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ABSTRACT 

We present a method to reconstruct images from finite sets of noisy projections 
that may be available only over limited or sparse angles. The algorithm calculates the 
maximum a posteriori (MAP) estimate of the full sinogram (which is an image of the 
2-D Radon transform of the object) from the available data. It is implemented using a 

primal-dual constrained optimization procedure that solves a partial differential 
equation in the primal phase with an efficient local relaxation algorithm and uses a 

simple Lagrange-multiplier update in the dual phase. The sinogram prior probability 
is given by a Markov random field (MRF) that includes information about the mass, 

center of mass, and convex hul,l of the object, and about the smoothness, fundamental 
constraints, and periodicity of the 2-D Radon transform. The object is reconstructed 
using convolution backprojection applied to the estimated sinogram. We show several 
reconstructed objects which are obtained from simulated limited- and sparse-angle 
data using the described algorithm, and compare these results with images obtained 
using convolution backprojection directly. 

1. INTRODUCTION 

This paper addresses the problem of reconstruction from projections, the 
theoretical and practical aspects of which have received much attention over 
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FIG. 1. The geometry of the 2-D Radon transform. 

the past two decades. Among the applications that use the currently available 
reconstruction techniques are medicine, optics, material science, astronomy, 
geophysics, and magnetic-resonance imaging [I]. The most widely known 
application of this theory is the problem of medical transmission X-ray 
tomography [2]. In this discipline, pencil-beam X-rays are fired from many 
angles through a single cross section of the body, effectively measuring line 
integrals of the 2-D X-ray density function corresponding to the various 
tissues in the cross section. A collection of line integrals obtained over lines 
with the same angle but different lateral positions forms a 1-D function 
called a projection. Given a set of projections taken from many different 
angles, an image of the density function may be reconstructed and used in 
diagnosis. For many medical conditions this tomographic approach to imag- 
ing of the body leads to greatly improved imagery over conventional (chest- 
type) X-ray images and has proven to be of great benefit in medical diagnosis 

[31. 
Consider a function f(x) defined on the plane as depicted in Figure 1. 

We denote the integral of f along the line L(t, 0) by g(t, 0). The function g 
for all values of t and 6 is called the 2-D Radon transform of f, and an 
image of g(t,O), with t in the vertical direction and 0 in the horizontal 
direction is called a sinogram. For a single value of 0, g is a function of t 
only, and is called the projection of f at angle 8. The Radon transform of 
f(x) may be written as 

where w = [cos e sin O]=, and 6(a) is the Dirac delta function. It turns out 
that only certain functions g(t,O) are valid Radon transforms; there are 
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inherent mathematical consistency conditions that constrain g(t, 0) to lie in a 
particular functional subspace defined on the cylinder [w’ X S’. 

The fact that (1) is invertible (for a wide class of functions) is well known. 
Deans [4] describes many of the known exact inversion formulas. Except 
under certain (usually impractical) circumstances, however, it is not possible 
to determine f exactly given the value of g for only a finite number of lines 
~(t, v). It has been the primary concern of engineers and physicists in this 
field, over. the last 20 years or so, to study approximate inversion algorithms 
given such a finite measurement set. The performance of any particular 
algorithm depends on the nature of the measurements-their number and 
arrangement, and their noise properties-and often on the nature of the 
object itself. 

In this paper, we are concerned with the case of low signal-to-noise ratio 
(SW and limited-angle or sparse-angle measurement configurations with 
parallel-ray projections. In the medical CT problem, for example, a line- 
integral measurement may be noisy if low-energy X-rays are used. Data 
acquisition may be restricted to a limited angular range if there is an 
obstruction, for example, and may be sparsely sampled if there is a require- 
ment to obtain the data extremely rapidly. In these situations, images 
reconstructed using conventional methods are degraded by a variety of 
artifacts [5], and alternate methods must be used. 

