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Abstract. In this paper  a method of estimating the conductivity in a bounded 2-D domain at multiple spatial resolutions 
given boundary  excitations and measurements  is presented. The problem is formulated as a maximum-likel ihood estimation 
problem and an algorithm that consists of  a sequence of  estimates at successively finer scales is presented. By exploiting the 
structure of  the physics, the problem at each scale is divided into two linear subproblems,  each of which is solved using 
parallelizable relaxation schemes. The success of  our algorithm on synthetic data is demonstra ted and numerical results based 
on using the algorithm as a tool for exploring estimation performance is presented, as well as results based on using the 
algorithm to study the well-posedness of  the problem, and the effects of  fine-scale variations on coarse scale estimates. 
Examples based on analytical results that further the understanding of  these issues are also presented. The results suggest 
the use of  inhomogeneous  spatial scales as a possible way of overcoming ill-posedness at points far away from the boundary.  

Zusammenfassung. In dieser Arbeit stellen wir ein Verfahren zum Sch~itzen der Leitf~ihigkeit in einem abgeschlossenen 
zweidimensionalen Gebiet mit verschiedenen r~umlichen Aufl rsungen bei gegebenen Randerregungen und -messungen vor. 
Wit formulieren das Problem als Maximum-Likelihood-Schfitzproblem and geben einen Algori thmus an, der aus einer Folge 
yon Schfitzern auf  immer  kleiner werdenden Gittern besteht. Unter  Ausnutzung der physikalischen Struktur haben wit das 
Problem a u f j e d e m  Gitter in zwei lineare Teilprobleme aufgeteilt, die jeweils mit Hilfe yon parallelisierbaren Relaxationsver- 
fahren gelrs t  werden. Wir wenden unseren Algori thmus erfolgreich au f  synthetische Daten an und pr~isentieren numerische 
Ergebnisse, die au f  dem Einsatz des Algori thmus als Hilfsmittel zur Untersuchung der Giite der Sch~itzung, der Gutartigkeit 
des Problems und der Auswirkungen von Variationen auf  einem feineren Gitter au f  den SchS.tzer eines gr/Sberen Gitters 
beruhen.  Wir stellen auch Beispiele vor, die au f  analytischen Ergebnissen beruhen und das Verstfindnis dieser Dinge frrdern.  
Unsere Ergebnisse legen die Verwendung inhomogener  r~iumlicher Gitter als einen mrgl ichen Weg zur Llberwindung der 
schlechten Kondit ion an Punkten, die welt vom Rand entfernt sind, nahe. 

Rrsumr. Dans ce papier on prrsente une mr thode  espace-rchelle pour I 'estimation de la conductivit6 dans un domaine 2-D 
borne, dans le cas d 'une  excitation et de mesures bornres.  On formule le probl~me comme une estimation par max imum de 
vraisemblance et on prrsente un algorithme forme d 'une  suite d 'est imateurs aux 6chelles de plus en plus fines. En exploitant 
la structure des 6quations physiques,  le probl~me est divis6 h chaque 6chelle en deux sous-probl~mes lineaires dont chacun 
est rrsolu en utilisant les mr thodes  de relaxation qui sont parallelisables. On drmont re  le succbs de notre algorithme sur des 
donnres  simulres.  Cet algorithme est auusi utilis6 pour  6tudier les performances de I'estimation et le caract~re bien ou mal 
pos6 du probl~me. Les effets de variations de conductivit6 h une 6chelle fine sur les estimateurs obtenus h une 6chelle moins 
fine sont  regardrs. On prrsente aussi des exemples basrs  sur les rrsultats analytiques pour une meilleure comprehension.  
Nos rrsultats suggerent l 'usage des 6chelles spatiales non-homog~nes comme une possibilit6 pour  resoudre l 'estimation en 
des points 61oignes de la fronti~re bien que ce probl/~me soit mal posr. 
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Cramer -Rao  bound.  
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1. Introduction 
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Imaging the electrical conductivity in the cross- 
section of an object by numerical inversion of low 
frequency, electromagnetic boundary data has 
applications in various fields of engineering, e.g. 
exploratory geophysics [4]. The problem involves 
determining the conductivity in a closed 2-D 
domain by first applying DC voltage excitations 

along the boundary and then inverting the resulting 
DC current measurements normal to the boundary. 

Two major difficulties with this 2-D signal pro- 

cessing problem are its well-posedness and the 
computational complexity of the algorithms that 
provide solutions. With regard to the former, it is 
generally not possible to resolve arbitrarily fine 
spatial fluctations in an object, especially at points 
distant from the boundary. Indeed one would 
expect that as finer resolution inversions are 

sought, i.e., as the number of degrees of freedom 
in the model increases, performance would 
deteriorate. Indeed one danger in seeking an inver- 
sion at too fine a resolution is that one may corrupt 
the estimation of lower resolution features. Also, 
as the number of  degrees of freedom increases, the 
apparent computational complexity of the 
required algorithms increases dramatically. 

In this paper we present an approach to this 
problem that was directly motivated by a desire to 
overcome these difficulties. Specifically, we con- 

sider the estimation of the conductivity at a 
sequence of increasingly fine resolutions. One moti- 
vation for such a structure is the desire to preserve 
the quality of  lower resolution estimates while still 
allowing the possibility of attempting higher reso- 
lution reconstructions. A second is that by tying 
this sequence of inversions together, we may be 
able to achieve substantial computational savings. 
Specifically, lower resolution reconstructions 
require far less computation than those at higher 
resolution. Thus, if we can use coarse-scale inver- 
sions to "guide" those at finer scales, we may 
obtain an algorithmic structure in which most of 
the work at any particular scale has actually been 
done at coarser (and computationally simpler) 
Signal Processing 

scales. Note that this philosophy bears some simi- 
larity in spirit to so-called multi-grid methods for 
solving partial differential equations [2, 6], 
although full multi-grid methods have both coarse- 
to-fine and fine-to-coarse processing. 

The framework and method we develop here is 
based on the maximum likelihood (ML) estimation 
of a pixelated version of the conductivity profile 
cr, where a series of pixelation scales is considered. 
This framework provides us with an extremely 

useful set of tools to quantify how performance 
varies with scale. Furthermore, by exploiting the 
structure of the physical equations we find that not 
only do we achieve the computational savings 
hoped for by using a coarse-to-fine estimation 
structure but we actually obtain much more. 
Specifically, although the overall inversion prob- 
lem is highly nonlinear, we develop an iterative 
relaxation algorithm that alternates between two 
linear inverse problems. Furthermore, both of 
these problems are highly parallelizable and in fact 
the parallel pieces of these look the same at all 
scales, i.e., at each scale we have the same, parallel 
problems to solve. Only the number of these prob- 
lems increases with resolution. 

In the next section we present the physical 
equations for our problem, a 2-D piecewise con- 
stant model for cr, and the resulting ML equation. 
We also discuss how we exploit the structure of 
the problem in developing an iterative, highly 
parallelizable algorithm for computing the ML 
estimate of o- at any particular scale and then 
present our overall algorithm for estimating tr at 
multiple scales. In Section 3 we present both 
analytical and numerical results on estimation per- 
formance as a function of spatial scale. In parti- 
cular the Cramer-Rao bound provides us with one 
tool with which to investigate how performance 
degrades with scale. Also, an important question 
concerns the effect of fine-scale variations on 
coarse-scale estimation. We analyze this problem 
as well and demonstrate that coarse estimates are 
robust in the presence of such variations. Finally, 
in Section 4 we present numerical results of apply- 
ing our algorithm to simulated, noisy data. Our 
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results show that coarse scale information can be 
used to improve the computational efficiency of  
the algorithm at a finer scale. Our results also 
suggest the use of inhomogeneous spatial scales 
for ~ in order to accommodate for the fact that 
estimation performance deteriorates at points 
inward from the boundary. 

constant. Specifically, with an eye toward our 
eventual multi-scale algorithm, consider the case 
in which the unit square is divided into N x N 
smaller squares or pixeis and suppose that o- is 
constant on each of these. Thus, tr is represented 
by a finite vector indexed lexicographically as illus- 
trated in Fig. 1 (the same indexing will also be 
used for other quantities associated with each small 

2. Problem formulation and multi-resolution 
estimation 

2.1. Physical equations 

The problem we consider is the estimation of  
the conductivity or(x, y) of  an object confined to 
the unit square given the results of a set of  experi- 
ments. Each such experiment consists of the appli- 
cation of  a known potential on the boundary of 
the square and the (noise-corrupted) measure- 
ments of current around the boundary. If we use 

the subscript i to index the number of the experi- 
ment, the physics of the problem reduces to the 
following set of  equations [3] 

Vo-(x, y)V~b~(x, y) = 0, (2.1) 

for 0~<x~<l, 0~<y<~l, 

where ~b~ is the potential for the ith experiment 
with known, applied boundary conditions 

B~(s) a= ~bi(s), s c F, (2.2) 

where F is the boundary of the unit square. If we 
assume for the moment that current measurements 
are made continuously around the boundary, our 
measurements take the form 

ri(s) = tr(s) Oqbi(s) + v,(s), (2.3) 
0n 

where O/On denotes normal derivative and vi(s) 
denotes the measurement noise which, for sim- 
plicity, we model as being independent from 
experiment to experiment, Gaussian, and white 
with intensity y-~ for each experiment. 

