
Automatica, Vol. 28, No. 3, pp. 565-577, 1992 
Printed in Great Britain. 

0005-1098/92 $5.00 + 0.00 
Pergamon Press Ltd 

~) 1992 International Federation of Automatic Control 

Aggregation and Multi-Level Control in 
Discrete Event Dynamic Systems*t 

CLINEYT M. OZVEREN,  and ALAN S. WILLSKY§ 

The problem of controlling discrete-event dynamic systems so that it only 
produces strings of meaningful tasks is considered. This leads to the 
development of aggregate task-level models of  such systems. 

Key Words--Automata theory; control system design; discrete systems; modeling; observers; 
regulator theory; reliability; stability; state space methods; supervisory control. 

Abstract--In this paper we consider the problem of 
higher-level aggregate modeling and control of discrete-event 
dynamic systems (DEDS) modeled as finite state automata in 
which some events are controllable, some are observed, and 
some represent events to be tracked. The higher-level 
models considered correspond to associating specified 
sequences of events in the original system to single 
macroscopic events in the higher-level model. We also 
consider the problem of designing a compensator that can be 
used to restrict microscopic behavior so that the system will 
only produce strings of these primitive sequences or tasks. 
With this lower level control in place we can construct 
higher-level models which typically have many fewer states 
and events than the original system. The use of these 
higher-level models allow us to decrease the computational 
complexity of problems involving complex interconnected 
DEDS. 

1. INTRODUCTION 

THE STUDY OF COMPLEX SYSTEMS has frequently 
prompted research on tools for aggregation and 
multi-level analysis. In this paper, we study such 
tools in the context of Discrete Event Dynamic 
Systems (DEDS) as introduced by Ramadge and 
Wonham (1987a, b). Specifically, the apparent 
combinatorial explosion associated with many 
DEDS analysis techniques would seem to place 
severe limits on their utility. Thus, there is 
ample motivation for the development of 
techniques for exploiting system structure and in 
particular for aggregating system behavior in 
order to mask out microscopic detail and focus 
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on macroscopic behavior. In this paper we 
develop such a technique by exploiting the fact 
that in many applications the desired range of 
behavior of a DEDS is significantly smaller and 
more structured than its full range of possible 
behaviors. For example, a workstation in a 
flexible manufacturing system (FMS) may have 
considerable flexibility in the sequence of 
operations it performs. However, only particular 
sequences correspond to useful tasks, and one 
would like to restrict behavior so that only these 
are performed. This underlies the notion of a 
legal language introduced in Ramadge and 
Wonham (1987b) and generalized slightly in 
Ozveren and Willsky (1992). It also suggests a 
natural way in which to perform aggregation by 
mapping a sequence of events, corresponding to 
a task, to a single macro-event at the 
higher-level. An important point to note is that 
in many applications, such as an FMS, the 
overall system consists of an interconnection of 
many subsystems, yielding extremely large 
composite state spaces. However, in most cases 
the desired coordination of the subsystems is at 
the task level. Thus, for example, in analyzing 
an FMS we can build individual aggregate 
models for each workstation and then consider 
coordination issues only at the higher level. 

A key element in the concept we have 
described is the design of compensators that 
restrict behavior to the completion of desired 
tasks. As we have stated this is closely related to 
the legal language supervisory control work of 
others and to our work in t)zveren and Willsky 
(1992) which not only allows us to achieve 
significant etiiciencies by describing desired 
behavior in terms of primitive tasks but also, and 
more importantly, incorporates the notion of 
eventual restrictability through which we can 
directly model and accommodate the phenome- 
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non of set-up, i.e. the externally irrelevant 
transient behavior arising when one switches 
between tasks. In particular, the consideration of 
transient behavior led us to define and study a 
notion of stability in ¢)zveren et al. (1991) that 
plays an important role here as well. Another  
important aspect of our work is the use of an 
intermittent observation model in which only the 
occurrences of certain key events are observed. 
We have shown that this model has significant 
consequences for both observability in ¢)zveren 
and Willsky (1990) and output stabilization in 
¢)zveren and Willsky (1991). In particular, this 
model captures a critical issue in the control of 
complex systems, namely the coordinated timing 
of information and control action. 

In the next section we review some of the 
concepts from previous work and extend our 
earlier work to the design of output-feedback 
compensators that achieve eventual restric- 
tability. In Section 3 we make precise what we 
mean by a higher-level model based on a given 
set of macroscopic events each of which 
corresponds to strings of events at the lower 
level. Care must be taken in these specifications 
not only to ensure the faithful mapping of 
control and observations from microscopic to 
macroscopic levels but also to deal correctly with 
the change in the measure of logical time 
involved in the aggregation, since entire 
microscopic sequences are mapped into single 
macroscopic events. In Section 4 we then 
consider the design of task-level controllers and 
corresponding higher-level models for DEDS.  
This requires several additional concepts for the 
compatible control of a set of tasks and the 
construction of a system for the detection of task 
completions. Using these components,  we 
construct a task-level control system which 
accepts task requests as input and controls the 
system to achieve the desired sequence. This 
leads to a simple higher-level model whose 
transitions only involve the set-up and comple- 
tion of tasks. This model not only can be of 
value in simplifying the analysis of interconnec- 
tions of DEDS but also its simple and regular 
form should greatly facilitate subsequent stages 
of DEDS analysis such as those involving timing 
studies or probabilistic measures of 
performance. 

2. BACKGROUND AND PRELIMINARIES 
The systems we consider (much as in Cieslak 

et al. (1988), Lin and Wonham (1988a, b), 
Ramadge and Wonham (1987a, b) and Vaz and 
Wonham (1986)), are nondeterministic finite- 
state automata with intermittent event observa- 
tions defined over G = (X, Y, ~ ,  F, 2). Here  X 

is the state set, with n =IXI,  Z is the set of 
possible events, • c Y is the set of controllable 
events, F c Y is the set of observable events, and 
E ~ Z  is the set of tracking events. Control is 
affected by enabling some or all of the 
controllable events, and the dynamics then 
evolve via the occurrence of events that are 
either enabled or uncontrollable (and thus 
permanently enabled). That is, the dynamics on 
G take the following form: 

x[k + 1] ef(x[k], a[k + 1]), (2.1) 

a[k + IIE (d(x[k]) fq u[k]) U (d(xIk]) n ~), 
(2.2) 

where • denotes the complement of ~ .  Here ,  
x[k] ~X, a[k + 1] e Z ,  and u[k] e U - 2 *  is the 
control input. The function d:X---~2 ~ specifies 
the set of possible events defined at each state, 
and the function f : X  x Z---~ X is also set-valued 
(capturing nondeterminism). We assume that 
~ c F ,  which simplifies the presentation and 
computational complexity of our results. 

