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STOCHASTIC CONTROL OF ROTATIONAL PROCESSES
WITH ONE DEGREE OF FREEDOM*

JAMES TING-HO LOt aNnp ALAN S. WILLSKY}

Abstract. A class of bilinear stochastic control problems involving single-degree-of-freedom
rotation is formulated and resolved. Both synchronization control and orientation control are con-
sidered. In each case, the measurement data is first processed through a nonlinear transformation.
The transformed process then goes through an ordinary estimator, such as a _Kalman-Bucy filter.
After another nonlinear processing of the output of the ordinary estimator, the desired optimal control
is yielded. A generalization of the approach illustrated by these results to control problems on arbitrary
Abelian Lie groups is included.

1. Introduction. In this paper we will study several classes of stochastic
control problems associated with single-degree-of-freedom rotation. As we shall
see, the relevant state and sensor dynamic equations are bilinear in nature.

In the past, such stochastic control problems have been studied strictly in a
vector space setting. While such techniques have been most useful in the study of
linear systems, these methods have not yielded closed form optimal synthesis
techniques for large classes of nonlinear systems, such as the bilinear systems
considered here.

It is the purpose of this paper to use an alternative technique to the vector
space approach. The motivation for this is to study the bilinear equations of
interest with the aid of algebraic and analytical tools that are as natural to these
problems as the vector space methods are to the linear problems. In this sense,
one should view the present work as being motivated not only by the failure of
vector space theory to handle some nonlinear problems adequately, but also
by the success of vector space theory in effectively utilizing the structure of linear
systems.

Very recently, the theory of Lie groups and Lie algebras has been successfully
applied to a number of bilinear systems problems. Specifically, the results of Wei
and Norman [11], [12] on differential equations, Brockett [1], Sussman, and
Jurdjevic [5] on the structures of bilinear control systems, and Lo and Willsky [8]
on estimation of rotational processes with one degree of freedom indicate that,
much as in the theory of linear systems, the differential geometric structure of
some bilinear systems may be used to obtain simple, explicit solutions. It is in this
spirit that this paper is written.

Specifically, we will concern ourselves with the study of stochastic processes
on the circle, S?, and its extensions to higher dimensions. Topics such as FM
modulation, frequency stability, single-degree-of-freedom gyroscopic analysis,
and satellite attitude control are well-known examples in this framework.
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In the next section, a class of stochastic control problems on the unit circle
will be formulated. The state and sensor dynamic processes are constructed by
taking the projection module 2rn of the corresponding typical 1-dimensional
processes. The stochastic differential equations which govern their evolution
are bilinear in form. The control function and the observational noise can be viewed
as entering multiplicatively.

In §3, we will briefly discuss two kinds of control criteria on the circle, namely
synchronization control and orientation control criteria. An effective optimal
control procedure for each of these two kinds of control problems will then be
deduced with the aid of the optimal estimation schemes derived in Lo and Willsky
[8]. In each case, the measurement data is first processed through a nonlinear
transformation. The transformed process then goes through an ordinary estimator,
such as a Kalman-Bucy filter. After another nonlinear processing of the output
of the ordinary estimator, the desired control is yielded. The approach illustrated
by these results can be extended to a large class of problems—those involving
processes evolving on Abelian Lie groups. This will be discussed at the end of §3.

Section 2 is relatively abstract, since it describes the mathematical setting
of the problems to be considered. The authors wish to point special attention to §3,
in which we explicitly solve several nonlinear stochastic control problems.

The reader is referred to Lo and Willsky [9] for some examples, which illustrate
the application of results in this paper to a number of important practical problems.
Among them are a control problem of the synchronous rotation of a prime mover
in a hydraulic plant, a feedback frequency modulation problem, and a satellite
attitude control problem.

2. Stochastic control systems. In this section, we will formulate a stochastic
model of a control system for continuous rotational processes with one degree
of freedom. This model consists of equations for the state and the sensor dynamics.

A natural state space for single-degree-of-freedom rotational processes is the
circle group, S'. It has been shown (Ito and McKean [4]) that the circular Brownian
motion on S! can be constructed by taking the projection modulo 27 of the
standard 1-dimensional Brownian motion onto the unit circle S*. This method
will now be used to construct the continuous state and sensor dynamics to be
used in this paper.

