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Abstract- An overview is provided of the several components 
of a research effort aimed at the development of a theory of 
multiresolution stochastic modeling and associated techniques 
for optimal multiscale statistical signal and image processing. As 
described, a natural framework for developing such a theory is 
the study of stochastic processes indexed by nodes on lattices or 
trees in which different depths in the tree or lattice correspond to 
different spatial scales in representing a signal or image. In 
particular, it will be seen how the wavelet transform directly 
suggests such a modeling paradigm. This perspective then leads 
directly to the investigation of several classes of dynamic models 
and related notions of “ multiscale stationarity” in which scale 
plays the role of a time-like variable. Focus is primarily on the 
investigation of models on homogenous trees. In particular, 
the elements of a dynamic system theory on trees are described 
and two notions of stationarity are introduced. One of these 
leads naturally to the development of a theory of multiscale 
autoregressive modeling including a generalization of the cele- 
brated Schur and Levinson algorithms for order-recursive model 
building. The second, weaker notion of stationarity leads directly 
to a class of state space models on homogenous trees. Several of 
the elements of the system theory for such models are described 
and also the natural, extremely efficient algorithmic structures 
for optimal estimation are described that these models suggest: 
one class of algorithms has a multigrid relaxation structure; a 
second uses the scale-to-scale whitening property of wavelet 
transforms for our models; and a third leads to a new class of 
Riccati equations involving the usual predict and update steps 
and a new “fusion” step as information is propagated from fine 
to coarse scales. This framework allows for consideration, in a 
very natural way, the fusion of data from sensors with differing 
resolutions. Also, thanks to the fact that wavelet transforms do 
an excellent job of “compressing” large classes of covariance 

Manuscript received February 1, 1991; revised September 20, 1991. The 
work of M. Basseville and A. Benveniste was supported in part by Grant 
CNRS GO134. The work of K. C. Chou, S. A. Golden, and A. S. Willsky 
was supported in part by the Air Force Office of Scientific Research under 
Grant AFOSR-92-J-0002, the National Science Foundation under Grants 
MIP-9015281 and INT-9002393, and the Office of Naval Research under 
Grant “14-91-J-1004. A. S. Willsky was also supported by INRIA. This 
work was performed while K. C. Chou and A. S. Willsky were visiting 
IRISA. 

M. Basseville is with the Institut de Recherche en Informatique et Sys- 
temes Aleatoires (IRISA), Campus de Beaulieu, 35042 Rennes, Cedex, 
France, and the Centre National de la Recherche Scientifique (CNRS). 

A. Benveniste is with the Institut de Recherche en Informatique et Systems 
Aleatoires (IRISA), Campus de Beaulieu, 35042 Rennes, Cedex, France, 
and the Institut National de Recherche en Informatique et an Automatique 
(INRIA). 

K. C. Chou, S. A. Golden, and A. S. Willsky are with the Laboratory for 
Information and Decision Systems and the Department of Electrical Engi- 
neering and Computer Science, Massachusetts Institute of Technology, 
Cambridge, MA 02139. 

R. Nikoukhah is with the Institut National de Recherche en Informatique 
et an Automatique (INRIA), Domaine de Voluceau, Rocquencourt, BP105, 
78153 Le Chesnay, Cedex, France. 

IEEE Log Number 9104595. 

kernels, it will be seen that these modeling paradigms appear to 
have promise in a far broader context than one might expect. 

Index Terms-Multiresolution signal analysis, wavelet trans- 
forms, Schur and Levinson algorithms, data fusion, optimal 
estimation, Kalman filtering, state-space models, autoregressive 
models, system theory. 

I. INTRODUCTION 

N recent years, there has been considerable interest and I activity in the signal and image processing community in 
developing multiresolution processing algorithms. Among the 
reasons for this are the apparent or claimed computational 
advantages of such methods and the fact that representing 
signals or images at multiple scales is an evocative notion-it 
seems like a “natural” thing to do. One of the more recent 
areas of investigation in multiscale analysis has been the 
emerging theory of multiscale representations of signals and 
wavelet transforms [19]-[21], [24], [27], [28], [31], [39]. 
This theory has sparked an impressive flurry of activity in a 
wide variety of technical areas, at least in part because it 
offers a common, unifying language and perspective and 
perhaps the promise of a framework in which a rational 
methodology can be developed for multiscale signal process- 
ing, complete with a theoretical structure that pinpoints when 
multiresolution methods might be useful and why. 

It is important to realize, however, that the wavelet trans- 
form by itself is not the only element needed to develop a 
methodology for signal analysis. To understand this one need 
only look to another orthonormal transform, namely the 
Fourier transform which decomposes signals into its fre- 
quency components rather than its components at different 
resolutions. The reason that such a transform is useful is that 
its use simplifies the description of physically meaningful 
classes of signals and important classes of transformations of 
those signals. In particular, stationary stochastic processes 
are whitened by the Fourier transform so that individual 
frequency components of such a process are statistically 
uncorrelated. Not only does this greatly simplify their analy- 
sis, but it also allows us to deduce that frequency-domain 
operations such as Wiener or matched filtering-or their time 
domain realizations as linear shift-invariant systems-aren’t 
just convenient things to do. They are in fact the right-i.e, 
the statistically optimal-things to do. In analogy, what is 
needed to complement wavelet transforms for the construc- 
tion of a rational framework for multiresolution signal 
analysis is the identification of a rich class of signals and 
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phenomena whose description is simplified by wavelet trans- 
forms. Having this, we then have the basis for developing a 
methodology for scale-domain filtering and signal process- 
ing, for deducing that such operations are indeed the right 
ones to use, and for developing a new and potentially power- 
ful set of insights and perspectives on signal and image 
analysis that are complementary to those that are the heritage 
of Fourier. 
In this paper, we describe the several components of our 

research into the development of a theory for multiresolution 
stochastic processes and models aimed at achieving the objec- 
tives of describing a rich class of phenomena and of provid- 
ing the foundation for a theory of optimal multiresolution 
statistical signal processing. In developing this theoretical 
framework, we have tried to keep in mind the three distinct 
ways in which multiresolution features can enter into a signal 
or image analysis problem. First, the phenomenon under 
investigation may possess features and physically significant 
effects at multiple scales. For example, fractal models have 
often been suggested for the description of natural scenes, 
topography, ocean wave height, textures, etc. [41, 1291, 1301, 
[32]. Also, anomalous broad-band transient events or 
spatially-localized features can naturally be thought of as the 
superposition of finer resolution features on a more coarsely 
varying background. As we will see, the modeling frame- 
work we describe is rich enough to capture such phenomena. 
For example, we will see that 1 /f-like stochastic processes 
as in [40], [41] are captured in our framework as are 
surprisingly useful models of many other processes. Sec- 
ondly, whether the underlying phenomenon has multiresolu- 
tion features or not, it may be the case that the data that has 
been collected is at several different resolutions. For example 
the resolutions of remote sensing devices operating in 
different bands-such as IR, microwave, and various band 
radars-may differ. Furthermore, even if only one sensor 
type is involved, measurement geometry may lead to resolu- 
tion differences (for example, if zoomed and unzoomed data 
are to be fused or if data is collected at different sensor-to- 
scene distances). As we will see, the framework we describe 
provides a natural way in which to design algorithms for such 
multisensor fusion problems. 

Finally, whether the phenomenon or data have multiresolu- 
tion features or not, the signal analysis algorithm may have 
such features motivated by the two principal manifestations 
of the at least superficially daunting complexity of many 
image processing problems. The first and more well known 
of these is the use of multiresolution algorithms to combat the 
computational demands of such problems by solving coarse 
(and therefore computationally simpler) versions and using 
these to guide (and hopefully speed up) their higher resolu- 
tion counterparts. Multigrid relaxation algorithms [9], [ 101 
for solving partial differential equations are of this type as are 
a variety of computer vision algorithms. As we will see, the 
stochastic models we describe lead to several extremely 
efficient computational structures for signal processing. 

The second and equally important issue of complexity 
stems from the fact that a multiresolution formalism allows 
one to exercise very direct control over “greed” in signal 

and image reconstruction. In particular, many imaging prob- 
lems are, in principal, ill-posed in that they require recon- 
structing more degrees of freedom then one has elements of 
data. In such cases, one must “regularize” the problem in 
some manner, thereby guaranteeing accuracy of the recon- 
struction at the cost of some resolution. Since the usual 
intuition is precisely that one should have high confidence in 
the reconstruction of lower resolution features, we are led 
directly to the idea of reconstruction at multiple scales, 
allowing the resolution-accuracy tradeoff to be confronted 
directly. As we will see the algorithms arising in our frame- 
work allow such multiscale reconstruction and provide the 
analytical tools both for assessing resolution versus accuracy 
and for correctly accounting for fine scale fluctuations as a 
source of “noise” in coarser scale reconstructions. 

While there are several ways in which to introduce and 
motivate our modeling framework, one that provides a fair 
amount of insight begins with the wavelet transforms. How- 
ever, the key for modeling is not to view the transform as a 
method for analyzing signals but rather as a mechanism for 
synthesizing or generating such signals beginning with 
coarse representations and adding fine detail one scale at a 
time. Specifically let us briefly recall the structure of multi- 
scale representations associated with orthonormal wavelet 
transforms [20], [27]. For simplicity we do this in the context 
of 1-D signals (i.e., signals with one independent variable), 
but the extension to multidimensional signals and images 
introduces only notational rather than mathematical 
complexity. 

The multiscale representation of a continuous signal f( x )  
consists of a sequence of approximations of that signal at 
finer and finer scales where the approximations of f ( x )  
at the mth scale consists of a weighted sum of shifted and 
compressed (or dilated) versions of a basic scaling function 
4(x) :  

+m 

f m ( x )  = C f ( m ,  n ) 4 ( z m x  - n ) .  (1.1) 
n =  - w  

In order for the (m + 1)st approximation to be a refine- 
ment of mth, we require 4( x )  to be representable at the next 
scale: 

4(x) = C h ( n ) 4 ( 2 x  - n ) .  (1 4 
n 

As shown in [20], h(n) must satisfy several conditions for 
(1.1) to be an orthonormal series and for several other 
properties of the representation to hold. In particular, h(n) 
must be the impulse response of a quadrature mirror filter 
(QMF) [20], [35], [39]. The simplest example of such a 4 ,  h 
pair is the Haar approximation with 

0 5 X < l ,  
otherwise, 

and 

n = 0 , 1 ,  
h ( n )  = { A :  otherwise. 

By considering the incremental detail added in obtaining 
the (m + 1)st scale approximation from the mth, we arrive 
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at the wavelet transform. Such a transform is based on a 
single function $(x)  that has the property that the full set of 
its scaled translates {2"/2$(2mx - n)} form a complete 
orthonormal basis for L2. In [20], it is shown that 4 and $ 
are related via an equation of the form 

$(.) = C g ( n ) 4 ( 2 x  - n), (1 3) 
n 

where g(n) and h(n)  form a conjugate mirror Jilter pair 
[35], and that 

f m + l ( X )  =f&) + C d ( m ,  n)$(2"x - n). (1.6) 
, n  

Thus, fm(x) is simply the partial orthonormal expansion of 
f (  x), up to the scale m ,  with respect to the basis defined by 
$. For example, if C#I and h are as in (1.3), (1.4), then 

1 ,  O < x < 1 / 2 ,  

$ ( X I  = - 1 ,  f l X < l ,  (1.7) 

(1 4 
0 ,  otherwise, 

1, n = 0, i 0 ,  otherwise. 