Several investigators have developed algorithms to compensate for some 
of the data deficiencies described above. The modified transform methods of 
[6], [7], and [8] take account of missing projections but do not explicitly 
address the issue of noise in the data. Finite-series expansion methods use 
additional criteria such as minimum norm [9], minimum variance [lo, 111, 
and maximum entropy [I21 to account for noise, or missing projections, or 
both. In many cases, streaking artifacts are still present in the reconstructed 
images [13], and in all but certain very special imaging geometries, such as in 
[14], the computations are very time consuming and hence impractical. 

Other researchers have developed methods to incorporate explicit geo- 
metric information about objects. The method of projection onto convex sets 
(POCS) [15, 161 incorporates prior knowledge by sequentially projecting 
candidate estimates onto a collection of convex sets, where each set repre- 
sents some prior knowledge. Noise in the data tends to cause the method to 
diverge, however, and even though it is possible to take account of the noise 
using a smoothing operator [I7], finite pixel error caused by iteration 
between Radon space and object space may still cause convergence to the 
wrong solution [14]. Other investigators avoid the latter problem by iterating 
entirely in projection space [18, 191. Another approach to geometric modeling 
is to parametrize the object directly in the class of interest, reducing the 
number of parameters that must be estimated. The work by Rossi and 



154 JERRY L. PRINCE AND ALAN S. WILLSKY 

Willsky [20, 211, B res er 1 and Macovski [22-241, Hanson [25], and more 
recently Soumekh [26], Horn [27], and Fishbum et al. [28] are examples of 
this kind of .modeling. 

Our approach is to treat the noise, the physical imaging geometry, and 
prior probabilistic information as fundamental and explicitly modeled pieces 
of an overall inverse problem formulation. Our solution satisfies the maxi- 
mum a posteriori (MAP) criterion and incorporates the following prior 
geometric information: 

(a) The values of line integrals taken over lines close in either lateral 
displacement (with the same angle) or angle (with the same lateral displace- 
ment) tend to be similar in value. 

(b) The Radon transform of any cross section obeys certain fundamental 
mathematical consistency conditions. In particular, these conditions prescribe 
constraints on the mass and center of mass of each projection. 

(c) The convex support of the cross-section density function uniquely 
specifies a related region of support of the Radon transform. 

Since both the primary processing and the introduction of prior knowledge 
take place in Radon space, our approach is a projection-space method. This 
takes advantage of the fact that the noise is well modeled as white in this 
domain, so that the criterion of statistical optimality is easily specified, but 
has the disadvantage that prior information about the object is not conve- 
niently incorporated in Radon space. For example, a local prior probabilistic 
model of the object is decidedly nonlocal when transformed into Radon 
space. We circumvent this problem by modeling directly in projection space, 
using a Markov random field (MRF) model of sinograms that incorporates 
the three properties listed above. 

Because of the particular form of the chosen MRF, we are able to 
formulate an analogous problem on the sinogram continuum (as opposed to 
the usual lattice system), which leads to a closed-form solution given by a 
partial differential equation @DE) with constraints. We solve this con- 
strained PDE using a primal-dual optimization approach that solves the PDE 
with assumed Lagrange multipliers in the primal phase and updates the 
Lagrange multiplies in the dual phase. The primal phase is fast (although 
iterative) and parallelizable, due to the local interactions of the MRF; the 
dual phase is fast and partially parallelizable, since it uses a simple update 
formula on each of the columns of the sinogram separately. 

The paper is organized as follows. In Section 2 we present additional 
background related to the support and consistency of the 2-D Radon trans- 
form. Section 3 develops a Markov random field model of sinograms, and 
formally defines the maximum a posteriori solution. In Section 4, we present 
a fast iterative solution that solves this large-scale optimization problem, and 
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Section 5 presents some experimental results. Finally, we discuss these 
results and some outstanding problems in Section 6. 

2. CONSISTENCY AND CONVEX SUPPORT 

2.1. Consistency of the Radon TransfMnz 
An important fact that we exploit in this paper is that not all functions 

g : Iw’ X S’ + Iw’ are valid 2-D Radon transforms. A valid Radon transform, 
that is, a function that is the Radon transform of some function f:IW’ + Iw’, is 
constrained to lie is a particular functional subspace of the space of all real 
functions. This subspace is characterized by the property that g is even in t 
and w and by the property that certain generalized Fourier coefficients of g 
must be zero. The precise mathematical conditions for the consistency are 
given by the following theorem due to Ludwig [29]. 

