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Multiscale Autoregressive Processes, Part II: Lattice
Structures for Whitening and Modeling

Michele Basseville, Albert Benveniste, Fellow, IEEE, and Alan S. Willsky, Fellow, IEEE

Abstract—In part 1 of this two-part paper we introduced a
class of stochastic processes defined on dyadic homogenous
trees. The motivation for the study of these processes comes
from our desire to develop a theory for multiresolution descrip-
tions of stochastic processes in one and multiple dimensions
based on the idea underlying the recently introduced theory of
wavelet transforms. In part I we described how this objective
leads to the study of processes on trees and began the devel-
opment of a theory of autoregressive (AR) models for isotropic
processes on trees. In this second part we complete that inves-
tigation by developing lattice structures for the whitening and
modeling of isotropic processes on trees. We also present a re-
sult relating the stability properties of these models to the re-
flection coefficient sequence introduced in part I. In addition,
this framework allows us to obtain a detailed analysis of the
Wold decompeosition of processes on trees. One interesting as-
pect of this is that there is a significantly larger class of singular
processes on dyadic trees than on the integers.

I. INTRODUCTION

N part I [1] of this two-part paper we introduced the

class of isotropic processes on homogeneous dyadic
trees, and began the analysis of the corresponding class
of autoregressive (AR) processes. As developed in [1],
the motivation for the study of these processes comes from
our desire to provide a statistical framework for multi-
scale signal processing based on the structure of the re-
cently introduced class of wavelet transforms [7].

In [1], we introduced and described the geometry of
homogeneous dyadic trees and a natural notion of ‘“past’’
and “‘future,”” where a move into the ‘‘past’” (‘‘future’’)
corresponds to moving to a coarser (finer) scale descrip-
tion of a signal. The class of isotropic processes on trees
was also introduced in [1], and, with our notions of past
and future, we defined the class of autoregressive (AR)
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isotropic processes and began the study of their parame-
trization. The major result of [1] was to establish that the
only suitable parametrization of isotropic processes on the
dyadic tree is obtained via reflection coefficients follow-
ing the generalization of the Schur-Levinson parametri-
zation techniques for usual time series. In this second part,
we further investigate the properties of isotropic pro-
cesses in terms of their reflection coefficients. In partic-
ular, in this paper we use the analysis in [1] both to con-
struct lattice structures for the whitening and modeling of
AR processes on dyadic trees and to analyze in detail these
models and the properties of isotropic processes.

This paper relies heavily on the framework and results
of [1], and we refer the reader to that paper for reference.
In the next section we provide a brief summary of some
of the basic notation and constructs from [1]. Section III
is then devoted to the presentation of whitening and mod-
eling filters for AR isotropic processes. Unnormalized as
well as normalized versions of these filters are given. In
particular, the normalized modeling filter appears as a tree
structured scattering system. Then, in Section IV, several
properties of isotropic processes are analyzed in terms of
the reflection coefficient sequence. Specifically, AR pro-
cesses are characterized as being the processes with only
finitely many nonzero reflection coefficients, purely non-
deterministic processes are characterized in a fairly sim-
ple way, a stability result for the modeling filters is pre-
sented, and finally it is shown that every finite set of
reflection coefficients properly define a unique AR pro-
cess provided they belong to an easily defined domain.
Finally, future issues, both practical and theoretical, are
discussed in the conclusion. Many of the results presented
here, while paralleling those for time series, are more
complex than their time series counterparts due to the sig-
nificant increase in geometric complexity in going from a
homogeneous tree of order 1, i.e., the usual discrete-time
index set, to the dyadic tree, which is of order 2. For
example, as introduced in [1] and described in detail in
Section IV, the prediction error processes associated with
lattice filters on dyadic trees are vector processes of di-
mension that increases with filter order.

II. Dyapic TREES, ISOTROPIC PROCESSES, AND
PREDICTION ERROR RECURSIONS

In this section we review some of the basic concepts

and constructs described in [1]. We refer the reader to [1]
for details.
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A homogeneous dyadic tree 3, as illustrated in Fig. 1,
has a natural notion of distance d(s, ?) between any two
nodes, s, t € 3. By choosing a particular boundary point,
denoted by — oo, we can redraw J as in Fig. 2. Here all
of the points that are at the same *‘distance from —oo”’
appear on the same level or horocycle. For multiscale pro-
cessing we can think of each horocycle as corresponding
to describing signals at a particular scale, with finer scales
being farther from —oo. Also, as illustrated in the figure
the choice of — o leads naturally to a backward (fine-to-
coarse) shift, vy~ ! and two forward (coarse-to-fine) shifts
« and B. Also it is useful to introduce the operator 6. As
indicated in Fig. 2, the transformation 6 which inter-
changes nodes ¢ and #5 for all 7 € J, can be thought of
locally as an interchange pivoted at the immediate ances-
tor v ~'. Higher order operators 6 correspond to inter-
changes pivoted at more distant ancestors of r (i.e., 7y ",
n > 1). The nodes 16 and 18 are indicated in the fig-
ure.

As developed in [1], all nodes in 3 can be coded in
terms of shifts from a specified, arbitrary node #,. Specif-
ically, let

C=@NH*U K Y 6{a, B}* U {a, B}*. Q.1

Then 3 = {fyw|w € £}. The order |w| of any move w €
&L is defined as

[w| = d(, tw). 2.2)

A move w is causal, denoted by w < 0, if wr is on the
same or a coarser horocycle than that on which 7 is lo-
cated.

A zero-mean stochastic process Y,, t € J, indexed by
nodes on the tree is isotropic if the correlation between ¥
at any two nodes depends only on the distance between
those nodes, i.e.,

E[Y Y] = 2.3)

Equivalently, ¥, is isotropic if Z, = Y}, has the same sta-
tistics as Y, for any isometry f: 3 — J, i.e., any one to
one and onto map of J onto itself that preserves distances.
An AR model of order p has the form

Tda,s)-

Y, = 2 a,Y, + oW, 2.4
w<0

[wi=p

where W, is unit variance white noise. Our interest here
is in developing AR models for isotropic processes, and
as discussed in [1], the constraints of isotropy imply rather
complex constraints on the a,, coefficients in (2.4). Note
also that the number of these coefficients essentially dou-
bles as the order increases by 1.

In {1] we began the process of developing an alternate
description of isotropic AR processes in terms of gener-
alizations of the Levinson and Schur recursions for sta-
tionary time series. Because of the structure of the dyadic
trees, in particular the fact that the number of nodes at a
given distance from a specified node increases geometri-
cally with distance, the development of these recursions

o]
2 successive horocycles:

Fig. 1. A homogenous dyadic tree, with a choice for the boundary point,
— oo, indicated.

t 5 132 3

Fig. 2. Redrawing the dyadic tree with a particular choice of boundary
point —oo.

and the lattice filters to be described here involve predic-
tion error vectors of dimensions increasing with the order
of prediction. Specifically, define the nth order past of ¥
at node ¢

Y, & 3{Y,:w<0,|w < n} 2.5)

where JC{ - - - } denotes the linear span of a set of ran-
dom variables. Then the nth order backward prediction

errors at node ¢ are given by
F,., = H{F, (W) |w| =n, w <L 0} (2.6)
where
Fiaw) 2 Yo, = EFp| Yon-1)- @7

We also let F, , denote the full 2!"/?-dimensional vector
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of F, ,(w), where [x] = largest integer < x and where the
ordering of the w in (2.6) used in constructing F, , is de-
scribed in [1]. Similarly, we have the nth order forward
prediction errors at node ¢

&, £ IC{E,,(w): |w| < nandw < 0} (2.8)

where
E.W) & Yo — E¥ol Yoyt 1) 2.9

The ordering of the w in (2.8) to construct the 2~ 1/2L
dimensional vector E, , is described in [1].

In [1] we began the analysis of the recursive computa-
tion of these prediction errors as the order n increases.
What we found was that as in the usual Levinson recur-
sions for time series the forward and backward prediction
errors of one order could be expressed recursively in terms
of projections onto prediction error vectors of the preced-
ing order. Most importantly, the constraint of isotropy al-
lowed us to show that the required projections onto mul-
tidimensional spaces such as F, , and &, , reduced in fact
to projections onto specific scalar random variables,
namely, the barycenters of the prediction error vectors:

en =277 X E L, (2.10)

[wl<nwc0

fin =270 3 FLw).

