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Sequential filtering for multi-frame visual reconstruction* 
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Al~a'aet. We describe an extension of the single-frame visual field reconstruction problem in which we consider how to 
efficiently and optimally fuse multiple frames of measurements obtained from images arriving sequentially over time. Specifically 
we extend the notion of spatial coherence constraints, used to regularize single-frame problems, to the time axis yielding 
temporal coherence constraints. An information form variant of the Kalman filter is presented which yields the optimal 
maximum likelihood estimate of the field at each time instant and is tailored to the visual field reconstruction problem. 
Propagation and even storage of the optimal information matrices for visual problems is prohibitive, however, since their size 
is on the order of 104 x 104 to 106 x 106. To cope with this dimensionality problem a practical yet near-optimal filter is presented. 
The key to this solution is the observation that the information matrix, i.e. the inverse of the covariance matrix, of a vector 
of samples of a spatially distributed process may be precisely interpreted as specifying a Markov random field model for the 
estimation error process. This insight leads directly to the idea of obtaining low-order approximate models for the estimation 
error in a recursive filter through the recursive approximation of the information matrix by an appropriate sparse, spatially 
localized matrix. Numerical experiments are presented to demonstrate the efficacy of the proposed filter and approximations. 

Z u m u m m e n g ~ .  Wir beschreiben eine Erweiterung des Problems der Einzelrahmen-Rekonstruktion des Gesichtsfeldes, bei 
weicber wir die effiziente und optimale Verschmelzung mehrerer Mel3rahmen betrachten, die wir aus zeitlich sequentiell ange- 
kommenen Bildern erhalten haben. Insbesondere erweitern wir den Begriff der Randbedingungen an die r~iumliche Koh/irenz, 
wie man sic zur Regularisierung yon Einzelrahmen-Problemen benutzt, auf die Zeitachse, womit wir Randbedingungen an die 
zeitliche Koh~irenz erhalten. Eine Informationsform-Variante des Kalmanfilters wird vorgestellt, welcbe die optimale Maxi- 
mum-Likelihood-Seh/itzung des Feldes in jedem Augenblick liefert und auf das Gesichtsfeld-Rekonstruktionsproblem zuge- 
schnitten ist. Die Weitergabe oder gar Speicherung der optimalen Informationsmatrizen ist beit visuellen Problemen jedoch 
nicht durchfiihrbar, da ihre GrOge sich im Bereich von 104 x 104 bis zu 106 x 106 bewegt. Zur Bew~iltigung dieses Dimensions- 
problems wird ein praktikables und dennoch nahezu optimales Filter vorgestellt. Der Schliissel zu dieser Lfsung besteht in 
der Beobachtung, dab die Informationsmatrix, d.h. die Inverse der Kovarianzmatrix, zu einem Vektor von Abtastwerten eines 
r/iumlich verteiiten Prozesses exakt interpretiert werden kann als Spezifikation eines Markov-Zufallsfeld-Modells fiir den 
Sch~tzfehlerprozefl. Diese Erkenntnis fiihrt unmittelbar zu der Idee, dab man N~iherungsmodelle niedrigerer Ordnung f'tir den 
Sch,~tzfehler in einem rekursiven Filter erhalten kann durch die rekursive Approximation der Informationsmatrix durch eine 
passende sp/irlich besetzte, r~iumlich lokalisierte Matrix. Numerische Versuche werden vorgestellt, die die Wirksamkeit des 
vorgesehlagenen Filters und der Approximationen zeigen. 

R ~ 6 .  Nous drcrivons une extension du probl~me de reconstrucion de champ visuei dans une trame dans lequel nous 
consid~rons comment fusionner efficacement et de fa~on optimale plusieurs trames de mesures obtenues fi partir d'images 
arrivant srquentiellement dans le temps plus sp&:ialement, nous ~tendons la notion de contrainte de coherence spatiale, utilis~e 
pour r~gulariser les probl&nes uni-trame, fi l'axe des temps produisant les contraintes de coherence temporelle. Une expression 
de I'information, variante du filtre de Kalman, est prrsentre avec des productions des maximaux de vraisemblance optimale 
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de I'estim6e du champ ~ chaque instant et est adapt6 au probl6me de reconstruction du champ visuel. La propagation ainsi 
que le stockage des matrices d'information optimale pour le probl6me visuel est toutefois exorbitante, puisque leur taille est 
de l'ordre de 104 x 104 ~ 106 x 10 6. Pour traiter ce probl6me de dimension, un filtre est r6alisable mais presque optimal. La c16 
pour cette solution est l'observation que la matrice d'information, c.a.d/t l'inverse de la matrice de covariance, d'un vecteur 
d'6chantillons d'un processus distribu6 spatialement peut &re interpr&6 pr~cisement comme sp6cifiant un mod61e de champs 
al6atoire de Markov pour l'estimation du processus d'erreur. Cette vision m6ne directement ~ I'id6e d'obtenir des mod61es 
d'approximation de qualit6 inf6rieure pour l'erreur d'estimation dans un filtre r6cursif ~ l'aide de la nouvelle approximation 
de la matrice d'information au moyen d'une matrice creuse appropri6e, localis6e spatiallement. Des experiences num6riques 
sont pr6sent6es afin de d6montrer l'efficacit6 du filtre et des approximations propos6es. 

Keywords. Visual field reconstruction problem; Markov random field model. 

1. Introduction 

Reconstructing low-level visual fields from mea- 

surements made on a single image or a pair of  

images typically leads to under-constrained inverse 

problems [22]. Examples of  these visual recon- 

struction problems can be found in the computa-  

tion of dense fields of  depth [13, 14], shape [25, 26] 

and motion [24, 21]. The under-constrained nature 

of  these problems arises because we are trying to 
recover features (such as depth, shape and motion) 

of  objects in a 3-D domain from the projected 

information available in 2-D images [22]. As a 

result, many low-level visual reconstruction prob- 

lems are formulated as least squares problems with 

two types of  constraint terms - constraints imposed 

by a static set of  measurements obtained from the 

images and smoothness or spatial coherence con- 
straints which reflect a prior belief of  the field's 

behavior. The inclusion of  spatial coherence con- 

straints is by far the most common approach to 

regularizing these problems and ensuring the exis- 

tence, uniqueness and stability of  the resulting solu- 
tions [2]. Such constraints take the form of  cost 

terms penalizing the magnitudes of  the spatial gra- 

dients of  the unknown field. Physically, these cost 
terms correspond to the assumption that the 

sought after quantities have properties such as ri- 
gidity and smoothness [21]. 

Reconstructing visual fields by dynamically pro- 

cessing sequences of  measurements has an obvious 

advantage over static reconstruction based on a 
single data set. For one thing, the accumulation of  

a larger quantity of  d a t a  leads to a more reliable 
Signal Processing 

estimate due to a reduction in measurement noise. 
Another advantage, not as obvious, is that in some 

cases a single frame of  data may not provide 

sufficient information to resolve static ambiguities, 

and hence for reasonable estimates to be obtained, 

temporal  information must be utilized as well. For  

example, in optical flow estimation we wish to esti- 

mate a two-dimensional motion vector at each 

pixel location using one-dimensional measure- 

ments of  intensity changes at each pixel. The use 
of  spatial coherence constraints makes it possible 

to resolve the ambiguity in the problem as long as 

the intensity field has substantial spatial diversity 

in the direction of  its spatial gradient [23]. How- 

ever, if the measured spatial gradients have ident- 

ical (or nearly identical) directions over the entire 

image frame, any motion perpendicular to this spa- 

tial gradient is unresolvable (or highly uncertain) 

from a single data frame [24, 21]. On the other 

hand, in many cases the desired diversity of  gradi- 

ent directions is available over time, allowing the 
resolution of  this ambiguity by incorporating more 

frames of measurements [6]. 

