)\k-—_ x)\3 x%{
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and

-1 0

= =-A B = .
A A A
X X 3 X -4

B

(6.3.23c)

These values are substituted into (6.3.13c) to obtain the 1-D marching method

dynamics.

Since the symmetry condition is also met for these dynamics, i.e.

A. =A
A AT
X% X%

(6.3.24)

we can apply the FFT-based decoupling transformation (D X I) to obtain

dynamically decoupled lower-dimensional systems.

process:
. )
X5+
: A
qi+1 _ iD_@iIi P _0_ _ 1+1
. 0 ip®
a; ( I) X,
A,
i
L _
and matrices
0
MxA = . ° and Mxk
4 0 2
-IO- [ .O

First define the transformed

(6.3.25)

0 r (6.3.26)

then the dynamics of the decoupled systems are given by (see (6.2.52))

4 - 2cos (jT/J) : -4 :
9 - - - - - = = ===
) I T SR ST R~ (C L7 L
9,5 1

=1,2,... J=1
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-I .
ql,j lei .
- - - == - = .|._..'_J
0 i-1,73 0
(6.3.27a)



where the input is given by the transformed process (see (6.2.50b))

3 -
A
S . .
U ~ X X
A i - -
*M2 | =u, =o0en{(x®8 y. +m, R*.T +m =B}
. xA, xA Y1 xA x A
. i 4 A A
: T B
U
A
X ,3-1
— - (6.3.27b)

Equivalent forward/backward stable representations can be found for each value
of j by first finding the similarity transformation which diagonalizes the
dynamics matrix in (6.3.27a) for each value of j. The process obtained by
applying that transformation for each value of j to [qi+1'j,qi'j]' is then
comprised of four dynamically decoupled scalar processes. These four
processes would then be split into forward stable and backward stable groups,
yielding a forward/backward representation of the type in (6.2.39a) and
(6.2.39b).

The multi-point boundary condition for the 1-D form of the smoother
dynamics defined by (6.3.23) is formulated by following the developements in
Appendix 6E. The boundary condition for the system of FFT-decoupled processes
in (6.3.27a) and the subsequent forward/backward representation are obtained
from this 1-D multi-point boundary condition by the procedure discussed in
Section 2 of Appendix 6C. Finally, given that the boundary condition and
dynamics are in the 1-D forward/backward form, the estimates can be computed
by implementing the general solution derived in Appendix 6B and applying the

inverse of each of the above mentioned transformations.

Example 2: A Mixed Causal/Noncausal Process

Consider a scalar 2-D discrete process X governed by the 2-D difference
equation
. .= . . +blx, . + X, . + u, . 1,7 € S. 6.3.28
xl+1’3 axl,j [xl,j_1 xl'3+1] 1,3 (i,3) ( a )
These dynamics are causal in the index i and noncausal in j. The input

process u is a discrete 2-D white process with support S and variance Q. The

245



boundary condition for this process will be given by

v = Ix . (6.3.28b)

Here xq1 is the vector representation (6.2.10b) for the process x at i=1 and
xp7 and xg are the values of the process at the top and bottom boundaries
of S as defined in (6.2.3).

To see why we have included x7 and not xg in the boundary condition
(6.3.28b), consider the dynamics in (6.3.28a) for i=1, the smallest value of i
in S. To compute xj4q for i=1, we require knowledge of x;i and not xq.
Finally, we note that since xqy = xy_q1 € xp, (see (6.3.10)), this boundary
condition is of the form v = Vxp, which is required for an application of our
estimator.

A physical interpretation of the dynamics and boundary condition
described above is that of a finite difference approximation of the 1-D heat

equation for a homogeneous rod:

2
T _ 8T L . (6.3.29)

ot 9L
Upper case T represents temperature; lower case t, time; % a spatial variable
and £ a forcing function. This forcing function could represent spatial
variations of the thermal properties of the rod from nominal and temporal
variations in external temperature.

The observations of the process x are given by

Yij = Cxij + rij on S (6.3.30)
where r is a white observation noise with covariance R. The estimator for
x given vy on S could be formulated by deriving Green's identity for the
dynamics in (6.3.28a) (which is not in the NNM form) and applying the operator
solution developed in Chapter 2. Alternatively, we could rewrite the dynamics

in NNM form and apply the machinery developed in this chapter. We will pursue

this second approach here.
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We will consider two forms of nearest neighbor model for (6.3.28a). The
first, the simplest of the two, requires that the coefficient a in (6.3.28a)
be nonzero. The other is valid for the more general case of arbitrary values
for a. Since the second model is more.widely applicable, we will merely
present the first model and will develop the smoother for the second. The

first model is obtained by dividing by a to get

X,, = —a'lbx. . + a‘lx. .- a'lbx. R a'lu.. . (6.3.31a)
13 1,31 i+1,3 i+1,3 1)

In this case

=1 -1 -1
A1 = 0, A2 = A4 = -a b, A, = -a and B = -a . (6.3.31b)

The second model requires an increase in dimension (see Section 6.2.1).

Specifically, define the 2X1 process X5 as1

xi+1 j
X, ., = +J . (6.3.32a)
i,3

It is straightforward to show that the following define a NNM model for X

a 0 0 b 0 0 0 b

and
B=| (6.3.32b)
= O . eI
In terms of the new process X, the observation is
y.. = [0 : CIX,. + r,. . (6.3.32c)
13 1] 1]

If we denote the 2X1 adjoint process by Aij' then it can be shown from
(6.3.5) that the smoother dynamics for the model in (6.3.32) are given by

i 0 :-90 o]l 1 a 0:0 o]l ] 0 b:o0 0 .
0 _ 1 _: 0 o fpijp _ 1 _0_: 0 0O}y i-1,3f 0 O_: O O}f i,3-1
0 2o 15 10 K “{o o:o0 of|% 0 0: 0 Off*%
o c?r-': 0 1 i3 0 0:0 offl i-1,5 0 0:b ofl%,3-1
0 0:0 O ’; O b:0 0 '; o |
0 0: 0 ofl*i+,] 0 0: 0 of{%i, 5+ 0
16 ToTiTa” T 0 "0"i%0” of| 1 *lo X ;5 (6.3.33)
0 0:0 ofl"%+,5 0 0:b Of| i3+ CR-

1 The use of X and A in this example should not be confused with their use
elsewhere in the thesis.
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The first thing that we notice about these dynamics is that none of the
coefficient matrices that we have previously referred to as the Ay) is
invertible. Thus, no 1-D dynamics in the recursive form of a marching method
can be obtained. However, as we demonstrate below, the 2-D dynamics can be
manipulated into a 1-D scattering form which can be decoupled into a system of
lower-dimensional processes which are also in 1-D scattering form. First

denote the partitions of A by

A, =M (6.3.34)
ij
and note that the first, third and fourth rows of (6.3.33) can be written as

(with some shifting of indices)

first: ~ N ~ ~ ~
. , = . + .. + bx, . + . .3.3
x1+1,3 Q 1) axlj x1,3—1 bxl,j+1 (6.3.35a)
third: - - -
T L.o= A, . = ah, . (6.3.35b)
1] i-1,3 1]
and
fourth: ~ 2 1~ N N . 1
.. = =CR™"x,. + bA, . + bA, + CRTY,. (6.3.35¢c)
13 1] i,j-1 1,34 ij

Substituting the expression for the third row into the fourth to eliminate Y,

we have

Ai—1,j = a)‘ij + b>‘i,j—1 + bAi,j+1 - C'R Xj§ + CR Yij - (6.3.36)

Combining (6.3.36) with (6.3.35a) gives the smoother dynamics in a form which

is reminiscent of the scattering form of the 1-D discrete smoother studied in

Chapter 5:
. .. 0 . 0 . .
Xi41,3 a Q %13 b X531 b *i,94
A = 1 ~ + ~ + ~
. R -C"R™ all A, . 0] b .. 0 b ..
i-1,3 ! 1] i,3-1 i, i+
0
+ V.. B (6.3.37)
cr-H
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In fact, the dynamics in (6.3.37) do result in a 1-D scattering form when
written in terms of the stacked vector processes x; and A; (except for a

shift in the index of A):

>

TRIDIAG{b,a,b] : p1aG {0} x, 0

- - - == - - = = + MR + - - -y
. p1ac {-c’r-!} : TrRIDIAG{b,a,b} 3 : pIaG {cr-1}
i-1 i TB

=

H-
|

b

i+ _

i

where, as usual, M is a matrix which accounts for the contribution of the
process on the boundary of S, TRIDIAG{b,a,b} is the tridiagonal matrix with a
on the diagonal and b on the upper and lower off-diagonals. We remark that
this form for the dynamics could have been obtained more directly from the
first form of the nearest neighbor model (6.3.31a). However, as we have seen,
when using that model an intermediate step requires the inversion of the
parameter a which may be zero for some models.

Finally, we show that the FFT-based decoupling transformation can be

applied to these dynamics as well. In particular, define

q1':.L = (D ® I)xi (6.3.38a)
9,3 = (0O ® DA, (6.3.38b)
and
(D®1): O {1 - 0
o, = |- - -i- - -+ - - - - - = 1y (6.3.38¢c)
0 :(D®1I) 3 (D ® I)DIAG {crR™ "}
TB

where the index in (6.3.38b) has been shifted so that the dynamic model below
is in a form identical to the 1-D scattering dynamics studied in Chapter 5.
Recalling that (D X I) diagonalizes a symmetric tridiagonal matrix (see

(6.2,43)), we can write the transformed smoother dynamics as

q. . piac{a + b } : pIaG {0} a, .
LR I D O LEE U, (6.3.384)
a, ; piag{-c%r-!'} i prac{a + b)\j} S

where the Aj are the eigenvalues given in (6.2.45d).
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Since each of the partitions of the dynamics matrix in (6.3.38d4) is

diagonal, we have J-1 decoupled processes with the following scattering form

dynamics:
q1i+1 . a+bp, : O q1i .
N=1- 5 3 - - - 'l 4 U, L3 =1,200.0-1.(6.3.39)
9, . c%r-! i a sbe {2 | . Ted
1,7 J i+1,3

In Chapter 5 we derived a method for transforming dynamics in this scattering
form into stable forward and backward components. The final step is to
rewrite the estimator boundary conditions given by (6.3.24) as boundary
conditions for the transformed forward/backward processes. The same
methodology discussed in Appendices 6C and 6E can be followed in rewriting the
boundary condition. The estimates are obtained by solving for the
forward/backward processes as described in Appendix 6B and then successively
transforming back to the low-dimensional scattering variables, to the
high-dimensional scattering variables (via the FFT) and finally to the

A

~
original processes x and A.
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APPENDIX 6A

THE DIRICHLET CONDITION FOR SINGULAR Ap

In this appendix we show that if any of the nxn coefficient matrices Ay
in the 2-D dynamics (6.2.1b) is singular, then the minimum dimension of the
boundary condition required for a well-posed problem is less than that of the
classical Dirichlet boundary condition defined by knowledge of the processes
Xps Xgs ¥g and xp in (6.2.3). That is, we will show that it is not
necessary to know the entire process X4 5
we determine the minimum dimension boundary wvalue and redefine the Dirichlet

on the lattice boundary 9S. Below

condition in terms of it.

Denote the ranks of each of the A, as

n, = rank(Ak) ; k=1,2,3,4 . (6.A.1)

First consider the case for which Ay is singular, i.e. n; < n. From

(6.2.1b), the values of the process for i =1, j =1,2,...J-1 are given by

X + Bu . (6.A.2a)

1,9 = P1¥o,5 Y BaXy yoq P Rg¥p gt Rgx g, 1,5

With 24 singular, there exists an invertible nxn matrix, call it ¢ 1 whose

inverse compresses A, into a full rank n<ng matrix F; as

=1

1 H

(Of course, ¢, and the corresponding F; are not unigue.) Employing dqr
Xp,§ can be transformed for j =1,2,...J-1 (i.e., along the left edge of 9§

as depicted in Figure 6.2.2) as

~

dO,j = ¢1x0’j (6.A.2c)

and (6.A.2a) can be written in terms of this transformed process as

-1~
A +A
1,5 T P01 90,5 TR goq PR3 g P RAX, ju B

X

Oldo .+ A_x + B u, ., (6.A.24)

[F I S PR s L TR B L R 1,3

1
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If we define dO,j as the first n, components of ao,j and substitute from

(6.A.26), then (6.A.2d) can be expressed as

X = F1d + A x + Bu . (6.A.3)

1,3 0,9 T B2%y, o1 T By¥y gt Agxy 4, 1,3

Recalling the definition of x; in (6.2.2) and employing the Kronecker matrix
product [51], it can be shown that dp, for j =1,2,..3-1 can be expressed
as a linear combination of x on the left edge of 3S:

a =[1,,® [1n1== 01 (1® ¢,)x, (6.A.4a)

where, for instance, is the J-1xJ-1 identity and d;, is given by the

T3-1
(J-1)n4x 1 vector with nyx1 partitions

. (6.A.4b)

This clearly demonstrates that we only need to specify the (J-1)n4
values of dj, as the portion of the Dirichlet condition for the left edge of
dS. A similar argument holds for the remaining three edges of 3S so that in

the same way that we defined 4; We can also define

ag=[1,_,® [Inz:: 01 (1® ¢,)x, (6.A.5a)

dg=[ 1,,® [1n3=: 0] (1® ¢5)x, (6.A.5b)
and

dp=[1,,® [1n4:: 01](1® ¢ ,)x,, . (6.A.5¢)

where the ¢ are chosen as in (6.A.2b), i.e.

(5, s 0 =ne . (6.A.5d)

Thus, to completely specify the nx1 process x on the lattice S, we can
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redefine the Dirichlet boundary condition as

dL
d
Vd = dR (6'Ao6)
B
dT
and the total dimension of the boundary value v is
nV = dim(v) = (J - 1)(n1 + n3) + (I - 1)(n2 + n4) . (6.A.7)

Note that in the case where one of the Ay is full rank n, we will choose
¢k to be the identity so that Fr = B and the corresponding edge process
dx is is precisely equal to itsrcounterpart in (6.2.2). Also when A =0,
then Fp = 0, and the corresponding d4 does not appear in the boundary
condition (6.A.6).