Iwl=nw<0

.11

Indeed, these projections can be expressed recursively in
terms of a single scalar sequence of reflection coefficients
k,. Furthermore, as shown in [1], there exist a set of sca-
lar Levinson recursions for the barycenter error pro-
cesses. In particular, for n even

€n = €1 ~ kyfiy-10- (2.12)

i =1 Umtnmr ¥ €awnn1) = kpewy (2.13)
where

ky = cor (e, n_1, fiy-1.n-1) 2.14)

and cor (x, y) = E(xy) /[Ex*)E(y»]'/?. Fornodd, n >
1:

n =731+ egu-vm,1) = knfiy 1oy (2.15)
fon = Foyin-t = 3kn (enor + € ,-1)  (2.16)
with
k, = cor (% (ern—1 7+ €s-0/2 1), fiy-1.0-1).  (2.17)
Also, forn = 1,¢,, =E, |, f., = F, , and
Fo=Y, - kY, (2.18)
E,=Y - kY, 2.19)
where
k= o 4] _n (2.20)
E[YW?.] 7o

In addition, the variances of the prediction errors satisfy

1937
the following: for n even
02, =Ee€?,) =1 -k}Ho?_, .21
1+ k
0fn = E(fl,) = <—2 t - kﬁ) ol . (2.22)
For n odd
Oon=0}n=0p=(—kDof,., (2.23)

where (2.23) holds for n = 1 as well, with af‘o = ry. By
using these equations it is possible to derive a recursive
procedure for computing the k, that is the counterpart of
the recursions in the standard Levinson algorithm for time
series. We also have Schur recursions which provide an
alternative mechanism for computing the reflection coef-
ficient sequence. Specifically, define the formal power se-
ries

>

Py 2 cov (Y, en) & 2 E(Yien,) " W (2.29)

>

0, 2 cov (¥, fin & 2 BXifuuy) - W  (2.25)

and recall the following operators on formal power series
we introduced in [1]: given

S=st-w

wel
we set

VISI = 2 51w
6"‘)[S] = Z£ Swetkr © W,

Then for n even

P, =P,y = kv1Q,-1] (2.26)
Qn =5 (Y[Quoi] + 8"2[P, ) — k,Posy (227)
where
(n/2)
b = v[Qn-ll(O;Pt_al - PO 5 g
while for n odd
Py=5 Py + 8 VP, - ky[Qo1]  (2:29)
Qn = V[Qu_1] = ky3 Py + 8" V2P, ] (2.30)
S S E 230
where
Py=Q, = wgo Tl © W (2.32)

We also note here that, as for time series, there are con-
straints on the reflection coefficients, which, thanks to the
conditions required for isotropy, are slightly more com-
plex for isotropic processes on dyadic trees:

for n even, —% <k, <1

(2.33)
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for n odd, -1 =<k, <1

(2.34)

As we develop in this paper, these results lead to lattice
structures for AR processes on dyadic trees in which only
one new reflection coefficient is introduced as the order
increases by one. Furthermore, the constraints (2.33),
(2.34) on these coefficients are quite simple and are de-
coupled from one another. Thus the lattice filter parame-
trization of AR processes is far superior to the direct AR
model (2.4).

III. VECTOR LEVINSON RECURSIONS AND MODELING
AND WHITENING FILTERS

In [1] we showed that the recursive computation of the
components of the prediction error vectors E ,and F, ,
involved projections onto the barycenter error processes.
In addition, we developed scalar Levinson recursions for
the barycenters. In this section we combine these results
in order to develop whitening and modeling filters for Y,.
As we will see, in order to produce true whitening filters,
it will be necessary to perform a further normalization of
the innovations. However, the formulas for E, , and F, ,
are simpler, and consequently we begin with them.

A. Filters Involving the Unnormalized Residuals

To begin, let us introduce a variation on notation used
to describe the structure of the covariance matrix of the
prediction error E, , which we denoted in [1] by Lg . In
particular, we let 1, denote a unit vector all of whose
components are the same:

(3.H

3.2)

which has a single nonzero eigenvalue of 1. Equations
(3.1), (3.2) define a family of vectors and matrices of dif-
ferent dimensions. The dimension used in any of the
expressions to follow is that required for the expression
to make sense. We also note the following identities:

U Uy = Uy (3.3)
1
* = 1LF = 2 F 3.4
f * m ” (w) (3.4)
If = 1, f* = U, F 3.5)

where F = {F(w)} is a vector indexed by words w ordered
as described in [1], where f is its barycenter, and where
f* is a normalized version of its barycenter.

The results of [1, Sec. IV] lead directly to the following
recursions for the prediction error vectors:

Theorem 3.1: The prediction error vectors E, ,and F, ,
satisfy the following recursions, where the k, are the re-
flection coefficients for the process Y,:

For n even:

Et,n = Et,n—l - an*Fw*',n—l

E5/ p— U
F, = { e, 1} - k,,[ *J E.... 37
Fr’y*‘.n—l U*

Fornodd, n > 1:

E,,,, _ {Et.n—l

E,&((n— |)/2),,, -1

(3.6)

] - an*Ft'y‘l,nfl (38)

Et,n—-l
Fin=Fytn-1 — k, Uy (3.9
En;«n—l;/Zb’n_l

while forn = 1 F,  and E, | are scalars satisfying (2.18),
(2.19). Here the reflection coefficient sequence k, is cal-
culated from the correlation function, 1y, of Y, according
to either the Levinson or Schur recursions described in
Section 1.

Proof: Equations (2.18), (2.19) for n = 1 are ex-
actly [1, egs. (3.17), (3.19)]. As indicated previously, the
remainder of this result is also a direct consequence of the
analysis in [1, sec. 3 and 4]. For example, from (3.16),
[1, lemma 4.1, eq. (4.6)], and (3.5) of this paper, we
have the following chain of equalities for n even:

Et,n = Lyp-1 T E(Et,n-l|Fty“‘,nAI)
=FE -1~ )\lfr-y‘l.n—l

=Lyn-1 T )\U*Ft'y",n—l (310)
where \ is a constant to be determined. If we premultiply
this equality by (dim E, ,_,)17, we obtain the formula
for the barycenter of E, ,_, and from (2. 12) we see that
\ = k,. The other formulas are obtained in an analogous
fashion.

The form of these whitening filters deserves some com-
ment. Note first that the stages of the filter are of growing
dimension, reflecting the growing dimension of the E, ,
and F, , as n increases. Nevertheless, each stage is char-
acterized by a single reflection coefficient. Thus, while
the dimension of the innovations vector of order n is on
the order of 2"/2, only n coefficients are needed to specify
the whitening filter for its generation. This, of course, is
a direct consequence of the constraint of isotropy and the
richness of the group of isometries of the tree.

In [1] we obtained recursions (2.21)-(2.23) for the
variances of the barycenters of the prediction vectors.
Theorem 3.1 above provides us with the recursions for
the covariances and correlations for the entire prediction
error vectors. We summarize these and other facts about
these covariances in the foliowing.

Corollary: Let Eg ,,, Lr. , denote the covariances of E, ,
and F, ,, respectively. Then

1) For n even:

a) The eigenvalue of Ig , associated with the eigen-
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vector [1, - -+, 1]is
nen =200, 3.10

where aim is the variance of ¢, ,.
b) The eigenvalue of Lr , associated with the eigen-

vector [1, - -+, 1]is
prn = 2"%0}, (3.12)
where 07 , is the variance of f; ,.
2) For n odd:
e, = Lp, =L, (3.13)

and the eigenvalue associated with the eigenvector [1,

cee 1] s
Mo = HEn = Hra = 277" 0] (3.14)
where aﬁ is the variance of both e, , and f, ,.
3) For n even:
L, & Ep, = cov <E"" > = F"‘" x"U} (3.15)
Epsnin NU I,
where U = 117, and
Len= Loy — kpor U (3.16)
M= Gy = kp)ono . (3.17)
4) Fornodd, n > 1:
L, = [EE‘"_' )\"_'U] — Kol U (3.18)
MotU Egpo
5) Forn = 1:
Ly = - kDr. (3.19)

Proof: Equations (3.11), (3.12), and (3.14) follow
directly from the definition of the barycenter. For exam-
ple, for n even

20/-1e = 17E,, (3.20)

from which (3.11) follows immediately. Equations (3.13)
is a consequence of [1, lemma 4.1]. To verify (3.15) let
us first evaluate (3.6) at both ¢ and t6"/?:

El,n El,n -1 U*
= - kn F,,y “tn—1-
Eﬁin/?)," E,,;(,./Z)‘,, -1 U*

(3.21)

The first equality in (3.15) is then a direct consequence
of [1, lemma 4.1] (compare (3.7) and (3.21)). The form
given in the rightmost expression in (3.15) is also im-
mediate: the equality of the diagonal blocks is due to
isotropy, while the form of the off-diagonal blocks again
follows from [1, lemma 4.1]. The specific expression for
Lk , in (3.16) follows directly from the second equality
in (3.10), while (3.17) follows from (3.21) and the fact
that

EE (W E;sun w)] = kyon_y (3.22)
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which in turn follows from [1, lemma 4.1 and (4.27)].
Finally, (3.18) follows from (3.15) and (3.8), and (3.19)
is immediate from (2.18)-(2.20).

