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Multiscale Autoregressive Processes, Part I:
Schur-Levinson Parametrizations

Michele Basseville, Albert Benveniste, Fellow, IEEE, and Alan S. Willsky, Fellow, IEEE

Abstract—In many applications (e.g., recognition of geophys-
ical and biomedical signals and multiscale analysis of images),
it is of interest to analyze and recognize phenomena occurring
at different scales. The recently introduced wavelet transforms
provide a time-and-scale decomposition of signals that offers
the possibility of such analysis. At present, however, there is
no corresponding statistical framework to support the devel-
opment of optimal, multiscale statistical signal processing al-
gorithms. In this paper we describe such a framework. The
theory of multiscale signal representations leads naturally to
models of signals on trees, and this provides the framework for
our investigation. In particular, in this paper we describe the
class of isotropic processes on homogeneous trees and develop
a theory of autoregressive models in this context. This leads to
generalizations of Schur and Levinson recursions, associated
properties of the resulting reflection coefficients, and the initial
pieces in a system theory for multiscale modeling.

I. INTRODUCTION

HE investigation of multiscale representations of sig-

nals and the development of multiscale algorithms has
been and remains a topic of much interest in many con-
texts. In some cases, such as in the use of fractal models
for signals and images [4], [33] the motivation has di-
rectly been the fact that the phenomenon of interest ex-
hibits patterns of importance at multiple scales. A second
motivation has been the possibility of developing highly
parallel and iterative algorithms based on such represen-
tations. Multigrid methods for solving partial differential
equations [12], [27], [34], [36] are a good example. A
third motivation stems from so-called ‘‘sensor fusion’’
problems in which one is interested in combining together
measurements with very different spatial resolutions.
Geophysical problems, for example, often have this char-
acter.
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One of the more recent areas of investigation in multi-
scale analysis has been the development of a theory of
multiscale representations of signals [30], [32] and the
closely related topic of wavelet transforms [20]-[22],
[241-1261, [29). These methods have drawn considerable
attention in several disciplines including signal process-
ing because they provide a natural way to perform a time-
scale decomposition of signals. In addition examples that
have been given of such transforms seem to indicate that
it should be possible to develop efficient optimal process-
ing algorithms based on these representations. The devel-
opment of such optimal algorithms, e.g., for the recon-
struction of noise-degraded signals, for the optimal fusion
of multiresolution data, or for the detection and localiza-
tion of transient signals of different duration, requires the
development of a statistical framework for analyzing, fus-
ing, and modeling signals and phenomena at multiple
scales. The research presented in this paper and its com-
panion [1] as well as in several other papers and reports
[71, 181, [5), [16]-[18] has the development of such a
framework as its objective.

Essentially all methods, including wavelet transforms
[21], [31] and multirate filtering [19], [39], for repre-
senting and processing signals at multiple resolution in-
volve pyramidal data structures. Each level in such a
structure corresponds to signal representation at a partic-
ular scale, with successively decimated representations at
coarser scales. Such a multiscale representation has a nat-
ural interpretation as a tree in which each level in the tree
corresponds to a particular scale and each node at a given
scale is connected both to a ‘‘parent’’ node at the neigh-
boring coarser scale and to several ‘‘descendant’’ nodes
at the neighboring finer scale. The simplest, and most
common, structure of this type is the dyadic tree in which
there is a factor of two decimation from scale to scale,
and thus there are two descendant nodes for each parent.
It is this structure that provides the starting point for our
investigation. That is, our objective is to develop a theory
of statistical modeling and signal processing for multi-
scale representations of signals defined on dyadic trees.

There are a number of criteria that must be satisfied for
such a formalism to be of value. First, it must be rich
enough to be useful for modeling significant classes of
phenomena and signals. Second, it should provide the ba-
sis for the development of efficient algorithms for mod-
eling, estimation, segmentation, and other signal analysis
tasks. Finally, in our opinion for such a formalism to pro-
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vide a true foundation for multiscale statistical signal pro-
cessing, it should be based on the extensions to this set-
ting of the basic principles that have provided the
framework for the powerful and successful classical
methods of time series analysis.

One of the most powerful concepts in time series anal-
ysis is that of stationarity, and the extension and use of
this concept to the multiscale context represents one of
the goals of our work. In [8] we introduce and study sta-
tionarity and the related systems concepts of shift invari-
ance beginning from first principles and developing a
state-space and systems theory for multiscale systems and
processes on the dyadic tree. Since shifts on the tree are
shown to correspond to changes in scale [8], it is not sur-
prising that stationarity in this sense corresponds to a no-
tion of statistical scale invariance or self-similarity. In-
deed, as developed in [7], [8], [16]1-[18], [40], [41], this
framework provides an excellent setting for the modeling
of self-similar or fractal processes; moreover, as shown
in [7], [17], the natural extension of these models to scale-
varying systems and processes allows us to develop useful
multiscale models for a surprisingly large class of pro-
cesses.

In this paper we investigate an alternate framework to
that in [8] for an important subclass of stationary pro-
cesses on trees. Specifically in classical time series anal-
ysis we have not only the fundamental internal modeling
framework of state-space methods but also the ‘‘black-
box’’ or input-output framework of regression. This
framework leads not only to the powerful methods of AR
and ARMA modeling but also to efficient algorithms for
building models directly from data. The principal objec-
tive of this paper and its companion [1] is to develop a
similar framework for multiscale signal representations.
In particular, we develop a theory of multiscale autore-
gressive modeling for a class of self-similar processes
which we refer to as isotropic.

An obvious and critical aspect of both state-space and
autoregressive modeling is that we require a notion of re-
cursion or causality, i.e., in time series analysis we deal
with the time axis asymmetrically (in terms of past and
future). In the case of multiscale representations we also
have a one-dimensional ‘‘axis’’ in which we may consider
recursion, namely the axis of scale. In particular, the
models considered here and in [8], [16]-[18] involve a
notion of causality or recursion proceeding from coarse
scales to finer scales, exactly as in signal synthesis (rather
than analysis) using wavelet transforms or Laplacian pyr-
amids. By adopting this asymmetric view of scale we gain
exactly the same advantage as in time series analysis. That
is, without any sacrifice in the generality of the represen-
tation, we gain all of the advantages of recursion. These
can be used as in [16]-[18] to develop efficient scale-re-
cursive optimal estimation algorithms or as we do here in
finding and parametrizing the class of causal models on
trees that produce isotropic processes. In particular in this
paper and in [1] we extend the powerful and computa-
tionally efficient Schur and Levinson algorithms to the

multiscale framework and use there as the basis for the
AR parametrization of isotropic processes and the con-
struction of lattice filters for multiscale modeling and
whitening. As in standard time series analysis, these whit-
ening filter structures provide us with a key ingredient for
the efficient calculation of likelihoods for a variety of sig-
nal processing problems including parameter estimation,
segmentation, and hypothesis testing.

In the next section we introduce the multiscale repre-
sentation of signals on dyadic trees. We also introduce the
class of multiscale isotropic processes and set the stage
for introducing dynamic modes on trees by describing
their structure and introducing a rudimentary transform
theory. In addition, we describe the class of autoregres-
sive (AR) models on trees. As we will see, the geometry
and structure of a dyadic tree is such that the dimension
of an AR model increases with the order of the model.
Thus an nth order AR model is characterized by more
than n coeflicients whose interdependence is specified by
a complex relation and the passage from order n to order
n + 1 1is far from simple. In contrast, as we will show,
we obtain a far simpler picture if we consider the gener-
alization of lattice structures.

In particular, in Section 111 we introduce forward and
backward prediction error processes on dyadic trees, and,
as for time series, we develop Levinson-like recursions
for these processes as the order of prediction increases.
While the basic structure of our analysis is very much the
same as for time series, there are significant new issues
that must be addressed for processes on dyadic trees. In
particular, we will see that the dimension of the prediction
error processes increases with the order of prediction (due
essentially to the fact that the number of nodes at a given
distance from a specified node increases geometrically
with distance). This requires significant care in computing
the projections, required in the Levinson’s recursions, of
error vectors of one order on those of the preceding order.
The result is an apparently complicated set of expres-
sions.

However, as we explore in Section IV, the constraints
of isotropy lead to significant simplifications in the re-
quired projections. Indeed, we will show that all of these
apparently different vector projections collapse into pro-
jections onto scalar averages (or barycenters) of the pre-
diction error vectors. Thus, as for time series, only one
reflection coefficient is needed to specify the Levinson re-
cursion at each stage, and in Section IV we also develop
Schur-like recursions for the computation of these reflec-
tion coefficients. As we will see, the constraints that the
reflection coefficients must satisfy are somewhat different
than for the case of time series.

The actual construction of whitening and shaping (or
modeling) filters for the original process requires, of
course, the full error processes and not just their barycen-
ters. In part II of this paper [1] we build on the results of
Sections III and IV to construct and analyze whitening
and modeling lattice filters for AR processes. In particu-
lar, we will see that the constraints on the refiection coef-
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ficients are again necessary and sufficient for stability, and
we also use our analysis to study in detail the Wold de-
composition for isotropic processes. One important result
here is that all isotropic AR processes can be modeled
using our Schur/Levinson/lattice construction.

