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In this paper we present several algorithms for reconstructing 
2D convex sets given support line measurements for which the 
angles are known precisely but the lateral displacements are 
noisy. We extend the algorithms given in a previous paper by 
explicitly incorporating prior information about the shape of the 
objects to be reconstructed. We develop the Scale-Invariant algo- 
rithms, which incorporate prior shape information by defining 
prior probabilities on support vectors, where a support vector is a 
vector formed from the lateral displacements of a particular set of 
support lines of an object. We also develop the Ellipse-Based 
algorithms, which either assume or jointly estimate the parame- 
ters of an ellipse, given prior distributions that favor ellipses. In 
order to relate the support vector prior probability to the expected 
shape of an object we develop a vector decomposition called the 
Size/Shape/Shift decomposition, which helps to provide insight 
into the detailed geometric relationship between support vectors 
and 2D convex objects. We then use the maximum a posteriori 
criterion to determine the specific form of the support vector esti- 
mator. The computations involve a quadratic programming opti- 
mization stage, which is used to determine one component of the 
decomposition, and either a line search or a conjugate gradient 
stage, which is used to determine the remaining components. The 
performance of the algorithms is demonstrated using simulated 
support line measurements of an ellipse. Q 1991 Academic Press, Inc. 

1. INTRODUCTION 

This research was motivated by the problem of object 
reconstruction in computed tomography (CT) [Z]. In CT, 
one makes measurements of the integrals of an object 
property (e.g., X-ray density) along various straight 
lines; the full set of line integrals for varying lateral dis- 
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Grant ECS-87-00903 and the U.S. Army Research Oftice Grant 
DAAL03-86-K-0171. In addition, the work of the first author was par- 
tially supported by a U.S. Army Research Office Fellowship. 

placements at a particular angle yields a projection. The 
usual goal of CT is to reconstruct an image of the object 
given a set of measured projections obtained over a range 
of angles. We have found in other research 13, 41, how- 
ever, that in highly noisy and limited-angle or sparse- 
angle situations, it is beneficial to utilize an estimate of 
the convex hull of the object in order to help reduce 
artifacts that would otherwise appear in the recon- 
structed imagery. This paper presents several methods, 
which incorporate certain prior geometric information, to 
aid in obtaining convex hull estimates from a collection of 
noisy and possibly incomplete support line measure- 
ments. 

As shown in Fig. 1, an ideal projection contains infor- 
mation about the position of the two support lines that 
just graze opposite sides of the object. Given a set of such 
support lines, measured at many different angles, one 
may determine a convex polygon which circumscribes 
the object by intersecting all of the half-planes defined by 
the measurements. In the limit, as the angular spacing 
between projections goes to zero, one may determine 
precisely the convex hull of the object. This type of sen- 
sor information and reconstruction problem is also of in- 
terest in several other applications, including tactile sens- 
ing [5, 61, silhouette imaging [7, 81, robot vision [9], and 
chemical component analysis [lo, II]. 

When the projections are noisy, such as in the case of 
low-dose CT, and when the support lines are measured 
by estimating their positions from the projections, the 
lateral position of each measured support line will also be 
noisy. In this case, the set of measured lines may be 
inconsistent-that is, taken together, there may be no set 
S that has all of the measured lines as support lines. In 
such cases, the consistency property of support lines de- 
veloped in [l] together with a precise description of the 
noise properties may be used to make a maximum likeli- 
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FIG. 1. The geometry of computed tomography. 

hood (ML) estimate of the true collection of support 
lines. From this an estimate of the convex hull of the 
object may be determined by intersecting the resulting set 
of half-planes. 

In this paper, we develop insights into the geometry of 
support lines and into the specification of prior probabili- 
ties on support lines that reflect particular prior informa- 
tion about the shape of the objects of interest. The major 
contributions are twofold: (1) the development of the 
Size/Shape/Shift (SSS) decomposition of support vec- 
tors, and (2) the development of algorithms for convex 
shape estimation that utilize prior shape information. The 
emphasis in this paper is on circular and elliptical shapes, 
but the formation is general and may be used to derive 
estimators for convex sets described by other prior shape 
information. 

The fundamental problem considered in this paper is a 
special problem of reconstructing shape from probing 
[I l-141, a subject considered to be within the larger area 
of computational geometry [ 151. In our work-and this is 
in contrast to the usual assumptions in computational 
geometry-the fact that measurements are noisy and 
possibly incomplete is treated as a fundamental part of 
the problem formulation. This leads to estimation theo- 
retic solutions which often require prior knowledge to 
guarantee unique solutions. In contrast to the usual goal 
of computational geometry, that of examining the compu- 
tational complexity and data storage requirements of var- 
ious algorithms, our focus is on the specific methods re- 
quired to utilize noise statistics and prior knowledge 
optimally. Because the constraints that describe consis- 
tent sets of support lines are linear (see Section 2) and 

because of the Gaussian noise models, the central optimi- 
zation algorithm, which estimates object shape, is a qua- 
dratic program (QP). However, because of the require- 
ments arising from our specification of prior knowledge 
(described in Section 3), the central QP is repeated itera- 
tively to optimally estimate additional parameters de- 
scribing the size and position, and in some cases the ec- 
centricity and orientation, of an object. 

The paper is organized as follows. In Section 2, we 
define the concept of the support vector and review the 
fundamental consistency conditions. Section 3 describes 
a particular decomposition of support vectors and deter- 
mines expressions relating support vectors to the size, 
shape, area, position, and circumference of the objects 
corresponding to the support vectors. In Section 4, we 
develop the Scale-Invariant algorithms, which are based 
on a maximum a posteriori formulation with prior proba- 
bilities that favor circular objects, and the Ellipse-Based 
algorithms, which use prior distributions that favor el- 
lipses. Section 5 presents experimental results, using 
simulated support line measurements of an ellipse, of the 
various estimation algorithms for different noise levels 
and geometric arrangements of the measurements. Fi- 
nally, in Section 6 we summarize the key concepts in the 
paper and propose further research topics in this area. 