Just as with time series, the whitening filter specifica-
tion leads directly to a modeling filter for Y,.

Theorem 3.2: The modeling filter for Y, is given by the
following. For n even

E ,_
<—’—'> = Stk,) | Egsnrop (3.23)
F,
Fl‘y“,n—l
where'
I 0 kU,
Stk,) 2 (3.24)
—k, Uy 1 (k, — kDU,
~k, Uy O (I = kyUy)
Fornodd, n > 1:
EI.(n—l)
E, (tn="17/2) p— E n
S ) < - > (3.25)
- y~tn—-1
Fi,
where
I kU,
S(k,) & (3.26)

~k, Uy (I = k3Uy)

while for n = 1:

Y, 1k E, E,
()= () G e ()
F,, —k 1 - k3 \Y, Yy

3.27)

These equations can be verified by solving (3.6)-(3.9) and
(2.18)-(2.20) to obtain expressions for E’s of order
n — 1 and F’s of order »n in terms of E’s of order n and
F’s of order n — 1. Note should also be made of the di-
mensions of the various signals and matrices in Theorem
3.2. In particular, for n even the two components on the
left-hand side of (3.23) are of dimensions 20/2-1 and
2/2 respectively, while all three of the vectors on the
right-hand side of (3.23) are of dimension 2“/?~" and
each of the square blocks in (3.24) is 2®/?~'-dimen-
sional. For n odd, n > 1, both components of the right-
hand side of (3.25) are 2~ ?/2.dimensional as is the F, -
block on the left-hand side. The two E-blocks on the left-
hand side, however, are 2 ~?/2.dimensional, and the

'In fact, we should properly write S(k,, n) since the dimension of the
blocks depends on n; nevertheless, we choose to write S(k,) to simplify
the notation; this will be done everywhere in the sequel.
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four square blocks in (3.26) are 2~ D/2_dimensional. We
have included dotted lines in (3.23)-(3.26) to emphasize
how these mappings operate. Note also that the first sec-
tion (3.27) of the modeling filter involves only scalar
quantities.

As is the case for time series, the lattice modeling filter
of Theorem 3.2 has a scattering layer structure. An im-
portant difference here is that the growing dimension of
the prediction errors leads to a tree-like structure for the
scattering diagram, and because of this, we find that
groups of values of Y are calculated together in this struc-
ture. In particular, from Theorem 3.2 we can deduce that
if we consider a modeling filter of odd length N, then this
modeling filter can be viewed as a map from the 2072
dimensional input vector E, y to the 2V~ U/2_dimensional
set of outputs {Y,.[lw|< N, w < 0}. For N even, the
modeling filter maps the two 2/ ~'-dimensional input
vectors E, y, Ezw/a y to the 2 (N/2_dimensional set of out-
puts {¥,.[lw| = N, w = 0}. The case of N = 6 is illus-
trated in Fig. 3. In this case the input vectors E, ¢ and
Esm ¢, produce the outputs ¥, for w < 0, lwl < 6 (as
well as the backward errors F, ¢ and Fj5m 6, Which are not
actually needed for the recursion). The E vectors of var-
ious orders propagate from left to right, while the F’s
propagate from right to left. The small black squares rep-
resent v ' operations and the blocks labeled ““1,”” ©*2,”’
etc., perform the computations described in Theorem 3.2.
The details of the operation of this system, however, re-
quires further explanation.

Let us first look at the situation for n odd, in which case
cach block labeled *‘n’” performs the calculations given
by (3.25) (or (3.27) for n = 1). For example, the inputs
to the top “3”” block in the figure (which has been shaded)
are E, ; and F,, -1 ,, while the outputs are E, ,, Es 2, and
F, 5. Note that this block is connected to the right to sys-
tems generating both Y, and Y5, but apparently we do not
need a corresponding ‘3’ block at #6 in addition to the
one at +. To understand this, consider writing (3.25) at
¢6" =D/ rather than at t:

Esan-0/m 2
Er.n -1 E1§((n -1/ p
= Stky) (3.28)
an((n»l)/l).yll_n_l
F,ﬁ(m— /2y

where we have used the fact that for any k, 6% is its own
inverse. Note that the first two components of the output
in (3.28) are simply a permutation of the first two in
(3.25). The last outputs in these equations and both inputs
apparently differ. However, it is easily checked that the
outputs F, , and Fze-v/2 , are identical up to a permuta-
tion of the ordering of components, as are the input pair
E,, and Egsw-1v/», and the input pair F, -1, and
Fsun- v/, -1 5 (this latter fact is proved in the ‘‘umbili-
cal lemma’’ of Appendix A and expressed via the “‘um-
bilical cords’’ —dotted connections—of Fig. 3). Thus there
is actually no need to have a **3’” block at 16 as there was

at 1, or more generally an ‘‘n’” block at 16~ D/? a5 well
as at t.

For n even, the blocks labeled ‘‘n’’ perform the cal-
culations as specified by (3.23). For example, the inputs
to the top <“2”’ box in the figure are E ., Es,, and
F,,-1,1, while the outputs are E, | and F, ». Again it is im-
portant to examine the analogous computation at a related

point. Specifically, consider evaluating (3.23) at the point
16/

Epswi p-1 Eswin p
= Stk) | Ev (3.29)
Fisom F,(S(n/l)‘yflgn_ 1

Note first that the first outputs of (3.23) and (3.29),
namely, E, ,_and Ezu/a ,—; are in fact distinct, and thus
it is necessary to implement the computation (3.29). For
example, the second «2°* plock (also shaded) in Fig. 3
computes as one of its outputs E,;5.1- Next note that the
other outputs, F, , and Fiza/» s of (3.23) and (3.29) are
not identical. However, these signals must pass through
ay ' operation before entering the corresponding ‘‘n +
1°” block, and we have already seen in our analysis of the
odd case that F,, -1, and Fzu/ay-1,, are identical up to a
permutation. Thus only one of these is needed for a block
at level n + 1. This is indicated in the figure by a con-
necting, dotted bar between the y ~' block immediately to
the left of pairs of even numbered blocks, with only one
of these identical signals continuing backward to the cor-
responding n + 1 block. For example, the two left-going
output signals of the shaded ‘2’ blocks, F, , and Fis 2,
are merged in this way after the y ~! operation on each.

Examining next the right-hand sides of (3.23) and
(3.29) we see that the first two inputs are identical except
for a flip in the order. This is captured in the figure, as
can be seen for n = 2, where the two inputs entering from
the left of the second “*2°” block are the same as those for
the first <*2”” block, except in reverse position. It is also
not difficult to check that the last inputs Frtn-t and
Fisw/ny-1,0—1 ar€ identical up to a permutation of compo-
nents. While these signals do enter individual blocks we
have again indicated that they are the same by a connect-
ing dotted bar between the =1 plocks immediately to the
right of pairs of even numbered blocks. For the case of n
= 2. the two left-going input signals of the shaded “‘2”’
blocks, F, -1,y and Fyy -1, are identical and are connected
by such a dotted bar.

Figs. 4 and 5 describe in more explicit terms the data
flow and memory structure for the system of order 6. Spe-
cifically suppose that we have finished the computations
required at the horocycle indicated with squares in Fig.
4. As indicated in the tree at the top of this figure (via a
shaded bar connecting the squares), sets of 4 nodes at this
level are coupled together (more generally for an nth-or-
der model 217~ V/2! points are coupled together). The state
for this set of four nodes is indicated above the nodes: we
have stored the scalar values of ¥, Fy, and F; at each node,
we have stored the 2-vectors F; and F, for each of two
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E s~
FF. 5
Yy
Es > - E
E a
%% - H v,
6
Y 5@
F, g - —
] [ Y505
- 5 Rt I
A 4 3
6 1 |s
F R e
(3)
t87,6
—d —  — —J

Fig. 3. Illustrating the scattering/lattice structure of the modeling filter of Theorem 3.2 for a sixth-order model. Each block
labeled ‘‘n’’ performs the computation in (3.23) (for n even), (3.25) (for n odd, n > 1), or (3.27) (for n = 1). The small solid
squares denote vy ~' operations, and the dotted connections between such squares (the umbilical cords) indicate signals (at the
outputs of these squares), that are identical up to a permutation of components. As indicated at the top of the figure, the signals
flowing through this system are the E and F error processes of successive orders, with the E’s flowing left to right and the F’s

right to left.

