
Automatica, Vol. 28, No. 3, pp. 565-577, 1992
Printed in Great Britain.

0005-1098/92 $5.00 + 0.00
Pergamon Press Ltd

~) 1992 International Federation of Automatic Control

Aggregation and Multi-Level Control in
Discrete Event Dynamic Systems*t

CLINEYT M. OZVEREN, and ALAN S. WILLSKY§

The problem of controlling discrete-event dynamic systems so that it only
produces strings of meaningful tasks is considered. This leads to the
development of aggregate task-level models of such systems.

Key Words--Automata theory; control system design; discrete systems; modeling; observers;
regulator theory; reliability; stability; state space methods; supervisory control.

Abstract--In this paper we consider the problem of
higher-level aggregate modeling and control of discrete-event
dynamic systems (DEDS) modeled as finite state automata in
which some events are controllable, some are observed, and
some represent events to be tracked. The higher-level
models considered correspond to associating specified
sequences of events in the original system to single
macroscopic events in the higher-level model. We also
consider the problem of designing a compensator that can be
used to restrict microscopic behavior so that the system will
only produce strings of these primitive sequences or tasks.
With this lower level control in place we can construct
higher-level models which typically have many fewer states
and events than the original system. The use of these
higher-level models allow us to decrease the computational
complexity of problems involving complex interconnected
DEDS.

1. INTRODUCTION

THE STUDY OF COMPLEX SYSTEMS has frequently
prompted research on tools for aggregation and
multi-level analysis. In this paper, we study such
tools in the context of Discrete Event Dynamic
Systems (DEDS) as introduced by Ramadge and
Wonham (1987a, b). Specifically, the apparent
combinatorial explosion associated with many
DEDS analysis techniques would seem to place
severe limits on their utility. Thus, there is
ample motivation for the development of
techniques for exploiting system structure and in
particular for aggregating system behavior in
order to mask out microscopic detail and focus

* Received 3 October 1989; revised 7 December 1990;
revised 7 January 1991; revised 30 July 1991; received in final
form 20 September 1991. The original version of this paper
was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate
Editor T. Ba~ar under the direction of Editor H.
Kwakernaak.

t Research supported by the Air Force Office of Scientific
Research under Grant AFOSR-88-0032 and by the Army
Research Office under Grant DAAL03-86-K0171.

~: Telecommunications and Networking, Digital Equipment
Corporation, 550 King Street, Littleton, MA 01460, U.S.A.

§ Laboratory for Information and Decision Systems, MIT,
Cambridge, MA 02139, U.S.A.

565

on macroscopic behavior. In this paper we
develop such a technique by exploiting the fact
that in many applications the desired range of
behavior of a DEDS is significantly smaller and
more structured than its full range of possible
behaviors. For example, a workstation in a
flexible manufacturing system (FMS) may have
considerable flexibility in the sequence of
operations it performs. However, only particular
sequences correspond to useful tasks, and one
would like to restrict behavior so that only these
are performed. This underlies the notion of a
legal language introduced in Ramadge and
Wonham (1987b) and generalized slightly in
Ozveren and Willsky (1992). It also suggests a
natural way in which to perform aggregation by
mapping a sequence of events, corresponding to
a task, to a single macro-event at the
higher-level. An important point to note is that
in many applications, such as an FMS, the
overall system consists of an interconnection of
many subsystems, yielding extremely large
composite state spaces. However, in most cases
the desired coordination of the subsystems is at
the task level. Thus, for example, in analyzing
an FMS we can build individual aggregate
models for each workstation and then consider
coordination issues only at the higher level.

A key element in the concept we have
described is the design of compensators that
restrict behavior to the completion of desired
tasks. As we have stated this is closely related to
the legal language supervisory control work of
others and to our work in t)zveren and Willsky
(1992) which not only allows us to achieve
significant etiiciencies by describing desired
behavior in terms of primitive tasks but also, and
more importantly, incorporates the notion of
eventual restrictability through which we can
directly model and accommodate the phenome-

566 C . M . OZVEREN and A. S. WILLSKY

non of set-up, i.e. the externally irrelevant
transient behavior arising when one switches
between tasks. In particular, the consideration of
transient behavior led us to define and study a
notion of stability in ¢)zveren et al. (1991) that
plays an important role here as well. Another
important aspect of our work is the use of an
intermittent observation model in which only the
occurrences of certain key events are observed.
We have shown that this model has significant
consequences for both observability in ¢)zveren
and Willsky (1990) and output stabilization in
¢)zveren and Willsky (1991). In particular, this
model captures a critical issue in the control of
complex systems, namely the coordinated timing
of information and control action.

In the next section we review some of the
concepts from previous work and extend our
earlier work to the design of output-feedback
compensators that achieve eventual restric-
tability. In Section 3 we make precise what we
mean by a higher-level model based on a given
set of macroscopic events each of which
corresponds to strings of events at the lower
level. Care must be taken in these specifications
not only to ensure the faithful mapping of
control and observations from microscopic to
macroscopic levels but also to deal correctly with
the change in the measure of logical time
involved in the aggregation, since entire
microscopic sequences are mapped into single
macroscopic events. In Section 4 we then
consider the design of task-level controllers and
corresponding higher-level models for DEDS.
This requires several additional concepts for the
compatible control of a set of tasks and the
construction of a system for the detection of task
completions. Using these components, we
construct a task-level control system which
accepts task requests as input and controls the
system to achieve the desired sequence. This
leads to a simple higher-level model whose
transitions only involve the set-up and comple-
tion of tasks. This model not only can be of
value in simplifying the analysis of interconnec-
tions of DEDS but also its simple and regular
form should greatly facilitate subsequent stages
of DEDS analysis such as those involving timing
studies or probabilistic measures of
performance.

2. BACKGROUND AND PRELIMINARIES
The systems we consider (much as in Cieslak

et al. (1988), Lin and Wonham (1988a, b),
Ramadge and Wonham (1987a, b) and Vaz and
Wonham (1986)), are nondeterministic finite-
state automata with intermittent event observa-
tions defined over G = (X, Y, ~ , F, 2). Here X

is the state set, with n =IXI, Z is the set of
possible events, • c Y is the set of controllable
events, F c Y is the set of observable events, and
E ~ Z is the set of tracking events. Control is
affected by enabling some or all of the
controllable events, and the dynamics then
evolve via the occurrence of events that are
either enabled or uncontrollable (and thus
permanently enabled). That is, the dynamics on
G take the following form:

x[k + 1] ef(x[k], a[k + 1]), (2.1)

a[k + IIE (d(x[k]) fq u[k]) U (d(xIk]) n ~),
(2.2)

where • denotes the complement of ~ . Here ,
x[k] ~X, a[k + 1] e Z , and u[k] e U - 2 * is the
control input. The function d:X---~2 ~ specifies
the set of possible events defined at each state,
and the function f : X x Z---~ X is also set-valued
(capturing nondeterminism). We assume that
~ c F , which simplifies the presentation and
computational complexity of our results.