Throughout Chapter 6 we make use of some relations which follow directly

from the developments above. First define

a, (I® A ) (6.A.8a)

and

x

(I® Fk) i k=1,2,3,4 . (6.2.8b)

By substituting, for instance, for d; from (6.A.4a) and using the relation
between Aq, ¢ 1 and Fq; in (6.A.2b), it can be shown that x; and g

are related by:

a1xL = f1dL . (6.A.9a)

A similar argument establishes:

asz = fde ’ (6.A.9b)

azxp = f3dR (6.A.9¢c)
and

a4xT = f4dT . (Gvogd)
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APPENDIX 6B

THE GENERAL SOLUTION OF THE FORWARD/BACKWARD 1-D MULTI-POINT BOUNDARY
VALUE REPRESENTATION OF THE NNM

6.B.1 The General Solution

Consider a process governed by the NNM dynamics in (6.2.1b) which have
been transformed into the forward/backward decoupled 1-D dynamics in (6.2.39a)

and (6.2.39b). For convenience we rewrite those equations here:

Xe,1 - Pefg,io1 Y BEYy Y Mpdey (6.B.1a)
and

X =2 A '8 u. -a'm .a (6.B.1b)

b,i-1 -~ “b *p,i b b i b biTB . +Be

Recall that the process x¢ is forward stable (stable for increasing i), that
the process x,, is backward stable (stable for decreasing i) and that the
original process x is related to x¢ and x, by a known dynamical decoupling
transformation T (see (6.2.37) and (6.2.38):

Xi+1 £,

Tl = |x (6.B.2)

i b,i
where xj is the representation of x given in (6.2.10a). In this section of
the appendix, we derive the general solution for the process with dynamics

given by (6.B.1) and with a multi-point boundary condition of the form (see
(6.2.39¢)):

X

I

i, i [FEd

v =.Z [v; : vi] Ll Vopdos . (6.B.3)
i=0 b,1

To derive the general solution for (6.B.1) given the boundary condition
(6.B.3), let d¢ and %y be the transition matrices for Ag and Ab‘1

respectively and consider the processes

n
0 .
Xe o = '2 ¢ (n,i)B u, (6.B.4a)

i=0
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and

0 0 -1
*,n iZ_IQb(n'l)Ab By :

(6.B.4b)

Specifically, these two processes are the solutions of (6.B.la) with a zero

initial value and (6.B.1b) with a zero final value, respectively and with

dpg = O. Next, define the following matrices which account for the

contribution of a nonzero dpg:

G

n
i )M
£,n L e tni) £i

i=0
and

G
b,i

& -1
_Z o, (n,i)A M . .
i=I

f X and x were known, we could write the solutions of
1t drgr £,0 b, I !

(6.B.1a) and (6.B.1b) as

0
Xen = 0p(mei0dxg o+ xp 4G dpy
and
=6 (n,I) +x) +c6 a4
*pen - b Ep, 1 T %p,n b,n°TB  °

(6.B.5a)

(6.B.5b)

(6.B.6a)

(6.B.6b)

However, these values will not be known unless we have a very special boundary

condition (6.B.3)). To determine them, substitute (6.B.6a) and {6.B.6b) into

the boundary condition (6.B.3) to get

I ed *£,0 I io0 i0
v = .): [V;d:f(i,O):Vb(Db(i,I)] N + 2_ [V;xf’i + vab'i]
i=0 b, I i=
I .
+ (Vg + iE;OI'VIfo,l + Vl];Gb,l])dTB .
Define the matrix Fgp as
(31 oy (1,1)] AN N B
F_ = ® _(i,0)ivVe (i,I)] : V__ + v ! .
fb ieo Ef b b’ : TB im0 f PGy
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When the problem is well-posed, Fgp Will be invertible and we can solve for

the initial and final conditions Xf,0 and Xp, 1 and the top and bottom edge

term dTB as

“£,0 -1 L o4l xg i
x| = Felv - L [veivilf ot . (6.B.9)
a ! i=0 Xy
TB 'l

Combining (6.B.9) and (6.B.6) and defining

P 0 S
®(n) = ) 0 ) i fb(?,llf ?bLn R (6.B.10)
0o 0o i I
we can write the general solution as
] 0
xf,n 1 I Vi i xg i xf,n
= - - : '
X =0 (m)F_ {v .Z [ f‘Vb] o b+l . (6.B.11)
i=0 b S b,n
d b,i
TB i 0

The original process x is recovered from the computed values for xg¢ and Xy

by inverting the transformation in (6.B.2).

6.B.2 Process Variance

In this section we formulate expressions for computing the variance of
the process for which we derived a general solution in the previous section.

It is assumed that the input process is a 2-D discrete white noise:
' =0..6, 6, . .B.1
E{uijukl} Qlj kS50 (6 2a)
In the stacked vector representation of u given in (A.2a), we will write:
L} = . .
E{uiuk} QiG ik (6.B.12b)

where

Q. = i,2 . (6.B.12c)
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The boundary vector v is assumed orthogonal to the input u with a given

covariance
Evv' =1 . (6.B.13)

Given this orthogonality assumption, one can see from (6.B.11) that the

variance of {xf,n' xb,n' dTB} can be formulated in terms of J the

v'
covariance of v, and the following three covariances (see (6.B.19)):

0 _ 0 0!
(1) Pf(n,k) = E{xf'n xf,k} ' (6.B.14a)
0 _ 0 0!
(2) Pb(n,k) = E{xb'n xb’k} (6.B.14b)
and
0 - 0 0’
(3) Pep(nik) = E{xf,n xb’k} . (6.B.14c)

O in (6.B.4a) and (6.B.4b),

Using the expressions for xfo and xp
difference equations are specified for each of these three covariances as

follows. 1In each case it is assumed that n > k.

k
) Y - : Ve (e
P (n,k) —Qf(n,k){.z ® (k,1)B.Q.Bb 1(k,i) |
i=0
=6 _(n,k)M° (6.B.15a)
R £,k *=e
Where
1° =6 _(k+1 k)HO 81(k+1,k) +B.QB' ;T° =0 (6.B.15b)
£,k+1 ! f,k f ' ka £ " Tf,0 T

0
Pf(k,k)

0

For the case when n < k, an expression for P¢Y can be obtained directly

from the relationship

0 0!
Pf(k’n) = Pf(n,k) . (6.B.15C)
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n
’ : 0 3 &1 : 1
RLLLS B, (n,k) ={ 3 @, (n,i)B 0.BI®) (n,i) }cpb(k,n)

i=I
—]TO ®'(k,n) (6.B.16a)
b,nb ' : 5. 102
Where
HO =6 (k-1 k)l'[O ®'(k-1,k) + B B' ; HO = 0 (6.B.16b)
b,k-1 ~ b b,k b ! b Bp b,I ~ T
0
= Pb(k—1,k-1) .
Again, when n < Kk, we can use the relationship
22 (k,n) = 2°(n,k) 6.8.16
b F2 1) = b n, . ( eDoe C)
(3): 0 n
= i “"H ! i '
be(n.k) {izkéf(n,l)BfQiBbe(n,l) }@b(k,n) (6.B.17a)
If we define
° =0 _(k+1, kM2 6'(k+1,k) +B.QB' ;1 =0 (6.8.17b)
fb,k+1  f " fb,k b ! £% b ' " fb,0 U
and note that
0 k
- . v .
Tep .Z ®.(k,1)B,Q.BIO (K, i) , (6.B.17¢c)
i=0
then by direct substitution it can be shown that
2 (n,k) =12 8'(k,n) - &_(n,x)M° (6.B.18¢c)
fo 1 fb,n b’ £ g,k sBelbc
Also, it is straightforward to show that
0 0 0! o'
P g(n/k) = E{xb(k)xf(n)} = P;, (k,n) (6.B.18d)
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and that when n < k

P b(n'k) = 0 .

(6.B.18e)

Given these covariances we can write an expression for the variance of

the process

whose general solution is given by (6.B.11).

First define

Po(i,n) g(l,n) 0
E(n) = - (n)F, {):[v1 v] - - : |} (6.B.19a)
be(n,l): Pb(l,n)‘: 0
and
. P (1 J) Pb(llj) V§| -1
¥(n) =& (n)F, {Z X[V; vl |- 0. oo = A=t b g et
i=0 =0 (3,1) P (i,5) |fvi
j b b (6.B.19b)
then the covariance
xf,n
JORE] P CIRT
drg
can be expressed as
Po(n,n): 0 : 0
P(n) —-@(n)FfbHVFfb '(n) +EZ(n) +=Z*(n) +¥(n) + ) 0— : fb(?,ni:-o .
0 . 0 0

With minor modifications,

(6.B.19¢c)

both these results and those in the first section of

this appendix, can be rewritten for processes satisfying either forward only

or backward only dynamics.
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APPENDIX 6C

IMPLEMENTATION OF THE DECOUPLED MARCHING METHOD DYNAMICS

6.C.1 Implementation via the FFT

Following the development in Jain and Jain [53], we show how the vector

matrix product

where o and B are (J-1)X1 vectors, can be implemented by the FFT, Then, by
employing an identity for Kronecker products, we extend the results of Jain
and Jain and show that the transformation (D ® I) can also be implemented via
the FFT.
From the definition of D in (6.2.44), the elements of the product DB in
(6.C¢1) can be written as
J-1

o = 2737 ) B sin (mk /) . (6.C.2)
m=1

If we let

and define an MX1 vector with elements

~ Bm ' 1 <m< J-1
Bm = { 0 ’ otherwise ,i.e. when m=0 or m>J ! (6.C.4)
then by direct substitution it can be shown that
12 M- 1/2
a =2 m{ (1/m) /2§ B exp[(-1) /2 ymkmm] } (6.C.5a)
m=0

which can be expressed in terms of the kth element of the discrete Fourier

transform (DFT) of B as

o =2 Im [DFT {8} ]

~

x 1 <k < J-1 . (6.C.5b)
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Thus, the vector o in (6.C.1) can be computed by padding B with J+1 zeros and
setting elements of the vector o equal to twice the imaginary part of the
first J-1 elements of the DFT of this padded representation of B.

Now we consider the product of the n(J-1)*n(J-1) transformation (D X I)

and an n(J-1) vector g written in nX1 partitions as

g = . . (6.C.6a)

Ig3-1

The vector g can also be expressed as the lexicographic ordering of the array
G = [g1: gyieee :gJ_1] . (6.C.6b)

We will write the relation between the vector g and the array G via the

Stacking operator S( ) [54] (that is, g is formed by stacking the columns of

G):
g = S(G) . (6.C.6C)
Using this notation, we can write the product

£

(D® I)g (6.C.7a)
as

f

(0D ® 1) S(G) . (6.C.7b)
By employing the following identity for Kronecker products [54]

S(ABC) = (C' ®A) S(B) , (6.C.8)
we can express f in (6.C.7b) as

£

S(IGD')

S(GD') = S((DG"')') . (6.C.9)

Thus elements of f can be computed from the DFT of the rows of G
appropriately padded with zeros (i.e. computing the columns of DG' via

(6.C.5b)).
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6.C.2 Boundary Conditions and Summary

The decoupled dynamics resulting from the FFT-based transformation of the
1-D marching dynamics are summarized. In addition, we present the result of
applying the decoupling transformation to the boundary conditions. Then we
further diagonalize each of the J-1 systems into stable forward and backward
component processes. Our objective is to write the 1-D dynamics and boundary
condition in the form of the forward/backward dynamics and boundary condition
in (6.B.1) and (6.B.3) in Appendix 6B. Then the general solution formulated
there can be applied to solve the decoupled system. We begin with a

restatement of the basic NNM dynamics of the nx1 process SR

X + Bu (6.C.10)

= . . + A X%, | . . Lo ..
i35 = M%io, 5 P RXy 501 T R3%ia, 5 TR, 50 i
where here we assume that A3 is invertible and that A, and A, are
identical. The general form of the boundary condition for (6.C.10) can been
written in terms of x; the stacked vector representation of x;. and is of

1]
the multi-point form of (6.B.3) (see (6.2.33a)):

I
v = X le. + v
ico * T

B
. (6.Co11)
B dT

The first of the two transformations performed on the 1-D marching method
dynamics in (6.2.43) is the FFT-based decoupling transformation in (6.2.46a):
q;, = (D® I)xi . (6.C.12)

Recall that gj is the stacked representation of a 2-D process qij and it

has been shown in (6.2.52) that the dynamics of this process are given by

q. . q. . -
l+1r:| = A . 1,7 + 1,] ; J = 1'2’.‘.']_1 (6.c.13a)
9 Wi, 5 0
where
A_ +A.A_: A
A =|3--12_1 (6.C.13b)
bR I :0
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and Ui,j are the elements of the vector U; in (6.2.51b):

Ui,
Ui 5 ~
= ' = . L] L]

v, = . (D® I)(I®Blu, + M .d (6.C.13c)

Ui,J—1
where
B i-1 i-1

Mp; = -(D® Da (IR £,d, + LR £,4) . (6.C.23d)

Here Ips, Ip, and R are defined in (6.2.16) and (6.2.17), and f2 and f4

are defined in (6.A.8). The computation of the first term on the right hand

side of (6.C.13c) is preformed via the FFT as follows.

Define
E& ~ _
i, 1 B u,.
l, ul'1
W, _ B u,
wi = i, 2 = (D® I) i,2 (6.C.14a)
W, .
i,J-1 Yy, 3-1
Then U; can be written as
Ui =w, + MTBidTB (6.C.14b)

and w; can be computed via the FFT as described in the previous section.

Given the sparseness of Ip, IT and Ri'1, it is likely that the most

efficient way to compute Mpp; in (6.C.23d) will make use of this sparseness
rather than the FFT.