Fg
iy P
F3 F,
1 = g1
F, F, F, F,
F, F, F, Fy
Y Y Y Y
L J L J
E, E
Y Y Y Y Y Y Y Y
F, Fy F, F, F, F, F F
F Fz‘ B le 12} F, F, 2
F; F; F, Fy
F, F, F, F,
F, F;

Fig. 4. lllustrating the propagation of state information for the filter in
Fig. 3. The stored information (indicated above the top portion of the fig-
ure) for a set of four nodes at the horocycle indicated by squares is used,
together with the input E4 vectors, to compute the two corresponding sets
of information at the two descendent groups of four points at the next horo-
cycle.

pairs of these nodes, and we have stored a single 4-vector
F for the set of 4 nodes. Given these quantities and the
two 4-vector Eg4 inputs for each of the two sets of 4 de-
scendent nodes (indicated with circles, with a connecting
bar for each set), the model performs two parallel com-
putations (which are identical in structure) to produce the
required variables to be stored at each of the two sets of
descendant nodes. Fig. 5 illustrates in more detail how
these computations are distributed and performed. Here
at each level the variables required as inputs are indicated
with “*?,”” while those produced as outputs are indicated
with ““!.”” Furthermore those inputs corresponding to the
stored state are indicated above each layer of the com-
putation, while below each figure we indicate the inputs
received externally (?Eg) or from previous layers (all other
?E’s). We also indicate below each layer the outputs pro-
duced, some of which (the !F’s at layers 2-6 and the 'Y’s
at level 1) form components of the state at the next horo-
cycle while others of which (the !E’s) are used as inputs
by succeeding layers. For example, at the top level F; is
stored and two Eg vectors are received as the only external
inputs. This layer, as shown in Fig. 3, has two actual sets
of outputs. One of these, the Fy vectors, is not needed for
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Fig. 5. Illustrating the detailed computational flow fo

r the propagation of state information for the filter described in Figs. 3

and 4.

the subsequent computation and indeed is typically not
computed in lattice implementations. The other outputs
produced are the Es vectors which will not be stored as
part of the state at the next horocycle but which do show
up as inputs to the layer 5 blocks.

We have also included node indices in part of Fig. 5 to
make it easier to connect the computational structure of
the figure with the computations described in (3.23)-
(3.27). For example, the lower left-hand portion of layer
1 (distinguished by shaded circles and squares) corre-
sponds to the pair of computations corresponding to (3.27)
evaluated at 7 and at 15. Also, at higher layers, we en-
counter vector error processes, and as we have seen, these
vectors are not distinct or, in fact, needed at all nodes.
For example, consider the portion of the layer 5 compu-
tations indicated by shaded squares. This describes the
computation of (3.25) for n = 5, which requires a single
E; input at node ¢, a single stored F, vector at ry ~! and
produces one Fs vector at node ¢ and two E, vectors at ¢
and 6@ . In this case, as we have pointed out, a single Fy
vector needs to be stored for the pair of square nodes con-
nected by the solid bar in the figure. We have indicated

its index v ~* in the center of the bar. Similarly, the index
t of the single Es and Fs vectors is indicated in the center
of the lower solid bar, while the indices, t and 16 @ for
the two E, vectors are indicated above the appropriate
portion of the solid bar. Note that the apparent redundan-
cies, indicated by the shaded bars in Fig. 4, are not pres-
ent in Fig. 5, as in this figure we have shown just those
variables required to be stored and computed from horo-
cycle to horocycle.

As we will see, understanding the structure of the filter
described in Figs. 3-5 greatly facilitates our analysis of
stability.

B. Levinson Recursions for the Normalized Residuals

The prediction errors E, , and F, , do not quite define
isotropic processes. In particular, the components of these
vectors representing prediction error vectors at a set of
nodes are correlated. Furthermore, for n even we have
seen that E, , and E;e/ ,— are correlated (see (3.15)).
These observations provide the motivation for the nor-
malized recursions developed in this section. In this de-
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velopment we use the superscript * to denote normalized
versions of random vectors. Specifically, X* = L/ 12x
where L, is the covariance of X and L}/? is its symmetric,
positive definite square root.

We now can state and prove the following.

Theorem 3.3: For n odd the covariance matrix L, de-
fined in (3.13) is invertible if and only if —1 < k, < 1.
For n even, T, as defined in (3.15), is invertible if and
only if —1/2 < k, < 1. Under these conditions the whit-
ening recursions of Theorem 3.1 can be normalized,
yielding the following recursions for the normalized re-

siduals:
For n even:
Er,n * E::n-l
Ok | | .
E,g(n/2)',, Ens(n/z).”_l
U.
— kn < *> F:‘.n—l}
Uy
EXum - U
mm[<f" ?—h<*>mwi
Fty*'.n—l U*

(3.3

(3.30)

*
F

where © "' (k,) is the matrix square root satisfying®

2 2
y%0=C—m? ®—fwﬁ.am
(kn - kn)* I - an*

Fornodd, n > 1

* Et.n—l * *«¢
El,n = e(kn) - an*FI'y’l.n-l
E,‘g((n— /2 gy

(3.33)
E n— *
F* = O(k,) [F,’;_,,n_l — kU, < fn—1 > }
E,5((ﬂ*|)/2iy,‘,l
(3.34)
where
07k, =1 — kiU,. (3.35)
Forn = 1:
1
EX = T (XY =k YEo) (3.36)
1
F¥ (YE- =k YH). (3.37)

DN

Remark: Note that for n even we normalize E, , and
Es0/» , together as one vector, while for n odd, E, , is
normalized individually. This is consistent with the na-
ture of their statistics as described in (3.15)-(3.19) and

2Again, to be precise, we should write © (k,, n) rather than © (k,). For
simplicity we use the less cumbersome notation. :
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with the fact that for n even dim F, , = 2 dim E, ,, while
for n odd dim F, , = dim E, ,.

Proof: Let us first derive (3.30)-(3.37) assuming the
invertibility of L, for each n. This result is a relatively
straightforward computation given (3.11)-(3.19). For n
even we begin with (3.7) and (3.21) and premultiply each
by

diag (102, £,

Since 1, is an eigenvector of £, |, E,_ and therefore
T2 commute with U,. This immediately yields (3.30)
and (3.31) where the matrix © (k,) is simply the inverse
of the square root of the covariance of the term in brackets
in (3.30) and in (3.31) (the equality of these covariances
follows from (3.15)). Equation (3.32) then follows from
(3.11) and (3.15). The case of n odd involves an analo-
gous set of steps, and the n = 1 case is immediate.

The preceding analysis provides us both with the con-
ditions for the invertibility of I, and with a recursive pro-
cedure for calculating £, 172 (see [1, appendix D] for an
alternate efficient procedure). For n even we have

;Y2 = Ok,) diag (T, Y2 L, %) (3.38)
while for n odd, n > 1
£ = 0k,)T; (3.39)
and forn = 1
TV =11 = kDl VA (3.40)

Note first that from (3.40) we see that |k, | must be less
than 1 for £;'/? to exist. For n > 1 and odd, note that
the only nonunity eigenvalue of I — kiU, is 1 — k2, and
thus © (k,) exists for n odd if and only if |k,| < 1. Also
in this case we can readily compute O (k,) using the fol-
lowing formula. For any k > —1

d+ kU V2 =T+ (

ﬁ% - 1) Ue. (3.41)

For n even, we make use of the result that for S and T
symmetric

s T\'* [X+Y X-Y
=3 (342)
T S X-Y X+7Y

X=8+1""?
Y=(¢-17""% (3.43)

Using (3.42), (3.43) we see from (3.32) that to calculate
O (k,) for n even we must calculate

d+ (k, — 2kHULH™'?

where

and
(I~ k,U)™'?

