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1. INTRODUCTION

Invited Paper RR-1 14 received Oct. 29, 1989; revised manuscript received Jan.
2, 1990; accepted for publication Jan. 3, 1990.

1990 Society of Photo-Optical Instrumentation Engineers.

Abstract. Tomographic reconstruction from incomplete data is required
in many fields, including medical imaging, sonar, and radar. In this paper,
we present a new reconstruction algorithm for limited-angle tomography,
a problem that occurs when projections are missing over a range of angles.
The approach uses a variational formulation that incorporates the Ludwig-
Helgason consistency conditions, measurement noise statistics, and a sin-
ogram smoothness condition. Optimal restored sinograms, therefore, sat-
isfy an associated Euler-Lagrange partial differential equation, which we
solve on a lattice using a primal-dual optimization procedure. Object es-
timates are then reconstructed using convolution backprojection applied
to the restored sinogram. We present results of simulations that illustrate
the performance of the algorithm and discuss directions for further re-
search.

Subject terms: image reconstruction; computed tomography; regularization; limited-
angle tomography; primal-dual optimization.

phy. The aim is to reconstruct a function defined on the plane
from a set of (possibly noisy) one-dimensional projections that
are available over an angular range less than the ideal 1 800. It
is an inverse problem that is inherently ill conditioned and yet
is so important in so many applications that it has received
considerable attention over the past 10 years. The main conclu-
sion to be drawn from this body of literature is that correct prior
knowledge—possibly quite particular to the given problem—
and optimal use of known noise statistics are the keys to ob-
taming adequate reconstructions.

In this paper we present an algorithm that restores a complete
sinogram, which can then be used to reconstruct an object using
ordinary convolution backprojection. The restored sinogram is
the solution of a variational formulation that incorporates the
Ludwig-Helgason consistency 2 known noise sta-
tistics, and a smoothness property of sinograms, which consti-
tutes our prior knowledge. Thus, restored sinograms are con-
sistent in the sense that they are in the range of the 2-D Radon
transform operator, they optimally balance prior knowledge with
noisy observations (in a maximum a posteriori sense), and they
reflect our prior knowledge of smoothness.

This research complements and advances research related to
limited-angle tomography that we have previously reported.35
In two of these works3' we describe methods to estimate an
object's convex support from collections of noisy support line
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Limited-angle tomography is a problem that arises in a number
of applications, including medical imaging, sonar, radar, non-
destructive evaluation, geophysical exploration, and hologra-



Fig. 1. The geometry of computed tomography.
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measurements, information that may be derived from observed
projections.6 This convex support information is used together
with other geometric knowledge in a limited-angle reconstruction
approach similar to that which appears in this paper.5 However,
this previous work includes only two constraints, mass and center
of mass, and requires that these be known a priori. The current
work incorporates a (theoretically) infinite number of consistency
constraints without requiring any prior knowledge related to
consistency.

This paper is organized as follows: In Sec. 2 we review the
limited-angle tomography problem and discuss important past
contributions. In Sec. 3 we develop and state our sinogram res-
toration algorithm. This includes a description of the variational
principle, its exact solution, and a discussion of the computa-
tional methods used to obtain numerical results. In Sec. 4 we
present results of simulations that demonstrate the algorithm's
performance, and finally we give a brief summary and discus-
sion of future research in Sec. 5.

2. LIMITED-ANGLE TOMOGRAPHY
The geometry of computed tomography is shown in Fig. 1 . Here,
the function ftx) is integrated along lines L(t,O), where t is the
lateral displacement of lines orthogonal to the unit vector w =
(cosO, sinO). A complete parallel-ray projection at angle 0 is
denoted g(t, 0), which when thought of as a function of both t
and 0 is called the 2-D Radon transform off(x) and is given by

g(t,O) = J f(x)(t - . x) . (1)

A sinogram is created by displaying g(t,O) as an image, where
we let 0 0 < 'rr be the x-axis range and —1 t 1 be the
y-axis range, which assumes that the object is supported on the
unit disk. We denote the domain of a sinogram by

q!J = {(t,O)IO 0 < 'ir, — 1 t 1} , (2)