II. MULTISCALE REPRESENTATIONS AND STOCHASTIC
Processes ON HOMOGENEOUS TREES

The starting point for our development is the pyramidal
structure of multiscale representations for signals in con-
tinuous or discrete time. For example in discrete time such
a structure arises naturally in multirate digital filtering [19]
and the problem of decimation with perfect reconstruction
[39]. Similarly in continuous time [21], [31] a multiscale
representation of a signal f(x) consists of a sequence of
approximations of that signal at finer and finer scales
where the approximation of f (x) at the mth scale is given
by

Sy = L fOn,méQ"x —m. QD)
The set of coefficients { f(m, n): n =0, £1, 2, - - - }

corresponds to the representation of a signal at the mth
scale. Thanks to the scaling factor of 2™ in (2.1), there is
a factor of 2 decimation between any scale and the pre-
vious, coarser one. This yields the dyadic tree structure
of the full set of representations over all scales, in which
any node (m, n) has two descendent nodes at the next,
finer scale and one parent node at the preceding coarser
scale. It is this data structure that we have in mind to study
here. However, in order to introduce carefully the partic-
ular notion of stationarity we use here, namely that of
isotropy, we must first step back and take a more funda-
mental, abstract view of the dyadic tree index set.

A. Homogenous Trees

Homogenous trees, and their structure, have been the
subject of some work [2], [3], [15], [23], [14] in the past
on which we build and which we now briefly review. A
homogenous tree 3 of order ¢ is an infinite acyclic, un-
directed, connected graph such that every node of 3 has
exactly (g + 1) branches to other nodes. Note that g = 1
corresponds to the usual integers with the obvious
branches from one integer to its two neighbors. The case
of ¢ = 2, illustrated in Fig. 1, corresponds, as we will
see, to the dyadic tree on which we focus throughout the
paper. In 2-D signal processing it would be natural to con-
sider the case of ¢ = 4 leading to a pyramidal structure
for our indexing of processes.

The tree 3 has a natural notion of distance: d(s, ?) is the
number of branches along the shortest path between the
nodes of s, t € 3 (by abuse of notation we use J to denote
both the tree and its collection of nodes). One can then
define the notion of an isometry on 3 which is simply a
one-to-one map of 3 onto itself that preserves distances.
For the case of ¢ = 1, the group of all possible isometries
corresponds to translations of the integers (¢ — ¢ + k),
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2 successive horocycles:

Fig. 1. The dyadic homogenous tree.

the reflection operation (f —» —1) and concatenations of
these. For ¢ = 2 the group of isometries of J is signifi-
cantly larger and more complex. One extremely important
result is the following [23]:

Lemma 2.1 (Extension of Isometries): Let 3 be a ho-
mogenous tree of order q, let A and A’ be two subsets of
nodes, and let f be a local isometry from Ato A', i.e., f
is bijection from A onto A' such that

d(f(s), f() = d(s, 1) foralls,teAd. (2.2)
Then there exists an isometry f of 3 which equals f when
restricted to A. Furthermore, if f| and f, are two such
extensions of f, their restrictions to the shortest path join-
ing any two points of A are identical.

Another important concept is the notion of a boundary
point [3], [14] of a tree. Consider the set of infinite se-
quences of 3 where any such sequence consists of a se-
quence of distinct nodes ¢, t5, * - - where d(¢;, t; +)) = 1.
A boundary point is an equivalence class of such se-
quences where two sequences are equivalent if they differ
by a finite number of nodes. For g = 1, there are only
two such boundary points corresponding to sequences in-
creasing towards +o or decreasing toward —oo. For ¢
= 2 the set of boundary points is uncountable. In this case
let us choose one boundary point which we will denote
by —oo.

Once we have distinguished this boundary point we can
identify a partial order on 3. In particular, note that from
any node 7 there is a unique path in the equivalence class
defined by —oo (i.e., a unique path from t ‘“‘toward”
— o). Then if we take any two nodes s and ¢, their paths
to — oo must differ by only a finite number of points and
thus must meet at some node which we denote by s A ¢
(see Fig. 1). We then can define a notion of the relative
distance of two nodes to — o

8s, ) =d(s,s ANt) — d(t, s N 1) (2.3)
so that
s <t (s is at least as close to —oo as £7’)
if6(s,n) <0 2.4
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s < 1 (‘s is closer to —oo than 1)

if 8(s, 1) < 0. (2.5)
This also yields an equivalence relation on nodes of 3:
sTtobs,n=0. (2.6)

For example, the points s, v, and u in Fig. I are all equiv-
alent. The equivalence classes of such nodes are referred
to as horocycles.

These equivalence classes can best be visualized as in
Fig. 2 by redrawing the tree, in essence by picking the
tree up at —oo and letting the tree ‘‘hang” from this
boundary point. In this case the horocycles appear as
points on the same horizontal level and s < r means that
s lies on a horizontal level above or at the level of 7. Note
that in this way we make explicit the dyadic structure of
the tree. With regard to multiscale signal representations,
a shift on the tree toward — oo corresponds to a shift from
a finer to a coarser scale and points on the same horocycle
correspond to the points at different translational shifts in
the signal representation at a single scale. Note also that
we now have a simple interpretation for the nondenumer-
ability of the set of boundary points: they correspond to
dyadic representations of all real numbers.

B. Shifts and Transforms on 3

The structure of Fig. 2 provides the basis for our de-
velopment of dynamical models on trees since it identifies
a “‘time-like’” direction corresponding to shifts toward or
away from —oo. In order to define such dynamics we will
need the counterpart of the shift operators z and z " in
order to define shifts or moves in the tree. Because of the
structure of the tree the description of these operators is a
bit more complex, and in fact we introduce notation for
five operators representing the following elementary
moves on the tree, which are also illustrated in Fig. 3:

0 identity operator (no move),

v~ backward shift (move one step toward — o),

o left forward shift (move one step away from — oo

toward the left),

B right forward shift (move one step away from — oo

toward the right),

] interchange operator (move to the nearest point in

the same horocycle).

Note that 0 is an isometry; § is invertible; « and B are one
to one but not onto; ' is onto but not one to one; and
these operators satisfy the following relations (where the
convention is that the leftmost operator is applied first):

ay '=8y' =0 2.7)
byl =y7! (2.8)
=0 (2.9)
B8 = a. (2.10)

Arbitrary moves on the tree can be encoded via finite
strings or words using these symbols as the alphabet and

to finer scales

to coarser scales

translational shift

Fig. 2. Showing the scale structure.

Fig. 3. Encoding the moves on the tree.

the formulas (2.7)-(2.10). For example, referring to Fig.
3

-4

sy =ty Y, 5 =1y08, 53 =ty ba

(2.11)

It is also possible to code all points on the tree via their
shifts from a specified, arbitrary point #, taken as origin.
Specifically, define the language

£ =0 U (y H8{a, B}* U {a, B}* (2.12)

where K* denotes arbitrary sequences of symbols in K
including the empty sequence which we identify with the
operator 0. Then any point 1 € 3 can be written as 7w,
where w € £. Note that the moves in £ are of three types:
a pure shift back toward —o ((y ~")*); a pure descent
away from —oo ({«, 8}*); and a shift up followed by a
descent down another branch of the tree ((y ~')* 6} {«,
B}*). Our use of § in the last category of moves ensures
that the subsequent downward shift is on a different branch
than the preceding ascent. This emphasizes an issue that
arises in defining dynamics on trees. Specifically, we will
avoid writing strings of the form y ~'« or y ~'8. For ex-
ample ry "'« either equals ¢ or 76 depending upon whether
1 is the left or right immediate descendant of another node.
By using é in our language we avoid this issue. One price
we pay is that £ is not a semigroup since vw need not be
in £ for v, w e £. However, for future reference we note
that, using (2.7)—(2.10), wé and wy ~' are both in £ for
any we £.

It is straightforward to define a length |w| for each word
in £, corresponding to the number of shifts required in
the move specified by w. Note that

lal = 18] =1
o =0, 8] = 2.

Thus |y ™" = n, |w,s| = the number of «’s and £’s in

s¢ = ty 7 8B, ss = 1y > ba>.

I

Y

I

(2.13)
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Weg € {ar, B}*, and |y "Ow,gl =n + 2 + |wagl.' This
notion of length will be useful in defining the order of
dynamic models on 3. We will also be interested exclu-
sively in causal models, i.e., in models in which the out-
put at some scale (horocycle) does not depend on finer
scales. For this reason we are most interested in moves
that either involve pure ascents on the tree, i.c., all ele-
ments of {y ~'}*, or elements y " dw,s of {y '}* 8{c,
B}* in which the descent is no longer than the ascent, i.e.,
|wes| = n. We use the notation w < 0 to indicate that w
is such a causal move. Note that we include moves in this
causal set that are not strictly causal in that they shift a
node to another on the same horocycle. We use the no-
tation w = 0 for such a move. The reasons for this will
become clear when we examine autoregressive models.

Also, on occasion we find it useful to use a simplified
notation for particular moves. Specifically, we define 6
recursively, starting with 6" = & and

Ifr =ty 'a, thent6™ = ry™' " Vo
Ifr=1y"'8, thents™ =1y~ ' 6" V8. (2.14)

What 8™ does is to map 1 to another point on the same
horocycle in the following manner: we move up the tree
n steps and then descend n steps; the first step in the de-
scent is the opposite of the one taken on the ascent, while
the remaining steps are the same. That is, if r =
ty """ w, g then 18 = 1y 7" " dw,4. For example, re-
ferring to Fig. 3, 5o = 16'%.