In this paper, we describe an extension of  the 

classical single-frame reconstruction problem in 

which we consider fusing multiple frames of  mea- 
surements obtained from images arriving sequen- 
tially over time to estimate an arbitrary 
dimensional, time varying visual field. Specifically 

we examine the straightforward extension of  the 

classical spatial coherence constraints to the time 
axis yielding temporal coherence constraints [15]. 
Such constraints are represented by the addition 
of  cost terms involving temporal derivatives. We 
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formulate these multi-frame visual field reconstruc- 
tion problems in an estimation-theoretic frame- 
work. The single-flame problem can be formulated 
as an estimation problem [34, 37], so that the com- 
puted visual field can be considered as a jointly 
Gaussian random field. By capturing the time evo- 
lution of the field probabilistically this formulation 
allows us to treat a sequence of unknown fields 
f(t) indexed by time t as a space-time stochastic 
process. Conceptually, we can then utilize well- 
developed optimal sequential estimation algo- 
rithms, such as the Kalman filter and its variants. 

Unfortunately, for typical image-based applica- 
tions the dimension of the associated state will be 
on the order of the number, N, of pixels in the 
image, typically 104 to l06 elements. The associated 
covariance matrices for an optimal filter are thus 
on the order of 104x 104 to 106× 106! The storage 
and manipulation of such large matrices, as 
required by the optimal filters, is clearly prohibi- 
tive, necessitating the use of a sub-optimal 
approach. In the past [16-19, 31, 37] ad hoc meth- 
ods have been used to obtain computationally fea- 
sible algorithms. In contrast, in this paper we 
examine in detail the structure of the optimal filter 
and pinpoint both the source of its computational 
complexity and the route to the systematic design 
of nearly optimal approximations. In particular, 
the key to our approach is the observation that the 
information matrix, i.e. the inverse of the covari- 
ance, of the estimation error in the Kalman filter 
estimate, has a natural interpretation as a Markov 
random field model for the estimation error. This 
suggests the idea of seeking sparse, spatially-local, 
low-order approximations to such models which in 
essence make each stage of the recursive estimation 
algorithm no more complex than the solution to 
static visual field reconstruction algorithms. Such 
approximations will be shown to yield near-opti- 
mal results, reflecting the fact that visual fields and 
the associated spatial coherence constraints are 
dominated by inherently local interactions. Our 
model-based approach provides a rational basis for 
computationally feasible, nearly optimal filter 
design for visual field reconstruction which 
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naturally incorporates both temporal and spatial 
coherence constraints. The value of  our approxi- 
mation is demonstrated through numerical 
experiments. 

2. Coherence constraints and maximum 
likelihood estimation 

2.1. Coherence constraints 

Spatial coherence: the single-frame problem 
We consider the problem of reconstructing a vis- 

ual field f(s) over a K-dimensional spatial domain 
( s e ~ c ~  K) based on knowledge of g(s) and 

h(s) obtained from a sequential set of images. The 
standard way in which such single-frame visual 
field reconstruction problems are formulated is 
given by [24] 

minf~(v(s)llg(s)-h(s)f(s)ll2s(~) 

+ ~ P i (s) • • f(s) ds, 
I 

(1) 

where v(s)#O and p/(s) are strictly positive 
weighting parameters. We denote the components 
of the spatial index vector s by sk, k = 1, 2 . . . . .  K. 
The dimension K of the spatial domain in most 
visual reconstruction problems is at most 3. The 
orders ik of the partial derivatives are non-negative 
integers, and 80/0 °=1.  The index i, where i=  / Sk 

1, 2 . . . . .  is used to distinguish the K-tuples 
(il, i2 . . . . .  ix). The unknown f(s) as well as the 
measurement g(s) can be a scalar function of s 
in such cases as reconstruction of the depth field 
[13, 14]. In reconstruction of a vector visual field, 

f(s) and g(s) become vector functions of s while 
h(s) is a matrix function. An example of such a 
problem is found in the case of optical flow recon- 
struction [24], where f(s) ,  g(s) and h(s) have 
respective dimensions of 2 x 1, 1 × 1 and 1 x 2. 

The first integrand term in (1) constrains the 
unknown fieldf(s) based on the values ofg(s) and 
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h(s). The spatial coherence constraint is expressed 
in (1) as the sum of quadratic terms involving spa- 
tial derivatives of the unknown fieldf(s). First and 
second order derivatives are most commonly used. 
While spatial coherence constraints make the 
reconstruction problems mathematically well- 
posed by supplementing the measurement con- 
straints [2], they can also be considered to be our 
prior knowledge about the unknown field before 
measurements are made [4, 37]. Such commonly 
used prior models include first-order differential 
constraints corresponding to a membrane model 
[23, 24, 21], second order differential constraints 
corresponding to a thin-plate model [13, 14, 18, 19] 
and hybrid constraints combining both first and 
second order derivatives to model the structure of 
object boundary contours [28]. 

Extension to temporal coherence 
We now consider the straightforward extension 

of spatial coherence constraints over the time axis 
yielding temporal coherence constraints. Such con- 
straints consist of cost terms involving temporal 
derivatives. Specifically, consider the following 
temporal extension of the general single-frame vi- 
sual reconstruction problem (1): 

min v(t)llg(s, t ) - h ( s ,  t)f(s, 01[ 2 
f(s,t) 

+ ~ lti(s, t) oil ~i2 i~ 2 
i ~s~' Osi22" "" f ( s ,  t) 

+ ~ Pij (s, t) oi, ~i2 six ~ j 2 ) 
i,j II Os~' Os~2 ~ " " " Os~ -~-FJ f ( s ,  t) ds dt , 

(2) 

where f ( s ,  t), g(s, t), h(s, t), v(s, t), gi(s, t) and 
pij(s, t) are now space-time functions. Note that 
the full solution to the optimization problem (2) 
leads to a reconstructed space-time field f ( s ,  t), 
s e ~ ,  O<~t<~T, in which the reconstruction at any 
time takes advantage of all available constraints 
over the entire time interval. In the parlance of 
estimation theory, this is the optimal, noncausal, 
smoothed estimate. In this paper we focus on the 
Signal Processing 

optimal causal estimate, i.e. the value of the solu- 
tion to (2) at the current time t= T. Thus, as T 
increases we in fact are solving a different optimiza- 
tion problem for each T. As we will see, by adopt- 
ing an estimation-theoretic perspective we can use 
Kalman-filter-like algorithms to perform such a 
calculation recursively. Furthermore, if the non- 
causal smoothed estimates are desired, one can use 
standard two-filter solutions, obtained by combin- 
ing a causally (Kalman) filtered estimate with an 
anticausally filtered estimate. Thus the algorithms 
described herein also form the basis for the solution 
of the full optimization problem (2). 