I 
g ( n )  = -1 ,  n = 1, 

and { 2 ' n ' 2 $ ( 2 m ~  - n ) }  is the Haar basis. 
One of the appealing features of wavelet transforms for the 

analysis of signals is that they can be computed recursively in 
scale, from fine to coarse. Specifically, if we have the 
coefficients { f ( m  + 1, )} of the (m + 1)st-scale represen- 
tation we can "peel off '  the wavelet coefficients at this scale 
and at the same time carry the recursion one complete step by 
calculating the coefficients { f ( m ,  . )} at the next coarser 
scale: 

f ( m ,  n) = 1 h(2n - k ) f ( m  + 1, k ) ,  (1.9) 
k 

d ( m ,  n) = C g ( 2 n  - k ) f ( m  + 1 ,  k ) .  (1.10) 

Reversing this process we obtain the synthesis form of the 
wavelet transform in which we build up finer and finer 
representations via a coarse-to-fine scale recursion: 

n 

f ( m  + 1,  n) = 1 h(2k  - n ) f ( m ,  k )  
k 

+ 1 g ( 2 k  - n ) d ( m ,  k ) .  (1.11) 
k 

Thus, we see that the synthesis form of the wavelet 
transform defines a dynamical relationship between the 
coefficients f ( m ,  n )  at one scale and those at the next. 
Indeed, this relationship defines a lattice on the points ( m ,  n) ,  
where ( m  + 1, k )  is connected to ( m ,  n )  if f ( m ,  n )  influ- 
ences f ( m  + 1, k) .  The simplest example of such a lattice is 
the dyadic tree illustrated in Fig. 1, where each node t 
corresponds to a particular scale/shift pair ( m ,  n) .  As with 
all these lattices, the scale index is indeed time-like, with 
each horizontal level of the tree corresponding to a represen- 
tation of signals or phenomena at a particular scale. In this 
paper, we focus for the most part on this tree structure and 
on dynamic models and stochastic processes defined on it.' 

' I n  Sections IV and V ,  we briefly describe some aspects of the more 
general case. 

t 

translational shift 

Fig. 1. Dyadic tree, in which each level of the tree corresponds to a single 
scale in a multiscale representation. Nodes here correspond to scale/shift 
pairs (m, n), with each horizontal level corresponding to a particular value 
of m. 

Note that while this setting has a natural association with the 
Haar transform in which the value at a particular node 
t = ( m ,  n)  is obtained from the average of the values at the 
two descendant modes (m + 1,2n)  and (m + 1 , 2 n  + l) ,  
the dyadic tree and the pyramidal structure it implies should 
be viewed far more broadly. In particular, essentially all 
methods for representing and processing signals at multiple 
scales-including wavelet transforms, multirate digital filter- 
ing [43], and pyramidal and scale-space methods in image 
processing [ 1 11, [42] - involve such pyramidal data struc- 
tures, where each level in the pyramid corresponds to a 
particular scale and each node at a given scale is connected 
both to a parent node at the next coarser scale and to several 

descendent nodes at the next finer scale. If the typical 
scale-to-scale decimation by a factor of two is used, we are 
led directly to the dyadic tree data structure. Thus, we choose 

to view multiscale representations on dyadic trees more 
abstractly, where much as in the notion of state, the descrip- 
tion at a particular level of the tree should be thought of as 
capturing the features of signals up to a particular scale that 
are relevant for the "prediction" of finer-scale approxima- 
tions. By adopting this perspective, we can define rich classes 
of stochastic processes and models that contain the multiscale 
wavelet representations of (1.9)-( 1.11) as a particular class 
of examples. 

Carrying this a bit farther, let us return to the point made 
earlier that for wavelet transforms to be useful it should be 
the case that their application simplifies the description or 
properties of signals. For example, this clearly would be the 
case for a stochastic process that is whitened by (1.9), (1. lo), 
i.e., for which the wavelet coefficients { d( m ,  . )} at a partic- 
ular scale are white and uncorrelated with the lower resolu- 
tion version { f ( m ,  * )} of the signal. In this case, (1.11) 
represents a first-order recursion in scale that is driven 
by white noise. However, as we know from time series 
analysis, white-noise-driven first-order systems yield a com- 
paratively small class of processes which can be broadened 
considerably if we allow higher order dynamics. Also, in 
sensor fusion problems one wishes to consider collectively an 
entire set of signals or images from a suite of sensors. In this 
case, one is immediately confronted with the need to use 
higher order models in which the actually observed signals 
may represent samples from such a model at several scales, 
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Fig. 2. Signal generated by a third-order multiscale autoregressive model. 
as described in Section 111. 

corresponding to the differing resolutions of individual 
sensors. 

In this paper, we describe two stochastic modeling para- 
digms for multiresolution processes that have as their motiva- 
tion the preceding observations, as well as the desire to 
investigate and develop multiscale counterparts to the notions 
of stationarity and rationality that have proven to be of 
such value in time series analysis. The first step in doing 
this is the introduction of dynamics and concepts of shift- 
invariance on dyadic trees, and in the next section we outline 
the elements of this formalism and in particular introduce two 
notions of (second-order) shift-invariance for stochastic pro- 
cesses on dyadic trees. In Section 111, we then use the 
stronger of these two notions to develop a theory of multi- 
scale autoregressive modeling and in particular we describe a 
generalization of the celebrated Schur and Levinson algo- 
rithms for the efficient construction of such models. Fig. 2 
illustrates the output at a particular scale of resolution of a 
third-order model of this type displaying some of the fractal- 
like, multiscale characteristics that can be captured by this 
class of models. An alternate modeling paradigm-coinciding 
with that of Section I11 only for first-order models-is 
described in Section IV. This formalism, which generalizes 
finite-dimensional state models to dyadic trees, also can be 
used to capture fractal-like behavior and indeed includes the 
l/f-like models developed in [40], [41] as a special case. 
Moreover, these models provide accurate descriptions of a 
variety of stochastic processes and also lead to extremely 
efficient and highly parallelizable algorithms for optimal esti- 
mation and for the fusion of multiresolution measurements 
using multiscale, scale-recursive generalizations of Kalman 
filtering and smoothing. For example, Fig. 3(a) illustrates the 
sample path of a standard first-order Gauss-Markov time 
series and its estimation based on noisy measurements of the 
process collected only at the two ends of the data interval, 
and using an approximate multiscale model of the type 
described in Section IV to design the estimation procedure. 
Fig. 3(b) illustrates the use of our methodology for the 

2s r---- -- '7 
I.:_ I 

I h  

-0.51 " ' \  I \ 

10 20 30 40 50 60 70 
-2.5 

(a) 

30 40 50 60 70 10 20 
-2.3 

(b) 

Fig. 3 .  Illustrating multiscale data fusion using the techniques described in 
Section IV. First-order Gauss-Markov time series, shown as a solid line 
in both plots, is reconstructed based on noisy measurements. In a), data is 
available only at the two ends of the interval, while in b) coarse scale (i.e., 
locally averaged) measurements are fused to improve signal interpolation. 

estimation of this same process based on these noisy data 
augmented with coarser resolution measurements- i.e., the 
formalism we describe allows us, with relative ease, to use 
coarse scale data to optimally guide the interpolation of 
fine-scale but sparsely-collected data. 

Due to the limitations of space our presentation of the 
various topics we have mentioned is of a summary nature. 
References to complete treatments are given, and, in addi- 
tion, in Section V we briefly discuss several important issues, 
current lines of investigations, and open questions. 

11. STOCHASTIC PROCESSES AND DYNAMIC MODELS ON 

DYADIC TREES 
In this section, we introduce the machinery needed for 

specifying linear models of random processes on the dyadic 
tree, that is for stochastic processes y ,  where t is an element 
of the set of nodes 3, of the tree of Fig. 1. As indicated in 
the introduction, we have several objectives in developing 
such models. Our first objective is to introduce models that 
can be specified by finitely many parameters in order to 
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provide associated effective algorithms. That is, we would 
like to develop models analogous to those specified by 
finite-order difference equations or finite-dimensional state 
models-e.g., those corresponding to rational system func- 
tions-which have provided the setting for a vast array of 
powerful methods of signal and system analysis. Also, recur- 
sive models of this type are naturally associated with a notion 
of causality. In our context, we will also seek recursive 
structures where the associated notion of causality will be 
in scale, from coarse to fine as in the wavelet transform 

synthesis equation (1.1 1). 
Finally, another notion from time series that we want to 

adapt to our context is that of shift-invariance or stationarity . 
To understand what is involved in this, let us recall the usual 
notion of stationarity for a discrete-time, zero-mean stochas- 
tic processes y t ,  where in this case t E Z ,  the integers. Such 
a process, with covariance function 

rt,s = E[YtYsI (2.1) 

is stationery if r t+n , s+n  = r t , s  for all integers n. That is, 
shifting the time index of the process by n leaves the 
statistics invariant. Since it is also obviously true that rs, = 

rt, s ,  we can immediately deduce that 

‘ s ,  t = ‘d(s ,  t )  9 

where d(s, t )  = I t - s I .  
In order to understand how we might generalize these 

ideas to the dyadic tree, we need to make several observa- 
tions. The first is that the integers Z and our dyadic tree are 
both examples of homogeneous trees. Specifically a homo- 
geneous tree of multiplicity q is an infinite acyclic graph 
such that each node has exactly q + 1 branches to other 
nodes representing its neighbors. In the case of Z ,  q = 1, 
and the neighbors of an integer t are simply t - 1 and 
t + 1 .  For the case of 7, q = 2. However, Fig. 1 is not the 
easiest way in which to see this or to understand notions of 
stationarity . Specifically, in considering the usual notion 
of stationarity we are compelled to consider processes defined 
on all of Z ,  and the same is true in our context. Thus, we 
must be able to extend our tree in all directions capturing in 
particular the fact that there is neither a finest nor a coarsest 
scale of description. A much more convenient representa- 
tion of 7 that allows such extentions is depicted in 
Fig. 4. As we will see, both Figs. 1 and 4 will prove of 
use to us. 

An important fact about trees is that there is a natural 
notion of distance d(s, t )  between two nodes, s and t ,  
namely the number of branches on the path from s to 
t ,  which reduces to 1 t - s 1 for 2. This allows us to define 
the notion of an isometry, that is a one-to-one and onto map 
of the tree onto itself that preserves distances. For 2 the only 
isometries are shifts, 1 - t + n and reversals, i.e., t - - t  
(and concatenations of these), so that a useful way (for us!) in 
which to define the usual notion of stationarity is that the 

’In this paper, we focus completely on linear models and second-order 
properties, which, of course, yield complete descriptions if the processes are 
Gaussian. 
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0 

a 
2 successive horocycles: 

Fig. 4. More symmetric depiction of the dyadic tree, illustrating the notion 
of a boundary point - 03, horocycles, and the “parent” s A t of nodes s and 
t (see the text for explanations). 

statistics of the process are invariant under any isometry on 
the index set, i.e., rt ,  = rr(t) ,  r ( s )  for any isometry. 

It is this type of notion that we seek to generalize to the 
dyadic tree. However, the tree 7 has many isometries. For 
example consider an isometry pivoting on the node denoted 
“s A t” in Fig. 4, where all nodes below and to the right of 
this point are left unchanged but the upper left-hand portion 
of the tree is “flipped” in that the two branches extending 
from S A  t are interchanged (so that, for example, U is 
mapped into s). Obviously we can pivot at any node. We 
refer the reader to [8], [12] for complete treatments of the 
nature and the structure of the isometries. 

The preceding discussion suggests a first notion of shift- 
invariance for a stochastic process y t  which we refer to as 
isotropy. 

Dejnition I (Isotropic Stochastic Processes): A zero- 
mean (scalar) stochastic process is said to be isotropic if its 
covariance function is invariant under any isometry on the 
index set, i.e., 

for any isometry 7 of Y. 
As shown in [2], [5]-[7] ,  y t  is isotropic if and only if 

sequence rt ,  satisfies (2.2). Thus, as with a standard tempo- 
rally-stationary process, an isotropic process on Y is charac- 
terized by a covariance sequence r,,, r , ,  r 2 ,  and, as in 
the standard case we have two natural questions: 1) when 
does such a sequence of numbers correspond to a valid 
covariance sequence for a process on F, and 2) how can we 
construct dynamic models for the construction of an isotropic 
process corresponding to such valid sequence. A well-known 
first form of the answer to the first question can actually be 
stated a bit more generally. Specifically, if S is any index 
set, and if { y t ,  t E S }  is a zero-mean process defined on S 
then its covariance rs , t  must satisfy the following: select an 
arbitrary finite family { ti};= ,,..., I in S ;  then the I x I matrix 
whose ( i ,  j)-element is rt , ,  t, must be nonnegative definite 

* 
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since 

This property of r ,  which is necessary and sufficient for it 
to be the covariance of such a process, will be referred to as 
positive definiteness in the sequel. For general index sets, it 
is not possible to find more useful criteria or characteriza- 
tions of positive definiteness. However for stationary time 
series, i.e., for S = Z and rt,s satisfying (2.2), much more 
can be said. In particular, the celebrated Bochner spec- 
tral representation theorem states that a sequence r,,, 
n = 0, 1, * is the covariance function of a stationary 
time series, if and only if there exists a nonnegative, 
symmetric spectral measure S(dw) so that 

1 *  
r,, = -1 ejw“S( d w )  . 