We will adopt the following notation:

(Q, o/, P) = a probability space;
s = a positive real number;

C9 = the family of real-valued continuous functions, a, on [0, s] such
that a(0) = 0;

C5 = the family of 2 x 2 orthogonal-matrix-valued continuous func-
tions, A, on [0, s] such that 4(0) = I, the identity matrix;

B;j = the Borel g-field of C{ with respect to the uniform topology of
Ci,fori=1and?2.

Lower case letters denote elements in C} and upper case letters denote elements in
Cs.
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Let J:C5 — C% be defined by
cos a(t) sin a(t):|

—sin a(t) cos alt)

e[ ]

for ae C and t € [0, s]. It is casily seen that J is B$-measurable and bijective.
This bijective operator will play a key role in this paper. The reader is referred to
Lo and Willsky [8] for a physically appealing argument concerning the bijectivity
of J.

Thus a continuous stochastic process Y on S' corresponds to a continuous
stochastic process y on R in the sense that one can be induced by the other via the
bijective operator J. In the following we will refer to y as the C,-representation
and Y as the C,-representation of the continuous stochastic process under con-
sideration.

(@) (1) = exp (a(t)R) = [
4] :

2.1. State dynamic equations. We first formulate a state dynamic equation
on S' as the following scalar Ito differential equation viewed as its C,-representa-
tion:

dx = a(t) dt + F()x(t) dt + G(tu(t) dt + Q*(¢) dw(t),
x(0) =0,

where a, F, G, and Q"2 are scalar functions, w is a standard Brownian motion on
(Q, o, P), and u is the scalar control function. In considering rotational processes
with one degree of freedom, the dynamic state of the process is specified by the
2 x 2 orthogonal matrix representation of the process. In this sense, the C,-
representation above is not a dynamic-state-space representation of the process.
Injecting x into S* via the operator J, we obtain, with the aid of the Ito differential
rule, the following Ito matrix differential equation satisfied by the C,-representa-
tion X = J(x). This is a dynamic-state-space representation of the state dynamics.

2)

dX(1) = [(A,(t) + A1) dt + B(t)u(t) dt + C(2) dw(t) + D(t)x(t) dt]1X(¢),

XO) =1,
) ,

x(t) = [ [ xnx- ‘(sq :

0 12

where
) A1) = alt)R,
(5) B(t) = GO)R,
©) ) = 0V0R,
™ D(t) = F(OR,

(8) A,(t) = ).
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We note that in this equation A, is introduced to keep the evolution of X
on S' when the equation is interpreted as an Ito differential equation. In fact the
term A, X dt is precisely the second order correction term that arises in Ito dif-
ferential calculus. 4,(t) as well as B(t), C(t), and D(t) are skew symmetric matrices.

If we set C = D = A, = 0, equation (3) then becomes

X(®) = (4,(0) + BOu(®)X (1),

which is a well-known deterministic model (Brockett [1]) for control systems on S!.
This indicates that our formulation (3) introduces randomness (in the form of
white Gaussian noise) into the above well-known deterministic model in a very
natural way. In addition, the terms involving the coefficient D in (3) allow the
physical quantity x(¢), the total angle that the considered rotational process has
swept, to enter the state dynamics directly.

2.2. Sensor dynamic equations. We will now formulate a sensor dynamic
equation on S'. The C,-representation of the sensor dynamics is given by the
following scalar Ito differential equation:

9) dz(t) = H()x(t) dt + RY3(¢) dv(t), 2(0) = 0,

where v is a standard scalar Brownian motion independent of w, R/2(t) and H(t)
are scalar functions. Injecting z into S! via J, we obtain the following Ito matrix
differential equation satisfied by the C,-representation Z = J(z) of the sensor
dynamic equation: '

dZ(1) = [AN(1) dt + S(O)x(t) dt + E(t) du(t))Z(t),

(10)

Z() =1,
where
(11) N(t) = E¥),
(12) S(t) = H(t)R,
(13) E(t) = RY}(1)R.

We note that this is a dynamic-state-space representation of the sensor dynamics.
The term N Z dt in (10) plays the same role as 24, X dt did in (3). The matrices S(¢)
and E(t) are skew-symmetric.

We note that because J is a bijective operator and Z = J(z), the o-field in
(Q, o/, P) generated by Z' = {Z(s),0 < s < ¢} is the same as that generated by
2" = {z(s), 0 £ s = t}. In other words, Z* and z' carry the same amount of in-
formation about X. This enables the C,-representation (9) to serve as an extremely
useful auxiliary equation in the analysis of detection, estimation, and control.
While the detection and the estimation problems were treated in Lo and Willsky
[8], and Lo [17], the application of the C,-representation to control problems
will be considered in this paper.