Our model of the output process is that 
whenever an event in F occurs, we observe it. 
Specifically, define h : Z ~ F t.J { e } by 

h(a)=[a~ if a ~ F  
(2.3) 

e otherwise, 

where e is the "null transition". Then,  our  
output equation is 

~,[k + 1] = h(a[k + 1]). (2.4) 

Note that h can be extended to a map on Z*, the 
set of all strings of finite length including 
the empty string e, via h(a~. . ,  an)= 
h ( o 1 ) - - - h ( o n ) .  

The set E is the tracking alphabet, allowing us 
to define tracking over a selected alphabet. We 
use t : Z * - * E * ,  to denote the projection of 
strings over Z into E*. Note that if there exists a 
cycle in A that consists solely of events that are 
not in E, then the system may stay in this cycle 
indefinitely, generating no event in E. It is not 
difficult to check for the absence of such cycles, 
and we assume this is the case. The quintuple 
A = (G, f,  d, h, t ) t  representing our system can 
also be visualized graphically as in Fig. 1. The 
first symbol in each arc label denotes the event,  
while the symbol following " / "  denotes the 
corresponding output. We mark the controllable 
events by " : u "  and tracking events by " !" .  

There are several standard computer  science 
concepts that we will need in our investigation. 

t On occasion, we will construct auxiliary automata for 
which we will not be concerned with tracking. In such cases 
we will omit t from the specification. 
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FIG. 1. A simple example. 

The first is the notion of liveness: a DED S  is 
alive if d(x) is nonempty for each x • X. We will 
assume that this is the case. A second commonly 
used notion (Cieslak et al., 1988; Golazewski 
and Ramadge, 1988; Inan and Varaiya, 1988), 
that we need is the composition A12 = A1 [I A2 of 
tWO automata,  A i - - ( G - , f ,  di, hl) which share 
some common events. The dynamics of the 
composition are specified by allowing each 
automaton to operate as it would in isolation 
except that when a shared event occurs, it must 
occur in both systems. 

Central to our  work is the notion of stability 
studied in Ozveren et al. (1991) (see also 
Ramadge, 1989). Let  E be a given subset of X. 
A state x • X is E-pre-stable if every trajectory 
starting from x passes through E in a bounded 
number of transitions. The state x • X is E-stable 
if every state reachable from x is E-pre-stable,  
and the DEDS is E-stable if every x • X  is 
E-stable. Note that E-stability for all of  A is 
identical to E-pre-stability for all of  A, and that 
this condition guarantees that all trajectories go 
through E infinitely often. We refer the reader 
to 0zve ren  et al. (1991) for an O(n 2) test for 
E-stability. 

In Ozveren et al. (1991) we also study 
stabilization via state feedback of the form 
K:X-->U resulting in the closed-loop system 
A r  = (G, f, dr, h, t) with 

dr(x) = (d(x) O r (x ) )  u (d(x) O ~p). (2.5) 

A DEDS is E-stabilizable if we can find K so 
that A r  is both alive and E-stable. 

In Ozveren and Willsky (1992), we use 
compensators that use both current state and 
event trajectory information in order  to control 
system behavior. Such a compensator,  described 
by a map C : X  x Z*--~ U, yields a closed-loop 
system with 

a[k + 1] • dc(x[k], s[k]) 

(d(x[k]) n C(x[k], s[k])) u (d(x) n ~,), (2.6) 

where s[k] = t r [ 0 ] . . ,  a[k] with o[0] = e. Note 
that this class of compensators is similar to the 
class of supervisors introduced in Ramadge and 

Wonham (1987b) although by allowing depend- 
ence on the current state we can achieve a 
somewhat richer class of behaviors. Also, as in 
our previous work, we will see here that for our  
purposes we can restrict attention to compen- 
sators that can be realized by finite state 
machines. 

As in other work on DEDS,  it is useful to 
phrase questions concerning event trajectory 
behavior in terms of languages (Hopcroft  and 
Ullman, 1979). Let  L be a regular language over  
a finite alphabet and let (AL, Xo) be a minimal 
recognizer for L. Given a string s • L, if s = pqr 
for some p, q and r over Y. where p is a prefix of  
s and r is a sufftx of s, we use s/pq to denote the 
suffix r, and we say that q is a substring of s. 
Also, for any language L, we let L c denote  the 
prefix closure of L, i.e. 

L c = {p • Z* [p is a prefix of some s • L}. 

(2.7) 

Finally, L is a complete language if (a) every 
s • L is a proper  prefix of some other  r • L (so 
that all trajectories have unlimited extensions) 
and (b) L is prefix-closed (so that all initial 
segments of a trajectory are in L). Note that for 
a complete language all strings generated by the 
recognizer (AL, x0) are in L. 

In Ozveren and Willsky (1992) we study the 
notion of restrictability, i.e. the ability to force 
the system to generate strings in a desired 
regular complete language defined over F,. This 
is essentially the same as restricting behavior to a 
sublanguage of a specified legal language (see, 
e.g. Ramadge and Wonham,  1987b), with two 
modest differences. First, in our  work we focus 
on restricting only the tracking event trajectory 
behavior. The second is that by focusing on 
regular complete languages, we can use our  
state-based framework. Indeed the key to the 
approach in Ozveren and Willsky (1992) is to 
show how to transform the problem into one of 
static state feedback design to achieve 
controlled-invariance and stability. Fur thermore 
in 0zve ren  and Willsky (1992) we introduce the 
related notions of eventual and stable restric- 
tability in which we allow an initial "set-up" 
transient before restricted behavior is achieved. 
These extensions are crucial in our present 
context and also are essential for the considera- 
tion of error  recovery (Ozveren and Willsky, 
1992). 

In most applications and as captured by our  
model, we do not have available complete 
knowledge of the current state nor of the full 
event history. In Ozveren and Willsky (1990), 
we term a system observable if the current state 
is known perfectly at intermittent,  but not 
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necessarily fixed, intervals of time. A necessary 
condition for observability is that it is not 
possible for our DEDS to generate arbitrarily 
long sequences of unobservable events. This is 
not difficult to check and will be assumed. Also, 
we will need to use some of the notation 
introduced in 0zve ren  and Willsky (1990). 
Specifically, R(A, x) denotes the set of states 
reachable from x, and we let Y denote the set of 
states that either have observable transitions 
defined to them or that are purely initial in that 
there are no transitions to them from any state. 
Let q = IYI, and let L(A, x) denote the set of all 
possible event trajectories of finite length that 
can be generated if the system is started from the 
state x. Also, let Lt(A, x) be the set of strings in 
L(A, x) that have an observable event as the last 
event, and let [,(A) = U L(A, x). 

x~X 

An observer for our system produces an 
"est imate" of the state corresponding to the set 
of possible states into which A transitioned when 
the last observable event occurred. Let  Z c 2 r 
denote the state space of this observer and 
suppose that the present observer estimate is 
2[k] e Z and that the next observed event is 
),[k + 1]. The observer must account for the 
possible occurrence of one or more unobservable 
events prior to y[k + 1] and then the occurrence 
of y[k + 1]: 

i [ k  + II = w(£[kl ,  ~,[k + l l )  

~J f(x, ~,[k + 1]), (2.8) 
x~R(AIr~ikl) 

y[k + 11 e v(g[kl)  

~h(x~R(a~rStkl (d(x)Clu[k])U(d(x)N*)). (2.9) 

The set Z is then the reach of {Y} using these 
dynamics, i.e. we start the observer in the state 
corresponding to a complete lack of state 
knowledge and let it evolve~'. Our  observer then 
is the DEDS O = ( F , w , v , i ) ,  where F =  
(Z, F, ~ ,  F) and i is the identity output function. 
For future reference we will use the symbol i (s) ,  
s e h(f_,(A)) to denote the input -output  map of 
O, i.e. this is the observer estimate if the 
observed output string is s. 