Since the 2-D Radon transform is invertible,7 when all values
of a sinogram are known (and are noise free) then the corre-
sponding object may be reconstructed perfectly and uniquely.
For any finite set of measurements there is no unique recon-
struction,8 however, excellent results are obtained by a variety
of methods, including convolution backprojection (CBP), an
algebraic reconstruction technique (ART), and the Fourier method,
if there are sufficient numbers of samples in t and 0 that cover
the sinogram domain adequately.9 Limited-angle data lack pro-
jections over some angular range (or ranges) and produce poor
reconstructions that are rife with artifacts if the usual algorithms
are applied.
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One reason that application of the usual reconstruction tech-
niques to limited-angle data fails is that these approaches do not
consider the consistency of the 2-D Radon transform. As an
example of lack of consistency, consider a sinogram that has
positive values over the range of projections where measure-
ments exist and is zero over the range of missing projections.
Such a sinogram is not a valid 2-D Radon transform and, there-
fore, does not have an inverse. The conditions that describe the
consistency of the 2-D Radon transform were first stated by
Ludwig,' later expanded on by Helgason,2 and may be stated
for our purposes as follows:

Theorem 1 (2-D Consistency Theorem)—Let f be the space of
rapidly decreasing C functions on 2 and let S' be the unit
circle. Then, in order for g(t, 0) to be the 2-D Radon transform
of a function I E f, it is necessary and sufficient that (a) g E
:I7(c1 ' x S'), (b) g(t, 0 + 'rr) = g( — t,0), and (c) the integral

I- g(t,0)tkdt (3)

be a homogeneous polynomial of degree k in cosO and sinO for
all k 0. Condition (c) may be replaced by the following
condition (d): If k < 1, then

•i:
.L g(t,0)t= cosl0dtd0

= 0 , (4)

:t g(t,0)tksin10dtd0
0 . (5)

Two important geometrical relationships that exist between an
object and its 2-D Radon transform follow from direct use of
condition (c) in Theorem 1 . The first relationship results from
setting k = 0 in Eq. (3), where it follows that the integral of
any projection is a constant. It then follows from Eq. (1) that

= :foc g(t,0)dt = Jf(x)d vo , (6)

where the constant ji will be referred to as the mass offtx). The
second relationship follows from setting k = 1 in Eq. (3), which
leads to

c(0) = ! J tg(t,0)dt = . J xf(x)dx . (7)
IL_Co L2

This relationship reveals that the center of mass of the projection
at angle 0, i.e. , c(0), is equal to the projection of the center of
mass of the object onto the o-axis.

Several researchers have directly incorporated the consistency
conditions into reconstruction algorithms in the past. Em-Gal'0
was the first to propose consistency of the sinogram as a recon-
struction criterion. Peres," Louis and Natterer,7"2 and more
recently, Saito and Kudo'3 used variants of Em-Gal's approach
for limited-angle data. These researchers used the fact that in
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Eqs. (4) and (5), tk may be replaced by Pk(t), the normalized
Legendre polynomial of degree k, without changing the equality.
Then one recognizes that the product Pk(t)Slm(O), where Si1(O)
= ( 1/\/'rr)coslO and S12(O) (1/\/)sinlO, forms a complete
orthonormal basis on 9 x S' . Therefore, the coefficients

2ir I

a= j g(t,O)Pk(t)Slm(O)dtdO

are generalized the Fourier coefficients of g(t, 0), which, by
condition (d) of theorem 1 , are free to be nonzero only whenk1.

The free Fourier coefficients of Eq. (8) may be estimated by
taking the inner product of each available projection with the
Legendre polynomials and solving a system of linear equa-
tions . ' 2 The object can then be reconstructed by computing a
sufficient number of uniformly spaced projections over [O,ir)
using the estimated generalized Fourier coefficients and applying
convolution backprojection, for example. 1 points out that
the ' 'existence of noise imposes severe limitations on recon-
structions from limited angular data,' ' and that one cannot ex-
pand to an arbitrarily large number of coefficients without severe
degradations of the reconstructions . 2 derives error bounds
for noise-free projections and claims that the method is useful
' 'even if the range is only [O,2'rr/3}.' ' It should be emphasized
that while these approaches use the consistency conditions, they
do not incorporate noise in any optimal sense, nor do they at-
tempt to impose additional prior knowledge.