With the notation we have defined we can now define
transforms as a way in which to encode convolutions much
as z transforms do for temporal systems. In particular, we
consider systems that are specified via noncommutative
formal power series [11] of the form:

S= 28, w,

wed

s, € R. (2.15)
If the input to this system is u,, ¢ € 3, then the output is
given by the generalized convolution:

(Su), = 25 Sy, (2.16)
wed

For future reference we use the notation S(0) to denote

the coefficient of the empty word in S. Also it will be

necessary for us to consider particular shifted versions of
S:

VST = 20 Sy - W Q.17
wedl
PIS] = 20 sppm - W (2.18)
wed
where we use (2.7)-(2.10) and (2.14) to write wy ~! and

wd® as elements of £. Notice that, because of the rela-
tions (2.7)-(2.10),the operators S — y[S] and § — 8[S]
cannot be thought of as multiplication operators on formal
power series.

'Note another consequence of the ambiguity iny '« its “‘length™" should
either be 0 or 2.

1919

C. Isotropic Processes on Homogenous Trees

Consider a zero-mean stochastic process Y,, t € J in-
dexed by nodes on the tree. We say that such a process is
isotropic if the covariance between Y at any two points
depends only on the distance between the points, i.e., if
there exists a sequence r,, n = 0, 1,2, - + * so that

E[Y, Y] = 2.19)

An alternate way to think of an isotropic process is that
its statistics are invariant under tree isometries. That is,
if f: 3 = 3 is an isometry and if ¥, is an isotropic process,
then Z, = Y, has the same statistics as Y,. For time series
this simply states that Y_, and Y, ., have the same statis-
tics as Y,. For dyadic trees the richness of the group of
isometries makes isotropy a much stronger property.
Isotropic processes have been the subject of some study
[21, [31, [23] in the past, and in particular a spectral theo-
rem has been developed that is the counterpart of Boch-
ner’s theorem for stationary time series. In particular,
Bochner’s theorem states that a sequence r,, n = 0, 1,
- is the covariance function of a stationary time series
if and only if there exists a nonnegative, symmetric spec-
tral measure S(dw) so that

rd(r,:)'

1 S" i
- wn d
r, o ) " S(dw)

1 S cos (wn) S(dw).
™ Jo

If we perform the change of variables x = cos w and note
that cos (nw) = C,(cos w), where C,(x) is the nth
Chebychev polynomial, we have

1
ty = S 1 C, (x) u(dx) (2.20)

where p(dx) is a nonnegative measure on [—1, 1] (also
referred to as the spectral measure) given by

w(dx) = % (1 — x™"I8(dw). (2.21)

For example, for the white noise sequence with r, = 6,05

p(dx) = ! (1 — xH~/2, (2.22)
™

The analogous theorem for isotropic processes on
dyadic trees requires the introduction of the Dunau poly-
nomials [2], [23]:

Pyx) =1, P& =x
XP,(x) = IP, () + 3P, ().

(2.23)
(2.24)

Theorem 2.1 [2], [3]: A sequencer,,n =0,1,2, « -+
is the covariance function of an isotropic process on a
dyadic tree if and only if there exists a nonnegative mea-
sure pon [—1, 1] so that

1
n = S 1P,,(X)u(ch).

(2.25)
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The simplest isotropic process on the tree is again white
noise, i.e., a collection of uncorrelated random variables
indexed by 3, with r, = §,, and the spectral measure u
in (2.25) in this case is [23]

1 o.1/2
wdx) = 27 Xi-@vZ/3).032/3 () % dx  (2.26)
where x, (x) is the characteristic function of the set 4. A
key point here is that the support of this spectral measure
is smaller than the interval [—1, 1]. This appears to be a
direct consequence of the large size of the boundary of
the tree, which also leads to the existence of a far larger
class of singular processes than one finds for time series.
While Theorem 2.1 does provide a necessary and suffi-
cient condition for a sequence r, to be the covariance of
an isotropic process, it does not provide an explicit and
direct criterion in terms of the sequence values. For time
series we have such a criterion based on the fact that r,
must be a positive semidefinite sequence. It is not difficult
to see that r, must also be positive semidefinite for pro-
cesses on dyadic trees: form a time series by taking any
sequence Y, Y,,, - - - where the ¢, are all distinct and d(z;,
ti+1) = 1; the covariance function of this series is r,.
However, thanks to the geometry of the tree and the rich-
ness of the group of isometries of J, there are many ad-
ditional constraints on r,. For example, consider the three
nodes v, u, and s A ¢ in Fig. 1, and let

X" =11, Y, Y.\l (2.27
Then
rhy nn n
EXX")=|r r, | =0 (2.28)

rn rnn

which is a constraint that is not imposed on covariance
functions of time series. Collecting all of the constraints
on r, into a useful form is not an easy task. However, as
we develop in this paper, in analogy with the situation for
time series, there is an alternative method for character-
izing valid covariance sequences based on the generation
of a sequence of reflection coefficients which must satisfy
a far simpler set of constraints which once again differ
somewhat from those in the time series setting.

D. Models for Stochastic Processes on Trees

As for time series it is of considerable interest to de-
velop white-noise-driven models for processes on trees.
The most general input-output form for such a model is
simply

Y, = 2 ¢ W, (2.29)
where W, is a white noise process with unit variance and
the ¢, ; are (real) weights defining the generalized con-
volution. In general, the output of this system is not iso-
tropic and it is of interest to find models that do produce

isotropic processes. One class introduced in [3] has the
form

Y, = 2 cye oW, (2.30)
sed

To show that this is isotropic, let (s, f) and (s', ') be two

pairs of points such that d(s, 1) = d(s’, t'). By Lemma

2.1 there exists an isometry f so that f(s) = s/, f(t) = t'.

Then

ElY, Y] = 2 Cag uCai )
u

= ; Cas' fw' ) Cdat' f ')
= ,,Z Ca(fs).fw N Cd(f@).f ')

= 2 oy Canwy = FIGX]. 2:31)

The class of systems of the form of (2.30) is the gen-
eralization of the class of zero-phase LTI systems (i.e.,
systems with impulse responses of the form h(z, s) =
h(|t — s|)). On the other hand, we know that for time
series any LTI stable system, and in particular any causal,
stable system, yields a stationary output when driven by
white noise. As indicated previously, a major objective of
this paper is to find the class of causal models on trees
that produce isotropic processes when driven by white
noise. Such a class of models will then also provide us
with the counterpart of the Wold decomposition of a time
series as a weighted sum of ‘‘past’’ values of a white noise
process.

A logical starting point for such an investigation is the
class of models introduced in Section II-B

Y,=@8W), S-= Z£ S W (2.32)
we

However, it is not true that Y, is isotropic for an arbitrary

choice of §. For example, if S = 1 + ay ™', it is straight-

forward to check that Y, is not isotropic. Thus we must

look for a subset of this class of models. As we will see

the correct model set is the class of autoregressive (AR)

processes, where an AR process of order p has the form

2 a,Y, + oW,
w<0
[wl =p

Y, = (2.33)

where W, is a white noise with unit variance.

The form of (2.33) deserves some comment. First note
that the constraints placed on w in the summation of (2.33)
state that Y, is a linear combination of the white noise W,
and the values, Y,,,, of Y at nodes that are both at distances
at most p from ¢ (i.e., |[w| < p) and also on the same or
previous horocycles (w < 0). Thus the model (2.33) is
not strictly ‘‘causal’’ and is indeed an implicit specifica-
tion since values of Y on the same horocycle depend on
each other through (2.33) (see the second-order example
to follow).

A question that then arises is: why not look instead at
models in which Y, depends only on its ‘‘strict’’ past, i.e.,
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on points of the form ry ~". As shown in Appendix A, the
additional constraints required of isotropic processes
makes this class quite small. Specifically consider an iso-
tropic process Y, that does have this strict dependence:

Y, = glo a, W, . (2.34)

In Appendix A we show that the coefficients a, must be
of the form
a, = oa" (2.35)

so that the only process with strict past dependence as in

(2.34) is the AR (1) process
Y, =aY, - + oW, (2.36)

Consider next the AR (2) processes, which specializing

(2.33), has the form
Y =a/ Y, + aY, 2+ a;¥s + oW, (237

Note first that this is indeed an implicit specification, since

if we evaluate (2.37) at 16 rather than 7 we see that
YHS = a|Y,77l + aZY,N,f: + (13Y, + Ovvlé. (238)

We can, of course, solve the pair (2.37), (2.38) to obtain
the explicit formulas:

Y= (2 Vy  + (=2 )y, .+oV, 239
' 1"(13 ry! 1 — ay ry 2 oV, .39)
a [75]
Y= <?a$> Y -1 + <1 — a}) Y, -2 + Vs (2.40)
where
1
V, = —= {W, + a3 W;}. (2.41)
I — aj

The structure of the representation (2.39)-(2.40) reveals
that AR processes may be produced by propagating down-
ward ‘‘wavefronts’> of computations for those values of
Y at one horocycle that all depend on the same values of
Y at the preceding horocycle and the same set of values
of W. Such vector representations may be of interest in
some contexts such as in [16] in which we use similar but
nonisotropic models to analyze some estimation prob-
lems. On the other hand, note that V, is correlated with
Vs, and is uncorrelated with other values of ¥ and thus is
not an isotropic process (since E[V,V, ] # E[V,Vy]). In
what follows in this paper and in part II we develop an
alternate explicit representation for AR processes in which
we again will encounter vector processes capturing the
wavefront character of the computations but in which the
driving noise will in fact be isotropic and white.
Another important point to note is that the second-order
AR (2) model has four coefficients—three a’s and o, while
for time series there would only be two a’s. Indeed a sim-
ple calculation shows that the number of coefficients in
our AR ( p) model grows geometrically with the order, p,
of the regression rather than linearly as for time series.
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On the other hand, these coefficients in our AR model are
not independent and indeed there exist nonlinear relation-
ships among the coefficients. For example for the second-
order model (2.37) a; # 0if a, # 0 since we know that
the only isotropic process with strict past dependence is
AR (1). Indeed, as shown in [6], the coefficients a,, a,,
and a; must satisfy a fourth-order polynomial relation.