THEOREM 1 (2-D consistency theorem) In order fw g(t, 0) to be the 
2-D Radon transform of a function f E S(W2), where 9 is the space of 
rapidly decreasing C” functions, it is necessary and suflcient that 

(a) g E J([w’ X S’), 
(b) g(t, 0 + r) = g( - t, 01, and 
(c) the integral 

lrn g(t,B)tkdt 
--m 

(2) 

be a homogenous polynomial of degree k in cos 0 and sin 8 for all k 2 0. 

Proof. See [29], [30], or [31]. n 

The two lowest-order moments of g(t,e) give the mass and center- 
of-mass constraints. The mass constraint tells us that the integral of any 
projection, which may be thought of as the mass of the projection, must have 
the same value for any 8, and that value is equal to the integral of f(x). If, 
for example, a noisy measurement of a true Radon transform has any two 
projections that do not integrate to the same value, then the measurement is 
not a valid Radon transform, and it follows that an inverse transform is 
theoretically undefined. The center-of-mass constraint tells us that the (1-D) 
center of mass of a given projection is equal to the projection of the (2-D) 
center of mass of the object onto the o-axis. From this one can see that the 
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collection of centers of mass of the projections for different 8 must be a 
cosinusoidal function with period 2rr. If that is not true for a given measure- 
ment, then again the measurement is not a valid transform. These two facts 
are easily shown using the consistency theorem, and may be stated as 

m= Jrn g(tJ)dt=l,,,*f(r)dx VfI 
--m 

and 

c(B)=I_/mfi(t,B)t~~=acosB+bsinB (4) 
m -m 

for some real constants a and b. We refer to m as the mass of f(r) and to 
(3) as the mass constraint for the 2-D Radon transform; the quantity c(0) is 
the center of mass of the projection g(t, e), and Equation (4) is the 
center-of-mass constraint. It is also true that the center of mass of the 
projection g(t,8) is the projection of the 2-D center of mass of f(r) (see 
[31]), and indeed, if (R, $3 denotes th e polar coordinates of the center of 
mass of the object, then it can be shown that [20] 

c( f?) = R cos( 8 - 4) 

Given the above development, we see that if the mass and center of mass 
were known a priori, then (3) and (4) should be imposed as constraints on 
the estimated sinogram. The center-of-mass constraint c(e) = 0, imposed in 
Section 3, implies that the object is centered at the origin. Given a known 
center of mass, it is possible to adjust the observed sinogram (by shifting 
each of the projections in t) to make it appear as if the object were centered 
at the origin. This adjustment may always be accomplished provided one has 
a field of view Iarge enough to encompass both the original object and the 
object shifted to the origin. We assume this to be the case. 

2.2. Object Support and Radon-Transform Support 
The convex support of an object is the smallest convex set that supports 

the function f(r). In th is section we develop a relationship between the 
convex support of an object and a particular region of support of its 2-D 
Radon transform. This relationship is a special case of the support theorem 
stated and proved by Lax and Phillips in [32] and also discussed by Helgason 

1301. 
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FIG. 2. The convex support of an object and of a projection. 

Suppose f is zero outside D,, the disk of radius T centered at the origin. 
Then it is easy to see from the definition of the 2-D Radon transform in (1) 
that g(t, 0) must be zero- when t 4 [ - T, T]. Using the periodicity of the 2-D 
Radon transform established in Theorem 1, one can now conclude that 
g(t,6) is completely determined by its values on the rectangle 

~,={(t,e)(-T~t~T,06e~~}. (5) 

But this idea can be refined even further. Let F be the set of points in D, 
for which f(x) # 0. Now consider the Radon transform g(t, 13) of f, and the 
unit vector 6.1 = [cos 0 sin ti]r. With reference to Figure 2 and to (l), we see 
that for any given w, the value of the Radon transform must be zero for 
t > t, and t < t_. Here, t, is the lateral position of the line perpendicular to 
w which is positioned as far as possible in the + w direction so it just grazes 
the set F; t _ is the lateral position of the line perpendicular to o which is 
positioned as far as possible in the - w direction so it just grazes the set :X 
The quantities t + and t _ are called support values and the corresponding 
lines are called support lines of the set 9Y Knowledge of both t, and t_ for 
all 8 in [O,r) determines the convex hull of F, denoted hul(Y), which is, 
by definition, the smallest convex set containing 9. The set hul(Y) is also 
the convex support of the function f(x). 