2a --* 

As shown in [I], [2], there is a corresponding generalized 
Bochner theorem for a sequence r,, to be the covariance of an 
isotropic process on Y. Note that we can obviously find a 
subset of F isomorphic to 2-i.e., a sequence of nodes 
extending infinitely in both directions, and y t  restricted to 
such a set is essentially a temporally-stationary process. Thus 
for rn to be a valid covariance of an isotropic process on F 
it must certainly be a valid covariance for a temporally-sta- 
tionary process. However, there are additional constraints for 
isotropic processes. For example, in F, we can find three 
nodes which are all a distance two from one another (e.g., 
U ,  U, and s A t in Fig. 4), and this implies an additional 
constraint on rn. The impact of these additional constraints 
can be seen in the Bochner theorem [l], [2] and also in the 
results described in the next section. 

While the Bochner theorem is a powerful characterization 
result for time series and for processes on trees, it does not 
provide a computational procedure for testing positive defini- 
tiveness or for constructing models for such processes. How- 
ever, for time series we do have such a method, namely the 
Wold representation of stationary processes via casual, 
autoregressive (AR) models. This representation and the 
well-known Levinson algorithm for its construction not only 
provide a procedure for testing positive-definiteness but also 
for constructing rational, finite-order models for stationary 
processes. The subject of Section 111 is the extension of this 
methodology to isotropic processes on trees. An important 
point in doing this is to realize that such a construction for 
time series produces a model that treats time asymmetrically 
(by imposing causality) in order to represent a process whose 
statistics do not have inherent temporal symmetry. This is not 
a point that is typically highlighted since the geometry of 2 
is so simple. However, the situation for Y is decidedly more 
complex, and to carry out our program we need the following 
development, which in essence, relates the pictorial represen- 
tations of Figs. 1 and 4 and provides the basis for defining 
causal systems in scale. 

An important concept associated with any homogenous tree 
is the notion of a boundary point [l], [21, [51, 1121, [131 of 

a tree. Consider the set of infinite sequences of nodes 
of such a tree, where any such sequence consists of a 
set of distinct nodes t , ,  t,, * - - where d(t , ,  ti+,) = 1. A 
boundary point is an equivalence class of such sequences 
where two sequences are equivalent if they differ by a finite 
number of nodes. For the case of Z there are two boundary 
points corresponding to paths toward k 03. For F there are 
many. Let us choose one boundary point in F, which 
we denote by - 03. Note that from any node t there is a 
unique path in the equivalence class defined by - 00 (i.e., 
a unique path from t “towards” - 03-see Fig. 4). Then, if 
we take any two nodes s and t ,  their paths to - 03 must 
differ only by a finite number of points and, thus, must meet 
at some node that we denote by S A  t (see Fig. 4). Thus, we 
can define a notion of relative distance of two nodes 
to --: 

6 ( s , t )  = d ( S , s A t )  - d ( t , s A t ) ,  (2.5) 
so that 
s < t ( “ s  isatleastascloseto - 0 3  as t ” ) ,  if S(s , t )  50, 

(2 4 

(2.7) 

s X t * 6 ( s , t )  = o .  (2.8) 

s < t ( “s is closer to - 03 than t ’’) , if 6 (s, t ) < 0.  

This also yields an equivalence relation on nodes of F 

For example, the points s, U ,  and u in Fig. 4 are all 
equivalent. These equivalence classes of such nodes are 
referred to as horocycles, which are best visualized as in 
Fig. 1 by redrawing the tree, in essence by picking the tree 
up at - 03 and letting the tree “hang” from this boundary 
point. In this case, the horocycles appear as points on the 
same horizontal level and s < t means that s lies on a 
horizontal level above or at the level of t .  Note that in this 
way we make explicit the dyadic structure of the tree 
as depicted in Fig. 1 and provide the basis for defining 
multiscale dynamic models. 

In order to define dynamics on trees, let us again step back 
to take a more careful look at the usual formalism that is used 
for time series. Specifically, in specifying a temporal system 
in terms of a difference equation we make essential use of the 
notion of shifts or moves-e.g., in an AR model we relate 
yr to y t - ] ,  y t - 2 ,  etc. where the backward shift z - ’ :  t - 
t - 1 obviously plays an essential role in expressing the 
“local” dynamics, i.e., the relationship of a signal at a 
particular point to its values at nearby points. Moreover, 
thanks to the simple structure of 2, we have the luxury of 
using the symbol z- ’  for two additional purposes. In par- 
ticular, the backward shift z - ’  is an isometry and in fact it 
and its inverse, the forward shift, generate all translations. 
Furthermore, we also use the symbol z-’ and its positive 
and negative powers to code signals-i.e., we represent the 
signal y t  by its z-transform-and all of these properties 
provide us with the powerful transform domain formalism for 
analyzing stationary, i.e., translation-invariant systems. 

The situation is decidedly more complex on 37 To see this 
let us begin by defining moves on 9- that will be needed to 
provide a “calculus” for stochastic processes, i.e., for speci- 
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fying local dynamics. Such moves are illustrated in Fig. 1 
and are now introduced: 

0 0 the identity operator (no move), 
0 7 the backward shift (move one step toward - m), 

CY the left forward shift (move one step away from - m 

0 /3 the right forward shift (move one step away from 

6 the interchange operator (move to the nearest point in 

Note that the richer structure of f requires a richer collec- 
tion of moves. Also, unlike its counterpart z - ' ,  the back- 
ward shift 7 is not an isometry (it is onto but not one-to-one), 
and it has two forward shift counterparts, CY and P ,  which are 
one-to-one but not onto. Also, while these shifts allow us to 
move up and down in scale, (i.e., from one horizontal to the 
next), it is necessary to introduce another operator, 6, in 
order to define purely translational shifts at a given level. 
Note also that 0 is an isometry, that 6 is invertible, and that 
these operators satisfy the following relations (where the 
convention is that the left-most operator is applied f i r ~ t ) ~ :  

toward the left), 

- 00 toward the right), 

the same horocycle). 

a y  = Py = 0 (2.9) 

67 = y (2.10) 

6* = 0 (2.11) 

= CY. (2.12) 

Arbitrary moves on the tree can then be encoded via finite 
strings or words using these symbols as the alphabet and the 
formulas (2.9)-(2.12). Specifically define the language 

2?= ( y ) *  U (?)*&(cy, 6)" U { a ,  P I * ,  (2.13) 

where K* denotes arbitrary sequences of symbols in K 
including the empty sequence which we identify with the 
operator 0. Then any move on T is uniquely represented by 
a word of this language. It is straightforward to define a 
length 1 w 1 for each word in 9, corresponding to the 
number of shifts required in the move specified by w. Note 
that 

171 = I C Y 1  = I P I  = 1 ,  

101 = o ,  ( 6 1  = 2 .  (2.14) 

Thus, I T " [  = n ,  1 waP) = the number of a's and P ' s  
in W , ~ E ( C Y , P } * ,  and 17"6w,,( = n + 2 +  )w,,(. This 
notion of length will be useful in defining the order of 
dynamic models on F. We will also be interested exclusively 
in causal models, i.e., in models in which the output at some 
scale (horocycle) does not depend on finer scales. For this 
reason we are most interested in moves that either involve 
pure ascents on the tree, i.e., all elements of {"/*, or 
elements "/"6,, of {7}*6{ a ,  P } *  in which the descent is 
no longer than the ascent, i.e., 1 w,, 1 5 n. We use the 
notation w X O  to indicate that w is such a causal move. 
Note that we include moves in this causal set that are not 

3 0 ~ r  convention will be to write operators on the right, e.g., tcu, tSp. 

strictly causal in that they shift a node to another on the same 
horocycle. We use the notation w X 0 for such a move. 
The reasons for this will become clear when we examine 
autoregressive models. 

Also, on occasion we will find it useful to use a simplified 
notation for particular moves. Specifically, we define 6(") 
recursively, starting with 6(') = 6 and 

if t = tra, 

if t = t rP ,  then t6'") = tr6("p" P .  (2.15) 

What 6(") does is to map t to another point on the same 
horocycle in the following manner: we move up the tree n 
steps and then descend n steps; the first step in the descent is 
the opposite of the one taken on the ascent, while the 
remaining steps are the same. That is if t = t r " -  ' w,, then 
t6'"' = tT"-'6wa,. For example, referring to Fig. 1, s = 

The preceding development provides us with the move 
structure required for the specification of local dynamics on 
trees. Let us turn next to the specification of "shift-invariant'' 
systems and processes and to the question of modeling shift- 
invariant processes as the outputs of shift-invariant systems 
driven by white noise. The most general linear input/output 
relationship for signals defined on tree is simply 

Y ,  = C hr,su5 6 (HU),. 

then t6'") = t y6 (" - ' )a ,  

(2.16) 

As with temporal systems, one would expect the require- 
ments of various notions of shift-invariance to impose con- 
straints on the weighting coefficients h, .5 .  To see this let us 
first adopt an abuse of notation commonly used for time 
series. Specifically, if T is an isometry of <F, we use the 
same notation to denote an operation on signals over T,  i.e., 

SE 7- 

(2.17) 

(analogous to z - ' y ,  = yrp ,). A first, rather strong notion of 
shift-invariance might be that if T ( U )  is applied to the system 
for any isometry T ,  then the output is 7 ( y ) ,  where y is the 
response to U. It is not difficult to check that for this to be 
the case we must have that 

Note, however that this is an exceedingly strong condition 
and indeed generalizes the notion of zero-phase LTI systems, 
i.e., systems with impulse responses such that h ( t ,  s )  = 
h( 1 t - s I) .  Such systems obviously are not causal, and in 
fact are far more constrained than they need to be. In 
particular, we obtain a far richer class of systems, namely the 
full class of LTI systems, by considering invariance with 
respect to a smaller group of isometries, namely the group 
of translations generated by the shift z - '  (but not including 
the isometry of time reversal). Furthermore, if we apply a 
stationary time series to any (stable) LTI system, the output 
will be stationary, and indeed LTI systems provide exactly 
the right context for modeling stationary time series. More- 
over, we can in fact perform such modeling using only causal 
LTI systems. 
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The natural question, then, is what is the correct subgroup 
of isometries on Y that should be used to define the counter- 
part of LTI systems? While for time series the backward shift 
z-’ plays a dual role both as a move on Z and as defining 
the group of isometries, these two roles require distinct 
constructions on Y since the basic moves 7, a and 6 are not 
isometries. Consequently, the notion of a translation on 9 
still needs to be defined. To do this let ( tn )neZ  denote an 
infinite path extending in Y back toward - 03 (as n -+ - 03). 
A (one step) translation with skeleton (t,) is an isometry of 
1- that has the property that 

7( tn)  = ‘ , + I .  (2.19) 

Since there are many such paths (t,) there obviously are 
many translations, and indeed for any particular (t,) there 
are numerous translations (see Fig. 5). Nevertheless the class 
of translations represents a proper subset of all isometries, 
and does allow us to define a very useful notion of shift 
invariance. 

Definition 2 (Stationary Systems): A linear system H as 
in (2.16), acting on signals on 5, is said to be a stationary 
system if‘ 

H Q T  = 70H,  (2.20) 

for any translation 7. 

if and only if its weighting pattern satisfies. 
A fundamental result proven in [8] is that H is stationary, 

h l , s  = h [  d ( t ,  S A  t ) ,  d ( s ,  S A  t ) ]  . (2.21) 

Thus, a stationary system is specified by a 2-D sequence 
h(n ,  m),  n ,  m z 0 and, referring to Fig. 1, we see that 
(2.2 1) has an intuitively appealing interpretation. Specifically 
S A  t denotes the “parent” node of s and t ,  i.e., the finest 
scale node that has both s and t as descendants, and (2.21) 
states that h,,s depends only on the distances in scale from 
this parent node to s and to t .  Roughly speaking the influence 
of the input at node s on the output at node t in a stationary 
system depends on the differences in scale and in temporal 
offset of the scalejshift pairs represented by t and s. 