Under the transformation in (6.C.12), the boundary condition in (6.C.11)

becomes

I .
1
v=1) Vg +V,.d (6.C.15a)
i=0 q-i TB TB
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where

Vl(D® I)

<
]

[(D® 1) vi']- . (6.C.15b)

The second form of (6.C.15b) is intended to illustrate how the Vi can be
computed via the FFT as discussed in the first section of this appendix (see
(6.C.9)).

Thus far we have invoked the invertibility and symmetry assumptions and
the transformation in (6.C.12) to rewrite the original 2-D NNM dynamics of the
nx1 process Xjj on S as J-1 decoupled forward 1-D problems (6.C.13a) with
coupled boundary conditions (6.C.15a). Next we consider a second
transformation which transforms each of the J-1 dynamical representations in
(6.C.13a) into stable forward and backward dynamics. Thus, we seek a family

of transformations {Tj} which transform the Ag4 in (6.C.13b) into the

diagonal form
=T - - =T A T, ;o= 1, J-1 (6.C.16a)
5 a3 1=

so that each of the Af is forward stable and each of the A, is backward

stable. Since each of the qu is 2nx2n, these transformations can easily be
found by numerical eigen-decompositions of the Agj (That is, we assume that.
n is small, e.g. <<100). The dimensions of the partitions in (6.C.16a) are

given by

A -n Xn ’ A - n X

. . . and n + n =2n . (6.C.16b)
£,] £, £,3

. sn . . .
b, j b, b,3 £,3 b,j

Note that for some j, either nf j or np,j may be zero so that for these
subsystems the dynamics will be entirely forward or entirely backward. The

new processes resulting from each of these transformations will be denoted by

i, ] =1, . (6.C.16¢c)

Their dynamics are decoupled and are written as

q =A .gq + u (6.C.17a)
Fivn,g B3R5 E5 5
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and

-1

= ;g o= 1 - . .C.1
qb‘ ' Ab,jqb. . + ub. . 3 , J-1 (6.C.17b)
i,j i+1,3 1,]
Expressions for ug, 3 and up, . can be written in terms of the Ui, 5
4 4
which drive the dynamics of 9j,§ in (6.C.13a) as follows. Denote the
partitions of the Ty as
Ter,5 1 Tea, 5
Tj =l- - - - -, (6.C.18a)
Ty1,5 § To2,5
then with U; j given by (6.C.18c) uf and up, can be written as
u =T U (6.C.18b)
£, . £1,3 1,3
i, 3
and
AT . .U (6.C.18c)
u = = . LY. . . oL o
bi 3 b,j bl,j 1,7 ©
r

Finally, the dynamics can be written in the form of the process whose
general solution is presented in Appendix 6B as follows. Denote the stacked
vector representations for af; and b . as

r 4

q q
£ b1
- |9 - |9
qf’1 = 1. i, 2 and qb,i = 1. i, 2 . (6.C.19a)
q q
£, a1 P, 31

Then the dynamics in (6.C.17a) and (6.C.17b) can be written as

Uy T DIAG{Af’j}q Lt DIAG{T1f,j}Ui

= DIAG{Af Ja

’ 14

+ DIAG[T
i 1

6.C.19
TBi TB ( k)

265



and

b,j}qb,i+1

= DIAG{A b,ij1,j}Ui

a ; +DIAG{ -a

:
D -
b,j}qb,i+1 +DIAG{ -A w, + M__.d

b,ij1,j}[ i

DIAG{ A

TBi TB

(6.C.19¢)

where U; has been replaced by the expression in (6.C.14b) and DIAG{'}

represents a diagonal matrix with diagonal elements given by its arqument

{'}. The dynamics in (6.C.19b) and (6.C.19c) are in the form of (6.B.la)

and (6.B.1b).
of the transformed processes gf and gp.

First rewrite that boundary condition as

I J-1 ., . q. .
v=) Y [V it |« Vopdos
i=0 j=1 ¢ i1, 3
i,3 . Vi , .
where the Vé are the partitions of q in (6.C.15b):
Vl =[V1'1 ; V1'2 ::. o« o Vl'J-1] .
q q q q

Next we must rewrite the boundary condition (6.C.15a) in terms

(6.C.20a)

(6.C.20b)

By substituting from the forward/backward decoupling transformation in

(6.C.16¢c), (6.C.20a) becomes

I J-1 Vl 3 -1 qf
= 14 . .
M .g .g [ a 0]Tj 13 |+ Vpgdopg

i=0 j=1 q
b. .
i, 3

or defining
% RERIE O PRNENTE D I -1
[ve"” 2 v [va : o]Tj

the boundary condition can be written as

PO el s ey |9
= ’ : [ ..
v X .): [ £ b ] 1,3 + VTBdTB
i=0 j=1
Iy, .
i,3
Finally if we define

i _ i,1 - i,2 : : _i,J-1
ves [v' o 7 T I ]
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and

i_ i,1 : i,2 i,J-1
v, = [vb A e V] , (6.C.22b)
then we get the form of (B.3), the boundary condition in Appendix B,
I . . lg. .
- § [ E
v iX_O [ve i v] + Vo d (6.C.22¢c)
= qb,i .

where gf and qp, are defined in (6.C.19a). Thus, with the dynamics given

by (6.C.19b) and (6.C.19¢c) and the boundary condition given by (6.C.22c), the
problem is in the form of the multi-point boundary value problem whose general
solution is derived in Appendix 6B. To recover the original process x from
the computed values of gf and gp, one need only implement the inverse of

the transformations in (6.C.16¢c) and (6.C.12) where the latter can be

performed by the FFT as described in the previous section of this appendix.
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APPENDIX 6D

GREEN'S IDENTITY FOR THE NNM

6.D.1 The Adjoint Difference Operator

The relationship between the formal difference operator representing the
dynamics of the NNM in (6.2.1b) and its formal adjoint Lt is defined by way
of the Green's identity. A similar approach to that taken in Chapter 5 for
the 1-D discrete case yields an expression for the adjoint difference operator
for the discrete 2-D case. First define the 2-D shift (delay) operators Dq

and D2 as

(D1X)i. (6.D.1a)

X, .
Jj i-1,3
and

-1
(DyX)j5 = %5,50q ¢ Py X5 =% 54

. (6.D.1b)

The NNM dynamics in (6.2.1b) are described by the following first order
difference operator (first order implies that the total shift in any term,

that is the shift in i plus the shift in j, is one)

-1 -1
L=[1-aD -2apD, - a0 -aD ]

L: 1’2‘(5 U3s) - 1’2’(5) . (6.D.2)

Thus, in operator notation, the NNM dynamics in (6.2.1b) are
Lx = Bu (6.D.3)
The Green's identity is a relation between L and its formal adjoint Lt of

the form

<Lx,A> = <Lf1,x> + boundary term . (6.D.4)
n n :
12(S) 12(S)

The formal adjoint L' is a formal difference operator of the same order as L

(first order) and is determined by manipulating the summations implied by the
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inner product <Lx,A> as follows. For economy of notation, let

I-1 J-1
=1 . D) (6.D.5a,b)
ioi= j o §=1
and
I-1 J-1
22 = Z X . (6.D.5¢c)
iy i=1 3=

Given this notation, the inner product on the left hand side of Green's

identity in (6.D.4) can be expressed as

[ x

<TxA > Xz

Ax., . . ](6.D.6)
l (S ) J+1

.. — A X, . - A x. . - A_X, .=
13 ij 1x1—1,3 2xl,j—1 3x1+1,3 41,
It will be convenient to define each term in the summand in (6.D.6) by a

separate variable:

= - ' ' = — ' f .D.
%1 ) Xi1,5% 5 S2 21 X 52ty (6.D.72,b)
1 ij
= - I 3 = - ! : . - r
S3 zz xl+1,JA3A1] ! S4 ZZ xl,]+1A4)\lJ (6.D.7¢c,d)
ij ij
and
S =~ 22 i 5 ' (6.D.7e)

so that the inner product in (6.D.6) is the sum of these five terms. Writing

Green's identity in (6.D.4) as

ZZ (Lx)!.X

ij ij

1. 1
%Z (L A)ijxij + b.t.

it can be seen that to find an expression for L!, we must make a change of
indices in S; through S4 so that xij appears in each (as on the right

hand side of Green's identity) rather than A;: (as on the left hand side).

ij
First define

- Z [ 0,3 1 1,3 - I 1,3A;AI,J] (6.D.8a)
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bt =-) [x' An, - x! Ay, ] (6.D.8b)

b.t. = -} 'OA'A - x' A'A 6.D.8
% [XI,j 3 11,5 1,53 O,j] ( c)

bet. = - ' A - x' A" 6.D.8d
E [xi,J 4" i,3-1 i,1°4 i,O] ( )

Then, when the indices are shifted as suggested above, Sy through Sy

become
-1
S1 = <x,—A.iD1 X> + b-to.l ’ (6.D-9a)
S. = <x,-A'D_A> + b.t (6.D.9b)
2 = Xy 2 2 . 02 ’ .D.
S = ,=A'D A + b.t. «D.
3 <x 304 > b 3 (6 9¢)
and
S =«x,-A'D)A> + b.t. . 6.D.9d4
a T TR, 4 ( )

With the formal adjoint given by (Lt has the same range and domain as L in
(6.D.21))

1 -1
L' =I-am, -A

-1
' - ] - '
1 2D2 A3D1 A4D2 , (6.D.10a)

or

b4 - A'x (6.D.10b)

*
= - — L] - ]
(®)55 = %55 = Bi%ia,5 7 B0 5 T B3Ry T AR 5o

L}
J ij 1

it is straightforward to show that the desired form for Green's identity



yi.e. (6.D.4), is achieved:

<Lx,A> = ) S

= <, + ¥ b.t.

Note that L

and

k=1

6.D.2 The Boundary Term

k

is formally self-adjoint (i.e. L = Lt) when

(6.D.11)

(6.D.12)

To express the sum of the boundary terms in (6.D.11) in more compact

notation, let

2n(J-1)x1

X1-1,1
1-1,2

»

» » M oo

I
I,1
I,2

M oeee

I,J-1

4

=1,J-1

2n(J-1)x1

2n(I-1)x1

(6.D.13a)

2n(I-1)x1

with similar definitions for Ay, AR, Ag and A given in terms of the

A

(6.D.13a) (and their Ay, AR, etc. counterparts) by

where xr,, xR, xg and xp have been defined in (6.2.3).

If we also

ije It will be convenient to denote the partitions of the vectors in

(6.D.13b)

define a3 and a4 as the following 2n(I-1)x2n(I-1) and 2n(J-1)x2n(J-1)



matrices respectively

0 :f@A3

0 : I® A
- - = - and a - - - : - -
13 -I® A+ 0 24

. (6.D.14)
-I®A2: 0

then the sum of boundary terms in (6.D.11) can be expressed as the sum of four
inner products:

4
) R s AT 1 7 %R anre)
k=1 R RN

+ <a' X ,A > - < X ,A > . 6.D.15
224"8""8” 2n(3-1) ~ “2a%7'%0” 2n(a-1) ( )
R R
By defining lower dimensional boundary processes equivalent to:
A ] B | B i [\ |
r 0,1 I 1,0 1,J
A A A A
0,2 I,2 2,0 2,J
A = . ! A = . ! A = . ! A = . ! ol) e
L . ! R . ! B . ! T . (6.D.16)
A A A
AO,J-1 I,J-1 I-1,0 I-1,J

similar to dp, dg etc. in Appendix 6A for xi,, xR etc., we show below

that the sum of boundary terms in (6.D.15) can be written in terms of these
lower dimensional processes.

Choose I'y so that Ap' is compressed as

IH;Gk = [gk:: 0] ( 9 - nxnk) .

(6.D.17)
Similar to d;,, dg, dg and dp in Appendix 6A define
= I I A .D.18
£ [1J_1® [ ni 0l](1® TN (6 a)
=|1I I 0 I T A .D.18
£ [J_1®[n1: aer n (6 b)
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E =[1. ® [r_: 01] (1 ® TN (6.D.18c)

and

=|I I :0 I T )X . .D.18
Er [I-1®[n: 1](@2)T (6 a)
Next we show how the boundary term in Green's identity can be written in terms
of these quantities. First redefine the variables in (6.D.13), X1, etc., and
their counterparts Aj etc. by the equivalent (in the sense of boundary

information as discuseed in Appendix 6A) expressions:

N x_ ] E x
DL =T Dy = dR'1 D, = B D, = dT'1 (6.D.19a)
XL+ R *B+1 T
and
£ ] A ] i A
. -1 - B - -1
B = ;\L 5 = ER 55 = |, =, = ET . (6.D.19b)
L+1 : R B+1 T

Recalling the defintion of the Fp in (6.A.5d) and substituting from (6.D.18)

and (6.D.19), it can be shown that the sum of boundary terms in (6.D.8) can be

expressed as

4 0 :-Ix Fl 0 :IxgG,
l b.t.l = <D_,|- - =-:i- - = EL> + <D_,|- - =-i- - = ER>
= X : - ':
i=1 Ix Gy: O IxFy: O
0 ;:-IxF) 0 :Ixg,
+ <DB, - - -i- = = EB> + <Dp|- - -i- - = ET>. (6.D.20)
Ix Gy: 0 -Ix Fp: 0

With A} and Xp defined in terms of the quantities in (6.D.19a) and
(6.D.19b) as

ik

[£3]

and A= (6.D.21)

U U o o!
H W om
o
(]l (1)

H W oW
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and with E the block-diagonal matrix:

€5 0 0 0
e 0 0
31
E = (6.D.21a)
0 0 e24 0
0 0 0 e‘]'2
where (see (6.D.28))
0 ;:-I®F, 0 I® G,
e =|- - -i- - = ’ e =]- - == - =],
13 : 3 i
I® Gi 0 I® Fii 0
and
0 :-I® F} 0 :I®G,
SV -i- - =l and e =17 - -i- - = (6.D.21Db)
I® G4:: 0 I® F!
the sum of boundary terms can be written as
4
Y b.t., = <x ,EA > . (6.D.22)
. i b b
i=1
The product Elp in terms of these lower dimensional vectors is
E\ =E & + E_ A + E_ A +E & +E E_ +E_A + E A + E_E
b L, L L. L+1 R, R-1 R. R B, B B_. B+1 T, T-1 T.T
1 2 1 2 1 2 1 2
(6.D.23)
where
[ o0 ] -1 ® f1'- o0 ] [ o ]
IR g 0 0 0
3
0 0 0 I® g,
0 0 -I® f! 0
EL1 B 0 EL2 - 0 ER1 - 0 ER2 - 0
0 0 0 0
0 0 0 0
0 0 0] 0
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(6.D.24)

to
[
cCoO®OO0OCOO
Q
N
w
]
H
'-h
N -
]
«Q
N

f

]
|
H
MO oooooo
H
O@OOOOOO

oo
I
Ccoo@®oocoo
]
I

1

4
These expressions will be useful in Appendix 6E where the boundary condition
for the 2-D discrete estimator expressed in 1-D marching method form is

written as a multi-point 1-D boundary condition.