From the above discussion, we conclude that the 2-D Radon transform is 
completely determined by its values on the set 

(6) 
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e 

FIG. 3. The support of a Radon transform. 

where, for clarity, we have explicitly indicated the functional dependence of 
t, and t_ on 0. An example of such a set is shown in Figure 3. For a given 
object support set 9, we think of d as the matching region of support in 
Radon space. However, although F uniquely determines S, it is clear that 
J determines only hul(F), not 9 itself. Furthermore, 9 is not necessarily 
the actual support of g(t,8), since it is possible for g(t,8) to be zero when 
(t, 0) E 3 if Y is not connected. We are primarily concerned with the 
convex support of f, since this is what may be determined directly from 
knowledge of &. 

In Section 3 we assume that an estimate of 9 is available, and we define 
a prior probability on sinograms that gives a low probability to sinograms that 
have nonzero values outside of 9. 

3. SINOGRAM MRF AND MAP ESTIMATION 

We chose to represent prior probabilistic knowledge about sinograms 
using a Markov random field (MRF) on a discrete sinogram lattice. There are 
several reasons for this choice. First, the MRF is a convenient way to 
describe processes with local interaction in such a way that the joint 
probability over all sites is easily determined. Second, the constraints that 
arise from the 2-D Radon-transform consistency conditions are easily incor- 
porated in the MRF by limiting the space of allowable configurations. Third, 
knowledge of the convex support of the object, which is treated as a penalty 
rather than a constraint, may be incorporated into the MRF by adding an 
additional self-potential term (see below). Finally, this choice, along with the 
particular details described below, leads directly to a statistically optimum 
maximum a posteriuri solution. We shall see in the following section that the 
form of this estimate has an analogous variational formulation that, once 
solved, leads to a fast iterative solution. 



PROJECTION-SPACE RECONSTRUCTION ALGORITHM 159 

3.1. A Sinogram MRF 
This section develops a Markov random field (MRF) on the sinogram 

lattice that includes the mass and center-of-mass constraints, and that in- 
cludes the periodicity and smoothness of the 2-D Radon transform and the 
convex support of the object. The ingredients needed to define a MRF are 
[33]: (1) the lattice, (2) the potential functions, (3) the graph structure, and 
(4) the feasible configurations. 

The Sinogram Lattice. As discussed in Sections 1 and 2, a sinogram is an 
image of the Radon transform (or measured Radon transform) of an object 
over the truncated domain C?Kr [see Equation (511, with brighter intensities 
corresponding to larger values of g(t, 0). In order to define a MRF, however, 
we require a finite lattice system, rather than the continuum of points in %r. 
Therefore, we define the sinogram lattice to be a rectangularly sampled 
version of %r given by 

where nd is the number of sample points in t, and n, is the number of 
sample points in 8. 

For convenience we adopt the following notation for the remainder of 
this section. A site in the sinogram lattice is denoted s = (i, j), and the set of 
all sites by S. A site value is denoted in several ways: g, = gij = g(ti, flj>. 

The collection of all site values is called the discrete sinogram, or just the 
sinogram when the meaning is clear from the context. Note that a site in the 
sinogram lattice corresponds to a line in the plane passing through the disk 
Dr. In particular, the site (i, j) corresponds to the line L(t,, Oj> = ((x, y) E 

[w2 1 x cos Oj + y sin ej = tJ. 

