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Invertibility of Discrete-Event Dynamic Systems* 

Ciineyt M. Ozverent and Alan S. Willsky~ 

Abstract. In this paper we consider a class of Discrete-Event Dynamic Systems 
(DEDS) modeled as finite-state automata in which only some of the transition 
events are directly observed. An invertible DEDS is one for which it is possible to 
reconstruct the entire event string from the observation of the output string. The 
dynamics of invertibility are somewhat complex, as ambiguities in unobservable 
events are typically resolved only at discrete intervals and, perhaps, with finite 
delay. A notion of resiliency or error recovery is developed for invertibility, and 
polynomial-time tests for invertibility and for resilient invertibility, as well as a 
procedure for the construction of a resilient inverter, are discussed. 

Key words, Automata, Invertibility, Observabitity, Resiliency, Error recovery, 
Discrete-event dynamic systems. 

1. Introduction 

For Discrete-Event Dynamic Systems (DEDS) state evolution is triggered by the 
occurrence of discrete events. Such behavior can be found in many complex, 
man-made systems at some level of abstraction, such as flexible manufacturing 
systems and communication systems. DEDS have been studied extensively by 
computer scientists, and the study of DEDS was introduced into the systems and 
control context by Wonham, Ramadge, and others. JOWl], [RWt], [RW2], [VW]+ 
This work assumes a finite-state model with certain state transitions that can be 
enabled or disabled. The control of the system is achieved by choice of control inputs 
that enable or disable these transitions. 

The initial work (see [CDFV], [LW], JOWl], [RW1], [RW2], and [VW]) in 
this area dealt primarily with linguistic questions--e+g., the use of control to force 
the trajectory of transition events to lie in a specified language of event strings--and 
these results prompted a number of researchers to investigate a variety of alternate 
formulations and questions. In our work we have been motivated primarily by a 
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desired to develop counterparts for DEDS of standard control and system-theoretic 
concepts, and, more specifically, by the need we perceived for the development of 
concepts of error recovery or resiliency in DEDS. For  example, in [OWA] we 
develop a notion of stability for DEDS and investigate the design of stabilizing state 
feedback laws. In [OW2] we focus on the problems of observability and state 
reconstruction, with an associated investigation of error recovery, while in 
[OW3] we do the same in the context of designing stabilizing dynamic output 
compensators. 

The focus of attention in this paper is the system-theoretic problem of inver- 
tibility, i.e., the problem of reconstructing the full transition event sequence given 
observations of certain output events. Such a problem may arise in the monitoring 
of a complex system or in troubleshooting a faulty system. Also, the dual of this 
problem, the generation of input sequences to achieve specified output behavior, is of 
considerable importance in characterizing the tracking and regulation capabilities 
of a DEDS. In addition, as we will see, an inverter for a DEDS can be quite 
nonresilient. In particular, much as in catastrophic error propagation in sequential 
decoding [PW2], some DEDS inversion problems have the undesirable property 
that a finite burst of observation errors can lead to an unbounded sequence of 
inversion errors. Our work here contributes to the development of a theory and 
methodology for characterizing when large-scale DEDS can exhibit such behavior 
and for designing compensation that provides enhanced robustness to errors. 

In the next section we introduce the mathematical framework considered in this 
paper and summarize aspects of our previous work needed in what follows. In 
Section 3 we define several notions of invertibility, develop efficient tests for these 
notions, and describe a procedure for constructing an inverter. In Section 4 we define 
a notion of resilient invertibility very much in the spirit of resilient observability as 
formulated in [OW2], and we provide a polynomial-time test for this notion as well 
as a construction for a resilient observer. Finally, we conclude with a brief discussion 
in Section 5. 

2. Background and Preliminaries 

2.1. System Model 

The class of systems we consider are nondeterministic finite-state automata with 
intermittent event observations. The basic object of interest is the triple 1 

G = (X, E, I'), (2.1) 

where X is the finite set of states, with n = IXI, E is the finite set of possible events, 
and F c E is the set of observable events. The dynamics defined on G that we 
consider in [OWA] are of the form 

x[k + 1] ~ f(x[k], a[k + 1]), (2.2) 

a[k + 1] ~ d(x[k]). (2.3) 

I In the complete model considered, for example, in [CDFV], [LW], JOWl], [OW3], and IOWA] 
we also include control by allowing some events to be disabled. In the present context we do not need 
to introduce control since we are only interested in an observation problem. 



Invertibility of Discrete-Event Dynamic Systems 367 

/ct 

Fig. 2.1. A simple example. 

Here, x[k] ~ X is the state after the kth event, and tT[k] ~ E is the (k + l)st event. 
The function d: X - ,  2 z is a set-valued function that specifies the set of possible 
events defined at each state (so that, in general, not all events are possible from each 
state), and the function f :  X x E --, X is also set-valued, so that the state following 
a particular event is not necessarily known with certainty. 

Our model of the output process is quite simple: whenever an event in F occurs, 
we observe it; otherwise, we see nothing. Specifically, we define the output function 
h: E ~ F u {~}, where ~ is the "null transition," by 

h(o~) = J'tr i f  a ~ F  
(2.4) 

otherwise. 

Then our output equation is 

~[k + I] = h(~r[k + 1]). (2.5) 

Note  that h can be thought of  as a map from Z* to F*, where I"* denotes the set 
of all strings of finite length with elements in F, including the empty string e. In 
particular, h(trl ...tr,) = h(crt).--h(~r,). The quadruple A = (G, f ,  d, h) representing 
our system can also be visualized graphically as in Fig. 2.1. Here, circles denote 
states and events are represented by arcs. The first symbol in each arc label denotes 
the event, while the second symbol denotes the corresponding output. Thus, in this 
example, X = {0, I, 2, 3, 4}, Z = {=, fl, 6, p}, and F = {~, fl}. 

There are several basic notions needed in our investigation. The first is the notion 
of liveness. A system is alive if it cannot reach a point at which no event is possible. 
That is, A is alive if, for all x ~ X, d(x) ~ ~ .  We assume that this is the case. A 
second notion that we need is the inverse of an automaton. Specifically, we define 
A -I = (G, f - 1  d- t ,  h) by reversing all the arcs in the graph of A so that 

f - l ( x ,  a) = {y E Xlx  a f(y, a)}, (2.6) 

d-t (x)= { a ~ E i ~ d ( y ) f o r s o m e  y ~ X  a n d x ~  f(y,  cr)}. (2.7) 

2.2. Stability 

In IOWA]  we define a notion of  stability which requires that the trajectories go 
through a given set E infinitely often: 



368 C. M. 0zveren and A. S. Willsky 

Definition 2.1. Let E be a specified subset of X. A state x ~ X is E-pre-stable if 
there exists some integer i such that every trajectory starting from x passes through 
E in at most  i transitions. The state x ~ X is E-stable if A is alive and every state 
reachable from x is E-pre-stable. The D E D S  is E-stable if every x ~ X is E-stable 
(note that this is equivalent to every x e X being E-pre-stable). 

By a cycle we mean a finite sequence of states Xx, x2 . . . . .  xk, with Xk = Xl, SO that 
there exists an event sequence s that permits the system to follow this sequence of 
states. Note  that E-stability is equivalent to the absence of cycles that do not pass 
through E IOWA].  We also need the following: 

Definition 2.2. The radius of A is the length of the longest cycle-free trajectory 
between any two states of A. The E-radius of an E-stable system A is the maximum 
number  of transitions it takes for any trajectory to enter E. 

Note that an upper bound on both the radius and the E-radius, for any E, of an 
E-stable system is n. We refer the reader to I O W A ]  for a more complete discussion 
of this subject and for an O(n 2) test for E-stability o f a  DEDS. Finally, we note that 
in I O W A ]  and Definition 2.1, we require liveness in order for a system to be stable 
so that trajectories can be continued indefinitely. We always require liveness in this 
paper. 