Because of the complex relationship among the a,.’s in
(2.33), the representation is not a completely satisfactory
parameterization of this class of models. As we will see
in subsequent sections, an alternate parametrization, pro-
vided by a generalization of Schur and Levinson recur-
sions, provides us with a much better parametrization. In
particular, this parametrization involves a sequence of re-
flection coefficients for AR processes on trees where ex-
actly one new reflection coefficient is added as the AR
order is increased by one.

III. FORWARD AND BACKWARD PREDICTION ERRORS
AND LEVINSON RECURSIONS FOR ISOTROPIC PROCESSES
ON TREES

As outlined in the preceding section the direct param-
etrization of isotropic AR models in terms of their coef-
ficients {a,} is not completely satisfactory since the num-
ber of coeflicients grows exponentially with the order p,
and at the same time there is a growing number of non-
linear constraints among the coefficients. In this and the
following section we develop an alternate characterization
involving one new coefficient when the order is increased
by one. This development is based on the construction of
“prediction’” filters of increasing order, in analogy with
the procedures developed for time series [9], [10] that lead
to lattice filter models and whitening filters for AR pro-
cesses. As is the case for time series, the single new pa-
rameter introduced at each stage, which we will also refer
to as a reflection coefficient, is not subject to complex
constraints involving reflection coefficients of other or-
ders. Therefore, in contrast to the case of time series for
which either the reflection coeflicient representation or the
direct parametrization in terms of AR coefficients are
*‘canonic”’ (i.e., there are as many degrees of freedom as
there are coefficients), the reflection coefficient represen-
tation for processes on trees appears to be the only natural
canonic representation. Also, as for time series, we will
see that each reflection coefficient is subject to bounds on
its value which capture the constraint that r, must be a
valid covariance function of an isotropic process. Since
this is a more severe and complex constraint on 1, than
arises for time series, one would expect that the resulting
bounds on the reflection coefficients would be somewhat
different. This is the case, although somewhat surpris-
ingly the constraints involve only a very simple modifi-
cation to those for time series.

As for time series the recursion relations that yield the
reflection coefficients arise from the development of for-
ward and backward prediction error filters for ¥,. One cru-
cial difference with time series is that the dimension of
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the output of these prediction error filters increases with
increasing filter order. This is a direct consequence of the
structure of the AR model (2.33) and the fact that unlike
the real line, the number of points at distance p from a
node on a tree increases geometrically with p. For ex-
ample, from (2.37)-(2.41) we see that Y, and Y, are
closely coupled in the AR (2) model, and thus their pre-
diction might best be considered simultaneously. For
higher orders the coupling involves (a linearly growing
number of) additional Y’s. In this section we set up the
proper definitions of these vectors of forward and back-
ward prediction variables, and develop Levinson-like re-
cursions for these as the order of prediction increases.
Thanks to the constraints of isotropy we will see in the
next section that the required projections in the Levinson
recursions involve only one new coefficient as the filter
order is increased by one.

A. Forward and Backward Prediction Errors

Let Y, be an isotropic process on a tree, and let
3¢{- - -} denote the linear span of the random variables
indicated between the braces. As developed in [10], the
basic idea behind the construction of prediction models of
increasing orders for time series is the construction of the
past of a point £ Y, , = H({Y, 4|0 = k = n} and the
consideration of the sequences of spaces as n increases.
In analogy with this, we define the past of the node ¢ on
our tree:

Y, & 3{Y,: w L0, |w| =n} (3.1)

One way to think of the past for time series is to take the
set of all points within a distance n of ¢ and then to discard
the future points. This is exactly what (3.1) is: Y, , con-
tains all points Y, on previous horocycles (s < t) and on
the same horocycle (s < ¢) as long as d(s, t) < n. A
critical point to note is that in going from Y, ,_; to Yi.n
we add new points on the same horocycle as 7 if n is even
but not if n is odd (see the example to follow and Figs.
4-7).

In analogy with the time series case, the backward in-
novations or prediction error space, which we denote by
F, ,, is defined as the space spanning the new information
in 9, , which is orthogonal to Y, ,_1:

‘yt,n = (yr,nAl @ EFt,n (32)

so that &, , is the orthogonal complement of Y, .- in
%y, , which we also denote by &, , = Yi,» © Y, n—1- De-
fine the backward prediction errors for the ‘‘new’’ ele-
ments of the ‘‘past’” introduced at the nth step, i.e., for
w < 0 and |w| = n, we define

F,,(w) & Yo = E(l Yin-1)

where E(x| ) denotes the linear least squares estimate of
x based on data spanning Y. Then

Fon = R{Fx.n(w)l |Wl =n,w < 0}.

(3.3

3.4

For time series the forward innovations process is the
difference between Y, and its estimate based on the past

!y'z

ty tyl

t t td
n=1 n=2

Fig. 4. Illustrating E, , (dots) and F, , (squares) forn=1,2.

Fig. 5. Hlustrating E, 3 (dots) and F, ; (squares).

t

Fig. 6. Illustrating E, 4 (dots) and F, , (squares).

t

—_——

Fig. 7. Illustrating E, s (dots) and F, s (squares).

of Y,_;. In a similar fashion, define the forward innova-
tions

Er,n(w) = Ylw - E(er‘ (yt‘y“‘.n—l)

where w ranges over a set of words such that tw is on the
same horocycle as ¢ and at a distance at most n — 1 from
t (so that Y, -1 ,_1 is the past of that point as well), i.e.,
|w| < nand w < 0. Define

&0 & H{E, ,(w): [w| < nandw < 0}.

3.5)

(3.6)

Let E, , denote the column vector of the E, ,(w). A simple
calculation shows that
dim E, , = 21"~ "/ (3.7

where [x] denotes the largest integer =< x. The elements
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of E, , are ordered according to a dyadic representation of

the words w for which |w| < n, w < 0. Specifically, any
such w other than O must have the form

w=2gW ... 5(1'2) &

.<-<M
173 2

and with |w| = 2i;. For example, the points tw for w =
0, 5, 6@, and 8'® 6 are indicated by black circles in Fig.
7 and are ordered from left to right as indicated by the
arrow.’ Thus the words w of interest are in one-to-one
correspondence with the numbers O and Ej’-‘zl 2%, which
provides us with our ordering.

In a similar fashion, let F, , denote the column vector
of the F, ,,(w). In this case

dim F, ,

(3.3
with

l<i <ip< (3.9)

=22, (3.10)

The elements of F, , are ordered as follows. Note that any
word w for which |w| = n and w < 0 can be written as
w = v "W for some k = 0 and w < 0. For example as
1llustrated in Fig. 7, forn =5 the set of such w’s is (’y
8@, vy 1@ 5, y =35, and vy %). We order the w’s as
follows: first we group them in order of increasing k and
then for fixed k we use the same ordering as for E, , on
the w.

Example 3.1: In order to illustrate the geometry of the
problem, consider the cases n = 1, 2, 3, 4, 5. The first
two are illustrated in Fig. 4 and the last three are in Figs.
5-7, respectively. In each figure the points comprising
E, , are marked with dots, while those forming F, , are
indicated by squares.

n = 1 (see Fig. 4): To begin we have

‘yl.ﬂ = JC{Yr}

The only word w for which |w| =

landw L Oisw =
v ~'. Therefore

Fi F:,l('yil)

Yl'y‘l - E(Yl‘y’ler)

Also
Yy 10 = H{Y, 1}

and the only word w for which |w| < landw < Oisw
= 0. Thus

El,l Er, 1(0)

Y, — E(Y|Y,, ).

Il

n = 2 (see Fig. 4): Here
Y, = H{Y, Y}

*The left-to-right ordering of these points is due only to the fact that
was taken at the left of the horocycle.
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In this case |w|
v ~2. Thus

= 2 and w < O implies that w = § or
<F:.2(5) )
Foaly ™
B < = E(Yy|Y, Y, - >
-2 E(Yr'y '|YI3 Yw !

(y'y'l_gc{yl s r'y '}

and O is the only word satisfying |w| < 2 and w < 0.
Hence

.2

Similarly,

Et.2 EI,Z(O)
YI - E(YIIYW"’ Y{’y ’Z)-
n = 3 (see Fig. 5): In this case

Y, = {Y, Vi1, Yoy 2, Y}
Fostv 7' 8
FI.B = < —3
F1«3('Y )
<Y,y. - E(Y,T.lﬁ|Y Yoty Y2 ,a)>
"Y 3 E(Y,-yfil i) 17’2’ té)

(yty",Z = JC{YW"’ b Yy, Yly*‘é}

and there are two words, namely, 0 and &, satisfying [w]
<3andw < 0.