which exist if and only if —1/2 < k, < 1, completing
our proof.
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Ifk, = —1/2 or 1 for n even or k, = +1 for n odd,
the resulting error processes are not full rank. This is the
simplest example of a singular process, for which perfect
prediction of a linear combination of ¥’s on a given horo-
cycle can be obtained using only a finite set of values of
Yon “‘past’’ horocycles. In Section IV we will character-
ize the full class of singular processes in terms of its in-
finite reflection coefficient sequence.
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Fornodd, n # 1

Et.n-l * E*
tn
E,a(m—n/zhn-l = E(k,,) |: % J (3.51)
F* y~ln—1

tn

where the scattering matrix

277 \1/2
Now that we have a normalized form for the residual Tk, 2 U = kiU Uy (3.52)
vectors, we can also describe the normalized version of O k,U, a- kﬁU*)'/z ’
the modeling filters which provide the basis for generating
isotropic Y,’s specified by a finite number of reflection  satisfies
coefficients and driven by white noise. L*k)ETk,) = L (3.53)
Theorem 3.4: A normalized modeling filter for the iso- Forn = 1:
tropic process Y, exists if and only if —1 < k, < 1 forn ’
odd and —1/2 < k, < 1 for n even. In this case, this Y¥ E}
filter has the following form. For n even we have F* = (k) - (3.54)
11 !
E,, *
‘:E;I,(HA l:l E(k ) <E, > (3 44) and
= ; /D .
Filn o J' I (k VI > (3.55)
3 ty ln—1 1) = —kl \/1—_—;%‘ .
where .
I+ ak,)U, bk, U, k, U,
k
L(k,) & —5" U, I + ctk,) Uy bk, U, (3.45)
k
dk,) U, ~E” U, I+ ak,)U,
with also satisfies
VI+2k+1 — ZkhDZ k) =1 (3.56)
atk) = 2 I-k-1 (3.46) Proof: We begin by solving (3.30) for
(E}7_y E%h~, 1) then by substituting this into (3.31)
V1 +2% =1 we obtain
bk)y = —— V1 — &k (3.47)
2 <E;{<n~l > * <E14n >*
Ejorm =Lk Esur2 3.57
J+2% - +4 60/ -1 (ky) 160/ n (3.57)
ctk) = 5 (3.48) F*, F* o,
where
U
07 (k,) 3 < U*)
Lk, & ; * (3.58)
—k Uy 1 (k, — k) U,
O k,) ek ok L
—k, Uy 0O I — kU,

dik)y = —c(k) — k. (3.49)

The matrix £ (k,) is referred to as the scattering matrix,
and it satisfies

Lk (k) = I (3.50)

3Again we shorten the notation and write L (k,) rather than £ (k,, n).

To obtain the desired relation, we simply drop the cal-
culation of Eju/ ,_, from (3.57). To do this explicitly
we consider ﬁ(k,,) as a matrix with three block columns
and four block rows (one each for E;, | and Esu/» ,_,
and two for F¥,). Thus what we wish to do is to drop the
second block row. A careful calculation using the rela-
tions derived previously yields (3.45)-(3.49). That L (k,)
satisfies (3.50) follows immediately from the fact that the
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vectors on both sides of (3.44) have identity covariances.
The result for n odd, n > 1 is obtained in a similar fash-
ion, and the case of n = 1 is immediate.

IV. REFLECTION COEFFICIENTS AND THE PROPERTIES OF
PROCESSES AND MODELS

The analysis in [1] and in the preceding sections pro-
vides us with a framework in which we can say a great
deal about stochastic processes and dynamic systems on
trees. In the first subsection we provide a complete char-
acterization of isotropic autoregressive processes, and in
Subsection IV-B we characterize purely nondeterministic
processes. In Section IV-C we relate the stability of the
lattice models on trees to the reflection coefficients, while
in Section IV-D we show that all lattice filters with ap-
propriately-constrained reflection coeflicients yield AR
processes, showing the one-to-one correspondence be-
tween these filters and processes. In each case there are
similarities to the analysis for stationary time series.
However, the more complex structure of the dyadic tree
leads to some important and substantive differences.

A. Characterization of Autoregressive Processes

A well-known and essentially trivial result for time se-
ries is that if ¥, is a pth order autoregressive process, then
the reflection coefficients &, are O for n = p + 1. Fur-
thermore, the pth-order forward and backward prediction
errors, which are also identical to the nth order prediction
errors for n = p + 1, form white noise sequences. The
following result, which states the counterpart of this re-
sult for isotropic processes on trees, requires some pref-
atory comment. Specifically, thanks to the vector nature
of our models, i.e., the fact that a group of ¥’s on a given
horocycle are generated together from a group of the E’s,
the prediction error processes whose whiteness we con-
sider consist of sampled versions of the (normalized) E
and F processes, with one ‘‘sample’’ taken per ‘‘group.”’
In particular, from our discussion at the end of Section
II-A and from the definition (2.8), (2.9) of E, ,, we find
that the components of E, , and E,, , are permutations of
one another if w < 0 and (w| < n — 1. Thus we need
only consider one of these vectors for each group on each
horocycle. Note that this means that we are choosing only
one out of 21" =Y/ error vectors, but each vector is ex-
actly of dimension 2!~ /%) 5o that we do have the cor-
rect number of total degrees of freedom, one per node on
the tree.

Turning to the backward residuals, we find from the
discussion in Section III-A and the definition (2.6), (2.7)
of F, , that the components of F, , and F,, , for w < 0
and |w| < n — | are permutations of one another. On the
other hand, as pointed out (for w = §"/?” in Section
III-A, if n is even, so that it is possible to find w < 0
with |w| = n, F, , and F,, , do not have identical sets of
components. Furthermore, it is easily checked that these
vectors are not uncorrelated. However, as is also pointed
out in Section III-A, the signals F,, -1, and Fiy-1.ndo have
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identical component sets, and it is only these ‘‘delayed’’
signals that play a role in the modeling filter. Thus for our
purposes here we need choose only one vector from the
set {F,, .o w < 0, [w| < n}. In this case we are choosing
one 2!"/?Idimensional vector from a set of 2™/2 such
vectors, again producing the correct number of degrees of
freedom.

Finally, as we have noted in Section III-B, it is neces-
sary to normalize the prediction error processes. For the
backward prediction errors, this simply means that we will
consider the F¥, rather than the F, ,. Similarly for n odd
we consider the E;*,. However for n even our normaliza-
tion involves the combined normalization of E,, and
Ejsw/m , (e.g., referring to Fig. 3, the two inputs E, ¢ and
E;s® ¢ are normalized together). Thus for n even, instead
of choosing one vector from {E,, ,:w < 0, |w| <= n —
1} {Esu2, o w < 0, [w| < n — 1} we choose one vector
(of twice the dimension) from

<Emv’" >*
Eré(n/z}w‘n
Proposition 4.1: If Y, is an AR(p) isotropic process,
then the reflection coefficients k, are O forn = p + 1.
Furthermore, the forward and backward normalized pre-
diction error vectors of order p and greater form standard
white noise processes (i.e., with unity covariance). More
precisely, let ty be an arbitrary node on the tree, and con-

sider an infinite sequence of predecessors and successors
to to.'

ch,|w|sn-l}.

T = {tey ¥k = 0} U {rpa*lk = 1}.

Then for any n = p, the set of backward prediction error
vectors

* : n
FinalseT j> 3

forms a standard white noise process. Similarly, forn =
p and odd, the set :

n
{E;‘S(/),nls eT,j> E}

forms a standard white noise process, while for n = p
and even, the set

Esé‘f)\n * . n
seT, j> =
Esa(/)am/b‘,, 2

forms a standard white noise process.

The construction of 7 and the choices of points forming
the sets of prediction errors in proposition 4.1 represents
one particular way of choosing one prediction error vector
from each of the sets described before the statement of the
proposition.

Proof of Proposition 4.1: We focus explicitly on the
E’s, as an analogous proof holds for the F’s. Note first
that, thanks to the normalization, all of the E* variables
do have unity covariance. Also, thanks to the sampling
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done in forming the E * sets, it is straightforward to check
that the whiteness will be proven if we can show that for
n = p (and either even or odd) the unnormalized predic-
tion error E, , is uncorrelated with E,, , (denoted E, , L
E, ) forw < Oand forw < 0, {w| > n.

Showing that this is true for w < 0 is essentially the
same as the proof in the time series case. Specifically, if

» = 0 forn = p, then,

E[,Zm = El,Zm -1

Et.2m
Er,2m +1 = l:

160M 2m

if2m > p

} if2m = p 4.1

so that, n = p,
Et.n 1 (yt'y",oo (4-2)

by definition of the forward prediction errors. Hence from
(2.9) we see that forn = p,

E, 1 E,, forw<0. 4.3)
Hence it remains to prove that
E ., L Esi, forj > g 4.4

This proof, which involves the construction of isometries
much as in several of the proofs in [1], is sketched in
Appendix C.