2.2. A maximum likelihood formulation 

We now describe an estimation theoretic formu- 
lation of the general low-level visual field recon- 
struction problem (2). We interpret the resulting 
least-squares formulation as an estimation prob- 
lem, facilitating the development of efficient multi- 
frame reconstruction algorithms as presented in the 
next section. Bayesian estimation perspectives on 
visual reconstruction problems have been intro- 
duced before [10, 34, 37, 18]. Casting these prob- 
lems into a strictly Bayesian framework is 
somewhat awkward, however, because in many 
cases the variables to be estimated do not have 
well-defined probability densities. The maximum 
likelihood (ML) estimation framework described 
here provides us with a more natural way to express 
the reconstruction problem in an estimation-theo- 
retic context by viewing spatial coherence as a 
noisy observation and temporal coherence as a 
dynamic equation driven by white noise. This map- 
ping leads to a general dynamic representation for 
stochastic processes modeling various types of 
potential temporal behavior of visual fields. Such 
an approach provides a basis for rational integra- 
tion of multiple frames of data in the estimation 
process, with its associated advantages of noise and 
ambiguity reduction. Moreover, the ML frame- 
work lends itself nicely to the use of descriptor 
dynamic systems [32, 33] for multi-frame recon- 
struction, which permit a wider range of temporal 
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dynamic representations for the fields than are pos- 
sible with the traditional Gauss-Markovian state- 
space systems and which deal in a convenient way 
with random and unknown variables, whether they 
do or:do not have well-defined prior densities. 

It i~ well documented (e.g. [30]) that solution of 
ML estimation problems involves quadratic mini- 
mization. Let us write x ~ (m, P) to denote that x 
is a Gaussian random vector with mean m and 
covariance P. We call the vector-matrix pair (m, P) 
the mean-covariance pair associated with x. With 
this notation, the minimizingf(s, T) for the varia- 
tional problem (2) may be found as the ML esti- 
mate for f ( s ,  T) based on the set of dynamic 
equations: 

~il ~i2 ~iK ~ J 

~S'l~' Os~ 2" " " ~s~ ~t j f ( s '  t )=q°(s '  t), 

qo(s, t) -,~ (0, p/~l (s, t)), (3) 

coupled with the set of observation equations: 

g(s, t )= h(s, t)f(s, t )+ ro(s, t), 

ro(s, t )~(O,  v-l(s,  t)), (4) 

~i I ~t~ ~i K 

0 = s i  ' Os?" • • Os~f(s ,  t) ~ri($ , t), 

ri(s, t )~  (0,/~il(s, t)) (5) 

for 0 ~< t ~< T, where the range of the subscripts i 
a n d j  are the same as in the summations (2). Thus 
the qej (s, t) and re (s, t) along with ro(s, t) are zero- 
mean space-time white noise processes. The set of 
equations (3), (4) and (5) formulates (2) as an 
equivalent sequential ML estimation problem. 

Viewing the spatial coherence constraints as a 
set of observations and the temporal coherence 
constraints as a set of dynamic equations for the 
field is useful in gaining insights into how pieces of 
information about the unknown f ( s ,  t) are each 
represented. For example, (4) represents the contri- 
bution from the measurements in the images, and 
(5) represents the prior spatial knowledge of the 
field as provided by the spatial coherence con- 
straints. In particular, the prior model implied by 
the spatial coherence constraints is expressed in 

the ML estimation framework as a set of observa- 
tions (5), each indicating that the differential 
(~i l /~s~l)(~i2/~S~)" "" ( ~ i X / ~ s i ~ ) f ( s ,  t) of the u n -  

k n o w n  is observed to be zero, the ideal situation, 
with an uncertainty of variance/z i~ (s, t). Similarly, 
the prior temporal model implied by the temporal 
coherence constraints is now expressed as the 
explicit set of dynamic equations (3) driven by 
white noise processes. 

In practice, our measurements are only available 
over a discrete spatial and temporal domain. 
Rather than using the continuous formulation re- 
presented by (3), (4) and (5), we focus from this 
point forward on a discrete, vectorized formulation 
representing a discrete counterpart to these equa- 
tions, using a regular 2-D sampling grid. First we 
treat discretization of the observation equations (4) 
and (5), then the dynamic equations (3). For clar- 
ity of presentation we will also assume for the rest 
of the paper that the field is defined over a 2-D 
space (i.e. K =  2) and that the field is scalar. The 
filtering techniques to be presented in the sequel 
can be straightforwardly extended to other cases 
such as vector fields and fields defined over a I-D 
or 3-D space, as detailed in [6]. 

Observations 
Definef(t)  to be a column vector whose compo- 

nents are f (s~,  t), where {sk} denotes the set of 
points in the regular 2-D sample grid, ordered lex- 
icographically. The measurement vector g(t) is 
similarly defined from g(s~, t). We define the 
diagonal matrix H(t) to be one whose diagonal is 
formed from the elements ofh(s~, t), in a matching 
lexicographic order, and the diagonal matrix N(t) 
to be one whose diagonal components are given by 
v(sk, t), similarly ordered. With these definitions 
we may represent the sampled version of the obser- 
vations (4) in the form 

g(t) = H( t ) f ( t )  + to(t), to(t) ~ (0, N -I(t)). 
(6) 

Next, let us examine the discrete counterpart of 
(5). Specifically, we define the matrix operator Si 
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to be a finite difference approximation to the cross 
differentiation operation so that 

Then, the first-order difference operators are given 
by 

r°i  ] 
s i r ( t )  ,~ Las,l  f ( s ,  t) , 

so[ 
where, as before, the index i is used to distinguish 
the K-tuples (il, iz), for K= 2. With this definition, 
(5) may be written in a discrete setting as 

- I  I I1 8 ( 1 , 0 )  = • . .  " . .  , 

- I  

0 = sir( t)+ ri(t), r,(t),,, (0, M;'( t)) ,  i= 1, 2 , . . . ,  

(7) 

where Mi (t) is a diagonal matrix whose diagonal is 
formed from the elements of/~,-(sk, t) in a matching 
lexicographic order. Equations (6) and (7) may be 
combined into the composite observation equation 

y ( t ) = C ( t ) f ( t ) + r ( t ) ,  r(t),,~(O,R(t)), (8) 

where the component matrices are defined as 
follows: 

while the second order difference operators are 
given by 

1 -21 I I]  
8 ( 2 ,  0 ) :  . . .  " - .  " . .  , 

I - 21  

[ _A O) AO) J 
s ( l , 1 )  : • . . " . . , 

- - 3  (1) 3 (1) 

y ( t ) =  , c,,, Lf  j 

IN 
-l(t) ] 

R(t)-[ MTI M~_ 1 .... 

where the identity matrices/have dimension nl x nl 
and A's are matrices of matching dimension such 
that 

-1 1 1 A (1) = •.. ".. , 

-1 1 
(9) 

1 - 2  1 1 A(2)~ . . .  ".. . . .  . 

1 -2 1 

Structure o f  Si 
The matrices Si have a special sparse and banded 

structure reflecting the fact that they represent fin- 
ite difference operators. In particular, let S (~''i2) 
denote the matrix difference operators for a 
discrete, rectangular domain of size nl × n2 which 
correspond to the differentials (~'/~s~')(si:/~s~). 

Signal Processing 

Dynamic equations 
Now we treat discretization of the dynamic 

equations (3). For clarity we only examine the case 
of first-order temporal derivative constraints, cor- 
responding to j =  1 in (3), though we allow cross 
space-time constraints. The more general case 
involving higher-order temporal derivative con- 
straints is treated in [6]. 
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We may approximate the first-order temporal 
derivative in (3) by a first difference and use the 
discrete approximations S; to the spatial derivatives 
of the previous section to obtain the following gen- 
eral first-order temporal dynamic model for the 
field f( t ) :  

Bf( t )  = B A ( t ) f ( t -  1) +q(t), q(t) ~ (0, Q(t)), 
(10) 

where, to correspond to (3), we need 
B = [ S T . ' '  Sv~] ~" (capturing the cross space-time 
derivative constraints), A(t )=I  and Q(t) to be a 
diagonal matrix whose diagonal entries are the 
appropriately ordered p~l (s,, t). 

