
Stability and Stabilizability of

Discrete Event Dynamic Systems

cuNEyTM. OZVEREN AND ALAN s. WTILLSKY

Massachusetts Instituteof Technology, Cambridge, Massachusetts

AND

PANOS J. ANTSAKLIS

University of Notre Dame, Notre Dame, Indiana

Abstract. A finite-state automaton is adopted as a model for Discrete Event Dynamic Systems (DEDS),

Stabdity is defined as wslting a given set E mtinitely often. Stabilizability is defined as choosing state
feedback such that the closed loop system is stable. These notions are proposed as properties of
resiliency or error-recovery. An important ingredient in stability is shown to be a notion of transition-

function-invariance. Relations between our notions of stability and invariance, and the notions of
safety, fairness, hvelock, deadlock, etc., in computer science literature are pointed out. Connections

are established between our notions of invariance and the classical notions of A -Invariance and

(A. 11)-invariance of linear systems. Polynomial algorithms for testing stability and stabilizabdity, and
for constructing a stabilizing control law are also presented.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:

Nonnumerical Algorithms and Problems—computations on discrete structures; sequencing and

scheduling; F.4. 3 [Mathematical Logic and Formal Languages]: Formal Languages —algebraic

language theory; classes defined by grammars or automata; G.2.2 [Discrete Mathematics]: Graph

Theory-graph algorithms; G.4 [Mathematical Software]: Algorlthm Analysis; reliability and
robustness; H.2. 8 [Database Management]: Database Applications: J.7 [Computers in Other

Systems]: Command and Control; process control

General Terms: Algorithms, Design, Languages, Reliablhty. Theory

Additional Key Words and Phrases: Rehabdity, self-stabilizing systems, stability, stabilizability, state
feedback

Research was supported by the Air Force Office of Science Research under grant AFOSR 88-0032 and
by the Army Research Office under grant DAAL03-86-K0171,

The research of C. M. Ozveren and A, S. Willsky was partially done during their stay at Instltut de
Recherche en Informatique et Systkmes Al&atomes (IRISA), Rennes, France, and A, S, Willsky was
also supported by IRISA during this time.

Authors addresses: C. M. Ozveren and A. S. Wdlsky. Laboratory for Information and Decision

Systems, MIT, Cambridge, MA 02139; P. J. Antsakis, University of Notre Dame, Notre Dame, IN
46556.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

@ 1991 ACM 00045411 /91 /0700-0730 $01.50

loumal of the Assocr,mon fm Computmg M.whmery, Vol 38. No 3, July 1991, pp 730–752

Stability and Stabilizability of Discrete Event Dynamic Systems 731

1. Introduction

Discrete Event Dynamic Systems (DEDS) have received considerable attention
in the control literature recently. Many large-scale dynamic systems seem to
have a DEDS structure, at least at some level of description. Some examples
are manufacturing systems [12, 21], communication systems (such as data
networks, and distributed systems) [3], and expert systems (such as CPU
design, or air-traffic management) [7, 8, 23].

The notion of the control of a DEDS was, to our knowledge, first explicitly
introduced in the work of Wonham, Ramadge, et al. [10, 13, 18, 19, 24, 26].
In this work, it is assumed that certain events in the system can be enabled or
disabled. The control of the system is achieved by choice of control inputs that
enable or disable these events. The objective is to have a closed loop system, so
that the event trajectory in this system is always in a given set of desired strings
of events. This approach is generally classified as a linguistic approach, since
the objective is defined in terms of the language generated by the closed-loop
system, that is, the set of possible strings of events.

This work has prompted a considerable response by other researchers in the
field, and one of the principal characteristics of this research has been the
exploration of alternate formulations and paradigms that provide the opportunity
for new and important developments building on the foundations of both
computer science and control. The work presented here is very much in that
spirit with, perhaps, closer ties to more standard control concepts. In particular,
in our work, we have had in mind the development of the elements needed for a
regulator theory for DEDS. In this paper, we develop notions of stability and
stabilizability for DEDS that might, more concretely, be thought of as proper-
ties of resiliency or error-recovery.

The goal in the work of Wonham, Ramadge, et al. is to restrict the behavior
of the system so that all strings generated from the given initial state are in a
given set of “legal” strings. In a sense, what we seek here is to develop control
methods for reestablishing such legal behavior following the occurrence of one
or more anomalous events. For example, a manufacturing system is always
subject to failures. Thus, in the Wonham and Ramadge context, one would
include all possible strings with failures and successful recoveries in the legal
language (the set of legal strings). In our formulation, we focus on states rather
than strings. Specifically, assume that we have identified the set of “good”
states, that is, the set of initial states, from which only legal strings are
generated. Our focus then is to test if all trajectories from other states visit the
“good” states infinitely often, so that the system recovers from any possible
error in a finite number of transitions. If, in fact, failures do not happen very
often, then the system will exhibit legal behavior “most of the time. ” In some
of our other work [15, 16], we focus on notions of tracking desired sets of
strings, which can be used as tools for identifying the set of “good” states, that
is, those states from which one can generate the desired behavior. Furthermore,
the notion of stability presented in this paper plays an important role in
formulating and testing observability (see [17]), that is, the ability to reconstruct
state knowledge when only the occurrence of particular events are available as
directly observed quantities.

Another goal of this work is to establish connections with the related notions
in computer science. In particular, the concept of stability we use here has been
introduced by researchers in a number of different computer science contexts.

732 OZVERENET AL

What distinguishes our work and makes it of potential interest in computer
science as well as in control theory is the introduction of control and feedback
to formulate and solve the problem of stabilizing systems. For example, our
notion of prestability and the algorithm we provide is exactly the same as the
notion of inevitable reachability and the algorithm of Sifakis [20]. Other notions
of Sifakis can be characterized using stability and transition-fimction-invariance
(j-invariance of Section 2). Thus, our results in stabilizability can be directly
applied to his notions if control was to be introduced in his framework. In [6], a
system is defined to be self-stabilizing if starting at any unsafe state, it is
guaranteed to reach a “safe” state within a finite number of transitions. This is
also the same as our notion of stability, and therefore our results of stabilizabil-
ity can be applied to this case. Finally, fair execution sequences, in concurrent
systems, are defined as those execution sequences in which each process is
executed infinitely often [4]. This notion is also connected to our notion of
stability and our results on stabilizability can tell us how to achieve fairness.

In the next section, we introduce the mathematical framework considered in
this paper and address the problem of stability. In particular, we first introduce
a notion of prestability, which is based on testing if all trajectories from a state
go through the “good” states. We then define transition-function-invariance

(~-invariance) in our framework and characterize stability in terms of prestabil-
ity and ~-invariance. We also present algorithms for testing prestability and
stability. In Section 3, we address the problem of stabilizability. We first
present an algorithm to construct a prestabilizing state feedback, and we classify
different prestabilizing feedbacks by the degree of restriction imposed on the
behavior. As an extension of f-invariance, we examine achieving f-invariance
by control inputs and we then impose the constraint that f-invariance is
achieved while keeping the system alive. We combine this with prestabilizabil-
ity and present an algorithm to construct a stabilizing state feedback. Finally, in
Section 4, we summarize our results and outline further research directions.