We begin our discretization of  the problem by 
examining the equations when o-(x, y) is piecewise- 

al 0"2 

a18 

Fig.  1. E x a m p l e  o f  4 x 4 p ixe l a t i on  o f  tT. 

square). Note now that within each pixel the 
differential equation (2.1) simplifies to Laplace's 

equation, 

V2~b = 0, (2.4) 

which does not depend on tT. The dependence on 
in this case comes from the integral form of 

Gauss' Law which provides constraints on the 
boundary conditions for (2.4) along the interior 
edges of the pixels. Namely, the normal current 
must be continuous across each interior edge. The 
normal current along an edge is simply equal to 
the derivative of  ~bi in the direction normal to that 
edge multiplied by the value of o- in the square 
with which the edge is associated. Note that since 
~r is discontinuous across an edge, V~bi is also 
discontinuous across that edge, making what one 
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calls the normal derivative of ~b~ along an edge 
dependent on the side of  the edge to which one is 
referring. Fig. 2 illustrates this for a particular 
vertical edge. These continuity conditions serve in 
effect to couple the solutions in the various pixels 

and to introduce the dependence on tr. 

2.2. Maximum-likelihood estimation 

The ML estimate of the conductivity profile 
given the measurements (2.3) is obtained by 

minimizing 

J = Y  i=1 ~ f r  ( r ~ ( s ) - t r ( s ) ~ ) 2 d s '  (2.5) 

of auxiliary parameters to be estimated along with 
tr. Specifically, we consider the problem of optimiz- 
ing jointly with respect to the values of tr in all of 
the pixels and the values of the potential ~b ~ along 

each interior edge for each experiment. The 
criterion to be minimized is the sum of (2.5) and 
a term penalizing violations in the continuity con- 
ditions across internal edges. More precisely, let 
b~ j  denote the potential function on the j th  edge 
of  the mth square for the ith experiment. Here 
j - - 1 ,  2, 3, 4 denote the 4 edges, numbered clock- 
wise starting from the top edge (see Fig. 3). 
Similarly, ~. let Zm ~ denote the corresponding normal 
derivative of  the potential. Consider then the 
minimization over {~,,} i and { b i n , j } ,  m = 1 . . . .  , N 2, 

j = 1 , . . . ,  4, i = 1 , . . . ,  M of  the following 

J l  - - J  

IlOrraZm,3--Orm+NZra+N,l • 
t=0 m=tN+l 

(2.6) 

(here tr could be either piecewise-constant or con- 
tinuously varying) where M is the number of  

experiments. This formula is deceptively simple. 
Indeed what makes the optimization of (2.5) non- 
trivial in this case is the fact that the normal deriva- 
tive function, aqbi(s)/On, is an extremely compli- 
cated function of tr. That is, to evaluate (2.5) for 
one candidate profile tr(x, y) requires the complete 
forward solution of (2.1) for tr(x, y) continuously 

varying or the set of  coupled solutions to (2.4) in 
all pixels with the continuity constraint imposed 
across all interior edges. Evaluating the gradient 
of (2.5) with respect to tr is obviously of  at least 
equal complexity. 

Thus, the direct optimization of (2.5) runs into 
the problem of computational intractability. To 
overcome this, we focus on the case of a pixelated 
version of  tr and consider the relaxation of  the 
continuity constraints and the introduction of a set 
Signal Processing 

Here the second term is the penalty term on dis- 

crepancies in currents across interior edges and A 
is a parameter controlling the weight placed on 
this penalty term. As A ~ ~ ,  the solution to (2.6) 
approaches our original ML solution. 

Consider now the structure of (2.6). Note first 
that, thanks to the linearity of Laplace's equation, 

i each z,, d is a linear function of the corresponding 
set of potentials ~ i ~ bin, l ,  bin,2, bin,3, bin,4. Also 
Oqbi(s)/On in (2.5) corresponds to nothing more 
than some of the z~d, i.e., those along the exterior 
edges, and tr(s) is piecewise-constant with values 
equal to trm for m corresponding to the pixels that 
touch F. Thus, we see that with all of the b~, d fixed, 
Jl is a quadratic function of  {trm} while for a fixed 
set of tr,, values, J~ is quadratic in {bin.j}. This 
suggests an algorithmic structure with two levels 
of iterations: The outer level consists of the suc- 
cessive minimization of  J1 for an increasing set of 
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Oz z = a +  

O'_Z_ = O'+Z+ 

Fig. 2. Continuity of normal current across an edge. 

values of A ; the inner level minimizes Jl for a given 

value of A by alternately solving quadratic 
minimization problems for the {c%} and the i {b,.,j} 
with the other set of variables fixed at the values 
obtained at the previous step of the iteration. 

A deeper examination of  (2.6) shows that we 
can take the algorithmic structure described, one 
very important step further. Specifically, even 
though the core of  the algorithm described consists 
of  unconstrained quadratic optimization prob- 
lems, the apparent computational complexity is 
still daunting given the dimensionality of  these 
problems. This suggests that there may be benefit 
in using a third level of iteration, e.g., Gauss-Seidal 
iterations in which we optimize a single ~rm or b~,,i 

t 
Zn,l ~ bn,l 

*- z.,4, b.,4 Square n z,,,2, b.,~ 

znls  ~ bn,$ 

Fig. 3. Normal derivative potential functions defined on edges 
of a square (for simplicity superscript experiment index i is 

not indicated). 

keeping all other variables fixed. Not only is this 

feasible but the structure of  (2.6) points to some 
appealing symmetry that can be exploited. 
Specifically, from the viewpoint of any particular 
pixel, we wish to estimate the constant conductivity 
in the pixel and the potentials on its edges for all 
experiments by minimizing quadratic terms 
measuring the difference between the currents at 
the boundaries (which are functions of the cr's and 
b's of the pixel) and the currents predicted at these 

boundaries by neighboring pixels. That is, in a 
Gauss-Seidel iteration with all Variables fixed 

other than those associated with one pixel, we have 
an extremely small optimization problem to choose 
cr and the b's for the pixel to minimize the squared 
error between the resulting currents and the 
"pseudo-measurements" of  current from neigh- 
boring pixels. Furthermore, not only is this a small 
problem, but it is essentially identical in structure 
for all squares and in fact this decomposition sug- 

gests also a highly parallel, distributed algorithm 
in which processors associated with each pixei 
interact only through the exchanging of  present 
estimates of  the pseudo-measurements needed by 
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neighboring processors. This suggests a simple 
architecture for a parallel processing implementa- 
tion of the algorithm consisting of a network of 
processors, each of which is connected to each of 
its four nearest neighbors. Note that the only 
differences in the problems as seen by each pixel 
comes from the fact that some pixels are adjacent 
to the exterior boundary F. For such a pixel, the 
b's along edges coincident with F are known and 
the "currents predicted by neighboring pixels" are 
the actual measurements. 

In the next subsection we discuss the details of 
algorithms having the structure just described. As 
we will see, there is still substantial flexibility in 
how one performs the various levels of iteration, 
and as we show later, certain variations produce 
considerably superior algorithms. 