Of course, given models of the form (10), we 
may make other choices for the system matrices B, 
A(t) and Q(t) than those strictly corresponding to 
the continuous formulation (3). For example, the 
matrix A(t) allows the possibility of time-varying 
system dynamics. In some reconstruction problems 
the system matrix A(t) may play the important 
role of registering the moving visual field onto the 
image frame - a fundamental issue in multi-frame 
visual reconstruction. In such cases, the matrix 
A(t) provides the system model with the informa- 
tion of how the estimated field from time t - 1  
should be warped in order to fit into the image 
frame at time t, essentially performing local posi- 
tion adjustments of the components of the field via 
shifting and averaging [36, 18]. The matrix usually 
has a sparse structure in which the non-zero ele- 
ments are concentrated around the main diagonal. 

The model given in (10) is in the standard 
descriptor form [32, 33]. This model becomes a 
standard Gauss-Markov model if no spatial coher- 
ence constraints are applied to the temporal varia- 
tion so that B = L  Thus the descriptor form 
naturally captures cross space-time differential 
constraints. 

Overall model 
Combining the observation model (8) with the 

dynamic model given in (10) yields the following 
discrete system model we will use for estimation 

purposes: 

Bf( t )=BA(t ) f ( t  - 1)+q(t), q(t),,~(O, Q(t)), 
(11) 

y(t) =C(t ) f ( t )+r( t ) ,  r(t)~(O, R(t)), (12) 

where the Gaussian noise processes q(t) and r(t) 
are uncorrelated over time. Note that the descrip- 
tor dynamic model (11) can be reformulated as a 
standard Gauss-Markov model if the matrix B has 
full column rank. In general, however, the resulting 
system model will not retain the nice sparse struc- 
ture usually present in (10), making the present 
form preferred. 

3. Sequential NIL estimation 

In this section we examine sequential ML estima- 
tion of the field f( t )  given the model specified by 
(11) and (12). In solving such an ML estimation 
problem, one is ultimately interested in obtaining 
the posterior mean covariance pair. A well-known 
solution to many recursive estimation problems of 
this type is the Kalman filter which provides a 
recursive procedure for propagating the desired 
mean-covariance pair. In its standard form, the 
Kalman filter represents the solution to a Bayesian 
estimation problem in which prior information, 
corresponding to probabilistic specification of ini- 
tial conditions, and noisy dynamics are combined 
with real-time measurements to obtain conditional 
statistics. For such a method to make strict sense, 
the prior information must be sufficient to imply a 
well-defined prior distribution for the variables to 
be estimated. For the problems of interest here, 
this is not the case in general and, in fact, is essen- 
tially never the case for regularized problems aris- 
ing in computer vision. In particular, note that the 
matrices Si, corresponding to differential opera- 
tors, are certainly not invertible, and hence B in 
(11) is typically singular (and often non-square). 
Thus (11) does not provide a prior distribution for 

f(t).  
For this reason, as well as several others, we 

adopt an alternate, implicit representation for the 
Vol. 28, No. 3, September 1992 
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mean-covariance pair, called the information pair 
in which we propagate the information matrix, i.e. 
the inverse of the covariance matrix. As we will see, 
the information pair provides several advantages 
for the recursive estimation problems of interest 
here. The first is that this pair is always well-defined 
for our problems. In particular, what characterizes 
all regularization problems arising in computer 
vision is that, while neither the measurements nor 
smoothness constraints have unique minimizers 
individually, their joint minimization, as in (2), 
does have such a unique solution. In the context 
of our estimation problem, typically neither the 
dynamics (11) nor the measurements (12) separ- 
ately provide full probabilistic information about 
f(t), but together they do. Since the information 
filter form directly propagates and fuses informa- 
tion, whether in the form of noisy dynamic con- 
straints (11 ) or noisy measurements (12), it is well- 
suited to these problems. 

There are several other reasons that the infor- 
mation pair is of considerable interest. First, the 
fusing of statistical data contained in independent 
observations corresponds to a simple sum of the 
corresponding information matrices yielding com- 
putationally simple algorithms. Secondly, for prob- 
lems of interest to us, in which the measurements 
(12) are local, the resulting information matrices, 
while not being strictly banded, are almost so, and 
thus can be well-approximated by sparse banded 
matrices. Such approximations provide us with a 
convenient and firm mathematical foundation on 
which we can design computational algorithms for 
visual reconstruction while reducing both the com- 
putational and storage requirements of any imple- 
mentation. In particular, since in most vision 
problems the observation matrix C(t) is in fact 
data-dependent, the error covariance matrix and 
gain, or their information pair equivalents, must 
not only be stored but also calculated on-line, mak- 
ing the issue of computational efficiency even more 
severe. Indeed as we will see, the measurement up- 
date step, i.e. when we incorporate the next measure- 
ment (12), involves adding a sparse, diagonally- 
banded matrix to the previous information matrix, 
Signal Processing 

enhancing diagonal dominance and in fact preserv- 
ing banded structure if such structure existed 
before the update. The prediction step, i.e. when 
we use (11) to predict ahead one time step, does 
not strictly preserve this structure, and it is this 
point that dramatically increases the computa- 
tional complexity of the fully optimal algorithm 
and which suggests the approximations developed 
in this paper. In particular, as we will see, the infor- 
mation matrix has the interpretation of specifying 
a Markov random field (MRF) model for the cor- 
responding estimation error, and our approxima- 
tion has a natural interpretation as specifying a 
reduced-order local MRF model for this error. 

3.1. Information form of ML estimate 

To this end, consider the general ML estimation 
problem for the unknown fbased on the observa- 
tion equation y =  Cf+r, r~(O, R). We call the 
quantities z-CTR-ly and L-CTR-1C the infor- 
mation pair associated with the unknownf  We use 
double angular brackets as in f ~  ((z, L)) to denote 
information pairs in order to distinguish them 
notationally from mean-covariance pairs. The 
matrix L is just the information matrix or observa- 
tion grammian of the problem [27]. 

In the visual reconstruction problems considered 
here, L is always invertible when the estimates are 
based on both the measurement and coherence 
constraints as in (8). The information matrix L 
tends not be invertible, however, when one 
attempts to solve the problems based only on the 
measurements as in (6) (corresponding to an ill- 
posed formulation) or to obtain Bayesian priors 
based only on the coherence constraints as in (7). 

In the case that L is invertible, the estimate.land 
error covariance P for the ML estimation problem 
can be obtained from the corresponding informa- 
tion pair as 

J~= L-lz ,  (13) 

P=L -1. (14) 
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Thus, the information pair ((z, L)) contains the 
same statistical data as those in the mean-covari- 
ance pair (~  P). Specifically, the information pair 
expresses the solution of the ML estimation prob- 
lem implicitly in the sense that the estimate is given 
as the solution of the inverse problem 

L =z. (15) 
An important point to note is that in image pro- 
cessing problems the vector f is of extremely high 
dimension so that calculatingfby direct computa- 
tion of L -~ as in (13) is prohibitive. However, if L 
is a sparse, banded matrix, as it is, for example, in 
single-frame computer vision problems, then (15) 
may be solved more efficiently using, for example, 
Gauss-Seidel iterations [24] or multigrid methods 
[38, 39]. 