2. Stability

In this section, we define our notion of stability and provide an algorithm that
tests stability.

2.1. PRELIMINARIES. The class of systems we consider are nondeterministic
finite-state automata. The basic object of interest is:

G= (X,X), (2.1)

where X is the finite set of states, with n = I X 1, and Z is the finite set of
possible events. The dynamics of the system are characterized by two functions
J and d:

X[k+l]cf(x[k], a[k+ l]), (2.2)

a[k+ l]~d(.x[k]). (2.3)

Here X[k] ~ X is the state after the kth event, and u [k + 1] e X is the
(k + l)st event. The function d: Xs 2x is a set valued function that specifies
the set of possible events defined at each state (so that, in general, not all events
are possible from each state), and the function f: X x X + X is also set
valued, so that the state following a particular event is not necessarily known

Stability and Stabilizability of Discrete Event Dynamic Systems 733

with certainty. The triple A = (G, f, d) representing our system can also be
visualized graphically as in Figure 1. Here circles denote states, and arcs denote
transitions, where the symbol in each arc label denotes the event corresponding
to that transition. Thus, in this example, X = {O, 1,2, 3}, Z = {Q, ~, 6}, and,
for example, d(1) = {u, 6}, f (O, ~) = {O, 3), etc. A transition, also denoted
as x AU y, consists of a source state, x, an event, a ~ d(X), and a destination
state, y Gf(X, 0).

In the subsequent sections, we use the following terminology concerning state
and event trajectories:

—A finite string of states, x = XOxl 0”0 Xj is termed a Path or a state

trajectory from x. if xl+ ~e f(xi, d(xi)) for all i = O 0“ “ j – 1, where

f(x, d(x)) = U f(x, a).
Ued (x)

We say x e x if x, = x for some i. Let %(A, x) denote the set of all
possible paths from x. A path is termed a cycle if XO = Xj and a cycle is
termed a primary cycle if there exists no distinct pair il, i2 c O .” “ j – 1
such that XI, = xi,, that is, if it contains no other cycles. For example, in
Figure 1, 12, 3003, and 030 are all paths, 3003, and 030 are cycles, and 030
is a primary cycle. In general, there may be infinitely many cycles, but only
a finite number of primary cycles. For example, the primary cycles of Figure
1 are 00, 030, and 303.

— Similarly, a finite string of events s = al “ “ “ o-- is termed an event trajec-
tory from x e X if al e d(x) and 01+1 c d(f(x, al c . “ al)) for all i, where
we extend f to Z* via

with f (x, e) = x, where ~ is the empty string. In Figure 1, a(3138 is an
event trajectory. Let L(A, x) denote the set of all possible event trajectories
starting from state x.

For most applications of interest to us, it is desired that the system can never
reach a point at which no event is possible. This is a notion of liveness. For
example, a manufacturing system should, always, be capable of producing
something. We use

R(fl ,x)= {y~xl x+*y}

to represent the set of states that can be reached from x, where + * denotes
any number of transitions, including no transitions. Thus, R (A, X) always
includes x. For example, in Figure 1, the reach of 1 is X itself. Intuitively, we
define a state to be alive if all event trajectories from that state have infinite
length extensions. We let

D= {xeXId(x) = 0} (2.4)

denote the set of states which have no events defined, and term these the dead
states. We formally detlne liveness as follows:

Definition 2.1. A state x=X is alive if d(y) # 0 for all ye R(A, x).
A subset Y of X is termed a live set if all x c Y are alive. A system xl is
termed alive if X is a live set.

734

w
OZVERENET AL

FIG. 1. Simple example.

&

c1

o
P3

P
8

Forexample, in Figure 1, D = {2} and Ois alive, whereas Iis not. Clearly,
the class of live sets is closed under arbitrary unions and intersections. The
maximal live subset of X, Xa, is given by the set of states that cannot reach
the dead states:

xa=R(A-l, D), (2.5)

where overline denotes the complement, R(A -1, D) = lJX=~ R (A – 1, x), and

A-1 denotes A with the transitions reversed, that is, A -1 = (G, f- 1, d-’)
where:

f-l(x, (J) = {Yexlx=f(Yj u)}> (2.6)

d-’(x) = {a~X13yc Xsuch that x~f(y, o)}. (2.7)

Thus, R(A -1, D) is the set of states that can reach D in the original system.
For example, in Figure 1, D = {2} and X. = {O, 3}. Note that the state 1 is
not alive since there exists a trajectory from 1 which goes to state 2, which is a
dead state.

Note that if we replace D by any set of states, then X. is the maximal set of
states that avoid D. This situation arises, for example, in mutual exclusion
problems, in the context of manufacturing systems [11] and computer systems
[1, 2, 5], where a number of users compete for a limited number of resources,
say r. In that case, the states that represent p > r users attempting to use the
resources are undesirable and one wants to find the set of states that avoid this
violation. Golazewski and Ramadge [9] address this problem, in the context of
DEDS problems that consist of many interacting components. Our contributions
to this problem are presented in [14].

We conclude this section by presenting an algorithm to compute the reach of
a set of states. It immediately follows from the definition that the reach of a set
of states, XO, is the fixed point of R = f (R, Z) = u,e~ f (x, d(x)) such that
R 3 XO. Thus, we have the following algorithm:

PROPOSITION 2.2. The following algorithm computes R(A, XO) for any
XO c X and it has complexity 0(n):

Algorithm

Let RO = QO = XO and iterate:

Rk+l = RkUf(Qk, X),

Qk+, = Rk+~ ~ R~.

Termmate when R k+, = R k

Stability and Stabilizability of Discrete Event Dynamic Systems 735

PROOF. Clearly, the algorithm terminates in a finite number of steps, say r,

and R, = R (A, XO). Since each state is visited only once, the complexity of
the algorithm is 0(n). ❑

For example, in Figure 1, in order to compute the reach of 1, we have:
RO = { 1}, RI = {0, 1, 2), Rz = X, Rq = X, and the algorithm terminates.
Thus, the reach of 1 is X.

2.2 PRESTABILITY. The notion of stability we wish to capture can be

thought of as error recovery. Specifically, as in Wonham and Ramadge, one

can imagine a set of desired event trajectories that one would like to see in a

DEDS. For example, in a manufacturing system, these sequences might consist

of a concatenation of subsequences each of which corresponds to the successful

production of an individual component and the return of the system to a

“start-up” state, from which h can initiate the next production task. Because of

the possibility of failures or errors, actual behavior may deviate from this ideal,

and what one would like is that after such a failure, the system recovers. To

capture this idea, we suppose that we have identified a subset E, of the state

space X, so that returning to E corresponds to being in a position to continue
desired behavior from that point on. For example, in a manufacturing system,
E might be the set of aJl nonfailure states or it might simply be the set of
start-up states, which, in the Wonham and Ramadge framework, can be thought
of as the initial state from which legal event trajectories are generated. Error
recovery or stability then corresponds to a return to 1? in a finite number of
transitions following any excursion out of E. There is a useful linguistic
interpretation of this concept. Define the desired language as

L(A, E) = lJL(A, x).
xeE

(2.8)

What we would like is the following: Suppose that for some reason, we are in a
state x + l?. Then, we want all possible event trajectories from x to differ from
a desired trajectory by at most a finite prefix.