Other researchers have used the idea of consistency but have
avoided explicit expansion of the Radon transform . Forexample,
many approaches iterate between object space and Radon space,
imposing known constraints and measurements until the object
is consistent with the measurements. 14-17 Ravichandran and
Gouldin'8 explicitly restrict the class ofreconstructable functions
and estimate coefficients of basis functions in the projections
that are consistent with that class. By imposing severe smooth-
ness conditions they have been able to obtain good reconstruc-
tions from only four (noise-free) projections. Finally, Buonocore
proposed a fast minimum variance estimator that is based on an
unusual pixel decomposition, and he showed that it satisfies the
consistency

'
Our approach is to restore the partially observed sinogram to

one that is complete (in its projections), consistent with the
Ludwig-Helgason consistency conditions, that reflects the known
noise statistics and is smooth. It is a projection-space approach
since we do not iterate in either Fourier space or object space
during the restoration process. The unique aspect is the varia-
tional formulation on the continuum, which yields an exact so-
lution on the continuum. As revealed below, this formulation
provides for the desired properties of restored sinograms and
yields an efficient iterative algorithm for numerical solution.

3. SINOGRAM RESTORATION APPROACH

3.1. Variational formulation

Let !J be the sinogram domain as defined in Eq. (2) and let °J
be the subset of i over which projection measurements y are
available. We define the restored sinogram to be the sinogram
g that minimizes

I=fJ(Y_g)2dtdo+fJ[()2
/ag\2+

]dtdO

subject to the equality constraints

2ir I

(8)
.1m f

—1

g(t,O)Pk(t)Slm(O)dtdO 0 ' (10)

for m = 1 ,2 and k,1 = 0,1 , . . . , where k < 1. In addition, the
boundary conditions

g(1,0) = g(—l,O) = 0

g(t,0) = g(—t,rr) , (11)

must also be satisfied. Here, 3 and are positive constants, if2
is the measurement noise intensity, and Pk(t) are the Legendre
polynomials normalized so that

I- PJ{t)Pk(t)dt = jk , (12)

where ijk 5 the Kronecker delta function.
The motivation for minimizing I is as follows: The first term

keeps the sinogram values close to the measurements but is
weighted by the noise intensity so that with large noise intensity
this term becomes less important. This term also arises in optimal
smoothing solutions for processes observed in white noise with
intensity o.2 (Ref. 20). The second term creates smooth sino-
grams, where the amount of smoothness in each of the two
directions is controlled by parameters 3 and y, which must be
fixed a priori. This second term may be considered to be a
regularizing term or, alternatively, it may be seen to be analogous
to the logarithm of a prior probability on sinograms. In fact, in
Ref. 5 we show that a particular numerical solution of this type
of problem solves a maximum a posteriori (MAP) formulation
for the sinogram defined as a particular Markov random field.

The circular harmonics Sim(O) as defined in Sec. 2 are or-
thonormal over the unit circle, and therefore, the product P(t)Sim(O)
forms a complete orthonormal basis over [— 1 ,1] x [0,2i] . The
sinogram domain includes only half of this angular range; there-
fore, the constraints in Eq. (10) must be restated to correspond
to the sinogram domain. To do this, we use the symmetry relation
g(t,O + 'rirn) = g(— t,O) from Theorem 1 and the fact that Sim(O + IT)
= ( — 1)1Sim(O) and Pk( — t) = ( — 1)kPk(t), to obtain

=
1,

g(t,O)S,(O)Pk(t)[l + ( )k+l] dtdO . (13)

Now we see that when k +1 is odd in Eq. (13), Jm is identically

zero, and therefore, it is not necessary to impose these constraints
explicitly. Thus, the required constraints to be imposed over the
sinogram domain are

11 g(t,0)Slm(O)Pk(t)dtdO
= 0 , (14)
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for m = 1 ,2 and k,l = 0,1 , . . . , where k<l and k + I is even. ary conditions given by Eqs. (1 1) and (16). We note that for
fixed Lagrange multipliers, the PDE of Eq. (15) may be solved

3.2. Euler-Lagrange equations numerically on a discrete lattice system over !i so that g(t,O)
will satisfy the boundary conditions—this is the primal stage.