<E1.3(0)>
Er.3 =
El.3(5)

<Y — E(Y\Yy 1, Yoo2 Yo oa, Y ip) >
Yis E(YRS'YW Iy 1',’3» Yy -3, 1 "6)

r

Also

n = 4 (see Fig. 6):
‘yl.3 = JC{YH Yw"ﬁ Y17'3’ 6> t'y" Y ‘6}

F, 4%
F.,(6% %)
Fav 7?9
Fatv™
Y13 = Y-, Yy, ¥,
E, = <E,‘4(0)>.
E, 4(8)

n = 5 (see Fig. 7):

Ys = JC{Yr’ Yt‘y’“ YI~, y =3

: Yw"éﬁ Yry*‘» YIW*ZB» Yt'y“'éa* Yt‘y"&ﬁ}

y =3 Y =45 Yt‘y 18> I'y“’é}

-2 Y&l’ YI
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Fs(v™'8%)

Fsy'8%®

F.s(vy ™9

Fs(v™)

Yoy s = J{Y 1, Yiga, Yigoss Yiyors Yooy

2
I

: Yr'y’269 Yl'y*5’ Y!y*3§7 Yl‘y'zﬁw Yt'y’zﬁﬁ}

E, 5(0)

E, 5(5)

E s(6%)
E, 5(5® 8)

m
I

Let us make a few comments about the structure of these
prediction error vectors. Note first that for n odd, dim F, ,
= dim E, ,, while for n even dim F,, = 2dim E, ,. In-
deed, for n even F, , includes some points on the same
horocycle as ¢ (namely, tw for |w| = n, w < 0), e.g., for
n = 2, F, ,(8) is an element of F, ». These are the points
that are on the backward-expanding boundary of the
“‘past.”’ At the next stage, however, these points become
part of E, ,, e.g., forn = 3, E, 3(8) is an element of E, 3.
This captures the fact mentioned previously that as the
order of an AR model increases, an increasing number of
points on the same horocycle is coupled.

As a second point, note that we have already provided
a simple interpretation (3.2) of §, , as an orthogonal com-
plement. As for time series, this will be crucial in the
development of our recursions. We will also need similar
representations for &, . It is straightforward to check that
for n odd

‘yl‘ﬂ @ ‘yl'y’l,n—] = 81.n

(this can be checked for n = 1 and 3 from example 3.1),
while for n even

‘yr.n S (yly".n—l = St_n + 8,501/21."

3.11)

(3.12)

note that the right-hand side of (3.12) is not, however, an
orthogonal sum, see part II. For example for n = 2 this
can be checked from the calculations in example 3.1 plus
the fact that

E16.2 =Y - E[YIB\YW"V YI«/’Z .

Finally, it is important to note that the process E, , (for
n fixed) is not in general an isotropic process (we will
provide a counterexample shortly). However, if ¥, is AR
(p) and n = p, then, after an appropriate normalization
E, , is white noise. This is in contrast to the case of time
series in which case the prediction errors for all order
models are stationary (and become white if n = p). In the
case of processes on trees E, , has statistics that are in
general invariant with respect to some of the isometries
of 3 but not all of them.

B. Calculation of Prediction Errors by Levinson
Recursions on the Order

We are now in a position to develop recursions in n for
the F, ,(w) and E, ,(w). Our approach follows that for
time series except that we must deal with the more com-
plex geometry of the tree. In particular, because of this
geometry and the changing dimensions of F; , and E, ,, it
is necessary to distinguish the cases of n even and n odd.

1) n Even: Consider first F, ,(w) for lw| =n,w<0.
There are two natural subclasses for these words w. In
particular, either w < O orw < 0.

Case 1: Suppose that w < 0. Then w = ~~'w for some
w < 0 with |w| = n — 1. We then can perform the fol-
lowing computation, using (3.3) and properties of orthog-
onal projections:

F.,w) = Foo(ty ') = Yorp = By -1al Yrn-1)
= Ym-‘w - E(Yr'y"n'/l ‘yt‘y“,n—Z)

- E(Yt'y’lwi (yt,n—l @ {yl'y".n—Z)-

Using (3.3) (applied at ty “!'n—1)and (3.11) (applied
at the odd integer n — 1), we then can compute

F,.,,(W) = Ft-y’l.n—l(w) - E(Yry"W|Ex,n-l)

= Fry",n—l(w) - E(Ft“/il,"_ I(W)‘Er,n-l)
(3.13)

where the last equality follows from the orthogonality of
E ,_yand Yy -1 n-2 (from (3.11)). Equation (3.13) then
provides us with a recursion for F, ,(w) in terms of vari-
ables evaluated at words w of shorter length.

Case 2: Suppose that w < 0. Then, since lw| = n, it
is not difficult to see that w = 8"/ for some W satis-
fying |w| < n, w < 0 (for example, for n = 4, the only
w satisfying |w| = n and w < 0 are 5@ and 8@ 5, see
example 3.1). As in case 1 we have that

F, (W) = Ypo/ng — E(Yipa/n3] Yiy-1,0-2)

- E(Yrﬁ("/2>w( (yt,n—l @ (yt'y",n—Z)' (314)

Now for n even we can show that
(yt'y".n72 = (ylé("/z)’y'l,n—Z~

For example, for n = 4 these both equal {Y,,-1, ¥;, -2,
AR Y, -15}. Using this together with (3.5) and the or-
thogonality of E, , 1 and Y, -1, -, we can reduce (3.14)

to
F,,(w) = Egu/ (W) — E(E g0/ n-1(W)|Et,n—1)
(3.15)

which again expresses each F, ,(w) in terms of prediction
errors evaluated at shorter words. As an additional com-
ment, note that the number of words satisfying case 1is
the same as the number for case 2 (i.e., one-half dim F, ,).
Consider next E, ,(w) for [w| < nand w < 0. In this
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case, we compute
E (W) = Y, — E(Y,] Yp-10-2)
= EYol Y101 © Yy-10-2)
=E ,1(w) — EE, - \W|Fy-1,-1) (3.16)

where the last equality follows from (3.2).
2) n Odd: Let us first consider the special case of n =
1 which will provide the starting point for our recursions.
From example 3.1
Frp=Yy- — E(Ym—\‘Y,)
= wal - k]Y, = F,,yfl‘(] - klE[.O (317)

where k, is the first reflection coefficient, exactly as for
time series

_EY, Y] _n
RN (3.18)
Similarly,
E.=Y - EY|Y, )
=Y, -k Yry"
=E. o~ kF, o (3.19)

Consider next the computation of F, ,(w) forn = 3 and
odd. Note that for n odd it is impossible for w to satisfy
fw| = nand w < 0. Therefore the condition

lw|=n andw <0

is equivalent to

w < 0.

w=~vy""w, |wl =n-1, <

Therefore, proceeding as before,
Fr.n(w) = Yr -l T E(Yty"wl (yry’l.n-2)
- E(YW".W" (yl.n—l e (yw*',n—Z)
= Fly".n~ l(w)
- E(Fl'y",n— I(W)‘Ex,n 1 Ep-n 1)
(3.20)

where the last equality follows from (3.12) applied at the
even integer n — 1.

Consider next the computation of E, ,(w) forn = 3
and odd, and for |w| < n, w & 0. There are two cases
(each corresponding to one-half the components of E, ,)
depending upon whether |w| is n — 1 or smaller.

Case 1: Suppose that |w| < n — 1. In this case, exactly
the same type of argument yields

E ,w) =E_,_\(w) — EE,, (W)

= EE o \W|Fy o). (3221)

Case 2: Suppose that [w| = n — 1. In this case w =

8 =D/D % where w < 0 and computations analogous to
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those performed previously yield
E, ,(w) = Epo-1/2 5 —1(W)

- E(Erél""’/z‘.n—l(w)|Ft~/".nfl) (322)

where in this case we use the fact that
(yxrl.n—z = Y- Ny -lin-2e
For example, for n = 5 these both equal
(Y-, Yoy, Yoy, Yy iy Yoy, Yoy}

We have now identified six formulas—(3.13), (3.15),
(3.16), (3.20), (3.21), and (3.22)—for the order-by-order
recursive computation of the forward and backward pre-
diction errors. Of course, we must still address the issue
of computing the projections defined in these formulas.
As we make explicit in the next section the richness of
the group of isometries and the constraints of isotropy
provide the basis for a significant simplification of these
projections by showing that we need only to compute pro-
jections onto the local averages or barycenters of the pre-
diction errors. Moreover, scalar recursions for these
barycenters provide us both with a straightforward method
for calculating the sequence of reflection coefficients and
with a generalization of the Schur recursions.

Finally, as mentioned previously E, , is not, in general,
an isotropic process unless Y, is AR (p) and n = p, in
which case it is white noise. To illustrate this, consider
the computations of E[E, | E, ] and E[E, | E,, > ] which
should be equal if E, , is isotropic. From (3.18), (3.19)
we find that

EIE Es ) =r ——

while

2

EIE\E, +\] = ry — L 4 0072 2 707D,

o ro

In general these expressions are not equal to that E, ; is
not isotropic. However, from the calculations in Appen-
dix A we see that these expressions are equal and indeed
E, , is white noise if ¥, is AR (1). A stronger result that
will be proved in the part II of this paper is that E, ,, suit-
ably normalized, is isotropic for all n = p if and only if
Y, is AR ( p).