Our model of the output process is that
whenever an event in F occurs, we observe it.
Specifically, define h : Z ~ F t.J { e } by

h(a)=[a~ if a ~ F
(2.3)

e otherwise,

where e is the "null transition". Then, our
output equation is

~,[k + 1] = h(a[k + 1]). (2.4)

Note that h can be extended to a map on Z*, the
set of all strings of finite length including
the empty string e, via h(a~. . , an)=
h (o 1) - - - h (o n) .

The set E is the tracking alphabet, allowing us
to define tracking over a selected alphabet. We
use t : Z * - * E * , to denote the projection of
strings over Z into E*. Note that if there exists a
cycle in A that consists solely of events that are
not in E, then the system may stay in this cycle
indefinitely, generating no event in E. It is not
difficult to check for the absence of such cycles,
and we assume this is the case. The quintuple
A = (G, f, d, h, t) t representing our system can
also be visualized graphically as in Fig. 1. The
first symbol in each arc label denotes the event,
while the symbol following " / " denotes the
corresponding output. We mark the controllable
events by " : u " and tracking events by " !" .

There are several standard computer science
concepts that we will need in our investigation.

t On occasion, we will construct auxiliary automata for
which we will not be concerned with tracking. In such cases
we will omit t from the specification.

Aggregation and multi-level control 567

FIG. 1. A simple example.

The first is the notion of liveness: a DED S is
alive if d(x) is nonempty for each x • X. We will
assume that this is the case. A second commonly
used notion (Cieslak et al., 1988; Golazewski
and Ramadge, 1988; Inan and Varaiya, 1988),
that we need is the composition A12 = A1 [I A2 of
tWO automata, A i - - (G - , f , di, hl) which share
some common events. The dynamics of the
composition are specified by allowing each
automaton to operate as it would in isolation
except that when a shared event occurs, it must
occur in both systems.

Central to our work is the notion of stability
studied in Ozveren et al. (1991) (see also
Ramadge, 1989). Let E be a given subset of X.
A state x • X is E-pre-stable if every trajectory
starting from x passes through E in a bounded
number of transitions. The state x • X is E-stable
if every state reachable from x is E-pre-stable,
and the DEDS is E-stable if every x • X is
E-stable. Note that E-stability for all of A is
identical to E-pre-stability for all of A, and that
this condition guarantees that all trajectories go
through E infinitely often. We refer the reader
to 0zve ren et al. (1991) for an O(n 2) test for
E-stability.

In Ozveren et al. (1991) we also study
stabilization via state feedback of the form
K:X-->U resulting in the closed-loop system
A r = (G, f, dr, h, t) with

dr(x) = (d(x) O r (x)) u (d(x) O ~p). (2.5)

A DEDS is E-stabilizable if we can find K so
that A r is both alive and E-stable.

In Ozveren and Willsky (1992), we use
compensators that use both current state and
event trajectory information in order to control
system behavior. Such a compensator, described
by a map C : X x Z*--~ U, yields a closed-loop
system with

a[k + 1] • dc(x[k], s[k])

(d(x[k]) n C(x[k], s[k])) u (d(x) n ~,), (2.6)

where s[k] = t r [0] . . , a[k] with o[0] = e. Note
that this class of compensators is similar to the
class of supervisors introduced in Ramadge and

Wonham (1987b) although by allowing depend-
ence on the current state we can achieve a
somewhat richer class of behaviors. Also, as in
our previous work, we will see here that for our
purposes we can restrict attention to compen-
sators that can be realized by finite state
machines.

As in other work on DEDS, it is useful to
phrase questions concerning event trajectory
behavior in terms of languages (Hopcroft and
Ullman, 1979). Let L be a regular language over
a finite alphabet and let (AL, Xo) be a minimal
recognizer for L. Given a string s • L, if s = pqr
for some p, q and r over Y. where p is a prefix of
s and r is a sufftx of s, we use s/pq to denote the
suffix r, and we say that q is a substring of s.
Also, for any language L, we let L c denote the
prefix closure of L, i.e.

L c = {p • Z* [p is a prefix of some s • L}.

(2.7)

Finally, L is a complete language if (a) every
s • L is a proper prefix of some other r • L (so
that all trajectories have unlimited extensions)
and (b) L is prefix-closed (so that all initial
segments of a trajectory are in L). Note that for
a complete language all strings generated by the
recognizer (AL, x0) are in L.

In Ozveren and Willsky (1992) we study the
notion of restrictability, i.e. the ability to force
the system to generate strings in a desired
regular complete language defined over F,. This
is essentially the same as restricting behavior to a
sublanguage of a specified legal language (see,
e.g. Ramadge and Wonham, 1987b), with two
modest differences. First, in our work we focus
on restricting only the tracking event trajectory
behavior. The second is that by focusing on
regular complete languages, we can use our
state-based framework. Indeed the key to the
approach in Ozveren and Willsky (1992) is to
show how to transform the problem into one of
static state feedback design to achieve
controlled-invariance and stability. Fur thermore
in 0zve ren and Willsky (1992) we introduce the
related notions of eventual and stable restric-
tability in which we allow an initial "set-up"
transient before restricted behavior is achieved.
These extensions are crucial in our present
context and also are essential for the considera-
tion of error recovery (Ozveren and Willsky,
1992).

In most applications and as captured by our
model, we do not have available complete
knowledge of the current state nor of the full
event history. In Ozveren and Willsky (1990),
we term a system observable if the current state
is known perfectly at intermittent, but not

568 C . M . OZVEREN and A. S. WILl.SKY

necessarily fixed, intervals of time. A necessary
condition for observability is that it is not
possible for our DEDS to generate arbitrarily
long sequences of unobservable events. This is
not difficult to check and will be assumed. Also,
we will need to use some of the notation
introduced in 0zve ren and Willsky (1990).
Specifically, R(A, x) denotes the set of states
reachable from x, and we let Y denote the set of
states that either have observable transitions
defined to them or that are purely initial in that
there are no transitions to them from any state.
Let q = IYI, and let L(A, x) denote the set of all
possible event trajectories of finite length that
can be generated if the system is started from the
state x. Also, let Lt(A, x) be the set of strings in
L(A, x) that have an observable event as the last
event, and let [,(A) = U L(A, x).

x~X

An observer for our system produces an
"est imate" of the state corresponding to the set
of possible states into which A transitioned when
the last observable event occurred. Let Z c 2 r
denote the state space of this observer and
suppose that the present observer estimate is
2[k] e Z and that the next observed event is
),[k + 1]. The observer must account for the
possible occurrence of one or more unobservable
events prior to y[k + 1] and then the occurrence
of y[k + 1]:

i [k + II = w(£[kl , ~,[k + l l)

~J f(x, ~,[k + 1]), (2.8)
x~R(AIr~ikl)

y[k + 11 e v(g[kl)

~h(x~R(a~rStkl (d(x)Clu[k])U(d(x)N*)). (2.9)

The set Z is then the reach of {Y} using these
dynamics, i.e. we start the observer in the state
corresponding to a complete lack of state
knowledge and let it evolve~'. Our observer then
is the DEDS O = (F , w , v , i) , where F =
(Z, F, ~ , F) and i is the identity output function.
For future reference we will use the symbol i (s) ,
s e h(f_,(A)) to denote the input -output map of
O, i.e. this is the observer estimate if the
observed output string is s.