Given E, we define a state xc X to be stable if all paths from x go through
E in a finite number of transitions and then visit E infinitely often. For
example, in Figure 2, where E = {O, 3], only 2 and 3 are stable states. State 1
is not stable since the system can loop at 1 for an infinite number of transitions.
States O and 4, although O is in E, are not stable either since the system can
make a transition to state 1 and stay there forever. This notion is similar to but
not exactly the same as the notion of Buchi acceptance [22]: An infinite event
trajectory is Biichi acceptable if there exists a corresponding state trajectory
which visits a terminal state (where a set of terminal states is given) infinitely
often. In our notion of stability, if we let E be the set of terminal states, all
possible state trajectories, from a stable state, visit E infinitely often.

Our notion of stability is captured in two stages. We term x prestable if all
paths from x go to E in a finite number of transitions. In other words, no path
from x ends up in a cycle that does not go through E. For example, in Figure
2, state O, 2, 3, and 4 are prestable. This notion is exactly the same as the
notion of inevitable-reachability of Sifakis [20]. A state is then stable if all the
states in its reach are prestable. In Figure 2, state O and 4 are not stable since
they can reach 1, which is not prestable.

736 OZVEREN ET AL

We formalize prestability as follows:

FIG. 2. Stability Example.

Definition 2.3. Given a live system A and some E C X, a state x e X is
prestable with respect to E if for all x e Y(A, x) such that Ix I > n, there
exists y = x such that y ~ E.

We say that a set of states is prestable with respect to E if all its elements are
prestable and a system A is prestable with respect to E, if all states in X are
prestable.

If all paths from x go through E, then they do so in less than n transitions
since, otherwise, x has a cycle that does not go through E, and thus, there
exists a path that never goes through E. Equivalently, prestability can be
characterized in terms of the primary cycles. To formalize this, let R E(A, X)

denote the set of states that can be reached by trajectories from x that do not go
out of E if they enter E at all. For example, in 2.2, R~(A, 4) = {0, 3, 4}. In
other words, RE(A, x) = R(A’, x) where A’ is an automaton created from
A by removing all transitions, from states in E, which take that state outside of
E. For example, in Figure 2, we only remove the transition O ad 1. Then, x is
prestable if and only if all primary cycles in R~(A, x) go through E. In
Figure 2, the self-loop at 1 is a primary cycle and does not go through E.

PROPOSITION2.4. Given a live A and x ~ X, x is prestable with respect to
E iff all primary cycles in R~(A, x) include at least one state in E. In
general, A is prestable with respect to E iff all primary cycles in X include
at least one state in E.

PROOF. Straightforward by assuming the contrary in each direction. El

The class of sets, that are prestable with respect to E, is closed under
arbitrary unions and intersections. Now, we derive an algorithm that computes
Xp , the maximal subset of X that is prestable with respect to ~. Our
algorithm, which is the same as the one given for inevitable reachability in
Sifakis [20], is based on starting from E and growing the currently known set
of prestable states by including, at each step, those states x such that f (x, d(x))
is a subset of the current set.

In developing this algorithm, we first need the following lemma, which states
that if some state x is prestable, then either x is in E or all the events defined
from x take x to a prestable state:

LEMMA 2.5. x E X is prestable with respect to E iff x e E or f (x, d(x)) is
prestable with respect to E.

Stability and Stabilizability of Discrete Event Dynamic Systems 737

PROOF. Straightforward. ❑

Also, note that given a set of prestable states Q, that include ~, we can test
prestability of other states by testing prestability with respect to Q:

LEMMA 2.6. Given Q, Qz c X such that Ql is prestable with respect to E
and QI x E, Qz is prestable with respect to E iff Qz is also prestable with
respect to Q,.

PROOF

(~) Obvious since QI o ~.

(+) Suppose that some X2 e Q2 goes to a cycle that avoids E. By Proposition
2.4, this cycle goes through some state xl e QI. Then, xl cannot be prestable
with respect to E, and we have a contradiction. ❑

These two lemmas lead to the following algorithm:

PROPOSITION 2.7. The following algorithm computes XP, and it has
complexity 0(n2):

Algorithm

Let X. = E and iterate:

,+, = {Xlf(x, d(x)) Cxk} Uxk.x

Terminate when Xk+ ~ = Xk.

PROOF. Clearly, XO is prestable with respect to E. Suppose that X~ is
prestable with respect to E. By Lemma 2.5, X~+ ~ is prestable with respect to
Xk and by Lemma 2.6, it is also prestable with respect to E. This algorithm
terminates in at most n steps. Let us say that it terminates in r steps. Suppose
that there exists some xl e XP such that xl ~ X,, then there exists o e d(xl)
and X2 f X, such that Xz c f(xl, o). The same holds true for Xz and some
X3 # X,, etc. Thus, there exists a path that never reaches X,. Since also
X, o E, xl is not prestable with respect to E and we have a contradiction.
Finally, to justify complexity, note that this algorithm terminates in at most n
iterations. Since all states can be visited at most once at each iteration, the
complexity of the algorithm is 0(n2). D

In Figure 2, Xl = Xz = XP = {O, 2, 3, 4}. Note that the number of steps in
which this algorithm terminates is a notion of radius for the prestable part of the
system where E is taken as the center. That is, it is precisely the length of the
maximum length trajectory between any prestable state and the state in E at
which this trajectory enters E for the first time. In Figure 2, this radius is one.
In fact, if some x is included at step k of the algorithm, then the maximum
number of transitions it takes to go from x to E is k.

z. 3 STABILITY AND f-lNVAIUANCE. As motivated in the previous sections,

we define stability as follows:

Definition 2.8. Given a live system A and some E C X, a state x G X is
stable with respect to E, if all infinite state trajectories starting from x visit E
infinitely often. More precisely, x is stable if for all x ~, x z e X(A, x) so that
Xz = Xlz, with \ z I = n, then there exists y G z such that y eE.

738 OZVEREN ET AL

This definition states that at any point in a trajectory from a stable state, we
know that the trajectory will revisit E within a finite number of transitions. In
Figure 2, clearly, 1 is not stable. States 4 and O are not stable because there
exist trajectories that start from these states and go to state 1, and subsequently,
these trajectories may loop in state 1 forever.

An immediate consequence of this definition is the following, which states
that the stability of a state is equivalent to the prestability of its reach:

PROPOSITION 2.9. Given a live A and x ~ X, x is stable with respect to E
iff R (A, x) is prestable with respect to E.

A subset of X is stable if all its elements are stable, and a system A is
termed stable if X is a stable set. We immediately have:

PROPOSITION 2.10. A is a system stable with respect to E iff it is also
prestable with respect to E.

We also have the following counterpart of Proposition 2,4:

PROPOSITION2.11. Given a live A and x e X, x is stable with respect to E
iff all primary cycles in R (A, x) include at least one state in E. In general,
A is stable with respect to E iff all primary cycles in X include at least one
state in E.