3.2. An information based filter 

In this section we present an optimal informa- 
tion filtering algorithm for the system (11), (12) 
which is a variant of the information form of the 
Kalman filter [3]. A detailed derivation may be 
found in [6]. Let U(t)=BTQ-~(t)B, then the opti- 
mal ML estimate and its corresponding informa- 
tion pair are obtained from the recursive 
algorithm: 

Prediction: 

[,( t) = U( t) - U( t)A( t)( AT( t) U( t),4( t) 

+ L ( t -  1))-IAT(t)U(t), (16) 

f ( t )  = A ( t ) f ( t -  1), (17) 

g(t) = L(t) f ( t );  (18) 

Update: 

l,(t) = [,(t) + cT(t)R-I(t)C(t), (19) 

~(t) = g( t) + cV(t)R-l(t)y(t), (20) 

I,(t)f(t) = ~(t). (21) 

information Kalman filtering equations (e.g., 
[1, 30]) can also be applied to the estimation prob- 
lem. The filtering algorithm (16)-(21) is, however, 
more suitable for visual reconstruction mainly due 
to the fact that, unlike traditional information Kal- 
man filters, the inverse of A(t) is not needed. As 
previously mentioned, in visual reconstruction the 
system matrix A(t) often performs a local averag- 
ing and thus is sparse. Taking its inverse generally 
loses its sparseness and thus the associated compu- 
tational efficiency of the filter. It is also conceivable 
that A(t) may not even be invertible in some 
formulations. 

Let us close this section with several observa- 
tions that serve to motivate and interpret the devel- 
opment in the next section. First, note that the 
matrix C(t) constructed in Section 2 for regularized 
computer vision problems is composed of sparse 
and banded blocks and R(t) is diagonal so that 
cT(t)R-~(t)C(t) itself is sparse and banded. Thus 
if L(t) is also sparse and similarly banded, then so 
is ]_,(t), making inversion of (21) computationally 
feasible. However, while information matrices, i.e. 
inverses of covariances, add in the update step, it 
is covariances that add in the prediction step. ~ 
When this addition is represented in terms of infor- 
mation matrices, as in (16), we find that the banded 
structure of L is not preserved by the prediction 
step, since the inverse of the matrix 
AT(t)U(t)A(t) + I , ( t -  1) will not be banded in gen- 
eral even if L ( t -  I) is banded. 

While the exact implementation of (16)-(21) 
involves full matrices, there are strong motivations 
for believing that nearly optimal performance can 
be achieved with banded approximations. Note 
first that the banded structure of C(t)R-l(t)C(t) is 
such that if f,(t) is diagonally dominant or, more 
generally, has its significantly nonzero values in a 
sparse set of bands, then the summation in (19) 
will enhance this property in L(t). This property in 
turn implies, through (16) evaluated at t + 1, that 

When the descriptor dynamic equation (11) can 
be expressed in a Gauss-Markov form, standard 

This is just a generalization of the fact that the covariance 
of the sum of independent random vectors is the sum of their 
covariances. 
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[.(t + 1) will also inherit this property. This obser- 
vation suggests the idea of developing recursive 
procedures involving banded approximations to 
the information matrices, and this is the approach 
pursued in the next section. 

A useful way in which to interpret such an 
approximation is given by a closer examination of 
(19)-(21), in which we are fusing previous informa- 
tion, as captured by ((~,/7)), with the new datay(t). 
This new data vector is used in essence to estimate 
(and thus reduce) the error in the estimate f ( t )  
prior to update. In particular, let this error be given 
by f = f - f a n d  define 

p(t) =y(t) - C(t)f( t)  = C(t) f ( t )  + r(t). (22) 

I f ~ t )  denotes the best estimate o f f ( t )  based on 
jT(t) and its prior information pair ~(0, [,(t))), then 
j?(t) in (21) exactly equals f ( t ) + f ( t ) .  Thus, the 
update step (19)-(21) is nothing more than a static 
estimation problem for ]'(t). Furthermore, the 
information pair ((0,/~(t))) for f ( t )  can very natu- 
rally be thought of as a model forf(t)  of the follow- 
ing form: 

L(t)f( t)  = if(t), (23) 

where ~(t) is zero mean and has covariance [.(t) 
(so that the covariance of f ( t )  is £-~(t)). Further- 
more, the model (23) corresponds to an MRF 
model forf(t)  with a neighborhood structure deter- 
mined by the locations of the nonzero elements of 
/7(t). For example, in the case of 1-D MRFs, a 
tridiagonal [.(t) corresponds exactly to a 1-D near- 
est neighbor MRF [29, 12,41], and analogous 
banded structures, described in the next section, 
correspond to nearest-neighbor and other more 
fully-connected MRF models in 2-D. From this 
perspective we see that seeking banded approxima- 
tions to information matrices corresponds in 
essence to reduced-order MRF modeling of the 
error in our spatial estimates at each point in time. 

Interpreting the information matrix L as an 
MRF model for the estimation errorfcan be quite 
useful, as it connects our ML estimation formula- 
tions directly with other important formulations 
Signal Processing 
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in visual field reconstruction, such as detection of 
discontinuities [10,20], and provides a rational 
basis for the design of sub-optimal filters, as dis- 
cussed in the following section. 

4. A sub-optimal information filter 

For typical image-based applications the dimen- 
sion of the state in the corresponding model (11) 
will be on the order of the number of pixels N in 
the image data, typically 104 to 10 6 elements. The 
associated information matrices for the optimal 
filter of Section 3 are O(N2), so that implementa- 
tion of these optimal filters would require the stor- 
age and manipulation of 104× 104 to l 0  6 x  10 6 

matrices! As a result, practical considerations 
require some sort of approximate, sub-optimal 
scheme. 

Indeed, our optimal algorithm has been designed 
from the outset to minimize the number of approxi- 
mations necessary for implementation. In this sec- 
tion we show how to approximate the optimal filter 
in a rational way that retains nearly optimal 
behavior. We want our approximations to achieve 
(1) a reduction in the storage requirements for the 
required information matrices and (2) a reduction 
in the on-line computational burden of the filters 
(particularly as imposed by any matrix inverses or 
factorizations). Where possible we also seek to 
achieve enhanced parallelizability of the algorithm. 
We effectively achieve these goals by approximat- 
ing the multi-frame algorithm so that the resulting 
sub-optimal filters are truly local and thus paral- 
lelizable and require much reduced memory for 
matrix storage. The key to these goals lies in 
exploiting and preserving sparseness of the infor- 
mation matrices L. Alternatively, as we have 
pointed out, these approximations will be seen to 
be equivalent to the identification of a reduced 
order model of fixed and specified structure at each 
prediction step. 

In the information filtering equations (16)-(21), 
all except (16) preserve sparseness of the informa- 
tion matrix. Also, (16) is the only step that requires 
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an explicit matrix inversion to be performed. 
Hence, an efficient implementation of the informa- 
tion filter is possible by approximating the pre- 
diction step (16) in a way which preserves the 
sparse matrix structure of the information matrix. 
Note that while (21) also requires inversion of a 
matrix, if the information matrices are sparse then 
this step is just the solution of a sparse system of 
linear equations, and is hence amenable to both 
iterative schemes, such as Jacobi and Gauss-Seidel 
and more sophisticated approaches, such as multi- 
grid methods [38]. 

4.1. Spatial modeling perspective of the 
approximation 

As discussed in Section 3.2, an information pair 
implies a spatial model (23) for the corresponding 
field estimation error. The information matrix, in 
particular, can be considered to encode interactions 
among the components of the field in such a spatial 
model. Each row of the information matrix L(t) 
forms an inner product with the field estimation 
error vector ~(t) to yield a weighted average of 
certain field elements, modeling the interaction 
among these components of the field. 