2. SUPPORT LINE CONSTRAINTS 

Figure 2 shows the support line L,(0) of a set S. It is 
the line orthogonal to the unit normal o = [cosf3 sineIT 
that just “grazes” S in the positive w direction. The 
quantity h(8) is the value of the largest possible projec- 
tion of any point in S onto the w-axis. One can see that S 
lies completely in a particular one of the two half-planes 
determined by L,(e). We may now define the above 

FIG. 2. The geometry of support lines. 
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quantities precisely. The support line at angle 19 for the 
closed and bounded 2D set S is given by 

where 

L&l) = {x E lR2 1 x*ttl = h(8)}, (1) 

h(8) = sup XTW. 
XES 

(2) 

The function h(8) is called the supportfunction of the set 
S; for any particular value of 9 we call h(8) the support 
value at angle 8. In this paper we consider a finite number 
M of angles 8; = 2r(i - 1)/M, i = 1, . . . , M, spaced 
evenly over [0,27r), and associated sets of lines Li, or- 
thogonal to the corresponding unit vector wi = [cos Bi 
sin 6JT and with lateral displacement hi: 

Lj = {X E R2 1 XTWj = hi}. (3) 

The vector made by organizing the M lateral displace- 
ment values of the M lines under consideration as h = 
Ih h2 . * * hMIT is called a support vector if the lines Li, for 
i=l,. . . , M, are support lines for some set S C R2 [l]. 
The elements of a support vector are called support uaf- 
ues and satisfy hi = h(ei), where h(8) is a support func- 
tion. In [I] we showed that a vector h E RM (M L 5) is a 
support vector if and only if 

hTC 5 [0, * . . 01, 

where C is an M by M matrix given by 

c= 

1 -k 0 -k 

-k 1 -k . . . . . . 0 

0 -k 1 

0 -k “’ ..’ 0 

0 : -k 

-k 0 0 1 

(4) 

(5) 

and k = l/(2 cos (277/M)). It follows that the convex 
polyhedral cone given by 

% = {h E RM 1 hTC 5 [O . . . 01) (6) 

consists of all M-dimensional support vectors. We call % 
the support cone. 

Now suppose one obtains a support vector measure- 
ment y E RM such that y does not satisfy yTC 5 0 and is 
therefore not a support vector. In the algorithms de- 
scribed here and in [l], we estimate a convex set from 

this measurement by first estimating a consistent support 
vector h from the measurements and then reconstructing 
the set estimate by intersecting the half-planes defined by 
h. A very basic algorithm for obtaining h, called the Clos- 
est algorithm [l], finds the support vector in % that is 
closest to the measured vector, using the usual Euclidean 
metric. This estimator also yields the ML estimate, under 
the assumption that the lateral position of each support 
line is observed in independent zero-mean additive Gaus- 
sian noise. The closest estimate is given by 

hc = argmin (y - h)T(y - h), 
hTC~0 

(7) 

which is a quadratic program since the objective function 
is quadratic and the constraints are linear. 

Any estimate produced by the closest algorithm must 
lie on the boundary of the support cone and by geometric 
arguments must have at least one degenerate support line 
(see [I] and Section 3.4). This leads to estimated sets that 
tend to have rather sharp boundaries. Because of this 
behavior and because of our desire to estimate objects 
that tend to have smooth boundaries, we were led to the 
research in this paper on the use of prior shape informa- 
tion or, equivalently, additional penalty terms in our opti- 
mization criterion that favor objects with smooth bound- 
aries. Since our algorithms estimate support vectors 
rather than the 2D objects directly, we must describe 
shape information using quantities derived from the sup- 
port vectors themselves. In the following section we re- 
late several algebraic functions of support vectors to spe- 
cific geometric properties of objects. These relations then 
lead us to the reconstruction algorithms developed in 
Section 4. 

3. OBJECT AND SUPPORT CONE GEOMETRY 

Given a support vector h, there is, in general, an infi- 
nitely large family of sets, each of which has h as its 
support vector.. The largest of these sets, which is 
uniquely determined by h, is the convex polygonal set 

SB = {x E R2 [ xT[o,02 . . . wM] I [h, h2 . . . h,]}, (8) 

which we call the basic object of support vector h. As 
shown in [l], Sa may also be written as 

Sa = hul(v, , v2, . . . , v~), (9) 

where vi is the intersection of the two support lines Li and 
Li+l, where i + 1 is taken modulo M, and hul( ) gives the 
convex hull of a set of points. We call the {vi} vertex 
points rather than vertices since they need not be dis- 
tinct. A basic object, together with its support lines and 
vertex points, is depicted in Fig. 3. 
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L5 
FIG. 3. Five support lines, their basic object, and vertex points. 

If h is an estimated support vector, then Sa is the re- 
constructed object, and the shape of Sa is of primary 
concern in this paper. A support vector h may be decom- 
posed into quantities related to the size, shape, and posi- 
tion of its basic object, and the area and radii of curvature 
may also be derived as functions of h. We proceed in this 
section to define the SSS decomposition of a support 
vector, relate its components to object geometry, and 
then determine expressions for the radius of curvature 
and area of Ss. 

3.1. Position 

As shown in [ 11, the matrix C is singular, and a basis 
for the null space X is found to be 

nl = [l cos 13~ cos 213~ * * * cos(M - I)@ 

n2 = [0 sin 00 sin 213~ . . . sin(M - l)&JT, (IO) 

where 13~ = 27rlM. The geometrical consequence of C 
being singular is that the support cone % is not a proper 
cone; i.e., there is a linear subspace (of dimension 2) 
contained entirely in %. Therefore, the support cone is 
composed of the Cartesian product of a proper cone, 

%,, = {h E % 1 hTnl = 0, hTn2 = 0}, (11) 

and JV, the null space of C. Accordingly, any support 
vector may be written as the sum of two orthogonal com- 
ponents, h, and h,, as 

h = h, + h,, (12) 

where h, E Y&, and h, E X. 
In [l] we showed that adding a null vector h, to a 

support vector causes the basic object to shift its position 
in the plane. To see this we note that any null vector may 
be written as h, = NV, where N = [nln2] and v is a two- 
dimensional vector. Now suppose that w is an element of 
Sa; then w satisfies h 2 NW (see (8)). Then we must have 
that h + h, = N(w + v), which implies that w + v is an 
element of the basic object of h + h,; i.e., the new basic 
object is just a shifted version of Sa. 