When we only have available these intermit- 
tent observations we need to consider the use of 
an output compensator C:F*--~ U (see Ozveren 
and Willsky, 1991). In this case, however, 
preserving liveness is somewhat more involved 
since not only may we not know the current state 

t To get Z, we consider the richest possible behavior by 
enabling all controllable events. 

exactly, but even if we do, the possible 
occurrence of unobservable transitions will lead 
to uncertainty at least until the occurrence of the 
next observable event. Suppose that we have 
observed the output string s, so that our 
observer is in ~(s) and our control input is C(s). 
Then, we must make sure that any x reachable 
from any element of i ( s )  by unobservable events 
only is alive under the control input C(s). That 
is, for all x ~ R(A I f', i ( s ) ) ,  dc(x, s) should not 
be empty. In this case we will say that C(s) is 
i(s)-compatible. In C)zveren and Willsky (1991) 
we use such output compensators to solve 
problems of stabilization by output feedback. It 
is important to note that the intermittent nature 
of our observations introduces significant issues 
in this study underlining the issue of the timing 
of information and control and distinguishing 
our work from investigations such as in Cieslak 
et al. (1988). We refer the reader to Ozveren and 
Willsky (1991) for details, including a bound of 
q3 on the number of observable transitions until 
any trajectory enters E. 

Let us now turn our attention to extending our 
previous results to the problem of eventual 
restrictability using an output compensator.  

Definition 2.1. Given a complete regular lan- 
guage L over E we say that A is eventually 
L-restrictable by output feedback if there exists 
an integer no and an output  compensator 
C: F* --+ U such that Ac is alive and for all x e X, 
t (L(Ao x)) c (E U {e})n°L. Such a C is called 
an L-restrictability compensator. [] 

Again, this notion represents an extension of 
those used, for example, in Cieslak et al. (1988) 
and Lin and Wonham (1988b), in that: (a) we 
focus on tracking events; (b) we allow an initial 
transient string outside the language L; and (c) 
we must deal with the intermittent nature of the 
observations and the accompanying fluctuation 
in the level of knowledge of the current state. 

In order to construct a test for eventual 
restrictability by output feedback, we need to 
introduce well-known notions of dynamic in- 
variance (see, for example, C)zveren et al. 
(1991); Ramadge and Wonham (1987)). A 
subset Q of X is f-invariant if f (Q,  d) c Q 
where f (Q, d) = U f(x, d(x)) and f(x, d(x)) = 

xeQ 

U f(x ,o) .  We say that a subset Q of X is 
o~cl(x) 

(f, u)-invariant if there exists a state feedback K 
such that Q is f- invariant in A t .  We say that a 
subset Q of x is a sustainably (f, u)-invariant set 
if there exists a state feedback K such that Q is 
alive and f- invariant  in A t .  Let  us also note that 
given any set V e X ,  there is a maximal 
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sustainably (f, u)-invariant subset W of V with a 
corresponding unique minimally restrictive 
feedback K. That is K disables as few events as 
possible in order to keep the state within W. 

We now define a model to capture the desired 
behavior. Given L, let (AL, XLo) be a minimal 
recognizer for L and let ZL denote its state 
space. Let A~ be an automaton which is the 
same as AL except that its state space is 
Z't. = ZL t3 {b} where b is a state used to signify 
that the event trajectory is no longer in L. This 
is the state we wish to avoid. Also, we let 
d'm(X) = ~" for all x • Z~, and 

f't.(x, o) = ~ft.(x, o) if x 4= b and o • dl.(X) 
[ {b} otherwise. 

(2.10) 

Let O denote the observer for A, let 
A(L) = A  II AL, and let O(L)= (G(L), WL, VL) 
denote the observer for A(L);  however, in this 
case, since we know that we will start A [  in Xo L, 
we take the state space of O(L) as 

Z(L) =R(O(L), {(x0 L) x 2  12 • Z ) ) .  (2.11) 

Let 

Vo= {e e Z(L) [ for all (XL, :CA) e ~., XL ~ b}. 
(2.12) 

Let E(L) be the largest subset of Vo which is 
sustainably (f, u)-invariant in O(L) and for 
which the associated unique minimally restrictive 
feedback K EL has the property that for any 

e Z(L),  KEL(~.) is 2(~)-compatible where 

2(~) = {x • X [ 3XL • ZL such that (XL, X) • ~ }. 
(2.13) 

The construction of E(L) and K eL is a variation 
of the algorithm in IDzveren et al. (1991) for the 
construction of maximal sustainably (f,u)- 
invariant subsets. We begin with any state 

• V0. If there are any uncontrollable events 
taking ¢ outside V0, we delete $ and work with 
VI=Vo\{$}. If not, we disable only those 
controllable events which take £ outside Vo. If 
the remaining set of events defined at ~ is not 
2(~)-compatible, we delete ~ and work with 
V~ = Vo\{~}. If not, we tentatively keep ~ and 
choose another element of Vo. In this way, we 
cycle through the remaining elements of Vo. The 
algorithm converges in a finite number of steps 
(at most IV012) to yield E(L) and K eL defined on 
E(L). For ~ • E(L), we take KEt'(~) = Y.. 

Consider next the following subset of E(L) ;  

g o ( L ) = { 2 • Z l x o  L x 2 • E ( L ) } .  (2.14) 

Proposition 2.2. Given a complete language L 
over E, A is eventually L-restrictable by output 

feedback if there exists an A-compatible state 
feedback K:Z--* U such that the closed loop 
system Or  is E0(L)-pre-stable. 

Proof. We prove this by constructing the desired 
compensator C : F* ~ U: Given an observation 
sequence s, we trace it in O starting from the 
initial state { Y}. Let 2 be the current state of O 
given s. There are two possibilities. 

(1) Suppose that the trajectory has not yet 
entered Eo(L). Then we use O and the 
Eo(L)-pre-stabilizing feedback K to compute 
C(s). In particular, 

C(s) = (v(2) n r (2 ) )  u (0(2) n 4,). 

(2) When the trajectory in O enters Eo(L), 
we switch to using the expanded observer O(L) 
and K e(m). In particular, let 2 '  be the state the 
trajectory in O enters when it enters Eo(L) for 
the first time, and let s '  be that prefix of s which 
takes { Y} to 2 '  in O. Then, we start OL at the 
state x~ x 2'  e E(L), and let it evolve. Suppose 
that s/s' takes Xo m x 2'  to ~ in O(L), then 

C(s) = ( v , ( e )  n U (vL(e) n 40.  