The exact solution of the above variational problem, found using Then, if g(t,O) also happens to satisfy the constraints, we are
the calculus ofvariations,2' is the Euler-Lagrange equation given done. Otherwise, the Lagrange multipliers must be adjusted—
by this is the dual stage—so that another primal iteration may be

made. We summarize the algorithm as follows:
(15) Algorithm 1 (Primal-Dual Sinogram Restoration)

1 . Estimate final Lagrange multipliers using Eq. (18), yielding
where the index i denotes the triplet i = (k,l,m) of indices, 'I'd . . . , x.
= Pk(t)Slm(O), and X is the characteristic function of the mea- 2. Set X? = J, for i = 1 , . . . 'p.
surement set 6Y0, equal to one where (t,O) E cs,!J0 and zero other- 3. Set k = 1 and g° = y.wise. The solution must also satisfy the original constraints and
boundary conditions in Eqs. (14) and (11) and the additional Solve the PDE in Eq. (15) numerically (using the local re-

boundary condition taxation method described in Sec. 7.4) to yield gC•
5. Does gk satisfy the constraints?

ag(t,O) i3g(—t,'rr) (16) 6. If not, update Lagrange multipliers Xi . . .X,, according to
at ät IT'

An outline of the variational methods yielding Eq. (15) appears i i aff gk (t,O)'I'(t,O)dtdO . (19)k+1 k
in Sec . 7 . 1 , and one method to index the basis functions {'I'} o -1

is given in Sec. 7.2. Set k — k+ 1 and go to 4.
We now have that the restored sinogram, which minimizes

I, also satisfies the partial differential equation (PDE) in Eq. (15). Otherwise, we are done and =

But this PDE has an infinite number of additional unknowns: The convergence time of this algorithm is the product of the
the Lagrange multipliers {X1}. Truncating the infinite summation number of iterations and the time per iteration, where the time
to, say, p terms, makes the problem tractable but does not pre- per iteration is determined by the size of the problem. In step 4,
vent the obvious; that we now must solve simultaneously for the time required grows as \/, where N = fldflv 5 the total
the restored sinogram and for a set of Lagrange multipliers. number of pixels in the restored sinogram (see Sec. 7.4 and

3.3. Initial estimate of Lagrange multipliers Ref. 22). In step 5 , the time grows linearly with the number of
Lagrange multipliers used. The number of iterations that are

One can solve for the Lagrange multipliers exactly by multiply- required is determined largely by the accuracy of the initial
ing both sides of Eq. (15) by 'I', and integrating over the sino- Lagrange multipliers and the size of a, the constant appearing
gram domain. Using the orthogonality of the basis functions, in the Lagrange multiplier update formula of Eq. (19). As dis-
where it can be shown that when k + I is even, ffq!,I'j'I'jdtdO cussed in Sec. 7.3 , the final Lagrange multipliers can be esti-

we have mated well at the outset only in certain circumstances, one of

I
which is not well satisfied when one has only limited-angle data.

xJ 2fJ[
i 82g t32g 1

. = — —xyg — 2-y — iXY •dtdO , Therefore, as the range of unavailable projections increases, the

oJ
convergence time can be expected to grow. For rapid conver-
gence of the Lagrange multipliers, a should be chosen to be

j = 1 p . (17)
large, yet not so large that the sequence will not converge.
Bertsekas23 describes the selection of a and relates this generic
primal-dual method to the method of multipliers, about which

As shown in Sec. 7.3, Eq. (17) may be approximated by a great deal of theory is known. In our experiments, the initial
value of a is chosen empirically and is modified adaptively over

>tJ 2JJ-xyyIhjdtdO , I = 1 p , (18) the course of iteration if the algorithm begins to diverge.

4. RESULTS
In this section we present results of simulations that demonstrate

which is a good approximation when 3 is small, f(x) is disap- the performance of the sinogram restoration algorithm. The ob-
pealing on its boundary, and XY is 1 on °!i . This approximation ject under consideration and its full noise-free sinogram are
allows us to choose starting Lagrange multipliers that are close shown in Figs. 2(b) and 2(a), respectively. The object is a binary
to the final values, resulting in considerable computational say- ellipse of eccentricity 0.9 oriented with its long axis at —45°

ings. from the positive x-axis and with the letters M I T removed from
the interior. This object is displayed using an 8 1 x 8 1 pixel

3.4. Primal-dual restoration algorithm image, as are all of the reconstructed objects shown in this
The primal-dual algorithm described in this section finds both section; however, the projections are computed exactly from the
g(t, 0) (on a discrete set of lattice points) and p Lagrange mul- underlying parameterized object primitives (ellipse, rectangles,
tipliers X1 ,X,.. .,X, which together satisfy Eq. (15). In addition, and triangles). Its sinogram consists of n = 60 total projections,
g(t,O) also satisfies the constraints given in Eq. (14) and bound- which corresponds to the number of columns in the sinogram,

538 / OPTICAL ENGINEERING / May 1990 / Vol. 29 No. 5
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and d 81 samples per projection, which gives the number
of rows. For display purposes only, the range of angles in the
displayed sinograms is ir/2 for the projection on the left to
3rr/2 for the project on the right.