3.2. Size 

Since h, lies in a proper cone %$, it may be written as 

h, = tq, (13) 

where t is a nonnegative scalar, and q E (er, satisfies qTe = 
M,wheree = [l,. . . , llT. In a later section, t is shown 
to be proportional to the circumference of the basic ob- 
ject, hence the use of the word “size” in reference to t. 
The vector q contains the information remaining after 
size and position have been removed, hence the use of 
the word “shape” for q. 

To show how (13) arises, consider the truncated cone 

3 = {h E IRM 1 hTA I 0, hTb I p}, 

where A = [Ci - N i N], p = M[(cos 80)-l - 11, and b = 
-XJ!:’ aj, where aj denotes the $h column of A. The 
polyhedron 9 does in fact truncate the proper cone %r 
since it has no ray points; that is, it has no points h # 0 
such that hT[A i b] I 0. To see this note that for nonzero 
h E RP we must have hTA # 0 since the rows of A are 
linearly independent. Then for h also satisfying hTA 5 0 
we must have hTaj < 0 for somej. Hence, hTb > 0. Now 
consider a vector h, # 0 in %r. From the above argument 
we may conclude that h;fb > 0 and therefore, for some .$ 
> 0, that (hTb = p since Al. > 0. This expression simpli- 
fies to [[(cos &-’ - l]hFe = p and again to .$hze = M, 
which, for t = l/t, gives the desired result. Note that if h, 
= 0, it may always be written as h, = tq, where t = 0. 

3.3. SizelShapelShift Decomposition 

The results of the two previous sections give rise to the 
ternary decomposition, which we refer to as the SSS de- 
composition, stated as follows. 

THEOREM 3.1 (Size/Shape/Shift Decomposition). A 
support vector h may be written as 

h = tq + h,, (14) 

where t z 0, q E Tep, qTe = M, and h, E A. 

Proof. Follows from the above discussion. n 
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Given an arbitrary vector h we may find the compo- 
nents of the SSS decomposition as follows [3]: 

h,=$NWh (15) 

h, = h - h, (17) 

q = h,lt, t # 0. (18) 

As with polar coordinates the 0 support vector, with 
t = 0, has a nonunique SSS decomposition, since any q 
may be chosen to satisfy the equality in (14). 

3.4. Radius of Curvature 

Now we review the idea of discrete radius of curva- 
ture, previously presented in [l], to characterize the 
smoothness of the boundaries of basic objects. When the 
boundary of sa, as shown in Fig. 4, is traced along the ith 
face from vi-, to vi, the outward unit normal to the bound- 
ary changes in angle by & = 8; - 8i-i over a distance 5, 
the length of the ith face. In analogy to the usual radius of 
curvature, which is defined as the rate of change of arc 
length with respect to the angle the unit normal makes to 
the x-axis, we define the ith discrete radius of curvature 
as 

FIG. 4. Three support lines and a face of Ss. 

It can be shown from the geometry [I] that the distance in 
Fig. 4 from pi to Li is pi = -hTCi, where ci is the ith 
column of C. Then, by simple trigonometry, we have 

and therefore 

&2&- 
tan B. (20) 

-2hTci -2tqTCi 

ri = e. tan 0, = #, tan o. * (21) 

This expression for radius of curvature gives us a de- 
scription of the shape of the boundary as a function of the 
support vector. Sharp comers are produced when r; is 
small; if ri = 0, then support line Li is degenerate. In 
Section 4, we use this type of boundary curvature infor- 
mation in the specification of a prior probability that gives 
higher probability to support vectors whose basic objects 
do not have small radii of curvature. It is possible, how- 
ever, to use other types of boundary-specific informa- 
tion, derived from this expression, and incorporate them 
into alternate estimation algorithms. 

3 S. Circumference 

We now derive an expression for the circumference 
P(h) of a basic object as a function of its support vector h. 
In particular, we show that the quantity t = hTelM of the 
SSS decomposition is proportional to P(h). 

The circumference of a basic object is given by the sum 
of the face lengths A as 

(22) 

Using the definitions that pi = -hTCi and e = 
[I, * * . , llT we have 

P(h) = & hTCe = 
0 

= & hTe = $$- t, 
0 0 

(23 

where y is the sum of the elements of any row of C. This 
expression shows the proportionality of the circumfer- 
ence to the t-coordinate and justifies the use oft to char- 
acterize the size of a basic object. 

3.6. Area 

We now derive an exact expression for S(h), the area 
of the basic object of support vector h. Without loss of 
generality let us assume that h E Y&. Now consider Fig. 
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FIG. 5. Triangulated basic object for M = 6. 

5, which depicts a basic object for M = 6. The area of Sa 
is the sum of the areas of the M triangles 7’; = hul(O, vi-l, 
VJ,i=l,. . . , M, where 0 stands for the origin. Hence, 
by denoting the area of triangle Ti by Ai, we have 

S(h) = f Ai = 2 ;Jlhiy 
i=l i=l 

(24) 

using the “one-half base times height” rule for the area of 
a triangle. After substitution for fi using Eq. (20) and 
some manipulation, we find that 

S(h) = $ hTCh. 
0 

(25) 

Several implicit assumptions were used in developing 
this expression: 

1. The origin is contained in the basic object for a 
proper support vector, 

2. ifhE%,thenhLO,and 
3. the triangular regions T; with nonzero area do not 

overlap. 

The truth of these assumptions is shown in [3], and with 
these facts in hand it is apparent that the expression for 
S(h) in (25) is correct. Note that S(h) remains unchanged 
when a null vector is added to h so that this formula is 
valid even when h is not a proper support vector. 

4. ESTIMATION ALGORITHMS 

The algorithms developed in this section use prior 
shape information to assist in the estimation of a consis- 
tent support vector from noisy and possibly incomplete 
observations. The observation model is 

y = Sh + n, (26) 

where h is the true support vector, n is a zero-mean 
jointly Gaussian vector with covariance ~~1, and S is a K 
X M matrix (K < M), which “selects” the elements of h 
that are observed. For example, suppose that the first K 
elements of h are observed; then S = [Ik 01, where Ik is the 
K X K identity matrix. Different elements of h may be 
selected by permuting the columns of S, and fewer ele- 
ments of h may be selected by choosing a smaller K. 