When we only have available these intermit-
tent observations we need to consider the use of
an output compensator C:F*--~ U (see Ozveren
and Willsky, 1991). In this case, however,
preserving liveness is somewhat more involved
since not only may we not know the current state

t To get Z, we consider the richest possible behavior by
enabling all controllable events.

exactly, but even if we do, the possible
occurrence of unobservable transitions will lead
to uncertainty at least until the occurrence of the
next observable event. Suppose that we have
observed the output string s, so that our
observer is in ~(s) and our control input is C(s).
Then, we must make sure that any x reachable
from any element of i (s) by unobservable events
only is alive under the control input C(s). That
is, for all x ~ R(A I f', i (s)) , dc(x, s) should not
be empty. In this case we will say that C(s) is
i(s)-compatible. In C)zveren and Willsky (1991)
we use such output compensators to solve
problems of stabilization by output feedback. It
is important to note that the intermittent nature
of our observations introduces significant issues
in this study underlining the issue of the timing
of information and control and distinguishing
our work from investigations such as in Cieslak
et al. (1988). We refer the reader to Ozveren and
Willsky (1991) for details, including a bound of
q3 on the number of observable transitions until
any trajectory enters E.

Let us now turn our attention to extending our
previous results to the problem of eventual
restrictability using an output compensator.

Definition 2.1. Given a complete regular lan-
guage L over E we say that A is eventually
L-restrictable by output feedback if there exists
an integer no and an output compensator
C: F* --+ U such that Ac is alive and for all x e X,
t (L(Ao x)) c (E U {e})n°L. Such a C is called
an L-restrictability compensator. []

Again, this notion represents an extension of
those used, for example, in Cieslak et al. (1988)
and Lin and Wonham (1988b), in that: (a) we
focus on tracking events; (b) we allow an initial
transient string outside the language L; and (c)
we must deal with the intermittent nature of the
observations and the accompanying fluctuation
in the level of knowledge of the current state.

In order to construct a test for eventual
restrictability by output feedback, we need to
introduce well-known notions of dynamic in-
variance (see, for example, C)zveren et al.
(1991); Ramadge and Wonham (1987)). A
subset Q of X is f-invariant if f (Q, d) c Q
where f (Q, d) = U f(x, d(x)) and f(x, d(x)) =

xeQ

U f(x ,o) . We say that a subset Q of X is
o~cl(x)

(f, u)-invariant if there exists a state feedback K
such that Q is f- invariant in A t . We say that a
subset Q of x is a sustainably (f, u)-invariant set
if there exists a state feedback K such that Q is
alive and f- invariant in A t . Let us also note that
given any set V e X , there is a maximal

Aggregation and multi-level control 569

sustainably (f, u)-invariant subset W of V with a
corresponding unique minimally restrictive
feedback K. That is K disables as few events as
possible in order to keep the state within W.

We now define a model to capture the desired
behavior. Given L, let (AL, XLo) be a minimal
recognizer for L and let ZL denote its state
space. Let A~ be an automaton which is the
same as AL except that its state space is
Z't. = ZL t3 {b} where b is a state used to signify
that the event trajectory is no longer in L. This
is the state we wish to avoid. Also, we let
d'm(X) = ~" for all x • Z~, and

f't.(x, o) = ~ft.(x, o) if x 4= b and o • dl.(X)
[{b} otherwise.

(2.10)

Let O denote the observer for A, let
A(L) = A II AL, and let O(L)= (G(L), WL, VL)
denote the observer for A(L); however, in this
case, since we know that we will start A [in Xo L,
we take the state space of O(L) as

Z(L) =R(O(L), {(x0 L) x 2 12 • Z)) . (2.11)

Let

Vo= {e e Z(L) [for all (XL, :CA) e ~., XL ~ b}.
(2.12)

Let E(L) be the largest subset of Vo which is
sustainably (f, u)-invariant in O(L) and for
which the associated unique minimally restrictive
feedback K EL has the property that for any

e Z(L), KEL(~.) is 2(~)-compatible where

2(~) = {x • X [3XL • ZL such that (XL, X) • ~ }.
(2.13)

The construction of E(L) and K eL is a variation
of the algorithm in IDzveren et al. (1991) for the
construction of maximal sustainably (f,u)-
invariant subsets. We begin with any state

• V0. If there are any uncontrollable events
taking ¢ outside V0, we delete $ and work with
VI=Vo\{$}. If not, we disable only those
controllable events which take £ outside Vo. If
the remaining set of events defined at ~ is not
2(~)-compatible, we delete ~ and work with
V~ = Vo\{~}. If not, we tentatively keep ~ and
choose another element of Vo. In this way, we
cycle through the remaining elements of Vo. The
algorithm converges in a finite number of steps
(at most IV012) to yield E(L) and K eL defined on
E(L). For ~ • E(L), we take KEt'(~) = Y..

Consider next the following subset of E(L) ;

g o (L) = { 2 • Z l x o L x 2 • E (L) } . (2.14)

Proposition 2.2. Given a complete language L
over E, A is eventually L-restrictable by output

feedback if there exists an A-compatible state
feedback K:Z--* U such that the closed loop
system Or is E0(L)-pre-stable.

Proof. We prove this by constructing the desired
compensator C : F* ~ U: Given an observation
sequence s, we trace it in O starting from the
initial state { Y}. Let 2 be the current state of O
given s. There are two possibilities.

(1) Suppose that the trajectory has not yet
entered Eo(L). Then we use O and the
Eo(L)-pre-stabilizing feedback K to compute
C(s). In particular,

C(s) = (v(2) n r (2)) u (0(2) n 4,).

(2) When the trajectory in O enters Eo(L),
we switch to using the expanded observer O(L)
and K e(m). In particular, let 2 ' be the state the
trajectory in O enters when it enters Eo(L) for
the first time, and let s ' be that prefix of s which
takes { Y} to 2 ' in O. Then, we start OL at the
state x~ x 2' e E(L), and let it evolve. Suppose
that s/s' takes Xo m x 2' to ~ in O(L), then

C(s) = (v , (e) n U (vL(e) n 40.

Since this feedback keeps the trajectory of O in
E(L) and E(L)cVo, the behavior of A is
restricted as desired. []

Proposition 2.2 is only a sufficient condition
for eventual L-restrictability. Specifically, as
pointed out in Kumar et al. (1990) and Ozveren
and Willsky (1992), it is possible for a state to be
eventually L-restrictable without being pre-
stable with respect to the set of L-restrictable
states, although there are conditions under
which this cannot happen. In this paper, we
focus on the stronger sufficient condition of
Proposition 2.2, which we refer to as stable
L-restrictability by output feedback.