2.3. Algorithm at a single scale 

To begin, we assume that we use a regular dis- 
cretization scheme to solve (2.4) within each pixel. 

(,1 /(b) m,1 " " " T 1 . 4  m. l  

" : "' " i , ( 2 . 7 )  

zim.4 £1 T 4 , 4 / \ b i  • • • m,4 

where (2.7) represents the approximate solution 
of (2.4). Here each T~ is an L x L matrix (see 
Appendix A). 

We also assume now that our measurements are 
also samples along F, and we break up this 
measurement set into subvectors corresponding to 
the exterior edges of our pixels. Specifically, let 
/l,m denote the vector of  measurements along that 
portion of the top of the unit square coincident 
with pixel m (here m = 1 . . . .  , N are the top-most 

i pixels). Similarly, r2,m is a vector corresponding 
to pixel edges along the right side of the unit square 

(m = tN;  t = 1 , . . . ,  N ) .  In this framework the dis- 
cretized version of (2.6) is 

M 

J1 = Z ( 3"ltfi"~" l~Ai) ,  ( 2 . 8 )  
i=1 

where 

and 

Ai 

N 

7,,= Z 
m = l  

r l ,~-~m Tl,~bi.t 
I = l  

r 2,Nt - O-Nt T2,1b iNt, i 
t = l  I = 1  

N2 ~ 2 
+ Y~ r3, m -- cr m T3,lbim,i 

m = N ( N - I ) + I  I = 1  

~ Ta,tbl+~t-l)N,l 2 i i 
"~- r4,1+(t_l) N -- O - l + ( t _ l )  N 

t ~ l  1=1 

N-1N.+1~-I m ~ ~ , 2 
= ~. ~. T2,tbi,,,,t-o',.+l T4.tb.,+l,t 

t = 0  m = t N + l  l = 1  / = 1  

N - 2  N( t+I)  ~ 
i i + Z Z 0",,, T3,1b~,t- o%+N T,,,b,,,+N,l 

t ~ 0  m = t N + l  / = 1  I ~ 1  
(2.9) 

i i That is, we now assume that Zm,j and b, , j  are 
L-dimensional vectors, where L is the number of 
sample points per pixel edge. In this case the 
discretization of  (2.4) yields a linear relationship 
of the following form 
Signal Processing 

Detailed examination of  (2.8) and (2.9) shows that 
it has the structure we have indicated. Each pixel 
contributes terms to Jl corresponding to the current 
along each of its edges. If an edge is exterior, its 
term appears in ~i, while it appears in Ai if it is 
an interior edge. Note from (2.8) that 3' and A 
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enter in similar ways, representing the relative 

weights placed on matching the actual  external 
measurements or on matching currents across 

internal boundaries. I f  we then consider optimiz- 

ation with respect to any individual tr,, or b~,j 
with all other variables fixed, we obtain a local 

and relatively simple problem. For example the 

optimization for the scalar o', depends only on 
o',_1, tr,+l, tr,_N, and tr,+N. Similar structure is 
present for the i • • • bin,j-optimization, although in this 

case we must solve an M-dimensional  set of  linear 

equations 1. 
There are a wide variety of  ways in which one 

can imagine iterating among all of  these variables. 

One of the most obvious of  these, which we refer 

to as "Algori thm 1", has exactly the structure 
described in the previous subsection. That is, we 

fix the values of  all of  the tr's or all of  the b's and 

optimize with respect to the other. We then reverse 

the roles of  fixed and free variables and continue 
in this alternating manner  until convergence is 

achieved. In any one of these steps, the optimiz- 
ation with respect to all the cr's or all the b 's  is 
also achieved in an iterative manner,  i.e., we sweep 

through the set of  variables optimizing with respect 

to one variable with all others fixed. This sweep is 

then iterated until convergence is achieved. The 

convergence of  each of  these multi-sweep iter- 
ations (for the tr's and for the b's) can be readily 

established (see [3]). 
An alternative algorithm, which we refer to as 

"Algori thm 2", alternates between single sweeps 
of  It,,, m 1 , . . . , N  2and  i i b,,,3 }, we = {bin,2, i.e., do 
not actually take to completion (or even near com- 

pletion) the minimization with respect to either set 
of  variables with the other fixed. As we will see, 
this algorithm appears to have superior perform- 
ance in terms of  number  of  operations required 

until overall convergence is achieved. Note also 

that the locality of  the individual optimizations 

would also allow one to develop highly parallel 

Note  tha t  there  are ac tua l ly  far  fewer  free b',,,, i t han  migh t  
be a p p a r e n t  at  first glance.  Specif ical ly,  those  on ex te r ior  edges  

are given, while on interior edges, ~ is continuous, i.e., bi,,.2 = 
bl . . . . .  4, btm,3 = bI,,+NA • 
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versions of  the these algorithms using appropriate  

coloring schemes. 

2.4. Algorithm at multiple scales 

The main idea of our multi-resolution scheme 

is to compute efficiently the ML estimate of  o- at 

a reasonably fine scale by computing estimates at 

a sequence of  scales starting with a very coarse 

scale then moving to successively finer scales. The 

algorithm to accomplish this essentially consists 
of  the following sequence of  steps. 

Step I. 

Step 2. 

Step 3. 

Step 4. 

Compute  6 assuming constant tr 

throughout the unit square. 
Subdivide each existing square into four 

equal squares. Initialize the value of  or in 

each of these four squares with the value 
of  6 computed for the larger square at the 

previous scale. Given these initial tr, initial- 

ize the edge potential vectors by optimizing 

with respect to ~b. 

Compute  6, 4~ using iterative and dis- 

tributed algorithms described in the pre- 
vious subsection. 
I f  finer resolution is desired, repeat Steps 

2 and 3. Otherwise, stop. 

Let us comment  on the several aspects of  this 

algorithm. Note first that at the coarsest scale, i.e., 

where o- is assumed to be constant throughout the 

unit square, there are no internal potentials to be 
estimated, i.e., at this scale the estimate of  tr is the 

solution of  a single, non-iterative scalar least- 

squares problem. Note also that the iterations at 
any subsequent scale are initialized using values 

of  tr at the preceding scale. This offers several 

potential advantages. First, assuming we have done 
a good job at one scale, the initial guess for the 
next scale should be reasonably good, so that the 

total number  of  iterations required at the higher 

resolution, where computations are more complex, 
should be reduced. Also, the overall function to 

be optimized at the ultimate resolution will in 
general have local minima. By "guiding" the solu- 

tion using estimates at coarser levels, one may be 
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able to to avoid these, assuming of course that they 

have been avoided at the coarser level. Also, even 

if finer-scale estimates degrade, this will not disrupt 

the quality of  the lower-resolution reconstructions. 

In addition to the recursion in scale and the 

iterations required for ML estimation at any par- 
ticular scale, there is also the question of increasing 
A. As we discuss later, there appear  to be good 
reasons for keeping A fixed and not increasing it 

to arbitrarily large values, i.e., for never actually 

enforcing the current constraints exactly. However,  

if increases in A are desired, one can implement  

this in two different ways. In particular, as we 

originally described, one can incorporate a loop 
in which A is increased from a small to a large 

value during the course of  iterations at one scale. 
In this case we increase A gradually in order to 

force the constraint of  the PDE to be satisfied more 

and more with each iteration. Alternatively (or in 

addition), we can also imagine increasing A with 
each change in resolution, forcing current con- 
straints to be more closely satisfied as we get to 
finer resolutions. Fig. 4 is a flow chart illustrating 

the main structure of  the algorithm. 

Estimate Constant a 

l 
Go to Finer Resolution 

1 
Initialize a 

Using Previous 

Resolution 

[ 

Algor i thm 1 or 2 ~ 

1,or o,, Iterotio s I 1 

Stopo!Raise 

l / 

Stop or Raise K I 

I 
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3. Analytical estimates of performance 

In this section we explore the issue of estimation 

performance.  Our first set of results pertain to a 

fundamental  question arising in our multi-scale 

formulation. Specifically, we examine the influence 

of fine-scale variations in tr on the estimate at a 

coarser scale. By linearizing the PDE, we derive 

an analytical approximation to the bias and the 
mean-square error due to fine-scale fluctuations. 