Since a sensor cannot take measurement of future state evolution, the obser-
vation process Z (the output of the sensor) must be nonanticipative with respect to
state evolution. More specifically Z(t) must be a function of X' = {X(s),0 < s £ t}
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or equivalently x' (from the mathematical viewpoint) since X* = J(x') and J is
bijective. We note that the sensor dynamic equation (10) does, in fact, have this
essential feature.

From a physical viewpoint the sensors used to observe single-degree-of-
freedom rotational processes can be classified into two kinds by the way in which
the measurement is taken. The first type measures the orientation X(t) directly (as in
the measurement of a gimbal angle in an inertial navigation system (Wrigley,
Hollister, and Denhard [14]). A sensor of the second kind measures the total angle
swept x(t) directly (e.g., an integrating gyroscope).

3. Cost criteria and feedback control. A cost criterion for a control system
operating over some time period T is usually defined as a real-valued functional
1 on the direct product of the space of state trajectories and the space U (to be
specified later) of admissible control functions over T. As shown in the previous
section, there are two representations of the space of state trajectories—C; and C,,
which are related by the bijective operator J. Therefore we may define the cost
criterion as a real-valued functional on either C, x U or C, x U.One form of the
criterion can be easily obtained from the other via the operator J. A cost criterion in
the form of a function on C; x U will be called its C;-representation fori = 1and 2.

Just as with the classification of sensors from a physical viewpoint, the C,-
and the C,-representations of the cost criterion have different physical interpre-
tations. When the cost is induced directly by the time history of the deviation of the
total swept angle of the controlled rotational process from some desired total swept
angle (or, alternatively, when it is induced by the deviation of the angular velocity of
the controlled process from some desired rotational rate), it is obviously physically
more natural to first write down the C,-representation of the cost criterion. A
notable example of this kind is the control of synchronous rotation such as the
control of a rotor in a motor or electric generator, or in the adjustment of a high-
accuracy clock or an oscillator used for frequency modulation.

On the other hand, when the cost is induced directly by the time history of the
“deviation” (a measure of angular deviation will be specified later) of the orienta-
tion of the controlled rotational process from the desired orientation, it is then
physically more natural to write down the C,-representation of the cost criterion.
A notable example of this kind is the satellite attitude control problem (Leondes
[7]). In the following we will study the control problems for these two kinds of cost
criteria. They will be referred to as synchronization control and orientation control
respectively.

In the following, we will consider control systems defined on the fixed interval
T = [0, t,]. The space U of admissible control functions is defined as follows: let
the mapping =,:C, — C, be defined by

(mA)(s) = Als), 0=
= A(t), t<s=st,,

IIA

t,

for A€ C,. Let | - ||, denote the supremum norm in C, defined by

4]l = sup (tr A()A'(?))

teT
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and let y: T x C, —» U (a convex subset of R') be a mapping with the following
properties: y(t, A) is Holder continuous in t for each 4 € C, and satisfies a uniform
Lipschitz condition

Wit, Ay) = W(t, A))l < 314, — Ayl

forte Tand A,, A, € C,. Let ¥ denote the family of functions . We call a control
u admissible, and write ue U, if

u(t) = yl(t, n,2), teT,

for some ¥ € ¥. These conditions ensure the causality of the control.
The control problem to be studied in the following subsections is: given a cost
function #, find u* € U such that

nlu*] = min {ylu] :uec U}.

The corresponding function ¥* will be called an optimal control law.

3.1. Synchronization control. Let the C,-representation of a desired rotational
process be continuous and denoted by ¢(f). Assume that the cost criterion 5 can be
expressed as follows:

Ty

(14) Nl = E[ f " (x(s) — () W(s) ds + f

0 0

u,(s)V(s) ds],

where W(r) and V(t) are respectively nonnegative and positive-valued functions
with ¥~ !(t) bounded on T. We have mentioned that since linear control theory is
better established than bilinear control theory, the C | -representation of the dynam-
ic-state-space representation (2) and (9) serves as a very useful auxiliary equation.
This is best shown by the following derivation of the optimal control law for the
synchronization coritrol problem.

