
SIAM J. CONTROL AND OPTIMIZATION
Vol. 30, No. 6, pp. 1423-1446, November 1992

() 1992 Society for Industrial and Applied Mathematics
011

TRACKING AND RESTRICTABILITY IN DISCRETE EVENT
DYNAMIC SYSTEMS*

CNEYT M. ZVERENtAND ALAN S. WILLSKY$

Abstract. This paper formulates and analyzes notions of tracking and restrictability for discrete
event dynamic systems (DEDS). The DEDS model used is a finite-state automaton in which there is
control over some events. A second set of events, called the set of tracking events, is also specified,
and the tracking problem is one of constructing a compensator so that the tracking event trajectory
of the closed loop system follows a given string exactly. This problem is analyzed in detail and,
in particular, a characterization of all trackable strings is characterized. The related notion of
restrictability is analyzed in which the closed-loop system is required to generate tracking event
strings in a given desired language. A relaxed version of this concept is also analyzed, allowing
an initial transient before desired language tracking is achieved. Finally, a notion of reliability
is introduced and analyzed, which allows for testing if the system can recover from errors in a
finite number of transitions, and algorithms are presented for constructing compensators for reliable
restrictability. A manufacturing system example is used to motivate and illustrate the problems
considered and results obtained.

Key words, tracking, control, reliability, stability, discrete events

AMS(MOS) subject classification. 93

1. Introduction. In the past few years, there has been considerable research on
the topic of discrete event dynamic systems (DEDS) [1]-[3], [6]-[9], [18]-[21]. One
characteristic of much of this activity is that the control objectives have frequently
been stated in linguistic terms, i.e., in terms of characteristics of the possible closed-
loop event trajectories. In contrast, in much of our previous work [13], [14], [16],
we have focused directly on control concepts of stability, observability, stabilization,
and output feedback, providing some of the elements required to develop a regulator
theory for DEDS. In particular, to develop such a theory, we need some notion of
stability, and the one pursued in [13], [14], [16], which can be considered an error
recovery concept, appears to be a natural one in the discrete-event context.

In this paper, we develop another element needed for a regulator theory and which
also is much closer to the linguistic concepts explored by others. In particular, we
are concerned here with characterizing the tracking capabilities of a DEDS in terms
of the concept of trackable languages, as well as a second notion, restrictability, which
is a slight generalization of the notion of (language) controllability of Ramadge and
Wonham in [19]. While our analysis of restrictability represents a relatively modest
addition to the existing theory of controllable languages, we also consider two related,
new notions which, we believe, are of some importance, and which are motivated by
the desire to introduce notions of stability and error recovery in the theory of DEDS.
The first of these concepts is that of eventual or stable restrictability, i.e., the ability to
restrict event behavior after a finite start-up period. This would appear to be a useful
notion for capturing start-up or mode-switching behavior in DEDS. The second and
more involved notion is that of reliable restrictability, i.e., the ability of the system to

Received by the editors September 5, 1989; accepted for publication (in revised form) June 24,
1991. This research was supported by Air Force Office of Scientific Research grant AFOSR-88-0032
and by A’rmy Research Office grant DAAL03-86-K0171. Part of this work was also done while the
first author was employed by the Digital Equipment Corporation.

Telecommunications and Networking, Digital Equipment Corporation, 550 King Street LKG1-
2/A19, Littleton, Massachusetts 01460.

Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts 02139.

1423

1424 C.M. ZVEREN AND A. S. WILLSKY

return to the desired, restricted behavior following a burst of errors or failures. As we
will see, stable restrictability plays a key role in characterizing reliable restrictability.

Testing

[Kanban Box

[Kanban Box

Thru-Hole
Auto
Insertion

Kanban Box

Surface
Mount

Final
Inspection

Solder
Bath

Kanban Box

Thru-Hole
Hand
Insertion

FIG. 1.1. An example of a computer board manufacturing floor.

To motivate the problems considered in this paper and to provide an example
that we can use to illustrate their solution, let us briefly describe a particular man-
ufacturing application. More detailed investigations of this and other applications of
our regulator theory are given in [15]. Figure 1 illustrates the floor plan of a computer
board manufacturing facility consisting of several workstations and capable of solder-
ing surface mount chips on both sides of a board, mixed with thru-hole mounting (via
auto-insertion and hand insertion). Another workstation is used for soldering both
kinds of thru-hole devices. One workstation is used for testing random board samples
at various phases of the manufacturing process, and finally, each board goes through a
routine test and inspection after completion. This manufacturing floor uses a Japanese
inventory system, termed the Kanban system. Boards are transported through spe-
cially marked "kanban" boxes in quantities of 1 to 10 in each box. There are very few
kanban boxes between different workstations, guaranteeing that inventories are very
low, and thus, among other things, that latency through the manufacturing process
is also very low.

A typical board with both sides populated with surface mount components and
with mixed thru-hole components goes through the following process: The board first
visits the surface, mount station for side 1 components, where, first, a solder paste
is applied to the board; next, the components are placed on the board; and, finally,
solder is applied. The board then goes to the auto-insertion workstation where thru-
hole devices are automatically inserted. Next, if necessary, some components are
inserted by hand, and the board arrives at the solder bath. There, the boards are
first baked, to remove the moisture, and then passed through the wave solder. After
that, if there are any side 2 surface mount components, the board goes to the surface
mount workstation again for the mounting of side 2 components and, finally, the
board goes through final inspection and testing. To construct a manageable example

TRACKING AND RESTRICTABILITY IN DISCRETE EVENT SYSTEMS 1425

in the scope of this paper, we capture the dynamics of a system of this type with two
workstations and two kinds of boards. We consider a surface mount workstation Wl
and a thru-hole workstation W2. One kind of board has only side 1 surface mount
components and some thru-hole components. The second kind of board has surface
mount components on both sides, as well as thru-hole components. The surface mount
workstation will perform two tasks: side 1 mounting (for either kind of board), which
we call Task 1, and side 2 mounting, including the inspection for the second kind
of board, which we call Task 2. The thru-hole workstation also performs two tasks:
thru-hole mounting for the second board, denoted by Task 3, and thru-hole mounting
and inspection for the second board, Task 4. Thus, to be completed, the first board
must go through Tasks 1 and 4, and the second must go through Tasks 1, 3, and 2,
in that order.

Let Si (respectively, Fi) denote the starting (respectively, finishing) of Task i. In
addition, we assume that there is a unit capacity buffer B1 to store boxes going from
the surface mount to the thru-hole workstation and another unit capacity buffer B2
in the opposite direction; i.e., there is space for one kanban box in each direction.
We then model this system using the automata in Fig. 1.2. Here, circles represent
states, and the arcs represent transitions labeled with events. Also, :u indicates that
the corresponding event is controllable (i.e., we can decide whether to start a task),
and :! indicates thatthe corresponding event is a "tracking" event, which is identified
as an event that is of interest in characterizing desired behavior (see 2 for the precise
mathematical model). Suppose that, at a given time, the objective of the manager of
such a plant is to manufacture equal amounts of each kind of board. Then, we must
13erform Task 1 twice, and all the other tasks once to produce one board of each kind.
Furthermore, the correct production of these parts requires the correct sequencing of
these tasks and the corresponding transfers of boards. In particular, suppose that the
time needed to complete Task 1 is comparable to the time to complete Task 4, while
the time for Task 3 is comparable the time for Tasks 1 and 2 combined. In this case,
we can form a production schedule by performing first Tasks 2 and 1 on the surface
mount workstation while performing Task 3 on the other, and then Task 1 on the
surface mount workstation while performing Task 4 on the other. Note that it makes
no difference if we reverse the order, i.e., require that Tasks 1 and 4 are done first,
and so on. In essence, all we must know to construct a schedule is the list of tasks
that must be performed and the time it takes to complete each relative to the others.
Thus one "cycle" of the schedule, producing one board of each type, corresponds to
the completion of any of the sequences in

(1.1) Ls FI(F2F3 + F3F2) + F2(FIF3 + F3F1) + F3(FF2 + F2F) FF4 + FF),
where multiplication in (1.1) corresponds to concatenation and addition to union (so
that FiF2F3FF and F3FF2FiF are elements of L). Note that by constructing
the schedule in this fashion, we are allowing for concurrency; that is, at some points
in time, both machines may be working. The control problem then is to exercise
he available even controls 0 ensure ha the manufacturing system adheres to the
schedule of a succession of sequences from Ls, perhaps with an initial start-up tran-
sient and hopefully with the ability 0 recover gracefully from errors or failures. In
this paper, we provide a mathematical framework that allows us to solve problems
such as this, and indeed we will revisit this example in later sections to illustrate the
construction of controllers that meet design objectives such as this.