We intend to constrain the spatial support of 
such an interaction to be local to a given point as 
specified by a neighbor set, i.e. a connected set of 
spatial locations within a certain distance (in the 
Manhattan metric) from the given point in the 
domain. For example, given a point ® on a 2-D 
lattice, suppose we use x s to denote the locations 
of neighbors corresponding to different sets. Then 
the nearest neighbor or a I-layer set is shown in 
the first diagram, while the 2-layer set is shown in 
the second diagram: 

X 

X X X 

x x ® x x (24b )  

X X X 

X 

It is physically reasonable that the spatial relation- 
ships among the components of the field estimation 
error should be locally defined, as the natural 
forces and energies governing structural character- 
istics of the field usually have local extent. Such a 
constraint of local spatial extent to describe the 
field interactions corresponds precisely to con- 
straining each row of the information matrix to 
having zeros in all but certain locations, resulting 
in an overall sparse, diagonally banded structure 
of the resulting information matrix. 

Approximating L(t) by a sparse matrix La(/) 
having a local structure thus corresponds to char- 
acterizing the field)'(t) by a reduced-order version 
of the spatial model (23). This insight leads to the 
following physical intuition for our approximation 
strategy to the information filter. The prediction 
step of the information filter can be considered as 
a model realization process (for the error in the 
one-step predicted field). Such a model, associated 
with the optimal information filter, tends to yield 
a full information matrix which characterizes the 
spatially discrete field by specifying every conceiv- 
able interaction among its components. Since the 
visual field of a natural scene can normally be well 
specified by spatially local interactions among its 
components, a reduced order model obtained by 
approximating the predicted information matrix by 
one with a given local structure should provide 
good results. 

X 

x ® x (24a) 

X 

4.2. Approximating the information matrix 

Of necessity, the approximated information 
matrix La corresponding to the reduced order 
model must have zeros in certain locations and thus 
must possess a certain, given structure determined 
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solely by the corresponding spatial extent of the 
allowed field interactions. Once a neighbor struc- 
ture, such as those in (24), is chosen we need to find 
a corresponding reduced order information matrix 
with this structure. The most straightforward 
approach, and the one we will take, is to simply 
mask the information matrix by zeroing out all 
elements in prohibited positions. Equivalently we 
may view this process as the element-by-element 
multiplication of the information matrix L by a 
structuring matrix ~/1/i of zeros and ones so that 
L, = Y¢//~ O L, where Q denotes element-by-element 
multiplication and l is the number of layers in the 
corresponding neighborhood structure. This mask- 
ing process corresponds to minimizing the Froben- 
ius norm of the approximation error [IL-LalIv 
over all matrices with the given structure. We term 
such matrices ~¢/~-structured. 

We could also imagine performing this modeling 
process through other, more information-theoretic 
criteria. Recall that an information pair implicitly 
defines a Gaussian density function, so that we 
could choose La to be the matrix that minimizes the 
distance between the Gaussian densities associated 
with La and L. As our notion of the distance 
between densities we could use such well known 
measures as the Bhattacharyya distance or the 
divergence [35]. Although these approximation cri- 
teria are attractive in the sense that they have an 
information-theoretic foundation, there is no obvi- 
ous way to compute the structured L, easily and 
efficiently based on them. We thus use the simple 
truncated approach. Note, however, that we may 
show that the divergence satisifes the following 
relationships: 

Divergence(L, L,) 

= 1 I[LT T/Z(L_L,)L_,/2I]2 
2 

7 (25) 
\T 

where 2i( ' )  denote the eigenvalues of the argu- 
ment. Thus, when the information matrix and its 
approximation are not close to singularity, small 
values for the Frobenius norm of the matrix 
approximation error should imply small values of 
the corresponding divergence. This condition is 
related to the observability of the field [5], with 
greater observability being associated with large 
eigenvalues of the associated information matrices, 
roughly speaking. 

The optimal information filter was given in (16)- 
(21). A masked information filter can be obtained 
by replacing (16) with 

/7.(t) = ~¢/iQ [U(t)-  U(t)A(t)(AV(t)U(t)A(t) 

+ I . ( t -  I))-'AT(t)U(t)], (26) 

where O denotes element-by-element multiplica- 
tion and ~ is a masking matrix corresponding to 
the number of layers l in a neighborhood set. 

Note that the spatial coherence constraints (7) 
themselves have a spatial extent associated with 
them, as reflected in the banded structure of the 
matrices St. If l in (26) is chosen large enough so 
that the neighborhood set is larger than this spatial 
coherence extent, then the rest of the filtering algo- 
rithm preserves the structure of the information 
matrix. 

4.3. Efficiently computing the approximation 

The approximation step (26) greatly improves 
the storage situation, as the number of elements in 
the approximated information matrix is now only 
O(N). Further, the inversion operation in the up- 
date step (21) can now be implemented efficiently 
by the afore-mentioned iterative methods (e.g. 
multigrid methods [38]) due to the sparse structure 
of the associated matrices. The truncation step (26) 
by itself, however, does not yet improve on the 
computational complexity of the optimal informa- 
tion filter because of the inversion of the matrix 

K(t) = AX(t)U(t)A(t) + l . ( t -  1) (27) 

on the right-hand side of (26). As we have indica- 
ted, i f L ( t -  1) has a banded structure, then so does 
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K(t). However, the same is not true of K-~(t).  

Thus, an algorithm in which we implement (16) 
exactly and then mask L(t) is computationally pro- 
hibitive. Rather what is needed is an efficient 
method for directly obtaining a banded approxi- 
mation to K-l( t )  which in turn leads to a banded 
approximation to £(t) in (16). It is important to 
emphasize that such an approach involves a second 
approximation (namely that of K - ~ (t)) beyond the 
simple masking of/~(t).  In the remainder of this 
section we show how to efficiently propagate such 
an approximation of  the information matrices/~(t) 
and /~(t) by efficiently computing a banded 
approximation to the inverse K-t ( t ) .  The rest of 
the computations in (26), i.e. matrix multiplica- 
tions, subtraction and truncation, are already spa- 
tially confined, thus the total computational (and 
storage) complexity of the resulting algorithm is 
O(N). Furthermore, the sparse banded structure of 
the calculations allows the possibility of substantial 
parallelization. 

Inversion by polynomial approximation 

The basis for our approximations of the matrix 
inverse K-t ( t )  of (27) is to express K- l ( t )  as an 
infinite series of easily computable terms. Trunca- 
ting the infinite series leads us to an efficient com- 
putation of the masked information matrix/~(t) in 
(26). 

To this end, let us decompose the matrix K(t), 

whose inverse we desire, as the sum of two matrices 
K =  D + ~Q, where D is composed of the diagonal 
of K and /2 is the remaining, off-diagonal part. 
Then, if D is invertible, K -~ can be obtained by the 
following infinite series: 

K - J = D  I_D-11-2D-I +D-112D- I I2D- I  

- D-IOD-11"2D-11"2D -1 +" • • . (28) 
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makes a good approximation of the inverse. In fact, 
i f /2  -i exists, it is not difficult to show that 

K-1 = D- I  _ D - l  g-2D-I + D-~ I2K-I  O D - I .  

(29) 

We may use this equation recursively to obtain the 
series (28). By stopping after a finite number of 
terms we may thus obtain precise bounds on the 
error resulting from the use of a truncated series. 
We may also use the equation to improve the 
approximation itself by using a coarse approxima- 
tion to K ~ on the right-hand side of (29), for 
example. For simplicity, however, we will only use 
here a finite number of terms from (28) for our 
approximation. Since K is a matrix with a sparse 
banded structure in our case, the matrix/2 will also 
be sparse, leading to a situation where the first 
several terms in the series are very sparse. The 
operations involved in computing the finite series 
approximation are also all locally confined so that 
they are parallelizable. 