The Potential Functions. The physics of this problem does not specify 
for us a prior probability on sinograms. We rely on experimentation and 
intuition to surmise what a reasonable form for a prior might be, given what 
we know about the types of objects under consideration and the transforma- 
tion of those objects via the Radon transform. After much thought and 
experimentation, one key idea has driven us to implement what turns out to 
be the simplest kind of MRF. This idea is simply that sinograms tend to be 
locally smooth. A prior that produces such sample functions is an MRF with 
potential functions that prescribe an affinity between nearest neighbors-this 
is the so-called nearest-neighbor “blob” mode1 [34]. Let s, r E S denote sites 
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that are either vertical or horizontal nearest neighbors. To prescribe affinities 
between the sinogram values defined on these sites we define the vertical 
pair-potential function as 

and the horizontal pair-potential function as 

“(SJ) = bh(& - da (9) 

where (s, r) and (s, r) represent pairs of adjacent sites in the vertical and 
horizontal directions, respectively. The positive constants b, and b, allow 
one to make the vertical and horizontal affinities of different strength, thus 
making this a nonisotropic random field [35]. In this paper, we choose the 
constraints b, and b, a priori; however, it is possible to use the actual data 
to estimate these coefficients as part of a hierarchical estimation algorithm 

1361. 
The self-potentials are defined using knowledge of the object’s support. 

As developed in Section 2, the object’s support F implies a matching region 
of support 9 within the Radon transform domain 9r. If either set were 
known exactly then we would insist that sinogram values in the region 

be exactly zero. However, we shall assume that only an estimate of the 
sinogram support is available, and that we have a measure of that estimate’s 
reliability. Therefore, sinograms with nonzero values in C? should have low 
probability, but not as low if the support estimate is unreliable. To provide 
this effect, we define the support self-potential as 

(ti,ej) E 9> 
otherwise, 

(11) 

where g, stands for the value of the sinogram at site s = (i,j), and K is a 
positive constant which is used to reflect the support measurement’s reliabil- 
ity. 

The Graph Structure. The form of the potential functions described 
above dictate the required neighborhood structure, and in fact only nearest 
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neighbors are necessary. In this case, the most general form of the MRF 
energy function is [33] 

u(g)= CV,(g,)+ c y,,,)(gs&)+ c v,sJ,(g~~gJ~ (12) 
s (s. r) (srf-) 

where the first summation is taken over all sites in the lattice, the second 
over all vertical nearest neighbors, and the third over all horizontal nearest 
neighbors. 

Since all objects are known to be zero outside the disk of radius T, the 
boundary value above and below the sinogram must be zero, as shown in 
Figure 4(a). To include this boundary condition, we extend the lattice by 
adding horizontal strips of sites above and below the original sinogram lattice 
and fix these values at zero. Except for their use in calculating the energy 
function, these extra sites are ignored, since they are neither observed nor 
estimated. The boundaries at the left and right of the sinogram must be 
treated differently, however. Here, we use the symmetry property of the 
consistency theorem stated in Section 2, 

to conclude that the neighbors wrap around in a toroid that is twisted or 
flipped about the t-axis as shown in Figure 4(b). In other words, the 
sinogram is actually defined on a Mobius strip, and no additional sites need 
be added to include this periodicity property. Instead, the definitions of the 
neighborhoods for the sites at the right and left of the sinogram lattice are 
modified to produce the required periodicity condition. 

The Feasible Configurations. The mass and center-of-mass constraints 
used for the MRF are discrete approximations to the integral expressions of 
(3) and (4). Thus, letting m denote the object’s mass, we have 

and 

k z ,gl tigij = 0 Vj, l<j<n,, 
1 

(13) 

(14) 
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0 

0 

FIG. 4. The (a) vertical and (b) horizontal boundaries of the sinogram MRF. 
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where 

is the lateral position of.the ith line. 
The presence of constraints, even linear equality constraints such as 

these, makes. the computation of the MAP estimate more difficult, since the 
algorithm must be a constrained optimization method [37]. In fact, the 
solution must be an element of a set of feasible discrete sinograms fig, which 
contains all real matrices of dimension nd by n, that satisfy (13) and (14). 