In the next section, we introduce our mathematical framework and collect several
definitions and results. In 3 we formulate a notion of tracking and present algorithms

1426 C.M. ZVEREN AND A. S. WILLSKY

Buffer B1

Surface Mount (Wl) Thru-Hole (W2)
3

2 1 Buffer B2 4 3

FIG. 1.2. A model of the computer board manufacturing example.

for constructing compensators for tracking specific strings (e.g., particular elements of
Ls). In 4 we consider the problem of restricting behavior to a specified set of desired
event sequences (e.g., restricting the manufacturing system to successive completion of
elements of Ls), a concept very closely related to the notion of controllability of Won-
ham and Ramadge. Furthermore, in this section, we introduce concepts of eventual
and stable restrictability that allow us to address questions concerning the transient
behavior of controlled DEDS and investigate the reliability or error-correcting capa-
bility of such a system. As we will see, the stronger notion of stable restrictability
leads, in general, to considerable computational efficiencies compared to the weaker
concept of eventual restrictability. Finally, in 5 we summarize our results and discuss
several directions for further work.

2. Background. The class of systems we consider are nondeterministic finite-
state automata defined on G (X, E, , U), where X is the finite set of states, with
n IXI; E is the finite set of possible events; .. C is the set of events that we wish
to track; and U C 2 is the set of admissible control inputs, corresponding to the
choices of sets of controllable events that can be enabled. The dynamics defined on
G are

(2.1) x[k + 1]
(2.2) a[k + 1]

e f(x[k],a[k + 1]),
e (d(x[k]) f u[k]) t2 e(x[k]).

Here x[k] e X is the state, a[k] e is the next event, and u[k] e U is the next control
input. The function d X - 2r specifies the set of possible events defined at each
state, e X 2r specifies the set of events that cannot be disabled at each state, and
the function f X x Z - 2z is also set-valued. Without loss of generality, we assume
that e(x) C d(x). Note that in this general framework, there is no loss of generality
in taking U 2r’. Also, by appropriate choice of e(x), we can model situations in
which we have enabling/disabling control over some events only at certain states. In
parts of the next section, we will use this general framework. In the remainder of this
paper, however, we assume the slightly more restrictive framework of [19] in which

TRACKING AND RESTRICTABILITY IN DISCRETE EVENT SYSTEMS 1427

there is an event subset (I) c such that we have complete control over events in
(I) and no control over events in (I), the complement of (I). In this case, we can take
U 2 and e(x) d(x) V-.

The set .., which we term the tracking alphabet, represents events of interest
for tracking purposes. This formulation allows us to define tracking over a selected
alphabet so that we do not worry about listing intermediate events that are not of
direct interest. We use t" * --. =*, to denote the projection of strings over into
*. The quintuple A (G, f, d, e, t) representing our system can also be visualized
graphically as in Fig. 1.2, where the first symbol in each arc label denotes the event.
We mark the controllable events by :u and tracking events by !.

We use several basic notions. First, given Q c X, we use R(A, Q) to denote all
the states that can be reached from Q in zero or more steps (so that Q c R(A,x)).
Second, there is the notion of liveness: A DEDS is alive if d(x) is nonempty for all x.
We will assume that this is the case. A third notion that we need is the composition
A12 A1 A2 of two automata As (G, f, d, e, t), which share some common
events. The dynamics of the composition are specified by allowing each automaton
to operate as it would in isolation except that when a shared event occurs, it must
occur in both systems. Note that our manufacturing system can be described by the
composition of the four automata in Fig. 1.2, with shared events capturing the fact
that a task cannot begin if a board is not available.

Central to our work is the notion of stability studied in [16] (see also [17]). Let E
be a given subset of X. We say that a state x E X is E-prestable if every trajectory
starting from x passes through E in a bounded number of transitions. The state
x E X is E-stable if every state reachable from x is E-prestable, and the DEDS is
E-stable if every x X is E-stable. Note that E-stability for all of A is identical to
E-prestability for all of A, and that this condition guarantees that all trajectories go
through E infinitely often. We refer the reader to [16] for a complete discussion of
stability and for an O(n2) test for E-stability of a DEDS.

In [16] we also study state feedback laws of the form /4 X - U, where the
resulting closed-loop system is AK (G, f, dK, e, t) with dK(x) (d(x)NK(x))t2e(x).
Generally, we wish to avoid feedback laws so that dg(x) is empty for some x, and
we build this constraint into our notions of stabilization. For example, a DEDS is
E-stabilizable if there exists a feedback K so that AK is both alive and E stable.

For many control problems, such as those considered in this paper, we must
consider compensators that use both current state and event trajectory information.
Such a compensator, which is described by a map C X x* - U, yields a closed-loop
system Ac, which is the same as A but with

(2.3) a[k + 1] e dc(x[k], s[k]) _A (d(x[k]) C(x[k], s[k])) t2 e(x),
where s[k] a[0].., a[k] with a[0] e. Note that this class of compensators is similar
to the class of supervisors introduced in [19], although, by allowing dependence on the
current state, we can achieve a somewhat richer class of behaviors. Note also that we
can always write Ac as a DEDS with an expanded (and possibly infinite) state space
to realize the dynamics inherent to the map C. As we will see, for our purposes, we
can restrict attention to finite state compensators.

In the following, we also use well-known notions of dynamic invariance [16], [18]"
A subset Q of X is f-invariant if f(Q, d) c Q, where f(Q, d) [JxQ f(x, d(x)). If

On occasion, we will construct auxiliary automata for which we will not be concerned with
either control or tracking. In such cases, we will omit e and from the specification.

1428 C.M. (ZVEREN AND A. S. WILLSKY

V C X is f-invariant in A, we denote the restriction of A to V by AIV. We say that
a subset Q of X is (f, u)-invariant if there exists a state feedback K such that Q is

f-invariant in AK. However, recall that, in general, we must also preserve liveness.
Thus we say that a subset Q of X is a sustainably (f, u)-invariant set if there exists
a state feedback K such that Q is alive and f-invariant in AK. Also, given any set
W C X, there is a minimal (f, u)-invariant subset V of W with a corresponding
unique minimally restrictive feedback K.

Note that, if there exists a cycle in A that consists solely of events that are not
in .=., then the system may stay in this cycle indefinitely. It is not difficult to check
for the absence of such cycles, and we assume that this is the case. On occasion, we
use the image automaton that keeps track of the state only after the occurrence of
tracking events. The state space yt of this automaton consists of the union of the set

Y1 of states that can be reached by tracking events and the set Y of states to which
no events are defined (Y captures possible start-up behavior). Let r -IYtl.