IV. PrepICTION ERROR BARYCENTERS, REFLECTION
COEFFICIENTS, AND SCHUR RECURSIONS FOR
IsoTroPIC PROCESSES ON TREES

As previewed in the introduction, the various projec-
tions (3.13), (3.15), (3.16), (3.20)-(3.22) required in the
Levinson recursions are more complex than their time se-
ries counterparts. Fortunately, thanks to the constraints of
isotropy, these projections can be simplified considerably
and indeed can all be computed in terms of projections
onto scalar processes representing the barycenters of the
vector prediction errors. In this section we prove this re-
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sult and use it as the basis for a set of scalar Levinson
recursions for the barycenter processes. Each stage of this
recursion involves a single reflection coefficient, and we
present a generalization of the Schur recursions which
provide a procedure for computing the reflection coeffi-
cient sequence from the given isotropic covariance se-
quence.

A. Projections onto & and § and their Barycenters

Let us define the average values of the components of
the prediction errors:

e, =270V 3 E W) @.1)
wl<nweo

fa=2""20 3 F.(w). 4.2)
|w|l=nw<0

The following result is critical.

Lemma 4.1: The six collections of projections neces-
sary for the order recursive computation of the prediction
errors for all required words w and W can be reduced to
a total of four projections onto the barycenters of the pre-
diction error vectors. In particular, as follows.

For n even: For any word w' such that [w'| = n — 1
and for any word w" such that \w"| < n and w" < 0,
we have that

E(Fr-y".n~ I(W,)IEr.n - 1)

= E(Eratn/l),n—l(W")IEr,n—l) 4.3)
= E(Fryfl‘n-*l(wo)‘et,n—l) 4.4
= E(Esn/» n-1(0)e, n-1) 4.5)

(refer to (3.13), (3.15)) where wy is any of the w'. Also
for any w such that |w| < nand w < 0, we have that

E(E, - \W)|Fy-1n-1) = EE, 1O fiy-10-1)  4.6)

(refer to (3.16)).
For n odd: For any w' and w" satisfying the constraints
|| < nand - & 0 we have that

E(El,n—l(w')|Ft'y",n—1)
= E(Erﬁ(("’“/2),n—1(W")|FW".n7l)
= E(Er.n—l(()”f;v“.n—l)

(refer to (3.21), (3.22)). In addition, for any w < 0 such
that |w| =n — 1

E(Fw“.n— 1 (W)|E,_,,_ 15 Egn-1/2.0-1)

4.7)
(4.8)

= E(F -1 g1 W3 n1 + €ou-n/nn-1) “.9)

(refer to (3.20)) where wy is any of the w.

These results rely heavily on the structure of the dyadic
tree, the isometry extension lemma, and the isotropy of
Y. As an illustration consider the cases n = 4 and 5 illus-
trated in Figs. 8 and 9. Consider n = 4 first. Note that
the distance relationships of each of the elements of
F,,-13and of E;e 3 to E, 5 are the same. Furthermore, all

AL

Fig. 8. Illustrating E, 5 (dots), F,,-; (squares), Egas (triangles), and
Y, 1.2 (circles).

Fig. 9. Illustrating E, 4 (dots), Ejsea (triangles), F, -1 (squares), and
Y, 1.5 (circles).

three of these vectors contain errors in estimates based on
Y,, -1, Hence because of this symmetry and the isotropy
of Y, the projections of any of the elements of Fi, -1 3 or
E;so 3 onto E, 3 must be the same, as stated in (4.3). Fur-
thermore, the two elements of E, ; have identical geo-
metric relationship with respect to the elements of the
other two error vectors. Hence the projections onto E, 3
must weight its two elements equally, i.e., the projection
must depend only on the average of the two, ¢, 3, as stated
in (4.4), (4.5). Similarly, the two elements of Fy, -1 3 have
identical geometric relations to each of the elements of
E, 5 so that (4.6) must hold. Similar geometric arguments
apply to Fig. 9 and (4.7)-(4.9) evaluated at n = 5. Per-
haps the only one deserving comment is (4.9). Note, how-
ever, in this case that each of the elements of F, -1 4 has
the same geometric relationship to all of the elements of
E, ; and E,e 4 and therefore the projection onto the com-
bined span of these elements must weight the elements of
E, , and E;o 4 equally and thus is a function of (e, , 1 +
Ersiin-1/D py - 1)/2

Proof of Lemma 4.1: As we have just illustrated the
ideas behind each of the statements in the lemma are the
same and thus we will focus explicitly only on the dem-
onstration of (4.4). The other formulas are then obtained
by analogous arguments.

The demonstration of (4.4) depends on the following
three lemmas which are proved in Appendix B by exploit-
ing symmetry and the isometry extension lemma.

Lemma 4.2: The best linear estimate

G.n = E(Fy-1 i tOW)|En-1) 4.10)
for n even is the same for all \lw| =n — 1, w < 0.
Lemma 4.3: The cross covariance
Ht,n = E(Ft‘y’l.n—l(w)El.n—l(W’)) (411)
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is the same for all \w| = n — 1, w < Oand all |w'| <
nand w' <

Lemma 4.4: The covariance T, of E, , has the follow-
ing structure. Let ¥ (o, - -, ay) denote a 24 x 2¢ co-
variance matrix, depending upon scalars og, * * *

and with the following recursively defined structure: o
E(ap) = ap 4.12)
Lo, * ", o)
_ [E(ao, gy ogUyo }
- Uz o, =", ag-)
(4.13)

where Uy is a 2° X 2% matrix all of whose values are 1
(i.e., Uy = 1,11 where 1, is a 2°-dimensional vector of
1’s). Then there exist numbers oy, ¢y, * * * , Qu—1y/2) SO
that

e, = Lo, -, a[(n—l)/Z])‘ 4.14)

From Lemma 4.2 we see that we need only show that G, ,
depends only on ¢, , _ ;. However, from Lemma 4.4 it is

% o 0 0
2 0 0o o
V2
0 % 0o 0
0 —— o o0
V2
o o0 = o
V2
0 0 -—— 0
V2
o 0o o —-
V2
1
] o 0o 0o -z

a simple calculation to verify that 1y, _,,/; is an eigen-

vector of Zg ,. Then, consider any X € §, ,, _, of the form
X= |Z Mo By i) (4.15)
w|<n
w <0
where
A = 0. 4.16)
}w‘2|"<0n
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Then, since ¢, , _; is also as in (4.15) but with all A, equal,
we have that

2[(n - ”/ZIE(Xet,n -1

= Awyp "0 s Ngwona) ZEa Lan-n/2 = 0. @.17)
Thus we have an orthogonal decomposition of &, , _ into
the space spanned by X as in (4.15), (4.16) and the one-
dimensional subspace spanned by ¢, , _ ;. However, thanks
to Lemma 4.3, for any X satisfying (4.15), (4.16)

E[Fpy -1 (W)X] = <Z )\> H,=0. (4.18)

Thus the projection (4.10) is equal to the projection onto
€, .- 1, proving our result.

Remark: Lemma 4.4 allows us to say a great deal about
the structure of £ . In particular, it is straightforward to
verify that the eigenvectors of Lg , are the discrete Haar
basis [21]. For example, in dimension 8 the eigenvectors
are the columns of the matrix

1 1 1
2 Y ;e
L
2 2V2 242
PR T
2 2V2 22
LU S
2 22 22
o 1 L L
2 242 242
o L 1. 1
2 242 242
o -1 L L
2 242 22
1 1 1
R TR AW @19

Also, as shown in Section IV-A and in Appendix C, the
structure of Iy , allows us to develop an extremely effi-
cient procedure for calculating EE}/ 2. Indeed this proce-
dure involves a set of scalar computations and a recursive
construction similar to the iterative construction of X (o,
oy, c 0, ag), with a total complexity of O(llog I), where
I =[(n - 1)/2].

Finally, let us note an extremely important conse-
quence of Lemma 4.1. Recall that the Levinson recur-
sions developed in Section III involved projections of each
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of the components of the vector prediction errors onto en-
tire vectors of prediction error vectors. What Lemma 4.1
says most obviously is that we need only project onto the
barycenters of prediction error vectors. For example, from
(4.3)-(4.5) we see that for any |w'| = n — 1,

E(Fl'y”.n~1(wy)|Et,n—l) = E(Ft-y’l,n~l(w,)|el,nv1)~

However, what this lemma also states is that this projec-
tion does not in fact depend on the specific choice of ',
so that it equals its barycenter. That is,

E(Fr-yfl.n—l(w,)lEr,n-l) = E(ft-y",n—llet.n—l)'

Thus the required projections can be reduced completely
to projections of scalars onto scalars. In the next two sub-
sections we develop these purely scalar recursions, intro-
ducing the associated reflection coefficient sequence. In
part 11, these results allow us to develop lattice structures
for the full prediction error processes.