PROOF. Straightforward. ❑

If we compare this to Proposition 2.4, note that the second statements are
exactly the same. This is due to Proposition 2.10.

The class of sets stable with respect to E is closed under arbitrary unions and
intersections. Let Xs denote the maximal set stable with respect to E. (Note
that Xs can be the empty set, for example, if we let E = {O} in Figure 2.)
Then, Xs is the set of states in XP from which we can only reach prestable
states. Let us first formalize this notion of staying within a given set of states
(corresponding to the notion of A-invariant subspaces of system theory):

Definition 2.12. A subset Q of X is f-invariant if f (Q, d) c Q where

f(Q, d) = ~l~f(x> d(x)).

It immediately follows that any trajectory that starts in an f-invariant set stays
in that set:

PROPOSITION2.13. Q is f-invariant ~f R(A, Q) c Q.

PROOF. Straightforward. ❑

The class of f-invariant sets is closed under arbitrary unions and intersec-
tions. We then have:

PROPOSITION2.14. XS is the maximal f-invariant set in XP.

PROOF

(c) Clearly, X~ c XP. Also, Xs is f-invariant since if a state x= Xs can

reach a state that is not stable, then x cannot be stable.

Stability and Stabilizability of Discrete Event Dynamic Systems 739

(~) Let Xf denote any ~-invariant set in XP. Any path from a state in Xf
goes through E, and if it gets out of E it stays in X$ and thus in X..

Therefore, Xy is stable.

Note that the maximal

cannot reach any state in
X~ as follows:

j-invariant set in Q is the set of states in Q that

~, that is, it is I?(A -‘, ~). Thus, we can compute

x~=l+rl, xp). (2.9)

3. Stabilizability

So far, we have dealt with notions that are close to those commonly seen in the
automata theory literature. In this section, we introduce control and reconsider
the notions formulated in the previous section. We define prestabilizability
(resp., stabilizability) as finding a state feedback such that the closed loop
system is prestable (stable). We present a polynomial algorithm for constructing
a prestabilizing feedback. This algorithm is a natural extension of Algorithm
2.7 and it generates a state feedback which is maximally restrictive, in the sense
that it disables as many events as possible at each state, and path minimizing, in
the sense that the maximum length path from prestable states to E is mini-
mized. We also present an algorithm for constructing a minimally restrictive
feedback. Finally, we introduce a notion of (f, u)-invariance, achieving ~-in-
variance by choice of state feedback, and use this notion, together with the
constraint that the closed loop system needs to be alive, to develop a polynomial
algorithm for constructing a stabilizing feedback.

3.1 PRESTABILIZABILITY. To introduce control, we modify our system model
as follows:

G= (X, Z,U), (3.1)

where, U is the set of admissible control inputs. We introduce control by
allowing certain events at each state to be disabled. This framework is the same
as that of Ramadge and Wonham, except that in our case, an event that is
controllable at one state may not be controllable at another state. We let
U = 2X and the dynamics are described by:

X[k+ l]ef(x[k], u[k+ l]), (3.2)

u[k+ l]e(d(x[k]) (_Iu[k]) Ue(x[k]), (3.3)

where, U[k] e U is the control input after the kth event, and e: X ~ 2x is a
set valued function that specifies the set of events that cannot be disabled at
each state. Without loss of generality, we assume that e(x) c d(x) for all x.
The interpretation of (3.3) is straightforward. The set d(x) represents an
“upper bound” on the set of events that can occur at state x—no matter what
we do, the next event will be in d(x). The set e(x), on the other hand, is a
lower bound—no matter what we do, any event in e(x) may still occur. The
effect of our control action is adjusting the set of possible events between these
bounds, by disabling some of the controllable events, that is, elements of the set

d(x) fl e(x). Note, therefore, that while in our definition U(x) can be any
subset of E, we can, without loss of generality assume that U(x) C cl(x)

740 OZVEREN ET AL

(1 e(x). We will make this assumption throughout. The quadruple ~ =

(G, f, d, e) representing our system can also be visualized graphically as in
Figure 3. In addition to the graphical representation of the Previous section, we
m~rk the controllable eve~ts -by ‘‘: u“’. For example, ‘in
controllable at 1 and 2, whereas ~ is controllable only at 3.

A state feedback law is a map K: X ~ U. Given a state
AK = (G, f, d~, e) denote the closed loop system where

d~(x) = (d(x) fiK(x)) U e(x).

We define prestabilizability as follows:

Definition 3.1. Given a live system A and some fi

Figure 3, T is

feedback K, let

(3 .4)

CX, xeX is
prestabilizable with respect to E if there exists a state feedback K such that x
is alive and prestable with respect to ~ in A ~. A set of states, Q, is a
prestabilizable set if there exists a feedback law K so that every x E Q is alive
and prestable in A ~, and A is a prestabilizable system if X is a prestabiliz-
able set.

Figure 3 illustrates the importance of the liveness requirement in the above
definition. Note that 1 is prestabilizable since disabling -y prestabilizes 1. On
the other hand, disabling -y at 2 leaves no other defined event at 2. Thus,
neither 2 nor 3 is prestabilizable.

Let QI and Qz be two prestabilizable sets. Clearly, any feedback that
prestabilizes either one of them also prestabilizes their intersection. Thus,
prestabilizable sets are closed under intersections. The following result states
that they are also closed under union:

PROPOSITION3.2. Given prestabilizable sets QI and Qz, Q, U Qz is also
prestabilizable.

PROOF. We show this by constructing a feedback that prestabilizes the

union. First let K j prestabilize Qi. Then, pick, say, K ~ for the reach of Q1,
and Kz for those states in the reach of Q2, but not in the reach of Ql
(see Figure 4). More precisely, we pick a feedback F as follows:

(K,(x) if X~~E(EI~,. Q1)*

{
‘(x) = K,(x), if x%(&,, Q~) fi%(&>Q,),

~don’t care, otherwise.

Recall that l?E(~, Q) is the set of states that can be reached from Q
by trajectories that do not exit 13 once they enter it. Clearly, QI is prestable in
the closed loop system A~. By Lemma 2.6, Qz is also prestable, since
the trajectories, from a state in Qz, either go to -E or go to a state that is also
in the range of QI, in which case, they will eventually go to E. Thus, F
prestabilizes QI U Qz. ❑

We immediately have the following corollary:

CORO~~AR~3.3. A maximal set that is prestabilizable with respect to E
exists. Let P(E) denote this set.

Stability and Stabilizability of Discrete Event Dynamic Systems 741

,.-”
.

.’

‘E
\.

a
-- .----s

.s m----- .-

FIG. 3. Example for the notion of pre-

stabilizability.

FIG. 4. Feedback that prestabilizes the

union of two sets.