6.D.3 The Replacement Processes for the NNM Smoother

Following the developments in Appendix 6A, we show that the reduced-order
Dirichlet condition (the boundary replacement processes) for the smoother
dynamics in NNM form is, in fact, comprised of d, the Dirichlet condition for
the process to be estimated, and & which has been defined in (6.D.18) of the
previous subsection. To show this, first note that the matrices ¢ and Iy
in (6.A.5d) and (6.D.23a) have been chosen so that Ay and its transpose are

compressed into full rank matrices:

(6.A.25a)

and

-1

k . (6.A025b)

o] =T

As shown below, these same matrices can be employed to compress the four 2nX2n
coefficdient matrices Axkk of the smoother dynamics given in (6.3.5b). As
in Appendix 6A, we will use k = 1 for an example. The exposition extends to
all values of k. Multiplying Axk1 on the right by the following
block-diagonal matrix gives the compressed form:

-1 r

b 0 [F1§ o]: o
- - i- . (6.A.26a)

o
It

1|0 r o ile,}
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Employing the definition of dj, in (6.A.4a) and &, in (6.D.18a), it can be

shown that
x; (1 ®F1)§ 0 dL
X - : -
L 0 (I @)G3) £
L L

Thus, the information in ;: and ion the left edge of oS is contained in éL and

F’L' Following the arguments in the first part of this appendix, this

establishes {éL,éL} as an equivalent boundary process for {;;L, }‘L }, and we will

correspondingly define Fy ) as
1

F 0

F - A_1 1

)\ x (6.A.27a)
X 1 X 0

€3

with the block-diagonal form used in defining 1-D models (see (6.2.28)):

ka = (I ®FX)‘1 ) . (6.A.27b)

Similar definitions for other values of k are formulated by considering
-~ X -~ ~ ~ X . . A . ~ ~
{xR, R}' {xB, AB} and {xT, T} and the corresponding definitions of {dR, ER}'

A A

{dB, EB} and {dT, ET}' These are:

EN 0]
F = A (6.D.28a)
xA A
2 0 G
4
B 0]
F = a3 (6.D.28b)
xA < A
3 0 G
1
[+ 0 |
F = a7l (6.D.28c)
xA xA
4 0 G
2
and
fx}\k = (I @>Fxxk) , k=2,3,4 . (6.D.284d)
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APPENDIX 6E

MULTI-POINT 1-D BOUNDARY CONDITION FOR THE NNM SMOOTHER

In this appendix we transform the boundary condition for the 2-D smoother
as given in (6.3.14) to a 1-D multi-point form which is compatible with the
1-D marching method represenation of the smoother dynamics. In particular

that form is

o 4
o=F v ¥ + vy S (6.E.1)
i=0 \ |,
i TB
where
*i,1
A "]
T ?T
. . .
i,2 g
x| - : and f = :'E' . (6.E.2)
i,2
A_l . & TB ?B
il *s
*i,3-1
}\i,J-1
s —

Note that the first process in (6.E.2) can be written in terms of the

processes x, and Ai (see (6.2.10b)) if we define the following 2n(J-1)x2n(J-1)

matrix in nXn partitions

[1000.... 0:0000... 0
0000.... 0:I000... 0
0I00.... 0:0000... 0
0000 .... 0:0100... 0
00IO0.... 0:0000... 0
s =]oooo 0:00TI0 ... . (6.E.3a)
X\ . I . 0 . .
. .0 .. . o0 .
) . .. 0 . .
. 0 . C: ..
0 e eeee 0I0:0.0... 00
0 e vevo. 000:0..... 071
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so that

~ Xi
= S}{)\ “ . (6;Eo3b)

. A,

1 1

To transform the smoother boundary condition in (6.3.14) to the form of

> > N

(6.E.1), start by writing its first term as

~

Vx =|V ::V_ :V_:V D E.4
b [L R B T]AL (6 )
D
R
D
B
D
T
Substituting expressions for DL' DR' DB and DT from (6.D.21) into (6.E.4)
gives
- d X d b 4
L R-1 B T-1
V. = V_|~ + A + V_ |~ + V |~ . .E.5
xb Lx VRd B Td (6.E.5)
L+1 R XB+1 T

Next note that the vectors in (6.E.5) can be expressed in terms of the

process %i (see (6.D.13)) as

A

dL =‘¥0x0, xL+1 = x1, XR—1 = xI_1, dR = WIXI (6.E.6a)

where from (6.A.4a) and (6.A.5b)

b4

0 [ IJ_1® [In_':: 0]](I®¢1) (6.E.6b)

and

ng: (6.E.6c)
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and as

~ I-1 ~ N I-1 i ~
i
= S d = S .E.6d
*341 .X e ¥p-1 ) T i (6 )
i= i=1
where

0O...00TI

i 1-i 0
ST = R 0 . . (6.E.6e)

0

=[v,iv_ | and v_ =V, iv | (6.E.7)
B, 'B, T T, T,

where the partitions are compatible with the partitions of the vectors in

(6.E.5). Combining the above, we can rewrite (6.E.5) as

Vx,. =V ¥ x +V x +V x +V ¥x +v.4d +v a
b L, 0O L. 1 R, I-1 R, I I B, B T, T
1 2 1 2 1 2
I-1 - I-1 .
i G |
+ Vv S + S 6.E.
B .Z B¥i * Vo .2 i (6.E.8a)
2 i= 1 i=1

or in more compact notation

-~ I,.,.A
vxb = 2 V;xi + [V& ?Vﬁ ] ?T (6.E.8Db)
i=0 2 1 q
B
where
Py oy (6.E.9a)
X L, O e
1
1 1 1 6 9
< VL + VB SB + VT ST (6.E.9b)
2 2 1
Vi =V sS4+ V. s P i=2, 3, .. 1-2 (6.E.9¢c)
X B2 T1
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Vx = Vk + Vﬁ SB + V& ST (6.E.94)
1 2 1
and
;I V. v 6 9
< = R2 I (6.E.%e)

Finally, if we define

. _1~-
V;E V' v; i 1=0, 1, oo I (6.E.10a)
v

then (6.E.8b) can be expressed as

A
A

I .-

vi've = Y vix. o+ vIT[v iy 18 (6.E.10Db)

v b . X i v T B ~
i=0 2 1

o)

B

which is the desired form for the first term of (6.3.14).

Part of the work of writing the second term of (6.3.14), E\p, in the
form of (6.E.1) is done in Appendix 6D. In particular, from (6.D.23) and
(6.D.24), we have

EA\. =E £ + E A\ + E A + E + E A + E £
b L.'L L. L+1 R. R-1 R_'R B_. B+1 B. B
1 2 1 2 2 1
+ E A + E . .E.1
| T1 T—1 TZET (6 1)

Noting the similarities between the definitions of d,, dr, etc. and &7,
ERr, etc. (see (6.A.5) and (6.D.18)), we can immediately write
- I .- ;
B = ZV;’\. +[g e ||°r (6.E.12)
i =0 i T2 B1 ~
g
B

where

A L [IJ_1 ® (x_:o01](x® ry) (6.E.13a)



1 1
v =E 4+ E, Sp + EL sT (6.E.13b)
2 2
v o= S E st =2, 3 I-2 (6.E.13
= EB + r S ;1= 2, ) ees I- .E.13¢c)
2 1
vl g E st 4 g i 6.E.13
A = Eg + s Sp + v Sp (6.E.134d)
1 2 1
and
I
v, = ERZ[IJ_1® [1n1:: olj(z®r.) . (6.E.13e)

Finally, we can combine the expressions in (6.E.10b) and (6.E.12) and the
relationships in (6.E.2) and (6.E.3b) to write the entire smoother boundary

condition (6.3.14) in the desired multi-point form:

A A

I
i=0 A TB £
i TB

where

i i i

v —[vx : VA]SXA (6.E.14b)
and

v =[vrl'v, ig Pvil'v g ] . (6.E.14c)

XATB v T, T2: v B: B,
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CHAPTER 7: OPERATOR DIAGONALIZATION OF THE ESTIMATOR DYNAMICS

SECTION 7.1
INTRODUCTION

Having derived an internal differential realization of the estimator for
boundary value stochastic processes in Chapter 2, we have concentrated our
efforts in Chapters 3, 5 and 6 on transforming that operator solution into
representations which lend themselves to efficient and numerically stable
implementations. In particular, for the 1-D continuous and 1-D discrete
problems, we have sought diagonalized dynamical representations whose diagonal
components wWere each stable with respect to some particular direction of
recursion. These diagonalized representations were obtained by writing the
estimator dynamics in either differential or difference form and investigating
equivalent dynamical representations in those forms. In each case the
diagonalized representation was shown to be one member of the class of
equivalent representations. In this chapter, we unify the approach to
diagonalization of the estimator dynamics in such a way that all cases are
described within a single operator framework.

In Section 7.2 we describe some equivalent dynamical representations for
the differential operator description of the estimator dynamics. The diagonal
form we seek, if it exists, is in the class of equivalent differential
operator representations, and we present the conditions which define the class
of transformation operators which lead to such forms. As an alternative to
diagonalization, we outline a method for triangularizing the dynamics which
leads to a representation of the estimator which is similar to smoothers
obtained for 1-D and 2-D causal processes by the innovations approach [55] and
[6]. We show that this approach has some advantages over diagonalization. In
particular, in contrast to diagonalization, no operator inversions are
required in computing the estimate by the triangularization approach we
suggest.

In Section 7.3, we turn to the continuous and discrete 1-D cases, for
which we have already solved the diagonalization problem, and reconsider those

problems within the operator framework. We are able to solve the operator
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diagonalization for these cases by restricting the class of transformation
operators to those with a specific structure that we have chosen through
hindsight of our previous work with the 1-D problems. With the insight gained
from the 1-D solutions, we move on to estimators for processes governed by
second order (2-D) partial differential operators in Section 7.4. Assuming
the same structure for the transformation operator as employed in the 1-D
case, we are able to solve the diagonalization problem for a distributed
parameter process goverened by a parabolic partial differential equation.
Given the solution for this specific process, we extend our investigation to
include the general class of brocesses governed by second order partial
differential equations. Although we lay the groundwork for solving the
diagonalization problem for the general 2-D continuous case, some questions
remain unanswered in this extended investigation so that it should be viewed
in part as a suggestion for further research. Of particular interest is the
result that, subject to the existence of the solution to Riccati operator
equations [56], there exists a two-filter type implementation of the estimator
solution in the 2-D case which is similar in many respects to two-filter
solutions for the 1-D case as derived in Chapter 3. We also investigate the
triangularization solution for the 2-D continuous case which, as discussed
above, has certain advantages when compared to diagonalization.

Finally, in the last part of Section 7.4 we discuss the diagonalization
problem for the estimator of a quadrant-causal 2-D discrete process governed
by a model introduced by Roesser [57]. We investigate the existence of a
particularly simple form of two-filter smoother (each quadrant-causal with
different directions of causality, €.g. a northeast-southwest pair) for
processes of this type. Employing the methodology for deriving diagonal forms
developed in this chapter, we prove that no two-filter solution of this type
exists. In closing we propose an approach to developing a four-filter
implementation of the estimator for these processes by triangularization of

the estimator dynamics.
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SECTION 7.2

EQUIVALENT DIFFERENTIAL OPERATOR REPRESENTATIONS

Within the class of equivalent differential operator representations for
the estimator dynamics is, if it exists, the stable decoupled form we seek.
In this section we describe the class of equivalent representations for
the differential operator form of the estimator derived in Chapter 2. The
operator transformations which lead to these equivalent representations are
quite similar to the matrix transformations which defined the class of

equivalent 1-D discrete descriptor form representations in Chapter 2.

7.2.1 Equivalent Representations

The differential operator form of the estimator dynamics developed via

the method of complementary models in Chapter 2 is given by (see (2.5.25a))

'~

*
: -BOB 0
S S = B P P . (7.2.1)
* - : ~ * _
CR1C§L* A CR1

Our goal is, if possible, to diagonalize these dynamics into two decoupled
systems, each of which is stable. The stability property is desirable for
purposes of numerical implementation of the estimator. The operator
diagonalization is analogous to what we have done previously in Chapters 3, 5
and 6 for differential and difference realizations of the estimator dynamics
for 1-D continuous, 1-D discrete and 2-D discrete processes. We start by

investigating equivalent operator representations of dynamics described by

equations such as (7.2.1).