3.2. The MAP Formulation 

The Gibbs Prior. Having now defined all the elements of the MRF, the 
joint probability density for the discrete sinogram prior is simply given by 
Gibbs density 

p(g) = $e-ucg), g E f12,, 

where g denotes the vector of sinogram site values and Z is given by 

so that p(g) integrates to one. The function U(g) is the energy function 
defined in (12). 

The Observations. We assume that noisy observations of the true site 
values are available over a (possibly) 1 imited-angle or sparse-angle subset 9o 
of 9r and the observations are given by 

Yij = gij + nij, (ti,ej) E so? (17) 

where the nij are independent zero-mean Gaussian random variables with 
variance u2. Letting g denote the vector of true sinogram site values and 
letting y and n denote the vectors of observations and noise samples, 
respectively, we may write the observation equation in vector form as 

y=Sg+n, (18) 

where S is a matrix that selects the observations as follows. In the measure- 
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ment configuration we consider, a column of the matrix given by [gij] is 
either observed completely (in additive noise) or not observed at all. Sup- 
pose, for the purposes of this discussion only, we form g by stacking the 
columns of [gij], stacking all the observed columns first, from the top 
proceeding downwards, and the remaining columns following in any order. 
Then, denoting the number of observed columns by n,, we see that S is 
given by 

S=[Zl 01, 

where Z is the n,nd X n,n,[ identity matrix. 

The Sinogram MAP Estimate. Now, with the observation equation given 
by (18) and the prior probability given by (16), we may now derive the form 
of the MAP estimate gmap. Denoting the noise covariance matrix by K,, we 
may use (18) to write the conditional measurement density (zero mean, 
jointly Gaussian) as 

P(Y I g) = 12~KI-“2 exp[-~(y-Sg)TK,‘(y-Sb’)]. (19) 

Using the definition of conditional probability twice, and the prior probabil- 
ity given by (16), the posterior distribution is found to be 

P(glY)= 
P(Ylg)P(g) 

P(Y) 

= I2?TK,I-“” 

ZP(Y) 
exp{-[i(Y-Sg)TK,l(Y-Sg)+U(g)]}. (20) 

The MAP estimate, which maximizes (20) with the true observations Y 
substituted into the expression, is given by 

Em,+ = argmin - l (Y-Sg)T(Y-Sg)+U(g), 
yERB 2a2 

(21) 

where we have used the fact that K, = a2Z. It should be noted that the 
maximum a posteriori criterion has been used extensively in the field of 
computed tomography (e.g., [38, 39, 36, 40-421). However, to our knowledge, 
this is the first time that the prior probability has been defined on the 
sinogram rather than the image. As a result, the MAP estimate is a smoothed 
and interpolated sinogram; the object is reconstructed from this estimate 
using convolution backprojection. 
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The posterior distribution of (20) is a Gibbs density, and since the 
observation equation is not convolutional, its graph structure is identical to 
that of the prior. The only significant difference between the two MRFs is 
the form of the energy function, which, in the posterior density, contains a 
self-potential term that couples the observations y to the sinogram g. The 
identification of the posterior density as a Gibbs density serves as the basis 
for the stochastic relaxation and simulated annealing methods of Geman and 
Geman [33] and others, algorithms that have been the focus of much research 
in recent years. These methods, besides being generally very slow, are 
inappropriate for this application for two reasons. First, the stochastic meth- 
ods do not conveniently incorporate constraints [31], although there has been 
recent work in this area [43]. Second, and most importantly, the minimization 
problem of (21) requires minimizing a quadratic function with linear con- 
straints, which, when taken advantage of as we do in the next section, leads 
to a much faster algorithm. 

4. PRIMAL-DUAL MAP ALGORITHM 

This section develops the theory and implementation of a fast iterative 
algorithm for computing gmap. The key step in the development of this 
method is to write the vector minimization problem of (21) as a constrained 
minimization problem involving an unknown function g(t, 0) over the con- 
tinuous domain 9r. The solution to this variational formulation is a partial 
differential equation (PDE) with three unknown functions: the sinogram and 
two Lagrange-multiplier functions. We use a generic primal-dual method to 
find the solution to this PDE, incorporating a fast iterative local relaxation 
algorithm in the primal stage and simple Lagrange-multiplier update formu- 
las in the dual stage. 