For a time series model the constraint of causality se-
verely restricts the support of its impulse response. For
example any AR time series model has an AR impulse
response whose support is the nonnegative integers. For
processes on trees, however, there is considerable flex-
ibility in the possible choice of support for a causal im-
pulse response. However, as the following states, the
constraints of isotropy allow us to determine precisely the
support for AR models.

Proposition 4.2: Let Y, be an AR ( p) isotropic process.
Let us write the formal power series P, defined in (2.24)
as

P, = 2 D * W.
wel
w<0
Ifp=0,p,=0ifw#0.Ifp=1,p, =0unlessw =
v ~* for some k = 0. If p = 2, then p,, = 0 for all words
of the formw = vy _kéwaﬁ with

“4.5)

Was € {o, BY*  and |weg| > [ﬂ ~1. (4.6

In other words, P, has its support in a cylinder of radius
[ p/2] around the path {y ~*} toward —oo. From this we
also have that the modeling filter of an AR (p) process
has its support in the same cylinder of radius [p /2]
around [t, —») = {ty *|k = 0}. Conversely, any pro-
cess such that the modeling filter has its support con-
tained in the cylinder of radius [ p /2] is necessarily an
AR (p) process.

Comment: The proof of this result is straightforward,
although tedious, and is left to the reader. Fig. 6 illus-

Fig. 6. Illustrating the cylinder of radius O (support of AR (1)—dark solid
line); cylinder of radius 1 (support of AR (2), AR (3)—dark solid and gray
shaded lines); and cylinder of radius 2 (support of AR (4), AR (5)—dark
solid, gray shaded, and dashed lines).

trates the cylinders for low order AR processes. Note that
proposition 4.2 is a generalization of the result in [1, ap-
pendix A] which states that if an isotropic process has its
support concentrated on [f, —oo), then it is necessarily
AR (1).

B. Characterization of Regular (or Purely
Nondeterministic) Processes

Definition 4.1: We shall say that an isotropic process
Y, is regular or purely nondeterministic if

o> 0 @.7)
holds, where
o2 2 inf ( ;0 P Y,w>
2
- E << Z]O ,LWYM> |‘y,7,.‘m> (4.8)

and the infimum ranges over all collections of scalars
(tw)w o 0 Where only finitely many of the p,, are nonzero
and the condition Tu?, = 1 is satisfied.

In other words, no nonzero linear combination of the
values of Y, on any given horocycle can be predicted ex-
actly with the aid of knowledge of Y in the strict past,
Y,y -1, and the associated prediction error is uniformly
bounded from below. We shall now characterize regular
processes in a fairly simple way using reflection coeffi-
cients.

Theorem 4.1: i) The following formulas hold for every
isotropic process:

o> = lim inf Nyyp(Ep,41) 4.9)
Nar(Ean 1) = 1ol = kD) T (1 = K3p)
“min {1 + ky, — 2k3,, | — ky,}  (4.10)
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where Ny (A) denotes the smallest eigenvalue of the ma-
trix A, and L,, , , is defined in (3.13).
ii) An isotropic process Y, is regular if and only if its
reflection coefficient sequence is such that |ky, .| < 1,
1
—3 < ky, < +1, and furthermore,

2 (kg + Jkan]) < 0o, @.11)
n=1

Comment: The corresponding characterization of reg-
ular processes in the case of time series is (cf., for in-
stance, [2]):

k.| < 1vn, 2; k2 < oo. (4.12)
Proof: Note first that the singularity of the process
if ks, o1 | = lorifk, = —1/2 or 1 follows directly from
the resulting degeneracy of the prediction error covari-
ance (Theorem 3.3). Condition (4.11) of point ii is an
immediate consequence of point i, since for k small min
(1 —k, 1 + k — 2k?) ~ 1 — |k|. Thus we shall only
prove i. First, let us prove (4.9) by showing that ol is
both = and < the right-hand side of (4.9). With every
(#w)w oo as in definition 4.1 we associate a sequence of
vectors (M,) of increasing dimension. Specifically, we
begin by forming an infinite-dimensional vector by order-
ing the u,, according to the ordering on the w < 0 defined
in [1, sec. III-A}. For each n we then take the vector M,
to be the truncated version of this infinite vector by keep-
ing only the initial segment consisting of those u,.’s such
that w is involved in the definition of E, ,, , ;. We then set
M, = M,/|M,| if M, # 0, and equal to some arbitrary
unit vector otherwise (here, || - - - || denotes the usual
Euclidian norm).
We obviously have

M, =M, (4.13)

Hence, thanks to the limit theorem for square integrable
martingales [8], {9], we can write, for the considered
family (p,,)

for n large enough.

2
ZO [ er - E (wZ‘JO P YI\\“ (yl‘y’l,oo>

w<

lim

n—oo ||we

2
ZO 2 er - E (ngo [an Ym| ‘yl-y’|42n>

lim MIZ,, .\ M,

n— o

\%

lim inf Ajpe(Ezy 4+ 1)

n—oo

4.14)

where the second equality uses (4.13), and the inequality
is due to the fact that M, is a unit vector. Since the last
expression in (4.14) does not involve the considered fam-
ily (u,,), we immediately get the inequality = in (4.9).
Now, fix € > 0 and select n, large enough so that
Ninf(Zam, +1) — € is smaller than the right-hand side of
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(4.9). Then, take for M,, a unit eigenvector of £,,, ;| as-
sociated with its smallest eigenvalue. We then obtain fol-
lowing inequalities which, since e is arbitrary, yields the
inequality =< in (4.9):

lim inf Npe(Zop 1) + €

n—o

v

Nint Ezn +1)
M T 1M,

I

v

Z /‘L(w)v Y, —

w0

2
E <w§0 I‘Lﬁ'le ‘yw*'.w>

> ¢°

where (%) is the family associated with M,
It remains to prove (4.10). Using (3.38)-(3.40), we can

write
20 >
0 Izt

But the three matrices on the right-hand side of this for-
mula all have the Haar system as eigenvectors (cf. [1, eq.
(4.19)]. Hence we can diagonalize all of these matrices
simultaneously:

L5407 = Okys1) O (Kzy) <

A YD) = A©3F,,:)A©3)

_ <A(Ezn(l/.2’) 0
0 AE;UP)

holds, where A (4) denotes the diagonal matrix of the ei-
genvalues of A. Using the definition of © ™' (k,) in (3.32),
(3.35), we can deduce that

ATy, .y) = diag (1 — k3o, 170 1)
- diag (1 + ky, — 2k3,, | — ko 1 -2+ 1)

.<A(22n_.> 0 )
0 A(Ty-1)

so that, by expanding the product and using (3.36), we
finally get (4.10). This finishes the proof of the theorem.

Note that the condition (4.11) is much more easily vi-
olated by a valid reflection coefficient sequence than the
corresponding expression (4.12) for time series, pointing
to the fact that there is apparently a far richer class of
singular processes on trees than on the real line. This is
apparently related to the characterization of spectral mea-
sures for isotropic processes and to the large size of the
boundary of the dyadic tree (see the comments concerning
[1, eq. (2.33)).