2.3. Observability and Observers 

In [OW2]  we term a system observable if the current state is known perfectly at 
intermittent but not necessarily fixed intervals of time. Obviously, a necessary 
condition for observability is that it is not possible for our DEDS to generate 
arbitrarily long sequences of unobservable events, i.e., events in F, the complement 
of F. This is not difficult to check (see [OW2])  and thus observability is assumed. 

Let us now introduce some notation that will be useful: 

�9 Let x ~ s  y denote the statement that state y is reached from x via the occurrence 
of event sequence s. Also, let x ~ *  y denote that x reaches y in any number  of 
transitions, including none. For  any set Q c X we define the reach of Q in A as 

R(A, Q) = {y ~ XI3x ~ Q such that x --**y}. (2.8) 
�9 Let 

Yo = {x E XI~y e X, tr e Z, such that x e f ( y ,  y)}, (2.9) 

1:1 = {x e XI3y e X, y e l", such that x e f ( y ,  7)}, (2.10) 

Y = Yo U I:1. (2.11) 

Thus, Y is the set of states x such that either there exists an observable transition 
defined from some state y to x (as captured in Y1) or x has no transitions defined 
to it (as captured in Yo). Let q = I YI. 

�9 Let L(A, x) denote the language generated by A, from the state x e X, i.e., 
L(A, x) is the set of all possible event trajectories of finite length that can be 
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generated if the system is started from the state x. Also, let LI(A, x) be the set 
of strings in L(A, x) that have an observable event as the last event, and let 
L(A) = U,:~x L(A, x) be the set of all event trajectories that can be generated 
by A. Finally, let Lf(A) be the set of strings in L(A) that have an observable 
event as the last event. 
Given s ~ L(A, x) such that s = pr, p is termed a prefix of s and we use sip to 
denote the corresponding suffix r, i.e., the remaining part ofs after p is taken out. 

In [OW2] we present a straightforward design of an observer that produces 
"estimates" of the state of the system after each observation 7'[k] ~ F. Each such 
estimate is a subset of Y corresponding to the set of possible states into which A 
transitioned when the last observable event occurred. Mathematically, if we let a 
function i :  h(L(A)) ---} 2 r denote the estimate of the current state given the observed 
output string t ~ h(L(A)), then 

i(t)  = (x ~ YI3y ~ X and s ~ LI(A, y) such that h(s) = t and x ~ f (y ,  s)}. (2.12) 

The observer, for which the state space is a subset Z of 2 r and the events and 
observable events are both F, is a DEDS which realizes this function. Suppose that 
the present observer estimate is ~[k] ~ Z and that the next observed event is 
y[k + 1]. The observer must then account for the possible occurrence of one or 
more unobservable events prior to y[k + 1] and then the occurrence of y[k + 1]: 

2 [k  + 1] = w(2[k], 7[k + 1]) --& Q f (x ,  7[k + 1]), (2.13) 
x ~ RIAIF,  ~[k]) 

7 [ k +  1] e v(s k d(x)). (2.14) 
X (I-.  [ ]) 

The set Z is then in the reach of { Y} using these dynamics, i.e., we start the observer 
in the state corresponding to a complete lack of state knowledge and let it evolve. 

Our observer then is the DED$ O = (F, w, v, i), where F = (Z, F, F) and i is the 
identity output function. The observer for the example in Fig. 2.1 is illustrated in 
Fig. 2.2. In [OW2] we show that a system A is observable if and only ifO is E-stable 
for all singleton sets of states E. We also show that if A is observable, then all 
trajectories from an obsever state pass through a singleton state in at most q2 

Fig. 2.2. Observer for the system in Fig. 2.1. 
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transitions. Since there can also be at most q singleton states, the radius of the 
observer is at most q3. 

In order to construct a polynomial-time test for observability, we use what we 
term the pair automaton associated with A which we define as follows: Let P = 
Y x Y and construct an automaton Oe = (Gp, fp, dp, 1) with G), = (P, F) such that 

ft,(P, )') = ( f ' (x ,  y) u f ' (y ,  ~)) x ( f ' (x ,  ~)u  f ' (y ,  ~)), (2.15) 

de(p) = d'(x) w d'(y), (2.16) 

where p = (x, y) ~ P, and 

f ' (x ,  y) = f(R(AI[' ,  x), ~), (2.17) 

d'(x) = h(d(R(AIF, x))). (2.18) 

Note that since it is nondeterministic, Or is certainly not an observer for A. However, 
if its state ever evolves deterministically to a state of the form (x, x), the automaton 
A must be in state x. Thus, 

Proposition 2.3 [OW2]. A is observable i f  and only i f  Oe is Ee-stable where 
E e = {(x, x)lx ~ Y}. 

Since tPt = q2, this gives us a test for observability that has time-complexity O(q4). 

2.4. Observability with a Delay 

An extension of the notion of the observability is formulated and analyzed in 
JOWl],  and we use it in what follows. In the following notion of observability with 
a delay, we only require perfect state knowledge a finite number of transitions into 
the past: 

Definition 2.4. A is observable with a delay (WD-observable), if, for all x e X, 
s ~ L(A, x) such that Isl > nq 2, there exist prefixes Px ~ Ly(A, x) of s and P2 
LI(A, x) of pl such that 

�9 Is~P21 < nq 2, 
�9 f (x ,  P2) is single valued, 
�9 for all y ~ X and tl ~ Ly(A, y), h(tl) = h(pl) implies f (y ,  t2) = f (x ,  p:) where t2 

is the prefix of tl such that h(tz) = h(p2). 

In the above definition, p~ is the event trajectory so that given the observation h(p~), 
we know precisely the state of A after the occurrence of P2. The length of the string 
Pl/P2 then corresponds to the observation delay. The first condition thus bounds 
this delay appropriately, and the second and third conditions assure that we know 
the system state after the occurrence of P2- 

In constructing an algorithm for testing WD-observability, we use the following 
notion: 

Definition 2.5. Given x ~ X, let L| x) denote the set of infinite length event 
trajectories generated from x, and let h(L~o(A, x)) be the corresponding set of output 
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trajectories. The pair (x, y) e Y x Y is an indistinguishable pair if h(Loo(A, x)) r~ 
h(L~(A, y)) ~ (g, i.e., if there is an infinite length output sequence that could have 
been generated starting from either x or y. 

Let IM denote the maximal set of indistinguishable pairs; in [OW2] we present a 
polynomial-time algorithm to compute I M. We also have the following characteriza- 
tion of WD-observability: 

Proposition 2.6. A is WD-observable if and only if 0 is Ew-stable where 

Ew = {~ ~ Zlthere exists no x, y e 2, x ~ y such that (x, y) ~ I~}.  

As this result suggests, we can construct a WD-observer as follows [OW2]: Start 
the observer at state Y and let it evolve. Whenever the observer trajectory enters 
Ew, we know that we will be able to determine the precise state at that time using 
future observations, thanks to the distinguishability of the states in Ew. 

We may also use the pair automaton associated with A (together with indistin- 
guishability) to construct a polynomial-time test for WD-observability: 

Proposition 2.7 [OW2]. A is WD-observable if and only if 0 v is EDe-stable where 

Cop = {(x, y) ~ IM}- 

Finally, we state the following result which plays an important role in the 
development of Section 4: 

Proposition 2.8. Given x, y ~ IT, (x, y) ~ I M if and only if x and y share an output 
string of length greater than or equal to q2. 

Proof. Straightforward since any path of length q2 in Ov has a cycle embedded 
in it. 

For  future reference, let n~ denote the minimum number of observations required 
to distinguish between any pair of distinguishable states in A. What Proposition 
2.8 states is that ni <- q2. Of course, in many systems ni can be much smaller than 
this bound. 