•1
use K1

Esiluse K2

Recall, from Lemma 2.5, that a necessary and sufficient condition for the
prestability of a state x is the prestability of f (x, d(x)). A natural generaliza-
tion of this condition is that the set of events defined at x can be restricted, say
by K C Z, so that there is at least one event defined from x, that is,
d~(x) = (d(x) (l K) U e(x) # @, and all those events take x to prestabiliz-
able states, that is, f (x, d~ (x)) is a prestabilizable set:

LEMMA 3.4. x ~ X is prestabilizable with respect to E iff x ~ E or there

exists some K C Z such that d~(x) = (d(x) n K) U e(x) # 0 and

f (X, d~(x)) is prestabilizable with respect to E.

PROOF

(~) Immediate from Lemma 2.5.

(-) Let ~1 be a feedback that prestabilizes f (x, d~(x)). Let

{

K,(x’) if x’e R~(A~,, f(x, d~(x))),

K,(x’) = K if x’ = x,

don ‘t care otherwise.

Then, also by Lemma 2.6, Kz prestabilizes x. Note that we do not care
about the feedback for states other than the ones we have included in the above
equation for K2, since x cannot reach those states under Kz. ❑

742 OZVERENET AL

Now, we can construct a natural counterpart of Algorithm 2.7 using the
above lemma. As in Algorithm 2.7, we start with E and then add in the states
that satisfi Lemma 3.4. In particular, at each step, we include the states x for
which e(x) # @ and j(x, e(x)) is a subset of the current set of states which
are known to be prestabilizable, or (if e(x) = @), we can find an event
a e d(x) such that ~(x, o) is a subset of the current set. For example, in Figure
5, we start with the state O. At the first step, we include 1 and 2, and at the
second step we include 3.

PROPOSITION3.5. The following algorithm computes P(E) and a feed-
back that prestabilizes it. It has complexity 0(nz):

Algorithm

Let XO = E and iterate:

{

xl(e(x) # a and~(x, e(x)) CXk) or
Pk+, =

(e(x) = @ and ~acd(x) such that ~(.x, a) CX,) }

K(x) =

{

0 if e(x) # @,

}

for X~Pk+,
some a such that ~(x. u) C Xk otherwise,

x k+l =xku Pk+l.

Terminate when Xk+, = xk.

PROOF. Straightforward by following the proof of Proposition 2.7 and using

Lemma 3.4. ❑

In Figure 5, Y is disabled at 1 and ~ is disabled at 2 in the first step, and ~ is

disabled at 3 in the second step.

we say that a feedback law ~ is prestabilizing if P(E) is prestable in AK.
Algorithm 3.5 produces one such feedback and, in fact, leads to a feedback that
disables as many events as possible. We formalize this as follows:

Definition 3.6. A prestabilizing feedback K is maximally restrictive, if
for any prestabilizing feedback K’ such that d~(x) c ci~(x) for all x e P(E)

(7E, then K’(x) = K(x) for all x c P(E) fl ~.

We immediately have the following result:

PROPOSITION3.7. A prestabilizing feedback K is maximally restrictive iff

K(x) =

I

oed(x) if e(x) = 0,

e(x) otherwise,

for all x= P(E) n ~.

PROOF. Straightforward. ❑

Thus, Algorithm 3.5 leads to a maximally restrictive feedback.
The feedback of Algorithm 3.5, also minimizes the maximum number of

transitions it takes to go from a state to E. Clearly, it also minimizes the radius.
In Figure 5, it takes a single transition to go from 1 or 2 to O, and two
transitions to go from 3 to O. To formalize this, r(A, x) for x 6P(E) denote
the length o i the longest path from x to a state in E, where r(A, x) = O for
all x e ii’:

Definition 3.8. A prestabilizing state feedback K is path minimizing if
for any prestabilizing feedback K’ such that r(A~, x) s r(A ~, x) for all
XC P(E), r(Ax,, x) = r(A~, x) for all x= P(E).

Stability and Stabilizability of Discrete

,..
.“

?“

t

‘\ E

a
. . ------

Event Dynamic Systems 743

FIG. 5. Example for the prestabilizability

algorithm.

\------- -

For any two path-minimizing feedbacks, the longest path lengths are equal at
each state:

PROPOSITION3.9. For any two path-minimizing feedbacks K,, and Kz,

r(A~,9 x) = r(A~,, x) for allx.

PROOF. We prove this by assuming the contrary. In this case, the set

S = { x c P(E) I r(A~,, x) # r(A~2, x)} is nonempty. Let rO denote the
smallest value of r at which we see such a discrepancy, that is,

r. = y~:{min[r(A ~,, x), r(A~,, x)]}

and let X. c S be a point at which this minimum is achieved.
generality, we assume that

Without loss of

r. = r(AK,, xO)< r(~~,> XO)O

cannot be path-minimizing yielding the requiredWhat we now show is that Kz
contradiction and thus proving

Define the feedback law
the proposition.

[

K,(x)
F(x) =

if xeRE(A~,, XO),

K2(X) otherwise.

Let us first show that F is a prestabilizing feedback. Obviously, every

x e RE(A ~ , XO) is prestable in A ~, since the trajectory starting from such a
state until i{ reaches E is the same in xl ~ and A ~,. Consider then a trajectory

in A~ starting some x~P(E) n R~(A~ , XO). Either this trajectory does not

pass through RE(A ~,, Xo) or it does. If [t does not, then the trajectory is the
same as in A ~ and thus passes through E. If it does, then once it enters

RE(A ~,, Xo) w: have already seen that the subsequent trajectory is as in A ~,
and therefore also passes through E.

All that remains to show is that r(A~, x) s r(AK , x) for all x e P(E) and
that this inequality is strict for at least one such x. by construction, we have
that

r(AF, xo) = r(A~,, XO)=r0<r(A~2, XO).

744 OZVERENET AL

Also, consider any xc RE(A~,, XO), x # XO. Then, since r(A~,, X) <

r(A K,, Xo) = r., from the definition of r. and F we have that

r(A~, X) = r(A~,, Xo) = r(A~,, X).

Consider next any x ~ P(E) fl RE(A ~ , Xo) and a trajectory in AF that

achieves r(A ~, x). If this path does not ‘pass through RE(A ~, ~Xo) before it
reaches E, then obviously r(A ~, x) = r(A ~,, x) since the trajectory in A ~
is the same as is in A ~ . If the path does pass through R E(A K,, Xo), let

Y denote the first point in 2R~(A~,, Xo) along the path. Then

r(AF, x) = length ofpath from xto y + r(A~, y),

= length of path from x to Y + r(A~,, Y),

s length of path from x to -Y + r(AK,, -Y),

—–+%>+>

where the last equality follows from the fact that the part of the trajectory from
x to y is the same in A ~ and A ~,. This completes the proof. ❑

Let 7(x), x ~ P(E) denote r(AK, x) for a path-minimizing feedback ~.
Finally, we show that Algorithm 3.5 leads to a path-minimizing feedback, and
it also constructs 7(x):

PROPOSITION3.10. The feedback of Algorithm 3.5, K, is path minimiz-
ing. Furthermore, x e P~ at step k of the algorithm, if and only if
k = F(x), and thus, the algorithm also constructs 7(x).