Consider the general differential operator form of (7.2.1)
Az = Bu ; A:X > Y (7.2.2)

where A is a differential operator whose domain and range X and Y are two

inner product spaces. Motivated by our work with 1-D discrete descriptor form

284



systems in Chapter 5, consider invertible operators T:X > X and F:Y * Y which

give rise to the equivalence transformation
£ = Tz (7.2.3a)

and equivalent dynamics

FAz = FBu
-1
FAT & = FBu . (7.2.3b)
Defining
- -1
and
B = FB ’ (7.2.4b)

we can write the dynamics in (7.2.3b) in the form of (7.2.2) as

AE = Bu Y (7.2.4C)

7.2.2 Operator Diagonalization

In decoupling the estimator dynamics, our objective is to find operators

T and F which transform (7.2.1) as

q ~
L I B S (7.2.5a)
q2 A
and
*
L : -BOB -1 _L1_:_0 _
* . .
C R 1c:‘ Lt 0 : L2

so that Ly and Lj represent dynamics that are stable as discussed

earlier.
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To obtain the most general expression for (7.2.5b) we could define

partitions of F and T-! as

F = and T = (702-6)

and carry out the indicated product. The first set of conditions for
decoupling would be given by setting the upper right and lower left partitions
of the product in (7.2.5b) to zero. Next we would add the constraint that

Li and Ly, given by the upper left and lower right partitions of the

product, must have some appropriate stability properties.

Unfortunately, determining the complete class of F and T which are
compatible with this most general statement of the problem is decidely
nontrivial for arbitrary estimator dynamics (7.2.1). With the benefit of our
previous work on diagonalization of 1-D estimator dynamics, we will constrain
the problem statement by assuming the following form for the operator T in

(7.2.6)

T = (7.2.7&)

-1 I I Ps 0
T = (7.2.7b)
-6 )
2 1 0 Ps
where
-1
- e ) . L]
P (61 + 2) (7.2.7¢)

Although we have not yet determined the form of either 6; or 8;, we will

assume for the time being that their sum is invertible.
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Substituting (7.2.7b) in (7.2.5b) and carrying out the product for an

arbitrary operator F (see (7.2.6)) gives

L + F.BOB © *r F 1.6 i F1 - F BOB O *R™
F,L + F/BOB O, + F.CR C - F)L'6: FL-FBOB O +FCR

* * -1 tq
) - 0 i
F,L + F,BOB O, + FCR C-FLO:F

1 t
6
C + F2L 1

L - F_BOB © Fc R to
3L - F3BOB 5 + F)CR C+ F/L O

. = (7-2-8)

To achieve the diagonal form of (7.2.5b), we require:

]
o

B 6 FcRrR c+rLne
- +
F,L - F,BQB 0, + F.C L8

1 (7.2.9a)

and

* *x -1 t
0 - 6
F,L + F,BOB 6, + F,CR C - F,L'0,

]
o
L)

(7.2.9b)

Expressions for Lq and L, are obtained by substituting from (7.2.9a) for

FiL + FZC*R'1C into the upper left partition of (7.2.8) to get

*

L1 = -FZLT + F1BQB (7.2.9¢)

and by substituting from (7.2.9b) for F3L + F4C*R™'C into the lower
left partition of (7.2.8) to get

*

1.
L2 =F,L - F3BQB . (7.2.94)

Thus we must find (if possible) 8;, 6,, and the four partitions of F such

that:
(i) (7.2.92a) and (7.2.9b) are satisfied,
(ii)  the sum of 9y and 6, is invertible,
(iii) the operator F is invertible

and

(iv) the diagonal elements of (7.2.8) are stable causal and stable
anticausal differential operators.

When considering continuous parameter problems in either 1-D or 2-D, we

will find it especially useful to have the operator L in the form of a
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diffusion, i.e. L = L - A where Ly is differentiation with respect to t
and in the 2-D case A contains no partials with respect to t. In particular,
given this form for L, we show that the equations for 8, and 8, are

Riccati equations (in the 2-D case, "operator Riccati" equations [58]), and
and we will make use of the available theory regarding the existence of
solutions for equations of this type to establish diagonal forms.

In Section 7.3 we reconsider the diagonalization of the estimator
dynamics for the 1-D continuous and 1-D discrete problems which we have
already solved by other methods in Chapters 2 and 5. The reason for looking
at the 1-D problems in this light is to gain insight into how we might go
about performing the diagonalization (i.e., determining the operators F and T)

for 2-D cases.

7.2.3 Operator Triangqularizaton

Here we present an oultine of how one could pursue an implementation of
the estimator by triangularizing the estimator dynamics rather than by
diagonalizing. As discussed in the introduction to this chapter, the
principle advantage of the triangularized representation as compared to
the diagonalized representation is that the former can be developed in such a
way that no operator inverses are required in recovering the estimate of the
process x from the values of the transformed processes (in diagonalization the
inverse of 64 + 0, is required). 1In addition, we will see that we only
need to solve a single operator equation as opposed to the two in (7.2.9a) and
(7.2.9b).

To (lower) triangularize the estimator dynamics, we seek transformations

T and F (see (7.2.4)) which lead to

*

L
Fl- -

1
[es)
0
)
=
o

|
-
=y

1
1

H
I
I
1
1
1

(7.2.30)

* -
CR 1C'

-+
=

t

[\

pare
[

N

with a similar form for an upper triangularization. Next we present specific
structures for F and T which lead to a triangularization with no operator

inverses. In particular, choose T to have the structure

I -p : I ) »
T = with inverse T = , (7.2.31a)

0 I 0 I
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and choose F to have the form (which coincidentally is the same as T-1)

I P

F = . (7.2.31b)
0 I

Then it can be shown by direct substitution into (7.2.30) that the estimator

dynamics become

(@)
=
+
g
Q
o
Q
o

L21

- N . (7.2.32)

=
*
1
—
sseenes
—+

The condition for this triagqualar form is the existence of a solution to the

single operator equation

+ * -1 *
IP + PL + PCR CP - BOB =0 . (7.2.33)

In Section 7.4.2 we will present a detailed investigation of the triangqular

representation of the estimator for the 2-D continuous case.
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SECTION 7.3

OPERATOR DIAGONALIZATION FOR 1-D ESTIMATORS

In this section we solve the diagonalization problem for the 1-D
continuous and 1-D discrete estimators given the assumed form for T in
(7.2.7a). In applying the conditions in (7.2.%a) and (7.2.9b) we will use the
basic definition of a zero operator. That is, an operator M is 0 if and only

if M = 0 for all ¢ in the domain of M.

7.3.1 The 1-D Continuous Case

To write the estimator dynamics in the operator form (7.2.1) recall that

the operational definitions of L and LY for the 1-D continuous case are:

(In)(t)

n(t) - A(t)n(t) (7.3.1a)

and

@yt = 4 - aromw) . (7.3.1b)

Note that each of these has the form of a diffusion in t as defined earlier.
The action of the operators C, B, R and Q is simply multiplication by the
matrices C(t), B(t), R(t) and Q(t). The adjoints c* and B* are given by
the matrix transposes C'(t) and B'(t). To simplify the notation, hereafter we
will omit reference to the independent variable t.

Here we assume that F and T are time-varying invertible matrices and our
problem is to find dynamics governing their elements so that the conditions
in (7.2.9a) and (7.2.9b) are met. The condition in (7.2.9a) is equivalent

(for arbitrary Z) to

F,(d/dt - A)Z + F,(-d/dt - A')(8.T) - F BOB'O.L + F c'R ez = 0

2
or carrying out the differentiation
o 1

- - - 1 - - v R
(r, - F0,)2 +(-Fa-F,a6, - Fp F BOB'6  + F,C'R

59, clc =0 .(7.3.2a)

Since this equation must be true for arbitrary ¢ in the space of continuously
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differentiable functions, the coefficients of both £ and its derivative must

be zero. Considering the coefficient of the derivative first, we have
F =F86 . (7.3.2b)

Substituting this into the coefficient for ¢ and setting that coefficient to

zero gives

-1
F(6, +8,A +A'6, +6 BOB'O, - C'R C) =0 . (7.3.2¢)

A similar application of (7.2.9b) results in

F_=-F6 3.
3 &5 (7.3.3a)
and
. -1
[] - ' =
F(6, +0,A +A'6, - 0,BOB'6, + C'R C) =0 . (7.3.3b)
If we choose F as
61 I
F = ’ (7.3.4)
0 -
5 I

then (7.3.2c) and (7.3.3b) are the usual Riccati equations for the dynamics of
89 and 95 and uniform complete controllabiltiy and reconstructability of

the triple {A,B,C} guarantees the invertiblity of both F and T. Furthermore,
it can be shown by substituting from (7.3.4) into (7.2.9¢c) and (7.2.9d) that
L1 and L are given by

-f *
L, =-L +0 BOB (7.3.5a)

and

t 6 *
L2 = =L - 2BQB . (7o3¢5b)

These result in the same dynamics as those obtained by the Hamiltonian
diagonalization in Chapter 3. Note that we have not specified the boundary
conditions for either 64 or 6,. As we found in Chapter 3, these boundary
conditions should be chosen to simplify the transformed estimator boundary

conditions.
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7.3.2 The 1-D Discrete Case

In considering the operator form of the estimator dynamics for the 1-D
discrete case, we must be careful to recall that these dynamics were
originally derived in Chapter 5 in terms of the adjoint process referred to

there as Y:

*
L : -BOB X 0
: P 0 (7.3.6a)
crRci L Y C

where the formal difference operator L and its formal adjoint are given by

1

(I£), =%, .. - AL, (L =D ‘1 -a) (7.3.6b)

and

1. 1 1‘ -— ]
(LZ) =2, , - AT, (L” =bpr -a') . (7.3.6c)

Having derived the dynamics in terms of Y, we found that the estimator
boundary condition could be simplified if we rewrote the estimator in terms of

the shifted process X:

by =Y (7.3-78.)

or in terms of the 1-D delay operator D:

A = Dy (y =p ) . (7.3.7b)

By employing (7.3.7b), the estimator dynamics can be rewritten in terms of A

as

! 0

= —*—-1— y - (7.308)
CR

L -

L : -BQB D

- a4 it =
CR 1c : LfD 1

> > N

We will assume the same form for the operator T and its inverse as we
did for the 1-D continuous case (see (7.2.7)) and also that the action of both
F and T is multiplication by a k-varying martix. The diagonalization

conditions for the operator dynamics in (7.3.8) corresponding to the
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conditions in (7.2.9a) and (7.2.9b) for the continuous case are

I
(@)

FL -FBOBD 8 rcrc+rnp 7.3
Lo BB 175 s 1 (7.3.9a)

and

T

* - * -
F3L + F3BQB D 92 + F4C R C - F4L 0 . (7.3.9b)

-1
D 92
The only change has been to include D-! to account for the change in
variable formy to A. With this addition, the diagonal operators Lq and
Ly previously given by (7.2.9¢) and (7.2.9d) become

Ly

t+_ -1 * -1
—F2L D+ F1BQB D (7.3.9¢)

and

-1 *

t -1
, =F,LD - F,BOB D . (7.3.94)

L

To determine the dynamics of 8¢ and 65, first consider the action of
(7.3.9a) on an arbitrary sequence f with the coefficients of Zyx and Tk +1

explictly displayed:

I -B B'O - F A'6
(F1,k( k k 1,k+1) 2,k k 1,k+1)ck+1

-1
+(Fy ) (R o+ 8, 1) - F Az, =0 . (7.3.10)

For (7.3.10) to hold for an arbitrary sequence, the coefficients of each of
Tk and Tx4q1 must be zero. Solving for F by setting the coefficient for

Tk to zero gives

-1 -1
= ]
F2,k F1,kAk(CkRk Ck + 91,k) . (7.3.11a)

Substituting this expression into the coefficient for Zy,q in (7.3.10) and

equating it to zero, we have

-1 -1
- ' - 1 ' = - . .
FiolT BiiBid 1 jar ~ BRCRRE € + 8, ) A8 ) =0 (7.3.11b)

14
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This leads to the forward difference equation for 61 that we previously

derived in Chapter 5, namely:

-1 -1 -1
- 1 ]
8, ka1 = ( 2 (cir, Ce + 0, ) AL +BOB) . (7.3.11¢)

In a similar fashion, a backward difference equation for 92 is derived

from the action of the zero operator in (7.3.9b) on an arbitrary sequence:

(Fy (T +B %% k1) * F4,1<A1;ez,k+1kk+1

+(F, (c-Rk c, - - F3'kAk)?;k . (7.3.12a)

Equating the coefficients to zero gives:

-1
= - ' ' eJe
Fik = Fa, ™02, k41 (T B B0 1) (7.3.12Db)

and

This gives the backward difference equation for 95:

-1
_Cch A ke (T FBQBO, ) A (7.3.13)

If we choose both Fy x and Fgq,x as the identity, then Fx becomes

-1

1 : A (CR e 40 )7

kxR xSk ULk
Fk="““""§""""(7'3'14’
-A'0 ' H
B0k (T +BQBLE, ) I

Substituting from (7.3.14) into (7.3.9¢) and (7.3.94), it can be shown that

the resulting operators Lq and Ly are the same as the dynamics found

earlier in Chapter 5 for the diagonalized system.
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It is interesting to note that had we allowed the operator T to contain
shift dynamics rather than restricting it to a k-varying matrix, then we could

have applied

T = (7.3.15)

(where D is the 1-D delay) directly to (X,Y) in the original estimator
dynamics (7.3.6a) to obtain the identical decoupled system.

It has been our objective to demonstrate the operator diagonalization
procedure for the familiar 1-D cases as a preview to the more complex 2-D
cases to be investigated in the next section. We emphasize that these 1-D
diagonalizations were made manageable by our educated gquess for the form of

the operator T in (7.2.7). We will see that this form is also useful for 2-D

problems.
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SECTION 7.4

OPERATOR DIAGONALIZATION FOR 2-D ESTIMATORS

7.4.1 Introduction

In this section we consider the implementation problem for continuous and
discrete parameter 2-D processes. We start with the continuous parameter
case, and in particular, we investigate the solution for an
initial-boundary-value process governed by a parabolic partial differential
equation representing transient 1-D heat flow. By performing an operator
diagonalization of the estimator dynamics in a manner similar to that employed
for the 1-D cases in the previous section, we will be able to put our
estimator dynamics into a form which is similar to that derived for infinite
dimensional space-time systems [6,56]. As we will see, a key to the
diagonalization for the parabolic example is an existence and representation
result for the solution of an operator Riccati equation.