It is useful to phrase questions concerning event trajectories in terms of languages
[4]. Let L be a regular language over a finite alphabet and let (AL, xo) be a minimal
recognizer for L. Given s pqr for some strings p, q, and r over E, where p is a prefix
of s and r is a suffix of s, we use s/pq to denote r, and we say that q is a substring of
s. Finally, we will use the notion of a complete language: L is complete if (a) every
s E L is a proper prefix of some other r E L (so that all trajectories have unlimited
extensions), and (b) L is prefix-closed (so that all initial segments of a trajectory are
in L). Note that, for a complete language, all strings generated by the recognizer
(AL, xo) are in L (so that all states are "final" [4]).

3. Tracking. In this section, we first present our notion of tracking and present
an algorithm for computing the supremal collection of strings that can be tracked.
Later in this section, we present our notion of eventual tracking, which is an extension
of our notion of stability. Specifically, we consider the tracking of desired strings after a
transient period of a finite number of transitions. For the system A, we will assume the
more restrictive framework of Wonham and Ramadge, i.e., that an event controllable
at some state is controllable at all the other states. However, various automata that
we define in computing trackable strings will belong to the more general framework
in [16]. Furthermore, to simplify our presentation of these notions, we will assume
that c .=., i.e., that all controllable events are also in the tracking alphabet.

3.1. Trackable languages. We define tracking as being able to restrict the
system behavior so that the automaton starting from the current state must generate
a desired string:

DEFINITION 3.1. Given x X, a string s ..* is trackable from x if we can find
a compensator C:X E* --. U such that Ac is alive and t(L(Ac, x)) C s*.

As an example, consider the system in Fig. 3.1. Any string in (a).* is trackable
from 0, and a compensator for tracking all such strings can be defined by C(0,)
{a},C(1, a) {},C(3, a) {},C(0, a) {a}, and so on. As seen in this
example, if a string is trackable, then a compensator for tracking it can be constructed
easily. Specifically, this compensator should only enable the next event in the string
that we wish to track. In the context of manufacturing systems, this notion would be
useful in checking if a part can be manufactured at all by the system. In our example,
it is obvious that, for example, the second board can be manufactured since the task
sequence 1,3,2 can be "tracked." However, realistically, in a complex system it may
not be so obvious if a certain board can be manufactured at all.

TRACKING AND RESTRICTABILITY IN DISCRETE EVENT SYSTEMS 1429

FIG. 3.1. Simple example.

DEFINITION 3.2. A language L is a trackable language from x if it is complete
and if each string in L is trackable from x.

The class of trackable languages is closed under arbitrary unions, and we let
LT(A,x) denote the supremal language trackable from x. On the other hand, the
class of trackable languages is not necessarily closed under intersections since the
intersection of two complete languages L1 and L2 is not necessarily complete, even
though it is prefix closed. However, we can construct the supremal complete sublan-
guage of the intersection. Let the function X 2=* - 2* denote removing all the
strings, in a given language L, that have no infinite extensions in L, i.e.,

x(L) {s e L s has an infinite extension in L}.

Then x(LI 3 L2) is a trackable language.
Given some x E X, let us examine the properties of LT(A,x): First, the first

event of a string s LT(A, x) must be defined at some state that is reachable from x
by events in ; i.e., it must be in the set

dr(x) d(R(A],x)) 3 =

In Fig. 3.1, the first event of a string in LT(A, 1) may be either or 5.
Second, the first event of s, say T, must be trackable from x. We now characterize

the set 1T(X) of such events (i.e., the strings of length 1 in LT(A, x)). Let e (x) be the
set of events in dr(x) that are either uncontrollable, or events such that, if an event
in this set is disabled, then some state in R(AIS x) is no longer alive; see below:

(3.3) et(x) (dr(x)3-)U {" e dt(x)13y e R(AI,x such that d(y) {T}}.

For example, in Fig. 3.1, et(1) {/}, and e is the empty set for all other states. Note
that, if et(x) contains more than one event, then we cannot track any event from x,
and if it contains one event, then we can only track that event from x. Finally, if e (x)
is empty, then we can track all events in dr(x) from x. Thus we have the following
proposition.

PROPOSITION 3.3. It holds that 1T(X) {T dt(x)]{T} [J et(x) {T}}.
For example, in Fig. 3.1, /T(1)=
After some T e 1T(X) is tracked, the automaton is in some state in ft(x, T)

f(R(AI.., x), T). Consequently, the remaining part of the string that can be tracked,

1430 C.M. ZVEREN AND A. S. WILLSKY

with T as prefix, must be trackable from all these states. Thus we have the following
implicit characterization of LT(A, x).

PROPOSITION 3.4. It holds that LT(A,x) U’relT(x) T(Nyeft(x,’r) LT(A, y)).
To solve this equation, we construct an automaton A (G, ff, dt, e, 1), where

G (Y,F.,F., U) and 1 is the identity map. For the system in Fig. 3.1, A is
illustrated in Fig. 3.2. Recall that, if e(x) contains one element, then we can only
track that event from x. In this case, let

K’(x) 0 if e (x) O,
(a.4)

d (x) otherwise

In Fig. 3.2, K’(1) 0, since et(1) (thus 5 is disabled at state 1), and K’(0)
{a,/}, g’(2) {a}. Also, recall that, if et(x) contains more than one event, then we
cannot track any event from x. Let DT represent such states, i.e.,

DT {x e Yle(x) >_ 2}.

To be able to track complete languages, we must avoid DT, while preserving liveness.
Thus let V be the maximal sustainably (f, u)-invariant subset ofT in A:, and let
Kv be the associated minimally restrictive feedback. In Fig. 3.2, V is all of the states.
Finally, let g(x) gy(x)V g’(x). Note that, for x e V, all the events in dtg(X) are
trackable from x, i.e., 1T(X) dtg(X).

FIG. 3.2. The automaton A .for Fig. 3.1.

LEMMA 3.5. If X E Ytg F, then LT(A,x) O. If x V, then LT(A,x) C
n(Atg, x).

Proof. The proof is straightforward, v1

To compute LT(A, x), let us first focus on the case in which AtKIV is deterministic.
In this case, since 1T(X) dtg(X) for all x e V, then, for any x e V, the language
generated from x in A: is certainly trackable from x, and, in fact, it is the supremal
such language.

PROPOSITION 3.6. If AtK]V is deterministic, then for all x V, LT(A,x)
L(AtK, x). Furthermore, for all x e YtV Y, LT(A, x)= .

Proof. The proof is straightforward using Lemma 3.5 and the fact that, for all
x e Y and T e dtK(X), f((x, T) is single-valued. [:]

To complete the picture when AtglY is deterministic, we must construct LT(A, x)
for the states x in t. Let us first seek any such x that is also in R(AI V). That

TRACKING AND RESTRICTABILITY IN DISCRETE EVENT SYSTEMS 1431

is, there exists y E V such that x can be reached from y without the occurrence
of tracking events. Consider then any T 1T(X). By definition, if(x, T) C yr.
Furthermore, if(x, T) C if(y, T). Thus there are two possibilities. Either if(y, T) is
contained in V, or it is not. If it is, then, since K is a minimally restrictive feedback
and since ArK IV is deterministic, if(x, T) if(y, T) a single element of Y. If
if(y, T) is not contained in V, then the feedback K must disable this event to achieve
invariance for V. Thus we must also disable this event at x.2 Thus, if we define

(3.6) e e v},

then

(3.7) LT(A,x) U TLT(A, If (X, T)),
rEly(x)

which allows us to compute LT(A,x) from LT(A,y), y V. Next, suppose that
x

_
R(AIE V) and take any T 1T(X). Again, there are two possibilities: either

if(x, T) C V or if(x, T)

_
V. Consider the second possibility in which we know that

T

_
LT(A,x). There are two cases here: either T e e(x) or T

_
et(x). In the first of

these, we cannot disable T, and thus LT(A, x) . In the latter, we simply disable T.