Numerical evaluation of this shows a significant 

level of  robustness. 

Our second set of  results uses a similar lineariza- 

tion technique to evaluate the Cramer -Rao  bound 

for estimation at a particular scale. Numerical 

evaluation again shows a relative insensitivity of  
performance to actual conductivity values. 

3.1. The effect of  fine-level fluctuations 

For the sake of simplicity we focus here on 

estimation at the coarsest scale, i.e., tr is assumed 

to be constant throughout the unit square when tr 

actually varies at the next scale. As indicated in 
the previous section, estimation at the coarest scale 

is in fact a linear problem. Specifically, in this case 

the potential ~bi for each set of  boundary conditions 
satisfies Laplace's  equation (2.4) throughout the 

unit square. Thus in this case the normal deriva- 

tives for each experiment 

o@,(s) 
zi(s) = - - ,  s e F, (3.1) 

an 

are independent of t r  and can be computed a priori. 

With tr assumed to be constant in (2.3), the ML 

estimate is seen to be 

6" = yP ~ zi(s)ri(s) ds, (3.2) 
i=1 • F 

where P is the mean-square estimation error 

p = E [ ( t r - ~ )  2] 

M -1  

: r.,, ,. f i,x.,,lr"d.,,] (3.3) 
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Suppose now that we use the estimator of  (3.2), 
where the z~(s) are computed assuming tr constant, 

but where in reality tr varies at the next scale, i.e., 
it takes on different values in each of four smaller 

squares: 

trj = O-o + &r~, j =  1 , . . . , 4 ,  (3.4) 

where O-o is the background value that we would 
like to estimate at the coarsest scale. 

In this case the actual normal derivatives of  the 

potential are highly nontrivial and nonlinear func- 

tions of  the o-~. However, as outlined in Appendix 

B, by linearizing the current continuity constraints 

about the background cro, we can compute a first- 

order approximat ion to the true normal derivatives 
as functions of  the &rj and from this approximat ion 

to the bias and the mean-square error in 

estimating o- o due to the unmodeled fluctuations 

{ ~o-~}. Specifically, if we condition on 

cro, 8c ry , . . . ,  &r 4 and take the expectation over the 
noise, we find that an approximation to the bias 

in our estimate is 

E[(o-o - t~)lcro, 8crl, • • •, &r4] ~/3, (3.5) 

where/3 is given in (B.12). Also, since the estimator 

(3.2) is linear, the variance in the estimate is 

unaffected by the &y fluctuations. Thus, the mean- 

square error, conditioned on a particular set of  

get's, is approximately given by 

,~ 2 E[( t ro -c r )  [cro, g o ' l , . . . ,  &r4]~/32+P.  (3.6) 

The quantity/3 in (3.5) and (3.6) is a quadratic 

function of the &r~'s. Because of  this simple form 

it is conceptually straightforward to take an 

expectation over the 8o'~'s as well, now treating 
them as random variables, to obtain approxima-  
tions to the unconditional bias and mean-square 

error. For example,  suppose that the 8ira's are 

independent,  zero-mean and Gaussian with vari- 

ance q. Then from (3.5) and (B.12) we obtain 

E[(o-o - t~)[tro] ~ E[/3 [O-o] = cqq, (3.7) 
or o 

where a~, given in (B.16), is a precomputable  
function of  the experimental  conditions and is 
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independent of  the background conductivity cro. 

Also, from (3.6), (B.12), and the Gaussian moment  

factoring formula, we see that 

E[( t r  o - t~)21tro] ~ e + P, (3.8) 

where 

e __a E[/321O.o] = a 2 q q . . a 3 q 2 .  (3.9) 

The precomputable  coefficients a2 and a3 are given 
in (B.17) and (B.18). 

Numerical experimentation with this problem 
indicates a significant level of  robustness for the 
coarse-scale estimator (see [3] for details). In par- 

ticular, consider a single experiment with 3;--1 

and boundary conditions 

sin(2~rx),  

- sin(27ry), 

~b(x, y) = _ sin(2zrx), 

- sin(27ry), 

y = l ,  

0<~x<~l, 

0<~y~<l, 
x = l ,  

(3.10) 
y -- 0, 
0~<x<~l, 

0~<y<~l, 

x = 0 .  

In this case we find that a ~ - 4 . 5 7 x 1 0  -~2 

indicating that at least to first order the bias in our 
estimate is extremely small. Indeed Monte Carlo 

simulation results in [3] indicate that the true bias 

is only a few tenths of  one percent of  tro even for 
rather large fluctuations, e.g., for p/tro as large as 
30% where 

p =x/q. (3.11) 

Since the bias effect of  fine-level fluctuations is 
small, we focus attention on their effect on the 

mean-square error. Note in particular that the 

expression in (3.8) decomposes the mean-square 

error into two t e rms- -one  e, due entirely to the 

fine-scale fluctuations and one P due solely to the 
presence of  additive measurement  noise. One 
meaningful comparison of  the sizes of  these two 
terms can be accomplished by comparing the plots 
of  each versus some appropriate  measure of  the 
"size" of  the effect causing the error. 
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Consider first the term due solely to measure- 

ment noise. It is convenient to plot the percentage 

root mean-square (rms) error, i.e., x/P/tro versus 
the signal-to-noise ratio (SNR), or its reciprocal, 

where 

S N R -  signal rms (3.12) 
noise strength" 

From the measurement  model  (2.3) we have, for 
the general case of  M experiments,  the definition 

SNR=( ~M i~=, IrlZ°i(s)12 ds) l/2x/--y, 

(3.13) 

where we have used the fact that we are assuming 

o- to be constant; here z ° denotes the boundary 
normal derivative for the ith experiment assuming 
that tr is constant. Then, combining (3.3), (3.12), 

and (3.13), we see that 

O'o = ~ SNR-1" (3.14) 

In the case of  the term due to finer-level fluctu- 
ations, we can plot x/7/tro versus the percentage 
of fine-level rms fluctuation, p/O~o. 

Fig. 5 displays the results of  such a comparison. 

To obtain these results P was computed using (3.3) 
but e was estimated via Monte Carlo simulation 

rather than via use of  our linearized analysis. This 

plot allows us to determine the ranges of  parameter  

values over which each of the two terms is 
dominant.  For example at an SNR of 5 the fine- 

level distortion must be nearly 40% in order to 

cause an error of  size equal to the noise effect. On 
the other hand for an SNR of  20, the fine-level 

effect becomes dominant  for p/Cro less than 10%. 

Note also that this plot suggests that in assessing 
coarse-level estimator performance we can inter- 
pret the effect of  these finer-level fluctuations as a 
reduction in the effective SNR. 

3.2. The Cramer-Rao bound at a single scale 
In the case of  additive Gaussian noise, as in our 

problem, the Cramer -Rao  lower bound is based 
Signal Processing 

0 . 2 0  , 

0.15 ,,'" 

0 . 1 0  O o . ,  

.05 "" "fi 

0 . 0 0  I I r I I I I 

0.0 0.1 0.2 0.3 0.4 
p//cro , (SNR) -1 

Fig. 5. Plots of x/if/o" 0 versus (SNR) -t and of x/e/o- o versus 
p/o%, the fine-level distortion. 

on a linearized analysis of  estimator performance.  
It is possible in our case to compute this bound 

by solving a linearized version of the original PDE 

similar to that arising in the analysis of  the preced- 

ing section. Specifically, consider the analysis of  

the performance in estimating tr when it is assumed 
to take on different values in each of four sub- 

squares. Let ~r denote the vector of  the four values 
of  ~. Then our measurements (2.3) are of  the form 

r~(s)=h,(tr, s)+v,(s), i = I , . . . , M ,  (3.15) 

where the measurement  function hi is defined 

implicitly through (2.3) and the solution of Lap- 

lace's equation in each square with the required 
current continuity constraints between squares. 
The Cramer -Rao  bound at any hypothesized value 
or ° in this case is given by 

E[(er o _ t~.)(er o - ~.),] i> j - l ,  (3.16) 

where d- is any unbiased estimate and ' denotes 
the transpose, and 

J = y • [Vh,(er °, s)][Vh,(er °, s)] '  ds, 
i=1. F 

(3.17) 
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w h e r e  

( aV h,( tr°, s)/a0"1 I 
V h i ( o  -°, s ) =  " (3.18) 

\ O V h , ( t r  ° ,  S)/a0"4/ 
A p p e n d i x  C ou t l i ne s  h o w  the  c o m p u t a t i o n  o f  this  

g r a d i e n t  c a n  be  a c c o m p l i s h e d  by  so lv ing  P D E s  fo r  

t he  i n d i v i d u a l  sens i t iv i t i es  in (3.18). 