Since this feedback keeps the trajectory of O in 
E(L) and E(L)cVo, the behavior of A is 
restricted as desired. [] 

Proposition 2.2 is only a sufficient condition 
for eventual L-restrictability. Specifically, as 
pointed out in Kumar et al. (1990) and Ozveren 
and Willsky (1992), it is possible for a state to be 
eventually L-restrictable without being pre- 
stable with respect to the set of L-restrictable 
states, although there are conditions under 
which this cannot happen. In this paper, we 
focus on the stronger sufficient condition of 
Proposition 2.2, which we refer to as stable 
L-restrictability by output feedback. 

Since E(L) is the maximal sustainably 
(f, u)-invariant subset of Vo and K e(L) is unique, 
the possible behavior of an L-restrictable state x 
in the closed loop system constructed in the 
proof is the maximal subset of L to which the 
behavior of x can be restricted. Also, if E0 = 0, 
then O cannot be Eo(L)-pre-stabilizable and thus 
A is not stably L-restrictable by output 
feedback. Finally, if A is stably L-restrictable by 
output feedback, the results of Ozveren and 
Willsky (1991) allow us to bound the number of 
observable transitions until the trajectory is 
restricted to L. 

In some situations, it is more natural to think 
of systems in which there are forced events 
which can be forced to occur regardless of the 
other events defined at the current state. It is not 
difficult to capture forced events in the modeling 
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framework described in this section (Ozveren,  
1989), and thus we assume that the D E D S  to be 
controlled do not have forced events. However ,  
at the last stage of our development  we will use 
forced events in the description of our task 
standard form to provide a simple and intuitive 
picture of this higher-level model.  

3. CHARACTERIZING HIGHER-LEVEL MODELS 
In this section, we present  a notion of 

higher-level modeling of D E D S  based on a given 
set of primitives, each of which consists of a 
finite set of tracking event strings, where the 
occurrence of any of these strings corresponds to 
some macroscopic event,  such as complet ion of a 
task. To illustrate our notion of modeling and to 
give a preview of task-level control, consider the 
system in Fig. 1 and suppose that we wish to use 
output feedback to restrict its behavior  so that 
the " task"  o~il I is continuously performed,  i.e. 
we want to restrict behavior  to (a~ill) *C. In Fig. 2 
we illustrate an automaton that realizes such a 
compensator.  That  is, compensat ion is achieved 
by the composition of this automaton,  started in 
the state denoted (0, 1 ,2) ,  with the D E D S  of 
Fig. l t .  This au tomaton was constructed in the 
following manner.  First, recall that the set of 
tracking events for the D E D S  of Fig. 1 is 
{oc, ill, if2}, and suppose that for the moment  
we assume that we have perfect state knowledge 
at all times. Since we want to restrict tracking 
sequences to alternating values of tr and ill, we 
obviously want to disable 132. Also, if we are in 
state 0, we want to disable ill since if we do not, 
a possible event sequence would be il~6il 1 so 
that the resulting tracking event sequence would 
be illill" Unfortunately,  we may not know the 
current state, and in particular we start with total 
ignorance of the initial state. In this case, we 
might want to disable il~ or ilz, but we certainly 
cannot disable both,  since this would disable all 
events from state 3. Thus, before we apply any 
control action we need to wait until we have 
some state information. In order  to form state 
estimates, let us construct the observer  O for our 
DEDS (note that Y- -  {0, 1, 2}). What  we then 
do is to determine those controllable events we 
can disable at each observer  state in order to 
(eventually) restrict behavior  to (crilt) *C while 
preserving liveness, and Fig. 2, is the resulting 
restricted observer.  First, at the initial state 
(0, 1, 2) we enable both fll and fiE- The possible 
first observable event is then any in the set 

t Note that the actual compensator map C : F* ~ U can be 
computed as follows: for any s • F*, determine the state of 
the automation of Fig. 2 starting from (0, 1, 2). Then C(s) is 
the set of controllable events that are enabled at this state. 
For example, C(i 0 = {il}, C(6) = {t2}, C(6t2) = {Ell}" 

FIG. 2. Illustrating the compensator for eventual (O~tl) *c- 
restrictability by output feedback for the system of Fig. 1. 

{ill, f12, 6}. If, for example,  we observe f12, we 
know we are in state 2. At  this point, we see that 
if we disable flz, then the subsequent two events 
will necessarily be tr (which is unobservable) ,  
taking us to 3, followed by ill, taking us to 1. 
This is reflected in Fig. 2 where the transition i l2  

takes us from (0, 1, 2) to (2) from which only ill 
is enabled. Similarly, if 6 is observed first, we 
know that we are either in state 0 or 2. Again,  
we cannot disable both 11 and 12 since if we are 
in 2, the uncontrollable and unobservable event  
tr will occur driving the system to state 3, at 
which all events have been disabled. However ,  
from (0, 2) we can, as indicated in Fig. 2 disable 
ill. In this case, if the D E D S  is actually in 0, the 
next observable event will be 6 while if the 
DEDS state is 2, the next observable event will 
be if2, and in either case we will know that the 
D E D S  state has transitioned to 2. 

If  we think of  ~/31 as a primitive, then at a 
higher level we might want to model  only its 
occurrences using the simple automat ion of Fig. 
3 where ~pl denotes the occurrence of this 
primitive. However ,  for this automaton,  with W~ 
observable,  to truly model  A o  we should be 
able to use the observations in A c  to detect 
occurrences of  aq3t, perhaps with some initial 
uncertainty. For example,  by inspection of Fig. 
2, if we observe ill, we cannot say if trill has 
occurred or not, but if we observe illill, we 
know that ocill must have occurred at least once. 
In general, after perhaps the first occurrence of 
ill, every occurrence of ill corresponds to an 
occurrence of cq31. The definition we give in this 
section then allows us to conclude that the 
automaton in Fig. 3 models the closed loop 
system A o  

Let Z '  denote  the macroscopic event  set, 
where each o e Z '  corresponds to a set He(o) of 
tracking strings in the original model  where the 
map He : Z'---~ 2 z* is te rmed primitive if He(o) is a 

@ 
FIo. 3. Higher-level model for completions of the "task" 

a~tl. 
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finite collection of strings. We allow He to be 
set-valued to capture the fact that there may be 
several ways to complete  a desired task. 

Definition 3.1. A primitive map  He is te rmed 
minimal if (1) for all, distinct, ol, 02 • Y~' and for 
all s • He(al) ,  no suffix of s is in He(a2), and (2) 
for all cr • Z',  s ~ H,(o),  no proper  suffix of s is 
in He(o). [] 

We can easily extend He to act on 
(Y.')* :He(e)  = E and He(so) = He(s)He(o), the 
set of all possible concatenations of one string in 
H¢(s) and one in He(o). 