Given the dynamic-state-representation, (3) and (10), of the control system,
we first write down the C,-representations, (2) and (9), of the system with the coef-
ficients a(t), F(t), G(t), Q*(t), H(t), R'?(t) being determined by (4) ~ (8), (12),
and (13).

In addition, we now define the set U, of admissible control functions, defined
with respect to the C, system representation (as opposed to the set U, which was
defined earlier with respect to the C,-representation).

Let n,, defined earlier, also denote the mapping from C, into C, defined by

als), 0 <s<t,
(m(a)(s) = {
alt), t<s <t

forae C,.Let || - |, also denote the supremum norm in C, and let v.:TxC,->R
be a mapping with the properties: y,(t, a) is Hélder continuous in t for each a e C,
and satisfies a uniform Lipschitz condition

[ i(t, a;) — Y i(t, a,)l < cqlla; — ayl,

forte T and a,,a,eC,. Let ¥, denote the class of functionals ,. We call the
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control u admissible and write ue U, if
u(t) = ¥, (t, n,2), teT,

for some \/, € ¥,. An element ¢ € ¥, is called an optimal control law if
n[u®] = min {n(u):ue U},

where u%(t) = (¢, 7,2).

By either completing squares or applying Lemma 5.1 (optimality criterion) of
Wonham [13], the following lemma can be easily obtained.

LemMMA 1. Consider the cost criterion (14) and the control system described
by (2) and (9), with x(t) regarded as the dynamic state. Then the optimal control law,
u’(t) = YO(t, n,z), is given by

(15) u’(t) = =V (OGP (X)) — ()] + bl2),

b(t) = P,()GH0)V ™ {(Ob(t) — F(Ob(t) — P (0)(a(t) — (1),
16 pe,) =0,

(17 P = —F@OP,@) = AOP,() + GOV OP() — W),

Pl(t*) = 0’
&(1) = E(x(0)l2),
(18) 2= {z(s),0 S s < 1},
dx(t) = a(t) dt + F(Ox(t) dt + G(tw°(t) dt
(19) + P,(OH(OR™ ' (1)(dz(t) — H(1)%(2) do),
X(0) =0,

P,(t) = 2F()P,(1) + Q() — H*(OR™'(1)P3(1),
(20) P,(0) = 0.

Using Lemma 1, we can now determine the optimal synchronization control
law. We observe that the o-subfield of .« generated by z' is the same as that gener-
ated by Z' = {Z(s),0 < s < t},because Z' = J(z')and J is bijective. In other words,
z and Z are causally equivalent. Let this o-subfield be denoted by ./}. Then the
conditional expectation E(x(t)|.#/") is both a B,-measurable functional f; of z' and a
B,-measurable functional f, of Z', and »

[(2ZY = fLU7HZY).
Let %(t) and X(¢|t) denote f,(z") £ E(x(t)|z') and f5,(Z") £ E(x(t)|Z"), respectively. Note

that this notation is consistent with (18). Referring to Lo and Willsky [8], it is easily
seen that

dx(t]t) = a(t) dt + F(OX(t|t) dt + GW i, n,(J‘l( ) dt
ey . + P2 H@OR™ ' ({[(AZ)Z'(1) — 2N(@) dt],,
- H(t) (tle) dt},
X(0]0) = 0.
Again because z and Z are causally equivalent, we may define a ¢, € ¥, for
each y e ¥ by

¥, (¢, mz) = ylt, m(J
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and we may define ° e ¥ by
ot m,Z) = YL, nJ " H(2))]-

We note here that the properties of ¥ and ¥, do not give rise to trouble in the above
argument. Since /¢ isoptimal, we have

YOt m.2)] = YR, mJ (2] < nlY, ¢, ()] = nly(t, 7. 2)]

for all € ¥. Hence y/° is optimal. Summarizing what has been shown, we obtain
the following theorem.

THEOREM 2. Consider the control system of rotational processes described by
the bilinear matrix Ito differential equations (3) and (10) and consider the cost criterion
(14). The optimal control law Y* is given by

uMt) = Y, n,Z) = =V OGO (P ()(X(tl) — ¢(1) + b(t))
and
dx(tlt) = a(t) dt + F(O)X(t]t) dt + G(tyu*(t) dt + P,()H()R™ (1)
A{ldZ()Z'(t) — 3N(1) dt],, — H{p)x(tlr) dt}
X(ojo) = 0,

where a, F, G, R, H, P, b, P, are determined by (4), (7), (5), (13), (12), (17), (16),
(20), respectively.