In  [3] t he  C r a m e r - R a o  b o u n d  is d i s p l a y e d  fo r  

a n u m b e r  o f  d i f fe ren t  e x a m p l e s  a n d  a n u m b e r  o f  

c o n c l u s i o n s  can  be  d r a w n  f r o m  the se  n u m e r i c a l  

resul ts .  T h e  first is tha t ,  b a s e d  on  a va r i e ty  o f  tests ,  

t he  b o u n d  a p p e a r s  to be  r e l a t ive ly  i n sens i t i ve  to  

t he  p a r t i c u l a r  c h o i c e  o f  t he  n o m i n a l  c o n d u c t i v i t y  

v e c t o r  t r  °. A s e c o n d  is t h a t  fo r  e x p e r i m e n t  sets tha t  

a re  s y m m e t r i c  in t ha t  t h e y  p r o b e  al l  par t s  o f  the  
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un i t  s q u a r e  equa l l y ,  t he  e r rors  in e s t i m a t i n g  the  

f o u r  v a l u e s  o f  0- a re  e s sen t i a l l y  u n c o r r e l a t e d .  F o r  

e x a m p l e ,  t he  b o u n d  fo r  t he  case  o f  a c o n s t a n t  
n o m i n a l ,  0-0 = 0-0 = o o o ' 3 = 0 " 4 = 1 ,  a n d  S N R = I ,  is 

g i v e n  by  e q u a t i o n  (3.19) in T a b l e  1, w h i l e  the  

c o r r e s p o n d i n g  ma t r ix  o f  c o r r e l a t i o n  coef f ic ien ts  is 

g iven  by  (3.20). 

As  we  w o u l d  e x p e c t  t he  c o r r e l a t i o n  b e t w e e n  the  

e r ro rs  in s q u a r e s  o n e  a n d  f o u r  is less t h a n  tha t  o f  

squa re s  o n e  a n d  t w o  d u e  to t he  p r o x i m i t i e s  o f  t he  

s q u a r e s ;  h o w e v e r ,  al l  o f  t he se  c o r r e l a t i o n s  a re  

smal l .  S imi la r ly ,  c o n s i d e r  the  case  o f  16 i n d e p e n -  

d e n t  e x p e r i m e n t s  e a c h  cons i s t i ng  o f  a s ing le  

i m p u l s e  in t he  b o u n d a r y  p o t e n t i a l  wi th  t he  l o c a t i o n  

o f  t he  i m p u l s e  b e i n g  o n e  o f  16 p o i n t s  s y m m e t r i c a l l y  

d i s t r i b u t e d  a b o u t  the  b o u n d a r y .  In  this  case ,  w i th  

Table 1 

Cramer-Rao bounds with their corresponding matrix of correlation coefficients 

3.213024 x 10 -2 -4.489673 x 10 -4 -4.489673 X 10 -4  1.769225 x 10 -5 \ 

j - I  = -4.489673 × 10 - 4  3.213024 x 10 -2 1.769223 x 10 5 -4.489673 × 10-4 / 

--4.489673 X 10 -4 1.769223 X 10 -5 3.213024 X 10 -2 --4.489673 X 10 -4 / 

1.769225 X 10 -s --4.489673 X 10 -4 --4.489673 X 10 4 3.213024X 10 - 2 ]  

1 --1.397336 X 10 -2 --1.397336 × 10 -2 5.50641 X 10 -4  

-1.397335 x 10 -2 1 5.50641 × 10 -4  -1.397336 x 10-2 / 

- 1.397336 x 10 -2  5.50641 x 10 -4 1 - 1.397336 x 10-2~ 

5.506416 x 10 -4 -1.397336 x 10 -2 -1.397336 x 10 -2 1 / 

2.023046 X 10 -3 --3.557312 X 10 -s --3.557306 X 10 -5 1.224941 × 10 - 6  

j-1 = 1-3"557312 x 10 -5 2.023046 × 10  -3  1.22494 x 10 -6 -3.557306 x 10 -s 

~-3.557306 x 10 -s 1.22494 x 10 -6 2.023046 x 10 -3 -3.557312 x I0 -s 

\ 1.224941 x 10 -6 -3.557306 x 10 -s -3.557312 x 10 -s 2.023046 × 10 -3  

_l -1.758394 × 10  -2  -1.758391 x 10 -2 6.054933 x 10-4~ 

1.758394 x 10 -2 1 6.054928 X 10 - 4  -1.758391 x 10-2 / 

~-1.758391 x 10 -2 6.054928 x 10 -4 1 -1.758394 x 10-2: 

\ 6.054933x 10 -4 -1.758391 x 10 -2 -1.758394x 10 -2 1 

7.813642x 10 -3  0.15047 0.15047 0.26502 ) 

=10.15047 38631.4 265.971 12691.5 j - i  / 
~0.15047 265.971 38631.4 12691.5 

\0.26502 12691.5 12691.5 2.897401x 10 +5 

1 8.660616 x 10 -3 8.660616 x 10 -3 5.569841 x 10-3\ 

) 8 . 6 6 0 6 1 6 x  10 -3 1 6 . 8 8 4 8 3 7 x  10 -3 0 .11996 

~ 8 .660616  x 10 -3 6 .884837  x 10 3 1 0 .11996  

\5.569841 x 10 -3  0.11996 0.11996 1 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 
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same constant nominal value of 1 and S N R =  1, 
we find the bound may be represented by (3.21) 
with a corresponding matrix of correlation 
coefficients given by (3.22). 

Comparing (3.19) and (3.20) with (3.21) and 
(3.22) we see that the variances in the 16 experi- 
ment case are roughly 1/16 those of the 1 experi- 
ment example, which is what one would expect 

from simple linear analysis and our definition of 
SNR (which is actually an average SNR per experi- 
ment). Also, the correlations in the two examples 
are quite similar and small. 

Another conclusion one can draw from our 
analysis is illustrated in the example in which we 
have only a single potential impulse in the upper- 
left corner. The corresponding bound for the same 
or ° and SNR of  1 is given by (3.23) and has a 
corresponding matrix of  correlation coefficients 
given by (3.24). 

Notice from Table 1, J l l  1 <~ J2~ <~ J~4 ~ , where J~l 
is the / j th  entry of  the matrix (3.23). This indicates 
that the performance degrades in rather dramatic 
fashion away from the location in which experi- 
mental energy is concentrated. Note also, the larger 
correlation between errors in squares away from 
the one in which the impulse is located. This sug- 
gests some difficulty in separately estimating these 
conductivities. We will see a much more dramatic 
example of  this in the next section. 

4. Numerical results of algorithm performance 

In this section we exercise the algorithms 
described in Section 2 in order to illustrate several 
important points. In these examples we use syn- 
thetic data generated using a 16-square parametri- 
zation of  tr and a set of 16 experiments consisting 
of  individual impulse excitations at 16 locations 
distributed uniformly around the boundary (see 
[3] for discussion of  the generation of this data). 
Note that at this scale there are four interior 
squares which are not in contact with the outer 
boundary on which measurements are taken. 

Finally, recall that in describing our algorithms 
there was the issue of the choice or method of 
Signal Processing 
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adjustment for the penalty-term weighting A. 
Aspects of this problem are addressed in Section 
4.3. In the first two subsections, however, we use 
noise-free data in order to investigate two other 
issues, and in these cases we fix A to be equal to 3'. 