2.5. Resiliency 

An important aspect of our work concerns resiliency or error recovery. Specifically, 
suppose that the observed sequence of transitions includes errors corresponding to 
inserted events, missed events, or mistaken events. We terms an observer resilient 
if at the end of a finite burst of such measurement errors, the observer resumes 
correct behavior after a finite number of transitions, i.e., the current observer 
estimate includes the current state of the system. In [OW2] we construct a resilient 
observer as follows: The observer 0 as specified in (2.13) and (2.14) is defined only 
for event sequences that can actually occur in the system. When measurement error 
occurs, the resulting observed sequence may not  be feasible. In this case the observer 
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at some point  will be in a state such that  the next observed event is not  defined. In  
this case we reset the observer state to { Y}, i.e., to  the condit ion of  knowing  nothing 
about  the system state. Thus, for each state in Z and for all events that  are not  
defined at that  state, we add a transit ion to { Y}. In  particular, we modify w and v 
as follows: 

~'w(~, y) if y e v(2), 

wR(2' ~) = ({Y} otherwise, 
(2.19) 

vR(2 ) = F, (2.20) 

and we thus construct  the observer O R = (F, w R, vR, i). As before, the initial state of  
O R is the state (Y}. We show in l O W 2 ]  that  OR is a resilient observer if A is 
observable or, in fact, WD-observable.  

3. Invertibility 

In this section we present and analyze two not ions  o f  invertibility: The first not ion 
assumes that the initial state is known,  while the second does not. Since a reconstruc- 
tion in the latter case involves estimating the current  state first, our  second not ion 
allows for a bounded  error in the beginning of  the reconstructed string. 

3.1. Invertibtlity with a Delay 

We consider first the problem in which the initial state x o of  A is known. We assume 
that  A is a minimal au toma ton  generating the event language L = L(A, Xo), so that 
all states are reachable from x o, and no two states generate the same language. 
Fur thermore ,  we assume that A is deterministic. Nei ther  of  these assumptions is 
restrictive since we are concerned with the est imation of  elements in L, and we can 
always choose a minimal deterministic a u t o m a t o n  (and initial state) that  generates 
L. Specifically, given L, or  equivalently, such an A and x o, we are interested in 
whether or  not  we can reconstruct an event t rajectory s ~ L when we only observe 
that part  of  the string that is in F, i.e., we observe h(s) (see Fig. 3.1). 

To  begin, let hL be the restriction of the ou tpu t  function h to the domain  L so 
that hZl(r) is the set of  strings in L that  generate the output  string r ~ h(L). Let us 
now formally define invertibility with a delay: 

D, Event sequence 

llllllllllllllllllllllllllllllllllllllllllllllllllllllll IIIIIIIIIIIIIII Out~ut sequence 
(intermittent observations) 

Exact  reconstruction 
, ' , ' , ' !1, ' , ' - ' , ' , ' , ' ,"  Reconstructed sequence 
Possible ambiguity 

Fig. 3.1. Invertibility with a delay: given the output sequence, the event sequence is reconstructed 
exactly but with some delay. The ambiguity at the end of the reconstructed string will be resolved using 
future observations. 
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1~  ~/E r~)  
~ a/a 

7 

-Q 
Fig. 3.2. Example for WD-invertibility: state 0 is the initial state. 

Definition 3.1. L is invertible with a delay (or WD-invertible) if there exists an 
integer n~ such that, for all s e L, there exists a prefix p of s such that hZl(h(s)) c 
p(Z w {e}) "d, where p(E w {e})"d is used to denote the se t :p  concatenated with 
arbitrary strings of length at most rid. 

What this definition states is that for a WD-invertible language, we can, at any time, 
use knowledge of the output sequence up to that time to reconstruct the full event 
sequence up to a point at most nd events into the past (that is, p is uniquely specified). 

Consider the system in Fig. 3.2, where state 0 is the initial state. In this case, L is 
WD-invertible with nd= 4. Note that it is not invertible without delay (i.e., na = 0). 
For  example, if we observe tr 2, the original input string could be ~(&r) 2 or ~t(&r)26 
or ~ratr, etc., but we know the first three events with certainty. 

To begin our investigation of WD-invertibility, let us define two subsets of 
Ly(A, x). Specifically, let LI(A, x) (or L x where it is clear from the context) consist 
of those strings of LI(A, x) that have only one observable event, and let L,(A,  x) (or 
L,)  be the set of strings in L1 that have a e F as the observable event. We first need 
the following notion: 

Definition 3.2. A is termed ambiguous if, for some x ~ X and ~ ~ F, there exist 
distinct s, t ~ L~(A, x) such that f (x ,  s) = f ( x ,  t). 

The importance of this concept for invertibility is given by the following: 

Proposition 3.3. I f  A is ambiguous, then L is not WD-invertible. 

Proof. Let x, 7, s, and t be as in Definition 3.2. Since A is minimal and deterministic, 
find an event sequence p so that f (xo,  p) = x. Then the distinct sequences ps and pt 
have indetical outputs and drive x o to the same state. Thus, no future behavior will 
allow us to distinguish between these strings. 

As an example, the system in Fig. 3.3 is ambiguous since both ~6 and fir, which 
produce the same output, take state 0 to state 3. Thus the language generated from 
0 is not invertible. 

Unambiguity alone is not sufficient for invertibility. For  example, the automaton 
in Fig. 3.4, where 0 is the initial state, is unambiguous, but L(A, Xo) is not invertible 
either. More specifically, event trajectories (rot)* and (6~)* both have the output ct*. 
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Fig. 3.3. Example for an ambiguous system. 

In order to explore necessary and sufficient conditions for invertibility, let us first 
state the following recursive characterization of invertibility which follows from the 
fact that R(A, Xo) = X: 

P r o p o s i t i o n  3.4. L is WD-invertible if and only if L(A, x) is WD-invertible for each 
x ~ X .  

What this result suggests is the following: Suppose that we have perfect knowledge 
of some state x in the past, and that we have an algorithm for reconstructing the 
event trajectory s that corresponds to the next observed event 7 from x, i.e., 
s ~ L(A, x) and h(s) = 7. Then, thanks to determinism, we also have perfect knowl- 
edge of the state that s takes x to. Since we also have perfect knowledge of the initial 
state, we can reconstruct the entire event trajectory by applying this algorithm 
iteratively. We use such an approach below to present necessary and sufficient 
conditions for WD-invertibility which can be tested in polynomial time. 

Consider an unambiguous A, any x e X, and any a e F. Then distinct elements 
of L,(A, x) correspond to distinct elements of 

Q~., = f (x ,  L,(A,  x)). (3.1) 

If L is WD-invertible, then at some point we will be able to reconstruct the entire 
event sequence and hence the entire state trajectory through the transition into Q=,r 
caused by the last observable event a. That is, with the help of future event 
observations, we are able to distinguish between the elements of Q~,,. For example, 
in Fig. 3.2, A is unambiguous, 

Qo,, = Qo,, = QI,~, = Qz,, = {1, 2}, 

c~tct 

- 13t~ - - Q  

Fig. 3.4. Example for an unambiguous but not invertible system: state 0 is the initial state. 
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and (1, 2) is not an indistinguishable pair since state 1 produces only tr as output 
and state 2 produces only ),. Thus, we can distinguish between states 1 and 2 using 
the next observed event. Consequently, we have the following: 

Proposition 3.5. L is WD-invertible if and only if A is not ambiguous, and, for all 
x ~ Y u  x o, tr ~ F, and distinct y, z ~ Q .. . .  (y, z) q~ IM. Furthermore, if L is WD- 
invertible, then nj < nq 2. 

Proof. (necessity) From Proposition 3.3, we onlY need to check the second condi- 
tion. Assume the contrary. Then, for some x E Y and a ~ F, there exist distinct s, 
t ~ L ,  such that ( f(x ,  s),f(x, t))~ IM. Thus, using the future outputs, we cannot 
distinguish between s and t. Therefore, L cannot be WD-invertible and we establish 
a contradiction. 