To simulate noisy limited-angle measurements we first add
noise, corresponding to a signal-to-noise ratio (SNR) of 10.0 dB,
to the sinogram of Fig. 2(b), where

2 g2(t,O)
SNR = 1O1og'

d J 1 : '

yielding the noisy sinogram shown in Fig. 2(c). We then use
only the left 40 (out of 60) projections as measurements, which
is considered to be a severe test of a limited-angle tomography
algorithm. A reconstruction using convolution backprojection
assuming the missing projections to be identically zero is shown
in Fig. 2(d).

To demonstrate the performance of the restoration algorithm
we vary two smoothing parameters y and 3 and the total number
of constraints p that are used (using the ordering given in Sec. 7.2).
The results of the simulations are shown in Figs. 3 through 5.
Although the mass and center of mass are never explicitly en-
forced in the restoration method, it is also interesting to see how
well these constraints are met. Therefore, Fig. 5 shows plots of
the mass and center of mass of each projection as a function of
the angle index for the four results appearing in Figs. 3 and 4.
The correct values are i = 1.0 and c(O) = 0.0.

The sinogram shown in Fig. 3(a) and its reconstruction using
CBP shown in Fig. 4(a) are the result of using the restoration
algorithm with y = 0.0005, 13 = 0.01 and p 0. These values
correspond to an amount of vertical smoothing that we found to
yield good results in previous research,5 a small amount of
horizontal smoothing, and no constraints. The mass and center

of mass for the sinogram of Fig. 3(a) are shown using the dotted
lines in Fig. 5. The result is an improvement over the raw CBP
reconstruction of Fig. 2(d), and this is entirely due to noise
smoothing effects since no constraints have been employed. It
should be noted that the thin vertical stripe appearing at the right
side of Fig. 3(a) is not an artifact; it is the result of a small
amount of horizontal smoothing together with the boundary con-
dition that ties the left and right sinogram boundaries together.

(20) The sinogram shown in Fig. 3(b), its reconstruction in Fig. 4(b),
and the dashed dotted curves in Fig. 5 correspond to the values
#y = 0.005 , 13 = 0.01 , and p = 0. We notice from Fig. 5 that
both the mass and center of mass move closer to their correct
values in the second experiment and that this is due entirely to
an increase in horizontal smoothing since no constraints were
added. This increased horizontal smoothing effect is seen in the
restored sinogram as an increased overall brightness in the region
in which there are no observed projections. But one can also
see that in the center of this range the sinogram is dark, implying
that the mass constraint is not being met there.

The sinogram shown in Fig. 3(c), its reconstruction in Fig. 4(c),
and the dashed curves in Fig. 5 correspond to the values
.y = 0.005, 13 = 0.01 , and p = 2. Comparing these results
with those of Figs. 3(b) and 4(b) and their corresponding curves
in Fig. 5 reveals that the addition of two constraints p = 0 and
p = 1 causes the mass to move much closer to its correct value.
The center of mass, however, remains completely unchanged.
In the restored sinogram, the addition of these two constraints
has the effect of dramatically increasing the brightness over the
range of missing data, which corresponds to the improvement
in meeting the mass constraint.

Finally, the sinogram shown in Fig. 3(d), its reconstruction
in Fig. 4(d), and the solid curves in Fig. 5 correspond to the

OPTICAL ENGINEERING / May 1990 / Vol. 29 No. 5 / 539
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Fig. 2. The M.I.T. ellipse and its sinogram. Fig. 3. Four restored sinograms: (a) f3 = 0.01, 'y = 0.0005, and p =
0; (b) = 0.01, 'y = 0.005, and p = 0; (c) = 0.01, 'y = 0.005, and
p = 2; and (d) 3 = 0.01, 'y = 0.05, and p = 22.
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values y = 0.05, 3 = 0.01 , and p = 22. This result consti-
tutes a major change in the input parameters to the algorithm
over those used in previous experiments. Here, we increased
the horizontal smoothing coefficient y to the value that we found
to produce good results in Ref. 5. At the same time we increased
the number of constraints to 22. The result is a sinogram and
reconstruction that are noticeably better than the other results in
this series and also better than the corresponding result in Ref. 5.
As shown in Fig. 5, the mass and center of mass constraints are
most closely met in this result. Also, one point that we observed
in other simulation studies is that there are no noticeable im-
provements in the reconstructions for p > 22.