Consider next the possibility if(x, T) C V. There are two cases here as well: either
Iff(x, T)I- 1 or Iff(x, T)I > 1. In the former case, we know that

(3.8) LT(A,x) D TLT(A, if(x, T)),

and indeed, if only this case occurs, LT(A,x) is given as in (3.7). However, if
[ff(X,T)[> 1 for some T, we have a situation exactly as in the nondeterministic
case: essentially, we must intersect the languages TLT(A, y) for all y if(x, T). As
this procedure is embedded in the fully nondeterministic case, we describe this case
next.

If AtK[V is nondeterministic, we first construct a deterministic automaton O over
subsets of V such that, for each state of O*, the events defined at are given by the
intersection of the events defined at each element x E 5. In particular, we construct
an automaton 0 (Ft, wt, vt) over the states 2v with

U Y’(z,

(3.10) vt(&) N (dr(x) n K(x)) U et(x).

These dynamics can be defined with all of 2V as the state space. Since we will only
use particular initial states, we can restrict attention to the reach of these states under
these dynamics. Specifically, we take the state space Z of 0 to be

(3.11)
Zt= R(Ot, {2 e 2vl {x} and x e V,

or if(x, T) for some x e ,T e lT(X)}).

Figure 3.3 illustrates 0 for the automaton in Fig. 3.2. Note that /T(3) {} and
St(3,) {2}.

2 The existence of the feedback K, in fact, guarantees that T can be disabled while preserving
liveness.

1432 C.M. ZVEREN AND A. S. WILLSKY

FIG. 3.3. The automaton 0 for Fig. 3.2.

Let Dz be the set of dead states in Zt, i.e.,

(3.12) Dz {& e Zt[vt(&)= };

let Z/ be the maximal sustainably (f, u)-invariant subset of z; and let K be the
associated minimally restrictive feedback. Then, we have the following result, where

{xl{x) e
PROPOSITION 3.7. Given x E Zs,

LT(A,x) L(Otg,,

Given x yt N 8,

LT(A, x) O.

tFinally, given x let

then

LT(A, x) U TL(OtK*’ ft(x’ T)).
’()

Note that, if lT(X) O, then LT(A, x) O.
The proof of this result is straightforward. Because of the nondeterminism, we

must ensure that, for any prefix of a trackable string, the corresponding suffix is
trackable from all states that can be reached by applying the prefix. The dynamics
w defined via a union (3.9), and the allowable event function vt, defined via an
intersection (3.10), capture this exactly. A dead state & Dz then corresponds to a
set of states such that no event is trackable from all elements of &, and thus we must
avoid these states and confine the dynamics to Z. For any singleton element of Z/,
i.e, any {x} Zb, it is then easy to compute LT(A, x). For any other singleton that
can be reached by a trackable event, i.e., x yt N-28, we know that the trackable

Ftlanguage is empty, since we have started outside of Z. Finally, for x E the
only trackable events are those that drive x completely within Z, i.e., lT(X), and
from there we can compute the suffixes of the trackable strings from x using the

TRACKING AND RESTRICTABILITY IN DISCRETE EVENT SYSTEMS 1433

dynamics evolving within Z/. Finally, as we have commented earlier, constructing
a compensator for tracking any s E LT(A, x) is easy: We just enable the next event
that we wish to track, given the string that has already been tracked.

The complexity of computing LT(A, x) for all x is quadratic in IZtl. However, as
with the cardinality of the state space of an observer [13], IZtl may be exponential
in IVI, and thus computing LT may have exponential complexity in IVI. In [13] we
provide some bounds on observer state space size and give examples showing that
in many cases the actual observer state space size may be considerably smaller than
the worst case exponential bound. Similar analysis can be performed in the present
context, and indeed the bounding procedure of [13] can be used to compute a bound
on the size of the recurrent part of Zt. Refer to [10] for an example illustrating both
our procedure for computing LT(A, x) and the worst-case bound using an adaptation
of the example used for analogous purposes in [13].

3.2. Eventually trackable languages. A straightforward generalization of the
notion of tracking is a notion of tracking a given string in a finite number of transitions.
For example, in Fig. 3.1, (c)* is trackable from state 2 in one transition, namely,
after the occurrence of a. We term this a notion of eventual trackability. In the
following definition, (.=. U {})m denotes the set of all strings, over .=., of length at
most nt, where e denotes the "null" string.

DEFINITION 3.8. Given x E X, a string s ..* is eventually trackable from x if
there exists an integer nt and a compensator C X E* - U such that Ac is alive
and t(L(Ac, x)) c (U {e})ms..*. A language L is eventually trackable from x if it
is complete and if each string in L is eventually trackable from x.

Similar to the class of trackable languages, the class of eventually trackable lan-
guages is closed under arbitrary unions, and the supremal complete sublanguage of
the intersection of two eventually trackable languages is also eventually trackable. Let
LET(A, x) denote the supremal language eventually trackable from x.

As stated in the following, if a state x is E-prestabilizable for some E, then any
string trackable from all states in E is eventually trackable from x. For the example
in Fig. 3.1, 2 is {0, 1}-prestabilizable, and ()* is trackable from both 0 and 1.

LEMMA 3.9. Given x X and E C X such that x is E-prestabilizable,

(,) ((,).
yEE

Proof. The proof is straightforward.
Conversely, suppose that some string s is eventually trackable from some state

x, and let Es be all the states from which s is trackable. Then x must be Es-
prestabilizable, since, otherwise, a trajectory from x may cycle arbitrarily through
states from which s is not trackable.

Given x, let E be the set of all sets E C X such that x isPROPOSITION 3.10.
E-prestabilizable. Then

x) [.J
EEEyE

Furthermore, for all x X and s LET(A,x), nt

_
r yr.

Proof. The proof is straightforward. To prove the second statement, note that
nt can be chosen as the maximum number of tracking events on any trajectory from
some x E X to E. Since r is the cardinality of yt, it is an upper bound on nt.

1434 C.M. ZVEREN AND A. S. WILLSKY

We obtain a slightly tighter formula for LET(A, x) as follows. Let Y C X (with
r -IYI) be the set of states from which at least one tracking event is defined, i.e.,

(3.13) Y’

COROLLARY 3.11. Given x, let E be the set of all sets E c Y such that x is
E-prestabilizable. Then

[J
E’E’ YE

Proof. () The proof is trivial by the above proposition.
() Let s E LET(A, x), and let E C X be a set so that x is E-prestabilizable and

s LT(A, x) for all x’ E. Next, let

E’ R(AI E) N Y’.

Thanks to our assumption that it is not possible for A to generate arbitrarily long
sequences of events in .=., E is E-prestable. Thus x is E-pre-stabilizable, and E E.
Also, since all events in .. are uncontrollable, s LT(A, y) for all y E. Therefore
s JE,eE’ yE’ LT(A, y).

To compute E, we must check, for each subset E of Y, if x is E-prestabilizable.
Thus computing LET(A,x) has complexity exponential in r. However, testing if a
string s is eventually trackable (from some state x) may or may not have exponential
complexity, depending on the complexity of the state space of O, since all we must
do is to compute the set of states in Y from which s is trackable and test if x is
prestabilizable with respect to this set. For example, (()* is trackable from 0 and 1
in Fig. 3.1. Since 2 is (0, 1}-prestabilizable, (/c)* is eventually trackable from 2. In
fact, both (()* and ()* are eventually trackable from all the states.