B. Scalar Recursions for the Barycenters

As just indicated, an immediate consequence of Lemma
4.1, the definitions of the barycenters, and the computa-
tions in Section III-B is the following set of recursions for
the barycenters themselves:

For n even:
en = €n1 — E nt|fiy-1.n-1) 4.20)
fin = 3(Fy-tnm1 + €u/n u1)
- %E(frr',n—l + epump_ilen—1). (421
Fornodd, n > 1:
€ n = %(el.n—l + epe-n/2,_y)
= 1En1 + sl fyias)  (4.22)

1
f;,n = f;'y",n—l - E(f;'y".n—lli(et.n—l + et&‘("““/z"n-l))

(4.23)

while forn = 1,

S =Fo, €1 = Loy (4.24)
and thus, (3.17)-(3.19) provide the necessary formulas.
It remains now to compute explicitly the projections in-
dicated in (4.20)-(4.23). As the following result states,
we only need compute one number k, at each stage of the
recursion, where k,, is the correlation coefficient between
a variable being estimated and the variable on which the
estimate is based. We’ve already seen this for n = 1 in
(3.17)-(3.19), which yields also the first element of the
sequence k, which we refer to as the reflection coefficient

sequence.
Theorem 4.1: For n even:
€n = €| — knf;'y*l,n—l (425)
fin = 3(fo-tn1 + €nuiva)) = kn€iaoy  (4.26)

where

kn = cor (et,n-h f;-y*‘,nfl)

cor (e50/n.n—1> €rn—1)

= COr (esu/ n—1> Jry-1,n-1) 4.27)
and cor (x, y) = E(xy) /IEx®) E( yH]'/2.
For n odd:
€n = 3(ern-1 + € 1/mn-1) — kafoyoiae1 (4.28)
fon = oyt — skaein1 + €po-n/m,-1)  (4.29)
where
ky = cor (3(ern—1 + €p-1/2n-1)s fiy-1a-1)-  (4.30)

Keys to providing this result are the following two lem-
mas, the first of which is proven in Appendix B and the
second of which can be proven in an analogous manner:

Lemma 4.5: For n odd:

E(e}@rv/n,) = Ee},) = E(f3-1,) £ oh.  (4.31)

Lemma 4.6: For n even %(e,,,, + epw/a ) and fi, -1, have
the same variance.
Proof of Theorem 4.1: We begin with the case of n
even. Since n — 1 is odd, Lemma 4.5 yields
E(erz,n—l) = E(etzém/ll,n—l) = E(flz'y",n—]) = 03—1-
(4.32)

From (4.20)-(4.21) we than see that (4.25)-(4.27) are
correct if

E[é’:,n—lfzrl,n—l] = Eleswn n-1€n-1]
= Elesu/» n-1fiy=1.n-1] = 8&n—-1
(4.33)
so that
k, = &2t ‘ 4.34)
On—-1

However, the first equality in (4.33) follows directly from
Lemma 4.1 while the second equality results from the first
with 7 replaced by 76/ and the fact that

5,7—1‘,,_1 = g,@(n/z).,—l‘,,_l. (4.35)

For n odd the result directly follows from Lemma 4.6
and (4.22), (4.23).

Corollary: The variances of the barycenters satisfy the
following recursions. For n even

ol, = Eel,) =1 - k)ai_, (4.36)
1 + k&,
"}m = E(fi) = <T - kf,) 2., (4.37)
where k, must satisfy
—3=<k =1 (4.38)
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For n odd

=g, =( —k}oj,_, (4.39)

_ 2
en T Uﬁ n
where

-1 =k, =1

(4.40)

Proof: Equation (4.36) follows directly from (4.25)
and (4.27) and the standard formulas for the estimation
variance. Equation (4.37) follows in a similar way from
(4.26) and (4.27) where the only slightly more complex
feature is the use of (4.27) to evaluate the mean-squared
value of the term in parentheses in (4.26). Equation (4.39)
follows in a similar way from (4.28)-(4.30) and Lemma
4.6. The constraints (4.38) and (4.40) are immediate con-
sequences of the nonnegativity of the various variances.
Equality in one of these constraints yields the case of sin-
gular processes, i.e., processes for which some of the
barycenter error processes are identically zero, corre-
sponding to perfect prediction.

As we had indicated previously, the constraint of iso-
tropy represents a significantly more severe constraint on
the covariance sequence r,. It is interesting to note that
these additional constraints manifest themselves in the
simple modification (4.38) of the constraint on %, for n
even over the form (4.40) that one also finds in the cor-
responding theory for time series. Also, as in the case of
time series the satisfaction of (4.38) or (4.40) with equal-
ity corresponds to the class of deterministic or singular
processes for which perfect prediction is possible. We will
have more to say about these and related observations in
the part II.

C. Schur Recursions and Computation of the Reflection
Coefficients

As with the usual Levinson recursions for time series,
we can use the recursions (4.25)-(4.26) and (4.28)-(4.29)
for the barycenter error processes together with the defi-
nitions (4.27) and (4.30) of the reflection coefficients and
the recursions (4.36), (4.37) and (4.39) to obtain explicit
recursions for the computation of the k, sequence directly
for the given isotropic covariance sequence. We leave this
straightforward computation to the reader and focus here
on an alternative computational procedure generalizing the
so-called Schur recursions [28], [37] for the cross-spectral
densities between a given time series and its forward and
backward prediction errors. In considering the generali-
zation of these recursions to isotropic processes on trees,
we must replace the z-transform power series for cross-
spectral densities by corresponding formal power series
of the type introduced in Section II. Specifically, forn =
0 define P, and Q, as

Py & cov (¥, e,) & 2 E(Ye,,) w @41

>

0, 2 cov (Y f) & 2 E(Yfon) - w  (4.42)
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where we begin with Py and Q, specified in terms of the
correlation function r, of ¥;:

Py = Q= ;O Pl © W 4.43)
Recalling the definitions (2.17), (2.18) of ¥[S] and 6® [S]
for S a formal power series and letting S(0) denote the
coefficient of w = 0, we have the following generalization
of the Schur recursions.

Theorem 4.2: The following Schur recursions on for-
mal power series yield the sequence of reflection coeffi-
cients

For n even

P, =P,y = kvI[Q,_1] (4.44)
Q. = 5(V[@u 1] + 8" P[P, \]) = kPyoy (4.45)
where
K = v[Q,,_.](O)2 ;:_a:(;’i’[m_d(O)_ 4.46)
For n odd
P, = 5P,y + 8 VP, ) = ky[Qoi] (447
0, = Y[Qu-1] = kuz(Pa_y + 8" VPP, 1] (4.48)
where
b = 2v1Q,11(0) 4.49)

T P,_y(0) + 6P, 1(0)

Proof: Note first that forn = 1, (4.47), (4.48) agree
with (3.17)—(3.19) since Py = 6V [Py, v[Qol (0) = r,
and Py(0) = ry. Next, since the proofs for n even and odd
are essentially the same, we describe only the case of n
even. To begin, write the recursions (4.25), (4.26) for tw
instead of ¢. Then, premultiplying these recursions by Y,,
taking expectations, and summing over w, we get the re-
cursions (4.44), (4.45). To derive the new expression
(4.46) for the reflection coefficient, we note simply that
from the definition of Q,, we must have Q,(0) = 0. Eval-
uating (4.45) at O then directly yields (4.46).

V. CONCLUSION

In the first part of this paper we have described a new
framework for modeling and analyzing signals at multiple
scales. Motivated by the structure of the computations in-
volved in the theory of multiscale signal representations
and wavelet transforms, we have examined the class of
isotropic processes on a homogenous tree of order 2.
Thanks to the geometry of this tree, an isotropic process
possesses many symmetries and constraints. These make
the class of isotropic autoregressive processes somewhat
difficult to describe if we look only at the usual AR coef-
ficient representation. In this paper we have presented the
first half of the development of the generalization of lat-
tice structures which provides a much better parametri-
zation of AR processes on dyadic trees. In particular we
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have developed Levinson recursions for forward and
backward prediction error processes, where the *‘for-
ward’’ and ‘‘backward’’ directions refer to finer or coarser
scales, respectively. Because of the geometry of the tree
these prediction errors are vector of processes of dimen-
sion increasing with the order of prediction. However,
thanks to the symmetries required of isotropic processes,
the required computation in these vector recursions can
be directly related to those in the scalar recursions for the
barycenters of the prediction error vectors. In this paper
we have developed these scalar Levinson recursions and
the corresponding Schur recursions for the computation
of the required reflection coefficient sequence. In part II
[1] we develop lattice structures for both whitening and
modeling filters for isotropic processes and use these re-
sults to obtain a detailed analysis of AR processes and of
the Wold decomposition of isotropic processes on trees.

APPENDIX A
AR (1) AND IsoTROPIC PROCESSES WITH STRICT PasT
DEPENDENCE

We wish to show that AR (1) processes are the only
isotropic processes with strict past dependence. To do this
let us introduce the notation ]— oo, f] to denote the path
from t back towards — oo, i.e., the set {#y ""|n = 0}, and
consider a process of the form

Y,= 2
1)

se]—o

agi.9Ws (A.1)
where W, is unit variance white noise.

We now consider the conditions under which (A.1) is
stationary. Let ¢, and 7, be any two nodes, letr = 1; A 1,
and define the distances n; = d(t,, 1), n, = d(t,, t). Note
that d(z;, 1) = ny + n,. Also let r(t;, ) = E(Y,,Y,)). Then
from (A.1), the fact that W, is white, and the definition of
t, ny, and n,, we have

rt, ) = 2 >

si€]—o,1] s2€]—00,12)

Qaiy. 51y Gz, s EWs, W)

A4, 5)Dd(r2.5)
se]—o,t}

Z Apy +mBny +m-
m=0

For Y, to be isotropic we must have that
rty, ) = r(d@, 1)
= r(n, + ny).
Therefore, for n; = 0, n, = 0 we must have that

riny + ny) = > Ay 4 m Oy +m-
m=0

(A2)

In particular, for n = 2 we can deduce from (A.2) that
we have the following two relationships:

r2n) = r(n + n)

2
mz>:0 An+m

rQn —2) —ai_,

(A.3)

r(2n)

Mn+ 1)+ @m-1)

Z A +n+19m+n—1

mz0

rn — 2) — a,-»a, (A.4)

from which we deduce that

a,a,_, = af,,l, n=?2
or equivalently
= constant, n=1
Ay
Thus a, = oa”, so that
Y, = 2 oa W,
se]—.1]

from which we immediately see that Y, satisfies

Y, = aY,fl + (TW,.