When K = M, S = IM, and this is a full data problem; 
otherwise, it is an incomplete data problem in which we 
are trying to estimate a support vector that is of higher 
dimension than the available measurements. In the in- 
complete case, the closest algorithm, described in Sec- 
tion 2, may not have a unique solution. The scale-invari- 
ant algorithms developed in the following section use 
additional prior knowledge in a maximum a posteriori 
(MAP) formulation to force a unique solution. In the full 
data problem, the additional prior knowledge balances 
the effects of noise with the prior knowledge using the 
MAP criterion. We present only the full data cases in the 
main body of the text, leaving the details of the incom- 
plete data algorithm to Appendix A. 

The observations model in (26) represents a particular 
model that may or may not be appropriate for a given 
application. In CT, where one estimates support values 
from measured projections, the underlying noise distribu- 
tion of projections and the support value estimation algo- 
rithm together determine the distribution of n. In a tac- 
tile-sensing application, unknown backlash in gears or, if 
a remote operation, errors in geopositioning may deter- 
mine the distribution of n. The model chosen here is tra- 
ditional in the field of random signal analysis and there- 
fore leads to results that may be compared to other 
well-known results. 

One limitation of the model in (26) is that h is assumed 
to be composed of lateral positions of support lines taken 
from fixed angles evenly distributed over [O, 27r). In fact, 
many applications do not inherently satisfy this con- 
straint. For example, most current CT machines have 
fan-beam projections, so that each projection yields two 
support values for lines that are not parallel, and the 
collection of angles does not yield the evenly distributed 
set required by our approach. Rebinning the projections 
[2] is one option which will yield the required projections. 
Another option is to derive a new C matrix for non- 
evenly spaced angles together with a new SSS decompo- 
sition for the implied support cone. This accomplished, 
the estimation approaches presented in this section are 
still applicable, although some terms will have to be mod- 
ified to reflect the new set of observation angles. 

The shape estimation algorithms presented in this sec- 
tion are based on a prior assessment of the expected 
shape of objects; we concentrate on objects that are most 
likely to be either circles or ellipses. Applications for 
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which this might be relevant include medical CT imaging 
of the head and torso, where the convex hulls are roughly 
elliptical. Another relevant application is CT imaging of 
fuel in rocket casings, where the convex hull is often 
exactly circular. Moreover, the overall Bayesian ap- 
proach is relevant to many situations where other prior 
geometric knowledge is available and can be incorpo- 
rated as prior probabilities over the support cone. 

4.1. Scale-Invariant Algorithms 

The closest algorithm can be augmented using probabi- 
listic prior knowledge about the distribution of support 
vectors in the support cone to yield a MAP solution. In 
this section, we develop estimation algorithms, called 
scale-invariant algorithms, using the MAP criterion. The 
class of prior probabilities on support vectors that we 
consider are scale-invariant in the sense that basic ob- 
jects with precisely the same shape but of different sizes 
have exactly the same prior probability. These probabili- 
ties are shift-invariant as well, so that the probability 
does not depend on the position of the object in the plane, 
either. Therefore, the scale-invariant algorithms use only 
prior knowledge about shape; the position and size are 
also estimated, but using only information that is pro- 
vided in the measurements (in a maximum likelihood 
fashion). 

The first prior that we describe, called the Scale-Invari- 
ant Close-Min (SICM) prior, favors objects whose 
boundaries are smooth in a mini-max sense. That is, 
those objects whose smallest discrete radius of curvature 
is large have higher prior probability. This prior is given 
by 

x min{-qTcl, . . . , -qTcM} , (27) i 

whereci,i=l,. . . , M, are the columns of the matrix 
C. Here, the set over which the minimum is taken has 
elements which are proportional to the M radii of curva- 
ture of the basic object of h (see Eq. (21)). If the smallest 
radius of curvature is zero, for example, then the expo- 
nential is equal to one. Since we restrict 7 to be positive, 
support vectors with larger minimum radii of curvature 
are more probable, the circle being most probable. Note 
that the probability is defined in terms of the shape vector 
component, q, of the support vector, which implies that 
support vectors whose basic objects have the same 
shape, but are of different sizes or are at different loca- 
tions, are equally probable. In this prior, as in the two 
that follow, 7 is a positive parameter of the probability 
and z is a constant chosen so that the density integrates to 
one. 

The second prior we define, called the Scale-Invariant 
Closest (SIC) prior, favors objects that are more circular 
in their overall shape and is given by 

mdh) = i exp (-+ (9 - elT(q - e)). (28) 

When q = e, this density takes on its largest possible 
value, and since e is the support vector of the unit circle, 
this density also favors circular objects. As q moves 
away from e, the probability grows smaller exponen- 
tially, depending only on the squared distance between q 
and e. Again, since q is a shape vector, the density does 
not depend on the size or position of the basic object of h. 

Finally, we define 
(SIMA) prior, which 
squared-circumference 
by 

the Scale-Invariant Max-Area 
favors objects whose area-to- 
ratio is large. This prior is given 

PSIm(h) = ; eXp (5 s(q)), (29) 

where S(q) is the area of the basic object of h, as defined 
in (24). This density exploits the fact that the circle has 
the largest ratio of area to squared circumference over all 
simple plane curves. S(q) is zero only in the degenerate 
case where the basic object is a line segment, and it be- 
comes larger as q approaches e. The probability increases 
correspondingly since the exponential is increasing. The 
squared circumference is implicit since S(q) uses q, 
rather than h, and thus already accounts for circumfer- 
ence normalization. Also, and as in the previous priors, 
the size and position do not enter into the probability. 

The three scale-invariant algorithms, which solve the 
MAP problem for these priors, are similar in several re- 
spects. We assume the complete data case in this section, 
so that each observed support value yi is given by yi = hi 
+ ni, where hi is the true support value and ni is a zero- 
mean Gaussian random variable with variance (T*, which 
is independent of all hi and all nj, j f i. Therefore, the 
observation vector y is a jointly Gaussian random vector 
with conditional density 

p(y 1 h) = ~27~(r~I~~-~‘~ exp I -& (Y - NT@ - h)]. 

