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Abstnret-In this paper we interpret and eomment on the p d d  

series.Theproblemofimplementatiooofomrespltsisaddressed,and~ 
resolts of a numerical simulation are reported 

signmance of ttte edimllicw proMems eonsidered m Part I [l] of this 

I. INTRODUCTTON 

I N THE first two parts of this series [I], [2], we have. 
considered a variety of estimation problems  on the 

circle SI. These analytical results indicate how the struc- 
ture of stochastic processes on S can  be utilized in 
designing  easily implemented, high performance, optimal, 
or  suboptimal estimation systems. In the next section we 
illustrate the basic technique described in Part I for a 
particular complex  signal problem and comment on sev- 
eral of the practical aspects of this problem. In Section 111 
we present simulation results for a  demodulation problem 
in the presence of phase drift noise. 

11. A COMPLEX-SIGNAL ESTIMATION PROBLEM 

In this section we illustrate the type of estimation 
problem  that  can  be  analyzed using the techniques devel- 
oped in [ 11. Let x and y be 2-dimensional random pro- 
cesses  satisfying 

d x ( t ) = A x ( t ) d t + B & ( t )  (1) 

dy(I )=adt+x( t )d t+du( t ) ,  y(O)=O (2) 

where 01 is a known constant vector and w and u are 
independent Brownian motion processes  with E [dw(t)  
dw'(t)]= Rdt,E[dr;(t)dv'(t)]=  Qdt, Q >O. 

We wish to estimate the process x given the received 
signal 

z ( 1 )  = eY do+ &Z(f) .  (3) 
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This problem  can  be  reduced to a linear filtering problem 
via a nonlinear processing of z. 

There are several important observations that  can  be 
made  concerning this problem. 

1) The recovery of they process  requires  the  use of the 
differentid  signal dz(t). For actual implementation it may 
be  more advisable to work  with the integrated process y ( t )  
obtained by the integration of (4) and (5 ) .  

2) We have  that 

Re[z ( t ) ]  = eyI(')cos y2( t )  ( 6 )  

~ m [  z ( t ) ]  = eYt(')sin yz( t )  (7) 

where 

Thus, our signal  process  is both  amplitude and phase 
modulated--a represents a "carrier"  signal, x the modu- 
lating information to be recovered, and u the  effects of 
random fluctuations and drift. 

For the sake of specificity,  consider the case  when 
y 1  = cyI = x1 = u1 =O. In this  case our signal  is 

R e [ z ( ~ ) ] = c o s ( 0 1 ~ t + ~ ~ x ~ ( s ) d S + u ( t ) )  (9) 

Im[~( t ) ]=s in (a* t+SD: ,ods+u( t ) ) .  (10) 

Thus, our problem  is one of frequency demodulation in 
the face of phase drift noise; and the present formulation 
does not allow additive channel noise;  however, it should 
be noted that FM signal  processing methods  that involve 
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limiter-discriminators transform additive noise into equiv- 
alent frequency and phase variations [4],  [5]. 

Also note that in the usual FM model we receive a 
signal of the form of (9) or (lo),  but not both. The other 
component can, in principle, be  recovered  by  passing the 
received  signal through a filter that has 90" of phase shift 
and unity gain at the camer frequency a2. In the next 
section we indicate how to implement the desired filtering 
system without direct computation of 'the second com- 
ponent. 

3) The received  signal z ( t )  can also be written in the 
form 

(1  1) 
which  emphasizes the fact that the observation noise 
process is a multiplicative lognormal process [6]. Noise 
processes of this type arise in such problems as optical 
communication through a turbulent atmosphere [6] .  

The signal-noise  model described in  this section arises 
in a number of practical problems including radio naviga- 
tion and tracking systems based on phase and frequency 
comparisons (e.g., Doppler  radar,  Omega,  Loran), 
frequency stability, standards, and the measurement of 
frequency drifts, AM,FM, and  joint AM-FM problems, 
and the processing of data from an integrating gyroscope. 
The reader is referred to [3] for a discussion of these 
problems. 

111. A FREQUENCY DEMODULATION EXMPLE 

Given (15), we can produce the optimal steady-state filter 
for x by standard Kalman or Wiener filter methods. 