Since E(L) is the maximal sustainably
(f, u)-invariant subset of Vo and K e(L) is unique,
the possible behavior of an L-restrictable state x
in the closed loop system constructed in the
proof is the maximal subset of L to which the
behavior of x can be restricted. Also, if E0 = 0,
then O cannot be Eo(L)-pre-stabilizable and thus
A is not stably L-restrictable by output
feedback. Finally, if A is stably L-restrictable by
output feedback, the results of Ozveren and
Willsky (1991) allow us to bound the number of
observable transitions until the trajectory is
restricted to L.

In some situations, it is more natural to think
of systems in which there are forced events
which can be forced to occur regardless of the
other events defined at the current state. It is not
difficult to capture forced events in the modeling

570 C . M . OZVEREN and A. S. WILLSKY

framework described in this section (Ozveren,
1989), and thus we assume that the D E D S to be
controlled do not have forced events. However ,
at the last stage of our development we will use
forced events in the description of our task
standard form to provide a simple and intuitive
picture of this higher-level model.

3. CHARACTERIZING HIGHER-LEVEL MODELS
In this section, we present a notion of

higher-level modeling of D E D S based on a given
set of primitives, each of which consists of a
finite set of tracking event strings, where the
occurrence of any of these strings corresponds to
some macroscopic event, such as complet ion of a
task. To illustrate our notion of modeling and to
give a preview of task-level control, consider the
system in Fig. 1 and suppose that we wish to use
output feedback to restrict its behavior so that
the " task" o~il I is continuously performed, i.e.
we want to restrict behavior to (a~ill) *C. In Fig. 2
we illustrate an automaton that realizes such a
compensator. That is, compensat ion is achieved
by the composition of this automaton, started in
the state denoted (0, 1 ,2) , with the D E D S of
Fig. l t . This au tomaton was constructed in the
following manner. First, recall that the set of
tracking events for the D E D S of Fig. 1 is
{oc, ill, if2}, and suppose that for the moment
we assume that we have perfect state knowledge
at all times. Since we want to restrict tracking
sequences to alternating values of tr and ill, we
obviously want to disable 132. Also, if we are in
state 0, we want to disable ill since if we do not,
a possible event sequence would be il~6il 1 so
that the resulting tracking event sequence would
be illill" Unfortunately, we may not know the
current state, and in particular we start with total
ignorance of the initial state. In this case, we
might want to disable il~ or ilz, but we certainly
cannot disable both, since this would disable all
events from state 3. Thus, before we apply any
control action we need to wait until we have
some state information. In order to form state
estimates, let us construct the observer O for our
DEDS (note that Y- - {0, 1, 2}). What we then
do is to determine those controllable events we
can disable at each observer state in order to
(eventually) restrict behavior to (crilt) *C while
preserving liveness, and Fig. 2, is the resulting
restricted observer. First, at the initial state
(0, 1, 2) we enable both fll and fiE- The possible
first observable event is then any in the set

t Note that the actual compensator map C : F* ~ U can be
computed as follows: for any s • F*, determine the state of
the automation of Fig. 2 starting from (0, 1, 2). Then C(s) is
the set of controllable events that are enabled at this state.
For example, C(i 0 = {il}, C(6) = {t2}, C(6t2) = {Ell}"

FIG. 2. Illustrating the compensator for eventual (O~tl) *c-
restrictability by output feedback for the system of Fig. 1.

{ill, f12, 6}. If, for example, we observe f12, we
know we are in state 2. At this point, we see that
if we disable flz, then the subsequent two events
will necessarily be tr (which is unobservable) ,
taking us to 3, followed by ill, taking us to 1.
This is reflected in Fig. 2 where the transition i l2

takes us from (0, 1, 2) to (2) from which only ill
is enabled. Similarly, if 6 is observed first, we
know that we are either in state 0 or 2. Again,
we cannot disable both 11 and 12 since if we are
in 2, the uncontrollable and unobservable event
tr will occur driving the system to state 3, at
which all events have been disabled. However ,
from (0, 2) we can, as indicated in Fig. 2 disable
ill. In this case, if the D E D S is actually in 0, the
next observable event will be 6 while if the
DEDS state is 2, the next observable event will
be if2, and in either case we will know that the
D E D S state has transitioned to 2.

If we think of ~/31 as a primitive, then at a
higher level we might want to model only its
occurrences using the simple automat ion of Fig.
3 where ~pl denotes the occurrence of this
primitive. However , for this automaton, with W~
observable, to truly model A o we should be
able to use the observations in A c to detect
occurrences of aq3t, perhaps with some initial
uncertainty. For example, by inspection of Fig.
2, if we observe ill, we cannot say if trill has
occurred or not, but if we observe illill, we
know that ocill must have occurred at least once.
In general, after perhaps the first occurrence of
ill, every occurrence of ill corresponds to an
occurrence of cq31. The definition we give in this
section then allows us to conclude that the
automaton in Fig. 3 models the closed loop
system A o

Let Z ' denote the macroscopic event set,
where each o e Z ' corresponds to a set He(o) of
tracking strings in the original model where the
map He : Z'---~ 2 z* is te rmed primitive if He(o) is a

@
FIo. 3. Higher-level model for completions of the "task"

a~tl.

Aggregat ion and multi-level control 571

finite collection of strings. We allow He to be
set-valued to capture the fact that there may be
several ways to complete a desired task.

Definition 3.1. A primitive map He is te rmed
minimal if (1) for all, distinct, ol, 02 • Y~' and for
all s • He(al) , no suffix of s is in He(a2), and (2)
for all cr • Z', s ~ H,(o), no proper suffix of s is
in He(o). []

We can easily extend He to act on
(Y.')* :He(e) = E and He(so) = He(s)He(o), the
set of all possible concatenations of one string in
H¢(s) and one in He(o).

Proposition 3.2. If He is minimal then for all
distinct rl, r2 such that rt, r2~ e, Irll ~ Ir21, and rl
is not a sutfix or rE, E ' H e (r 0 N E'He(r2) = 0.

Our definition of higher-order modeling
captures two important propert ies that such
models must have in order to be physically
meaningful. First, we want control capabilities of
the macroscopic model to reflect microscopic
capabilities. That is, if it is possible to construct
a higher-level compensator that restricts macro-
level event behavior to a particular language L,
then it must be true that we can design a
micro-level controller to restrict behavior to the
complete language corresponding to the map-
ping of L down to the lower level. Secondly, by
observing the output sequence at the lower level,
we should be able to unambiguously determine
the corresponding sequence of macro-events ,
except perhaps for a finite-length start-up phase
until the initial state uncertainty settles out (e.g.
as in the example in Fig. 2).