The diagonal dominance characteristic of the 
matrix K(t) = AT(t) U(t)A (t) + L ( t -  1) is not easy 
to verify analytically. However, as we mentioned 
previously, the update step will always tend to 
increase diagonal dominance of K(t) thanks to the 
structure of CV(t)R-~(t)C(t), which itself is ge- 
nerally a diagonal matrix of non-negative elements 
(or a strictly banded matrix with dominant, non- 
negative diagonal), thus reinforcing the dominance 
of the diagonal of L. Since in most computer vision 
problems C(t) is calculated on-line, it is necessary 
to verify the usefulness and accuracy of our 
approximation through simulations. Later in this 
and the next section we present several such 
examples which indicate that our approximation 
yields excellent, near-optimal results, and we refer 
the reader to [6] for additional supporting 
evidence. 

This series converges if all eigenvalues of D-I.O 
reside within the unit disk, or equivalently, if K is 
strictly diagonally dominant [9, 40]. Convergence 
is especially fast when the eigenvalues of D-112 are 
close to zero, and taking the first terms of the series 

4.4. A sub-optimal information algorithm 

We may now present the complete sub-optimal 
information filter for the system (11), (12) based on 
the polynomial inverse approximation described in 
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the previous section. The optimal filter is given as 
(16)-(21). To create a reduced order filter, we first 
choose a reduced neighborhood interaction struc- 
ture, thus specifying an associated masking matrix 
~ .  This masking matrix, corresponding to the 
number of  layers in the reduced order model 
neighborhood, structurally constrains the informa- 
tion matrices. The sub-optimal filter is then 
obtained by replacing (16) of  the optimal filter with 
the following sequence: 
1. Compute the matrix K(t)=AX(t)U(t)A(t)+ 

L ( t -  1). 
2. Decompose If(t) as K(t)=D(t)+12(t), where 

D(t) is composed of  the main diagonal of  K(t) 
and I2(t) contains the off-diagonal. 

3. Use a fixed number of terms in the infinite series 
(28) to approximate If-I(t) as If~l(t). 

4. /.(t) = ~(S)  [U(t) - U(t)AT(t)if~l(t)A(t)U(t)]. 

4.5. Numerical results 

To examine the effect of our approximations, 
consider applying the sub-optimal information filter 
as specified in Section 4.4 to the following dynamic 
system: 

f ( t)  = f ( t -  1) + u(t), 

F'I 
y(t)= S "'°) f ( t ) +  

Ls~°.'_l 

u(t) ~ ((0, pl)>, (30) 

r(t), 

where f ( t)  is a scalar field defined over a 10 x 10 
spatial domain. Estimation o f f ( T )  corresponds to 
solving a discrete counterpart  of the continuous 
multi-frame reconstruction problem 

min v [Ig -f{I 2 + 
f ( t )  

+ f +0 ~ f  dsdt. 
• at 
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Let a = p - '  and fl = v- ' .  Then, a and/3 represent 
the variances of  the process and measurement noise 
processes, respectively. To measure the closeness 
of  approximation of  the information matrices we 
will use the percent approximation error, defined 
as lOOxllLa-Loptl[/llLoptlt, where L, is the 
approximated information matrix and Lopt is the 
optimal information matrix. The 2-norm [11] is 
used to compute matrix norms throughout. 

Effect of number of terms and structural 
constraints 

The two charts in Fig. 1 show the approximation 
errors for the predicted and updated information 
matrices when different numbers of terms are used 
to approximate the infinite series (28). The filter 
parameters are a =/3 = 1, and the structural con- 
straint is ~W2. The six solid lines, from top to bot- 
tom, shown in each chart represent the errors when 
the first one to six terms, respectively, in the series 
are used. The dashed line in each chart is the error 
resulting from masking the exact matrix inverse 
(corresponding to an infinite number of series 
terms) with a ~ neighborhood structure. As can 
be observed, as the number of  terms increases, the 
error approaches that corresponding to masking of  
the exact inverse, although extremely good 
approximations are obtained with comparatively 
few terms. 

In particular, it appears that the accuracy gained 
per addition of  a term in the series diminishes as 
the number of terms in the series increases. Here, 
we quantify such an effect for given structural con- 
straints on the information matrices. The two 
charts in Fig. 2 show the approximation errors for 
the predicted and updated information matrices at 
t = 10 as a function of  the number of terms in the 
series• ( a = / 3 = l . )  The solid lines are the errors 
associated with a ~ l - s t ruc tura l  constraint, while 
the dashed and dotted lines are those associated 
with ~ and ~¢r3-structural constraints, respec- 
tively. The dash-dot  lines represent the errors when 
no structural constraint is applied. As can be 
observed, for a tighter structural constraint the 
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18 

gain in accuracy obtained by including more terms 
in the series levels off at an earlier point. 

Effect of filter parameters 
The effects of the process and measurement noise 

parameters a and/3 on the sub-optimal informa- 
tion filter are now determined. Figures 3 and 4 
show the errors at t = 10 when the number of terms 
in the series is 2 (solid lines), 4 (dash lines) and 
6 (dotted lines). The structural constraint for the 
information matrices is ~z .  The error curves as a 
function of a (Figs. 3 and 4) show unimodal pat- 
terns, and the error curves are monotonically 
increasing with/3 (Fig. 5). 

Summary 
A relatively small number of terms in the series 

(28) is sufficient for an effective approximation of 
the masked information filter. In particular, a 
tighter structural constraint ~¢~/on the information 

matrix allows satisfactory approximation by a 
smaller number of series terms. 

The qualitative effects of the model parameters 
a and fl on the series approximated filter can be 
explained by the effect of the strength of the process 
and measurement noises on the structure of the 
optimal predicted information matrix. When the 
process noise is progressively decreased, the pre- 
diction based on (30) becomes closer to being per- 
fect, and, in particular, the predicted information 
matrix approaches the updated information matrix 
from the previous time frame. Thus, the optimal 
predicted information matrix in this case almost 
has the same structure as the updated information 
matrix, i.e. the nearest neighbor structure and 
masking has only a small effect. When the process 
noise is very high, on the other hand, the prediction 
is close to providing no information about the 
unknown and the optimal predicted information 
matrix approaches zero. Thus, the structural 
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pmdict.d information ma~ 'e s  

i 
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Fig. 3. The effect of  the process noise parameter on the approximation errors for the predicted information matrices using different 
numbers of terms in the series approximation - 2 (solid-line), 4 (dashed-line) and 6 (dotted-line). 
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Fig. 4. The effect of  the process noise parameter on the approximation errors for the updated information matrices using different 
numbers of  terms in the series approximation - 2 (solid-line), 4 (dashed-line) and 6 (dotted-line). 

constraints on the predicted information matrix 
again has small effect. 

The performance of the truncated filters is 
affected strongly by the strength of the measure- 
ment noise. The approximation errors for the pre- 
dicted information matrices are significantly larger 
when the measurement noise covariance fl is high. 
Recall that the diagonal information matrix 
CX(t)R-l(t)C(t) associated with the measurement 
equation strengthens the diagonal part of the filter 
information matrix, thereby increasing the relative 
size of the norm of the elements within the ~r_ 
structure against the norm of the elements to be 
truncated. A small value of v (corresponding to a 
high level of measurement noise, fl), therefore, 
makes the effect of truncation on the matrix 
greater. Thus the measurement g(t) of the 
unknown fieldf(t) must be modeled to sufficiently 
high fidelity for the approximation techniques to 
work. 

In this section we have shown that the series- 
approximation sub-optimal information filter can 
Signal Processing 

be used to efficiently approximate the optimal 
information matrix. In the next section we present 
numerical results on how well this filter produces 
estimates of a visual field f(t). 