4. Restrictability. In this section, we first address the problem of restricting the
output behavior of a system to a given language, representing a slight generalization
of the notion of controllable languages in the Wonham and Ramadge framework as
we also consider arbitrary initial states. Next, we present the concept of eventual
restrictability and stable restrictability, which allow us the flexibility of restricting the
behavior after a finite number of transitions. Finally, we present and analyze a notion
of reliability that allows us to model failure or error events and to test if the system
can be made to recover following the occurrence of a burst of errors. Throughout this
section, we consider the general setting in which (I) need not be contained in

4.1. Basic notion. Given a complete language L over .. and a state x, our
notion of restrictability is defined as the ability to control the system so that all the
trajectories generated from x in the closed-loop system are in L.

DEFINITION 4.1. Given x X and a complete language L over .., x is L-
restrictable if there exists a compensator C X E* -- U such that the closed-loop
system Ac is alive and t(L(Ac, x)) C L. Given Q c X, Q is L-restrictable if all
x Q are L-restrictable. Finally, A is L-restrictable if X is L-restrictable.

The class of L-restrictable sets is closed under arbitrary unions and intersections.
Let XL denote the maximal L-restrictable set. To compute XL, we first construct a
recognizer for L and then formulate the problem of restrictability as one of stabiliz-
ability of the composite of this recognizer and A. In the rest of this section, we present
this approach and establish connections to the work of Wonham and Ramadge.

TRACKING AND RESTRICTABILITY IN DISCRETE EVENT SYSTEMS 1435

Let (AL,xo) be a minimal recognizer for L and let ZL denote its state space.
Let A be an automaton that is the same as AL, except that its state space is

ZL ZL U {b}, where b is a state used to signify that the event trajectory is no longer
in L. Also, we let d(x) .=. for all x e Z, and

(4.1) fL(X,a) fL(X,a) if X b and a e dL(x),
({b} otherwise.

As an example, consider the system illustrated in Fig. 4.1(a), which is identical to
an example in [22]. We have two simple automata, each of which can be thought
of as a machine in a manufacturing system. Each of these machines has two states
so that state 0 corresponds to being idle, and 1 corresponds to working on a part.
Event c (respectively, ti) signifies that the first (respectively, second) machine started
working, and event (respectively,) signifies that the first (respectively, second)
machine is finished with the part. Events (and 5 are assumed to be controllable.
Their composition, which models all the behavior that can be generated by the two
machines, is illustrated in Fig. 4.1(b). Suppose that the first machine feeds the second
one (i.e., after the first machine is finished with a part, the second one starts working
on it), and suppose that there is a buffer of size one between the two machines. Our
goal is to design a compensator such that the buffer never overflows; i.e, at any given
time, there can be at most one part in the buffer. This implies that the set of strings
that we wish to allow must have and ti alternate. A recognizer for this language,
and, in fact, the automaton A with the initial state 0, is illustrated in Fig. 4.2, where
we have taken .=.- {, i} as the tracking alphabet.

o)
{a} }

FI(. 4.1. Example for restrictability.

Let ALA denote the composite A A and let

ELA {(x,y) e xLAIx b}.

For example, Fig. 4.3 denotes the composite of the automata in Figs. 4.1(b) and 4.2,
where the first component of the labels of each state represent the state of A the lastL’
two represent the state of A, and transitions defined at states with the first component
equal to b have been ignored for simplicity. Note that ELA is the set of all states that
do not have b as their first component.

1436 C.M. ZVEREN AND A. S. WILLSKY

FIG. 4.2. Automaton AL

FI(. 4.3. Composite of A and AL

Given Q c X, let I(Q) denote the maximal sustainably (f, u)-invariant subset of
Q and let KI denote the associated minimally restrictive feedback. Then we have the
following proposition.

PROPOSITION 4.2. A state x X is L-restrictable if and only if (xo, x)
I(R(ALA, (xo, x) V) ELA). Furthermore, a compensator for restricting the behavior of
x to L can be constructed using the closed-loop automaton ALA (G, f d) and theK

TRACKING AND RESTRICTABILITY IN DISCRETE EVENT SYSTEMS 1437

initial state (xo, x) as follows:

d’((xo, x)) if s e,
L(ALAC(y,s) d’(f’((xo, x),s)) if s e g (Xo, X)),

don’t care otherwise.

Proof. The proof is straightforward by assuming the contrary in each
direction.

In Fig. 4.3, if we disable at 000 and 010, and a at 100 and 101, then we see that
all the states of A are L-restrictable.

The compensator C is implemented as follows: Given the initial state, x, of A,
we initiate ALA at (x0, x) The compensator is simply the set-valued function of thegI

present state of ALA given in Proposition 4.2gl

Finally, the following result presents a straightforward construction for XL.
PROPOSITION 4.3. We have that XL {x E Xl(xo,x I(R(ALA, SL))}, where

SL {(x0, x) e xLA}, and the complexity of this computation is O(IxLAI2
Proof. The proof is straightforward. Since the complexity of computing I(Q) is

quadratic in the cardinality of the state space, the total complexity is O(IxLAI2 (see
[16]).

In our board manufacturing example, our objective is to follow the specified sched-
ule that corresponds to restricting system behavior to LBM, the prefix closurea of L.
It is not difficult to check that some of the states of the system of Fig. 1.2 are re-
strictable with respect to LBM. In particular, let the quadruple of the states of Wl,
W2, B1, and B2 represent the state of the composite system. Then Fig. 4.4(a) repre-
sents the closed-loop system after restricting the behavior from state (0, 0, 1, 1). (For
simplicity in this figure, intermediate states are not shown explicitly, but the end of
each transition terminates at a state.) Note, for example, that initially, only $2 is
enabled, since enabling $1 could lead to F1, which would overflow B1, and enabling
$3 could lead to F3, which would overflow B2.

We can now relate our results to the notion of controllable languages of Wonham
and Ramadge. We refer the reader to [19] for definitions. ISpecifically, let all events
be tracking events (i.e., let .=. E), let L be the specified legal language, and let some
x X be the given initial state of A. Then Proposition 4.4 follows.

PROPOSITION 4.4. L(ALAgi xO, X) is the supremal controllable sublanguage of the
legal language L.

Proof. This is straightforward to check from the definitions in [19] and the fact
that KI is minimally restrictive.

As an example, if the initial state of the system in Fig. 4.1(b) is 00, then the
supremal controllable sublanguage of L is the language generated by state 000 in Fig.
4.3 with 5 disabled at 000 and 010, and c disabled at 100 and 101, as before. This
compensator is also the same as the one computed in [22] for this example.

As a final comment, note that, from the development in 3, it might be expected
that we would have presented results on "maximal" or "minimal" restrictable lan-
guages. These concepts, however, are trivial: The maximal language to which we can
restrict behavior is obviously .=.*, while a number of minimal restrictable languages
are possible. For example, if e(x) , disable all controllable events at this state;

3 This allows for the fact that we may be in the middle of one of the sequences in Ls in (1.1),
which certainly is consistent with our desire to follow the schedule.

1438 C.M. (ZVEREN AND A. S. WILLSKY

(a)
F F

(0,0,1,1) S
F F

(b)

(0,0,0,0)

F

F

FIG. 4.4. Part of the closed loop system for the compensated board manufacturing example.

if e(x) 0, disable all but one controllable event. Thus, in this context, it is more
meaningful to fix L and consider the questions we have addressed here.