Obviously, a system satisfying (2.18) (and thus corre- 
sponding to a system that commutes with all isometries) 
also satisfies (2.21) (this is easily seen since d(s ,  t )  = 
d(s ,  s A t )  + d ( t ,  s A t ) ) .  The reverse is certainly not true 
indicating that we have a far larger class of stationary sys- 
tems as defined in Definition 2. Similarly, we can define a 
larger class of shift-invariant processes with Definition 3. 

Definition 3 (Stationary Stochastic Processes): A zero- 
mean (scalar) stochastic process y is said to be stationary if 
its covariance function is translation-invariant, i.e., 

rs, f = r w ,  r(1) ’ 

As shown in [8], a process is stationary, if and only if 

(2.22) 

for any translation 7. 

rS.f  = r [ d ( s , s A t ) , d ( t , s A t ) ] .  (2.23) 

Thus, a stationary process is specified by a 2-D sequence 

denotes the composition of maps. 

.J 

7 

~ 

173 

Fig. 5 .  Illustrating (in bold) the skeleton of a translation. As indicated in 
the figure, any translation with this skeleton must map the subtree extending 
away from any node on the skeleton onto the corresponding subtree of the 
next node. There are, however, many ways in which this can be done (e.g., 
by “pivoting” isometries within any of these subtrees). 

r ( n ,  m ) ,  n ,  m 2 0. Also isotropic processes-i.e., pro- 
cesses for which (2.23) is satisfied for all isometries and for 
which (2.2) holds-are obviously stationary, but the reverse 
implication is not true, so that stationary processes represent 
a richer class of processes. Furthermore, the covariance 
structure (2.23) in essence says that the statistical relationship 
between the values of a stationary process at two nodes 
depends on the differences in scale and temporal offset of the 
two nodes. In particular, from (2.23) it follows that 
the statistical behavior of the restriction of a stationary 
process to any scale (i.e., horocycle) does not depend on the 
scale, indicating that the concept of stationarity on the tree 
appears to be a natural and convenient one for capturing a 
notion of statistical self-similarity . Moreover, as we will see, 
the Haar transform yields the eigenstructure of the process at 
any scale, providing another tie back to wavelet transforms. 
In Section IV, we expand on these and related points in the 
context of the investigation of a class of finite-dimensional 
state models on dyadic trees that, in the constant-coefficient 
case provides us with the class of rational linear systems 
satisfying the notion of stationarity we have introduced. 

Let us close this discussion with a few comments. First, as 
shown in [8], the notions of systems and stochastic stationar- 
ity introduced in Definitions 2 and 3 are compatible in the 
sense that the output of a stationary system driven by a 
stationary input is itself stationary. In general, however, an 
isotropic process driving an arbitrary stationary system does 
not yield an isotropic output, and, thus, we might expect that 
we will have to work harder to pinpoint the subclass of 
stationary systems that can be used to model isotropic pro- 
cesses. Furthermore, as we have indicated we are interested 
in constructing causal models, i.e., systems as in (2.16) with 

h f , s  = Ofor t < s. (2.24) 

For stationary systems this corresponds to requiring 

h ( d ( t , s A t ) , d ( s , s A t ) )  = 0, 
f o r d ( t , s A t )  < d ( s , s A t ) .  (2.25) 

As we will see we can model isotropic processes as the 
outputs of white-noise-driven, causal stationary systems of a 
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particular form. 
Finally, let us make a brief comment about the generaliza- 

tion of the third use of z - ’ ,  namely to define transforms. 
Specifically, as discussed in [5]-[8], natural objects to con- 
sider in this context are noncommutative formal power series 
of the form: 

S =  s ; w .  (2.26) 

We will use such transforms in the next section in order to 
encode correlation functions in our generalization of the 
Schur recursions. In addition, transforms of this type can be 
used to encode convolutional systems. Specifically, we can 
think of (2.26) as defining the system function of a system in 
the following manner: if the input to this systems is U , ,  t E 

T, then the output is given by the generalized convolution: 

(Su)r = C swuiw. (2.27) 

Note, that in this context causality corresponds to s, = 0 for 
all 0 < w. Also, it is important to realize that while (2.26), 
(2.27) would seem to correspond to a general class of 
shift-invariant system, both classes of systems we have de- 
scribed-stationary and isotropic-require further restric- 
tions. In particular for S in (2.26), (2.27) to be stationary we 
must have that if w = 7“6w,,, then s, depends only on n 
and I wcYa I .  Similarly, S is isotropic if s, depends only on 
I w I .  Finally, for future reference, we use the notation S(0) 
to denote the coefficient of the empty word in S. Also it will 
be necessary for us to consider particular shifted versions of 
S: 

“/SI = swy. w (2.28) 

W € Y  

W € Y  

W € Y  

6 ( k ) [  SI = S,,‘k’ . w ,  
W E  Y 

(2.29) 

where we use (2.9)-(2.12) and (2.15) to write wy and 
~ 6 ‘ ~ )  as elements of 2’. Notice that, because of the relations 
(2.9)-(2.12), the operators S -+ ?[SI and S -+ 6[S] can not 
be thought of as multiplication operators on formal power 
series. 

111. ISOTROPIC PROCESSES AND MULTISCALE 
AUTOREGRESSIVE MODELS 

In this section, we investigate how multiscale isotropic 
processes may be finitely parametrized and how properties 
of processes may be checked on their associated parametriza- 
tions. In particular, as for time series it is of considerable 
interest to develop white-noise-driven models for processes 
on trees and, more specifically, models that are in some sense 
of finite-order. Also, as we discussed in the preceding section, 
we are interested in developing a framework for constructing 
models that possess a causal structure in scale. Motivated by 
the theory of AR representations for temporally-stationary 
stochastic processes, we focus attention here on the class of 
multiscale AR models, where the pth-order version of such a 
model has the form 

Yr = C awYtw + ow,, (3.1) w t o  
I W l C P  

where W, is white noise (i.e., it is uncorrelated from node to 
node) with unit variance. The form of (3.1) deserves some 
comment. A first question that arises is: why not look instead 
at models in which y ,  depends only on its “strict” past, i.e., 
on point of the form t7“. As shown in [5 ] - [7 ] ,  the only 
model of this type that yields an isotropic output is the 
first-order version of (3.1), i.e., 

y ,  = ay,, + ow,. (3 4 

Indeed higher order versions of such a model yield stationary 
processes in the sense of Definition 3 and as considered in the 
next section. Secondly, note that the constraints placed on w 
in the summation of (3.1) state that y ,  is a linear combination 
of the white noise W, and the values y,, at nodes that are 
both at distances at most p from t (i.e., I w 1 5 p )  and also 
on the same or previous horocycles (w 3 0). Thus, the 
model (3.1) is not strictly causal” and is indeed an implicit 
specification since values of y on the same horocycle depend 
on each other through (3.1). For example, consider the 
AR(2) process, which specializing (3.1), has the form 

Note, first that this is indeed an implicit specification, since if 
we evaluate (3.3) at t6  rather than t we see that 

Y,, = 0, Y,, + a2 YtrZ + Q3Y, + fJ w,, . (3.4) 

The structure of (3.3), (3.4) reveals that for a second-order 
model we need to consider simultaneously the coupled propa- 
gation of pairs of values y,, yrs .  It also suggests that perhaps 
the implicit representation of (3.1) is not the most ideal one. 
To add further credence to this, note that the second-order 
AR(2) model has four coefficients-three a’s and U ,  while 
for second-order time series there would only be two a’s. 
Indeed this disparity grows with increasing order as the 
number of coefficients a, in (3.1) grows geometrically with 
p .  On the other hand, as shown in [5] the constraints of 
isotropy place nonlinear and rather unwieldy, constraints on 
these coefficients. For these reasons there is strong motiva- 
tion to consider an alternate representation for isotropic AR 
models. Again it is useful to contrast the situation on ,? with 
that on Z.  In particular, there are two equally useful 
parametrizations for pth order AR models for stationary time 
series in terms of the p lagged coefficients a,,, 1 5 n 5 p or 
in terms of the p reflection or partial correlation (PARCOR) 
coefficients k,, ,  1 I n I p used in the lattice filter represen- 
tation of AR models. For time series, increasing the order by 
one increases the number of a’s and k’s by one. For 
multiscale AR models, increasing the order by one increases 
the number of a’s geometrically, although these are subject 
to a (growing!) number of nonlinear constraints. However, as 
we will see, if we switch to the alternate PARCOR represen- 
tation, we will again need to add only one new coefficient and 
will avoid completely the need for nonlinear constraints. 

To begin, recall that the basic idea behind the Levinson 



BASSEVILLE et al. : MODELING AND ESTIMATION OF MULTIRESOLUTION STOCHASTIC PROCESSES 775 

algorithm for the construction of AR models of increasing 
order for stationary time series involves the consideration of 
both forward and backward predictions of the series based on 
increasing intervals of data. Specifically, consider an ordi- 
nary time series xk and introduce the spaces Yk,, = 

X {  x k ,  a ,  xk-,} where X {  * - } denotes the linear span 
of the random variables indicated between the braces. 
Forward and backward prediction errors or “residuals” 
are defined as ek, = x k  - E{ xk 1 Xk_ ,- and fk ,  = 
Xk-, - E{ Xk-, 1 X k , n - l } ,  respectively. The formulae 

ek, n + 1 = xk - E{ xk 1 xk- 1,  n} 

= xk - I Y k - l , n - l }  

-k I % k - I , n - l }  - E{ xk I xk- l , n}  

- 
- e k , n  - x k - l , n  Y k - l , n - l }  

ek, n - n 1 fk -  1,  n )  
- - 

(3.5) 
- 
- e k , n  - knfk-l,n, 

where @ e Y denotes the orthogonal complement of V‘ in 
@ , show that the key to the calculation of the ( n  + 1)st-order 
prediction error ek, ,+ is the computation of the prediction 
of the forward residual ek, , given the backward one f - n .  
Similarly, the prediction of the backward residual given the 
forward one is needed for the calculation of backward residu- 
als of increasing order. It is a remarkable property of station- 
ary time series that both prediction operators are identical, 
i.e., that the same coefficient k, in (3.5) also appears in the 
corresponding equation for the backward residual. This fact, 
which then leads to the celebrated Levinson recursions, stems 
from the fact that the statistics of a stationary time series are 
invariant under the isometry k - - k. The correlation coef- 
ficient k, of the two involved residuals is also known as the 
PARCOR coefficient of xk and xk- , given Xk- , - This 
is illustrated in the following diagram: 

x k  Tk-l,n-l X k - n  
0 00000 0 . 

Since ek,O = f k , o  = x k ,  we find that (3.5) and the associated 
Levinson recursion provide us with a method for constructing 
models for x, of increasing order. In particular, if ek, and 
fk ,  , are white, (so that all higher order PARCOR coefficients 
are O ) ,  we obtain an nth order AR model for x, constructed 
in lattice form, i.e., one first-order section (specified by one 
PARCOR coefficient) at a time. 