(sufficiency) We prove this inductively, and the proof  also serves as a construction 
for an inverter. Clearly, in the beginning, we know that the system is in state x o. 
Suppose that at some point in time we have inverted the output  sequence up through 
some point and therefore know that the system was in some particular state x a 
finite number  of transitions into the past. Suppose that y is the first observable event 
after the system is in x. Since all pairs in Qx.v are distinguishable, we can, using at 
most q2 future outputs (corresponding to nq 2 events since any chain of unobservable 
events can have at most n events), determine which state y ~ Qx, y the system was in. 
Given x, y, ~ and since A is unambiguous, we can exactly reconstruct that part  of 
the input string which takes x to y and produces ~ as the output. Therefore, the 
entire input sequence which takes Xo to y can be reconstructed exactly, and by 
induction we have proven invertibility. 

To summarize, our  WD-inverter does the following: 

�9 Starts with the initial state x o. 
�9 Given the next output ~, uses future outputs (at most q2 of them will be 

necessary and this corresponds to at most  nq z events) to distinguish between 
the states in Qxo,, (let y be the new state). 

�9 Reconstructs the part  of the state trajectory between x o and y. 
�9 Repeats the process using the state y as the initial state and the output after y. 

We conclude this section by providing a polynomial-time test for WD-  
invertibility. First, to construct a test for ambiguity, note that we only need to 
consider the states in Y, in addition to the initial state Xo, since all other states can 
be reached by states in Y u  {Xo} using only unobservable events. Furthermore, if 
there are no transitions defined to x o, then x o ~ Y, and otherwise x o can be reached 
by some state in Y using only unobservable events. Therefore, we only need to 
consider the states in Y. Let us pick some x ~ Y and consider the set of states 
Xx = R(AIF, x) which includes x itself. Recall that by assumption, there can be no 
loops that consist of only unobservable events. As the next result shows, ambiguity 
may then arise in three forms: 

1. Two unobservable events define the same transition from some y to some z 
both in X~. 
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2. For  some distinct y and z in X~ there is an observable event defined at both  y 
and z that takes both y and z to the same state (this is the case in Fig. 3.3). 

3. For  some distinct y and z in X~, there are unobservable events defined from y 
and z that take y and z to the same state. 

Specifically, we have the following: 

Proposition 3.6. A is ambiguous if and only if there exists some x ~ Y, such that any 
of  the following conditions is satisfied: 

1. There exist some y ~ Xx and al,  tr 2 ~ d(y) c~ r such that f ( y ,  trl) = f ( y ,  o'2). 
2. There exist distinct y, z ~ X x and some y ~ d(y) r~ d(z) c~ F such that f ( y ,  Y) = 

f ( z ,  y). 
3. There exist distinct y, z ~ X~, some tr 1 ~ d(y) c~ F, and tr 2 ~ d(z) c~ r such that 

f ( y ,  a~) = f (z ,  or2). 

Proof. (sufficiency) Obvious. 
(necessity) Ambiguity implies that there exist some w ~ X, ? ~ F, and distinct r, 

q ~ Lr(A, w) such that f (w,  r) = f (w,  q). Since w can be reached by some x e Y using 
only unobservable events (i.e., w e Xx), there exist distinct s, t ~ Ly(A, x) such that 
f ( x ,  s) = f ( x ,  t). Let s = s'y and t = t'y. If  f ( x ,  s') v ~ f ( x ,  t'), then the second con- 
dition is satisfied. Suppose that f ( x ,  s') = f (x ,  t'). Furthermore, suppose that there 
exist prefixes s" ofs '  and t" of t '  such that f (x ,  s") v~ f ( x ,  t") but f(x,  s"trl) = f (x ,  t"tr2) 
where a~ (resp. tr2) is the next event i n s '  after s" (resp. the next event in t '  after t"). 
Then the third condition must be satisfied. Finally, if we cannot find such s" and t", 
then the state trajectories corresponding to s and t must be the same. Since s and t 
are distinct they must differ in at least one event, and thus there must exist some 
state y in the state trajectory so that the first condition is satisfied. 

In order to simplify this test further let us pick some x e Y. We first consider the 
second condition of the above proposition. For  each y ~ f (Xx ,  F) and ~ e d(X~,) let 
us define the following set: 

FT. ~ = {z ~ XxIy ~ d(z) and f ( z ,  y) = y}. (3.2) 

Note that  this set can be empty for some y and ~. It  is obvious that the second 
condition is satisfied if and only if there exists some y and ), such that IF~]~ I > 2. We 
next consider a combined test for the first and third conditions. In this case, for each 
y ~ X~ let us define the following set: 

D~ -1 = {o" ~ r l 3z  ~ x~ such that ~r ~ d(z) and f (z ,  tr) = y}. (3.3) 

It is straightforward to show that either the first or the third condition is satisfied 
if and only if ID~ll >_ 2 for some y. We thus have the following result: 

Corollary 3.7. A is unambiguous if  and only if, for  all x e Y, 

(1) for  all y ~ f (Xx ,  F) and y ~ dtX~), [F.~~ ] < 1, and 
(2) for all y E Xx,  ]D~-~] < 1. 
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Let ~ be the maximum of IR(AIF, x)l over all x e Y. Then, testing for ambiguity 
takes O(~q)  time. 

The following result shows that a necessary and sufficient test for the second 
condition of Proposition 3.5 is to test if (xo, Xo) can only reach indistinguishable 
pairs in OF: 

Proposition 3.8. Given A, we have that (y, z) r I u for all x e Y, a e F and distinct y, 
z e Q~,, if and only if the range of  (x o, Xo) in Oe is contained in {(x, y) r lu}. 

Proof. Straightforward by contraposition. 

The condition of the above proposition can be tested in O(q 2) time. Therefore, 
WD-invertibility can be tested in O ( ~ q  + q2) time. 

3.2. lnvertibility with Unknown Initial State 

Let us now consider a related notion of invertibility which will be of particular 
importance when we consider inversion in the presence of observation errors. In 
particular, suppose that we do not have any information concerning the initial state. 
In this case, in general, we will not be able to reconstruct the entire event string 
because of some unresolvable ambiguity at the start. However, it may be possible 
for us to perform error-free reconstruction after the initial period of uncertainty. In 
this section we investigate this property. 

Let hr.(a) be the restriction of the output function h to the domain L(A) so that 
h~la)(r) is the set of strings in L(A) that generate the output string r e h(L(A)): 

Definition 3.9. A system A is invertible with a delay with unknown initial state 
(WDX-invertible) if there exists an integer n d such that, for all x e X, s e L(A, x), 
there exist p, q, r such that s = pqr, and hfila)(h(s)) = (E w {e})~'q(Z u {r ~'. 

In order to derive necessary and sufficient conditions for WDX-invertibility, we 
first enrich the state space of A by including the event trajectory as part of the state. 
Thanks to our assumption that there are no loops of unobservable events, the 
number of strings in LI(A, x) is finite for any x. Thus, we can enrich the state space 
of A to include such event trajectories, while keeping the state space finite, by using 
strings in LI.  In particular, let the new state space be as follows: 

Xs = {(s, y)ls = e or s e LI(A, x) for some x e Y such that y = f (x ,  s)}. (3.4) 

We then define a system A s = (G s, fs, ds, 1), where Gs = (Xs, F, F), and 

f~((s, y), ?) = {(t, z)lt e Lr(A, y) such that z = f (y ,  t)}, (3.5) 

ds((s, y)) = {? e FI3t e LI(A, y) such that h(t) = ~}. (3.6) 

Note that As is not necessarily deterministic. For example, As corresponding to Fig. 
3.2 is illustrated in Fig. 3.5. Note that, for each state x, A s has a state (~, x). Since, 
for example, the string ~&r takes state 0 to state 1 in Fig. 3.2, the event tr takes state 
(e, 0) to state (~&r, 1) in Fig. 3.5. Similarly, the event a also takes (~, 0) to (~a, 2). 
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Fig. 3.5. A, for Fig. 3.2. 