(30) 

A scale-invariant (SI) estimate maximizes the a posteriori 
density, or equivalently the logarithm of the a posteriori 
density, and is given by 

h = argmax In P(h 1 y) 
hTCsO 

(31) 
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= argmax In p(y ) h) + In Psr(h) (32) 
IITC~O 

= argmax -I& (y - h)T(y - h) + In psr(h>, (33) 
mro 

where psr(h) stands for any one of the three scale-invari- 
ant priors. 

Defining yn as the projection of y onto the null space of 
C and yp as y - yn, we have (y - h)T(y - h) = (yr - 
hJT(yp - hr) + (y” - h,)T(y, - h,). Then, since h, =, tq 
and PSI(h) = pst(q!, the MAP solution is defined as h = 
iq + h, such that t, q, and h, jointly maximize 

hdt, q, hn) = -& (yp - WT(yp - ts) 

- & (yn - hdT(yn - W + In PSI(q) (34) 

subject to the support vector consistency conditions. 
Since psr(q) does not depend on t or h,, and since tq is 
orthogonal to h,, the optimal shift component is 

ii, = y”. 

The remaining optimization problem is 

(35) 

maximize FsI(t, q) = -$ (yp - tq)T(yp - tq) 
‘4 

+ ln m(q) (36) 

subject to t 2 0, qTe = M, qTN = 0, and qTC 5 0, 

which has, unfortunately, a fourth-order objective func- 
tion due to the tq product. For fixed t, however, this is a 
QP, which may be solved efficiently. Therefore, our ap- 
proach to solving this optimization problem is to conduct 
a line search in t, solving a QP at each step in t. Since the 
optimal q is found for each t, the globally optimal solution 
may be found using an exact line search in t. With minor 
modification, the scale-invariant algorithms can be 
adapted for the cases of incomplete data, as described in 
Appendix A. 

4.2. Ellipse-Based Algorithms 

This section considers the use of prior knowledge re- 
lated to the eccentricity and orientation of the true ob- 
ject. We develop three ellipse-based algorithms, each of 
which uses this type of prior knowledge in a different 
way. The first algorithm finds the closest ellipse to an 
observed support vector, so that under the Gaussian 
noise model given above, this algorithm may be used to 
find the ML estimates of the parameters of an ellipse, 
assuming that the true object is exactly an ellipse. The 

a 

b 

FIG. 6. Ellipse parameters. 

second algorithm assumes that the true object is nearly 
elliptic in shape and that we have some prior knowledge 
of the true ellipse parameters. Finally, the third algorithm 
assumes that the true object is nearly elliptic in shape, but 
that we do not have any prior knowledge of the true 
ellipse parameters. This algorithm estimates jointly the 
support vector and the ellipse parameters. 

The key to the ellipse-based algorithms is the charac- 
terization of the support vector of an ellipse h(v, t, E, $), 
where v is the 2D vector indicating the center position of 
the ellipse, t is the size of the ellipse (proportional to its 
circumference), E is the eccentricity, and 4 is the orienta- 
tion as shown in Fig. 6. A formula for the ith element of 
h(v, t, E, 4) is given by (see Appendix B) 

h. = MtV(ll(1 - z2)) cos2(f3; - 4) + sin2(8; - 4) 
I Ejni-rV(ll(l - &2)) COS2(ej - 4) + Sil12(8j - 4) 

+ [COS 8i sin Oi]V* (37) 

The ML estimate of the ellipse parameters, assuming the 
Gaussian noise model described in the previous section, 
is the solution of the optimization problem 

mi$$e [Iy - h(v, t, E, $)[I2 
. . . 

(38) 
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subjectto t2OandOsEs 1, 

where llx11* denotes xTx, leading to the Closest Ellipse 
(CE) estimate hcs = h(8, t, 6, $). Because of the compli- 
cated form of h(v, c, E, $), this problem is highly nonlin- 
ear and must be solved iteratively. Since the objective 
function is differentiable and the interesting solutions do 
not lie on the constraints, we use the conjugate gradient 
method to solve this problem. The complete details are 
given in [3]. Rossi and Willsky [16] have presented ML 
methods to estimate ellipse parameters from a set of ob- 
ject projections; our ellipse parameter estimates, al- 
though ML estimates, are inherently different since the 
observations are support lines. If one starts with projec- 
tion information, then Rossi and Willsky’s approach 
should be used to give ML estimates of the ellipse param- 
eters since it is optimal for all the measurements. 

If we knew a priori that the true object shape is nearly 
elliptic with eccentricity E and orientation 4, then our 
reconstruction algorithm should favor shapes that resem- 
ble the ellipse with these parameters. This knowledge can 
be included using the Ellipse-Based Scale-Invariant Clos- 
est (ESIC) prior probability defined as 

PESICh) = i exp { -; l/q - W, 1, 2, 61112}. (39) 

This prior is identical in form to and is in fact a general- 
ization of the SI closest prior in that the largest probabili- 
ties are concentrated around the ellipse whose support 
shape vector is h(0, 1, E, 4) rather than the shape vector 
e, which is the support vector of a circle. The resulting 
MAP estimation algorithm, as in the scale-invariant algo- 
rithms, performs a line search inAt, solving a QP at each 
stage, until the jointly optimum (t, 4) pair is determined. 
The optimum shift vector is h, = yn. 

Next we extend these two algorithms to estimate 
jointly a support vector and ellipse parameters. Here, the 
prior knowledge we utilize is that the true support vector 
is likely to be near to the shape of an ellipse-i.e., it has 
the form of (39)-but the specific ellipse parameters E 
and 5 of the prior distribution are unknown. This prob- 
lem may be written formally as 

minimize allh - ~112 + (1 - a)l[h - h(v, r, E, +)[I*, 
h,VJ& 

O<asl, (40) 
subjectto trO,Os&5 l,andhTCIO, 

leading to the Joint Ellipse estimate h,E. We note that if (Y 
= 1 then the objective function of (40) is independent of 
the ellipse parameters v, I, E, and 4, and the optimum h is 
found using the closest algorithm. Alternatively, as CY + 

0, the optimum ellipse parameters approach their ML 
estimates, and the optimum h approaches the corre- 
sponding ellipse support vector. These two extremes pro- 
vide some insight to the solution in the general case when 
0 < (Y < 1, For example, the optimum h cannot be closer 
to y than hc, the closest estimate, since then it would be 
infeasible; also, i! cannot be farther away from y than 
h(hL, fML, -+ML, $‘MLh 

Our numerical solution of (40) involves a type of coor- 
dinate descent algorithm which alternates between find- 
ing the optimum h for fixed ellipse parameters and then 
finding the optimum ellipse parameters for fixed h. For 
fixed ellipse parameters, the optimum h is found using a 
quadratic program; for fixed h, the optimum ellipse pa- 
rameters are found using the CE algorithm described 
above. Each iteration causes the objective function to 
decrease (or at least not increase) so that convergence of 
the algorithm is guaranteed. However, as in all coordi- 
nate descent algorithms, the algorithm need not converge 
to either a globally or locally optimal solution. A detailed 
look at the convergence properties of this algorithm and 
of alternate computational approaches is an open prob- 
lem. 