Having found that a specific structure for the operator T was useful in
performing the diagonalization in the 1-D case and for the 2-D parabolic
example, we investigate the usefulness of that same structure for more general
2-D problems including hyperbolic and elliptic systems. In keeping the 2-D
problem description as close to that of the 1-D, we rewrite the 2-D partial
differential operators in the form of a diffusion operator that is similar to
the ordinary differential operators in the 1-D case. In the continuous
parameter 2-D case, that form has been employed by researchers in the field of
infinite dimensional or space-time systems (for example, see [6]). The
infinite-dimensional terminology is used because with the partial differential
dynamics written as a first order diffusion, the state process is
function-valued (infinite dimensional) rather than vector-valued
(finite dimensional) as it is in the case of ordinary differential equations.
That is, the partial differential equation is written as an ordinary
differential equation whose solution is an element of a Hilbert space of
functions. The difficulty in proceeding to diagonalization for the more

general systems is that for those cases the questions of existence and
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representation of the solution of the operator Riccati equation have not been
thoroughly resolved.

Diagonalization is useful in developing implementdtion schemes for the
estimator in 2 and higher dimensional cases, for the same reasons as those we
found in the 1-D case. Specifically, if we can rewrite the dynamics as two
decoupled subsystems (each in the form of an infinite dimensional diffusion),
one whose dynamics are causally stable and the other whose dynamics are anti-
causally stable, then we can compute the dynamical contribution to the esti-
mator solution through zero initial condition solutions of the decoupled dyna-
mical systems (an infinite dimensional two-filter solution). The boundary
contribution is then added via superposition (as we also did in the 1-D
case). BAs we will see, the ability to compute the boundary contribution is
made possible because under certain conditions (which we discuss later) there
is an infinte dimensional version of the variation of constants formula which
directly parallels the finite dimensional version for the 1-D case [59].

The number and complexity of technical difficulties encountered when
working with partial differential equations as compared to ordinary differen-
tial equations is considerable and should not be underestimated. The method-
ology proposed in this section provides a means for specifying Ricatti operat-
or equations which lead to the diagonalization of the estimator dynamics for
the general 2-D case. However, we offer no simple solution for the establish-
ing the existence of solutions to these Riccati equations. So although this
section does not present a complete solution to diagonalization problems for
general 2-D systems, it does give a structured approach for attacking them.

For the 2-D discrete case, we consider a process governed by quadrant-
causal dynamics of the type introduced by Roesser [57]. Although there is a
straightforward way in which to write the the operator representation of these
2-D dynamics in a form similar to that of the 1-D discrete case, we will find
that, unlike the continuous case, the 2-D discrete estimator diagonalization
does not follow as a straightforward extension of the 1-D case. In fact our
analysis indicates that for the quadrant causal case, no diagonalization of

the estimator dynamics into two quadrant causal systems is possible.
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For convenience we rewrite the form of the operator T proposed earlier in

Section 7.2.2:

61 -I
T = (7.4.1a)
6
5 I
with inverse
-1 —I I Ps 0
T = (7.4-1b)
-92 91 0 Ps
where
-1
PS = (61 + 62) . (7.4.1¢c)

The diagonal representation of the estimator dynamics under this

transformation is rewritten from (7.2.8):

F BOB 0 FCRT
F,L +FBOBO, +FCR ]

c-ri'e irFL-rBee +rcR'c+rrle
27 T 2: 1 1 2 2 1

* * —1 t,
0 - L9 _:
F3L + F3BQB 5 + F4C R C F4 o} F

L - F_BOB 0 rcRc +FL'e
30 - F;BOB O 4 R

4

Y = . (7-4.2)

7.4.2 The 2-D Continuous Case

We start by considering the specific example of estimating a 2-D process
representing the transient heat distribution in a 1-D medium [56], i.e. one
independent variable represents time and the other distance. After stating
the estimation problem in the appropriate operator notation, we are able to
write the estimator dynamics and boundary conditions. Next we seek operators
84, 65 and F which lead to a diagonal form for the transformed estimator
dynamics in (7.4.2). 1In particular, we find that 8, and 6, are integral
operators. Furthermore, we show that the boundary conditions of the

transformed dynamically decoupled estimator processes g, and q, can also
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be decoupled by an appropriate choice of the boundary conditions for the
kernels of these integral operators. Finally, we consider the diagonalization
problem for more generel second order processes and discuss some new problems
that may arise in the general case.

With x(t,s) representing temperature at time t and position s, the

temperature distribution in a homogeneous rod is described by

Ix(t,s) _ 2 32x(t,5)

e = ) + B(t,s)u(t,s) (7.4.3)
s

where u is a 2-D white noise with continuous covariance parameter Q(t,s),
B(t,s) a continuous scaling parameter and & is the thermal diffusivity. See
Section 6.3.3 for a further discussion of this equation. The region { is the
open rectangle (0,T)x(a,b) (that is, we consider the time interval (0,T) and
the position along the rod starting at s=a and ending at s=b). The boundary

conditions are assumed to be given by the initial condition:

x(0,s) = vo(s) ; s € (a,b) i (7.4.4a)

and spatial boundary conditions:

x(t,a)

va(t) ; t € (0,T) (7.4.4b)

and

x(t,b) Vb(t) ; t e (0,T) (7.4.4¢c)

where vgy, vz and vp are 1-D white noises with nonzero continuous

covariance parameters llg(s), Ta(t) and H(t) respectively. This model

is a popular one in the distributed parameter systems literature (see for
instance [6] and [56]) except there the input noise is modelled as only being

white in time. The measurements are given by
y(t,s) = C(t,s)x(t,s) + r(t,s) on § (7.4.5)

where C is continuous in both variables and r is a 2-D white noise with

nonzero continuous covariance parameter R(t,s).
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The problem statement can be rewritten in an operator form which is
appropriate for specifying the solution derived in Chapter 2 as follows.

Define the formal differential operators

3
2 32
A=0a —— ’ (7.4.6b)

3s2
so that their difference is a diffusion operator in t:

L =L -A . (7.4.6c)

It is straightforward to see that the dynamics in (7.4.3) can be expressed in

terms of L as
ILx = Bu , (7.4.7)

which is the form we seek.

Recall that the estimator solution derived in Chapter 2 requires that the
boundary condition for x be specified in terms of a process X, (i.e.
v=VX}h) where xbp is determined from Green's identity. Specifically, the
Green's identity for L in (7.4.6c) operating on functions whose support is the
rectangle §& = (0,T)*(a,b) is given by [3]

.’.
<Lx, A> = <x,L b

LZ(Q) + boundary term (7.4.8a)

L,(§)

where the formal adjoint differential operator Lt is also in the form of a

diffusion:
L+ = 1L -a (7.4.8b)

A = A o (7.4.80)

The "boundary term" is a line integral along the contour defined by the

boundary of the rectangle. This line integral can be represented by the sum
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of four integrals, each corresponding to one of the edges of the rectangle as
[24]:

5 T 5 T
bet. =0 [[xA - 2x | Ldt - a fl=x -2ax ] at
0 s s= 0
b b
+ f[xx]tﬂ,ds - f[x)\]t=ods (7.4.84)
a a

where ( )g represents the partial with respect to s, 3( )/9s.

Next we rewrite the expression for the boundary term in (7.4.8d) as an
inner product of square integrable functions whose support is the boundary 39
of the rectangle ©, i.e. as <xp,/EA>. To determine x,,, A, and the

operator E, define

-x(’lb) x(°,a)
X = I3 X = [
b - a .
xs( /b) xs( ,a)
(T, *) ] [%(0,+) |
XT = and XO = (7.4.9a)
xt(Tr ) xt(O, )
and Xy, as
xb
% = *a (7.4.9b)
b XT
X
oy -

with similar definitions for Apr Ayr Apr Ag and Ay.

Also define the partitioned operators

and

-
o

ET = ’ EO = -E (7.4.10a)

LIFS)
o
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whose partitions are either the zero operator or the identity operator with
ranges and domains compatible with the elements of X, X5, Xp and Xg
in (7.4.9). Given these definitions we can write the boundary term in

(7.4.84d) as the following sum of inner products

b.t. = <X _,E A > + <X ,E A> + <X ,E A > + <X ,E A >
b
bb1210, 7 a aa 2 m L7 [a,b] 0000 20, b
2 2 2 2
(7.4.10b)

Finally, if we combine the operators in (7.4.10a) to define E as the diagonal

operator:

E = ’ (7.4.11a)

then, with xp and Ab defined as in (7.4.9b), the boundary term can be

written in the desired inner product form

b.te = <x ,EA > . (7.4.11b)
b L;(BQ)

The boundary condition in (7.4.4) can be written in terms of x, in a
similar fashion. Combine all of the boundary value functions into one as
vb(t)
VO(S)
and define the following partitioned operators

Vv ={T:01)1, V =[TI:01] and V_.=[TI:01] . (7.4.12b)
b a 0

Vb 0 0 0
0 0 VO
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the boundary condition can be expressed in the desired form:

v = be . (7.4.124)

This completes the description of the estimation problem in the form
prescribed in Chapter 2.

The boundary condition for the estimator is given by (see (2.5.25b))

* o=1_ ¢
O = [‘I II vV : Ig] X . (.70 4 .1 3 )
v b

~

b

Given the definitions above, this boundary condition can be represented by the

following four conditions, one for each edge of the rectangle.

- - — ~ ~ -

0 T (e)x(t,b) = oA _(t,b)
=|-°- - - - - = -, (7.4.14a)
0 ot2>\(t,b)
( ] PRI 2. |
0 T "(t)x(t,a) + « As(t,a)
=|-2- - - - - & __ , (7.4.14b)
0 ~a?A(t,a)
0 = AMT,s) (7.4.14¢)
and
0 = H51(s)x(0,s) - MO,s) . (7.4.144)

The boundary conditions in (7.4.14) along with the dynamics

*
-BOB

el
o

- - - = - -y , (7.4.15)
t * —1

ITXTRTRIRTETY
>

c'r7'c L A
. - t -

>
(@]
s

(here L and Lt have been replaced by (7.4.6c) and (7.4.8b)) completely
specify the estimator. Next we show how the dynamics in (7.4.15) can be
diagonalized as in (7.4.2). In particular, in formulating the diagonalized

dynamics we will need to apply a result on the existence of solutions to
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operator Riccati equations which was originally obtained in solving the linear
qaudratic control problem for parabolic systems (see for instance [58] or
[60]).

We select an operator F for the 2-D case which has the same structure as

the matrix F in the 1-D continuous case, i.e.

0 I

F = . (7.4.16)

¢] -
2 I

Due to the similarity between the diffusion representation of the 2-D formal
differential operators L and L' and their 1-D counterparts in (7.3.4a) and
(7.3.4b), it can be shown that the transformed dynamics in (7.4.2) are
diagonalized with a similar representation for the diagonal operators L, and

L, as that of the 1-D case in (7.3.8), namely:

+ *
L, = -L + 6_BQB
1 1
*
= Lt + (A + 61BQB ) (7.4.17a)
and
L. = -7 - e_pgs"
2 T T 9Re
..'. %*
= Lt + (A" - ezBQB ) . (7.4.17b)

Thus, the dynamics of the transformed estimator processes

b 4
=T (7.4.17¢c)
e A
are decoupled as
* _ * -1

Of course, as in the 1-D case, our ability to perform the diagonalization (to

force the off-diagonal elements of (7.4.2) to zero) is dependent upon the
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existence of operators 6, and 6, which satisfy

+ * * -1
(91Lt - Lte1 - A 91 - 61A - 91BQB 91 + CR C)¢

1l
o

(7.4.18a)

and

+ % * _1
(eth - Lte2 - A 92 - 62A + BzBQB 92 - CR C)

f
o

(7.4.18b)

and whose sum (84 + 92) is invertible. As mentioned earlier, the question
of existence has been resolved for the parabolic case [60]. By assuming the
following integral representation for 6,
b
(6 E)(t,s) = / 6, (t,s,0)E(t,0)do (7.4.19a)
a
and substituting this representation into (7.4.18a), it can be shown that the
integration kernel satisfies the Riccati integro-differential equation:

3 2 2

- —9 (t,s,0) = 2——6 (t,s,0) + E——e (t,s,0) - C(t,s)R—1(t,s)G(s-o)C(t,o)
5t | s> | 302 !

b
+ f61(t,s,p)B(t,p)Q(t:p)B(t,p)61(t,p,o)dp . (7.4.19b)
a

In deriving (7.4.19b) we have replaced L.04& in (7.4.18a) by

b
d
LOE =61L¢E +£ [E 8. (t,s,0)]E(¢,0)d0 (7.4.19¢)
=6,0.8 +[Lo ]t . (7.4.194)

In addition, by integrating by parts twice we can express 6,Af as follows

b .2 o=b
0.2 =] 20 (5,008 (t,0)a0 + 25 E0) o (¢,5,0)
o 1
a 3o o=a
_ 391(t,s,o) g=b
Y £(t,0) . (7.4.19e)
g =a
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Then choosing the following boundary conditions for 8, so that (7.4.18b) is

satisfied for arbitrary &:

391(t,s,0) 361(t,s,0)
T30 lema - a0 lgm 0 (7.4.19%)
and
,(t;s,a) = 8 (t,s,b) =0 (7.4.19g)
we can replace 0,Af in (7.4.18a) by
_ ot
6.,a8 = A°01£ (7.4.19h)

where the subscript ¢ indicates partial differentiation with respect to o. A
similar procedure establishes a partial differential equation governing the
kernel for an integral representation of the operator 05

We remark that the Riccati integro-differential equation in (7.4.19b)
differs slightly from that typically encountered in the distributed parameter
systems literature because we have assumed that the input process u and the
observation noise r are white in both space and time rather than simply white
in time. As a consequence of this assumption the covariance operators R™!
and Q having kernels which contain the product of two delta functions
(8 (t-1)8 (s—=0)) rather than a single delta function. We also note that the
existence of the inverse of the sum of 91 and 02 remains an open
question. At the end of this section we outline an alternative approach in
which the estimator dynamics are triangularized and for which no operator
inversion is required.