Proof. Assume the contrary, and le t s e
E*He(rl) A E'He(r2). Also let ol (respectively,
02) be the last event in rl (respectively, rE).
There are two cases here. First, suppose that
ol :/: 02. Then, there exist distinct P l e He(O1)
and p2EHe(o2) such that both PI and P• are
suffixes of s. Assume, without loss of generality,
that [Pl[-< [P2[, then Pl is also a suffix of p2. But
then, He cannot be minimal. Now, suppose that
01= 02. Thanks to minimality, among all
elements of He(01), only one string, say p can be
a suffix of s. Let s ' be that prefix of s such that
p - - s i s ' . Then, repeat the previous steps using
s ' , and all but the last e lements of rl and r2.
Since rl and r2 are distinct, and rl is not a suffix
of r2, Ol will be different f rom 02 at some step
and then we will establish a contradiction.
Therefore, E'He(r1) fq E'He(r2) = 0. []

The following states that concatenation pre-
serves minimality.

Proposition 3.3. Given minimal Hi" ~"~2----~ 2 zr and
H2:~3----~2 :g~, if we define H3:~3----~2 ~gr so that
H3(o) =/-/1(/-/2(0)) for all 0 e ~3, then H3 is a
minimal primitive map. Here , since / /2(o) is a
set of strings, HI(H2(tr)) is the set of strings
resulting f rom applying HI to each string in
n2(o).

Proof. Assuming the contrary, there exists,
ol, a2eY3, s e H3(a0 , and a suffix r o f s so that
r • H3(02). Let s ' • H2(o 0 and r ' • H2(02) such
that s • Hl(S') and r • Ht(r'). Then, by mini-
mality of HE, r ' cannot be a suffix of s ' and s '
cannot be a suffix of r ' either. Also, since r is a
suffix of s , s • Y ~ H I (r ') . Then, thanks to
Proposition 3.2, Hi cannot be minimal, and we
establish a contradiction. []

Definition 3.4. Given D E D S A = (G, f, d, h, t)
and A' = (G', f ' , d', h', t') where G ' =
(X' , ~ ' , ~ ' , F ' , E ') , and a minimal primitive
map He :Y'---~ 2 ~°, we say that A ' is an He-model
of A is there exists a map Ho:F*---~Z'* and an
integer nd SO that : t

(1) Compatibility, For all complete L c Y ' *
such that A ' is eventually L-restrictable, A is
eventually He(L)C-restrictable by output feedback.

(2) Detectability. For all s ~ L(A) , such that
t(s) • He(p) for some p • L(A') , (a) p • (~,' t.J
{c})n~Ho(h(s)), and (b) for all r • Y 's ,
Ho(h(r)) • Y~'*Ho(h(s)). []

Compatibili ty formalizes the notion of fidelity
in the modeling of control, and detectability
makes precise the concept of reconstructability
of macro-events. The map H0 corresponds to this
reconstruction process, while n d corresponds to
the maximum number of macro-events that
might go unidentified at the start. Condition 2(b)
captures the need for unambiguous reconstruc-
tion in that it requires that the reconstruction of
a string of primitives should not depend upon
preceding events.

The following result, which immediately

t We have chosen in our definition to look at the larger
class of macroscopic languages to which A is eventually
restrictable by full state feedback, rather than only with
output feedback. All of our results carry over if we use this
weaker notion of compatibility at the higher level. Also, we
have defined the macroscopic languages over all of "~' rather
than only the tracking alphabet -~'. Similarly in our definition
of detectability we have required the stronger condition that
from lower level observations, we can reconstruct the entire
upper-level event trajectory, not just the part in F'. Again,
we can carry all of our development over to the weaker
cases. As we will see, this stronger definition suffices for our
purposes.

572 C . M . I~)ZVEREN and A. S. WILLSKY

follows from Definition 3.4, states that the
concept of modeling is invariant under
compensation.

ProposMon 3.5. If A ' is an He-model of A then
for any compensator C':F'*---> U' for A' , there
exists a compensator C:F*---~ U for A such that
Ab. is an He-model of Ac with the same H0. []

In general, we may be interested in several
different levels of aggregation. Thus we need the
following result.

Proposition 3.6. Given the automata A =
(G, f, d, h, t), A ' = (G ' , f ' , d ' , h ' , t ') , and A" =
(G", f", d", h", t"), and minimal primitive maps

t t el ~t He : Z - + 2 ~" and H~: Z ~ 2-"', so that A' is an
H'e-model of A with H~ and A" is an H"-model of
A' with Hg, define z r : E ' ~ 2 z'* so that
~t(o) = o(F,' O ~ e}) Ix'l for a • E' and define
He: X"--* 2 -=. as He(o) = H'Qr(hr ' (a))) for a • X".
Then

(1) He is a minimal primitive map.
(2) A" is an He-model of A with Ho(s)=

Hg(h'(H~(s))) for all s • F*.

Proof. Clearly, ff is a minimal primitive map.
By Proposition 3.3, He is also a minimal
primitive map. Compatibility is shown as
follows: if A" is eventually L-restrictable, then
A' is eventually H"(L)C-restrictable by output
feedback ~ A' is eventually H~(L) ~-
res t r ic tab le~ A' , is eventually ~r(H"(L)~)-
restrictable---~A is eventually He(L)~-restrictable
by output feedback. Finally, detectability is
immediate. []

4. AGGREGATION
In this section, we use the concept of modeling

of Section 3 to present an approach for the
aggregation of DEDS. Suppose that our system
is capable of performing a set of tasks. What we
would like is to design a compensator that
accepts as inputs requests to perform particular
tasks and then controls A so that the appropriate
task is performed. Assuming that the completion
of this task is detected, we can construct a higher
level and extremely simple model for our
controlled system: tasks are requested and
completed. In the first subsection we define tasks
and several critical properties of sets of tasks and
their compensators. In Section 4.2 we discuss the
property of task observability, i.e. the ability to
detect all occurrences of specified tasks. In
Section 4.3 we then put these pieces together to
construct a special higher-level model which we
refer to as task standard form.

4.1. Reachable tasks
Our model of a task is a finite set of finite

length strings, where the generation of any string
in the set corresponds to the completion of the
task. Let T be the index set of a collection of
tasks, i.e. for anny i • T there is a finite set L; of
finite length strings over E that represent task i.

We let Lr = U Li.
ieT

Definition 4.1. Given T, we say that T is an
independent task set if for all s • Lr, no substring
of s, except for itself, is in Lr. []

Then when we look at a tracking sequence
there is no ambiguity concerning what tasks have
been completed and which substring corresponds
to which task. Note that if T is an independent
set, then the minimal recognizer (AT, x0) for all
of Lr has a single final state xl, i.e. all strings in
L r take x0 to x I , and x I has no events defined
from it (since L r is a finite set). Furthermore, for
each i • T, the minimal recognizer (AL,, x0 t') also
has a single final state x~' which has no events
defined from it.

Definition 4.2. A task i • T is reachable if A is
stably L*~-restrictable. T is a reachable set if
each i • T is reachable. []

Definition 4.3. Task i • T is reachable by output
feedback if A is stably L*~-restrictable by output
feedback. T is reachable by output feedback if
each i • T is reachable by output feedback. []

For example, task L1 = {o~fll} and Lz = {cq32}
for the DEDS of Fig. 1 are both reachable by
output feedback.