5. RESULTS 

Let us first make a few comments about computational 
complexity. The algorithms were coded in Fortran, and 
those incorporating a QP-all except the closest ellipse 
algorithm-uses the standard QP code ZQPCVX, an ac- 
tive set method due to M. J. D. Powell [17, 181. The first 
step in ZQPCVX is to perform a Cholesky factorization 
of the constraint matrix, which involves approximately 
N3/6 multiplications [19]. Although a quadratic program 
finishes in finite time, the number of iterations required to 
do so is unknown (although upper bounded) [20]. How- 
ever, from [17] we may conclude that each iteration will 
require O(M*) multiplications, where M is the dimension 
of a support vector. Also, because the Cholesky decom- 
position is not sparse, matrix storage requirements are 
O(M*). 

A further consideration is the convergence time of the 
line search over t in the SI algorithms. Here, for each 
value of t, a QP is pe$ormed, until the line search con- 
verges to the optimal t. The line search was performed 
using the golden section method [21], choosing a toler- 
ance parameter that led to adequate performance at rea- 
sonable computation times. The time and storage re- 
quirements place a constraint on the largest dimension 
support vectors we may consider. The largest for which 
we present experimental results in this paper is M = 60; 
we have done experiments, however, with dimension 
M = 120. For M = 60, the code took between 1 and 5 min 
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FIG. 7. Comparison of support vector estimation algorithms for M = 30 and (a) r~ = 0.1, T = 0. I ; (b) CT = 0.2,~ = 0.1; and (c) u = 0.1, T = 0.01. 
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on a Data General MVIOOOO (comparable in speed to a 
VAXlU780). 

Figure 7 compares six different reconstruction meth- 
ods applied to a complete set of measurements for differ- 
ent noise powers and probability parameters. The true 
ellipse, characterized by parameters r = 1.0, 8 = 0.9, 
4 = 45.0, and v = (0.0, O.O), is shown using dashed lines 
in each of the panels of each figure; the support line mea- 
surements are indicated by the solid lines in panel (a) of 
each figure. The intersection method, which simply inter- 
sects the half-planes defined by each of the support line 
measurements, produces the shaded result in panel (a). 
The closest algorithm, yielding an ML solution, obtains 
the result shown in panel (b). Panels (c)-(f) show the 
result of the four scale-invariant algorithms (including 
the ellipse-based closest algorithm) described in Sec- 
tion 4. 

It is clear that a great deal of improvement over the set 
intersection method and the ML method may be 
achieved using the scale-invariant algorithms, even in 
cases such as these, where the noise variance is large. 
The SICM estimate shown in panel (c) clearly shows that 
prior knowledge related to the boundary of the object can 
markedly improve the reconstruction. In particular, the 
estimate has a boundary without any of the sharp bends 
that are evident in the ML solution of panel (b). The SIC 
result shown in panel (d) has an overall shape that is more 
circular than any of the other estimates; this reflects the 
prior probability, which favors objects that are close to 
the shape vector e. The SIMA result shown in panel (e) 
has few long straight boundary sections, which reflects 
the tendency to increase the ratio of area to circumfer- 
ence squared, a property of the SIMA prior. The ESIC 
result (f), which uses the correct E and 4, shows a better 
estimate than the SIC result, which is a special case of 
ESIC with E = 0. 

The overall difference between Fig. 7a, which has a 
noise standard deviation of (+ = 0.1, and Fig. 7b, which 
has a noise standard deviation of (+ = 0.2, reflects the fact 
that as the noise power is increased, the MAP estimator 
is driven to apply greater weight to the prior knowledge. 
Therefore, the estimated basic objects in Fig. 7b reflect 
more strongly the properties of their respective prior den- 
sities. The overall difference between Fig. 7a, which has 
a density parameter of 7 = 0.1, and Fig. 7c, which has a 
density parameter of Q- = 0.01, reflects the fact that one 
can specify prior densities that have a highly concen- 
trated region of high probability (as in Fig. 7c), again 
making the estimated basic objects reflect the prior infor- 
mation more strongly. 

Figure 8 shows the result of applying (a) the closest 
ellipse algorithm and (b) the joint ellipse algorithm to the 
measurements shown in panel (a) of Fig. 7b. In both pan- 
els, the dashed curve outlines the true ellipse. Panel (a) of 

t=0.96, e=O.92. #=42.3” t=0.95. 6=0.93. #=42.4’ 
v=(0.01,0.02) v=(0.01,0.02) 

(; i-:’ ; 0 1 

, ,(a), CE, , ,(b), JE, 

-1 0 1 -1 0 1 

FIG. 8. Comparison of (a) the closest ellipse estimate and (b) the 
joint ellipse estimate for (Y = 0.5. 

Fig. 8 shows the CE estimate, solid line; the estimated 
ellipse parameters are shown above the panel. One can 
see that the estimated ellipse parameters are close to the 
true parameters given above. The JE result, shown in 
panel (b) of Fig. 8, shows the estimated ellipse, solid line, 
and the jointly estimated support vector, dashed/dotted 
curve. The parameters for the estimated ellipse are also 
shown above the panel; again, as in the CE estimate, the 
jointly estimated ellipse parameters are very close to the 
true ellipse parameters. What is remarkable about the JE 
object estimate is that it is very nearly as good as that of 
the ESIC algorithm shown in Fig. 7b, panel (f)-and the 
JE result did not require prior knowledge of the ellipse 
parameters. This is an important result since it is rare in 
applications to actually have such parameters available a 
priori. 