5. Simulations: moving surface interpolation 

In this section we examine how closely the series 
approximated information filter of Section 4 can 
estimate artificially generated scalar fields f(t), 
since this is the final goal of any estimation tech- 
nique. We add white Gaussian random noise to 
f(t) to simulate noisy observations g(t) which enter 
the sub-optimal filters as the inputs. We measure 
the performance of the sub-optimal Kalman filters 
through their percentage estimation error 

II E(.f(t)) -f(t)[I 
x 100, (32) 

It f ( t )  ll 

where f ( t )  is the estimate generated by the filters. 
Each of the sub-optimal filters performs estimation 
on the same sample path of the observation process 
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three lines are associated with the predicted information matrices, while the bottom three lines are associated with the updated 

information matrices. 

g(t). The  est imates based on several such samples 
are averaged to obta in  an est imate of  E ( f ( t ) )  for  
each filter. Our  p r imary  concern in this section is 

to examine  how closely the sub-opt imal  filter can 
app rox ima te  the op t imal  est imates by  compar ing  
the es t imat ion errors  (32) associated with the sub- 
op t imal  and op t imal  filters. 

5.1. Moving surface estimation 

A sequence o f  16 x 16 images of  the mov ing  tip 
of  a quadra t ic  cone was synthesized and the mov-  

ing surface reconstructed based on noisy observa-  
tion o f  the image sequence using an opt imal  
K a l m a n  filter and  series app rox ima ted  in format ion  
filter. The  actual  surface f ( t )  t ranslates across the 
image f rame  with a cons tant  velocity whose 
componen t s  a long the two f rame axes are bo th  0.2 
p ixels / f rame.  Tha t  is, 

f ( s l ,  s2, t) =f (s l  +0.2 ,  s2 + 0.2, t -  1). 

Figure 6 shows f ( t )  at  t = 2 ,  4 and  6. Since the 

spatial  coordinates  s~ and s2 take only integer 
values in the discrete dynamic  model  on which the 
filters are based, we use the following app rox ima te  

model :  

f ( s l ,  sz, t ) =  (1 - 0.2)2f(s1, s2, t -  1) 

+ (0.2)(1 - 0.2)f(sl  + 1, s2, t -  1) 

+ (0.2)(1 - 0 .2 ) f ( s , ,  s2+ 1, t -  1) 

+ (0.2)2f(s~ + 1, s2 + 1, t -  1), 

Fig. 6. The moving surface to be reconstructed at t=2, 4 
and 6. 
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which we express as the matrix dynamic equation 

f(t) = Af(t - 1 ) .  

In essence, the matrix A performs approximate 
spatial shifting of the elements o f f ( t -  1) by a sub- 
pixel amount, in this case 0.2 pixels (see, for exam- 
ple, [ 18] for more details). 

A zero-mean white Gaussian process was added 
to f( t)  to simulate a noisy measurement g(t) with 
SNR of about 2. Moreover, at each t only half of 
the points of the surface, chosen randomly, were 
observed. That is, the measurement model is 

g( t) = H( t) f (  t) + to(t), (33) 

where each diagonal entry of It(t) has 50-50 
chance of being 0 or 1 at each time step. This type 
of partial observation is common in surface inter- 
polation using depth data obtained from stereo 
matching [13, 14], since matching can be per- 
formed only on selected features in the images. 

The dynamic system model on which the filters 
are based is given by 

s(o.,~j Ls(o..j 

q(t) ~ (0, al), 

1) +q(t),  

(34) 

#(t)l V H(t) l ] /s (2,o>/ 
= l  s(o,2) l f ( t ) +  

L2s..,)j 

r(t), 

(35) 

This model corresponds to the use of a thin-plate 
model for the spatial coherence constraint, as such 
models are considered particularly suitable for sur- 
face interpolation [13]. The dynamic equation 

Fig. 7. Reconstructed moving surface by optimal Kalman filter 
at t=  2, 4 and 6. 

reflects the temporal coherence constraint that pen- 
alizes large deviation from the dynamic model 
f ( t ) = A f ( t - 1 )  and imposes smoothness on the 
deviation f ( t )  - A f ( t -  1 ) using a membrane model. 
The application of the membrane model makes the 
process noise spatially smooth. This assumption is 
reasonable since the noise reflects (at least parti- 
ally) the effect of surface motion, which should 
exhibit some spatial coherence. We let a = 10 -2 and 

f l=10  -I. 
Figure 7 shows the surfaces reconstructed by the 

optimal information Kalman filter (16)-(21) based 
on the dynamic system above. Observe that the 
qualitative appearance of the estimated surface 
improves as more frames of data are incorporated 
into the estimate. The earlier estimates are expected 
to be especially noisy because, as indicated by the 
observation equation, the surface is only partially 
observable in each image frame. 

Figure 8 shows the estimation errors for the opti- 
mal Kalman filter (solid line) and series-approxi- 
mated information filter (dashed line) for the first 
16 frames. Four sample paths are averaged to 
obtain each curve in the figure. The error curves 
indicate that the sub-optimal filter performs just as 
well as the optimal Kalman filter. The estimation 
errors for both the optimal and suboptimal filters 
decrease steadily from about 12% at t=  1 to about 
4% at t = 8. In the series-approximated information 
filter, the information matrix is constrained to be 
~6-structured, and the first 8 terms are used to 
approximate the infinite series (28) in the pre- 
diction step. Such a broader-band approximate 
model (as compared to a ~ or nearest-neighbor 
model) is appropriate here because of the large 
spatial extent of the thin-plate model (as opposed 

Signal Proce~ing 
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Fig. 8. The estimation errors for the optimal Kalman filter (solid line) and the sub-optimal filter (dashed line). 

to say a membrane model) and the non-zero off- 
diagonal elements in the system matrix A. 

5.2. Summary 

In this surface reconstruction simulation the 
approximation filter has performed almost iden- 
tically to the corresponding optimal Kalman filter. 
The discrepancy between the optimal filter and the 
approximate filter appears smaller when the com- 
puted estimates (32) are used as a criterion than 
when the error in the information matrices alone 
is used, as in the examples in Section 4.5. This 
property is desirable, since it is the quality of the 
estimate that is of primary concern in the design of 
approximate filters. 

6. Conclusions 

We have presented an extension of the classical 
single-frame visual reconstruction problem by 
considering the fusing of multiple frames of 
measurements yielding temporal coherence con- 

straints. The resulting formulation of the multi- 
frame reconstruction problem is a state estimation 
problem for the descriptor dynamic system (11) 
and (12) for which we derived an information fil- 
tering algorithm in Section 3.2. Practical limita- 
tions arising from the large size of the optimal 
information matrices led to the development of a 
sub-optimal scheme. This sub-optimal filter was 
developed by approximating the field model 
implied by the optimal information matrix at each 
step with a reduced order model of fixed spatial 
extent. This reduced order field model induces a 
simple structure on the associated information 
matrices, causing them to be banded and sparse. 
This structure may be viewed as arising from the 
imposition of a Markov random field structure on 
the associated visual process. Numerical experi- 
ments showed that the resulting sub-optimal filters 
provided good approximations to the optimal 
information matrices and near-optimal estimation 
performance. Further work is reported in [8, 6], 
where we present an alternative, square root 
variant of the optimal recursive filter along with an 
associated near optimal implementation, and in 
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[7], where we apply our filtering results to the 
sequential estimation of optical flow vector fields 
and demonstrate the advantages to be obtained in 
a visual estimation context through the optimal 
fusing of multiple frames of measurements. 
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