Proposition 3.2. If  He is minimal then for all 
distinct rl, r2 such that rt, r2~ e, Irll ~ Ir21, and rl 
is not a sutfix or rE, E ' H e ( r 0  N E'He(r2) = 0. 

Our  definition of higher-order modeling 
captures two important  propert ies  that such 
models must have in order  to be physically 
meaningful. First, we want control capabilities of  
the macroscopic model  to reflect microscopic 
capabilities. That  is, if it is possible to construct 
a higher-level compensator  that restricts macro-  
level event behavior  to a particular language L, 
then it must be true that we can design a 
micro-level controller to restrict behavior  to the 
complete language corresponding to the map-  
ping of L down to the lower level. Secondly, by 
observing the output  sequence at the lower level, 
we should be able to unambiguously determine 
the corresponding sequence of macro-events ,  
except perhaps  for a finite-length start-up phase 
until the initial state uncertainty settles out (e.g. 
as in the example in Fig. 2). 

Proof. Assume the contrary,  and le t s  e 
E*He(rl) A E'He(r2). Also let ol (respectively, 
02) be the last event in rl (respectively, rE). 
There  are two cases here. First, suppose that  
ol :/: 02. Then,  there exist distinct P l e  He(O1) 
and p2EHe(o2) such that both  PI and P• are 
suffixes of  s. Assume,  without loss of  generality, 
that [Pl[ -< [P2[, then Pl is also a suffix of  p2. But 
then, He cannot be minimal. Now,  suppose that 
01=  02. Thanks to minimality, among all 
elements of  He(01), only one string, say p can be 
a suffix of s. Let  s '  be that prefix of  s such that 
p - - s i s ' .  Then,  repeat  the previous steps using 
s ' ,  and all but the last e lements  of  rl and r2. 
Since rl and r2 are distinct, and rl is not a suffix 
of  r2, Ol will be different f rom 02 at some step 
and then we will establish a contradiction. 
Therefore,  E'He(r1) fq E'He(r2) = 0. [] 

The following states that concatenation pre- 
serves minimality. 

Proposition 3.3. Given minimal Hi" ~"~2----~ 2 zr and 
H2:~3----~2 :g~, if we define H3:~3----~2 ~gr so that 
H3(o) =/-/1(/-/2(0)) for all 0 e ~3, then H3 is a 
minimal primitive map.  Here ,  since / /2(o) is a 
set of strings, HI(H2(tr)) is the set of  strings 
resulting f rom applying HI to each string in 
n2(o).  

Proof. Assuming the contrary,  there exists, 
ol, a2eY3,  s e H3(a0 ,  and a suffix r o f s  so that  
r • H3(02). Let  s '  • H2(o 0 and r '  • H2(02) such 
that s • Hl(S')  and r • Ht(r'). Then,  by mini- 
mality of HE, r '  cannot  be a suffix of  s '  and s '  
cannot be a suffix of  r '  either. Also, since r is a 
suffix of s , s  • Y ~ H I ( r ' ) .  Then,  thanks to 
Proposition 3.2, Hi cannot  be minimal,  and we 
establish a contradiction. [] 

Definition 3.4. Given D E D S  A = (G, f, d, h, t) 
and A'  = (G', f ' ,  d',  h', t') where G '  = 
(X' ,  ~ ' ,  ~ ' ,  F ' ,  E ' ) ,  and a minimal primitive 
map He :Y'---~ 2 ~°, we say that A '  is an He-model 
of A is there exists a map Ho:F*---~Z'* and an 
integer nd SO that : t  

(1) Compatibility, For all complete  L c Y ' *  
such that A '  is eventually L-restrictable,  A is 
eventually He(L)C-restrictable by output  feedback. 

(2) Detectability. For  all s ~ L(A) ,  such that 
t(s) • He(p) for some p • L(A') ,  (a) p • (~,' t.J 
{c})n~Ho(h(s)), and (b) for all r • Y 's ,  
Ho(h(r)) • Y~'*Ho(h(s)). [] 

Compatibili ty formalizes the notion of fidelity 
in the modeling of control,  and detectability 
makes precise the concept of  reconstructability 
of  macro-events.  The map  H0 corresponds to this 
reconstruction process, while n d corresponds to 
the maximum number  of  macro-events  that 
might go unidentified at the start. Condition 2(b) 
captures the need for unambiguous reconstruc- 
tion in that it requires that the reconstruction of 
a string of primitives should not depend upon 
preceding events. 

The following result, which immediately 

t We have chosen in our definition to look at the larger 
class of macroscopic languages to which A is eventually 
restrictable by full state feedback, rather than only with 
output feedback. All of our results carry over if we use this 
weaker notion of compatibility at the higher level. Also, we 
have defined the macroscopic languages over all of "~' rather 
than only the tracking alphabet -~'. Similarly in our definition 
of detectability we have required the stronger condition that 
from lower level observations, we can reconstruct the entire 
upper-level event trajectory, not just the part in F'. Again, 
we can carry all of our development over to the weaker 
cases. As we will see, this stronger definition suffices for our 
purposes. 
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follows from Definition 3.4, states that the 
concept of modeling is invariant under 
compensation. 

ProposMon 3.5. If A '  is an He-model of A then 
for any compensator C':F'*---> U' for A' ,  there 
exists a compensator C:F*---~ U for A such that 
Ab. is an He-model of Ac with the same H0. [] 

In general, we may be interested in several 
different levels of aggregation. Thus we need the 
following result. 

Proposition 3.6. Given the automata A =  
(G, f, d, h, t), A '  = (G ' ,  f ' ,  d ' ,  h ' ,  t ' ) ,  and A" = 
( G", f", d", h", t"), and minimal primitive maps 

t t el ~t He : Z - +  2 ~" and  H~: Z ~ 2-"', so that A'  is an 
H'e-model of A with H~ and A" is an H"-model of 
A'  with Hg, define z r : E ' ~ 2  z'* so that 
~t(o) = o(F,' O ~ e}) Ix'l for a • E' and define 
He: X"--* 2 -=. as He(o) = H'Qr(hr ' (a ) ) )  for a • X". 
Then 

(1) He is a minimal primitive map. 
(2) A" is an He-model of A with Ho(s)= 

Hg(h'(H~(s))) for all s • F*. 

Proof. Clearly, ff is a minimal primitive map. 
By Proposition 3.3, He is also a minimal 
primitive map. Compatibility is shown as 
follows: if A" is eventually L-restrictable, then 
A'  is eventually H"(L)C-restrictable by output 
feedback ~ A'  is eventually H~(L) ~- 
res t r ic tab le~  A' ,  is eventually ~r(H"(L)~)- 
restrictable---~A is eventually He(L)~-restrictable 
by output feedback. Finally, detectability is 
immediate. [] 

4. AGGREGATION 
In this section, we use the concept of modeling 

of Section 3 to present an approach for the 
aggregation of DEDS.  Suppose that our system 
is capable of performing a set of tasks. What we 
would like is to design a compensator  that 
accepts as inputs requests to perform particular 
tasks and then controls A so that the appropriate 
task is performed. Assuming that the completion 
of this task is detected, we can construct a higher 
level and extremely simple model for our 
controlled system: tasks are requested and 
completed. In the first subsection we define tasks 
and several critical properties of sets of tasks and 
their compensators. In Section 4.2 we discuss the 
property of task observability, i.e. the ability to 
detect all occurrences of specified tasks. In 
Section 4.3 we then put these pieces together to 
construct a special higher-level model which we 
refer to as task standard form. 