Figures 9-11 show the results of applying the support 
vector estimation algorithms to two incomplete data 
cases. In the sparse-angle case, we took the 30 support 

FIG. 9. Measurements and intersection estimate for incomplete 
data experiments where M = 60 and v = 0.1. 
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/ :(c);SIF Sparse f/2 

(e) SIMA Sparse l/2 

-1 0 1 

(b) SICM Limited 3/4 

(d) SIC Limited 3/4 

(f) SIMA Limited 3/4 

-1 0 1 

FIG. 10. Comparison of the SI support vector estimation algorithms 
for sparse-angle and limited-angle incomplete data measurements. 

value measurements of Fig. 7a and estimated support 
vectors of dimension 60, essentially interpolating a sup- 
port value between each observation. We label this 
“Sparse l/2” since exactly 4 of the 60 estimated support 
values are observed. In the limited-angle case, our obser- 
vations contain support lines whose angles are in the 
range of O-135” and 180-270”. Therefore, $ of the 60 sup- 
port values are observed, leading to the label “Limited 
3/4.” In all cases, the noise standard deviation is u = 0.1 
and when the angles are identical, the actual measured 
values are equal to those shown in panel (a) of Fig. 7a. 
The full set of measurements and the true ellipse are 
shown in Fig. 9. 

Figure 10 shows a comparison of the scale-invariant 
algorithms for the incomplete data experiments. The left- 
hand column shows the sparse-angle results and the 
right-hand column shows the limited-angle results. One 
should note that the sparse-angle cases look quite similar 
to the dimension 30 results shown in Fig. 7a. The only 
difference in these cases is that in this experiment 30 
additional values are estimated to fill in between the ob- 
served values. With this additional freedom, the estima- 
tors are forced to rely more heavily upon prior knowl- 

edge, which accounts for the fact that these estimates 
tend to resemble our prior expectations a bit more than 
those of Fig. 7a. The limited-angle experiments present a 
much greater challenge since the data are missing over a 
much greater angular range. The effect is to use prior 
knowledge heavily in this range, and since our prior 
knowledge in these scale-invariant algorithms is that the 
objects tend to be circular, the results are more circular 
than desired. One exception appears to be the SICM 
result, which actually gives a remarkable estimate in light 
of the amount of missing data and the level of noise. The 
reason for this is that the SICM prior awards higher prob- 
ability to those objects that do not have small radii of 
curvature. Therefore, over the region of missing data, the 
best object is one that connects the available measure- 
ments without using any small radii, and this tends to 
create arcs of nearly constant radius over these regions. 
This property is not satisfied by estimates that extend 
outward sharply as in the corresponding SIC estimate or 
have abrupt transitions at the edges of the observed data 
as in the corresponding SIMA estimate. 

Figure 11 shows a comparison of the ESIC and JE 
algorithms, applied to the same sparse-angle and limited- 
angle observations as those used in Fig. 10. The ESIC 
results, which again use the correct eccentricity and ori- 
entation, show a substantial improvement over the SI 
results of Fig. 10. This is not surprising, however, since 
here the probability is concentrated around the true ellip- 
tical shape and orientation. One would not expect such a 
good result given the wrong eccentricity and orientation. 
(An example of this type of behavior appears in [31.) 

1 - 

0 - 

-1 - 

(a) ESIC Sparse l/2 (b) ESIC Limited 3/4 

1 - 

0 - 

-1 - 

(c) JE Sparse l/2 (d) JE Limited 3/4 
-1 0 1 -1 0 1 

FIG. 11. Comparison of the ESIC and JE ellipse-based algorithms 
for incomplete data measurements. 
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Therefore, using the ESIC method, one risks the possibil- 
ity that the assumed ellipse parameters in the ESIC prior 
are incorrect. The JE algorithm, on the other hand, does 
not suffer from this possibility since one jointly estimates 
the ellipse parameters; and yet, as demonstrated in pan- 
els (c) and (d) of Fig. 11, the results are still quite impres- 
sive-the ellipse is nearly perfectly reconstructed. 

6. SUMMARY 

Because of the systematic incorporation of prior 
knowledge, the performance of the set reconstruction 
methods described in this paper is better than that of the 
methods given in [ 11. We expect this to be true in cases 
where the true objects are either nearly circular, or have 
large portions of nearly circular boundaries, or are nearly 
elliptic in shape. The incorporation of prior knowledge 
also allows us to solve sparse-angle and limited-angle in- 
complete data problems in which there are unobserved 
support values over possibly large angular ranges. In 
these cases, the missing support values are automatically 
interpolated by the algorithms using the available prior 
shape information. In CT, these geometric estimation al- 
gorithms may be used to estimate the convex hull of the 
object directly from the projections, and this estimate 
may be used in the reconstruction process as described in 
[22]. In cases where the observed angles are restricted 
and the observations are noisy, this procedure dramati- 
cally improves the quality of the reconstructed images 
over those obtained by convolution back-projection. 

Geometric decomposition of support vectors is a step 
toward being able to develop alternate representations of 
prior shape knowledge. These representations, together 
with the fundamental support vector constraint and a full 
knowledge of the noise statistics, should allow one to 
develop estimation-theoretic algorithms that are suited 
to particular applications. Furthermore, extending these 
ideas to 3D opens up many interesting and important 
applications such as shape estimation from silhouettes 
and tactile sensing. 

Many interesting theoretical and algorithmic questions 
remain in this area of research. For example, there is the 
question of performance: how well do these (and other 
future algorithms) perform? One can formulate several 
traditional measures based on the estimated parame- 
ters-the support vector and ellipse parameters, for ex- 
ample-but these are not measures that are related di- 
rectly to the shape of the object. Another example is 
further decomposition-beyond just size, position, and 
shape-and, therefore, further parameterization of sup- 
port vectors. A relatively simple further decomposition is 
orientation since this is simply a circular shift of the sup- 
port vector, but other extensions are not as obvious. 
With respect to the algorithms, the QP and line search are 

the workhorses of this paper, and they present a severe 
limitation on the workable size of future problems. A 
decomposition of the QP into parallel components or uti- 
lization of special symmetry properties of the constraint 
matrix is therefore an important future topic of research. 