As yet, we have not specified the boundary conditions for the integration
kernels 6,(t,s,0) and 6,(t,s,0) whose dynamics are given by Riccati
equations of the type (7.4.19b). As in the 1-D case, we exercise the freedom
in choosing these boundary conditions to simplify as much as possible the
boundary conditions for the transformed processes g4 and dp. Substituting

(7.4.1) into (7.4.17c) gives the explicit expressions for gq and gy:

4y =08,% + A (7.4.20b)
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with inverse

= + . .2
X Ps(q1 q2) (7.4.20c)

-0 + 0P 74,20
2P 1 s ¢ d)

1 2

where Pg is the inverse operator in (7.4.1c). By choosing initial and final

values for the kernels as

91(0,5.0) H51(s)6(s—0) ;i s,0 € (a,b) (7.4.21a)

and
6,(Tys,0) =0 i s,0 € (a,b) , (7.4.21b)
it can be shown by direct substitution from (7.4.20) that the initial and

final estimator boundary conditions in (7.4.14d) and (7.4.14c) when expressed

in terms of gq and g become decoupled:

0 (7.4.21¢c)

q1(0,S)

and

|
o
.

qz(T,s) (7.4.214)

Unfortunately, a similar decoupling of the spatial boundary conditions
(7.4.14a) and (7.4.14b) is not so straightforward due to the presence of the
partial derivatives Ag. In particular, to write these two spatial boundary
conditions in terms of the transformed variables gqq and g3, we must take

the partial with respect to s of the expression for A in (7.4.20d) which
contains the inverse operator Pg and evaluate that expression at s=a and
s=b. Hopefully, further study (beyond this thesis) will lead to a method for
choosing spatial boundary conditions for 64 and 65 which result in a
decoupling of the transformed spatial boundary conditions for gq and gs.
This spatial decoupling along with the decoupling of the initial and final
conditions in (7.4.21) and the dynamics in (7.4.17) would leave gy and 43

completely decoupled.
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Clearly, there is a great deal to be done. For our particular parabolic

example alone we have left unanswered:

(1) The invertibility of (6; + 05) and a representation of that
inverse.

(2) The stability of the operator Ly as a forward operator and Lj
as a backward operator.

(3) The choice of spatial boundary conditions for the kernels of &
and 92 which result in the maximum decoupling of the boundary
conditions for the transformed processes dq and gy.

Assuming that each of these has been favorably resolved, the estimator could
be implemented efficiently as follows. Since L is forward (in time) stable
and Ly is backward stable, gq and g3 could be solved by numerically

stable forward and backward finite difference approximations of Lq and Lo,
respectively. Given a representation for the operator Pg, the inverse of
the sum of 09 and 6;, the estimate of x could be formed from a finite
difference approximation of the realization of Pg acting on the discretized

solutions for gq and g3 (see (7.4.20c) above).

Diagonalization for the General Case

Here we briefly discuss some additional complexities which arise when
diagonalizing the estimator dynamics for general 2-D processes including
space-time processes governed by hyperbolic as well as parabolic equations and
purely spatial processes satisfying elliptic partial differential equations.
That is, we consider the estimator for the more general class of scalar

processes which are governed by
Lx = Bu (7.4.22a)

(along with an appropriate boundary condition to make the problem well-posed)

where L is a formal second order partial differential operator of the form

2 2 2
)
(Lx)(t,s) = 0l1(t,s)—2x(t,s) + 20t2(t,s)—x(t,s) + a3(t,s)—x(t,s)
ot dt 8s 3s 2
0 9
+ a —=x(t,s) + a.—=x(t,s) + o_(t,s)x(t,s) (7.4.22b)
4Bt 535 6

Although not necessary for our developments, we will for simplicity of
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notation asssume that each of the aj is constant. In this case, the formal

adjoint of this operator is shown in [24] to be given by

1
LA = a1"tt + 2a2)\ts + a3)\ss - a4>\t - asks +a6A (7.4.23)

where the subscripts s and t represent partial differentiation with respect to
that variable. Since as in the parabolic example our intent is to extend the
1-D results, we will rewrite the formal partial differential operators in
(7.4.22b) and (7.4.23) as diffusion operators and then express the estimator
dynamics in terms of these diffusion operators.

Define (here we assume a4, is nonzero) the formal differential operators

1 52 5
A = -— [0,3 > tag — + 06] , (7.4.24a)
1 s s
A =-—"[2a,% +a, | (7.4.24Db)
2 a 2 4 !
1 ds
0 I
A = ’ (7.4.24c)
A1 AZ
and
M = LtI - A . (7.4.244)
Then with
X X
X = = (7.4.25a)
th xt

the dynamics for x in (7.4.22a) (Lx = Bu) is equivalent to the second row of

MX = [g]u ) (7.4.25b)

Example: Poisson's Equation

The methodology for writing space-time type systems (i.e. parabolic or
hyperbolic) in the diffusion form (infinite dimensional state-space form)

above is extensively addressed in the infinite dimensional systems literature
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[6]. We include this simple example to emphasize that elliptic problems as

well can easily be expressed in this form.

Consider the case where L

represents the Laplacian (the independent variables s and t are spatial

variables)

2 2
L =v2 =3—? ?—2 . (7.4.26a)
9t 9s
Then the dynamics can be written as
Lt 0 0 Ilix 0
- 82 + u (7.4.26b)
0 'L T— ofx B
et 5 &2 t
so that for this case the operator M is
"o f
M=LTI- eGe
N 32 (7.4.26¢)
- - 0
ds

which is the diffusion form we seek.

Returning to the general case,

the formal adjoint for the operator M in

(7.4.244d) is found by taking the adjoint of its constituent elements:

M= (Lt)fI - at (7.4.27a)
where from (7.4.23)
()" = (7.4.27b)
t t
and the formal adjoint of A in (7.4.24c) is
N OIS
A" = 4 (7.4.27c)
I A2
with the partitions given by (again from (7.4.23))
2
+ -1 d 9
A = [a3 -y — + a6] (7.4.27d)
1 ds ds
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al = - ! [-2a2-3— + a4] . (7.4.27e)

o,
2 1 ds
To rewrite the estimator dynamics in terms of M' we need to express the
action of Lt in terms of that of M'. It can be shown that LtX is given

by the first row of
MTA _ (7.4.28a)

if we specify the partitions of A by

A+ (179 )[-20_ A + a A]
A= |t 1 2s 4] . (7.4.28b)
A

This form for the partitions of A is found by applying the constraint that the
second row of (7.4.28a) is zero.

Assuming that the observations are of the form

y =Cx + 1 (7.4.29)

where r is white in both independent variables, the estimator dynamics can be

rewritten in terms of M, X, MT and A as

B o: o [t [ o ]
M B
0 i-nos" 0
- - - - :-BQB -l = |- -°- - . (7.4.30)
* -1 : ~ * -
CR C:_ 0 _: mt A ¢
.O'

As in the unaugmented case, the transformed estimator process is defined as

z
11 -
6 -
Z1 z12 1 1 X
_ _ K (7.4.29a)
6
Z, Z 91 2 I
%22
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where now 67 and 9, are partitioned as

911 912
1 1
91 = .
e21 622
1 1

(7.4.29b)

Let the operator F be defined in terms of 8; and 6, just as before in

(7.4.16). Then if we define

(7.4.30)

and if we assume the existence of solutions for the two operator Riccati

equations (for arbitrary E)

~

t N -
(6,0, - L8 -A'6 - 6a- 8606 +R)E

]
o

and

T
- - - 0 - RJE
(6L, - 1.8, -2’6, - 6a+ 600 -Rr)

]
o

then the transformed processes Z1 and Z5 will have

¢ R
L2 =
171 y
and
* -1
Lz, - -C R v
0

where Lj and Ly are the operators

L Lt + (A + 91Q)

1

and

=
]
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' (7.4.31b)

decoupled dynamics

(7 4.32a)

(7.4.32b)

(7.4.32¢)

(7.4.324)



Existence of solutions to the operator Riccati equations (7.4.31a) and
(7.4.31b) remains the first of several open issues. If the differential
operator A were the infinitesimal generator of a strongly continuous semigroup
(something which in general is difficult to establish, e.g. see the
Hille-Yosida theorem in [56]), then it has been shown [56] that there exists a
solution to these equations. This is a sufficient but not a necessary
condition. Given existence, there still remains the question of realizations
for 6, and 6, for the general case (recall for the parabolic case that we
found that 64 and 6, had integral representations).

If we assume that the existence and representation questions regarding
the operator Riccati equations have been resolved, then, as in the parabolic
example, we would choose boundary conditions for these operators in such a way
that the boundary conditions for Zy and Z, were simplified. Drawing from
our experience with nonseparable 1-D TPBVPs in Chapter 3, we speculate that
for a purely spatial noncausal process, e.g. the solution to Poisson's
equation on a rectangle, that we will be unable to completely decouple the
initial and final conditions for Z; and Z5. Thus, we would have an
infinite dimensional two-point boundary-value problem for Z; and Zy. In
the following we indicate how, under certain conditions, this TPBVP can be
solved. 1In particular, this solution is nearly identical in form to the
two-filter solution derived in Chapter 3 for the 1-D TPBVP.

Employing notation similar to that used for the 1-D TPBVP, we represent

the coupled initial and final boundary conditions by

, z. (0,s) , z.(T,s)
Vo (S) =[v? : vg] ! AR ; s€ (a,b). (7.4.33)
Zz(O,S) ZZ(TyS)

Next define two differential operators A, and A, by using the spatial
boundary conditions (at s=a and s=b) for 2, and Z, to restrict the domains

of the formal differential operators (see (7.4.32) above)

-(A + 91Q) (7.4.34a)

and

-(a - ezQ) (7.4.34b)
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respectively. When each of A; and A, so-defined is an infinitesimal
generator of strongly continuous semigroup, then we can invoke a fundamental
result from the theory of infinte dimensional systems to obtain an expression

for the solutions of the following infinite dimensional diffusions

q1(t) A1q1(t) +u1(t) (7.4.35a)

and

q2(t) Azqz(t) + uz(t) (7.4.35b)

with intitial and final conditions

q1(0) 9, (7.4.35c)

and

q,(T) = qq (7.4.35d)

In particular, the solutions qq(t) and g,(t) can be written in a form
which is analogous to the variation of constants formula for finite

dimensional systems [59]1:

t
a,(t) =8 (t,0)q, + [&_ (t,T)u,(T)dr (7.4.36a)
1 1 0 0 1 1
and
t
q,(t) =@ (t,T)q  + sz(t,‘r)u (g )dr (7.4.36b)

where ¢ 4(t,t) is a foward evolution operator in the semigroup of operators
generated by A4 and & ,(t,7) is a backward evolution operator in the
semigroup of operators generated by Ap. Given this result, a derivation

identical to that used to obtain the two-filter solution for the 1-D case in

1 Some additional technical restrictions on the u; are requied to ensure the
integrability of ¢;u; ( see [60]).
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Chapter 3 gives the solution to (7.4.32a) and (7.4.32b) with coupled boundary

condition (7.4.33) as

Z1(t) 0

Z_ (t)
=0 (t)F'1{v - v29%m - VOZO(O)} + |7 (7.4.37a)
2 (t) Z z Wor 191 292 0
2 Z_(t)
: 2
where
¢1(t.0) 0 '
® (t) = , (7.4.37b)
Q 0 & _(t,T)
2
0 T : T 0
F,=[v] + Ve, (T,0) i Vv, + Ve, (0,m)] (7.4.37¢c)

Z? is the solution to (7.4.32a) with zero initial condition Z?(O) =0

and Zg is the solution to (7.4.32b) with zero final condition ZS(T) = 0. The
implementation of the solution of (7.4.37a) could be accomplished by solving
for Z? and Zg by forward and backward finite difference approximations of

(7.4.32a) and (7.4.32b) respectively. The boundary value contribution to the

solution:
-1 0 0.0
2, (0)F, (v - V22 (r) - )z (0)] (7.4.37d)

would require approximations of the evolution operators &, and ¢, and the
inverse of F in (7.4.37c). Conceivably, these approximations could also be
accomplished by similar discretization methods.

Finally, to recover the estimate of the process x, we must invert the

transformation (7.4.29a), i.e.:

~

X ~
-l =x=(s, v )z, vz (7.4.38a)

Xy

In the case for which 8, and 6, are known to be integral operators, the

estimate could be recovered by an approximation of the solution to the
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integral equation

(e1 + 92)x = z1 + 22 . (7.4.38b)

Clearly, each case must be considered individualy.
Here we summarize some of the major issues pertaining to the diagonalized

implementation of the estimator for second order processes.

(1) In order to diagonalize the estimator dynamics we must establish
existence of solutions to the operator Riccati equations (7.4.31a)
and (7.4.31b).

(2) Given existence of solutions, we must determine a representation or
realization of these operators and then choose boundary conditions
in such a way that the boundary conditions for the transformed
estimator processes Z4 and Z5 are maximally decoupled.

(3) With the boundary conditions and dynamics for Zq and Zj
established, we will in general have an infinite dimensional TPBVP.
As discussed above, a solution for this type of problem can be
written in a two-filter form if the system operators A4 and Aj
in (7.4.43a) and (7.4.34b) can be shown to be infinitesimal
generators of strongly continuous semigroups.

(4) Finally, with (1) through (3) resolved, we still need to determine
efficient numerical methods for (a) solving the operator Riccati
equations, (b) solving the TPBVP for the transformed estimator
processes and (c) inverting the transformation to obtain values of
the estimate of the original process x.