3.2. Orientation control. The standard distance function (Riemannian
metric) on the circle—i.e., the distance, p, between two points on the circle is the arc
length of the shortest path (geodesic line) joining them. Any valid mathematical
expression for the “distance” between two orientations must be a positive-valued
function A:S' x S! — R! which is nondecreasing with respect to p, i.e.,

p(0,0,) > p(@,,0,)= 0,,0,) > AO,,0,)
for ©®,€ S, i = 1,2 In this subsection, we will consider only
M0,,0,) = %(2 - tr©,0))

to avoid complexity in illustrating the approach.
Let @ € C, be the desired evolution of the orientation. Then a cost criterion »
for orientation control can be expressed as follows:

(22) nlu] = E[ f 10— tr X)) ds + f " () ds:l,
0

0

where ¢ is a nonnegative scalar function over T.
Let y be the C,-representation of ®. It is easily seen that the C,-representation
of  can be written as follows:

0 0

(23) nlu] = E[J" (1 — cos (x(s) — ¢(s))) ds + J‘l* y(s)u?(s) ds].
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We note that the function 1 — cos x was used in estimation problems in
Bucy and Mallinckrodt [16]. ~
In view of the C,-representation (2) and (9), setting y(t) = x(t) — ¢(t), we have

dy =(a— ¢ + Fo)dt + Fydt + Gudt + Q% dw,

¥0) =0,
dz = Hp dt + Hy dt + R'Y? dv,
z(0) =0,

nlu] = Elif‘ (1 — cosy(s)) ds + J.t* Y(s)u*(s) ds].

0 0
Thus the Bellman functional equation (Kushner [6] and Wonham [13]) is
min [V(t, &) + $P2H*R "WV (t, &) + (FE + a — ¢ + Fp + Gu)V(t, &) + 1 + yu?
uel
—exp(—iP)cos &] =0,

where
(24) P =2FP — H*R™'P? + (Q, P0) =0.
We set
u= _’yilGI/g(t’ é)

Then the control law —y~ '(1)G(1)Vi(t, §(t)) is optimal in U, if there exists a solution
to the following partial differential equation (see Lemma 5.1 of Wonham [13]):

Vit, &) + SPPHPR™ W1, &) + (FE + a — ¢ + FOV(t, &) + 1

(25) —exp (—3P)cos & =0,
Vit,, &) =0.
Let
a0 pagag &0 —é 9.
L(')—at() 2PH2R laéz()+(F'f+a ¢+F¢)65()'

We note that L is a Kolmogorov backward operator (Doob [3, p. 275]). It is well
known that there exists one and only one solution ¥(z, £) to (25) and it can be
written as

(26) Vi, &) = f {f g, &, C)[I —exp <— g) cos c] dC} ds,

where g is a Green’s function which satisfies

(27) Ligt, ;55 01=0,  gs, &5, =0 -0,

 being the Dirac delta function. It can be checked by simple calculation that the
solution to (27) is

(28) Bss) [_ (& — ultss, n))z]

g, &5, m) = NETOoT Xp 2u(t; s)
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where

(29) B(t; s) = exp [— fF(t) dr],
(30 wts s, n) = Ble; sy + fﬁ(ﬁ )(a(t) — (1) + F(1)o(n)) dr,

(31) aft; s) = f BA(t; T)PX(1)H*(1)R (1) dx.

Substituting (28) into (26) yields

" 1[ adt; s) & —ult;s,0)
=t 0= [Ton - S[FE5 rofpeo [0

Thus,

_ (1 1[ odt; s) . [¢&— ult;s,0)
uea = [ gger {3y - o e[S o

Summarizing what has been shown, we obtain the following theorem for optimal
orientation control.

THEOREM 3. Consider the control system of rotational processes described by
(3), (10) and consider the cost criterion (14). The optimal control law y* is given by

x(tlt) — (1) — plts s, 0)} s
B(t; s) v

_ G(1) 1| at;s)
K9 = = 0B s =P {_ p [ﬂZ(r; gt P (S)J}’

where 5, u, o are determined by (29) ~ (31), and

u*(t) = Y¥(, n,Z) = JI* K(t, s) sin [

dR(tlt) = a(t) dt + F(OK(t|t) dt + G(t)u*(t) dt
+ POH(OR™O[(AZ)Z'(1)],, — H(®)R(t]r) dr),
£(0/0) = 0,

where a, F, G, R, H, P are determined by (4), (7), (5), (13), (12), (24), respectively.