One method for producing (14) was described in Sec- 
tion 11, and several others are proposed in [3]. We include 
here a method, based on the use of cycle counters, that 
was  used in the simulations described later in this section. 
Assuming that wc is large and positive, we can be assured 
that j > 0. We can also write 

where [x] is the largest integer that is < x, and [y/2n] 
represents the output of a cycle counter. Using the facts 
that 3 > O  and i, =3z2, we compute # ( t )  andy(r) mod 257' 
as follows: 

4J(t)=[sin-'(z,(t))]mod2a, if sgn(i,(t))>O (17) 

~ ( r )= [m-~ in -~ (z~( t ) ) ]mod2n ,  if ( i , ( t ) ) < O .  (18) 

Suppose we have implemented a system that produces 
dy(r) (or)j(t)) given the input zl. In this  case, the optimal 
steady-state filter equations are 

d,?(rlt)=iix(tlt)dt+ -(dy(r)-c,?(tlt)dt-w,dt) (19) p,c  
4 

aq + da2q2 + bc24 
C2 

P, = (20) 

Let c and w be independent Brownian motions, and Here P ,  is the optimum steady-state error variance. 

the optimal steady-state filtering equations 
define x to be the scalar process  satisfying If we can produce y ( t )  as opposed to &(t),  we obtain 

d x ( t ) = u x ( t ) d t + b f d t ( t )  (12) i . ( t ) =  -ar( t )+y(t)-w, t  (21) 

(a  < 0), and suppose we observe 2 ( r l t ) = M ( - a r ( t ) + y ( t ) - w C t )  (22) 
where 

culty in taking x to be the Output Of a more complicated The steady-state are identical for the two 
linear diffusion process). Suppose we  wish to demodulate filters. 
z ,  to obtain an estimate of x. In order to apply the results 
of [I] directly, we need to compute In  addition to simulating systems of the type just dis- 

cussed, we have also obtained results for a system  involv- 
ing a .first-order phase-lock loop (PLL). h e  reader is 

(14) referred to [7] for a detailed description of PLL systems. 
The baseband equations of the PLL are 

and then we must compute i . ( t )=Ke( t )  (24) 

e ( t )=  -sin(y(t)-w,r-r(t)) fi 
2 (25) 

=w,r+clo 'x (s )ds+qtp( t ) .  (15) and the transfer function G(s) from the error simal e to 
the estimate 2 is computed via Wiener filtering methods 
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Fig. 1 .  A graph  of  some  of  the FM simulation  results. 

assuming  that sin ( y  -act - r)=y -wct - r. This yields 

S+ -K 2 G ( s )  = M f i  s+ o1 

where a and M are given  in  (23). If the linearizing 
assumption holds (i.e., if we are in the so-called “above 
threshold” range) the PLL  performs in a manner identical 
to the filter (21H23). 

Nominal values a = - 1, b = 1  were  chosen for the simu- 
lation and the values of c and 4 were varied to test  system 
performance.  Note that c is often called the frequency 
deviation [7] and the larger c is,  the better we would  expect 
our system to perform. Also l / q  is  sometimes called the 
oscillator coherence time [7], and the quantity 

A = c 2 / q  (27) 

plays the role of a  signal to noise ratio. The figure of merit 
we use to compare various  system performances is P ,  the 
inverse of the empirically computed steady-state sample 
error variance. 

A number of different values of c and 4 were  used  in 
the simulations, and runs were made using  mostly the 
baseband system  models  given  in  (19)-(26). Also, in order 
to test out the cycle-counter-total phase system  followed 
by the filter (21)-(23),  a number of runs were made using 
a carrier frequency f, =ac/2.rr= 1OOOOHz. The full set of 
simulation results are reported and discussed in [3], and 
the results for q = 0.01 and for a range of values of c are 
graphically displayed in Fig. 1. We note that the simula- 
tion results for the various optimal systems-the perfect 
differentiator system  (19)-(20), the perfect total phase 
detector system (21)-(23), and the cycle-counter-total 
phase system-match quite well  with the analytically de- 
termined  performance measure, l /Pm. 

Note  that Fig. 1 indicates that for small values of c the 
PLL results are quite close to the optimal values (this is 
the “above threshold” region), but for large values of 

c-the region in which the optimal system performance is 
quite good-the performance of the  PLL falls off drasti- 
cally. The cause of this is the violation of the linearization 
assumption sin E ~ E  on which the PLL design  was based 
(we fall “below  threshold”). We note that  as K increases, 
the range of values of c over  which PLL  performance is 
near optimal also increases. In fact, for the baseband  PLL 
model, one  can show that as K+m, baseband  PLL per- 
formance  approaches the optimal. However, increasing K 
tends to invalidate the  use of the baseband  model to 
approximate the actual PLL (we  violate the so-called 
“bandwidth constraintyy). Thus, taking into  account  both 
the threshold and bandwidth constraints on the PLL, we 
see that the performance of the PLL is  limited relative to 
the optimal. 

IV. CONCLUSIONS 

In this paper we have considered some of the practical 
implications of the results derived in Part I [l] of this 
series.  We have illustrated the optimal Abelian Lie group 
estimation result  derived in [l] and  have discussed the 
significance of this formulation. In addition, we have 
discussed some of the implementation  problems related to 
the techniques we have developed, and  have presented the 
results of numerical simulations. These results indicate 
that systems  designed  using  these  new techniques compare 
favorably to standard phase-lock loop systems. 
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