4.2. Eventual restrictability and stable restrictability. As noted in the
preceding section, some of the states in the manufacturing system of Fig. 1.2 are LBM-
restrictable. Others (such as (0,0,0,0)) are not. However, for such states, it is possible
to design control rules so that we do begin to follow the desired schedule after a short
initial set-up transient. This provides the motivation for a natural generalization of
our notion of restrictability. For example, consider the system in Fig. 4.5, where

E, and suppose that L ((+/5)*. The automaton A is illustrated in Fig.
4.6 and the automaton ALA is illustrated in Fig. 4.7, where the transitions defined at
state b0 have been ignored for simplicity. Note that 0 is L-restrictable, whereas 1 is
not. However, if the system starts in state 1, the next transition takes state 1 to state
0, and the language generated from that point on can be restricted to L. We term
this eventual restrictability.

FIG. 4.5. Example for eventual restrictability.

DEFINITION 4.5. Given x E X and a complete language L over , x is eventually
L-restrictable if there exists an integer na and a compensator C X E* U such
that the closed-loop system Ac is alive and t(L(Ac, x)) c ((_J{})naL. Given Q c X,
Q is eventually L-restrictable if all x E Q are eventually L-restrictable. Finally, A is
eventually L-restrictable if X is eventually L-restrictable.

TRACKING AND RESTRICTABILITY IN DISCRETE EVENT SYSTEMS 1439

F,G. 4.6. Automaton AL for L (a/ 4- [5)*.

5:U,y:U

Fie. 4.7. Composite of A and AL for the eventual restrictability example.

The class of eventually L-restrictable sets is closed under arbitrary unions and
intersections, and thus it has a maximal element XEL. A set closely related to XEL
is XSL, the maximal XL-prestabilizable set, i.e., the set of states that can be driven
into states from which L-restrictability can be achieved. The advantage of considering
XSL is that it is easy to compute and (directly from the results on prestabilizability
[16]) for states in XSL na

_
r and the computation of XSL has complexity O(n2).

DEFINITION 4.6. Given x E X and a complete language L over E, x is stably
L-restrictable if x is XL-prestabilizable. Given Q c X, Q is stably L-restrictable if
all x E Q are stably L-restrictable. Finally, A is stably L-restrictable if X is stably
L-restrictable.

A compensator for stable restrictability can be constructed by using two compen-
sators in tandem: The first one is a state feedback that prestabilizes A with respect to
XL. The second one is the compensator of Proposition 4.2 for restricting the language
generated by x to L, where x is the element of XL that the trajectory first visits.

One natural question that arises concerns the relationship between XEL and XSL.
Clearly, XEL XSL, and, in fact, for many systems and languages the two sets are
equal (in particular, this is true if A is stably L-restrictable). For example, it can be
verified that our computer board manufacturing system is stably LsM-restrictable,
and Fig. 4.4(b) illustrates part of the closed-loop system that ensures that (0, 0, 0, 0)

1440 C.M. ZVEREN AND A. S. WILLSKY

reaches (0, 0, 1, 1) in a finite number of transitions. However, as first shown in [5],4
there are systems and languages for which XEL XSL and, in some of these cases,
the length na of the initial transient until we begin strings in L need not be bounded
by r and can be quite long.

While it is beyond the scope of this paper to present a full investigation of the
relationship between XEL and XSL and conditions under which they are equal (or at
least na is small), we can make a few remarks concerning this issue. A simple example
adapted from [5] is given in Fig. 4.8, where all events are tracking events and no event
is controllable. If we let L * + aka*5 for some fixed but arbitrary integer k,
then XL { 1 }, XEL {0, 1}, XSL {1}, and na k. Note that, if L were taken as
*, then XEL XSL {1}, while, if L were aka*5*, then XEL and XSL are both
empty. The difficulty thus appears to be related to the interaction between the two
components of L together with the long prefix aka*fl of one of these components.
Some of these difficulties are removed if we restrict our attention to a subclass of
languages corresponding to the successive completion of a sequence of "tasks," i.e., to
languages of the form (L]) *c, the prefix closure of the language of all concatenations
of strings in the finite set Lf {wl,..., w,} (note that this is exactly the form of
LBM (Ls) *c for our manufacturing example).

FI(. 4.8. Example illustrating the bound on na for L 5" + aka*5*.

Restricting ourselves to languages of this form does eliminate the situation de-
picted in Fig. 4.8, but it is not sufficient to guarantee that XEL XSL. For ex-
ample, consider the system in Fig. 4.9, where all events are tracking events and no
event is controllable. If L (Lf) *c with L {,a,,, #}, then-na 1 and
XL XSL {0, 3}, but XEL {0, 1, 2, 3}. One of the difficulties in this case is that
there are ambiguities in the parsing of strings that are eventually in L. For exam-
ple, the string a3a3 can be given the following two parsings: (1) two occurrences of
wl a; or (2) an initial prefix of c, an occurrence of w2 =/3a, and the initiation
/3 of either another occurrence of w2 or an occurrence of w4 3. While a complete
answer to the constraints on LI under which XEL XSL for L (LI)* remains
open, there are some sufficient conditions that guarantee this. We present here one
such condition, which, on the one hand, is more restrictive than necessary, but, on
the other hand, is easily interpreted and should not be an unreasonable assumption
in many applications.

FIG. 4.9. Example illustrating unequivalent XEL and XSL.

4 We are grateful to the authors of [5] for pointing out this subtlety to us.

TRACKING AND RESTRICTABILITY IN DISCRETE EVENT SYSTEMS 1441

PROPERTY 4.7. A set of strings Lf has the unique parsing property if, for any
string s E ..*, either s possesses no substring that is an element of Lf, or there is a
unique way in which to write

8 plwilp2wi. pmWi.Pm+l,

where wi,..., wi, are (not necessarily distinct) elements of LI, and none of the
strings Pl,’",Pm+I contains a substring that is an element of Lf.

Note that, in general, this property need not be an easy one to check. There are,
however, a number of important necessary conditions for this property to hold. In par-
ticular, no element of Lf can be a substring of another, and no prefix of one element of

LI can be a suffix of another (so that no word can be a cyclic permuattion of another).
Note further that this condition does not hold for our manufacturing example, since
the string FIF2F3F4F1F2F3F4F1 can be thought of either as the word FIF2F3FaF1
in Ls followed by the string F2F3F4F or as the string FF2F3Fa followed by the
word FF2F3F4F in Ls. One simple condition under which this property does hold
is if there is either a unique special element of that only appears at the end of each
element of LI, indicating "task completion" (or, equivalently, a special element that
appears only at the start of each element of LI, indicating "task initiation"). For ex-
ample, in our manufacturing example this would correspond to a simple modification
to include explicitly a final event in each element of L corresponding to transferring
the completed pair of boards to the final inspection station.

PROPOSITION 4.8. Let L (LI) *c, where LI {w,... ,Wm} has the unique
parsing property. Then XEL XSL.

Proof. As shown in [5], there is in general a (very large) upper bound on na and
a finite-state compensator C such that t(L(Ac, x)) C (.=. t3 {e})nan for all x XEL.
Suppose that XEL XSL and take any x0 in XEL \ XSL the complement of XL
in XEL. Thanks to unique parsing, any state reachable (in Ac) from a state in XEL
must also be in XEL SO that f(xo, s) C XEL for any s L(Ac, xo). Furthermore,
since xo XSL, we can find a state path of arbitrarily long length beginning at x0
that does not enter XSL. By the finiteness of the composition of A and C, there
then must exist a string in L(Ac,xo) that produces a cycle in the composite that
stays in XEL \ XSL. That is, we can find a string p and s so that ps* C L(Ac, xo),
corresponding to a path completely within XEL \ XSL, where s represents the string
of events around the cycle. Since xo XEL and since na is bounded, for k sufficiently
large, t(psk) contains a suffix in L. Let us first examine the case when t(s) does not
contain a substring in LI. Then, thanks to eventual restrictability and to the finite
length of words in LI, we know that, for k sufficiently large, we must encounter strings
of the form

p8
k p UlWil Wi2 WimVmq_l

where
(i) w vsu+,
(ii) t(w) e Lf,
(iii) nj is a nonnegative integer,
(iv) s uivi for i- 1,...,m

(see Fig. 4.10). Since s is a finite string and Lf is a finite set, it must be that, and
such that, for some k and some < m,

(4.4) wi, wi..