We remark that K(t, s), B(t; s), and u(t; s, 0) can be precomputed and stored in
the feedback controller. Hence it is believed that the optimal control scheme of the
previous theorem can easily be implemented.

When x does not directly enter the state dynamics (3), i.e., when D = 0, the
optimal orientation control law takes a very simple and interesting form. We state
it in the following corollary.

COROLLARY. Consider the control problem in the previous theorem. If D = 0,
the optimal control law Y* is given by

u*(t) = W*(f, ntZ)
= ¢,(t) cos (x(t]t) — (1)) + c,(t) sin (x(t|t) — H(1)),



896 JAMES TING-HO LO AND ALAN S. WILLSKY

where
cy(t) = — f, . exp {— % [ f, "Pl(s)HZ(s)R-l(s) ds + P(r)]} sin [ f, ‘ (a(s) — @(s)

+ F(s)(s) ds] d.
eslt) = f " exp {— %[ f " PSR 1(s) ds + P(r)]} cos U (als) — (s)

+ Fs)p(s) ds] i,

and x(tlt), a, F, G, R, H, P are determined as in the previous theorem.

In Lo and Willsky [8], orientation estimation of rotational processes with one
degree of freedom was studied. It was shown that the optimal orientation estimate
X(0)|t) of X(t) given observation Z' is

X(t)t) = exp (Rx(1]1).
Hence the optimal control law in the previous corollary is in fact linear:
u¥(t) = [¢,(0), (0@ OX(elr) [1, 0,
where @(t) = exp (R¢(2)) is the C,-representation of ¢(t).
3.3. Control on Abelian Lie groups. The results of the previous subsections
can be extended to a large class of problems—those involving processes evolving on
Abelian Lie groups. It is well known (Warner [10]) that a given Abelian Lie group G

is isomorphic to the direct product of a number of copies of the real line and a
number of copies of the unit circle, i.e.,

G ~ R" x (§H)".
The diffusion processes on this type of space have been used to model some inter-

esting satellite and pendulum systems in Ku and Sheporaitis [15]. Following Lo
and Willsky [8], a bijective mapping J,,,,:(C5)"*™ — (C5)* x (C5)" is defined by

@) (@) = [ay(1), -+, a, (1), (J(@ys D)D), -+, (J(@y 1 m))(E)]

for ae (C5)"*™, a, being the ith component of a. Thus a continuous random signal
process on G which is described by an &/-measurable function X:Q — (C})"
x (C5)™ corresponds to a unique continuous random signal process on R"*™
which is described by an .o/-measurable function x:Q — (C5)™*" such that

X(0) = JpmlXN0), €0, 5].

The mathematical model for a control system on G can be obtained by first
using J,, to inject the following (n + m)-vector random differential equation into
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R™ x (SY)™

dx(t) = a(t) dr + F@t)x(t) dt + C(t)u(t) dr + Q'/*(r) dw(1),
x(0) =0, :

and using J ,, to inject the following p + g-vector random differential equation into
R? x (§Y):

dz(t) = H(t)x(t) dt + RY*(¢) du(t),
z(0) = 0,

where the coefficient functions are of appropriate dimension and w and v are in-
dependent vector Brownian motions. Differentiating X(t) = (J,,,(x))(¢) and Z(¢)
= (J,,(2)(¢t) by the stochastic differentiation rule, we obtain a set of joint linear and
bilinear stochastic differential equations. This calculation is straightforward and
thus we will not display those equations. Let X (1) = [x(t), -+, x,(f), X,4,(0),

- X, (0], where X, (1) = (J(x,, ))(t). A joint synchronization and orientation
cost criterion can be written as follows: for 0 < [ < m,

n+li t n+m e
nul = Y | 70s) — ) ds + ) ()2 — tr X{(s)Di(s)) ds
i=1 vO i=n+l+1 vO

L
+ J u'(s)V(syu(s) ds,
0

where y, are nonnegative functions over T, V is nonnegative definite over T, and
¢s) and @s) are the desired total swept angles and the desired orientations at
t = 5. Because of the bijective property of J,,, and J,,, it is clear that the optimal
control analysis in the previous subsections can be easily generalized to this general
Abelian case-with little modification. The reader is referred to Lo and Willsky [9]
for some examples, which illustrate the approach.
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