PROOF. Suppose that the prestabilizing feedback K as constructed in Algo-
rithm 3.5 is path minimizing for the set X~ as defined in the algorithm, that is,
for any other prestabilizing feedback K’ such that r(AK,, x) s r(A ~, X) for
all xeX~, then r(A~,, x) = r(A~, x) for all xeXk. If X~ = X~+l, then
X~ = P(E) and we are done. If Xk # X~+ ~, there exists an x e P~+, such
that ~(x, d~(x)) n P~ # @ since otherwise x e P, for some i < k + 1.
Therefore, K is path minimizing for Xk+ ~. Since K is trivially path minimiz-
ing for X. = E, we have by induction that K is path minimizing for P(E).
The proof of the second statement is straightforward. ❑

If all the trajectories in the desired behavior consist of states in E, then a
maximally restrictive feedback is desirable for stabilization since it does not
restrict the desired behavior, and in addition, it ensures returning to E in a
minimum number of transitions. However, if the desired behavior involves
states outside of E (e. g., if E is simply a set of desired initial states), then one
would prefer a less restrictive feedback so that all stable trajectories of the
desired behavior are enabled. In what follows, we present an algorithm to
construct a feedback that disables as few events as possible:

Definition 3.11. A prestabilizing feedback K is minimally restrictive, if
for any prestabilizing feedback ~’ such that d~,(x) 2 dx(x) for all x e P(E)

fl~, then K’(x) = K(x) for all x e P(E) n ~.

Our algorithm is based on the following lemma, which states that a feedback,
K, is minimally restrictive if and only if enabling any event at any state, which

Stability and Stabilizability of Discrete Event Dynamic Systems 745

is otherwise disabled, makes that state unstable, that is, creates a cycle that does
not go through ,?7. That is, K is minimally restrictive if for any state x,
enabling any a that had been disabled by K can move the system to a new state
from which it can return to x without going through E. For example, in
Figure 5, consider the feedback which disables -y at 1 and ~ at 3. Enabling
either of these events makes the corresponding state unstable.

LEMMA 3.12. A prestabilizing state feedback K is minimally restrictive

iffforallx~P(E) and acd(x) fl K(x) fl e(x), xcR~(A~, f(x, o)).

PROOF

(~) Straightforward by assuming the contrary.

(e) Since we cannot enable any event without making some state unstable, K
is certainly a minimally restrictive feedback. ❑

In order to compute a minimally restrictive feedback, we start with a
maximally restrictive feedback, and add events, that are otherwise disabled,
until the condition ~f the above lemma is satisfied. Our algorithm visits all
states in P(E) (T E and for each state x, it includes all events u cd(x)

(7 K(x) (l e(x), such that x~R~(A~, f(x, a)), in K(x). Since K is
possibly modified after visiting a state, when the next state is visited, the new
feedback should be used in computing RE(A ~, f (x, o)). For example, in
Figure 5, if we start with state 3, we get the minimally restrictive feedback
which disables y at 1 and ~ at 3. Depending on the order the states are visited,
different minimally restrictive feedbacks may be generated. In Figure 5, if we
start with state 1 or 2, we get the minimally restrictive feedback that disables (3
at 2.

On the other hand, we do not need to compute RE(A ~, f (x, a)) for each a
and x. Instead, we can compute, for each x, the set of states that can reach x
and check to see if any element of f (x, a) is in this set:

— —
LEMMA 3.13. Given xe~ and u~d(x) fl K(x) ne(x), xeR~(A~,

f(x, a)) ~f f(x, a) n R~(A~’, X) # @.

PROOF. Straightforward. ❑

We then have the following algorithm:

PROPOSITION3.14. The following algorithm computes a minimally restric-
tive feedback. It has complexity O(nz):

Algorithm

For all X6 P(E) do:

s= K(x) u {u Gal(x) nzc(x)n e(x) I J(x, u) n~E(A~*,x) = 0},
K(x) = s.

PROOF. The proof follows from Lemma 3.12. The complexity is 0(rZ2)

since all states are visited and the reach operation has complexity 0(rz). ❑

3.2 STABILIZABILITY AND (f, U)-INVARIANCE. Stabilizability, like prestabiliz-

ability, is defined as a natural extension of stability. A state x is stabilizable if

we can find a state feedback such that x is stable in the closed loop system:

746 OZVERENET AL

Definition 3.15. Given a live system A and some E C X, x e X is
stabilizable with respect to E if there exists a state feedback K such that x is
alive and stable with respect to E in A ~. A set of states, Q, is a stabilizable

set if there exists a feedback law K so that every x e Q is alive and stable in
AK, and A is a stabilizable system if X is a prestabilizable set.

Let QI and Qz be two stabilizable sets. Clearly, any feedback that stabilizes
either one of them also stabilizes their intersection. Thus, stabilizable sets are
closed under intersections. The following result states that they are also closed
under union:

PROPOSITION3.16. Given stabilizable sets QI and Qz, QI U Qz is also
stabilizable.

PROOF. We show this by constructing a feedback that stabilizes the union.
First, let K, stabilize Q,. Then, pick, say, KI for the reach of QI, and Kz for
those states in the reach of Qz, but not in the reach of QI. More precisely, we
pick a feedback F as follows:

{
‘(x) = K,(x) if xeR(A~2,Qz) nR(A~,,Ql),

\ don’t care otherwise.

F clearly stabilizes QI U Qz. ❑

We immediately have the following corollary:

COROLLARY 3.17. A maximal set that is stabilizable
exists. Let S(E) denote this set.

with respect to E

To achieve stabilizability, we try to make P(E) ~-invariant by choice of
feedback. Thus, we first need to define the following counterpart of the notion
of (A, B)-invariance:

Definition 3.18. A subset Q of X is (f, u)-invariant if there exists a state
feedback K such that Q is f-invariant in A ~.

Let Aa denote A with all controllable events disabled, that is, AD =

(X, f, e, e). Note that if some Q is f-invariant in Aa then it is also
(f, u)-invariant in A. The following result formalizes this and it also estab-
lishes a connection with the well-known result in [25] that a subspace 7” is
(A, B)-invariant iff A Y“c Y + 27, where ~ is the range of B (compare to
item 2 below):

PROPOSITION3.19. The follo wing statements are equivalent:

(1) Q is (f, u)-irzvariant in A.

(2) vxe Q, f(x, d(x)) c QUf(x, e(x)).
(3) Q is f-invariant in A*.

PROOF

(1 ~ 2) Suppose that there exists xc Q, CJ= d(x), y c f(x, o)

and y ~ f (x, e(x)). But, then y ~f(x, e(x)) and we have
since the transition to y is undesired and cannot be disabled.

such that y f Q

a contradiction

Stability and Stabilizability of Discrete Event Dynamic Systems 747

(2 ~ 3) Assume the contrary. By Proposition 2.13, there exists x e Q, a e e(x)

such that ~(x, o) (1 Q. By (2), J(x, o) C ~(x, e(x)) and we have a contra-

diction.