Next we comment on how this method can be extended to estimation of
higher order (greater than 2-D) processes. Finally, in closing this section
we discuss implementation of the estimator via triangularization of the
estimator dynmaics. This approach was introduced earlier in Section 7.2.3 as
an alternative to diagonalization which does not require an operator inverse
(as in (7.4.38)) to recover the estimates of the original process x from the

transformed processes.

Higher Dimensional Processes

As we have seen, the method of diagonalizing the estimator dynamics which
is based on the solution of an operator Riccati is dependent upon writing the
dynamics of the process to be estimated as a diffusion in one variable, call

it t. In the 1-D case the system matrix A(t) is simply a t-varying matrix,
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and in the 2-D case the system operator A(t) can vary with t but must contain
partials only with respect to the other independent variable s. This has a
natural extension to 3 and higher dimensions. For example, consider a 4-D
process with independent variables (t,s,s',s''). We simply require that the

dynamics can be written as

(L, - a(t))x = Bu

where A contains partials with respect to s, s' and s'' only. We note that
the results regarding the existence of solutions to Riccati equations cited
for the 2-D case when A is an infinitesimal generator of a strongly continuous
semigroup have extensions to higher dimensions [60]. 1In addition, the

variation of constants formula also applies in higher dimensions.

Triangularization of the Estimator Dynamics

Here we apply the transformation T proposed earlier in (7.2.31a):

I -P I P

T = with inverse T = ’ (7.4.39a)
0 I 0 I

where the transformed process is denoted as before by

=T ’ (7.4.39b)

F = . (7.4.39¢c)

Assuming L in the form of a diffusion, L = Ly - A, it can be shown by direct

substitution into (7.2.32) that the estimator dynamics become

* -1
L,-A+BCR C

- - - - - . =|---1{y . (7.4.399)
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In addition, with L in this form, the operator equation in (7.2.23) becomes
the Riccati equation:

t * -1 *y_
(Ltp - AP - PL_- PA' + PC R CP - BOB JE=o0 . (7.4.40)

Applying T-! in (7.4.39a), to invert from the transformed processes to
the original processes gives

A = . .
22 (7.4.41a)

and

~

X = Z1 + PZ2 . (7.4.41b)

A

For ease of reference to previous work, we will replace Z; with A and denote

Zq1 by
X =% (7.4.41¢)

so that from (7.4.41b)

We will assume as before that the spatial boundary conditions have been
absorbed into the domains of the system operators defined by2

* -1
A_= A -PCR C (7.4.42a)

and

+ *

A 2t - c"r7Top . (7.4.42b)

A

Then the transformed process will in general have a coupled two-point boundary

condition of the form

0 : 0q|%® v o rq|¥e
Ve = [Vx : VA] - + [Vx : VA] n (7.4.43)
A(0) AMT)

2 We will also need to assume that Afg and A) are infinitesimal generators

of strongly continuous semigroups so that we can apply the variation of
constants formula.
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~ A

and the dynamics of xg will be decoupled from those of A (but not

vice-versa):

A ~

* -1
thf = Afxf + PCR y
= Axf + PCR (y - fo) (7.4.49a)
and
; ; c™r! cA 4
-Lt = AA + (y - xf) . (7. o49b)

Note that these dynamics are identical to those of the innovations form of the
smoother for both causal finite dimensional [55] and infinite dimensional
processes [6].

A form of the the general solution for the TPBVP defined in (7.4.43) and
(7.4.44) can be derived by an application of the infinte dimensional wvariation
of constants formula3 as follows. First note that an application of the

variation of constants formula allows us to write

A ~ A

0
xf(t) =<Df(t,0)xf(0) + xf(t) (7.4.45a)
and

0
A(t) = él(t,T)A(T) +A7(t) + @Ax(t)xf(o) (7.4.45Db)

where the zero initial and final condition solutions are given by

~ t
0 * -1

x () = f¢>f(t,s)P(s)c (s)R™ ' (s)y(s)ds , (7.4.45¢)

0
and

To t * -1 "o

AT(e) = [, (£,5)C (s)R” (s)[y(s) - C(s)x.(s)]as (7.4.454d)
T

3 Because the variation of constants formula is expressed in the same notation
for both finite and infinte dimensional systems, all of the this can be
directly translated into results for finite dimensional systems.
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respectively, and the coefficient of the initial value of Xg is given by

t
Qkx(t) = é?x(t,s)c*(S)R_1(s)C(s)éf(s,O)ds . (7.4.45e)

A ~

Of course, the initial condition xf(O) and final condition A (T) are unknown.
Substituting into the boundary condition (7.4.43) from (7.4.45a) and (7.4.45b)
evaluated at t=T and t=0 respectively, it can be shown that these initial and

final values are given by

~

x_(0) ~ N
£ -1 T 0 0.0
X =F {va - Vx (T) - VA (0)} (7.4.46a)
A(T)
where
_ 0 T : 0 T
Fy = [V 0 (r,00v] « Vo, (0)} wo, (0,1) + ¥ . (7.4.46b)

Therefore, solving the zero initial condition problem for xg(t) and using that
solution as an input to the zero final condition problem for A9(t), then using
these two to compute the initial and final conditions in (7.4.46a), we can

A

construct the entire solution for Xe and R ffom (7.4.45). Finally, these are
combined via (7.4.41d) to give the estimate x. Of course, as was also
true for the diagonalization method, finding an efficient numerical method to
solve for for these processes may be nontrivial.
As a final remark, we note that if we had chosen F as
I P
F = (7.4.47)

P 0
rather than as in (7.4.44b), then we would have obtained a form for the
estimator dynamics which corresponds to the Rauch-Tung-Striebel solution for

the 1-D smoothing problem. However, we see that this choice would require the

operator inverse P'1, which is something we had endeavored to avoid.

7.4.3 A Quadrant-Causal 2-D Discrete Process

A recursive model for discrete parameter 2-D processes with a special

quadrant causal form has been introduced by Roesser[57]. One form of quadrant
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causality is depicted in Figure 7.4.1 where the value of the process x at the
point (i,j) is a function of the inputs in the quadrant to its southwest.

Thus the recursion is a northeast recursion (its "past" is in the southwest).

J | . Xj, 4

1/17777/171777/7777//

111117177/777/777/77177 /7777
117/7717/77/77777/77 ///// 7 elements of the
11117117/77/771/77777 ///// "past" of (i,J)
[17/77777/77777/777/777

/1111711777/7777/777

1171717177777/7777/7/

/17/1/177/7177//7/7777

/117717117177177777777 |

i
Figure 7.4.1 Northeast Causality of Roesser's Model

With the process at the point i,j defined as

v, .
=] 13 &
xi,j [hi j] R (7.4.48a)
’

V. . A A V., . B
SRAEEY U B 20 33 ] Yu, (7.4.48b)

hi,j+1 A3 4 i,J 2

on [0,I-1]%X[0,J-1]. The northeast recursion in (7.4.48) will be written in
operator form as follows. Recall from Appendix 6D that Dq is a delay in the

first index, i, and Dy is a delay in the second index, j. Define

?)1 0

A = , (7.4.49a)
0 D,
A1 A2 B1

A = ) B = (7.4.49b)
A3 A4 B2
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then the dynamics in (7.4.48b) can be written as

where

L =2A - A . : (7.4.50b)

By following a similar developement as that used in Appendix 6D to form the
Green's identity for the nearest neighbor model, it can be shown that the

formal adjoint of the northeast diffusion operator L in (7.4.50b) is given by

tf = a - a (7.4.51)

which represents a southwest recursion.,

With observations of the form

y, . =C,..x.. +r, . (7.4.52)
1,] 1] 1] 1]

the estimator dynamics are given by

-~

*

T o I R ) (7.4.53a)
* =1 = * o
CR 1c:' ot Y C R !

As in the 1-D case we will rewrite the estimator dynamics in terms of the

transformed variable

"~ ~ ~ _1A
as
=1 : * =1 )
A - A : -BOB A b4 0
- - - g- - - ~ = - = =1Y = (7.4.53C)
* - H - *
c'r7lc i1 - araTT||A c*r™

The estimator boundary conditions will not be addressed here. We will only
investigate the dynamical diagonalization. In particular we will consider
the special case for which T and F are matrices, i.e. they contain no

dynamics.
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Using the form for T and its inverse in (7.4.1) the transformed dynamics

become
-1 : s %=1
F, F,|14 -a: -BoB A I I |Ps 0 L, 0
- - =i - - = (7.4.54)
* - : - -0 0
F3 F4 CR 1c :I - A'A ! 2 1 0 Ps 0 L2

where the condition for diagonalization is the existence of solutions to

( F1(A_1 - BQB'A-191) - F2A'A-161 - F,A + F (0 + cr™ o) JE=0 (7.4.55a)

and

-1 - ] -1 ' -1 - -6 1 -1 =
(rya BOB'A™ 6,) + F,A'A 6, - FiA + F (=6, + C'R C) JE=0 (7.4.55b)

for arbitrary &. From (7.3.9c) of the 1-D discrete case, the diagonal
operator Lq is of the form

-1
— 1 1 -
L, = (F,BOB' + F,A")A F, . (7.4.55¢)

Thus, with the coefficient of A=! an invertible matrix, Ly will have a
quadrant causal form. Otherwise L;i is in the descriptor representation of
quadrant causal dynamics.

First consider the existence of a sequence e1ij satisfying
(7.4.55a). Equating the coefficients of terms containing no shift operator

A=1 to zero (see the 1-D example) gives

-1 _ =1
F, = F,A(0, + C'R"C) . (7.4.56a)

Substituting this into the terms containing a shift gives

-1
F1[A

-1 -1
- (BgB' + A(B + C'R™ C)A' A 01]£ =0 (7.4.56b)
Thus we require that

- - -1
(BoB' + A(6, + C'R Teyar)a 161 = A (7.4.57a)

or equivalently that

- -1 -1
A 161A = (soB' + A(8, + C'R C)A’) . (7.4.57b)
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Consider the left hand side of (7.4.57b):

e11 : 912 D-1D
1, . : . .12
-1 i+1,3 : i+1,3
N R R . (7.4.58)
e21 D—1D : e22
1, . 1 1. .
i,j+1 : i, i+

For the partitions of the right hand side to be compatible with those in
(7.4.58) for nonzero 612 and 621, the right hand side must also contain
shift operators. Since B, Q, C and A as defined contain no shifts, 91
must. However, our initial assumption was that it had none. Therefore, only
in the special case that both the right and left hand sides are diagonal will
there exist a decoupling transformation with no shift operations. A similar
argument shows that no 05 exists which satisfies (7.4.55b). Thus, in
general, no two-filter implementation exists for this estimator.

An alternative approach for which we also restrict F and T to contain no
dynamics might be to find a four-filter coupled solution of the lower

trianqular form

- x I S i S
2o : -BQB A ! » L,,il, i 0:0
Fl- - == - - T = [-=:="=i= =i~ - (7.4.59)
* - H - . H :
c*'r7'c i1 - ara” Ly3ila3ily § O

Li4ilaailaaily

where, for instance, Lq is an eastward recursion (i.e. Lj is of the form

D1 - Ay), Lo northward, L3 westward and Lg southward. In this way,

Ly could be solved first with its solution fed back to Ly via Lqp etc.

Of course, determining F and T, if they exist at all, will be a nontrivial
task. Finally, we could also consider the case where 0 and 9, contain
dynamics which would be analogous to the 2-D parablic example where they were

shown to be integral operators.
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SECTION?5

CONCLUS IONS

As a preliminary for and to provide insight into the operator
diagonalization of the estimator dynamics for 2-D processes we have
reformulated the two-filter solutions for the 1-D discrete and 1-D continuous
cases by an operator diagonalization approach. By writing 2-D partial
differential operators as infinite dimensional diffusion operators, we have
been able to directly extend the operator diagonalization applied in the 1-D
continuous case. Furthermore, by employing an infinite dimensional version of
the variation of constants formula we have hypothesized a (infinite
dimensional) two-filter implementation of the estimator for the general 2-D
boundary value processes., It should be emphasized that there remain many
unanswered questions with respect to the operator diagonalization problem for
the general 2-D case., Indeed, more research is required before this problem
is completely resolved. In particular, many of the gquestions are related to
issues of existence and representation of solutions to operator Riccati
equations (see (7.4.31)).

As mentioned above, the 2-D diagonalization was obtained in large part by
a direct extension of the 1-D solution. In each case, the estimate is
computed via transformed estimator processes and ultimately the estimates must
be recovered from these processes by an inversion of that transformation. 1In
the 1-D case, the inverse transformation is simply a matrix inverse. However,
in the 2-D case we find that an operator inverse is required. In general,
this operator inversion will represent a nontrivial problem. Therefore, we
have investigated an alternative estimator implementation (which is also
applicable in 1-D) which requires no inversions. This alternative approach is
based on a specific form of triangularization of the estimator dynamics rather
than on diagonalization. For purely causal processes (both finite and
infinite dimensional), this form of the estimator corresponds to the smoother

derived from the innovations approach.

325



We also have applied our diagonalization methodolgy to the estimator for
a discrete 2-D process satisfying Roesser's quadrant causal dynamical model.
We found for the special case that the diagonalizing operators were restricted
to matrices (i.e. they contained no dynamics) that no two-filter solution is
attainable through diagonalization. Under this same restriction for the

transformation operator, we have suggested an approach for developing a

four-filter implementation via triangularization of the estimator dynamics.
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CHAPTER 8: SUMMARY OF CONTRIBUTIONS
AND
SUGGESTIONS FOR FURTHER RESEARCH

SECTION 8.1
CONTRIBUTIONS

The principal contribution of this thesis is the derivation of the
differential (difference) operator form of the estimator equations in Chapter
2. This single representation of the estimator is applicable to boundary
value stochastic processes satisfying linear ordinary differential and
difference equations as well as linear partial differential and difference
equations. Thus, the fundamental structure of linear estimators for boundary
value st<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>