1442 C.M. ZVEREN AND A. S. WILLSKY

In this case, since v, vt and s utv, we see that

(4.5) WilWil+l Wim_l VlSnllll+l Vm--18nm-lUl (TN,

where a vu and N n +... + nm-1 + m 1. Note that (1) a is simply a cyclic
permutation of s, so that a E L(Ac, y) for some y XEL \ XSL on the cycle, and
(2) t(aN) is precisely a concatenation of strings in Lf. In the other case in which s
contains a substring in Lf, we can still obtain a parsing as in (4.3) with the second
condition changed to the statement that there exists a finite integer r > 0 so that
t(wij) (LI)r (here we can take r as any integer greater than the ratio of the length
of s to the length of the shortest element of LI). Then, because of the finiteness of
(LI)r, we can again find < m, so that (4.4) and (4.5) hold, and thus so that the
same two conditions hold for a and y.

s s s

Isnll In21
u2v2sl, u3p uv

!

W. W.
12

FIG. 4.10. The parsing of psk.

Consider then this state y. Since y XL, there is some string d L(Ac, y) such
that t(d) is not in L. However, (aN)*d C L(Ac, y). By unique parsing, since aN is
a sequence of elements of LI, t[(aN)kd] cannot be an element of L for any k, since

t(d) L. On the other hand, since y XEL such strings must be in L as they are the
suffixes of words of arbitrarily long length in t[(aN)*d] This establishes a contradiction
to the assumption that XEL \ XSL is nonempty. D

As we have indicated, the complete characterization of the relationShip between
XEL and XSL remains open. Several other less restrictive conditions on the structure
of L are known that guarantee XEL XSL, but none of these appear to have as
simple and reasonable interpretation as Property 4.7. Completely open is the question
of conditions on the automaton A (rather than the language L) that guarantee XEL
XSL. However, while these represent interesting research questions, it is our opinion
that XL is a more meaningful object to begin with, since in essence for x XEL\XsL
eventual restrictability happens in a sense by "accident." In contrast to x XSL,
we explicitly drive the system to XL at which point we know that generation of
strings in L commences. Thus, as briefly discussed in the 5, it is the notion of
stable restrictability that plays a central role in [11] in our development of a theory
of hierarchical aggregation based on the concept of task completion.

4.3. Reliability. Our final generalization of restrictability is very similar to the
notion of resiliency introduced in [12]. Specifically, we allow a set of failure events and
require that following a burst of failures, the system generates strings in L within a
finite number of transitions after the burst ends. For example, in our manufacturing
system, suppose that parts are detected to be defective as a kanban box arrives at W2.
In particular, suppose that this "failure event" happens immediately after $2 occurs
from state (0,0,1,1) in Fig. 4.4(a). Then we would essentially observe a transition
to state (2,0,0,0), since B1 suddenly becomes empty while W2 is still idle. To start
production again, our goal at this point is to reach state (0,0,1,1). Note that we can

TRACKING AND RESTRICTABILITY IN DISCRETE EVENT SYSTEMS 1443

stabilize (2,0,0,0) with respect (0,0,1,1), since all we must do is wait until T2 finishes
and the state transitions to (0,0,0,0), which we know is stable. Thus, in this case,
we can recover from the initial failure within a few steps. We capture this recovery
procedure as follows: To be consistent with our current framework, let us decompose.. into tracking events t and failure events I (instead of defining a new alphabet).
A natural assumption is that no event in I is controllable (since, otherwise, we can
just disable them). Given an integer _> 1 and s E L(A, x) for some x E X, we say
that s is a failure sequence with at most failures if both the first and the last events
of s are in I and at least one but at most i events of s are in I" We define reliability
as follows. (We build this notion on the notion of stable restrictability.)

DEFINITION 4.9. Given x X, a complete language L over .=.t, and an integer
>_ 1, x is i-reliably L-restrictable if x is stably L-restrictable in AIf and there exists

a compensator C X * - U such that the closed-loop system AclSI is alive.
Also, for all failure sequences s L(Ac, x) with at most i failures, f(x, s) is stably
L-restrictable in AcI.=.I. Given Q c X, Q is i-reliably L-restrictable if all x Q are
/-reliably L-restrictable. A is i-reliably L-restrictable if X is/-reliably L-restrictable.

The class of/-reliably L-restrictable sets is closed under unions and intersections.
(:Let X denote the maximal /-reliably L-restrictable set, and let X i=1 X.

Note that X XSL, where XSL is defined for AII. The following proposition is
immediate.

PROPOSITION 4.10. The sets XR are nested, i.e.,

c

and, ifX+1 X, theist XJR xiR for all j >_ including
It remains to describe a recursive procedure for computing X} beginning from

X. Let Yi, for integers i > 0, denote the set of states x such that either no failure
events are defined at x or all the failure events take x to a state in X, i.e.,

(4.6) yi {x e Xldl(x q) or for all a e dl(y), f(y, a) c X},
where dl(x d(x) I" Note that yi+l C yi.

Consider then what it means for a state x e X to be 1-reliably L-restrictable.
First, we must have that x X. Second, we must have that any state that can
be reached from x with one failure event must be stably L-restrictable with failure
events turned off. To be precise, define

(4.7) n(A,x) {s e n(A,x)l only the last element of s in

Thus L(A,x) are the possible event trajectories leading up to and including the
first failure when we start in x. Then we must have, for any s LI(A,x), that
f(x, s) C X. Note that this implies that all of the states along any trajectory from
x to f(x, s) must lie completely in Yo. Thus let X denote the maximal sustainably
(f, u)-invariant set in y0 and let K denote the associated feedback. Then we have
Lemma 4.11.

LEMMA 4.11. We have that X R, the maximal stably L-restrictable subset of
X in Ago

Proof. That X is contained in R is clear from the preceding argument. To show
the opposite inclusion, take any x E R. Then we can find a compensator such that,
with x as initial state, only strings in L are allowed in the closed-loop system (with
failure events turned off), and the trajectories stay in y0. Then, following a failure

1444 C.M. ZVEREN AND A. S. WILLSKY

event, the system can only make a transition to a state y that is stably restrictable,
and thus we can restrict the language generated from y to L within a finite number
of transitions. Therefore x is 1-reliably L-restrictable.

Note that, from the argument preceding the lemma statement, we might conclude
that X is simply X r X. However, in making X invariant, we have applied
feedback K, and this may then restrict what further feedback can be applied to
achieve stable restrictability. Thus, in general, X may be smaller than X r X.

Continuing with our construction, let X denote the maximal sustainable (f, u)-
invariant subset in Yi of Alf, and let K be the associated state feedback. Note
that, because of the nesting of the Y, K is compatible with K-1 (i.e., any event
disabled by Ki-1 is also disabled by K). We then have the following proposition.

PROPOSITION 4.12. X+1 is the maximal stably L-restrictable subset of X in

Proof. The proof is similar to the proof of Lemma 4.11. []

Thus the full recursive procedure is the following: (1) Compute X using the
stable restrictability results of the preceding section applied to AI.=.I; (2) Given X,
compute Y from (4.6); (3) Compute X and g using the (f, u)-invariance results
discussed in 2; (4) Compute X+1 using the stable restrictability results applied to
AK I..$. Also, as a byproduct of the above construction, we obtain the following
result.