4.1. Reachable tasks 
Our model of a task is a finite set of finite 

length strings, where the generation of any string 
in the set corresponds to the completion of the 
task. Let T be the index set of a collection of 
tasks, i.e. for anny i • T there is a finite set L; of 
finite length strings over E that represent task i. 

We let Lr = U Li. 
ieT 

Definition 4.1. Given T, we say that T is an 
independent task set if for all s • Lr, no substring 
of s, except for itself, is in Lr. [] 

Then when we look at a tracking sequence 
there is no ambiguity concerning what tasks have 
been completed and which substring corresponds 
to which task. Note that if T is an independent 
set, then the minimal recognizer (AT, x0) for all 
of Lr has a single final state xl,  i.e. all strings in 
L r  take x0 to x I ,  and x I has no events defined 
from it (since L r  is a finite set). Furthermore,  for 
each i • T, the minimal recognizer (AL,, x0 t') also 
has a single final state x~' which has no events 
defined from it. 

Definition 4.2. A task i • T is reachable if A is 
stably L*~-restrictable. T is a reachable set if 
each i • T is reachable. [] 

Definition 4.3. Task i • T is reachable by output 
feedback if A is stably L*~-restrictable by output 
feedback. T is reachable by output feedback if 
each i • T is reachable by output feedback. [] 

For example, task L1 = {o~fll} and Lz = {cq32} 
for the DEDS of Fig. 1 are both reachable by 
output feedback. 

Given a task i • T that is reachable by output  
L*C feedback, let Ci : F*--~ U be an i -restrlctability 

compensator. Note that states in Eo(L*C), as 
defined in Section 2, are guaranteed to generate 
a sublanguage of L *c in the closed loop system. 
However,  for any state £ outside of E0(L*~), 
although we cannot guarantee that L *~ will be 
generated given the particular knowledge of the 
current state of the system (i.e. given that the 
system is in some state in ~), it may still be 
possible for such a string to occur. Furthermore,  
in general, a string in Lj, for some other  j, may 
be generated from a state x ~ before the 
trajectory in O reaches Eo(LTC). If in fact this 
happens, then task j will have been completed 
while the compensator was trying to set-up the 
system for task i. Since this is a mismatch 
between what the compensator is trying to 
accomplish and what is actually happening in the 
system, we will require that it cannot happen. To 
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make this precise, let Z,  denote  the set of 
persistent observer states where,  as in 0zv e ren  
and Willsky (1990), a state is persistent if it can 
be reached by an arbitrarily long string of 
events. We enforce the condition described 
previously only for behavior initiated from 
within Z .  thereby accommodating its possible 
violation for the finite number  of transitions until 
the observer reaches Z,: 

Definition 4.4. Given a reachable task i e T and 
an L*C-restrictability compensator  C~, C~ is 
consistent with T if for all $ e Z,  N Eo(L*~), for 
all x e ~, and for all s ~ L(Ac,, x), t(s) ~ Lr. [] 

Let us consider testing the existence of and 
constructing consistent restrictability compen- 
sators. Note that we only need to worry about  
forcing the trajectory in O into Eo(L *~) without 
completing any task along the way. Once that is 
done, restricting the behavior can be achieved by 
the compensator defined in Proposition 2.2. 
First, we need a mechanism to recognize that a 
task is completed. Let  (At, Xo) be a minimal 
recognizer for Lr with state set X r  and final state 
x s. Since not all events are defined at all states in 
X r ,  we add a new state, g, to Xr, and for each 
event that is not previously defined at states in 
X r  we define a transition to state g. Thus if A r 
enters state g, we know that the tracking event 
sequence generated starting from Xo and ending 
in g is not the prefix of any task sequence. Also, 
to keep the automaton alive, we define self-loops 
for all events in = at states g and x r Let  A~- be 
this new automaton. Given a string s over F,, if s 
takes x0 to g in A~- then no prefix of s can be in 
Lr .  If, on the other  hand, the string takes Xo to 
x I then some prefix of this string must be in Lr. 
Now, let O ' =  (G', w', v') be the observer for 
A ][ A~-. We let the state space Z '  of Q '  be the 
reach of initial states 

Z~ = {~ x {Xo} I ~ c Zr},  (4.1) 

i.e. Z'=R(O',Zo). Let p:Z'--~Z~ be the 
projection of Z '  into Z ,  i.e. given 2 e Z ' ,  
p ( 2 ) =  U {x,}. Also, let E~={2eZ ' lp (2 )e  

(x~,x2)~i 

Eo(L*~)}. Our goal is to reach E~ from the initial 
states Z~ while avoiding the completion of any 
task. So, we remove all transitions from states in 
E~ and instead create self loops in order  to 
preserve liveness. Let  O " =  (G', w", v") repre- 
sent the modified automaton.  Let  us now 
consider the set of states in which we need to 
keep the trajectory. These are the states that 
cannot correspond to a completion of  any task: 

E" = (2 e Z '  I V(x,, x2) e 2, x2 d:xl}. (4.2) 

Let  V'  be the maximal (f, u)-invariant subset of 
E', with K v' the corresponding A-compatible,  
minimally restrictive feedback. In order  for a 
consistent compensator to exist, Z~ must be a 
subset of V'. In this case we need to steer the 
trajectories to E~ while keeping them in V'. 
Thus, we need to find K":Z'-->U so that Z '  is 
E~-pre-stable in O~:v. and so that the combined 
feedback K: Z'--~ U with 

K(2) = KV'(£) n K"(2), (4.3) 

for all 2 e Z '  is A-compatible. The construction 
of such a K, if it exists, proceeds much as in 
Section 2. Thanks to the uniqueness of K v', if 
we cannot find such a feedback, then a 
consistent restrictability compensator  cannot 
exist. To continue, we assume that consistent 
compensators exist, i.e. that Z ~ c  V'  and K 
exists. 

Finally, let us outline how we put the various 
pieces together to construct (7,-. Given an 
observation sequence s, we trace it in O starting 
from the initial state {Y}. Let  .~ be the current 
state of O given s. There  are three possibilities: 

(1) If .~ g Z,  and the trajectory has not yet 
entered Eo(L*C), we use O and an E0(L*C)-pre - 
stabilizing feedback to construct Ci(s) as in 
Proposition 2.2. 