4.1. Variational MAP Formulation and Solution 

The Minimization Problem. Consider the problem, which we refer to as 
(V), of minimizing 

(y - g)” dtde + /&g’dtde 

(22) 
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subject to the equality constraints 

tg(t, 0) dt (23) 

and boundary conditions 

g(T,@) = g( - T,O> = 0, 

g(t,O) = g( - t,r) (24) 

where K, p, and y are positive constants. This problem is a continuous 
formulation of the sinogram MAP problem of (21). The first term in I is 
analogous to the first term in (21)---both represent a penalty that seeks to 
keep the estimate close to the observations. The second two terms are 
analogous to the terms of V(g), given in (12). The first term comprises the 
support information, which matches the summation over single sites in V(g). 
The second term integrates the sum of the squares of the two partial 
derivatives of g, which corresponds to the two summations of pair potentials 
in V(g). The two integral constraints in (23) are exactly the mass and 
center-of-mass constraints. Finally, the boundary conditions, which include 
the twisted boundary, are stated in (24). 

To simplify notation we define the following indicator functions: 

xcw>= o 
i 

1, (t,e) E 5, 
otherwise, 

(25) 

which indicates the complement of the region of support in the sinogram 
domain, and 

tt,e> E %> 

otherwise, 
(26) 

which indicates the region in the sinogram over which observations are 
available. Using this notation we may write I as 
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The problem is now in the form of a classical variational problem which may 
be solved using standard calculus-of-variations techniques (see [44], for 
example). 

Partial Diflerential Equation. A necessary condition for g(t,8) to be a 
solution to (V) is that it satisfies the following second-order PDE [31]: 

g -2p$ -272 = &y - Al(O) - h2(6’)t (28) 

and the additional boundary condition 

ag(t,o) ag( - tar) -= 
at at * (29) 

In addition, g(t, O> must satisfy the original constraints and boundary condi- 
tions. Note that (28) contains three unloiown functions: g(t,O), and two 
Lagrange-multiplier functions A,(8) and h,(B) (one for each constraint). To 
simplify the expressions in the remainder of this section we use the notation 
g, and g,, to stand for the first and second partial derivatives of g(t, 0) with 
respect to t, respectively, and g, and g,, to stand for the first and second 
partial derivatives of g ( t , 0) with respect to 6, respectively. 

To solve (28) for g(t,O), A, and A, must first be determined. An analytic 
expression for A, may be found by integrating both sides of (28) and 
simplifying; and an analogous expression for A, may be found by multiplying 
both sides of (28) by t, then integrating and simplifying. The results are [31] 

Al(e) = ; /_’ 2K&gdt -2&& + -$y - $1’ 
T 

_TXYd 7 (30) 1 
A2( e) = $ IT 2tt&gdt -2ptg,f, - $/’ txrydt , 1 (31) 

-T -T 

These equations may be substituted into (28) to give an integrodifferential 
equation in a single unknown function g(t, 0). 

Primal-Dual Optimization Method. Unfortunately, although the result- 
ing integrodifferential equation could be discretized and solved numerically, 
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the problem is very large and computationally intractable. The approach we 
take instead is to use the generic primal-dual method described by Bertsekas 
in [45] to solve the PDE directly. In outline, the method requires us to solve 
(28) numerically given estimated Lagrange multipliers, update the Lagrange 
multipliers if the solution doesn’t meet the required constraints, and repeat 
until a jointly optimum trio of g, fi,, and /i, is found. 