5. DISCUSSION

We have developed a projection-space reconstruction method
for noisy and limited-angle tomography. The algorithm uses
consistency, noise statistics, and smoothness to restore a com-
plete sinogram, which is then used to reconstruct an object via
convolution backprojection. The simulation results show that
incorporation of smoothing and consistency conditions lead to
improvements in the reconstructions. These reconstructions are
also better than comparable experiments appearing in Ref. 5, in
which only the mass and center of mass consistency was used.

It is useful to note that the variational formulation, on which
the restoration algorithm is based, is analogous to maximizing
an a posteriori probability, given a prior probability (on sino-
grams) described by a certain Markov random field (MRF) (see
Refs. 5 and 6). In fact, the discrete solution found by the primal-
dual method described in Sec. 4 exactly solves this MAP prob-
lem.5 Formulating the problem on the continuum, however,
simplifies some of the development, for example, that which

led to the initial Lagrange multiplier estimates. Potentially, one
can also exploit this relationship by using some of the new MRF
parameter estimation procedures that have begun appearing in
the literature. This would allow simultaneous estimation of the
smoothing parameters 3 and y, rather than having to fix these
a priori. Cross validation is another method appearing in the
literature for parameter estimation problems of this type. The
determination of model parameter values, both a priori and si-
multaneously with restoration, is a subject of further research.

Another important consideration is parallelization. Although
the algorithm was implemented on a serial computer, it should
be noted that the primal phase (numerical solution of the PDE)
can be implemented very efficiently in parallel, on a massively
parallel architecture. Also, the dual phase may be implemented
very rapidly on a vector processor since the central operation is
an inner product. Implementation issues for parallel and vector
architectures is also a subject of further research.
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7. APPENDIXES where i2 and no are the coordinates of the outward pointing unit

7. 1. Derivation of equilibrium PDE normal on the boundary i°i . Both the Euler-Lagrange equation

The statement of the variational problem (V) appears in Eqs. p /j\ I p \
ag

— (\) = 0 (29)(9), ( 1 1 ), and ( 14). In this appendix, we outline the steps required
to show that g(t, 0) solves (V) if it satisfies the PDE given in
Eq. (15) and with the additional boundary condition given in and the integrated boundary conditionEq. (16). In this section the notations g and gtt stand for the
first and second partial derivatives of g(t, 0) with respect to t, 1aP a' \
respectively, and go and goo stand for the first and second partial

J ( _1 —no) v, ds = 0 , i 1 p (30)
derivatives of g(t, 0) with respect to 0, respectively. \0g 8go

The problem is to find g that minimizes
follow from this result.

I = F(t,O,g,g,go)dtdO , (21) Equations (29) and (30) are formal statements of the PDE
and new boundary condition, respectively, that w seek. To get
the PDE, we simply compute the derivatives of F as follows:

where
aP 1

F(t,0,g,g1,go) = + + xy — g)2 (22) 8g
g) + X,

= 2g1,subject to the stated constraints and boundary conditions. Fol-
lowing Ref. 21 , we define

a

ji = XiJJgi dtdO — 0 , i= 1 p , (23)
2g1 , (31)

6 — = 2yg
and minimize (unconstrained)

a

1 = I + =
JJP(t,O,g,gt,go)

dtdO . (24)
2goop

which gives the PDE of Eq. (15) except for the infinite sum.
We now introduce p + 1 admissible test functions However, for any finite number of constraints p, the nature of

vi(t,O). . .vp+1(t,O) and form the (p + 1)-parameter family of the variational solution does not change. As p grows to infinity,

comparison functions as 50 does the upper limit of the summation of terms appearing in
Eq. (31). Therefore, in the limit, the summation becomes an

p+ 1 infinite sum.
p(t,O) = g(t,O) + rv,(t,O) . (25) To see how the additional boundary condition arises, we first

denote the boundary of 3i by 8D and the four sides of °s, starting

Then, minimizing
on the right and proceeding counterclockwise, by 8D1 , 0Th,
3D3, and 0D4. Since our original boundary conditions in Eq. (11)