(2) If ~ e Zr and the trajectory has not yet 
entered Eo(L*~), we use the observer O" and 
feedback K defined above. In particular, let ,~' 
be the state in the observer O into which the 
trajectory moves when it enters Z,  for the first 
time, and let s '  be that prefix of s which takes 
{Y} to $ '  in O. Then,  we start O" at state 
$ '  XXo. Then i fs /s '  takes .f' x x 0  to 2 in O", 

C~(s) = (0"(2) n K(2))  U (v"($) O ~)). (4.4) 

(3) When the trajectory enters Eo(L*~), we 
switch to using O(L *c) and the (f, u)-invariance 
feedback K Lrc . Ci(s) can then be constructed as 
in Proposition 2.2. 

We now describe explicitly an overall com- 
pensator which responds to requests to perform 
particular tasks by enabling the appropriate 
compensator C/. Given a set of p tasks T, 
reachable by output feedback, and a task i e T, 
let C~:F*--~U denote the compensator  cor- 
responding to task i. The compensator  C that we 
construct admits events corresponding to re- 
quests for tasks as inputs and, depending on the 
inputs, C switches in an appropriate fashion 
between C~. In order  to model this, we use an 
automaton illustrated in Fig. 4, which has 
p-states, where state i corresponds to using the 
compensator C / t o  control A. The set of events 
r~ r are forced events, as introduced in Section 2, 

AUTO 28:3-I 
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FIG. 4. An automaton to construct C. 

corresponding to switching to C,-. In this case, 
when zF is forced, C~ is used as the compensator .  
Let D r  = {r~ . . . . .  ~.F} and Ur = 2 *~. The input 
to C is a subset of Dr ,  representing the set of  
tasks which are requested. The compensator  
responds to this input as follows: if C is set up to 
perform task i. There  are three possibilities: (1) 
if the input is the empty set, then C disables all 
events in A, awaiting future task requests; (2) if 
the input contains rF, then C will not force any 
event but continue performing task i ( thereby 
avoiding an unnecessary set-up transient); (3) 
finally, if the input is not empty but it does not 
contain r~, then C will force one of the events in 
this set. At  this level of  modeling, we do not 
care which event C decides to force. If the action 
of C corresponds to a switch from one task to 
another,  the activated task compensator  C~ is 
initialized using the approach described pre- 
viously. Specifically, suppose that the observer  is 
in state ~ right before r~ e is forced. Consider the 
three cases described previously for C~: if 2 ~ Z~ 
and 2 ~ Eo(L*~), then we use O starting f rom the 
initial state ~ and an Eo(LTC)-prestabilizing 
feedback. If ,f • Z r and 2 ~ Eo(L*C), then we 
start O" at state 2 x Xo and use the compensator  
described previously to drive the system to the 
desired set of states. Finally, if ~ • Eo(L*~), then 
we start O(L *¢) at state x~:~x 2, where x~ :~ is 
the initial state of the minimal recognizer for 

UT 

Compensator 

Task 1 [ 

Task p 

FIG. 5. Block diagram for Ac. 

U _l  

F - I  A 
I 

L *c, and we use the (f, u)-invariant feedback 
K L:c. A block diagram for Ac  is illustrated in 
Fig. 5. 

4.2. Observable tasks 
In this section, we define a notion of 

observability for tasks. Consistent with our 
definition of detectability, we focus on detecting 
occurrences of tasks f rom that point in t ime at 
which the observer enters a persistent state. This 
can be viewed either as allowing a short start-up 
period or as specifying the level of  initial state 
knowledge required in order  for task detection 
to begin immediately.  

Definition 4.5. A task i • T is observable if there 
exists a function `9:Zr X L(O, Zr)--> {e, V/F} so 
that for all 2 • Zr and for all x • 2, `9 satisfies: 

(1) `9(2, h(s)) -- V/e for all s • L(A, x) such 
that s=plPEP3 for some Pl,Pz,  P3•X* for 
which t(p2) • Li, and 

(2) .9(2, h(s)) = • for all other s • L(A, x). 

A set of tasks T is observable if each i • T is 
observable. [] 

Since we use task observability only with task 
control, we construct a test for the observability 
of task i assuming that it is reachable and that we 
are given a consistent LTC-restrictability com- 
pensator Ci. Thanks to consistency, we only 
need to construct # for £ •Eo(L *c) and for 
strings s such that t ( s ) •L*L First, we let 

t t t AL, = (G'L,,fL,, dr,,) be the same as the recog- 
nizer AL, but with a self-loop at the final state x~' 
for each o • E. Now, let Q = (G o, re, do), with 
state space XQ, denote the live part  of A'L, II A, 
i.e. X o is the set of states x in X[ ,  × X so that 
there exists an arbitrarily long string in 
L(A'L, II A, x). In fact, note that for each x • X 
such that (x0 L', x) • X o, there exists s • L(A, x) 
so that t(s) • Li. Finally, let OQ = (FQ, w o, VQ) 
be the observer for Q with the state space ZQ 
that is the reach of 

ZQO = [._.J ({x~'} × 2) fq XQ, (4.5) 
.~Eo(Li *c) 

in QQ, i.e. ZQ = R(OQ, ZQO). Note that if i is 
observable,  then the last event of  each string in 
Li must be an observable event.  Assuming that 
this is the case, let 

EQ = {2 • ZQ I 3(X, y) • 2 such that x = x#'}. 
(4.6) 

Given the observations on A c  let us first trace 
the trajectory in the observer  O. At  some point 
in time, O enters some 2 • Eo(L* O. When this 
happens we know that the system starts tracking 
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task i. At this point, let us start tracing the 
future observations in O~ starting from the state 
({x0 t'} x ~) tq XQ. This trajectory will enter some 

• E o, and at this point, we know that task i 
may have been completed. However, for task 
observability, we need to be certain that task i is 
completed. Thus, for an observable task, it must 
be true that for all £ • EQ and for all (x, y ) •  £, 
x = X ~  ', In this case we can define ~ to be • 
until the trajectory in OQ enters E o and ~ from 
that point on. Thus, we have shown the 
following: 

Proposition 4.6. Given a reachable task i • T 
and a consistent L*~-restrictability compensator 
Ci, if (1) the last event of each string in L~ is 
observable; and (2) for all ~ • E o and for all 
(x, y ) •  ~, x =x~', then task i is observable in 
Ac,. [] 
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, Taskp I [ ' 
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• , ,  = i  Task Detector , ~= 

I~G. 7. The task-level closed-l~p system. 

example, if D is set at Di and r 7 is forced by C, 
then D switches to Dj. The output of D takes 
values in Fr  = {IpF, • • • , lp~. 

The procedure explained above allows us to 
detect the first completion of task i. Detecting 
other completions of task i is straightforward. 
Suppose that O enters the state ~ when O o 
enters EQ. Note that ~ • Eo(L*C). At this point 
we detect the first occurrence of task i, and we 
immediately re-start OQ at state x~' x 9 tq X o. 
The procedure continues with each entrance into 
EQ signaling task completion and a re-start of 
OQ. Note that the observer O runs continuously 
throughout the evolution of the system. Let 
D*:F*--~{E,~p/F} denote the complete task 
detector system. We can think of D~ as a 
combination of three automata: the observer O, 
the system O o which is re-started when a task is 
detected, and a single one-state automaton 
which has a self-transition loop, with event ~ ,  
which occurs whenever a task is detected. This 
event is the only observable event for this 
system. Note that both the O o re-start and the 
~p~ transition can be implemented as forced 
transitions. 