APPENDIX B
PROPERTIES OF THE STATISTICS OF THE FORWARD AND
BACKWARD RESIDUALS

In this Appendix we prove some of the results on the
structure of the statistics of the prediction errors E, , and
F, , and their barycenters. The keys to the proofs of all of
these results, and to the others stated in Section IV with-
out proof, are the constraints of isotropy and the construc-
tion of specific isometries.

1. Proof of Lemma 4.2
Let
Gpu(W) & E(Fyy-1-1|Eip-1) (B.1)

where n is even and |w| = n — 1, w < 0. We wish to
show that G, , (w) is identical for all such w. By definition
G,{,,(W) = E([Yl'y“‘w - E(Yr'y*IWI r}‘Jl‘y",rz—Z)]|E‘r,n—l)'
(B.2)
Define the set of nodes

3., = {s =1 |v| =n v< 0} (B.3)

The points ry ~!w in (B.2) correspond to the points s =
t in 3, , with |o| = n. Let w’, w" be any two words
satisfying |[w| = n — 1, w < 0. Suppose that we can find
a local isometry ¢: 3,, — 3, , such that

i

oty ~'w) =ty w"
oy W) =1y W’
() =1t
&3rn-) = a1 (B.4)

By the isometry extension lemma ¢ can be extended to an
isometry on 3.

Consider G, ,(w') and Gy, ,(w") which are linear pro-
jections onto, respectively, E; , - and E, ;. , - 1- Since the
processes Y, and Y, have the same statistics, these two



BASSEVILLE er al.: MULTISCALE AR PROCESSES. PART 1
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é”

(a)

(b)

Fig. 1. (a) Illustrating i) the nodes involved in 3, ,: ii) the extreme points of 3, 4 (enclosed in boxes); iii) the alternate choice

of —& so that these extreme points are on the same horocycle and so that 7 is closer to — than the closest pivot point ry ~

b

(see the proof of Lemma 4.2 in Appendix B); (b) A redrawing of the tree of part (a) in a more symmetric fashion.

projection operators are identical. Furthermore, from
(B.4) we see that ¢(¢t) = rand E,,, .-, = E, ,_,, so that
we can conclude that G, ,(w') = G, ,(w").

Thus it remains to show that we can construct such lo-
cal isometries for any such w’ and w”. To do this, let us
briefly reexamine the nature of local isometries that inter-
change points on a given horocycle. Consider the situa-
tion depicted in Fig. 10. One way to think of constructing
an isometry interchanging ¢ and 6 is to pivot the tree at
ty ' and “‘flip”’ or rotate everything below this point.
Similarly by pivoting at ry ~> we interchange  and 6%,
while pivoting at #y > leads to an interchange of ¢ and
15¥. Note several points about these isometries. First, by
composing several of them we can interchange any two
points on the same horocycle. Second, each of these
isometries leaves fixed all nodes above and including the
pivot node. Third, each of these isometries leaves glob-
ally invariant the set of nodes extending from the pivot
node down to the portion of the horocycle in question that
is descendent from the pivot. For example, each of the
three pivot isometries described in the Fig. 10 maps the
set of nodes drawn in this figure onto itself.

Next, let us recall that the notion of horocycle depends
explicitly on the choice of the point —oo. From the pre-
ceding discussion we will have completed the proof if we
can show that there exists an alternate choice, say —d,
such that 1) the extreme points rw in 3,, with |w| = n are
on the same horocycle, and 2) the point 7 is ‘‘above,”’

i.e., closer to — than, all of the pivot points involved
in interchanging the above mentioned extreme points of
3
It is easily checked that these conditions are satisfied
by any choice of —& so that the path from ry /2 toward
—& passes through 7. This is illustrated in Fig. 11 for n
= 4. In Fig. 11(b) we have redrawn the tree of Fig. 11(a)
in a more symmetric fashion so that the nature of the flips
performed by these isometries is more apparent.

2. Proof of Lemma 4.3
Set

H, ,,(w, w') = E[F,-1,- \WE_,.:(w)] (B.5)
where niseven |w| =n — 1, w < Oand |w'| < n, w'
< 0. We wish to show that H, ,(w, w') is identical for
all such w, w’' pairs. An argument analogous to that in the
preceding subsection shows that this will be true if we can
construct two classes of isometries:

1) For any w;, w, satisfying |w| = n — 1, w < 0,
o(tw)) = tw,, d(tw,) = 1w, ¢ leaves J, , _, invariant and
leaves fixed any point of the form rw’, with |w’'| < n, w'
< 0.

2) For any w{, wj satisfying |w'| < n, w’ 0,
Yy 'wi) = 1ty 'wh, Yy 'wh) = 1y 7wy, ¢ leaves
34y -1.n—1 invariant and leaves fixed any point of the form
ry "'w, with jw| =n — 1, w < 0.

~
~
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It is straightforward to check that the isometries con-
structed in the proof of Lemma 4.2 form a class satisfying
1. The construction of the second class of isometries is
analogous to that used in the preceding section. However,
in this case the points to be interchanged are already on
the same horocycle (relative to the original choice of — )
and the points to be kept fixed are closer to — oo than any
of the required pivot points (see Fig. 12 for the case n =
4). Thus the existence of the required isometries is im-
mediate.

3. Proof of Lemma 4.4

As in Section II-C, let w,, denote the 21"~ "/?! words
such that |w| < n, w & 0, and for any two such words
let

JinWis W) = E[E, ;(W)E, n(W)]. (B.6)

Letn, = |w;| and n, = |w,|. Consider first the case when
n, # n,. What we must show in this case is that Jin(Wi,
w;) is the same for all pairs w;, w; with these respective
lengths. By an argument analogous to the ones used pre-
viously, this will be true if for any two pairs (w;, w)),
(w}, w)) with |w;| = |w/| = n,, [wj| = |w]| = n, we can
find a local isometry ¢ of 3, , so that ¢ leaves 3, -1,
invariant and performs the interchanges

tw e W], tw; © tw].

Direct calculations shows that the class of isometries ¢
defined in the previous subsection contains the required
isometry.

Suppose now that |w;| = |w;| = n;, and let s = d(tw;,
tw;). An analogous argument shows that

Jl.n(wi’ "Vj) = jt_n(Of Wk)’ where |Wk| = . (B7)

Again an appropriate element of the class of isometries ¥
yields an isometry leaving 3,,-1,-, invariant and per-
forming the interchange

tw, © 1, tw; © . (B.8)

This finishes the proof of Lemma 4.4.

4. Proof of Lemmas 4.5 and 4.6

The proofs of the two equalities in (4.31) and the equal-
ity stated in Lemma 4.6 are all quite similar. We focus
here explicitly only on showing that for n odd e, , and
fiy-1.» have the same variance. This will be true if we can
construct an isometry that interchanges the set of nodes
associated with E, , with the set of nodes associated with
F,,-1 , while leaving the set of nodes 34 -1,n—1 invariant.
As in the proof of Lemma 4.2, the key here is to make a
choice for an alternate boundary point —d so that all of
the relevant nodes are on the same horocycle with respect
to this choice. The following construction does this. Con-
sider the node ry ~™* /2, There are three directions de-
fined from this node: one toward the original choice of
—oo, one toward ¢, and a third direction. Take ~& be
any boundary point so that the path to it from ry ~* D/

t

Fig. 12. Tllustrating i) the node r together with the nodes comprising
3,,-1,3 ii) the nodes (in squares) on the same horocycle to be interchanged
by the isometry ¥ needed in the proof of Lemma 4.3 (see Section I11-B);
and iii) the nodes (in circles) to be left fixed by .

el

Fig. 13. Illustrating E, 5 (dots), F,, - 5 (squares), and the choice for —&
required in the proof of Lemma 4.5 (Appendix B). The required pivot,
relative to — &, to interchange the dots and squares is at ry -3,

is along this third direction. Then the pivot about
ty /2 with respect to —& performs the required in-
terchange and leaves the set of nodes 3,,-1 ,—1 invariant.
This is illustrated in Fig. 13 for n = 5, where for sim-
plicity of presentation we have displayed the tree in a
symmetric fashion as in Fig. 11(b).

AprpenDIX C
CaLCULATION OF Z7'/% (g * - * , o)
We shall first make use of the following formula: for §

and T symmetric matrices,

s ' [ [/X+Y X-Y
=1 .1
TS X-Y X+7

X=@E+D"?
y=¢-1n""~ (C.2)

From (4.13) and (C.1), (C.2) we see that the compu-
tation of Z™? (g, * * * , o) can be performed by a sim-
ple construction from the inverse square roots of

where

T, =L, "t s op-n) +ogly

=T(o + > ~ " oo t o) (C.3)
L. =Z(ap " s ) — Uiy

=Z(op — s " O T ) (C.4)
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If we introduce the following notation:

X+Y X-Y

Bloc (X, Y) = 3
X-Y X+7,

(C.5)
then £ =/ (ay, * - *, o) can be calculated via the follow-
ing recursion:

HERYe (o, =+ 0, oy)

B og ' ifk=0 ce
Bloc (3%, 2%  ifk = 1 €0

which involves a sequence of scalar calculations.
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