J(ri E+ i ) = fJ-
specify the value of g on 3D2 and 0D4, our test functions v1 must

F(t,O,p,p1,po) dtdO (26) be zero on 3D2 and 3D4. However, g is only partially specified
J on 0D1 and 3D3 by the condition g(t,0) = g(— t, 'rr). We now

write Eq. (30) as
with respect to the (p + 1) r's gives the necessary conditions

I (2gn1 + 2gono)vds =0 , (32)II—I i=l p+l . (27)
On I Ei=O which becomes

Taking the derivatives in Eq. (27), expanding terms, and using
the divergence theorem leads to the formal statement of the J 23g1vds + J 23g,vds=0 (33)

DI 8D3

necessary conditions:

I

1Ja
—

a(a) () since v1 is zero on 3D2 and 3D4. Substituting the limits for t and
I —j v — v— V

Or1 Og Ot 0g 00 Ogo
dtd0 the appropriate constant values for 0 and dividing through by

=o 213, this becomes
oP \

(—at + —n0) v1 ds = 0 , i= I p+ 1 ,
(28) j g(t,)v(t,)dt — I g1(—t,0)v1(—t,0)dt=0 . (34)\0g1 Ogo /

—1 —1
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each term for possible simplification and approximation.
Term 1 : The first term is trivially zero if XY = 1 on

otherwise, we cannot reduce this term any further.
Term 2: The second term is approximately zero if 3 is small.

To see this we integrate by parts in t twice and simplify, yielding

i:i- 2gttI'j dtdO , + ' 2g2J) dO , (39)

where we have used the boundary condition g(l ,O) = g( — 1 ,O)
= 0. The second term in the expression above is identically
zero. To see this we substitute an explicit formula for iJ2%/8t2
into the expression to get for this term only

2jSmi(O)J g—2Pk(t)dtdO = j-21T Smi(O)J g(t,O) -Pk(t)dtdO
(40)

Theequality results from use of (since k + I is even) 2Sml(O)Pk(t)
= Sml(O)Pk(t) + Smi(O + 'rr)Pk( — t) and simplification. Now by
condition (c) of Theorem 1 , we know that the integral over t
must result in a polynomial in to of order k —2 [since the
second derivative of Pk(t) is a polynomial of order k —2]. Then,
since k < m, we may conclude that the integral over 0 is iden-
tically zero.

Hence, the second term in Eq. (17) may be written

jJ 214- 'I'd dtdO = f2 \1'J dO . (41)

This term may or may not be nearly zero depending on the size
of 13 and on the size of the support of the observations. For small
1, however, we would expect this term to be nearly zero since
t = 1 represents the boundary of support for f(x), and we
would expect f(x) to be approaching zero at its boundary.

Term 3: The third term in Eq. (17) is exactly zero. We see
this by using the symmetries and periodicities of Smi(0), g(t, 0),

(36) and Pk(t) to get

(37)

IT! .' (21T 2 1
I 2y 4"1! dtdO y Smi(O) I g(t, O)Pk(t)dtdO (42)

Jo J_! 00 o 00 .1—1

for the third term. Then, the consistency theorem tells us that
the integral over t is a polynomial in w of degree k, and since
the second partial of such a polynomial does not change its
degree, the integral over 0 must be zero.

(38) Term 4: The fourth term of Eq. (17) cannot be simplified.
Taking all of the simplifications together we have the follow-

ing exact expression for X:

flrf! 2 fIT Og= — J j xyg'1'j dtdO + j 4t3—'1'1 dO
o —10 0 Ot

—!

2
+ j j XY"1'j dtdO . (43)

0 —10

Then, using the approximations derived above we have the fol-
lowing approximation for X3, which is valid when 1 is small,
f(x) is disappearing on its boundary, and XY is 1 on

fIrf! 1

2j j XYY1t dtdO . (44)
0 —10

Now, since v, must satisfy the boundary conditions of Eq. (1 1),
we have that v(t,'rr) = v,(— t,O), which implies the desired
additional boundary condition of Eq. (16).