4.1. Comparison of Algorithms 1 and 2 

The core portion of  the iterative solution to the 
estimation problem at any particular scale consists 
of  two types of minimization steps--minimizing 
with respect to cr given fixed values of internal 
edge potentials and minimizing with respect to 
these edge potentials with the o- values held fixed. 
While each of these is an unconstrained quadratic 
minimization problem which in principle could be 
solved without iteration, the algorithms described 
in Section 2 use Gauss-Seidel sweeps through the 
various components to overcome dimensionality 
problems. Algorithm 1, as described in Section 2, 

carries each such Gauss-Seidel iteration to com- 
pletion before switching to the optimization with 
respect to the other variable set. Algorithm 2, in 
contrast, makes a single Gauss-Seidel sweep 
through each set of variables and then switches to 
the other. A fundamental question is: Which is 
better? i.e., does it pay to carry each o-- or ~b- 
iteration to completion or only to perform each 
partially? 

Our method for answering this question involved 
the comparison of convergence rates using a noise- 
less data set run at the finest 16-square scale. The 
specific set of true conductivity values used is given 
in Table 2. In order to initialize the iterations at 

Table 2 

True conductivity values (tr) used to compare Algorithms 1 
and 2 (16-square scale) 

56.7142 92.8996 102.77 100 

117.513 68.5311 110.48 133 

140.345 64.9578 122.151 86.9013 

134.194 106.852 100 135.18 
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this scale for both Algorithms 1 and 2 we use as 

the starting point for tr the average of the true (7 

at a four-square scale, e.g., the initial value of  tr 
in each of the four upper-left-hand squares was 

taken to be the average of  the corresponding four 

values in Table 2. Note that this represents the 

ideal initialization from the preceding scale. For 

each algorithm we iterate until the average percen- 

tage error of  the inner squares reaches a certain 

level 2, and then compare the number of iterations 

required for each algorithm to meet this percentage 

error criterion. We do this for several levels of  the 

percentage error at which iterations are terminated. 

For the case of Algorithm 2 a single iteration is 

well defined, i.e., an iteration consists of one sweep 

with respect to or and one sweep with respect to 

~b. For the case of Algorithm 1 a single iteration 

consists of  two sub-iterations, one for (7 and one 

for 4>. The number of iterations involved in each 

of  these sub-iterations is the number required for 
convergence in each case, and the condition for 

such convergence must be specified. With respect 

to o- we take adequate convergence to be the point 

in the iteration at which the percentage change of 

cr in the inner squares falls below a certain thresh- 

old. With respect to ~b we take adequate conver- 

gence to be the point in the iteration at which the 
percentage change in ¢ along the edges of  the 

inner squares falls below a certain threshold. In 

our examples we take the value of  the threshold 

to be 0.0001 for both cases. 

Fig. 6 is a log-log plot of  the total number of (7 

iterations required by each algorithm in order to 

meet the following 4 percentage error criteria: 0.5, 

0.05, 0.005 and 0.0005. 3 Fig. 7 is a log-log plot of 
the total number of ¢ iterations required by each 

for the same set of percentage error criteria. 

These plots indicate that for percentage errors 
down to approximately 0.001 Algorithm 2 per- 

0 

3 

0 

10  4 

1 0  a 

1 0  2 

I0' 

' ' ' ' ' ' " 1  ' ' ' ' ' ' " 1  

Algor i thm 1 O 

Algor i thm 2 [] 

O 
O 

O 

2 We use the performance of the inner squares as our 
criterion since the errors there dominate the errors of the outer 
squares. 

3 These percentage errors are expressed in absolute units 
rather than in units of percent. We will henceforth adhere to 
this convention. 
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Fig. 6. Log-log plot of total number of ~ iterations performed 
for four different percentage error criteria. 
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Fig. 7. Log-log plot of total number of ~b iterations performed 
for four different percentage error criteria. 

forms better than Algorithm 1. For percentage 

errors lower than this, however, Algorithm 1 per- 
forms better than Algorithm 2, but the difference 

in performance at this level error is small. What 

this indicates is that if noise levels are sufficient 

so that such fine a level of  accuracy is unachievable, 

Algorithm 2 is superior. In extremely low noise, 
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however, where extremely accurate optimization 

is desired, one would do better with a hybrid 

scheme, i.e., beginning with Algorithm 2-type iter- 

ations with a gradual increase in the number of 

sweeps performed in each individual or- or oh- 

iteration. 
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l o t  i 

4.2. Initialization using coarse scale information 

An important aspect of  our algorithm is the use 
of  coarse-scale information to assist finer-level esti- 

mation. In this section we investigate the value of 

this information by examining its influence on the 

number of  iterations required to compute estimates 

at the 16-square scale. Specifically, we consider 

the application of Algorithm 2 (with y/A fixed at 

1) to noise-free data generated using the true cr 
image of  Table 3. The different cases looked at 

were: 

(1) Initialization with information at the preced- 

ing scale. In this case the initial values of o" were 

taken to be constant over 2 × 2 sets of squares of  

the 16-square image, with values on each 2 × 2 set 

equal to the average of the true or values over that 
region. Specifically, the initial condition corre- 

sponding to Table 3 consisted of a value of  10 in 

the upper-left 2 × 2 set of  squares and in the lower- 

right set and a value of 100 in the two other 2 × 2 

sets of squares. 

(2) Initialization using information at the next 

coarsest scale. In this case the initial value of  cr in 

each of the 16 squares was set to 55, the average 

of  the values in Table 3. 

(3) Random initialization. In the two examples 

illustrated here in Fig. 8, the random initial o- was 

Table 3 

True conductivity values (cr) used to study the influence of 
coarse scale information on fine scale estimates (16-square 
scale) 

10.5 12.5 105 75 

9.5 7.5 95 125 

95 80 15 10.6 

105 120 5 9.4 
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Fig. 8. Semi-log plot of percentage error versus number of 
iterations for four different initial conditions (the two solid 
lines represent two different choices of randomly chosen initial 

conditions). 

obtained by choosing the 16 values to be indepen- 

dent and identically distributed with mean 100 and 

standard deviation of 40. 

Fig. 8 represents the results of this comparison. 

Here we compare the average percentage error in 

the four inner squares at the end of  each iteration. 

The iterations were terminated once this average 

fell below 5%. These examples support the claim 

that the coarse-to-fine algorithmic structure offers 

potential computational savings in terms of  the 
number of  iterations that need to be performed at 

computationally expensive fine scales. 

4.3. Performance of  the overall algorithm and 
the issue of  well-posedness 

In [3] a variety of  tests on the entire hierarchical 
algorithm 4, estimating in sequence at constant, 4- 

square, and 16-square scales, are described. Some 

of  the major observations and conclusions from 

this study are described here. The specific set of 
true or-values used is given in Table 4 where we 

4 In all these tests Algorithm 2 was used throughout. 
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Table 4 

Specific set of true conductivity values used in testing the overall 
algorithm. (16-square, 4-square and constant value scale) 

Constant scale: 

4-square scale: 

I 104.531 

83.9145 111.563 

111.587 111.058 

16-square scale: 

56,7142 92.8996 102.77 100 

117.513 68.5311 110.48 133 

140.345 64.9578 122.151 86,9013 

134.194 106.852 100 135.18 

show the true 16-square set of  tr-values and the 

true 4-square and constant values ob~ ined  by 
averaging the true values at the corresponding 

scale. 
A first set of  experiments performed involved 

the use of  noise-free data with y / A  fixed at 1. In 
this case, one would expect perfect estimation (up 
to computer  accuracy) at the 16-square scale but 

not at coarser scales, thanks to the analysis in 

Section 3.1. In this example a fractional error of  

0.25 was obtained at the coarsest scale, while errors 

ranging in magnitude from 0.05 to 0.17 were 

observed at the 4-square scale, with larger errors 
occurring in the two left-hand 2 x 2 blocks in which 
there is greater fluctuation at the finest scale. An 

additional point that was observed was that con- 

vergence at the finest scale required a considerable 
number  of  iterations. While values of  or in the outer 

12 squares converge quickly, convergence is much 
slower in the four inner squares, indicative of  the 
conditioning of  the inversion problem. 