Let us now consider the extension of these ideas to the 
dyadic tree. As one might expect from the preceding discus- 
sion of AR(2) and as developed in detail in [5] - [7], construc- 
tion of models of increasing order requires the consideration 
of vectors of forward and backward residuals of dimension 
that increases with model order. To begin, let y ,  be an 
isotropic process on a tree, and define the (nth-order) past of 
the node t on 5 

q,, 4 X{y,,,,: w 5 0 ,  I wI I n } .  (3.6) 

In analogy with the time series case, the backward innova- 
tions or prediction error space, which we denote by 5, ,, is 

defined as the space of variables spanning the new informa- 
tion in g,, , which are orthogonal to CYc, ,- l :  

g 1 . n  = g 1 , n - I  e T,n? (3.7) 
so that 8, in 
g,,, (i.e., q,n = VI,, e CV,,n-l for n > 0, while 8,0 
= g,,o). A basis for 5, , can be obtained by defining the 
backward prediction errors for the “new” elements of 
the “past” introduced at the nth step, i.e., for w 5 0 and 
I w I = n, define 

is the orthogonal complement of g,, n -  

F t ,n (w)  4 ytw - E ( Y / ~ I  g t . n - 1 ) .  (3.8) 
Then, 

T,, = J ? ‘ { F , , ~ ( w ) :  I wI = n , w  5 o } .  (3.9) 

Similarly we introduce the forward innovations or predic- 
tion error space, which we denote by &,,,,. For n = 0, 

= CY,,o, while for n > 0 
a 

& t , n  = ( V t , n - l  + g t T , n - 1 )  e g t T . n - 1 .  (3.10) 

Note that VI, n -  + gI7, n -  is used here instead of g,, ,,; 
while both spaces are equal in the case of ordinary time 
series (in which 7 is replaced by z - ’ ) ,  they differ here.5 To 
obtain a basis for &,, ,, we define the forward innovations 

~ t , n ( w )  ‘ ~ t w  - ~ ( y / w  I gtT,n-1)9 (3.11) 

where w ranges over a set of words such that tw is on the 
same horocycle as t and at a distance at most n - 1 from 
t (so that g,T,n-l is the past at that point as well), i.e., 
I w I < n and w X 0. Then 

&,,, = J ? ‘ { E t , n ( w ) :  I wI < n and w X O }  (3.12) 

Let E,, , and F,, , denote column vectors of the elements 
E , , J w )  and &,,(w), respectively. As n increases the 
dimensions of the residual vectors grow geometrically. 
Levinson recursions for isotropic processes involve the recur- 
sive computation of F,, , and E,, , as n increases. Since F,,o 
and E,, both equal y ,  , these recursions yield lattice struc- 
tures for AR models of increasing order. As developed in [5] 
and as the reader may guess from the results for time series, 
the key to these recursions are all PARCOR coefficients 
involving an arbitrary pair { 0, 0) given the space spanned 
by the 0 in Fig. 6. Furthermore, it can be verified that 
suitable combinations of the elementary isometries shown in 
this figure provide isometries 

0 leaving the space Y,T,3 (circles) globally invariant 
0 exchanging two arbitrary 0 ’ s  or two 0 ’ s .  

From this it follows that all pairs {U, 0} possess the 
same PARCOR coeficients given the space spanned by 
the circles. Hence, as for time series, we can show in general 
that a single PARCOR or  reflection coeficient is involved 
in each stage of the Levinson recursions. Similar uses of 
the symmetries of the tree and the correlation structure 
of isotropic processes allow us to show that only the bary- 
centers of the forward and backward prediction error vectors 

’For example, g,f.2 consists of y,, y r f ,  yrf2,  and yta. However, T,, 
consists of y, and y,?, while q7,, consists of yrY and yrf2 .  
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Fig. 6 .  Illustrating the nature of the construction required in developing 
recursions for and Ff,n. Here if t is the node in the lower left-hand 
comer, then the elements of Er,4  are the prediction errors at the two points 
indicated by diamonds given the data gf7.3 spanned by the circles. The 
elements of Ffq,4 are the prediction errors at the four points indicated by 
squares given again the data in gfT,3. The elementary “pivoting” isome- 
tries indicated in the figure allow us to obtain the result on PARCOR 
coefficients described in the text. 

are needed to compute these reflection coefficients. These 
barycenters are defined as follows: 

C E t , n ( w )  
e r , n  = 2-1(n-1)/21 

I w l < n , w X O  

C F t . n ( w ) .  
f = 2-[n/21 

f .  n 
1 w J  = n ,  w < O  

In particular in [ 5 ] ,  the following results are proven pro- 
viding a generalization of the Levinson recursions to the 
barycentric prediction errors for isotropic processes on 7. 

Theorem I (Barycentric Levinson Recursions): For n 
even, 

(3.13) 

(3.14) 

et. n = er, n -  1 - knft,, n -  1 

1 

2 f f , n  = - ( f t T , n -  1 + erp/2i,.- I )  - k,,e,. n - l ,  

where 

kn = cor (et .  n- 1 ,  f t ? ,  n -  1 )  

- - cor ( e r p / 2 ~ , n - l ,  e t , n - l )  

- - cor (et,(n 21, n -  1 3  f r T ,  n - 1 )  > (3.15) 

and cor (x ,  y )  = E ( ~ y ) / [ E ( x * ) E ( y * ) 1 ’ / ~ .  For n odd: 

e f ,  , = ,(ef, n -  I + er~un-1v2), n- I )  - k n f t T ,  n- 

1 
(3.16) 

1 

where k ,  must satisfy 

1 

2 
- - 5 k n 5 1  (3.21) 

For n odd, 

= U;’,, = U,‘ = (1 - kf,)u;,,-l, (3.22) 

where 

- 1  I k ,  I 1.  (3.23) 

As we had indicated previously, the constraint of isotropy 
represents a significantly more severe constraint on the 
covariance sequence rn of an isotropic process than on that 
for a stationary time series. It is interesting to note that these 
additional constraints appear in the preceding development 
only in the form of the simple modification (3.21) of the 
constraint on k ,  for n even over the form (3.23) that 
one also finds in the corresponding theory for time series. 
Also, as with the usual Levinson recursions for time series 
we can use the formulae in Theorem 1 and its corollary to 
obtain explicit recursions for the computation of the k ,  
sequence directly from the given covariance data, rn.  These 
recursions also contain some differences from the usual results 
reflecting the constraints of isotropy on the tree. Rather than 
displaying these we describe here an alternative computa- 
tional procedure generalizing the so-called Schur recursions 
[25], [34] for the cross-spectral densities between a given 
time series and its forward and backward prediction errors. 
In considering the generalization of these recursions to 
isotropic processes on trees, we must replace the z-transform 
power series for cross-spectral densities by corresponding 
formal power series of the type introduced in Section 11. 
Specifically for n 2 0 define P, and Q, as 

where we begin with Po and Qo specified in terms of the 
correlation function rn of y f :  

Po = Qo = 1 r l W ,  . w. (3.26) 
w < o  

1 

f f , n  = f r ? . n - I  - - k n ( e f , n - l  + ef6(‘n-1”2’.n-1)’ (3’17) Recalling the definitions (2.28), (2.29) of ?[SI and 6 ‘ k ) [ S ]  2 
for S a formal power series and letting S(0) denote the 
coefficient of w = 0, we have the following generalization of 
the Schur recursions, proven in [5] .  

Theorem 2 (Schur Recursions): The following Schur 

where 

recursions on formal power series yield the sequence of Corollary: The variances of the barycenters satisfy the reflection For even, 
following recursions. For n even, 
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where holds true, then it is the reflection coefficient sequence 
of a regular (i.e., purely nondeterministic) isotropic 

The first three of these results represent easily understood 
generalizations of results for time series. For example, they 
imply that the nth and higher order prediction error vectors 
of an AR( n) process are white noise processes. The fourth 
statement concerns itself with the issue of whether or not the 
value of y, can be perfectly predicted based on data in its 
(infinite) past. Specifically, an isotropic process y, is regular 

. (3.29) process. 71 Qn- 1 1  (0) + g(n’2’ [  p,- I ]  (0) 
2Pn - l(0) 

k ,  = 

For n odd, 
1 

2 
p, = -(p,-, + g((n- l ) /2)  p [ n -  1 1  ) - k,7[ Q n -  1 1  (3 .30) 

1 
Q, = ?[Q,-,] - k,y(P , - ,  + B ( ( n - 1 ) ’ 2 )  [ P f l - l l ) ?  

(3.31) or purely nondeterministic if 
where 

Theorems 1 and 2 provide us with the right way in which 
to parametrize isotropic processes. Furthermore, as devel- 
oped in [5]-[7], we can build on these results to provide a 
complete generalization of the Wold decomposition of an 
isotropic process. In particular, lattice structures can be 
constructed for whitening filters, i.e., for the computation of 
the prediction error vectors E,, , and F,, , as outputs when y, 
is taken as input. Similarly lattice forms are derived in [6] for 
modeling filters, i.e., systems whose output is the isotropic 
process when the input is the corresponding-order prediction 
error. Fig. 2 illustrates the output, along one horocycle, of a 
third-order modeling filter (i.e., an AR(3)-model) driven by 
a white Et ,3  process. We note that a major difference 
between these lattice structures and the usual ones for time 
series is that they involve lattice blocks of growing dimen- 
sion, capturing the coupling along a horocycle for AR pro- 
cesses of high order. Also, as with time series, statistical 
properties of isotropic processes may be checked using the 
parametrization via reflection coefficients. The main results 
are now listed and we again refer the reader to [6], [7] for 
their proofs. 

Theorem 3 (Checking Properties via Reflection 
Coeficients): 

Characterization of AR processes-an isotropic pro- 
cess is AR( n), if and only if its reflection coefficients of 
order > n are all zero. 
Schur criterion-if the sequence (r,) is the covariance 
function of an isotropic process, then the Schur recur- 
sions must yield reflection coefficients satisfying the 
inequalities 

1 

2 
- 1 I k2 ,+ ,  I + 1,  - - I k,, I + 1. (3.33) 

Parametrizing AR processes- conversely, a finite 
family of coefficients satisfying the above strict inequal- 
ities (3.33) defines a unique isotropic AR process. 
Regular and singular processes-If the sequence (k,) 
satisfies the strict inequalities (3.33) and furthermore 
the condition 

W 

C k22n+l + I ‘,,I < 03 
n =  1 

o2 > 0 (3.34) 

(3.35) 

and the infimum ranges over all collections of scalars 
( p , )  w=o where only finitely many of the pw are nonzero and 
the condition I p i  = 1 is satisfied. In other words, no 
nonzero linear combination of the values of y, on any given 
horocycle can be predicted exactly with the aid of knowledge 
of Y in the strict past, gr7-,, o3 and the associated prediction 
error is uniformly bounded from below. It is interesting to 
note that the condition for regularity for isotropic processes 
involves the absolute sum rather than sum of squares of the 
even reflection coefficients and thus is a stronger condition. 
This implies that there is apparently a far richer class of 
singular processes on Y than on 2. This appears to be 
related to the complications arising in the Bochner theorem 
for isotropic processes on 9- and to the large size of its 
boundary. We refer the reader to [5]-[7] for further discus- 
sions of these and other points related to isotropic processes 
and their AR representations. 

IV. SYSTEM THEORY AND ESTIMATION FOR STATIONARY 
PROCESSES AND STATE MODELS 

In this section we describe some of the basic concepts 
associated with the analysis of stationary systems and pro- 
cesses on the dyadic tree. To begin, let us introduce the 
following basic systems on 3: 

1 
(7 . U ) ,  = 7 + uro) ( 4 4  

It is not difficult to check that each of these systems is 
stationary. The system 7 can be naturally thought of as a 
“backward” shift towards - 03, corresponding to the coarse- 
to-fine interpolation operation in the fine-to-coarse Haar 
transform, whereas y is a “ forward-and-average’’ shift cor- 
responding to the “Haar smoother. ” Using these operators, 
it is not difficult to show that any stationary system can be 
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represented in the form 

H = si, j 7 ’yJ .  (4.3) 
i ,  j > O  

Such a system is causal if and only if is nonzero 
only over the set {(i, j ) :  i 2 j } ,  i.e., only past inputs can 
influence the considered output. 

The representation in (4.3) is one of two extremely useful 
transform-like representations of stationary systems. This one 
is, in particular, of use in providing a generalization of time 
series results on the effect of linear systems on power spectra 
and cross-spectra. Specifically, consider two jointly station- 
ary processes x and y ,  with covariance function 

pretable as the square of U - it is indeed possible to build on 
standard 2-D realization theory. Note in particular that even 
though (4.3) includes noncausal multiscale systems, it has the 
appearance of a 2-D quadrant-causal system, as does (4.8) 
since the summations are restricted to i, j 2 0. This is 
related to an important feature of the tree which has another 
important implication as well. Specifically, in contrast to the 
multitude of paths connecting points in a 2-D lattice, there is 
a unique shortest path between points s and t on f, in 
general consisting of a fine-to-coarse segment (from s to 
s A t )  followed by a coarse-to-fine path (from s A t to t ) .  
From this we can deduce that we can decompose the transfer 
function H in (4.3) according to the following two steps: 

E( x,Y,) = r x y [  d( s, s A t )  , d(  t ,  s A t ) ]  . (4.4) 1) a bottom-up (i.e., fine-to-coarse) smoothing, followed 
by Let us define the cross-spectrum of x and y as the following 

power series: 2 )  a top-down (i.e., coarse-to-fine) propagation. 