C. A Stability Criterion

A well-known result for all-pole lattice filters is that
such a filter is stable if and only if all of the reflection
coefficients have magnitude less than 1. In this section we
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state and prove Theorem 4.2, which is the counterpart of
this result for the lattice filters introduced in this paper.
Before stating this result, let us clarify what we mean by
“‘stability.”” Figs. 3-5 depict (for a sixth-order example)
the structure of the unnormalized filter. This filter de-
scribes how the computation of Y, propagates from horo-
cycle to horocyle, with E, , (for n odd) or (E, ,, Eza/» »)
(for n even) as input and the corresponding block of ¥’s
on the same horocycle as output. It is the stability of this
filter that we wish to study.
Theorem 4.2: Under the conditions

-1 <k, <1 noddl =n <N (4.15)

—1<k, <1 nevenl=sn<N (416
the Nth-order unnormalized modeling filter specified by
(3.23)-(3.27) is stable, so that a bounded input E, y ( for
N odd) or (E, n, Eswn y) ( for N even) yields a bounded
output Y,. Similarly, the normalized modeling filter spec-
ified in Theorem 3.4 is also stable under these conditions
so that a bounded input Ey (for N odd) or (E, y,
Eswin y)* ( for N even) yields a bounded output Y

Proof: Let us first show that by taking advantage of
the structure of the filter computations we can simplify
the required analysis and can, in fact, reduce it to a ques-
tion of stability analysis for a standard temporal system.
To begin, in Fig. 7 we have depicted one of the two par-
allel computations depicted in Fig. 5, where we have used
notation that emphasizes the sequential nature of the com-
putations. Here the indices ‘‘m’’ and ““m — 1”7 index
horocycles so that the **m — 1°” quantities are stored and
the ‘‘m’’ quantities are computed from the input (Eq; (m),
E¢, (m)) which is distinguished by a solid box at level 6
in the figure (note that the reverse-going output from this
final level, Fg, (m) is distinguished by a dashed box). The
subscripts for the signals in Fig. 7 code the various etror
and output processes at each level. The first subscript for
the E and F vectors indicate the order of the error vector,
while the second subscript (and the only subscript for the
Y’s) indexes the vectors along a segment of a horocycle.
The precise correspondence between the normalized ver-
sion of quantities in Fig. 7 and those in Fig. 5 can be
directly determined by matching up signals and node in-
dices in Fig. 5 with signals and horocycles index (m and
m — 1) in Fig. 7. For example,

Y, Yy, Yo, Yiso; © Yi(m), Yo(m), Ys(m), Yy(m)

Y1, Yaa, -1 © Yi(m = 1), Yo(m — 1)

F. 3, Fso3 < F3(m), F(m)
E, 4, Esor 4 © (Egy(m), Eyp(m)).

As we emphasized in Section III-A, and as illustrated
graphically in Figs. 3-5 and 7, each stage of the compu-
tation is pyramidal in structure. For example, the state of
a set of nodes at a given horocycle, together with the in-
puts, provide the state at two descendent sets of nodes at
the next horocycle. Since the computations in generating

each of these descendent sets are identical in structure,
we need follow only one of these paths in order to ex-
amine stability. For example, for our sixth-order exam-
ple, we need only establish stability of the dynamics from
input (Eg, (m), Ee, (m)) to (Y, (m), Y, (m), Y3(m), Ys(m)).
However, we can take this considerably farther. In par-
ticular, because of the pyramidal symmetries, we need
only consider the stability of the map from (Eg4; (m),
Eg, (m)) to Y,(m) as the structure of the map to Y, (m),
Y;(m), and Y4(m) are identical. More generally, starting
from any node , on the tree, we need only consider the
stability of the dynamics involved in generating {Yiar|n
= 0}, since the dynamics for any other path from horo-
cycle to horocycle has identical structure.

Using the notation of Fig. 7, we now see that we must
examine the stability of the system illustrated in Fig. 8
for the sixth-order case, where the small solid squares now
denote standard z ~' operations (i.e., z~'x(m) = x(m —
1)). Here the S(k,) matrices are exactly as defined in
Theorem 3.2. We can now apply standard time domain
methods to this system.*

Note first that under conditions (4.15), (4.16), the
O (k,) matrices defined in Theorem 3.3 and the covari-
ance matrices I, are invertible so that we can equivalently
study the stability of the normalized form of the modeling
filter. Note also that checking that a system function H(z)
has all its poles strictly inside the unit circle is equivalent
to checking the same condition for the system function
H(z?). Thus to test for stability we can modify the system
of Fig. 8 by adding a unit delay in every left-to-right-
going path, and by replacing the S(k;) blocks by the scat-
tering matrices I (k;) of Theorem 3.4. For example, in the
sixth-order case we can equivalently check the stability of
the system in Fig. 9. Recall that for an Nth-order filter we
proved in Theorem 3.4 that

Lk)EK) =1, i=1,--,N (417

for any set of coefficients &, - - - , ky that are reflection
coefficients of some isotropic process. But the entries of
the matrices Z(k;)"Z(k;) —1,i =1, + -+, N are rational
functions of the k,’s that have no poles inside the domain
specified by the conditions (4.15), (4.16). Hence we may
use the Lemma C.2 of Appendix C to extend the property
(4.17) to the whole domain specified by the conditions
(4.15), (4.16).
Using (4.17) and the notation of Fig. 9 we have that

HE,-(m)\IZ + ||7li(m)“2

= &1 0n = DIP + llneyom = DIF - (4.18)

where we have the boundary conditions
En+1(m) = u(m) 4.19)
no(m) = & (m — 1). (4.20)

To study stability we set u(m) = 0 and define the follow-

“We would like to acknowledge B. C. Levy for suggesting this line of
proof.
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Fig. 7. Illustrating one of the two parallel, sequential computations for the model of Figs. 3-5.

(Eg1{m), Egz(m}) Esy{m) (Ea1{m), Eqz(m})

Fe1(m) Fsi(m) Fai(m)

[ o] sl

Esi(m) (Ea1(m), Exa(m)) En(m) Yi(m)
) s ) s ] o
F31(m) Fay(m} Fu{m)

Fig. 8. Illustrating one computational path from horocycle to horocycle. It is this standard time domain system whose stability
is equivalent to that of the unnormalized modeling filter.

wm) = &7(m) &e(m) &s(m) &am)

§dm) EAm) &i(m)

Z(ke) Z(ks) Z{ke)

| Z(ks) | Elkr) Z()

nem) ne(m) ndm)

nim nm my(m) Tiolm)

Fig. 9. Equivalent system whose stability is investigated in the proof of Theorem 4.2.

ing positive-definite function of the state of the system
N

Vom) = 2 lgl” + g eml®. @21
Then from (4.18)-(4.21) we obtain
Vim) = Vim = 1) = = lay(m)ll*. 4.22)

It can be readily checked that the system is observable
from ny(m), as long as (4.15) and (4.16) are satisfied, so
that V(m) is a Lyapunov function proving asymptotic sta-
bility.

D. Every Finite Family of Reflection Coefficients
Defines an Isotropic AR Process

Our analysis to this point has shown how to construct
a sequence of reflection coefficients {k,} from an iso-
tropic covariance sequence {r,}. Furthermore, we have
seen that the {k,}’s have particular bounds and that if
{r,} comes from an AR (p) process, only the first p of
the reflection coefficients are nonzero. The following re-
sult states that the converse holds, i.e., that any finite k,
sequence satisfying the required constraints corresponds
to a unique AR covariance sequence. This result substan-
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tiates our previous statement that the reflection coeffi-
cients provide a good parameterization of AR processes.

Theorem 4.3: Given a finite sequence of reflection coef-
ficients k,, 1 < n < p such that

—3 <k, <1
1<k, <1

for n even

(4.23)
for n odd

there exists a unique isotropic covariance sequence which
has as its reflection coefficient sequence the given k, fol-
lowed by all zeros.

Proof: Consider the modeling filter of order p spec-
ified by the given set of reflection coefficients. What we
must show is that the output of this filter y, is well defined
(i.e., has finite covariance) and isotropic when the input
is a standard white noise process. That it is well-defined
follows from the stability result in Theorem 4.2. Thus we
need only show that y, is isotropic. More specifically, let
(s, 1) and (s’, t') be any two pairs of points such that
d(s, 1) = d(s', t"). The theorem will be proved if we can
show that the function

K= k)i<nsp = E(yiy) = E(yrye)  (4.24)

is identically zero for all k,’s satisfying the condition
(4.23). But the formulas for the modeling filter (Theorem
3.2) show that ® is a rational function of K which is an-
alytic inside the domain specified by the conditions (4.23).
Also ¢ is identically zero for all sequences K arising from
valid isotropic covariances via the Schur recursions
(2.26)—(2.31). Then the theorem is an immediate conse-
quence of the Lemma C.2 of Appendix C.

V. CONCLUSION

In [1] and this paper we have described a new frame-
work for modeling and analyzing signals at multiple
scales. Motivated by the structure of the computations in-
volved in the theory of multiscale signal representations
and wavelet transforms, we have examined the class of
isotropic processes on a homogenous tree of order 2.
Thanks to the geometry of this tree, an isotropic process
possesses many symmetries and constraints. These make
the class of isotropic autoregressive processes somewhat
difficult to describe if we look only at the usual AR coef-
ficient representation. However, as we have developed,
the generalization of lattice structures provides a much
better parametrization of AR processes in terms of a se-
quence of reflection coefficients.