(3 ~ 1) Simply use the feedback K(x) = e(x). ❑

The class of (j, u)-invariant sets is closed under arbitrary unions and
intersections. Thus, a unique maximal (j, u)-invariant subset of Q exists, and

let 7’(Q) denote this set. Clearly, T(Q) = R (xl; 1, ~). This notion of (~, u)-
invariance, however, is not sufficient for stabilizability since we also need to
keep S(E) alive. So, we define the following notion that requires that we can
find a state feedback such that Q is both alive and ~-invariant in the closed loop
system:

Definition 3.20. A subset Q of X is a sustainably (f, u)-invariant set if
there exists a state feedback K such that Q is alive and f-invariant in A ~.

The class of sustainably (f, u)-invariant sets is closed under arbitrary unions
but not intersections. In Figure 6, QI (resp., Qz) can be made (f, u)-invariant
and alive by disabling 6 (resp., CY)at state 1. On the other hand, Q, U Qz is
clearly sustainably (f, u)-invariant, but QI (1 Qz is not, since if both a and 8
are disabled, the state 1 is no longer alive. Let 1(Q) denote the maximal
sustainable (f, u)-invariant subset of Q.

The characterization of sustainable (f, u)-invariance requires a slightly more
careful look at what it means if an (f, u)-invariant set is not sustainable.
Specifically, for any Q and all states x in T(Q), we know that all events that
may take x outside of T(Q) are controllable, and can therefore be disabled to
achieve the desired invariance. However, x may have no other events defined,
and thus, making T(Q) f-invariant will disable all events from x. Then, 7’(Q)
is not sustainable. Our algorithm for computing 1(Q) is based on first comput-
ing T(Q) and then throwing away all states that are no longer alive. We then
apply the same procedure to this new set. This iteration continues until no states
are discarded on a step. The following result states that we then have a
sustainable (f, u)-invariant set:

PROPOSITION3.21. Given Q c X, let

Q’ = T({x= QI there exists some aed(x) such that f(x, a) c Q}).

Then, Q is sustainably (f, u)-invariant iff Q’ = Q.

PROOF

(~) Obvious.

(+) If Q’ n Q, then Q = T(Q) and for all x 6 Q there exists some a Ed(X)

such that f (x, a) C Q. Therefore, Q is alive and f-invariant in Ax with
~(X) ={IJ I f(x, a)c Q}. ❑

This result implies that in order to find 1(Q), we can apply the operation

748 OZVERENET AL

FIG.6. Example forthesustainable (~. u)-invariance ofunions and intersections.

T iteratively by throwing away the states that are no longer alive after
last step:

PROPOSITION3.22. The following algorithm computes 1[Q] and it
complexity 0(n2):

Algorithm

Let XO = Q. Iterate:

x k+] = T({xe X,\there exists ued(.x) such that ~(.x, a) C Xk)).

the

has

Terminate when Xk+, = xk.

PROOF. Clearly, this algorithm terminates in a finite number of steps, say r
steps. By Lemma 3.21, X, c 1(Q). On the other hand, 1(Q) c X.. Suppose
that 1(Q) C Xk for some k. Then, X~+l 3 T(l(Q)) = 1(Q). Thus, 1(Q) C
X~ for all k, implying that 1(Q) = X,. To justify the computational complex-
ity, note that we visit each state at most once at each iteration, and there can be
at most n iterations. ❑

Now, we proceed with deriving an algorithm for the maximal stabilizable set,
S(E). We begin by computing P(E), the maximal prestabilizable set with
respect to E. If P(E) were sustainabley (f, u)-invariant, we could be done,
with S(E) = P(E). More generally, however, there may be some states in
P(E) for which it is impossible to find a feedback which keeps trajectories
within P(E). Furthermore, since all elements of P(E) are prestabilizable,
some of these troublesome states must be in 13. Thus, what we must do is to
compute 1(P(E)) and then discard elements of 13 not in 1(P(~)), reducing E
to a new set E. However, there may now be states that were prestabilizable
with respect to E but not with respect to E, and we therefore must repeat the
process. For example, in Figure 7, E= {0,3}, P(E) = {0,1,2,3}, and
1(P(E)) = {1,2, 3}, so that E = {3}. Now, {1} is not prestabilizable with
respect to E’ and must be discarded. The iteration in this case would produce
P(J?3’) = {2,3} = ~(~(l?)). It is not difficult to check that {2, 3} = S(13) as
well, and indeed the following result states this more generally and provides the
basis for our algorithm:

LEMMA 3.23. Given E, Q c X, let

Q’ = l(P(En Q)).

If Q’ = Q, then Q is stabilizable with respect to E.

PROOF. We first show that Q = P(E (l Q). lf Q’ = Q, then, clearly,
Q C P(E n Q). ln order to show that Q > P(E n Q), suppose that there

and Stabilizability of Discrete Event Dynamic Systems 749

.

FIG. 7. Example for the stabilizabdity algorithm.

FIG. 8. Illustration for the proof of Lemma 3.23.

exists some x GP(E (7 Q) such that x ~ Q (see Figure 8). Then, there exists
some feedback such that all paths from x go to E n Q with trajectories that
only lie in P(E Cl Q). Since by assumption Q = 1(P(E (7 Q)), but x ~ Q, x
can reach some y CE fl Q and o c e(y) such that .,f(y, u) @ P(E n Q). But

then, Q cannot be sustainably (~, u)-invariant, which is a contradiction.
Therefore, Q = P(E fl Q), and this immediately implies that Q = 1(Q) as
well.

In order to show that Q is stabilizable, let KP denote a feedback that
prestabilizes F’(E n Q) and let

[

KP(x) if x~~fl Q,
K(x) =

{~1.f(x> a) c Q} if xE13fl Q.

Q is clearly alive in AK. Q is also prestable in AK since KF insures that all

paths from states in Q fl ~ go to Q fl E. Q is then stable in ZI ~. Therefore,

Q is stabilizable, and K is a stabilizing feedback. ❑

This result leads to the following algorithm:

PROPOSITION3.24. The following algorithm computes S(E) and a feed-
back that stabilizes it. It has complexity 0(n3).

750

Algorithm

Let XO = X and iterute:

OZvEREN ET AL

Xk+, =](p(~nxk)).

Terminate when Xk+, = xk

PROOF. To show that X~ + ~ C X~ for all k, first note that Xl C XO.
Assume that X~+ ~ C X~ for some k. Let ~~ denote P(E fl Xk). Note that

Pk+l c Pk, since E fl Xk+l c E n X~. Then, 1(PL+ ~) C 1(pk) and thus
x k+2 c Xk+,. Therefore, this algorithm terminates in a finite number of steps,
say r steps. By Lemma 3.23, X, C S(E). On the other hand, S(E) C XO.
Assume that fl(13) C X~ for some k. Then, clearly, S(E) C P(E n X~).

Since also I(S(E)) = S(E), S(E) C Xk+ ~, so that X E) = X,. The feedback

which achieves prestability at step r, say F, also achieves stability for S(~),

since states in S(E) are not prestable with respect to 13 (1 S(E) and thus F
cannot be enabling any event that takes a state in S(E) outside of S(E). Also,
for states in E fl S(E), all events that take those states outside of S(E) should
be disabled. In short, the stabilizing feedback K is

(F(x) if x~S(E) n E,

{
~(~) = {CTd(x)lf(w) c W)} if xc~(l?) nE,

~don’t care otherwise.