R X Y  = r x y [  i, j]y’y’ .  
i, J > O  

Also, given a stationary transfer function as in (4.3), we 
introduce the following notion of an “adjoint”: 

H* = Esj,  ‘7’yj. (4.5) 

Then as shown in [8], if H and K are stationary transfer 
functions, the processes Hx and Ky are also jointly station- 
ary,6 and we have the following generalization of a well- 
known result: 

What is perhaps a surprising consequence of the structure 
is that this general decomposition corresponds in 2-D termin- 
ology to a separable system [3], [26]. While this class 
is rather limited in the 2-D context-since separability 
corresponds to the cascade of a row-processor with a column- 
processor on a 2-D grid-this is indeed a general repre- 
sentation for multiscale phenomena (with y as the “row” 
operator and 7 as the “column” operator). This then allows 
us to characterize systems with finite-dimensional memory in 
terms of rational, separable transfer functions of the following 
form: 

Let us now turn to the question of internal, “state” 
realizations of stationary systems. In this case, an alternate 
representation to (4.3) is also of value. To define this we 
introduce the following family of operators which perform a 
smoothing of data on the same horocycle: 

which yields the following multiscale finite-dimensional state 
space form 

U, = A’( ?) U,, + U r p  + B u r ,  

2, = p 2  U, 3 

(4.10) 

XtP  = A y X ,  + P,Z,p, 

Y ,  = cx,, 
This operator provides an average of the values of a signal 

at the 2’ nearest points on the same horocycle. For exam- 
ple, (a * U ) ,  = (U, + ula)/2 where U = orll and (ac2]  . 

is an idempotent operator. As shown in [8] these operators 
may be used to encode any causal system via a 
representation of the form 

U ) ,  = $ ( U ,  + urs + + u,6‘2’6). Note also that each .[il 
where = p1p2. The first two equations define a Purely 
‘‘anticausal’’ (i.e., fine-to-coarse) system, whereas the last 
three equations define a causal, coarse-to-fine recursion. Later 
in this section we describe an optimal multiscale estimation 
algorithm that has precisely this structure. 

H = hj , j ’y ’a[J l .  (4.8) Now let us turn to the representation of multiscale causal 
systems in (4.8). The general form of such a system involves: i, j r O  

In order to develop a realization theory for stationary 
systems, let us note that both formulae (4.3) and (4.8) are 
strikingly similar to the forms of system functions studied in 
standard 2-D system theory. While there are obvious differ- 
ences-e.g., we have the relation7 77 = 1 between the two 
variables in (4.3) and the symbol is not simply inter- 

6This of course, is true only if Hx and Ky are well defined, i.e., if they 
are finite-variance processes. As one might expect, this requires some notion 
of stability for the systems. We return to this point later in this section in the 
context of state models. 

’Here “1” denotes the identity operator on signals defined on T. 

1) smoothing along each horocycle (i.e., constant scale 

2) coarse-to-fine causal propagation. 
smoothing), followed by 

This is again a separable representation, i.e., a cascade of 
two systems, one involving the smoothing operators U[’] and 
one involving 7. As in the preceding case, it is straightfor- 
ward to characterize rationality, and hence finite-dimensional 
memory for the 7 part of the system. However since the 
operators U[‘] are not powers of each other, characterizing 
finite memory for the horocycle smoothing subsystem is not 
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as clear. However, a substantial class of finite-memory sys- 
tems can be identified, namely those in which the smoothing 
along each horocycle is finite depth, i.e., in which there is a 
highest power of U' ' ]  present in (4.8) so that 

H =  C ( Z - y A , - ) - I  D ( l , u ; ~ ~ , ~ ' " ) ,  (4.11) 

where D( 1, U ,  - . , uCi1) is a linear combination of the listed 
operators. This corresponds to dynamics of the form: 

x,,  = AYX,  + D(1 ,  U , * * * ,  U l i '  > U t a  3 

X l B  = AYX,  + D(1 ,  U , * * * ,  U [ ' 1 ) U t B ,  (4.12) I Y ,  = c x t ,  

representing a finite-extent smoothing along each horocycle 
and a generalized coarse-to-fine interpolation. For example, 
the synthesis form of the Haar transform, as discussed in 
Section I, can be placed exactly in this form. It can also be 
shown that stationary finite depth scalar transfer functions 
may be equivalently expressed in the following ARMA form 

H = (4.13) 

where A is a causal function of finite support and D = 
D(1, U ; .  ., This ARMA form includes as a special 
case the AR modeling filters for "isotropic" processes 
introduced in Section III. 

The preceding development, as well as the scale recursive 
interpretation of the synthesis form of the wavelet transform, 
provides ample motivation for the studies in [14]-[18], [38] 
of properties and estimation algorithms for multiscale state 
models of the form: 

~ ( t )  = A ( t ) x ( t y )  + B ( t ) w ( t ) ,  (4.14) 

Y ( t )  = C ( t ) x ( t )  + u p ) ,  (4.15) 

where w(t) and u ( t )  are independent vector white noise 
processes with covariances Z and R( t ) ,  respectively. As with 
standard temporal state models, the second-order statistics of 
x(  t )  are easily computed [ 141, [ 171. For example, the covari- 
ance P,( t )  = E [  x( t )  xT( t)] evolves according to a Lyapunov 
equation on the tree: 

P x ( t )  = A ( t ) P x ( t y ) A T ( t )  + B ( t ) B T ( t ) .  (4.16) 

The model class described in (4.14), (4.15) represents a 
noise-driven generalization of the zero-depth, causal, station- 
ary model (4.12). Specifically, we obtain such a stationary 
model if all of the parameters, A ,  B,  C,  and R are constant. 
In particular, if A is stable and if P, is the unique solution 
to the algebraic Lyapunov equation 

P, = A P , A ~  + B B ~ ,  (4.17) 

then our state model generates the stationary covariance 

K,,(t, S )  = Ad(t2s"f)Px(  AT)d(s'snr) .  (4.18) 

There are, however, important reasons to consider the more 
general nonstationary case (and, in addition, its consideration 
does not complicate our analysis). First of all, one important 
intermediate case is that in which the system parameters are 

constant at each scale but may vary from scale to scale. If we 
let m(t)  denote the scale, i.e., the horocycle, on which the 
node t lies, we abuse notation in this case by writing 
A ( t )  = A ( m ( t ) ) ,  etc. Such a model is useful for capturing 
the fact that the data may be available at only particular 
scales, (i.e., C(m)  # 0 only for particular values of m); for 
example in the original context of wavelet analysis, we 
actually have only one measurement set, corresponding to 
C( m) being nonzero only at the finest scale in our representa- 
tion.8 Also, by varying A ( m ) ,  B(m) ,  and R(m)  with m we 
can capture a variety of scale-dependent effects. For exam- 
ple, dominant scales might correspond to scales with larger 
values of B( m). Also, by building a geometric decay in scale 
into B( m) it is possible to capture 1 /f-like fractal behavior 
as shown and studied in [14], [37], [40]. Finally, the general 
case of t-varying parameters has a number of potential uses. 
For example such a form for C ( t )  is clearly required to 
capture the situation depicted in Fig. 3 in which fine scale 
measurements are not available at all locations. Also, it is our 
belief that such models will prove useful in modeling tran- 
sient events localized in scale and time or space and to 
capture changing signal or image characteristics. 

Let us turn now to the problems of estimating the state of 
(4.14) based on the measurements (4.15). Note that this 
framework allows us to consider not only the fusion of 
measurements at multiple resolutions but also the reconstruc- 
tion of processes at multiple scales. Indeed in this way 
we can consider the resolution-accuracy trade-off directly 
and can also assess the impact of fine-scale fluctuations on 
the accuracy of coarser scale estimates, a problem of some 
importance in applications such as the fusion of satellite IR 
measurement of ocean temperature variations with point mea- 
surements from ships in order to produce temperature maps 
at an intermediate scale. To be specific in the following 
development, we consider the problem of optimal estimation 
of a finite portion of Y. This corresponds to estimation of a 
temporal process on a compact interval so that there is a 
coarsect scale (and hence a top to our subtree) denoted by 
m = 0, and a finest scale, denoted by m = M ,  at which 
measurements may be available and/or reconstructions 
desired. 

As developed in [14]-[16], the model structure (4.14), 
(4.15) leads to three efficient, highly parallelizable algorith- 
mic structures for optimal multiscale estimation. A first of 
these is an iterative algorithm taking advantage of the fact 
that (4.14) defines a Markov random field structure on .T. 
Specifically, let Y denote the full set of measurements at all 
scales. Then, thanks to Markovianity we have that 

81t is important to emphasize here that the wavelet transform of this fine 
scale measurement-which we use as well as in the sequel-does not 
correspond to measurements as in (4.15) at several scales. Rather 
(4.15) corresponds to independent measurements at various nodes. 
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where the second equality in (4.19) states that given 
x ( t y ) ,  x ( t a ) ,  x( tP) ,  only the measurement at node t pro- 
vides additional useful information about x ( t ) .  From (4.19), 
we can then obtain an explicit representation for the optimal 
estimate of x ( t )  in terms of the optimal estimates at its 
parent node, t r ,  at its immediate descendant nodes, ta  and 
t f i ,  and the single measurement at node t. This implicit 
specification is then perfectly set up for solution via 
Gauss-Seidel or Jacobi iteration, which can be organized to 
have exactly the same structure as multigrid relaxation algo- 
rithms, with coarse-to-fine and fine-to-coarse sweeps that in 
multigrid terminology [9], [lo] lead to so-called V- and 
W-cycle iterations. Furthermore, in such iterations all of the 
calculations at any particular scale can be carried out in 
parallel. In addition, this methodology carries over com- 
pletely not only to the case of nonzero depth models as in 
(4.12), with the additional internode connectivity implied by 
the coupling introduced by the horocycle-smoothing operator 
D, but also to state models on more general lattices corre- 
sponding to the interpretation of (1.11) as defining a scale- 
to-scale dynamic relationship for any finitely-supported QMF 
pair h( n) ,  g(  n)  and, thus, for any compactly-supported 
wavelet transform. We refer the reader to [14], [17] for 
details and further development of this multigrid estimation 
methodology. 

A second estimation structure applies to the case in which 
all system parameters depend only on scale (i.e., A ( t )  = 
A ( m ( t ) ) ,  etc.). Let x ( m )  denote the vector of all 2" values 
of x ( t )  at the mth scale, and let y ( m ) ,  w(m) ,  and u(m) 
similarly. As shown in [14], [17], the covariances of x ( m )  
and y ( m )  as well as the cross-covariance between x at 
different scales have (block-) eigenstructures specified by the 
Haar transform. For example if x ( t )  is a scalar process and 
we look at x(3), which is eight-dimensional, we find that the 
covariance of this vector has as its eigenvectors the columns 
of the following orthonormal matrix, corresponding to the 
(eight-dimensional) discrete Haar basis: 

Analogous bases can be defined for any dimension that is a 
power of two, and when x ( t )  is a vector each of the elements 
of matrices as in (4.20) is replaced by a correspondingly- 
scaled version of the identity matrix of dimension equal to 
that of x( t ) .  Define the transformed variables 

where V,( m )  ( V,( m) )  is the block-Haar transform matrix of 
block-size equal to the dimension of x ( t )  ( y ( t ) ) .  In this 
transformed representation the system and measurement 
equations block-decouple completely. Specifically, the vector 
s (m)  can be decomposed into 2" subvectors each of the 
same dimension as x ( t ) ,  and we index these as s,(m), 
so,(), and s,,(m) for 1 5 i 5 m - 1, 1 5 j 5 2'. Here 
s,( m)  is the component corresponding to the right-most 
(block) basis component in V J m )  (refer to (4.20)-i.e., it is 
the average of the values of x ( t )  at the mth horocycle 
(scaled by 2-"/*); s,,(m) is then the coarsest resolution first 
difference coefficient (see the next-to-last column in (4.20)), 
while for i 2 1, the si, correspond to the ith resolution first 
difference coefficients (note in (4.20) that there are four such 
coefficients at the finest resolution and two at the next, 
coarser scale). In a similar fashion, we define the components 
of z (m) .  With these definitions we find that we have a set of 
completely decoupled standard dynamic systems in the 
time-like variable m:  

V3 = 

1 - 0 0 0 JT 
0 0 0 Jz 

0 0 0 

0 0 0 

0 0 0 
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Here w,,(m) and uij(m) are white in all three indexes, with 
covariances 1 and R( m), respectively. 