WDX-invertibility can be characterized more easily using A s. First, note that 
reconstructing the event trajectory in A corresponds to reconstructing the state 
trajectory in As, modulo the first component of the states; i.e., if two states in Xs 
have their first components equal, it is not important, for WDX-invertibility, to 
distinguish between these two states. However, if two states in X~ differ in their 
first components, then we need to be able to tell which state the trajectory has 
passed through in order to reconstruct the event trajectory in A, and, thus, the 
second components of these two states need to be distinguishable in A. Let Os = 
(H s, w s, vs) where Hs = (Zs, F, F) denotes the observer for A s. We characterize 
WDX-invertibility based on this observer. In particular, let Es be those states ~ of 
Os, such that, for all pairs of states (s, x), (t, y) e t ,  either s = t or x and y are 
distinguishable in A, i.e., 

E~ = {~ e Z~I for all (s 1, Yl), (s2, Y2) ~ ~, Sl = S2, or (Yl, Y2) ~ IM}" (3.7) 

In order to be able to reconstruct the event trajectory of A within a finite number 
of transitions, we need the observer to be E~-pre-stable and indeed we would like 
the observer to stay in E r In the following result, let W~ be the maximal ws-invariant 
subset of E s in Os: 

Proposition 3.10. A is WDX-invertible if  and only if  the observer Os for A s is 
W~-prestable. 

Proof. (necessity) Straightforward by contraposition. 
(sufficiency) We  use the observer O, as a basis for the inversion. Thanks to 

stability, the trajectory enters W~ in a finite number of transitions (Proposition 3.13 
below provides a bound for the number of transitions it takes for the trajectory to 
enter Os). The trajectory stays in W~ once it enters W~ and we can then invert the 
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event trajectory as follows: Let 2 e W~ and partition ~ as 

= { ( s .  0 ,  ( s .  } u {(s2. y22),. . .  } u . . - .  

Note that h(s~) = h(s2) =---  = V where V is the last observed event before 0 s entered 
2. In order to invert that portion of the event trajectory corresponding to the 
observation ~, we need to be able to distinguish between y~j and Yu for i # k. Since 
by definition of E,, (y~j, Yu) ~ IM, for i # t, A is WDX-invertible. 

The WDX-inverter motivated by the above proof can be outlined as follows: 

�9 Trace the output trajectory of A in Os until the trajectory in O, enters Vr 
~ Let ~0 be the state that the trajectory in Os enters when it enters ~ for the 

first time and let ~ be the last observed event. Partition :~0 as 

2o = ((sl, Y11), (s~, Y,2),-.-} u {(s2, Y21), (s2, Y22),-.-} u2---. 

Let Y~ = {Yn, Y~z,... } for each i. Thanks to distinguishability, the states in Y/ 
and Y1 do not share any infinite length output sequences for i r j. Thus, using 
future observations, distinguish between Y~ or, equivalently, decide which s i 
has occurred. Then that si is the actual trajectory in A corresponding to the 
observation V. 

�9 Repeat the previous step for all the subsequent states of the trajectory in 0,, 
following 20 . 

To test WDX-invertibility we use the pair automaton O~p = (Zsp, wse, v~e) asso- 
dated with As, in a manner similar to that used in [OW2] for testing observability 
(see Section 2). In what follows, let 

Ese = {((sl, Yt), (s2, Y2)) S Pslsl = s 2 or (Yl, Y2) ~ IM} (3.8) 

and let W~ e denote the maximal w~p-invariant set in E~e: 

Proposition 3.11. A is WDX-invertibte i f  and only i f  Ose is Wsl,-stabIe. 

Proof. Follows from Propositions 3.10 and 2.7. 

Let Tx be the maximum of ILl(A, x)l over all x e Y, then WDX-invertibility can be 
tested in O((T,,q) 4) time since O~e has at most (T~q) z states. 

We now calculate a bound for nd. Note that nd is due to the ambiguity at the 
beginning and at the end of the inverted string. The ambiguity at the end depends 
on n~, the minimum number of transitions it takes to distinguish between two states 
in A, and the ambiguity at the beginning depends on the number of transitions it 
takes a trajectory in O, to enter I,V~. Specifically, if we let n.,, denote the length of the 
longest trajectory in Os that starts from the initial state of O~ and ends as soon as 
the trajectory enters W, and if we let n~ denote the length of the longest chain of 
unobservable events in A, 2 we have the following: 

2 Note that n. <_ n - q~ 
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Proposition 3.12. I f  A is WDX-invertible, then n d <_ n u max(hi, nw). 

Proof. Straightforward by construction of the WDX-inverter and the fact that A 
can have at most n, unobservable events between observable events. 

Recall that a bound on n~, as stated in Proposition 2.8, is q2, and we show below 
that the same is also a bound on n,:  

Proposition 3.13. I f  A is WDX-invertible, then nw <_ q2. 

Proof. Assume the contrary, then there exists a path of at least q2 + 1 states 
(corresponding to q2 transitions) in Os: 

:~o, . . . ,  :~2, 

such that there exists a path in Ose: 

Pl -~" ((So1, Y01), (S02, Y02)) . . . .  , p,/2 = ((S,/21, yq21), (Sq22, y~/22) ) 

for which (sil, Yil), (si2, Y~2) ~ ~i for all i and such that p~2 ~ W~e. Then, for some 
integers j and k, s a y j  < k, {Yl~, Y2j} -~- (Ylk ,  Y2k}" Let tr ~ v~e(pj) such that Pi+l ~ 
w~e(pj, a), then Pj+I ~ Wsp(Pk, tr). Thus, there exists a cycle 

Pj*I, " " ,  Pk, Pj*I 

in Ose which may reach pq,. Since pq~ $ W~, and W~, is wsp-invariant, no state in the 
above cycle can be in W~p either. Thus, Ose cannot be Wa,-stable, and we establish 
a contradiction. Therefore, n ,  < q2. 

We conclude this section by presenting a result on distinguishability that plays 
an important role in the development of resilient WDX-invertibility in the next 
section. Before presenting this result, we need to introduce the following notion: We 
call a state recurrent if it can be reached from another state by an arbitrarily long 
string. We let A, denote the recurrent part of A, which we construct as follows: Let 
D o denote the set of"dead" states in A-1, i.e., 

Do = {x ~ X l d - l ( x )  = ~ ) .  (3.9) 

Now let D 1 be the set of states that can only reach D o, with at most one transition, 
in A-l ,  i.e., 

D1 = Do u {x ~ X I f - l ( x ,  d-l(x)) c Do}. (3.10) 

In general, we let 

D,+I = Di u {x ~ X l f - l ( x ,  d- l(x))  c Di} (3.11) 

and we let n, be the smallest integer so that D,,+I = D,~. Then it is not difficult to 
check that D,, is the set of all recurrent states of A. We define A, over the set X, = D., 
but with the same dynamics as A, and let As,, with state space Xs,, be the counterpart 
for A, of As. The following result states a connection between WDX-invertibility 
and distinguishability in A,I :  
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Proposition 3.14. I f  A is WDX-invertible, then for all Pl = (sl, xl), P2 = (s2, x2) e 

X~, such that (Pl, P2)~ Esl, and h(sx)= h(s2), and for all Yl, Y2 ~ Xr such that 
x1 = f(Yl ,  sl) and x 2 = f(Y2, s2), Yl and Y2 must be distinguishable in A71. 