To justify computational complexity, recall that the computation of P(E) is
0(nz), and note that the above algorithm terminates in at most n steps. El

Note that a stabilizing feedback has two components: One component for
prestability and another for invariance. Clearly, there is no flexibility in
choosing the feedback to achieve invariance (events that do not take the state
out of Pk+ ~ should not be disabled of course). For prestability, either a
minimally restrictive or a maximally restrictive feedback can be chosen. Then,
the corresponding stabilizing feedback is, accordingly, minimally restrictive or
maximally restrictive.

4. Conclusions

In this paper, we have introduced notions of stability and stabilizability for

discrete-event systems described by finite-state automata, and we have devel-

oped polynomial algorithms to test for stability and stabilizability and to

construct maximal stable and stabilizable sets, and for the latter, a feedback

control law that makes a stabilizable set or system stable. Our work has drawn
on a blend of concepts from computer science and from dynamic systems and

control. In particular, the notion of prestability used here is well known in the

computer science literature, while the concepts of state feedback, ~-invariance,

and (f, u)-invariance that are of critical importance for our study of stability
and stabilizability, are control concepts in systems and control.

The stability concepts that we introduced here can be thought of as notions of
error recovery or resiliency in that the system always returns to “good” states.
From the control perspective, one can also formulate several related concepts
and problems. For example, in many applications, one may not have (or want)
access to full state or event information but may still wish to stabilize the

Stability and Stabilizability of Discrete Event Dynamic Systems 751

system. This leads directly to questions of state reconstruction, observability,

and output feedback. Also, motivated by problems such as schedule-following

in a flexible manufacturing system, one can formulate regulator or tracking

problems for DEDS in which a feedback system is sought so that the DEDS

produces a particular desired sequence of output events. Analysis addressing

these and related problems will be the subjects of subs,~quent papers.

ACKNOWLEDGMENTS. The authors wish to acknowledge Professors George C.

Verghese and (lilead Tadmore for their insightfj_d comments in a preliminary

phase of this work. Professor Willsky and Dr. Ozveren also wish to acknowl-

edge Institut de Recherche en Informatique et Syst&mes A16atoires (INRIA),

Rennes, France, for their support during our stay, and Professor Jean-Claude

Raoult, and Drs. Albert Benveniste, Paul Le Guernic, and Bernard Le Goff for

their comments on this work.

REFERENCES

1. BEN-ARI, M. Principles of Concurrent Programming. Prentice-Hall, Englewood Chffs, N. J.,

1982.

2. BOCHMANN, G. V. Distributed System Design. Springer-Verlag, New York, 1983.
3. CIESLAK, R., DESCLAIJX, C., FAWAZ, A., AND VARAr~A, P. Supervisory control of discrete-event

processes with partial observations. IEEE Trans. Automatic Contr. 53, 3 (Mar. 1988),
249-260.

4. CLARKE, E. M., AND GRUMBERG, 0. Research on automatic verification of finite-state concurrent

systems. Tech Rep. CMU-CS-87- 105. Carnegie-Mellon Univ., Pittsburgh, Pa., Jan. 1987.
5. DIJKSTRA, E. W. Solution of a problem in concurrent programming control. Commun. ACM 5,

9 (Sept. 1965), 569-570.

6. DIJKSTRA, E. W. Self-stabilizing systems in spite of distributed control. Commun. ACM 17, 11
(Nov. 1974), 643-644.

7. FRANK, G. A., FRAN~E, D. L., AND INGOGLY, W. F. An architecture design and assessment

system. VLSI Design (Aug. 1985).

8. GEVARTER, W. B. Expert systems: Limited but powerful. IEEE Spectrutn (Aug. 1983).

9. GOLAZEWSKI, C. H., AND RAMADGE. P. J. Mutual exclusion problems for discrete event systems
with shared events. In Proceedings of the Conference on Decision and Control (Houston,
Tex., Dec.). IEEE, New York, 1988.

10. LIN, F., AND WONHAM, W. M. Decentralized supervisory control of discrete event systems.
Systems Control Group Report 8612. Univ. Toronto, Toronto, Ont., Canada, July 1986.

11. MAIMON, O. Z., AND TADMOR, G. Efficient supervisors in discrete event systems. In Proceed-

ings of 1986 International Conference of Systems, Man, and Cybernetics. 1986.

12. MERCHANT, M. E. Production: A dynamic challenge. IEEE Spectrum (May 1983).

13. OSTROFF, J. S., AND WONHAM, W. M. A temporal logic approach to real time control. In

Proceedings of Conference on Decision and Control (Ft. Lauderdale, Fla., Dec.). IEEE, New
York, 1985.

14. OZVEREN, C. M. Analysis and control of discrete event dynamic systems: A state space

approach. Laboratory for Information and Decision Systems Report, LIDS-TH- 1907. PhD dnser-

tation. MIT, Cambridge, Mass. Aug. 1989.
15. OZVEREN, C. M., AND WILLSKY, A. S. Aggregation and multi-level control in discrete event

dynamic systems. A utomatica, submitted for publication.
16. OZVEREN, C. M., AND WILLSKY, A. S. Tracking and restrictability in discrete event dynamic

systems. SIAM J. Cont. Optimization, submitted for publication.

17. OZVEREN, C. M., AND WILLSKY, A. S. Observability of discrete event dynamic systems. IEEE
Trans. Automatic Cent., (May 1990).

18. RAMADGE, P. J. AND WONHAM, W. M. Modular feedback logic for discrete event systems.
SL4A4 .7. Cont. Optimization, 25, 5 (Sept. 1987), 1202-1217.

19. RAMADGE, P. J., AND WONHAM, W. M. Supervisory control of a class of discrete event

processes. SIAM J. Cont. Optimization 25, 1 (Jan. 1987). 206-207.

752 OzvEREN ET AL

20. SIFAKIS, J. Deadlocks and livelocks in transition systems. Tech. Rep. 185.. Jan. 1980.

21. TADMOR, G., AND MAIMON, O. Z. Control of large discrete event systems: Constructive
algorithms. LIDS Publication LIDS-P- 1627. MIT, Cambridge, Mass., Dec. 1986

22. THOMAS, W. Automata on infinite objects. In Lehrstuhl fiir Znforrnatik 11. RWTH Aachen,
D-51OOAachen,Apr. 1988.

23. TOBIAS,L., AND SCOGGINS, J. L. Time-based air-traffic management using expert systems.

IEEE Control Syst. &lag. (Apr. 1987),
24. VAZ, A. F., AND WONJIANI, W. M. On supervisor reduction in discrete event systems. Int J

Cont. 44, 2 (1986), 475-491.

25. WONHAM, W. M. Linear rnultivariable control: A geometric approach. Springer-Verlag,
New York, 1985.

26. WONHAM, W. M., AND RAMADGE, P. J. On the supremal controllable sublanguage of a given

language. SIAM J. Cont. Optimization 25, 3 (May 1987), 637-659.

RECEIVED APRJL 1989; REVISED JANUARY 1990; ACCEPTED MARCH 1990

Journal of the Amowmon for Comp.tmg Machinery, Vol 3S. No 3, July 199 I