Recall that the dimension of x ( m )  increases with m ,  
indicative of the increasing detail available at finer scales. In 
the transformed basis this is made absolutely explicitly in that 
we see that the dynamics (4.22), (4.23) consist of two parts: 
the interpolation of coarse features to finer scales (4.22) and 
the initiation, at each scale, of new components (4.23) repre- 
senting levels of detail that can be captured at this but not any 
coarser scale. Thus for any pair of indexes i, j we have a 
dynamic system in m ,  initiated at scale m = i ,  and thus we 
can use standard state space smoothing techniques indepen- 
dently for each such system, leading to a highly parallel 
algorithm in which a) we transform the available measure- 
ment data y ( m )  to obtain z ( m )  as in (4.21); b) we then use 
standard smoothing techniques on the individual components; 
and c) we inverse transform the resulting estimates of s ( m )  
to obtain the optimal estimates of x( t )  at all nodes. Note that 
the fact that each si, is initiated only at the ith scale implies 
that the corresponding smoother works on data only from this 
and finder scales, leading to a set of smoothing algorithms of 
different (scale) length. This is consistent with the intuition 
that data at any particular scale provides useful information 
at that scale and at coarser scales (by averaging) but not at 
finer scales. 

We refer the reader to [14], [15] for details of this 
procedure and for its generalization to the case of nonzero- 
depth models and to arbitrary lattices associated with other 
wavelet transforms-i.e., to dynamic systems as in (1.11) 
(and a significant extension of these) with other choices for 
the QMF's h(n)  and g(n) than the Haar pair. Again one 
finds that the wavelet transform- modified appropriately to 
deal with the windowing effect of smoothing multiscale mea- 
surements over a compact interval-yields a set of decoupled 
smoothing problems in scale. Since the wavelet transform 
can be computed quite quickly, this leads to an extremely 
efficient overall procedure. We note also that by specializing 
our model to the case in which process noise variances 
decrease exponentially in scale we obtain a generalization of 
the procedure developed in [41] for the estimation of 1 /f-like 
processes. In particular, what we have just described pro- 
vides a procedure for fusing multiresolution measurements of 
such processes. Finally, we note that the interpretation of our 
models as scale-to-scale Markov processes and the dual 
viewpoint that the wavelet transform for such a model whitens 
the data in scale suggest the problems of a) optimizing 
wavelet transforms in order to achieve maximal scale-to-scale 
decorrelation; and b) approximating stochastic processes by 
such scale-to-scale Markov models. The former of these 
problems is discussed in [23] and the latter is touched upon in 
[14], [15], [23]. In particular in [15], [23], we construct 
approximate models of this type and demonstrate their fidelity 
in several ways including their use as the basis for the fusion 
and smoothing of multiresolution measurements of Gauss- 
Markov processes. (See Fig. 3 and the subsequent discussion 
as well.) 

While the preceding algorithm provides a very efficient 
procedure for multiscale fusion, its use does require that all 

model parameters vary on& with scale and thus are constant 
on each horocycle. For example this implies that if any 
measurement is available at any particular scale, than a full 
set of measurements is available at that scale. In contrast, the 
result shown in Fig. 3 corresponds to a situation in which we 
have only sparse, fine scale measurements together with 
full-coverage, but coarser-resolution measurements. In par- 
ticular, in each case, 16 fine scale measurements are taken at 
each end of the 64-point signal, together with coarse mea- 
surements of 4-point averages of this signal. While the 
wavelet-transform-based smoothing algorithm does not apply 
to this case, the multigrid method described previously does 
(using an approximate model of the form (4.14), (4.15) for a 
first-order Gauss-Markov process), as does the following 
approach which not only provides an extremely efficient 
algorithm for multiscale fusion but also illuminates several 
system-theoretic issues on dyadic trees. 

Specifically, as developed in detail in [14], [16], [17], 
there is a nontrivial generalization of the so-called Rauch- 
Tung-Striebel (RTS) smoothing algorithm for causal state 
models [33]. Recall that the standard RTS algorithm involves 
a forward Kalman filtering sweep followed by a backward 
sweep to compute the smoothed estimates. The generalization 
to our models on trees has the same structure, with several 
important differences. In particular, the Kalman filtering 
sweep corresponds to a fine-to-coarse recursive data fusion 
algorithm. Specifically, as depicted in Fig. 7, the fine-to- 
coarse Kalman filter step has as its goal the recursive compu- 
tation of i ( t  1 t ) ,  the best estimate of x( t )  based on data in 
the descendent subtree with root node t .  As in usual Kalman 
filtering if i ( t  I t + ) denotes the best estimate based on all 
of the same data except the measurement at node t ,  we obtain 
a straightforward update step to produce i ( t  1 t ) :  

i ( t l t )  = . ? ( t i t + )  + K ( t ) [ y ( t )  - c ( t ) i ( t / t + ) ]  
(4.25) 

(4.26) 

(4.27) 

K ( t )  = P(t1 t + ) C T ( t ) V 1 ( t )  

V ( t )  = C ( t ) P ( t l  t + ) C r ( t )  + R ( t )  

and 

P ( t l t )  = [ I - K ( t ) C ( t ) ] P ( t l t + ) .  (4.28) 

Here P ( t  I t )  and P ( t  I t + ) are the error covariances asso- 
ciated with i ( t  I t )  and i ( t  I t + ), respectively. Working 
back one step, we see that i ( t  I t + ) represents the fusion 
of information in the subtree under ta and under to. As 
shown in [14], [17] 

i ( t l t )  = P(tlt+)[P-'(tlta)i(tlta) 

P ( t  I t +) = [ P - y t  I t a )  + P - y t  1 to) - P,-l(t)] - I .  

+ P - ' ( t l t / 3 ) i ( t l  t o ) ]  (4.29) 

(4.30) 

Finally, to complete the recursion, i( t I t a )  and i( t I to) are 
computed from i ( t a  I t a )  and x(tP I to), respectively, in 
identical fashions. Specifically, each of these calculations 
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;(tit) is based on measurements in 

# . - .  , x(tlt+) is based on t 

' 0  
v ,  

0 '  0 

Fig. 7. Illustrating the measurement sets used for the estimates A ( t  1 t) and 
B ( t  I t + ). 

represents a one-step prediction. It is not surprising, then that 
a backward version of the coarse-to-fine model (4.14) plays a 
role here. Indeed, as shown in [14] 

a( t 1 t a )  = F (  t a )  a( tcr 1 t a )  (4.31) 

P ( t  1 t a )  = F ( t a ) P ( t a l  t a ) F T ( t a )  + 9 ( f a ) ,  (4.32) 

where 

F ( t )  = A P ( t ) [ Z -  B(t)B=(t)P;'(t)] (4.33) 

9 ( 1 )  = A - ! ( t ) B ( t ) Q ( t ) B T ( t ) A - T ( t )  (4.34) 

Q ( t )  = I -  BT(t)PT'(t)B(t). (4.35) 

The prediction (4.31)-(4.35) and update (4.25)-(4.28) steps 
correspond to the analogous steps in the usual Kalman filter, 
while the fusion step (4.29)-(4.30) has no counterpart in 
usual Kalman filtering. The interpretation of (4.29)-(4.30) is 
that we are fusing together two estimates each of which 
incorporates one set of information that is independent of that 
used in the other-i.e., the measurements in the ta and t P  
subtrees-and one common information source, namely the 
prior statistics of x( t ) .  Equation (4.30) ensures that this 
common information is accounted for only once in the fused 
estimate. Once the top of the overall tree is reached we, of 
course, have the optimal smoothed estimate at that node. As 
shown in [ 141, [ 161, [ 171, it is then possible to compute the 
optimal smoothed estimate in a recursive fashion moving 
down the tree, from coarse to fine. 

a&) = a( t I t )  

+ P ( t l  t ) F T ( t ) P - ' ( t y l  t ) [ a , ( t y )  -a(tylt)]. 
(4.36) 

Note, that the fusion of multiscale data is accomplished 
automatically by this procedure, with essentially no increase 
in complexity over the processing of single scale data. In 
addition, this algorithm has a highly parallel, pyramidal, 
structure, and all calculations, on either the fine-to-coarse or 

coarse-to-fine sweep can be computed in parallel, leading to 
considerable efficiencies even if only data at one seale is to be 
processed. Furthermore, this scale-recursive, highly parallel 
structure is maintained if we consider the extension of these 
models to higher dimensional signals such as 2-D images, 
offering the possibility of substantial computational savings as 
compared to standard multidimensional filtering methods. 

Equations (4.26)-(4.28), (4.30), and (4.32)-(4.35) define 
a Riccati equation on the dyadic tree, and it is possible to 
relate properties of the solution of this equation to system- 
theoretic properties. For example, one can show that suitably 
defined notions of uniform complete reachability and uniform 
complete observability imply upper and lower positive-definite 
bounds on the error covariance. Here, since the Riccati 
equation propagates up the tree, the analysis of reachability 
and observability relate to systems defined recursively from 
fine-to-coarse scale, i.e., noncausal systems as in the first two 
equations of (4.10). One might also expect that one could 
obtain results on the stability of the error dynamics and 
asymptotic behavior in the constant parameter case. This is 
indeed the case, but there are several issues that complicate 
the analysis. For example, while the process x(t) is defined 
recursively moving down the tree, the filtered estimate a( t 1 t )  
is defined by a recursion in the opposite direction. Also, our 
Riccati equation explicitly involves the prior state covariance 
P,( t ) ,  arising as we have seen to prevent the double counting 
of prior information. 

As discussed in [ 141, [ 161, these difficulties can be avoided 
by computing a maximum likelihood rather than Bayesian 
estimate during the Kalman filtering stage (corresponding to 
setting P;' to zero in (4.30)). In the constant parameter 
case, we then obtain the following Riccati equation in scale: 

P ( m J  m + 1) = A - ' P ( m  + 11 m + 1 ) A P T  

+ A-'BBTA-= (4.37) 

P- ' (ml  m) = 2 P - ' ( m )  m + 1) + CTR-'C.  (4.38) 

This Riccati equation differs from the usual equation only in 
the presence of the factor of 2 in (4.38), representing the 
doubling of information arising in the fusion step. In this 
case, we can also write a direct fine-to-coarse state form for 
the ML estimation error e( t )  = x( t )  - X (  t 1 t ) :  

e ( t )  = - ( I -  2 K(m(t))C)A-'(e(taJta) + e ( t P l t @ ) )  
1 

1 

2 
- - ( I -  K ( m ( t ) ) c ) A - l B ( w ( t a )  + w ( t p ) )  

- K ( m ( W ( 4  (4.39) 

K(m) = P ( m  1 m ) C W ' .  (4.40) 

In [14], [16], we provide a detailed analysis of the filters 
and Riccati equations we have described. The notion of 
stability required in this analysis deserves further comment. 
In particular, as we move up the tree the state at any node is 
influenced by a geometrically increasing number of nodes at 
the initial level. Thus, in order to study asymptotic stability, 
it is necessary to consider the infinite dyadic tree. One of the 
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main results in [14], [16] is that if ( A ,  B )  is reachable and 
(C, A )  observable, then the Riccati equation converges to 
the unique positive-definite solutions of the algebraic version 
of (4.37), (4.38). Moreover, the steady-state error dynamics 
are exponentially I,-stable, from horocycle to horocycle, 
i.e., all eigenvalues of the Kalman 
matrix 

1 

2 
-(I - K,C) A 

have magnitude less than & / 2 .  