COROLLARY 4.13. It holds that X XR for some <_ IY’I, where Y’
{xlds(x) 0}.
Thus we can compute X in a finite number of steps, and, in fact, the complexity of
this computation is O(IY’IIxLAI2).

FzG. 4.11. Reliable restrictability example: ..t {c,fil, 5,}, --0, ..$ {}.

As an example, consider the system in Fig. 4.11, where t {a, , 5, 7}, 0,
and i {}. Let L =/c*; then X {0, 2} and y0 {0, 1, 3}. Thus X y0,
and K is a trivial feedback that enables all events. Also, X {0}. Thus state 0
can recover from a single failure. However, if the failure occurs at state 2, then a
transition is made to state 3 that is not stably L-restrictable. Continuing, we obtain

X 0. Thus state 0 cannot recover from 2 or more failures.

5. Conclusions. In this paper, we have investigated notions of tracking, re-
strictability, and reliability for discrete-event dynamic systems. We have developed
algorithms for constructing traclble languages, testing restrictability and reliability,
and constructing compensators for stable and reliable restriction of system behavior.
As we have illustrated, the concepts arise naturally in operation sequence control in

TRACKING AND RESTRICTABILITY IN DISCRETE EVENT SYSTEMS 1445

flexible manufacturing systems, and we expect that they will also prove to be rel-
evant in a number of other contexts as well. The work in this paper complements
our stability analysis in [16] in that the notions of eventual trackability and eventual
restrictability lead to particular choices for the set E that we use for stability. In
the case of partial observations, our results in this paper can be combined with our
results on stabilization by output feedback in [14] to address problems of tracking
and restrictability in the context of intermittent observations of events. As we have
shown in [13] and [14], problems of stabilization by output feedback have polynomial
complexity if the observer state space is also polynomial. Since our conditions for
restrictability are also based on stabilizability and since we have seen how to place
the problem of controllable languages of Wonham and Ramadge in our framework,
we see that the reason behind the NP-completeness of this problem [20] in the case of
partial observations is the cardinality of the observer state space. Thus, if, in fact, the
observer has polynomial state space (as it does in many cases [13]), then the problem
of controllable languages for the case of partial observations can also be solved in
polynomial time.

Another major problem of computational complexity in DEDS arises in the case
of interacting automata. If, for example, we have m interconnected subsystems each
with n states, then their composition may have nm states. In this case, it would
be extremely worthwhile to develop methods for obtaining aggregate models for each
subsystem before addressing higher-level problems involving their interconnection.
For example, consider again the manufacturing system of Fig. 1.2. Obviously, the
"event" F1, corresponding to side 1 mounting, involves a sequence of commands for
the surface mount workstation Wl (indeed, there may be several such sequences cor-
responding to mounting several different parts). Thus, at a lower level, we see that we
have a restrictability problem for the control of each of the machines in Fig. 1.2, and
this figure represents a higher-level version of each component system, aggregated to
a level appropriate for the consideration of multi-machine coordination. An obvious
question, then, concerns the problem of constructing higher-level models as in Fig. 1.2
from lower-level descriptions. In [11] we use the notions of restrictability and stable
restrictability presented in this paper to develop such an hierarchical aggregation pro-
cedure based on the idea of transforming restricted event sequences at a lower level to
single "task" events at higher levels. Obviously, we can also imagine performing such
an aggregation procedure at a number of scales. For example, suppose that we have a
set of schedules corresponding to different production operating points corresponding
to distinct percentage of mixes of several computer boards. We can then construct
compensators for implementing each, and eventual or stable restrictability will pro-
vide us with the means of changing the set-up from one schedule to another. Thus
we can construct a higher-level model based on the set of all schedules by combining
the respective compensators for each. Each occurrence of a higher-level event in this
model would correspond to completing a cycle of some schedule, i.e., completing a
certain number of each type of board. Then the plant manager could try to meet the
actual demand distribution by switching between appropriate schedules based on this
aggregate, higher-level model capturing operating behavior for all schedules.

REFERENCES

[1] P. E. GAINES AND S. WANG, Classical and logic based regulator design and its complexity for
partially observed automata, in Proc. 28th Conference on Decision and Control, Tampa,
FL, pp. 132-137.

1446 C.M. ZVEREN AND A. S. WILLSKY

[2] H. CHO AND S. I. MARCUS, On the supremal languages of sublanguages that arise in supervisor
synthesis problems with partial observations, Math. Control Signals Systems, 2 (1989), pp.
47-69.

[3] R. CIESLAK, C. DESCLAUX, A. FAWAZ, AND P. VARAIYA, Supervisory control of discrete-
event processes with partial observations, IEEE Trans. Automat. Control, 33 (1988), pp.
249-260.

[4] J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, Reading, MA, 1979.

[5] R. KUMAR, V. (ARG, AND S. I. MARCUS, Language stability of deds, in Proc. of Internat.
Conference on Mathematical Theory of Control, Bombay, India, December 1990.

[6] F. LIN AND W. M. WONHAM, Controllability and observability in the state-feedback control of
discrete-event systems, in Proceedings of 27th CDC, December 1988.

[7] ., Decentralized control and coordination of discrete-event systems, in Proceedings of 27th
CDC, December 1988.

[8] ., On observability of discrete event systems, Inform. Sci., 44 (1988), pp. 173-198.
[9] J. S. OSTROFF AND W. M. WONHAM, A temporal logic approach to real time control, in

Proceedings of 24th CDC, December 1985.
[10] C. M. ()ZVEREN, Analysis and control of discrete event dynamic systems: A state space ap-

proach, Ph.D. thesis, MIT, Cambridge, MA, August 1989; Laboratory for Information and
Decision Systems Report LIDS-TH-1907, MIT.

[11] C. M. (ZVEREN AND A. S. WILLSKY, Aggregation and multi-level control in discrete event
dynamic systems, Automatica, May 1992.

[12] Invertibility of discrete event dynamic systems, Math. Control Signals Systems, 1992.
[13] Observability of discrete event dynamic systems, IEEE Trans. Automat. Control, 35

(0), ,. 77-S0.
[14] Output stabilizability of discrete event dynamic systems, IEEE Trans. Automat. Con-

trol, 35 (1990), pp. 797-806.
[15] Applications of a regulator theory for discrete event dynamic systems, in Proceedings

of IFAC Distributed Intelligence Systems Symposium, Arlington, VA, August 1991, pp.
925-935.

[16] C. M. (ZVEREN, A. S. WILLSKY, AND P. J. ANTSAKLIS, Stability and stabilizability of discrete
event dynamic systems, J. Assoc. Comput. Mach., 38 (1991), pp. 730-752.

[17] P. J. RAMADGE, Some tractable supervisory control problems for discrete event systems mod-
eled by buchi automata, IEEE Trans. Automat. Control, 36 (1989), pp. 10-19.

[18] P. J. RAMADGE AND W. M. WONHAM, Modular feedback logic for discreteevent systems,
SIAM J. Control Optim., 25 (1987), pp. 1202-1218.

[19] , Supervisory control of a class of discrete event processes, SIAM J. Control Optim., 25
(1987), pp. 206-230.

[20] J. N. TSITSIKLS, On the control of discrete event dynamical systems, Math. C. S. S., 1989.
[21] A. F. VAZ AND W. M. WONHAM, On supervisor reduction in discrete event systems, Internat.

J. Control, 44 (1986), pp. 475-491.
[22] W. M. WONHAM AND P. J. RAMADGE, On the supremal controllable sublanguage of a given

language, SIAM J. Control Optim., 25 (1987), pp. 637-659.