In developing this theory we have seen that it is nec-
essary to consider forward and backward prediction errors
of dimension that grows geometrically with filter order.
Nevertheless, thanks to isotropy, only one reflection coef-
ficient is required for each stage of the whitening and
modeling filters for an isotropic process. Indeed as shown
in [1], isotropy allowed us to develop a generalization of
the Levinson and Schur scalar recursions for the local
averages or barycenters of the prediction errors, which
also yield the reflection coefficients. In this paper we have
justified our claim that the reflection coefficients are a

0.2

0.15 +

“o 500 1000 1500 2000 2500 3000 3500 4000 4500

Fig. 10. A sample of an AR (3) process at a given horocycle.

good parametrization for AR processes and isotropic pro-
cesses in general. In particular we have developed whit-
ening and modeling filters for AR processes that can be
completely specified in terms of these coefficients. In ad-
dition we have shown that there is a one-to-one corre-
spondence between finite reflection coefficient sequences
and AR processes, have characterized the stability of lat-
tice filters in terms of the reflection coefficients and have
shown how the regularity of an isotropic process can be
characterized in terms of its reflection coefficient se-
quence.

This work represents one part of a larger effort to de-
velop a theoretical foundation for multiscale statistical
signal processing. In particular in [10] we investigate a
weaker notion of multiscale stationarity which leads to a
state space and system theory for multiscale modeling and
a corresponding methodology for scale-recursive optimal
estimation which accomodates very naturally the fusion
of data from sensors with different resolutions {3]-[5]. The
multiscale AR models developed here as well as the state-
space models of [3]-[5] are particularly useful for mod-
eling and analyzing signals displaying fractal-like or self-
similar characteristics. For example, when restricted to a
given level of resolution, a sample of an isotropic process
can be drawn like an ordinary signal. We show in Fig. 10
a sample of an AR (3) process with k;, = k, = k3 = 0.99.
Figs. 11 and 12 show approximations of this signal at suc-
cessively coarser scales using the multiresolution analysis
via wavelets of Mallat-Daubechies, as presented in [7].
These approximations display the self-similar statistical
characteristics we expect of this class of models (see also
the thorough development for so-called 1/f-processes in
[11], [12]).

There are several promising directions for further re-
search building on our formalism. In particular, an essen-
tial topic for investigation is the development of methods
for constructing isotropic AR models directly from data
as available in practice. This requires identifying multi-
scale structure and estimating isotropic covariance se-
quences from data restricted to a single scale, i.e., a sin-
gle horocycle [6]. In addition, we expect that these models
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Fig. 12. The Mallat-Daubechies multiresolution approximation of the sig-
nal of Fig. 10, continued.

should be of value for segmentation of signals, and, in
two dimensions, for the identification of textures, based
on differences in multiscale characteristics. The scale-re-
cursive structure of the AR whitening filter should facil-
itate the calculations of likelihood ratios much as in or-
dinary time series analysis. Work in these areas, as well
as on several applications of our theory, is proceeding and
will be reported in the future.

APPENDIX A
UMBILICAL LEMMA

We shall use the following notation:
wY, = Y,

where w is a word. Note that we have

vY, = Y, = wrY,.

Furthermore, in the sequel, [g] denotes the greatest inte-
ger smaller than g, and we shall write, for short, 8% in-
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stead of 6. Using these notations, we have the follow-
ing resuit.
Lemma A.1: For each n, the following formulas hold:

vy 'F, =8*V/Ay'F , up to a permutation.
Proof: Recall that, forw < 0, |w| =n
F,,w) = Yo — E(Xp| Yin-1)
whence
vy 'F W) = Yo — EFipor] Yoy -10-1)

and
¥ "' Fiptas v/21,n (W)

= Yinen/ay-150 = E(Y,si+0/21 -1 | Yasionsv/214=10-1)

so that, to prove the lemma, it is enough to show the fol-
lowing formulas:

w| = n,w =8V 0y 5w =n (A1)
wl=n—-1,w = sln+/2y, o lw'| = n — 1.
(A.2)

Proof of (A.1): Setw = v 7'8W, 1 + 2k = n. Then

w' = y—la(l(n—l)/l’]—l)* 5(/() (AB)
where x, = max (x, 0). To prove (A.l) it suffices to ver-
ify that

k= [n ity {
2

holds in (A.3), which amounts to verify that n = [(n —
1)/2] + k, and this is a consequence of the inequalities
k< [n/2)andn = [n/2] + [(n — 1)/2].

Proof of (A.2); Againsetw =~ 8%, 1 +2k <n
— 1. Then w' = 8@~ D2y Now if k = [(n — 1)/2]
— [ holds, then (A.2) follows. Otherwise ! + 2([n — 1/2]
—I)=2[(n - 1)/2] =1 < n — 1 also proves (A.2).

APPENDIX B
ProOF OF (4.4)

Take any j > n/2. Suppose that we can find as an
isometry ¥: 3 — J so that

) ¥() =1,
2) ¥ maps the set {ry ~'w|w < 0, |w| < n — 1)} onto
itself,

3) ¥ maps the points {167} U {6y~ 'wjw < 0, |w|
< n — 1} onto a set of points each of which is <
ry -1

Let Y} = Yy, and define EY similarly. Then, thanks to
isotropy, Y¥ has the same statistics as Y. Thus from (4.2)

EY, LYY o (B.1)
However, thanks to properties (1) and (2) of ¥
E.,=E},
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t 1503
Fig. 13. Illustrating the isometry used in Appendix A for the case n = 5 and j = 3. Here the pivot point is ty 73, so that the

part of the tree toward ¢ from ty ~* is left unchanged. The *‘rotation’’ exchanges the points ty % and ry

-2

*8 and maps their

successors accordingly. The set of nodes indicated with 13, which is in this case both {ry 'wlw <0, |[w| = n— 1} and
{18’y 'w|w < 0, |w| = n — 1} is left invariant by this isometry. Also the point 16 is mapped onto one of the immediate

successors of ty ~* 8, both of which are <ty ™'

while thanks to property (3) and (2.9)

Eso.n€ 3{Y2 1, |w < 0} (B.2)
Equations (B.1) and (B.2) then imply (4.4).

The required isometry is of the pivot type used in the
proofs in [1, appendix C]. As illustrated in Fig. 13, the
pivot for this isometry is the point zy = *"/? and the di-
rection of ‘‘rotation’’ is as indicated in the figure. It is
straightforward to check that this isometry has the re-
quired properties.

ApPENDIX C
SoME UseruL LEMMAS

The first lemma is an immediate consequence of the
Schur recursions (22.6)-(2.31):

Lemma C. 1: Consider the transformation ¥ which maps
an isotropic covariance sequence {r,} to the correspond-
ing reflection coefficient sequence. The Jacobian of this
transformation satisfies the following:

ok,

E—O forn < m (C.1)

ks, 1

— == < *0 C.2

aan 2 ]P2n—](0) ( )
ak2n+l 1 #0 (C 3)

amet 27 (Pp(0) + 6P [Py,1(0)

where the P, are the Schur series defined in (2.26).
Next we write K £ (k)1 <» <p to denote a vector in R”,

and we let S denote the set of such vectors so that

_1 < k2n+| < +1
—3 < kyy < +1.

Lemma C.2: Consider a function ® from R” into R sat-
isfying the following properties:

1) ®(K) = 0 if K is the reflection coefficient sequence
of an isotropic process,

2) ® is analytic inside 8.

Then, ® = 0in 8.

Proof: Since ® is analytic in 8, it is sufficient to
show that ® is zero on a set with nonempty interior in 8.
Since we know that ®(K) = 0 if K is in the image of the
map ¥ introduced in Lemma C.1, it is sufficient for us to
show that the image of ¥ has a nonempty interior.

Thanks to the form of the Schur recursion formulae
(2.26)-(2.31), we know that ¥ is also a rational function
and, thanks to Lemma C.1, its Jacobian is triangular and
always invertible. Thus it is sufficient to show that the set
of finite sequences {r,|0 < n < N} that can be extended
to a covariance function of an isotropic process has a non-
empty interior. However, this property is characterized by
a finite family of conditions of the form

R(rg, *++, 1) =0 (C.4)
where ®(ry, - - -, 7,) denotes a matrix whose elements
are chosen from the ro, -+ + , r,. The set of (p + 1)-
tuples satisfying these conditions with strict inequality is
nonempty (for instance, r, = 6,0 is the covariance se-
quence of white noise) and as a consequence the set of 7o,



BASSEVILLE ef al.: MULTISCALE AR PROCESSES. PART 11

-+, 1, satisfying (C.4) has a nonempty interior. This
finishes the proof of the lemma.
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