Proof. Let y = h(sl) = h ( s 2 )  and let us assume the contrary. Thus, there exists 
some Pl, P2, Yl, Yz that satisfy above conditions and such that yl and Y2 are 
indistinguishable in A7 ~ . Let 0,~, 1 denote the pair automaton corresponding to A71. 
Since Yl and Y2 are indistinguishable in A, "x, then, using similar reasoning to that 
in Proposition 2.8, we conclude that there exists a cycle 

Z 1 , . . . ,  Z k ,  Z I 

in O,7,1 that is reachable from (Yl, Y2). However, then the same cycle also exists (in 
reverse order) in Op so that it may reach (yl,  Y2) in Oe. This in turn implies that if 
we represent zi by (zn, zi2), then there exists a cycle 

((tll, Zll), (t12, Z12)) . . . . .  ((tll, ZII), (t12, Z12)) 

in O,e, for some t v, which may reach ((rl, Yl), (r2, Y2)), for some r 1 and r2, in O~p. 
Then this cycle may also reach (p,, P2) which is not in Esp. Therefore, none of the 
elements of the above cycle can be in W~e (since it is invariant) and we establish a 
contradiction since A cannot be WDX-invertible. 

Finally, we let n~i denote the minimum number of transitions it takes to distinguish 
between any two distinguishable states in A71 and note that n, .<.< q2. 

4. Resilient lnverters 

As with the observability problem, we are interested in resilient inverters. Speci- 
fically, we wish to construct inverters that invert correctly after a finite number 
of transitions following an error burst. In addition, in contrast to the situation 
for resilient observability, we allow the reconstructed string to be incorrect in a 
bounded window before and after the burst. We represent this notion ofinvertibility 
pictorially by Fig. 4.1. 

In contrast to the situation for observability and resilient observability, inver- 
tibility is not sufficient for resilient invertibility. For  example, consider Fig. 4.2 where 
0 is the initial state. There is no resilient inverter for this system since an erroneous 
insertion of fl, say after the kth output, may lead to an infinite number of errors. If 

Event sequence 

Burst 
i llllllll lllllll ii lllll1~llllllltlllllllll iI iiii iiIiiii IiiiiiIiiii (CIILI~ut sequence 

~ n. {corrupted with a burst} 

IIIIIlIIIIIIIIIIIIIIIIIIII~II~IIIIIIIIIIIIIIIII{IIIIIIIIIIIIIIIIP " JJ~4~JJ f~JJ8~P  Reconstructed sequence 
Possibly inaccurate 

inversion 

Fig. 4.1. Resilient WD.invertibility: inversion can only be wrong for a finite number of transitions 
before and after the burst. 
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ct 

- 51 ~ " " - ~  

Ob 

Fig. 4.2. Example for nonresilient inversion: state 0 is the initial state. 

in fact B never occurs, the actual string would be (~6)* whereas the inverted string 
is (~6)'//(~)*. 

In order to define what we mean by resilient invertibility, we also need to define 
a notion to represent the discrepancy between two strings. Since the actual point 
that the burst ends is important for our definition of resiliency, we compare two 
strings from their beginning and we represent their discrepancy by how much they 
differ at the end. In particular, we say that the discrepancy between two strings s 
and t is of length at most i, denoted by 

~(s, t) < i, (4.1) 

if there exists a prefix,/9, ors  and t such that Is/Pl <- i and ]t/pl ~ i. 
As in the case of resilient observability, we allow the burst to be any string in F. 

Then the corrupted output is not necessarily an output string that can be generated 
by a state in X, and thus h~ t is undefined for this erroneous string. Therefore, we 
must define an inverter so that its response is defined for all such strings. We also 
require that the behavior of this inverter is equivalent to that ofh~. ~ for uncorrupted 
strings: 

D e f i n i t i o n  4.1. A WD-inverter is a map I: F* ~ E* so that for those strings that 
are in L(A), I yields the same behavior as h ~ ) ,  i.e., for all s e L(A), we require that 
I(h(s)) ~ hZ(~)(h(s)). Similarly, a WDX-inverter is a map I: F* -~ E* so that for those 

-1 L(A), we strings that are in L(A), I yields the same behavior as hLta~, i.e., for all s E 
require that I(h(s)) c hfila)(h(s)). 

Note that we require that the behavior of I is a subset of the inversion (as opposed 
to equivalent to the inversion), since if L is invertible, that portion of the inverted 
string that is of interest to us is unique and the inverter output for the ambiguous 
portion is not relevant. We term an inverter resilient if, for all corrupted output 
strings, the inverter output, compared with the actual event trajectory, is only 
incorrect within a bounded window around the burst. In the following formal 
definition of resiliency, L s denotes the set of strings in L that have an observable 
event as the last event: 

D e f i n i t i o n  4.2. A WD-inverter I is a resilient WD-inverter if there exists an integer 
n~ such that for all strings s in L, for all possible output  strings t which can be 
generated by corrupting h(s) with a finite length burst, i.e., 

�9 for all integers i, 
�9 for all t ~ F* such that ~(h(s), t) _< i (let i' be the length of that part of s whose 
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ou tpu t  is cor rupted  by the burst,  i.e., let s ' ~  L I be the prefix of  s such that  
Ih(s/s')l = i then i' = Is/s'l), 

and for all possible complet ions r of  s, i.e., for all r ~ L such that  s is a prefix of  r, 
there exists 

�9 a prefix p~ o fs  which is free of inversion errors in spite of  the burst, i.e., pt  is that  
prefix o f s  for which Is/pxl < n b +  i', 

�9 a prefix P2 o f t  so that  the inversion er ror  and the ambigui ty  can be confined to 
P2/Pl ,  i.e., IP2/Pxl < 2rib + i', and 

�9 a prefix P3 o f r  so that  the inversion delay, as before, can be confined to r/p3, i.e., 
Ir/p31 < rib, 

such that  
I(th(r/s) ) ~ pl  (E u e)2nb +r (p3/P2)(~, k.) {e}) nb. 

(Note  that  the observed string is th(r/s), whereas r is what  has actually occurred in 
the system.) L is resiliently WD-invert ible  if L is WD-inver t ib le  and a resilient 
WD- inver t e r  exists. 

Similarly, 

Definition 4.3. A WDX-inver te r  I is a resilient W D X - i n v e r t e r  if there exists an 
integer n b such that  for all strings s in L(A),  for all possible output  strings t which 
can be generated by corrupt ing h(s) with a finite length burst,  i.e., 

�9 for all integers i, 
�9 for all t e F* such that  r t) < i (let s' ~ L I ( A  ) be the prefix of s such that  

Ih(s/s')l = i and let i' = Is/s'l), 

and for all possible complet ions r of  s, i.e., for all r ~ L(A)  such that  s is a prefix or  
r, there exists 

�9 a prefix Po of Pl,  representing the ambigui ty  in the beginning, such that  

Pl/Po < nb, 
�9 a prefix Pl o f s  which is free of inversion errors  in spite of  the burst,  i.e., pl is that  

prefix of  s for which s/p~ <_ n b + i', 
�9 a prefix P2 o f r  so that  the inversion error  and the ambigui ty  can be confined to 

P2/P l ,  i.e., IP2/Pll  <-- 2rib + i', and 
�9 a prefix P3 o f t  so that  the inversion delay, as before, can be confined to rip 3, i.e., 

It/pal < n b, 

such that  

I(th(r/s))  c (Z ~ e)"b(pl/po)(Y-, u e)2"~ +r (pa/p2) (Z  u (e}) "b. 

A is resiliently WDX-inver t ib le  ifA is WDX-inver t ib le  and  a resilient WDX-inver te r  
exists. 

As the following result shows, a sufficient condi t ion for resilient WD-inver t ibi l i ty  
is WD-observab i l i ty  together  with WD-invert ibi l i ty ,  and  we justify this as follows: 
I f  A is WD-observab le ,  then, a finite n u m b e r  of  t ransi t ions after a burst, the observer  
est imate is guaranteed to include the actual  state of  the system. Moreover ,  using 
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future outputs, we can exactly determine the actual state of the system. S in ce  
WD-invertibility implies that the language generated by any state is WD-invertible 
(see Proposition 3.4), we can invert correctly after a finite number of transitions: 

Proposition 4.4. If L is WD-invertible and A is WD-observable, then L is resiliently 
WD-invertibte. 