A number  of  experiments were also run using 
noise-corrupted measurements.  The two major 

points at issue were the inclusion of iterations to 
enforce the current constraints, i.e., an iteration 

loop in which A is increased, and the accuracy in 
estimating o- in the inner squares. The first major  
conclusion is that increasing A, i.e., decreasing y / A  

from a value of 1, has little effect on estimation 

performance.  For example,  at an SNR of  50, an 

average fractional error of  0.08 is achieved in the 

four inner squares with y / A  = 1, and the gradual 

increasing of A by four orders of magnitude 

changes this by something less than 0.01. At an 
SNR of 10, for which we would expect rather poor  

performance in the inner squares, an average frac- 

tional error of  0.8 is achieved in the four inner 

squares with T/A = 1, and the gradual increasing 
of A by four orders of  magnitude changes this by 

something on the order of  0.1. Thus, a change of 

four orders of  magnitude in A leads to performance 
changes in the order of  10%. 

A second and not terribly surprising conclusion 

is that estimation performance in the four inner 

squares is considerably worse than that in the 12 
outer squares that are in direct contact with the 

measurements.  This effect is illustrated in Fig. 9. 

Here we have plotted three distinct fractional 
errors as a function of SNR. In particular eL and 
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Fig. 9. Plot of the statistics el/o'0, e2/o'0, and e3/o" 0 versus 
SNR. 
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e2 are, respectively, the average errors in the outer 
and inner squares, respectively: 

I / 1 • E[(cr,- t~,)  2] (4.2) 
E 2 ~  4 i 

where 

o ~ {1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16}, (4.3) 

and 

i~ {6, 7, 10, 11}. (4.4) 

The plots of el/tro and ez/tro in Fig. 9 indicate 
the difficulty in resolving the estimate of tr in the 
inner squares. This suggests that it may be better 

to estimate these interior values at a coarser scale, 
since fine-level variations are essentially unobserv- 
able from the measurements. To examine this, we 
have considered taking the average of the estimates 
in the four inner squares as an estimate of  the 
corresponding average of the true o--values. The 

statistic E 3 defined by 

A 2 1/2 

E3 4 i ' 

represents the root-mean-square value of the 
resulting estimation error. As can be seen in Fig. 

9 performance in estimating this coarser-scale 
quantity is superior to e2 and approaches el at 

high enough SNR! 

5. Conclusions 

In this paper we have presented a way of con- 
trolling the large number of degrees of freedom in 
an inverse conductivity problem by estimating the 
conductivity at various spatial scales, starting from 
coarse scales then going to fine. By taking advan- 
tage of the structure of  the physical equations we 
have developed an algorithm that, at each scale, 
consists of a sequence of highly parallelizable 
relaxation schemes. We have demonstrated the 
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success of this algorithm on synthetic data as well 
as investigated various algorithmic and analytic 
issues that relate to the performance of our method. 
Two variations of  our algorithmic paradigm sug- 
gest themselves. The first, suggested by the results 
in Section 4, is the development of algorithms for 
inversion in which different resolutions are used 
in different spatial regions. The second is more 
speculative and concerns the development of true 
multi-grid-style algorithms in which there are fine- 
to-coarse as well as coarse-to-fine iterations. In 
particular the algorithm as we have presented it 
involves the solution and inversion of a very accur- 
ate approximation of  Laplace's equation in each 
sub-square at each scale. It would seem plausible 
that one might use a much coarser approximate 
solution within each square, relying on finer scales 
to correct coarse-scale approximation errors, as is 
typically done in multi-grid solutions of  forward 

problems [2, 6]. 

Appendix A. A discretized Dirichlet to 
Neumann map 

A critical component of all of  our analysis is the 
use of a mapping from boundary potentials 

(Dirichlet conditions) on a square to the normal 
derivatives (Neumann conditions) of the potential 
on the boundary, when the potential satisfies 
Laplace's equation within the square. In this 
appendix we describe a discretized version of  this 
mapping which yields explicitly the block matrix 
defined in (2.7). 

Consider a square with edges of length a and 
with boundary potential given by 

bl(x), O~x<~a, 
y =  ol, 

b2(x), O<~ y<~a, 
X=O~, 

tks =~ (A.1) 
b3(y), O<~x<~a, 

y =0,  
b4(y), O<~y<~a, 

x- -0 .  

Signal Processing 
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The solution to Laplace's equation within the 
square is then given by [1] 

A { m ~ x ~  
~ ( x , y ) =  "=1 ~ bl(m) s in~---~)  

+ ,.=1 ~ /~2(m) s i n h ( - ~ )  

sin( ) 
+ ,.=1 ~ b3(m)sm~---d--] 

+ b4(m) sinh (a - x )  
m = l  

where 

bk(m) = 2 bk(S) 
a sinh(m'rr) 

• { m ~ s \  
× sin[---~--] ds, k=  1,2,3,4. 

The corresponding normal 
along each of the four edges are given by 

Zl(X) = ~ ( x ,  ~), 

z3(x) = ~ (x, o), 

(A.3) 

derivative functions 

z2(y) =-~x ~ (a, y), 

z4(y) = ~ (0, y). 
(A.4) 

Note that while zl and z2 are outward pointing 
normal vectors, z 3 and z4 point inward. This con- 
vention was chosen so that currents across common 
internal boundaries of adjacent squares would be 
defined in the same direction• 

Using (A.2) and (A.4), we can obtain explicit 
expressions for the normal derivatives• To obtain 
a discretized version of this relationship between 

boundary potentials and normal derivatives, we 
(a) sample each zi expression at N equally-spaced 
points along each edge and (b) replace the infinite 
sums in (A.2) by finite sums and the continuous 
transforms of (A.3) by N-point discrete sine trans- 
forms of N equally-spaced samples of each bk (see 
[3] for details). The result is a relationship between 
the sampled b's and z's of the form of (2.7), which 
we can now give explicitly as 

z, Ho D /4,o -So b2 
z3 So Ho - D  b3 (A.5) 

z4 So H,o b4 

where the N x 1 vectors bk and Zk are the samples 
of the corresponding boundary potential and 
boundary normal derivative functions. The N × N 
blocks appearing in (A.5) are defined by the fol- 
lowing: 

. { ij'rr ~ 
S,.j = s ,n~-~-~  ]; (A.6) 

D = ~S, (A.7) 

• . / j ' f f  

x {~(N+ 1) sinh(j~r)}-l; 

So = ~oS, (A.8) 

~eo(i,j)_f2j~ . [ ij~r '~] 

x { a ( N +  1) sinh(jcr)}-l; 

/40 = ~oS, (A.9) 

s lnn~-~-~]  } ~o(i,j) 

x { a ( N +  1) sinh(jcr)}-l; 

H,o = ~toS, (A.10) 

~,o( i,j) = { 2j~r sinh(j~r (1 -  N-~ )  ) } 

x { a ( N +  1) sinh(j~r)}-I; 

/~o = ~o S , (A.11) 
VoL 18, No. 3, November  1989 
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A . /jxr 

x { a ( N +  1) sinh(j 'n)}-l ;  

A , o =   ,oS, /- 

=/2 j~r  cos(jw) 

i xsin+(1 
x { a ( N +  1) sinh(j~r)}-' .  

Appendix B. Effect of fine level fluctuations on 

coarse estimates 

(A.12) 

the perturbation in the normal derivative z(s) 

In this appendix we outline the steps in a linear- 

ized analysis to determine the effect of fine-level 

fluctuations on coarse-level estimates. For sim- 
plicity in the discussion we assume that we have 
a single experiment so that we can omit the sub- 

script i in our development.  

Suppose then that we consider the estimator 

described in Section 3.1 that assumes that tr is 

constant throughout the unit square. To emphasize 

that this is an idealized assumption we rewrite this 

estimate (see (3.2)) as 

= YP f r  z°(s)ri(s) ds, (B.1) 

where the superscript "0"  denotes that this is a 
quantity computed assuming that tr is constant 
throughout,  i.e., in this case z ° depends only on 

the applied boundary condition and not on ~r. 
Suppose, however, that tr takes on different values, 

as given in (3.4), in each of  the four subsquares 

of  the unit square. In this case the actual measure- 
ments are 

r(s) = (~o + ~ ( s ) )  

x (z°(s) + ~z(s)) + v(s), (13.2) 

where 6o'(s) takes on one of the four 6tri values 
corresponding to the sub-square in which the 
boundary  point s is located. Here 8z(s) represents 
Signal Processing 

caused by the varying tr. 