APPENDIX A: INCOMPLETE DATA SI ALGORITHMS 

In this Appendix we extend the results of Section 4.1 to 
the case where we have fewer than M (noisy) observa- 
tions of a support vector but we desire an estimate of the 
full M-dimensional vector. In this case, the ML solution 
is not unique, and we must use a formulation that in- 
cludes prior knowledge such as the scale-invariant MAP 
formulations. As we see, the main complication in this 
case is that the optimal shift vector cannot be solved 
independently of the size and shape components-but 
this problem is not too difficult to overcome. The resul- 
tant algorithms retain the line search over t and the em- 
bedded QP parts, as in the original SI algorithms, but 
they require pre- and postprocessing to account for the 
shift estimate. We refer to the algorithms developed in 
this appendix as the Sparse Scale-Znuariant (SSI) algo- 
rithms. 

The log likelihood of h for the observations model of 
(26) is given by 

l(h) = -& (j - Sh)T(y - Sh) - 4 In ]27r~~Ik(, (41) 

which may be written as 

I(h) = -& (y - h)TD(y - h) - 4 In 127rc21k(, (42) 

where 

and 

D = ST& (43) 

y = STj. (44) 

We may now form expressions for the SSI algorithms 
by adding the natural logarithm of the prior probability to 
I(h). Since the SI priors depend only on the shape vector 
q we may write a generic SSI problem as 

maxiei - & (y - h)TD(y - h) + In p&q), (45) 

where we have dropped the constant term -4 In ]27ru21k] 
and where pdq) stands for either pS&h), p&h), or 
psdh), or even the ellipse-based prior pESIC(h). 
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To solve (45) we must expand h using the SSS decom- 
position so that In PSI(q) may be combined with l(h). Here 
is where the essential difference between the sparse case 
and the full-view case appears. In the sparse case we 
cannot completely separate the solution of h, from that of 
h, since they are now coupled through cross terms of the 
form h;fDh,. However, in what follows we show that the 
optimum shift vector may be calculated directly from the 
optimum size and shape vector, and we may use this 
knowledge to simplify the form of the SSI optimization 
problem. 

To see how to find the optimum shift vector compo- 
nent, we focus on the expansion of (y - h)TD(y - h) 
using the SSS decomposition. First, we use the fact that h 
= h, + h, and that h, = NV for some v to make the 
manipulations 

(y - WTJW - h) 
= yTDy - 2yTDh + hTDh 

= yTDy - 2yTDh, - 2yTDNv + h;fDh, 

+ 2h;DNv + vTNTDNv. 

Now, any SI objective function has a prior which does 
not depend on v; therefore we may determine the neces- 
sary conditions for v to be a minimum by taking the (vec- 
tor) partial derivative of (46) with respect to v and setting 
it equal to zero. We get 

-2WDTy + 2WDTh, + 2NTDNv* = 0. 

or 

v* = (WDN)-‘NTD(y - h& (46) 

Since for any choice of hp, (46) yields the optimum v, 
we may substitute this expression back into (46) and sim- 
plify. After some algebra we find 

(y - WTWy - h)(v=v* = yT(D - Q)Y - 2yT(D - Qb, 

+ h,T(D - Q&p, (47) 

where 

Q = DN(NTDN)-‘NTD. (48) 

By making the substitution hp = tq and adding the natu- 
ral logarithm of the appropriate prior we obtain the SSI 
formulation 

maximize 
t= 

‘4 
- p qT(D - Qh + 5 yT(D - Qh 

subject to t 2 0, qTe = M, qTN = 0, and qTC 5 0. 

(50) 

The SSI optimization problem may be solved using a 
line search approach similar to that used for the SI algo- 
rithms of Section 4.1. We may see this by noting that in 
each case the optimization over q given a fixed t is just a 
QP. Therefore, once the optimum size t^ is found by 
searching the nonnegative real line, the optimum shape 
vector q is known. An additional step is required for the 
SSI algorithms, however: we must calculate the optimal 
shift vector h, = NV*, where v* is calculated from (46) 
with h, = ;ij. 

APPENDIX B: THE SUPPORT FUNCTION OF AN ELLIPSE 

Points (x, y) on the boundary of the ellipse shown in 
Fig. 6 satisfy the equation 

(51) 

where a and b are the x and y semiaxes of the ellipse. 
Since an ellipse is convex and has a continuously turning 
boundary normal, we know that each support line inter- 
sects the boundary at precisely one point-e.g., the point 
P in the figure. Therefore, P is on the line whose points 
satisfy 

x cos f3 + y sin 6 = h, (52) 

where 0 is the angle (measured counterclockwise from 
the x-axis) of the unit outward normal to the ellipse 
boundary at the point P and h is the shortest distance 
from the origin to the tangent line at P. We recognize h to 
be the support distance at angle 8. We seek in this Appen- 
dix an expression for h as a function of 8. 

The simplest approach begins by solving for the (x, y) 
pair that satisfies both (51) and (52). We have from (52) 
that 

which when substituted into (51) yields (after some ma- 
nipulation) 

( 
sin2 e 

a2 cos2 8 b:) 
+-L y= + C 

---t;;;; . ) y 

h= + 1) = 0. (53) 
p= cost 0 - , 

r + ln f-k(q) (49) 
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which, when the required substitutions are made from 
(53), becomes 

4h2 sin2 0 
a4 cos4 8 

-4( sin2 8 
a2 cos2 0 -$)(a2c~s2B- 1) =o* 

After simplification, the above expression yields 

h2 = a2 cos2 19 + b2 sin* 8, 

from which we get 14. 

h(6) = da2 cos2 0 + b2 sin2 6, W-5) 15. 

the support function to the ellipse of Fig. 6. 16. 

The most general expression for the support function 
to an ellipse must include orientation and position as well 
as the lengths of the two semiaxes. We may produce any 
ellipse by rotating the ellipse of Fig. 6 in the counter- 
clockwise direction by 6 radians and then shifting the 
resulting figure so that it is centered at the point v E [w2. 
The general expression for the support vector is then 
given by 
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where we have used the continuous analogue of the shift 
theorem to produce the last term in the equation. The 
support vector to an ellipse is found by sampling h(8) at 
the support angles {ei} and arranging the samples in the 
require vector form. 
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