Proof. Straightforward by the above reasoning using the fact that WD-observers 
are resilient, as noted in Section 2, and using Proposition 3.4. 

The converse of Proposition 4.4 is not necessarily true. For  example, consider the 
system illustrated in Fig. 4.3, where all events are observable and 0 is the initial 
state. This system is clearly resiliently invertible since all events are observable. 
However, it is not WD-observable since if only ct occurs, we can never distinguish 
between states 1 and 2. 

To find necessary and sufficient conditions for resilient WD-invertibility, we first 
address the problem of resilient WDX-invertibility, since, as we have noted in 
Section 2, observation errors may lead to a complete loss of current state informa- 
tion. It turns out that WDX-invertibility is necessary and sufficient for resilient 
WDX-invertibility. Since necessity is clear, we concentrate on showing sufficiency. 
In doing so, we assume WDX-invertibility and construct a resilient inverter. How- 
ever, the construction for a resilient WDX-inverter is fairly complicated in this case. 
We start by using the WDX-inverter. If a burst never occurs, the inversion proceeds 
as before. In case of a burst, if the corrupted output  trajectory is a feasible one, i.e., 
if it is in h(L(A)), the burst will never be detected. Later in this section we show that 
our WDX-inverter works correctly in this case. However, if the corrupted string is 

System Observer 

~t ~t 

Fig. 4.3. Counterexample to necessity of WD-observability for resilient invertibility: all events are 
observable, 0 is the initial state. 
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o 

Fig. 4.4. Example for resilient invertibitity. 

no t  a feasible one, then we need to modify our WDX-inverter so that we can 
incorporate this possibility; the observer O, used as a basis for the WDX-inverter 
must also be used somewhat differently. 

Let us examine the effect of an error burst on the inverter. When a burst occurs, 
it is possible that this burst is never detected. For  example, consider the system in 
Fig. 4.4, where all events are assumed to be observable so that inversion is trivial, 
i.e., the inverter is just the identity map. Suppose that ~fi* occurs but l/6" is observed. 
This observation error is never detected, but inversion is resilient because there are 
only a finite number of inversion errors (just one in this case) and they occur in 
close vicinity of the error burst (in this case coincident with the burst). This example 
iUustrates the general situation for a WDX-invertibte system when an error burst 
occurs that is not detectable. In this case, by the definition of WDX-invertibility, 
the WDX-inverter itself will provide correct inversion after a finite period following 
the burst (note that this is because the WDX-inverter is capable of performing the 
inversion even though the system state is unknown at the end of the burst). 

However, as in the preceding example and as illustrated in Fig. 4.5, the point t~ 
at which we detect the inconsistency may occur after an arbitrarily large time 
following the measurement error burst interval [t~, tb]- What we would like to do, 
however, is to correct inversion errors  (once we have detected a discrepancy) to 
obtain a correctly inverted string except for a region around the actual error burst; 

inconsistency O s lS m w s 
detected future inversion OK 

t a t b 

r region B 

t d t c 

I~ region D ~ [  

J ,d 

backtrack up to h 

Fig. 4.5. Illustration of crucial points in time in resilient inversion: particular choice of time indices 
illustrates the case when the inconsistency is detected arbitrarily far from the burst. 
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i.e., we would like to find a number  n b and a backtracking procedure that guarantees 
that any inversion errors are confined to region B. Note  that while the times ta and 
t c are known, t a and t b are not, so the backtracking procedure must have a stopping 
rule that works without this knowledge. Our  backtracking procedure starts from 
the point to, at which we are sure that processing in the future will be correct, and 
works backward in time. We will see that we need to backtrack at most n b steps 
before ta in order to guarantee that inversion errors are contained in region B. 

Before we present our main result, let us provide a more complete picture of the 
possible situations that must be analyzed: 

1. It  is possible that an inconsistent transition never occurs, so that our WDX- 
inverter continues without change. In this case region D in Fig. 4.5 does not 
exist and we must show that any inversion errors are necessarily confined to B. 

2. The point t a lies sufficiently far from [to, t~] so that regions B and D do not 
overlap. In this case what we must show is that the original inversion errors 
are confined to regions B and D and that our backtracking, which only covers 
region D, corrects the errors in D leaving any remaining errors confined to 
region B. 

3. The point t a lies outside [to, t~] but regions B and D overlap. In this case it is 
obvious that the original inversion errors are confined to regions B and D 
(since their union covers everything from to through t~). Note  also that the 
backtracking step will cover the part  of region B overlapping D. Thus, because 
of the original measurement errors, it is possible that we will encounter an 
inconsistency during the backtracking step. In this case we can be sure that 
we have backtracked into region B and can stop backtracking (so that our full 
backtracking step proceeds until nb events before td or until an inconsistency 
is detected, whichever comes first). What  we must show in this case is that 
backtracking corrects errors in that part  of D lying outside B. 3 

4. The point ta lies inside [to, tb]. The situation in this case is a bit more complex. 
Specifically, since there are still measurement  errors following t a, when we reset 
O s at t4 and run it forward, we may observe another  inconsistency before we 
reach tr In this case we know that the error burst extends beyond our original 
td, and we simply reset Os again using this latest point of inconsistency as our 
new ta. This continues until we have a reset that leads to a successful achieve- 
ment of the point t,. In this case the associated ta may lie outside [to, t~], in 
which case we are in one of the first three cases. The only remaining situation 
is one in which ta is still within [to, t~]. Note  that in this case, since there are 
measurement errors following td, the correction procedure, which consists of 
restarting Os and propagating it forward to t~ followed by backtracking, may 
have errors in it. However, what we will see in this case is that region D is 
completely contained in region B so that inversion errors, even after our 
correction step, will be confined to B. Again, we may detect a subsequent 

3 Note that in some cases if nb is sufficiently large and the error burst is short, we may backtrack to 
a point before ta (but never outside B since t, < t~) so that the backtracking step may actually introduce 
new inversion errors, which, however, will be confined to B. 
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inconsistency after this point, and this will then correspond once again to one 
of these four cases. 

Pro~ition 4.5. A is resiliently WDX-invertible if and only if A is WDX-invertible. 
Furthermore, i f  A is resiliently WDX-invertible, then 

nb < max[n~ max(nw, ni, n~i+ 1), n,]. 

Proof. (necessity) Obvious. As shown in the inverter construction below, nb de- 
pends on 

(a) the number of transitions it takes a trajectory from the initial state X~ of Os 
to enter W~, 

(b) the number of transitions it takes to distinguish between two distinguishable 
states in A, 

(c) one plus the number of transitions it takes to distinguish between two dis- 
tinguishable states in A7 t, and 

(d) the minimum number of transitions it takes any state in A to reach a recurrent 
state. 

Thus, nb is bounded by max[nu max(nw, n~, nu + 1), n,]. 
(sufficiency) This is a constructive proof, producing a resilient WDX-inverter. As 

described above, the resilient WDX-inverter is the same as the WDX-inverter if no 
inconsistencies are observed. When an inconsistency is observed, we restart O~ and 
wait until it enters H,~. If another inconsistency is observed after restarting O~, we 
restart O~ again. After O~ enters W~, we proceed in two directions: 

(1) We use the WDX-inverter for future inversion. 
(2) We backtrack until an inconsistency is detected or until we have reached a 

point n b steps before ta. 

To prove the result we must pick n b, specify the backtracking procedure, and analyze 
the four cases presented previously. We let n b = max In, max(n,,, n~, n~i + 1), n,] and 
we begin with case 1. 