Given a task i • T that is reachable by output
L*C feedback, let Ci : F*--~ U be an i -restrlctability

compensator. Note that states in Eo(L*C), as
defined in Section 2, are guaranteed to generate
a sublanguage of L *c in the closed loop system.
However, for any state £ outside of E0(L*~),
although we cannot guarantee that L *~ will be
generated given the particular knowledge of the
current state of the system (i.e. given that the
system is in some state in ~), it may still be
possible for such a string to occur. Furthermore,
in general, a string in Lj, for some other j, may
be generated from a state x ~ before the
trajectory in O reaches Eo(LTC). If in fact this
happens, then task j will have been completed
while the compensator was trying to set-up the
system for task i. Since this is a mismatch
between what the compensator is trying to
accomplish and what is actually happening in the
system, we will require that it cannot happen. To

Aggregation and multi-level control 573

make this precise, let Z, denote the set of
persistent observer states where, as in 0zv e ren
and Willsky (1990), a state is persistent if it can
be reached by an arbitrarily long string of
events. We enforce the condition described
previously only for behavior initiated from
within Z . thereby accommodating its possible
violation for the finite number of transitions until
the observer reaches Z,:

Definition 4.4. Given a reachable task i e T and
an L*C-restrictability compensator C~, C~ is
consistent with T if for all $ e Z, N Eo(L*~), for
all x e ~, and for all s ~ L(Ac,, x), t(s) ~ Lr. []

Let us consider testing the existence of and
constructing consistent restrictability compen-
sators. Note that we only need to worry about
forcing the trajectory in O into Eo(L *~) without
completing any task along the way. Once that is
done, restricting the behavior can be achieved by
the compensator defined in Proposition 2.2.
First, we need a mechanism to recognize that a
task is completed. Let (At, Xo) be a minimal
recognizer for Lr with state set X r and final state
x s. Since not all events are defined at all states in
X r , we add a new state, g, to Xr, and for each
event that is not previously defined at states in
X r we define a transition to state g. Thus if A r
enters state g, we know that the tracking event
sequence generated starting from Xo and ending
in g is not the prefix of any task sequence. Also,
to keep the automaton alive, we define self-loops
for all events in = at states g and x r Let A~- be
this new automaton. Given a string s over F,, if s
takes x0 to g in A~- then no prefix of s can be in
Lr . If, on the other hand, the string takes Xo to
x I then some prefix of this string must be in Lr.
Now, let O ' = (G', w', v') be the observer for
A][A~-. We let the state space Z ' of Q ' be the
reach of initial states

Z~ = {~ x {Xo} I ~ c Zr}, (4.1)

i.e. Z'=R(O',Zo). Let p:Z'--~Z~ be the
projection of Z ' into Z , i.e. given 2 e Z ' ,
p (2) = U {x,}. Also, let E~={2eZ ' lp (2)e

(x~,x2)~i

Eo(L*~)}. Our goal is to reach E~ from the initial
states Z~ while avoiding the completion of any
task. So, we remove all transitions from states in
E~ and instead create self loops in order to
preserve liveness. Let O " = (G', w", v") repre-
sent the modified automaton. Let us now
consider the set of states in which we need to
keep the trajectory. These are the states that
cannot correspond to a completion of any task:

E" = (2 e Z ' I V(x,, x2) e 2, x2 d:xl}. (4.2)

Let V' be the maximal (f, u)-invariant subset of
E', with K v' the corresponding A-compatible,
minimally restrictive feedback. In order for a
consistent compensator to exist, Z~ must be a
subset of V'. In this case we need to steer the
trajectories to E~ while keeping them in V'.
Thus, we need to find K":Z'-->U so that Z ' is
E~-pre-stable in O~:v. and so that the combined
feedback K: Z'--~ U with

K(2) = KV'(£) n K"(2), (4.3)

for all 2 e Z ' is A-compatible. The construction
of such a K, if it exists, proceeds much as in
Section 2. Thanks to the uniqueness of K v', if
we cannot find such a feedback, then a
consistent restrictability compensator cannot
exist. To continue, we assume that consistent
compensators exist, i.e. that Z ~ c V' and K
exists.

Finally, let us outline how we put the various
pieces together to construct (7,-. Given an
observation sequence s, we trace it in O starting
from the initial state {Y}. Let .~ be the current
state of O given s. There are three possibilities:

(1) If .~ g Z, and the trajectory has not yet
entered Eo(L*C), we use O and an E0(L*C)-pre -
stabilizing feedback to construct Ci(s) as in
Proposition 2.2.

(2) If ~ e Zr and the trajectory has not yet
entered Eo(L*~), we use the observer O" and
feedback K defined above. In particular, let ,~'
be the state in the observer O into which the
trajectory moves when it enters Z, for the first
time, and let s ' be that prefix of s which takes
{Y} to $ ' in O. Then, we start O" at state
$ ' XXo. Then i fs /s ' takes .f' x x 0 to 2 in O",

C~(s) = (0"(2) n K(2)) U (v"($) O ~)). (4.4)

(3) When the trajectory enters Eo(L*~), we
switch to using O(L *c) and the (f, u)-invariance
feedback K Lrc . Ci(s) can then be constructed as
in Proposition 2.2.

We now describe explicitly an overall com-
pensator which responds to requests to perform
particular tasks by enabling the appropriate
compensator C/. Given a set of p tasks T,
reachable by output feedback, and a task i e T,
let C~:F*--~U denote the compensator cor-
responding to task i. The compensator C that we
construct admits events corresponding to re-
quests for tasks as inputs and, depending on the
inputs, C switches in an appropriate fashion
between C~. In order to model this, we use an
automaton illustrated in Fig. 4, which has
p-states, where state i corresponds to using the
compensator C / t o control A. The set of events
r~ r are forced events, as introduced in Section 2,

AUTO 28:3-I

574 C . M . OZVEREN and A. S. WILLSKY

F[IZ F • 0 °

'211

FIG. 4. An automaton to construct C.

corresponding to switching to C,-. In this case,
when zF is forced, C~ is used as the compensator .
Let D r = {r~ ~.F} and Ur = 2 *~. The input
to C is a subset of Dr , representing the set of
tasks which are requested. The compensator
responds to this input as follows: if C is set up to
perform task i. There are three possibilities: (1)
if the input is the empty set, then C disables all
events in A, awaiting future task requests; (2) if
the input contains rF, then C will not force any
event but continue performing task i (thereby
avoiding an unnecessary set-up transient); (3)
finally, if the input is not empty but it does not
contain r~, then C will force one of the events in
this set. At this level of modeling, we do not
care which event C decides to force. If the action
of C corresponds to a switch from one task to
another, the activated task compensator C~ is
initialized using the approach described pre-
viously. Specifically, suppose that the observer is
in state ~ right before r~ e is forced. Consider the
three cases described previously for C~: if 2 ~ Z~
and 2 ~ Eo(L*~), then we use O starting f rom the
initial state ~ and an Eo(LTC)-prestabilizing
feedback. If ,f • Z r and 2 ~ Eo(L*C), then we
start O" at state 2 x Xo and use the compensator
described previously to drive the system to the
desired set of states. Finally, if ~ • Eo(L*~), then
we start O(L *¢) at state x~:~x 2, where x~ :~ is
the initial state of the minimal recognizer for

UT

Compensator

Task 1 [

Task p

FIG. 5. Block diagram for Ac.