V. CONCLUSION 

filter error dynamics 

1 (4.41) 

In this paper, we have outlined a mathematical framework 
for the multiresolution modeling and analysis of stochastic 
processes. As we have discussed, the theory of multiscale 
signal analysis and wavelet transforms leads naturally to the 
investigation of multiscale statistical representations and 
dynamic models on dyadic trees and lattices. The rich struc- 
ture of the dyadic tree requires that we take some care in the 
specification of such models and in the generalization of 
standard time series notions. In particular, we have seen that 
in this context there are two natural concepts of shift invari- 
ance that provide new ways in which to capture notions of 
scale-invariant statistical descriptions. In addition, the obser- 
vation that the scale variable is time-like in nature leads to a 
natural notion of “causal” dynamics in scale: from coarse to 
fine; however the tree provides only a partial ordering of 
points, requiring that we take some care in defining the 
“past. ” 

In part of our work, we have described the multiscale 
autoregressive modeling of isotropic processes, i.e., pro- 
cesses satisfying our stronger notion of statistical shift- 
invariance. As we have seen, the usual AR representation of 
time series is not a particularly convenient one thanks both to 
the geometric explosion of points in the “past” as we 
increase system order and to the nonlinear constraints isotropy 
imposes on the AR coefficients. In contrast, we have seen 
that it is possible to construct a generalization of the 
reflection-coefficient-based lattice representation for such 
models, including generalized Levinson and Schur recur- 
sions. As we have illustrated, such models can be used to 
generate fractal-like signals. 

The other part of our work was motivated by our weaker 
notion of stationarity which in essence says that the correla- 
tion between two values in our multiscale representation 
depends on the difference in scale and location of the two 
points. As we have seen, this framework leads to state 
models evolving from coarse-to-fine scales on dyadic trees. 
We have described some of our work on a basic system 
theory for such models and have also discussed an estimation 
framework that allows us to capture the fusion of measure- 
ments at differing resolutions. In addition, the structure of 
these models leads to several extremely efficient and highly 
parallel estimation structures: a multiscale iterative algorithm 
that can be arranged so as to have the same form as well- 
known multigrid algorithms for solving partial differential 
equations; an algorithm using wavelet transforms to decouple 

the estimation procedure into a large set of far simpler 
parallel estimation algorithms; and a pyramidal algorithm 
that introduces a generalization of the Kalman filter and the 
associated Riccati equation. 

As we have discussed and illustrated, these models appear 
to be useful for a rich variety of processes including l/f-like 
models as introduced in [40], [41] and standard first-order 
Gauss-Markov processes. Much, of course, remains to be 
done in developing this theory, in investigating the processes 
that can be conveniently and accurately represeqted within 
this framework, and in applying these results to problems of 
practical importance such as sensor fusion, noise rejection, 
multisensor or multiframe data registration and mapping, and 
segmentation. Among the theoretical topics under investiga- 
tion are the development of model fitting and likelihood 
function-based methods for parameter estimation and seg- 
mentation and the development of a detailed theory of 
approximation of stochastic processes including a specifica- 
tion of those processes that can be ‘‘well’’-approximated by 
models of the type we have introduced. Of particular interest 
is the dynamic interpretation of so-called wave packet trans- 
forms [19] in which the wavelet coefficients are subjected to 
further decomposition through the same filter pair used in the 
wavelet transform. Viewing this from our dynamic synthesis 
perspective, this would appear to correspond to a class of 
higher order models. Among the applications under investi- 
gation are several image and multidimensional signal process- 
ing problems for which the computational efficiency of our 
framework is particularly attractive. 

REFERENCES 
J .  Arnaud, “Fonctions spheriques et fonctions definies-positives sur 
l’arbre homogene,” C.R. Acad. Sci., Ser. A, pp. 99-101, 1980. 
J .  Arnaud and B. Letac, “La formule de representation spectrale d’un 
processus gaussien stationnaire sur un arbre homogene,” Laboratoire 
de Stat. et. Prob., U.A., CNRS 745, Toulouse. 
S. Attasi, “Modeling and recursive estimation for double indexed 
sequences. ” in System IdentiJcation: Advances and Case Studies, 
R. K. Mehra and D. G. Lainiotis, Eds. New York: Academic Press, 
1976. 
M. Barnsley , Fractals Everywhere. San Diego, CA: Academic 
Press 1988. 
M. Basseville, A. Benveniste, and A. S. Willsky, “Multiscale 
autoregressive processes, part I :  Schur-Levinson parametrizations,” 
to appear in IEEE Trans. Signal Processing, Aug. 1992. 
-, “Multiscale autoregressive processes, part 11: Lattice structures 
for whitening and modeling,” to appear in IEEE Trans. Signal 
Processing, Aug. 1992. 
M. Basseville, A. Benveniste, A. S. Willsky, and K. C. Chou, 
‘ ‘Multiscale statistical processing: Stochastic processes indexed by 
trees,” presented at Proc. Int. Symp. Math. Theory of Networks 
Syst., Amsterdam, June 1989. 
A. Benveniste, R .  Nikoukhah, and A. S. Willsky, “Multiscale system 
theory,” presented at Proc. 29th IEEE Conf. Decision Contr., 
Honolulu, HI, Dec. 1990. 
A. Brandt, “Multi-Ievel adaptive solutions to boundary value prob- 
lems,” Math. Comp., Vol. 13, pp. 333-390, 1977. 
W. Briggs, A Multigrid Tutorial. Philadelphia, PA: SIAM, 1987. 
P. Burt and E. Adelson, “The Laplacian pyramid as a compact image 
code,” IEEE Trans. Commun., vol. 31, pp. 482-540, 1983. 
P. Cartier, “Harmonic analysis on trees,” Proc. Symp. Pure Math., 
vol. 26, Amer. Math. Soc., Providence, R.I., 1974, pp. 419-424. 
P. Cartier, “Geometrie et analyse sur les arbres,” Seminaire 
Bourbaki, 24eme annee, Expose no. 407, 1971/72. 
K. C .  Chou, A Stochastic Modeling Approach to Multiscale Signal 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2 ,  MARCH 1992 

Processing, Ph.D. thesis, MIT, Dept. of Electr. Eng. and Comput. 
Sci., Cambridge, MA, May 1991. 
K. C. Chou, S .  Golden, and A. S. Willsky, “Modeling and estima- 
tion of multiscale stochastic processes,” presented at Int. Con f. 
Acousi., Speech, and Signal Processing, Toronto, Apr. 1991. 
K. C. Chou and A. S. Willsky, “Multiscale Riccati equations and a 
two-sweep algorithm for the optimal fusion of multiresolution data,” 
presented at Proc. 29th IEEE Conf. Decision Contr., Honolulu, 
HI, Dec. 1990. 
K. C. Chou, A. S. Willsky, A. Benveniste, and M. Basseville, 
“Recursive and iterative estimation algorithms for multiresolution 
stochastic processes,” presented at Proc. 28th IEEE Con f. Decision 
Contr., Tampa, FL, Dec. 1989. 
S.  C. Clippingdale and R. G. Wilson, “Least squares image estima- 
tions on a multiresolution pyramid,” presented at Proc. IEEE Int. 
Conf. Acoust., Speech, Signal Proceeding, Glasgow, 1989. 
R. R. Coifman, Y. Meyer, S. Quake, and M. V. Wickerhauser, 
“Signal processing and compression with wave packets,” preprint, 
Apr. 1990. 
I. Daubechies, ‘‘Orthonormal bases of compactly supported wave- 
lets,” Commun. Pure Appl. Math., vol. 91, pp. 909-996, 1988. 
- , “The wavelet transform, time-frequency localization and signal 
analysis,” IEEE Trans. Information Theory, vol. 36, pp. 
961-1005, Sept. 1990. 
P. Flandrin, “On the spectrum of fractional Brownian motions,” 
IEEE Trans. Inform. Theory, vol. 35, pp. 197-199, Jan. 1989. 
S .  Golden, “Identifying multiscale statistical models using the wavelet 
transform,” S.M. thesis, M.I.T., Dept. of Elect. Eng. and Comput. 
Sci., Cambridge, MA, May 1991. 
A. Grossman and J. Morlet, “Decomposition of Hardy functions into 
square integreable wavelets of constant shape,” SIAM J.  Math. 
Anal., vol. 15, pp. 723-136, 1984. 
T. Kailath, “A theorem of I. Schur and its impact on modern signal 
processing,” in Schur Methods in Operator Theory and Signal 
Processing, I. Gohberg, Ed., Operator Theory: Advances and 
Applications, vol. 18, Boston: Birkhauser, 1986. 
T .  Lin, M. Kawamata, and T. Higuchi, “New necessary and suffi- 
cient conditions for local controllability and observability of 2-D 
separable denominator systems, ” IEEE Trans. Automat. Contr., 

S .  G. Mallat, “A theory for multiresolution signal decomposition: 
The wavelet representation,” IEEE Trans. Pattern Anal. Machine 
Intell., vol. 11, pp. 674-693, July 1989. 
- , “Multifrequency channel decompositions of images and wavelet 

vol. AC-32, pp. 254-256, 1987. 

models,’’ IEEE Trans. Acoust., Speech, Signal Processing, vol. 
27, pp. 2091-2110, Dec. 1989. 
B. Mandelbrot, The Fractal Geometry of Nature. New York: 
Freeman, 1982. 
B. B. Mandelbrot and H. W. Van Ness, “Fractional Brownian 
motions, fractional noises and applications,” SIAM Rev., vol. 10, 
pp. 422-436, Oct. 1968. 
Y. Meyer, “L’analyse par ondelettes,” Pour la Sci., Sept. 1987. 
A. P. Pentland, “Fractal-based description of natural scenes,” IEEE 
Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 661 -674, 
Nov. 1989. 
H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood 
estimates of linear dynamic systems,” AIAA J . ,  vol. 3, no. 8, pp. 
144-1450, Aug. 1965. 
E. A. Robinson and S .  Treitel, “Maximum entropy and the relation- 
ship of the partial autocorrelation to the reflection coefficients of a 
layered system,” IEEE Trans. Acoust., Speech, Signal Processing, 
vol. 28, 224-235, Feb. 1980. 
M. J. Smith and T. P. Barnwell, “Exact reconstruction techniques for 
tree-structured subband coders,” IEEE Trans. Acoust., Speech, 
Signal Processing, vol. 34, pp. 434-441, 1986. 
D. Terzopoulos, “Image analysis using multigrid relaxation 
methods,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI- 
8, pp. 129-139, Mar. 1986. 
A. H. Tewfik and M. Kim, “Correlation structure of the discrete 
wavelet coefficients of fractional Brownian motions,” IEEE Trans. 
Inform. Theory, vol. 38, pt. 11, pp. 904-909, Mar. 1992. 
M. Todd and R. Wilson, “An anisotropic multiresolution image data 
compression algorithm,” presented at Proc. IEEE Int. Conf. 
Acoust., Speech, Signal Processing, Glasgow, 1989. 
M. Vetterli and C. Herley, “Wavelets and filter banks: Relationships 
and new results,” presented at Proc. IEEE Ini. Conf. Acoust., 
Speech, Signal Processing, Albuquerque, NM, 1990. 
G. W. Wornell, “A Karhunen-Loeve-like expansion for I / f  pro- 
cesses via wavelets,” IEEE Trans. Inform. Theory, vol. 36, pp. 

G. W. Wornell and A. V. Oppenheim, Estimation of fractal signals 
from noisy measurements using wavelets,” IEEE Trans. Signal 
Processing, to appear. 
A. Witkin, D. Terzopoulos, and M. Kass, “Signal matching through 
scale space,’’ Int. J .  Comput. Vision, vol. 1, pp. 133-144, 1987. 
R.  E. Crochiere and L. R. Rabiner, Multiraie Digital Signal Pro- 
cessing. 

859-861, July 1990. 

Englewood Cliffs, NJ: Prentice-Hall, 1983. 