A function g(t,0) that satisfies the PDE of Eq. (15), the con-
straints , and boundary condition is simply a stationary function
of (V) . Because of the convex structure of the variational prob-
lem and the fact that the constraints are linear equalities, we can
also conclude that a stationary function found in this manner is
in fact a global minimum of the original variational prob-
lem (V).24

7.2. Indexing the basis functions
The Lagrange multiplier X, corresponds to the constraint in-
volving the basis function 1'(t,0) = Pk(t)Slm(O), where i indexes
the triplet (k,1,m). We present in this appendix a method to order
the infinite set of triple indices (k,l,m) so that for i = 1,2,...,
we have accounted for all of the Fourier coefficients in the
constraints in Eq. (14).

There are three types of Fourier coefficients: (1) those that
are free (unconstrained) , (2) those that are constrained to be zero
by the polynomial constraint, and (3) those that are trivially zero
due to the fact that we enforce the periodicity condition of the
2-D Radon transform. This identification is independent of m,
so for either m = 1 or m = 2 we may consider the classification
of the Fourier coefficients by the value of k and 1 alone. Then,
letting odd i correspond to m = 1 and even i correspond to m
= 2, the integer

(i+l)
—i--—, foriodd,

j= . (35)

, forieven

indexes the basis functions for either m = 1 or m = 2. Then,
we determine k and I from j using

12(is2+s 1) , ifj's2
k=

I2(j — S2 — 1) + 1 , otherwise

I2s , ifj's2
t2s + 1 , otherwise

where

S = + 0.5].

If one considers k and I to be the column and row index, re-
spectively, of a matrix, then the above procedure indexes a
checker-board of entries in the lower-left triangular region of
the matrix. The column index increases while holding the row
index constant until the entry reaches the diagonal, then the row
index is incremented and the column index starts again at the
left-most entry. This indexing scheme generates all of the free
coefficients in the limit and at any finite stage includes the basis
functions with the lowest frequency components.

7.3. Lagrange multiplier approximation
The integral expression for X3 given in Eq. (17) consists of four
separate additive integral terms. In this appendix, we consider
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= _______ (55)
1 + /i —

where

2/2 iT iT

i,j \ v + 1 d + (56)Pi, = ;— ( I3cos + 2ycos
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where (Xi , X2) E [0, 1] x [0, 1], and we assume that it satisfies
the conditions given in Ref. 22. Then the PDE is approximated
by the five-point stencil given by Eq. (50). Each grid point is
assigned a color, either red or black, according to an alternating
pattern as on a checkerboard. Then the local relaxation procedure
can be written as

red points (i + j is even):

(45) u 1) =
(1

—

+o.,1d,' (lui,1+ru+?i+buf +tu÷ 1
(53)

black points (i + j is odd):

u 1) = (1 —

+ (luj, + ru4j, + but P+ tu+ s)
(54)

where is called the local relaxation parameter and is given
by

2

7.4. Local relaxation algorithm
The domain !i is discretized evenly in t over the range [— 1,11

using d samples and is discretized evenly in 0 over the range
[O,'rr) using n samples. This describes a rectilinear grid with
different vertical and horizontal sample spacing given by =
2/nd and = IT/nv, respectively. Given the usual approxi-
mations to the second partial derivatives of g,

— gi+i,j — 2g,, + gi—i,1
gtt— 2

— I 2gi,j + ii 46gee— , (

we have

23
23g1 + 2ygoo i j — 2g,.3 + ji

2y+ -;- J' — 2g,, + gi.j— i) . (47)

It is convenient to define new constants, 3 and ', as

(48)

. (49)

Then the PDE of Eq. (15) may be approximated at an interior
point by the finite difference equation 2

—
r,,jg,+ i, — ii,jg,i,j t,3g,,3+1 i s,,

where

Ii,] =2, b,=2-j,

(ta,O)

1 1

"l 1 f m 3t
if 2ff 2ff 2a

—1 —1 (r,,O)

Equation (50) is also valid for boundary points when the bound-
ary conditions in Eqs. (1 1) and (16) are taken into account.

Several traditional methods (cf. Ref. 25) including Jacobi,
simultaneous over-relaxation, and Chebyshev semi-iterative re-
laxation methods may be employed to solve the set of equations
in Eq. (50). We have chosen to implement a relatively new
method credited to Kuo, Levy, and Musicus,22 which has been
shown to have very favorable convergence properties and is
relatively easy to implement. This method, in addition, has been
shown to be ideally suited for parallel implementation. Our im-
plementation of Kuo's local relaxation algorithm follows Ref. 22
closely.

We assume the PDE to be of the form

a2u i92u— p —j — q —i + (X1,X2)U = f(xi,x2)a1 0x2
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