U _l

F - I A
I

L *c, and we use the (f, u)-invariant feedback
K L:c. A block diagram for Ac is illustrated in
Fig. 5.

4.2. Observable tasks
In this section, we define a notion of

observability for tasks. Consistent with our
definition of detectability, we focus on detecting
occurrences of tasks f rom that point in t ime at
which the observer enters a persistent state. This
can be viewed either as allowing a short start-up
period or as specifying the level of initial state
knowledge required in order for task detection
to begin immediately.

Definition 4.5. A task i • T is observable if there
exists a function `9:Zr X L(O, Zr)--> {e, V/F} so
that for all 2 • Zr and for all x • 2, `9 satisfies:

(1) `9(2, h(s)) -- V/e for all s • L(A, x) such
that s=plPEP3 for some Pl,Pz, P3•X* for
which t(p2) • Li, and

(2) .9(2, h(s)) = • for all other s • L(A, x).

A set of tasks T is observable if each i • T is
observable. []

Since we use task observability only with task
control, we construct a test for the observability
of task i assuming that it is reachable and that we
are given a consistent LTC-restrictability com-
pensator Ci. Thanks to consistency, we only
need to construct # for £ •Eo(L *c) and for
strings s such that t (s) •L*L First, we let

t t t AL, = (G'L,,fL,, dr,,) be the same as the recog-
nizer AL, but with a self-loop at the final state x~'
for each o • E. Now, let Q = (G o, re, do), with
state space XQ, denote the live part of A'L, II A,
i.e. X o is the set of states x in X[, × X so that
there exists an arbitrarily long string in
L(A'L, II A, x). In fact, note that for each x • X
such that (x0 L', x) • X o, there exists s • L(A, x)
so that t(s) • Li. Finally, let OQ = (FQ, w o, VQ)
be the observer for Q with the state space ZQ
that is the reach of

ZQO = [._.J ({x~'} × 2) fq XQ, (4.5)
.~Eo(Li *c)

in QQ, i.e. ZQ = R(OQ, ZQO). Note that if i is
observable, then the last event of each string in
Li must be an observable event. Assuming that
this is the case, let

EQ = {2 • ZQ I 3(X, y) • 2 such that x = x#'}.
(4.6)

Given the observations on A c let us first trace
the trajectory in the observer O. At some point
in time, O enters some 2 • Eo(L* O. When this
happens we know that the system starts tracking

Aggregation and multi-level control 575

task i. At this point, let us start tracing the
future observations in O~ starting from the state
({x0 t'} x ~) tq XQ. This trajectory will enter some

• E o, and at this point, we know that task i
may have been completed. However, for task
observability, we need to be certain that task i is
completed. Thus, for an observable task, it must
be true that for all £ • EQ and for all (x, y) • £,
x = X ~ ', In this case we can define ~ to be •
until the trajectory in OQ enters E o and ~ from
that point on. Thus, we have shown the
following:

Proposition 4.6. Given a reachable task i • T
and a consistent L*~-restrictability compensator
Ci, if (1) the last event of each string in L~ is
observable; and (2) for all ~ • E o and for all
(x, y) • ~, x =x~', then task i is observable in
Ac,. []

l ~

ACD

I Compensator [~_t I,'

. Jl 'i

, Taskp I ['
I I I I t

• , , = i Task Detector , ~=

I~G. 7. The task-level closed-l~p system.

example, if D is set at Di and r 7 is forced by C,
then D switches to Dj. The output of D takes
values in Fr = {IpF, • • • , lp~.

The procedure explained above allows us to
detect the first completion of task i. Detecting
other completions of task i is straightforward.
Suppose that O enters the state ~ when O o
enters EQ. Note that ~ • Eo(L*C). At this point
we detect the first occurrence of task i, and we
immediately re-start OQ at state x~' x 9 tq X o.
The procedure continues with each entrance into
EQ signaling task completion and a re-start of
OQ. Note that the observer O runs continuously
throughout the evolution of the system. Let
D*:F*--~{E,~p/F} denote the complete task
detector system. We can think of D~ as a
combination of three automata: the observer O,
the system O o which is re-started when a task is
detected, and a single one-state automaton
which has a self-transition loop, with event ~ ,
which occurs whenever a task is detected. This
event is the only observable event for this
system. Note that both the O o re-start and the
~p~ transition can be implemented as forced
transitions.

Finally, in the same way in which we
constructed C from the Ci, we can also define a
task detector D, illustrated in Fig. 6, from the
set of individual task detectors Di. Specifically, if
C is set at Ci initially, D is set at Di. Using the
output ~ r of C, D switches between Di. For

u ", I F I A 1

1
- ~ Task Detector [FT 7--

I
FIG. 6. Task detector block diagram.

4.3. Task-level closed loop systems and task
standard form

Using the pieces developed in the preceding
subsections we can now construct a task-level
closed-loop system as pictured in Fig. 7. The
overall system is AcD = (Gco, fco, dco, tcu,
hco) where

GcD = (XcD, Z U ~ r U FT, ~ U ~ r ,

F U ~ r U F r , ~ U ~ r) . (4.7)

Note that ~ r and Fr are both observable and ~ r
is controllable. Also, we include ~ r in the
tracking events to mark the fact that the system
has switched compensators. This is important
since following the switch, we will allow a finite
length set-up. Also, since it does not make much
sense in practice to force a switch to another
compensator while the system is in the middle of
completing a task, we impose the restriction that
events in ~ r can only be forced right after a task
is completed. Since we require that all the tasks
are observable (see Proposition 4.7), we can
easily implement this restriction. Then, AcD can
only generate strings s such that

t(s) • (E U {EI)'(L~ U . . . U Lp)

x (H¢(r,)Lt tO... UH~(r,)L~)*, (4.8)

where n, is the maximum number of tracking
transitions needed until O enters the set of
persistent states in Eo(L *c) for each i • T.

The higher-level operation of this system
consists of the task initiation commands, ~ r and
the task completion acknowledgements, Ft. The
input Ur indicating what subset of tasks can be
enabled can be thought of as an external
command containing the choices of subsets of ~ r
to be enabled. The use and control of this

576 C . M . ()ZVEREN and A. S. WILLSKV

~l ~2

~a

FIG. 8. Task standard form: all events
observable.

are controllable and

command involves higher-level modeling or
scheduling issues beyond the purely task-level
concept. What we show in this section is that the
task-level behavior of AcD can in fact be
modeled, in the precise sense introduced in
Section 3, by a much simpler automaton
ArsF=(GrsF, frsF, drsF) illustrated in Fig. 8
where all the events are controllable and
observable. We term Arsr the task standard
form.