Substituting (B.2) into (B.1) and using the 

expression for P (see (3.3)), we find that 

cr o -  - y P  z°(s)[z°(s)&r(s) 

+ O-o~Z(S) 

+6~(s)6z(s)] ds 

- YP f r  z°(s)v(s) ds, (B.3) 

the second term in (B.3) is the term due to the 

presence of  measurement  noise which is the same 

whether or not there are fine-level fluctuations, 

while it is the first term on which we wish to 

concentrate now. In order to do this, we must 

obtain an expression for 6z(s) in terms of the &r's, 

and it is here that we perform our linearization. 
Recall that in the case in which tr is piecewise- 

constant, the physics of  the problem reduces to 
Laplace's  equation within each sub-square and 

current continuity at internal boundaries. Note that 

in the 4-square case we have four separate current 

constraints for the four internal edges. For example 

O"1 Zl,2 : O'2Z2,4 • 

However,  

tr I = O-o+ t$trl, 

and 

Z1,2 = zO "[- ~ Z l , 2 ,  

(B.4) 

o'2 = t ro+  6o"2 (B.5) 

g2, 4 = 2"10 "[- ~g2,  4 • (B.6) 

0 Note that we have the same zl in z~.2 and z2.4 since 
for the nominal condition of o- constant, z is con- 

tinuous across this edge. Then, substituting (B.5), 

(B.6) into (13.4) and linearizing by neglecting the 
second-order (&r)(~z)-terms, we obtain 

z o 
8zl ,2  - 8z2,4 ~ ~-6 (ao'2 - & r 0 .  

Similarly, we find that 

z o 
~z2,3 - ~z4,1 ---~6 (6°'4- &r2), 

(B.7) 

(13.8) 
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zo 
~Z3,1 - -  t Z l ,  3 ~"~- ~ ' 6  ( ~ 0 " 1  - -  t O " 3 )  , ( B . 9 )  

zo 
tz4,4 - tz3,2 ~" -~6 ( &r3 - 6o.4). (B. 10) 

What we now have is the following linear prob- 

lem to solve: 
• Laplace 's  equation holds for the perturbation to 

the potential  in each sub-square. 
• The perturbation to the potential, tbi.j, on the 

outer boundary  F is zero (since the potential on 

this boundary  is the fixed experimental boun- 

dary condition). 
• We are given the difference in the perturbed 

normal derivative across the internal boundaries 

(B.7)-(B.10). 
• We wish to compute the perturbation tz(s) 

along the exterior boundary,  i.e., s e F. 

It is not difficult to check that this is a well-posed 

problem, and, thanks to its linearity and the 

linearity of  (B.7)-(B.10) in the to.i, that we can 

then express the desired 6z(s) in the form 

8z(s)~--I ~ fk(S)to'k, (B.11) 
O'o k = l  

where the fk(S) are functions of  z ° but not O'o (see 

(B.7)-(B.10)). The method used in [3] to evaluate 

this numerically is as follows. From (2.7) we know 

that when we use our discretized numerical solu- 
tion to Laplace 's  equation, there is a linear 

relationship (namely (2.7)) between the discretized 

versions of  the &r's and 8b's on the boundaries of  
each sub-square. However,  many of  the tb's are 

zero; indeed only the four tb vectors correspond- 

ing to the four internal edges are nonzero. Also, 
we have four sets of  constraints in (B.7)-(B.10). 
This allows us to solve for the 6b's in terms of  

the right-hand sides of  (B.7)-(B.10) and then we 

can use (2.7) to solve for the tz's on the outer 

edges. See [3] for details in which these steps are 
carried out explicitly using a particular numerical 

scheme. 
Given (B.3) and (B.11) we can now obtain an 

approximat ion to the conditional bias in our esti- 

mate due to fine-level fluctuations. Specifically, 

E [(o'o - $)lo.o, 8o', . . . .  8o'4] 

43 

.~ -yp  f rz°(s) 
x [ zo(s)8°'(s)+ k=, ~ fk(S)So.k 

+6o.(s) ~ fk(s)So.k] ds, 
O.O k= 1 

(B.12) 

Extending this to the case of  M experiments 
indexed by i and introducing some simplifying 

notation we have 

f zO(s) 
TP i=1 r 

× [ 

+80-(,) d, 
0"0 k = 1 

4 4 4 

= E I~flo.s + E Y vk,18o.kS~. 
j=l  k = l  I = 1  

(B.13) 

where P is computed from (3.3) with z ° replacing 

zi and 

fr o 1 + zi(s)f,j(,) ds , (B.14) 

1 ~ frzO(s)A (s)ds, (B.I5) Pk,  l = - -  
0"0 i = 1  I 

where Fj is the portion of  F contained in the j th  

square. Note also that the linearization coefficient 

functionsf.k(S) are generally different for different 
experiments as they are a function of the boundary 
conditions. 

Suppose now that the 6o.~ are independent,  zero- 
mean Gaussian random variables with variance q. 
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Then we immediately see that E[fl]  has the form 

given in (3.7), with 

4 

a t = - y P  Y. t/k, k. (B.16) 
k = l  

Furthermore, using Gaussian moment properties, 
we find that e in (3.8), (3.9) does have the indicated 
form, with 

4 

02 = y2p2 v~ I~ ,  (B.17) 
j = l  

Ot 3 = T2p  2 Vk, k 
k 1 

+ 2 Vk,,(Vk,,+ V,,k) • (B.18) 
k = l  I=1  

Appendix C. Measurement sensitivity computations 

In this appendix we outline the steps involved 
in calculating the sensitivities required in comput- 
ing the Cramer-Rao bound described in Section 
3.2. These sensitivities are needed for each 
individual experiment and thus we focus on a 
single experiment and drop the experiment index 
i. From (2.3) and (3.25) we have that 

(CA) 

h(tr, s )=0- ( s ) z ( s ) ,  s c I "  

= 0- j z ( s ) ,  s ~ r j ,  

j = l , . . . , 4 ,  

where the normal derivative z(s)  is an implicit 
function of or and Fj is the portion of F in the j th  
of the four sub-squares. 

For simplicity we focus on the sensitivity with 

respect to 0-1, as the others are obtained in an 
analogous fashion. From (C.1) we then have that 

O h ( ° ' ° ' s ) - {  0-. aT"°(---- s) 00-, ' s E / ' l ' s  E Fj,  

J 00-1 ' 

j = 2 , 3 , 4 .  

(c.2) 
Signal Processing 

Here z°(s) is the normal derivative function when 
the conductivity profile is given by tr °, and 
az°/a0-1 is the sensitivity of this profile with respect 

to 0-1- The first of these z°(s) can be computed 
directly by solving Laplace's equation within each 
of the four sub-squares with the given outer boun- 
dary potential and with the following continuity 
constraints on internal boundaries: 

0 0 0 0 0 0 0 0 
0-121,2 = 0 -2Z2 ,4 ,  0-2Z2,3 = 0"424,1 

(C.3) 
0 0 0 0 0 0 0 0 

0-323,1 ~ 0 -1ZI ,3  ~ 0-4Z4,4 ~ 0-3.73,2. 

Differentiating with respect to 00 then yields the 
PDE to be solved in order to compute az°/a0-1: 
We solve Laplace's equation in each square with 
zero outer boundary conditions and the following 

constraints on the internal boundaries: 

o o0zO  
Z1, 2"Jr-o-1 00-1 ~ 0 -  - '  

o0 = o az°,__, 
0"4 00-1 

o a Z ° , l  _ o a z ° , 3  
0-300- 7-  z°3 + 0-1 00- , 

0-o = 0-oaZ°,2 
3 0 0 . 1 "  

(C.4) 

Thus the only driving terms in this PDE are the 
0 0 zl.2 and z1, 3 terms in (C.4), which are obtained 

from the solution associated with (C.3). 
We refer the reader to [3] for a detailed descrip- 

tion of  explicit computations (again involving the 
discrete mapping (2.7)) that allow one to determine 
the desired sensitivities numerically. 
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