Finally, in the same way in which we 
constructed C from the Ci, we can also define a 
task detector D, illustrated in Fig. 6, from the 
set of individual task detectors Di. Specifically, if 
C is set at Ci initially, D is set at Di. Using the 
output ~ r  of C, D switches between Di. For 

u ", I F I A 1 

1 
- ~  Task Detector [ FT 7-- 

I 
FIG. 6. Task detector block diagram. 

4.3. Task-level closed loop systems and task 
standard form 

Using the pieces developed in the preceding 
subsections we can now construct a task-level 
closed-loop system as pictured in Fig. 7. The 
overall system is AcD = (Gco, fco, dco, tcu, 
hco) where 

GcD = (XcD, Z U ~ r  U FT, ~ U ~ r ,  

F U ~ r U F r , ~ U ~ r ) .  (4.7) 

Note that ~ r  and Fr  are both observable and ~ r  
is controllable. Also, we include ~ r  in the 
tracking events to mark the fact that the system 
has switched compensators. This is important 
since following the switch, we will allow a finite 
length set-up. Also, since it does not make much 
sense in practice to force a switch to another 
compensator while the system is in the middle of 
completing a task, we impose the restriction that 
events in ~ r  can only be forced right after a task 
is completed. Since we require that all the tasks 
are observable (see Proposition 4.7), we can 
easily implement this restriction. Then, AcD can 
only generate strings s such that 

t(s) • (E U {EI)'(L~ U . . .  U Lp) 

x (H¢(r,)Lt tO... UH~(r,)L~)*, (4.8) 

where n, is the maximum number of tracking 
transitions needed until O enters the set of 
persistent states in Eo(L *c) for each i • T. 

The higher-level operation of this system 
consists of the task initiation commands, ~ r  and 
the task completion acknowledgements, Ft. The 
input Ur indicating what subset of tasks can be 
enabled can be thought of as an external 
command containing the choices of subsets of ~ r  
to be enabled. The use and control of this 
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FIG. 8. Task standard form: all events 
observable. 

are controllable and 

command involves higher-level modeling or 
scheduling issues beyond the purely task-level 
concept. What we show in this section is that the 
task-level behavior of AcD can in fact be 
modeled, in the precise sense introduced in 
Section 3, by a much simpler automaton 
ArsF=(GrsF, frsF, drsF) illustrated in Fig. 8 
where all the events are controllable and 
observable. We term Arsr the task standard 
form. 

Let us first define He. We first define 
He(e) = • and He(~Pi) = Li. Note that, thanks to 
the independence of T, for any i, ] • T, no suffix 
of string in He(~Pl) can be in He(~pj). Defining 
He(~i) is more tricky. There are two issues. 

(1) We need to take into account the fact that 
the closed loop system does not generate strings 
in L,- immediately after C switches to Ci. In 
particular, if we assume that O is in a persistent 
state when C switches to Ci and if we let ne 
denote the maximum number of tracking 
transitions that can occur in A for any trajectory 
in O that starts from a persistent state of O up to 
and including the transition that takes the 
trajectory to a state in Eo(L*C), then at most ne 
tracking transitions can occur after C switches to 
Ci and before the behavior of the closed loop 
system is restricted to L *c. Thus, we must 
choose He so that He(~i) _~ z~(E tA {•})n~. 

(2) We also need to ensure the minimality of 
He. Specifically, we now know that He(r~)~_ 
z~(EtA{e}) n~. Suppose that we let He(l:~)= 
r~(,~t3 {•})~°. Then, no suffix of a string in 
He(~Oi) can be in He(r/) since all strings in He(r/) 
start with r~. Also, no suffix of a string in He(z,.) 
can be in He(z/) even if i=j .  However, a suffix 
of a string in r~(,E O {•})"~ may be in He(lp/) for 
some j. Thus, we let He(~i) = (F_, tA {•})~o N 
(E O {•})~*Lr. Note that thanks to consistency, 

the strings in LT cannot occur in a set-up of a 
task. Therefore, eliminating strings that end with 
a string in Lr will not cause any problems in 
restrictability. 

Proposition 4.7. Given a set of tasks T that is 
reachable by output feedback and observable, 
ArSF is an H : m o d e l  of Aco. 

Proof. We first verify the detectability condi- 
tion. Before defining Ho, let us define t ' : ~ r  U 
Fr-->ZT.SF as t ' ( r ~  = ri for all i and t'(~p/v) = ~Pi 
for all i. We then pick H0 as t' of the projection 
of the observation sequence over F tJ ~ r  tJ Fr  to 
¢br L) Fr, i.e. Ho(s) = t'(s ~ (gPr U Fr)) ,  where, 
s ~ H, in general, denotes that part of the string 
s over the alphabet H c Z. Finally, let n d be nt 
divided by the length of the shortest string in L T. 
Then, thanks to observability, the first detect- 
ability condition is satisfied. Also, using 
minimality it is straightforward to verify the 
second detectability condition. 

To verify the compatibility conditon, note that 
ArSF is eventually restrictable to any infinite 
length string s in L(ArsF). Thus, if we show that 
Aco is eventually He(s)¢-restrictable by output 
feedback, then the compatibility condition is 
verified. Let us now proceed with showing this. If 
the first event of s is some zi, then we simply 
force ~ and look at the second event. If the first 
event of s is some lpi, then we force zff and wait 
until ~Pi- When Wi occurs, we look at the second 
event. In both cases, when we look at the second 
event, we repeat the same process. It then 
follows that Aco is restricted as desired. 
Therefore, ATSF is an H : m o d e l  of Aco. [] 

5. CONCLUSIONS 
In this paper, we have introduced concepts of 

higher-level modeling for DEDS based on a 
given set of primitive event sequences cor- 
responding to tasks which the system may 
perform. Through our investigation of task 
reachability we constructed task compensators 
and this, together with task observability allowed 
us to construct simple high-level models of 
automata so that events in the high-level model 
correspond to set-up and completion of tasks. 
The aggregation scheme presented in this paper 
provides one tool that can be of use in 
combatting the computational complexity in 
DEDS problems of interest. In particular, the 
cardinality of the overall state space of a system 
consisting of many subsystems can be extremely 
large. However, in many applications, the 
coordination of the subsystems is only required 
at the task level, allowing the possibility of 
aggregating the subsystems individually before 
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considering their composite, thereby reducing 
complexity significantly. In Ozveren (1989) we 
present an example illustrating this idea 
involving the multi-level control of workstations 
connected by buffers. Such a framework opens 
up numerous questions for the future, ranging 
from the use of higher-level models as the basis 
for quantitative system analysis to the careful 
examination of the information and control 
required at various levels of a hierarchical 
control system of the type described here. 
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