Let us first define He. We first define
He(e) = • and He(~Pi) = Li. Note that, thanks to
the independence of T, for any i,] • T, no suffix
of string in He(~Pl) can be in He(~pj). Defining
He(~i) is more tricky. There are two issues.

(1) We need to take into account the fact that
the closed loop system does not generate strings
in L,- immediately after C switches to Ci. In
particular, if we assume that O is in a persistent
state when C switches to Ci and if we let ne
denote the maximum number of tracking
transitions that can occur in A for any trajectory
in O that starts from a persistent state of O up to
and including the transition that takes the
trajectory to a state in Eo(L*C), then at most ne
tracking transitions can occur after C switches to
Ci and before the behavior of the closed loop
system is restricted to L *c. Thus, we must
choose He so that He(~i) _~ z~(E tA {•})n~.

(2) We also need to ensure the minimality of
He. Specifically, we now know that He(r~)~_
z~(EtA{e}) n~. Suppose that we let He(l:~)=
r~(,~t3 {•})~°. Then, no suffix of a string in
He(~Oi) can be in He(r/) since all strings in He(r/)
start with r~. Also, no suffix of a string in He(z,.)
can be in He(z/) even if i=j . However, a suffix
of a string in r~(,E O {•})"~ may be in He(lp/) for
some j. Thus, we let He(~i) = (F_, tA {•})~o N
(E O {•})~*Lr. Note that thanks to consistency,

the strings in LT cannot occur in a set-up of a
task. Therefore, eliminating strings that end with
a string in Lr will not cause any problems in
restrictability.

Proposition 4.7. Given a set of tasks T that is
reachable by output feedback and observable,
ArSF is an H : m o d e l of Aco.

Proof. We first verify the detectability condi-
tion. Before defining Ho, let us define t ' : ~ r U
Fr-->ZT.SF as t ' (r ~ = ri for all i and t'(~p/v) = ~Pi
for all i. We then pick H0 as t' of the projection
of the observation sequence over F tJ ~ r tJ Fr to
¢br L) Fr, i.e. Ho(s) = t'(s ~ (gPr U Fr)) , where,
s ~ H, in general, denotes that part of the string
s over the alphabet H c Z. Finally, let n d be nt
divided by the length of the shortest string in L T.
Then, thanks to observability, the first detect-
ability condition is satisfied. Also, using
minimality it is straightforward to verify the
second detectability condition.

To verify the compatibility conditon, note that
ArSF is eventually restrictable to any infinite
length string s in L(ArsF). Thus, if we show that
Aco is eventually He(s)¢-restrictable by output
feedback, then the compatibility condition is
verified. Let us now proceed with showing this. If
the first event of s is some zi, then we simply
force ~ and look at the second event. If the first
event of s is some lpi, then we force zff and wait
until ~Pi- When Wi occurs, we look at the second
event. In both cases, when we look at the second
event, we repeat the same process. It then
follows that Aco is restricted as desired.
Therefore, ATSF is an H : m o d e l of Aco. []

5. CONCLUSIONS
In this paper, we have introduced concepts of

higher-level modeling for DEDS based on a
given set of primitive event sequences cor-
responding to tasks which the system may
perform. Through our investigation of task
reachability we constructed task compensators
and this, together with task observability allowed
us to construct simple high-level models of
automata so that events in the high-level model
correspond to set-up and completion of tasks.
The aggregation scheme presented in this paper
provides one tool that can be of use in
combatting the computational complexity in
DEDS problems of interest. In particular, the
cardinality of the overall state space of a system
consisting of many subsystems can be extremely
large. However, in many applications, the
coordination of the subsystems is only required
at the task level, allowing the possibility of
aggregating the subsystems individually before

Aggregation and multi-level control 577

considering their composite, thereby reducing
complexity significantly. In Ozveren (1989) we
present an example illustrating this idea
involving the multi-level control of workstations
connected by buffers. Such a framework opens
up numerous questions for the future, ranging
from the use of higher-level models as the basis
for quantitative system analysis to the careful
examination of the information and control
required at various levels of a hierarchical
control system of the type described here.

REFERENCES
Cieslak, R., C. Desclaux, A. Fawaz and P. Varaiya (1988).

Supervisory control of discrete-event processes with partial
observations. IEEE Trans. on Automatic Control, 33,
249-260.

Golazewski, C. H. and P. J. Ramadge (1988). Mutual
exclusion problems for discrete event systems with shared
events. Proceedings o f 27th Conference on Decision and
Control.

Hoperoft, J. E. and J. D. Ullman (1979). Introduction to
Automata Theory, Languages, and Computation. Addison-
Wesley, Reading, MA.

Inan, K. and P. Varaiya (1988). Finitely recursive process
models for discrete event systems. IEEE Trans. on
Automatic Control, 33(7).

Kumar, R., V. Garg and S. I. Marcus (1990). Language
stability of deds. Conf on Math. Theory o f Control,
Bombay, India.

Lin, F. and W. N. Wonham (1988a). Controllability and

observability in the statefeedback control of discrete-event
systems. Proceedings o f 27th Conference on Decision and
Control.

Lin, F. and W. N. Wonham (1988b). On observability of
discrete event systems. Information Sciences, 44, 173-198.

Ozveren, C. M. (1989). Analysis and control of discrete
event dynamic systems: a state space aproach. Ph.D.
thesis, MIT, Cambridge, MA. Laboratory for Information
and Decision Systems Report, LIDS-TH-1907.

(Szveren, C. M. and A. S. Willsky (1990). Observability of
discrete event dynamic systems. IEEE Trans. on

.. Automatic Control, 35, 797-806.
Ozveren, C. M. and A. S. WiUsky (1991). Output

stabilizability of discrete event dynamic systems. IEEE
Trans. on Automatic Control, 36, 925-935.

Ozveren, C. M. and A. S. Willsky (1992). Tracking and
restrictability in discrete event dynamic systems. SIAM J.

.. Control Optimiz., to appear.
Ozveren, C. M., A. S. Willsky and P. J. Antsaklis (1991).

Stability and stabilizability of discrete event dynamic
systems. J. ACM, 38, 730-752.

Ramadge, P. J. (1989). Some tractable supervisory control
problems for discrete event systems modeled by Buchi
automata. IEEE Trans. on Aut. Control, 34, 10-19.

Ramadge, P. J. and W. M. Wonham (1987a). Modular
feedback logic for discrete event systems. S lAM J. Control
Optimiz. 2,5(5).

Ramadge, P. J. and W. M. Wonham (1987b). Supervisory
control of a class of discrete event processes. SIAM J.
Control Optimiz. 25(1).

Vaz, A. F. and W. M. Wonham (1986). On supervisor
reduction in discrete event systems. Int. J. Control.

Zhong, H. and W. M. Wonham (1990). On the consistency
of hierarchical supervision in discrete event systems. IEEE
Trans. on Aut. Control, 35(10).