For  case 1 suppose that no inconsistency is observed. From Proposition 3.12 we 
know that our WDX-inverter has made no errors any earlier than nun~ events before 
ta. What we will show is that it makes no errors any later than n~nw events--or 
equivalently nw observable events--after tb. Suppose that, at time t~, A~ is in some 
state x and O~ is in some state ~. If x E ~, then the inversion wilt be correct for all 
the transitions followSng the burst. Suppose that x ~ ~. Consider the states to which 
As and O~ move after nw observed transitions, and call these y and p. Then since O~ 
must enter Vr in at most n~ transitions (see the proof of Proposition 3.13), there is 
some ~ ~ Vr so that p u {y} = ~ (se can take ~ to be the state reached in these nw 
observed transitions starting from some initial state in O~ that contains ~ u { x } ~  
e.g., we can take the initial state to be all of X,). I fy  e p, then subsequent inversions 
will be correct. Otherwise, if we let y = (s, w), then for all (p, v) e p either p = s or w 
and v are distinguishable. Also, since we observe no inconsistencies, the string we 
observe after this point is shared by L(A~, y) and L(O~, p). Let r be the next n~ 
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a 
~[,~,,x,,,,,,x,,xxxx ........ x,,,,xx.x'~ u ~ tr ~1 

ta t t e 
Use at m o ~  nit past 
trarLslttor~ to tr~e~ u 

Fig. 4.6. Proof  of resilient WD-invertibility (for case 2(b)): ordering of ~, a, and y. 

observations. Recall that our WDX-inverter, using r, eliminates the states in j) that 
cannot generate r. Let 9' be the set of states in J) which can generate r. By WDX- 
invertibility, for all (Po, Vo), (Pl, vl) ~ P', Po = Pl. Also, thanks to Proposition 2.8, 
p = s for all (p, v) 6 9'. Therefore, the inverter will produce the correct inversion at 
this point, Since these same conditions hold for all subsequent states in the trajec- 
tories of As and O s, the inversion proceeds correctly. 

Consider next the three other cases. What we first wish to show is that the 
inversion errors, before backtracking, are confined to regions B and D. In cases 3 
and 4 this is obvious, so we focus on case 2. At an intermediate point between the 
regions B and D, let A s be in state y and let O~ be in state )~. Let r be the next n~ 
observations. Note that r ends before t d and thus r can be generated by both y and 
)~. Let y = (s, w). As in the preceding proof case 1, we use Proposition 2.8 and 
conclude that the inversion at this point must be correct. Since this reasoning holds 
for any point between the regions B and D, the inversion errors must be confined 
to these regions. 

We now specify the precise procedure to be used when an inconsistency is 
detected. Let ct be the inconsistent transition at time td (see Fig. 4.6). Since ~t is not 
defined at the current state of Os, we start Os from the state Xs after ~t occurs, and 
let it evolve. Let tc be the point at which the state of O~ first enters W~ following the 
reset at t d. From Proposition 3.13 we know that there are at most n~nw transitions 
between ta and to. We can then conclude that in case 4, i.e., when ta < td < tb, region 
D is completely contained in region B (see Fig. 4.5). Then we need only consider 
cases 2 and 3 in which ta > ta. 

Let :~ 6 ~ be the state of Os at te and let tr be the event that caused this transition 
into W~ (see Fig. 4.6), Then, for all (s 1, Yt), (s2, Y2) ~ x, either s 1 = s z or Yt and Y2 
are distinguishable (see Fig. 4.7 where the top ellipse denotes ~), and, in addition, 
h(Sl) = h(s,_) = a. Thus, by distinguishability, using a finite number of future out- 
puts (after a), we can improve the estimate at t c from :~, to, say :~', such that, for all 
(Sl ,  YI), ($2, Y2) e ~ ' ,  S 1 = S 2, and, therefore, we can reconstruct the string corre- 
sponding to the output a--i.e., the segment of the event trajectory in A ending with 
a and preceded by unobservable events only (see Fig. 4.7 where the second ellipse 
denotes ~'). We now begin the backtracking step: Let y denote the last observable 
transition prior to tr (see Fig. 4.6), and let us construct the set of states $ in As that 
may reach a state in :~' with one observable transition (tr) and such that the output 
corresponding to the first component of the state is 7, i.e., $ consists of all (r, x) r Xs 
such that h(r) = ), and f~((r, x), tr) c~ :~' ~ j2~ (see Fig. 4.7). Consider then any (r i, xl), 
(r2, x2) E ~. If(x 1, x2) r lu  are distinguishable, we can use the nt subsequent observa- 
tions (y, a, and all but the last observation used to reconstruct tr) to decide between 
them. In this way we can reduce the size of ~ so that the remaining elements have 

( X l '  "~2) ~ IM. 
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Proof of resilient WD-invertibility (for case 2(b)): backtracking step. 

Next, without loss of generality, we can eliminate all states in :? that are not 
recurrent, for the following reason: If A s is in a nonrecurrent state, then at most n 
transitions could have occurred in the system, and due to that part of region B prior 
to the measurement errors, if we make any inversion errors because of eliminating 
nonrecurrent states, then these errors will be in region B. So we pick a pair of 
recurrent states Pt = (sl, xl), P2 = ($2,  X2) 6 ~" such that st 4= s2. Since also h(sl) = 
h(s2), and (x 1, x2) e IM, Pl and P2 satisfy the conditions of Proposition 3.14. Thus, 
by this proposition, for all yl ,  y~ ~ X, such that xl  = f(y~, sl) and x2 = f(Y2, s2), 
Yl and Y2 must be distinguishable in A7 ~. Then we can also distinguish between x 1 
and x 2 using nu observations prior to ?, or n~i + I observations including ~. Thus, 
by considering nu + 1 outputs prior to ~, we can distinguish between different strings 
sl in ~. Thus, using these prior outputs, we can construct a new set ~' such that, for 
all (st, x t ), (s 2, x2) e ~', s~ = s2 (see Fig. 4.7). Therefore, we can reconstruct the string 
corresponding to the output ? and can then repeat the process going backward one 
observable event at a time. This backward reconstruction continues up to n~ 
transitions before td or until the observer estimate going backward encounters an 
inconsistency (i.e., the ~ constructed above is empty), whichever comes first. 

Finally, note that in order to invert correctly an observation ~ in the backward 
inversion process that we have described, we need at most n u observations prior 
to ?. Since, by the definition of region B, the last nb/n, observations in region B 
are free of any measurement errors and nb/n, > n~ + 1, the inversion for all points 
in region D that are outside region B will be correct, proving our assertion for 
cases 2 and 3. 
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The following result immediately follows from this proposition and the fact that 
measurement errors may lead to the observation of inconsistent transitions: 

Proposition 4.6. Given a WD-invertible L, L is resiliently WD-invertible if and 
only if A is WDX-invertible. Furthermore, if L is resiliently WD-invertible, then 
n~ < max[n, max(n,,, n i, n~i + 1), n,]. 

5. Conclusions 

In this paper we have introduced notions of invertibility and resiliency for discrete- 
event systems described by finite-state automata, and we have developed algorithms 
with polynomial-time complexity to test for invertibility, resiliency, and to construct 
resilient inverters. We have shown that the central dement in these notions is the 
notion of stability that we considered in IOWA] and the notion of observability 
that we considered in lOW2]. 

The stability concepts that we introduced in IOWA] can be thought of as notions 
of error recovery or resiliency in that the system always returns to "good" states. 
In this paper we have carried this notion farther by presenting an approach for 
reconstructing system behavior resiliently in spite of observation errors. Motivated 
by problems such as schedule-following in a flexible manufacturing system, we can 
also formulate regulation or tracking problems for DEDS in which a feedback 
system is sought so that the DEDS produces a particular desired sequence of output 
events. This tracking problem can also be thought of as a dual of the problem of 
invertibility that we have addressed. Analyses addressing these and related problems 
will be the subjects of subsequent papers. 
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