To find an initial estimate of the Lagrange multipliers we make several 
approximations which often hold true at or near the solution. First, near the 
solution we expect that g(t, 0) = 0 for (t, 13) E 2, especially when K is large. 
Hence, we may make the approximations 

/ 

T 
2tc&gdt=O and 

/ 
T 2tKj$gdt = 0 

-T -T 

Second, the terms in (30) and (31) mvolving the partial derivative g, 
evaluated at k T may often be close to zero. These approximations, applied 
to (30) and (3I), yield the following initial Lagrange-multiplier estimates: 

$xy-$ jT Xyydt 
-T 1 1’ 

(32) 

(33) 

each of which may be evaluated given only the data. Substituting these 
functions for the true Lagrange multipliers in (28) yields the PDE 

g -2Pgtt-2Ygee 

1 
= ,zXrY -- 

3t T 
-- 

2T3a2 I txyyvdta 
-T 

(34) 

which, unlike the original, has a single unknown g(t,8), and may be solved 
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numerically using any of several techniques for solving elliptic PDEs as 
discussed below. 

If g does not meet the constraints after solving (34), the first primal 
stage, then we conclude that the approximations used to derive the approxi- 
mate PDE of (34) were not accurate. This situation will in fact occur if p is 
large or if the observations are missing entire projections, as in the limited- 
angle and sparse-angle problems. Therefore, the dual stage updates the 
Lagrange multiplier functions to move them closer to their optimum values 
using the following formulas [45]: 

A~+‘(O)=h~(O)+a m- T g(t,O)dt , 

i 1 -T i 

A~+y~)=A~(o)+a! O-;f;/;Ttg(t>B)dt i I , 
where (Y is a positive constant, and k is an iteration counter. Note that the 
update calculations can be done independently, and therefore in parallel, for 
each projection in the sinogram. After each update, the new Lagrange-multi- 
plier functions are substituted into (28), which is solved numerically for a 
new g. When g meets the constraints to within a specified tolerance, then 
the three functions are jointly optimal and 2 is the desired sinogram 
estimate. 

The constant (Y, which appears in (35) and (361, is chosen large enough so 
that convergence to the correct Lagrange multipliers [and hence the correct 
solution to (V)] occurs quickly, yet not so large that the sequence will not 
converge. Bertsekas [45] describes the selection of (Y and relates this generic 
primal-dual method to the method of multipliers, about which a great deal of 
theory is known. In our experiments, CY was chosen empirically to yield a 
good rate of convergence for our problem. 

4.2. Numerical Methods 

The sinogram is approximated on a rectilinear grid with vertical and 
horizontal sample spacings given by At = 2T/nd and A0 = r/no, respec- 
tively. The PDE of (28) may then be approximated at an interior point by the 
finite-difference equation [46] 

di,jgi,j - ri,jgi+l,j - li,jgi-l,j - ti,jgi,j+l- bi,jgi,j-1 = Si,jy (37) 
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l,,j = 2p1, 

ri, j = 2/f, 

bi,j = 29 

ti,j = 29 

di,j = 4p^+4? + 2Kj& + -$, 

l (LO,) 

i 

1 
si,j = - 

(g XyY - Al(O) - Me)t 
iI 

) 
(t,,9,) 

and @ = /3/A”, and + = y/A”,. Sinogram values in (37) that 
points outside the lattice must be evaluated according to 
conditions developed in Section 3. 

The set of equations given 
1,. . , nL;, may be organized and 

by (37) for all j, j = 1,. . , nd, and i, i = 
written as a vector equation (see Appendix) 

(38) 

correspond to 
the boundary 

Gg = s, (39) 

and, although this is a very high-dimensional problem, the local interactions 
that result from the nearest-neighbor construction allow for effkient iterative 
solutions. Several traditional methods (cf. [47]), including Jacobi, simultane- 
ous overrelaxation (SOR), and Chebyshev semiiterative relaxation methods, 
may be employed to solve (39). However, we have chosen to implement a 
relatively new method due to Kuo, Levy, and Musicus [46], which has been 
shown to have very favorable convergence properties, and is relatively easy 
to implement. This method, in addition, has been shown to be ideally suited 
for parallel implementation. 

Our implementation of Kuo’s local relaxation algorithm (KLR) is a special 
case of the more general implementation described in [46]. We assume the 
PDE to be of the form 

where (x,, r,) E [O, I]x [0, 11, and to satisfy the conditions given in [46]. Then 
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the PDE is approximated by the five-point stencil 

with 

l=p, I- = p, b=q> t=q, 

di,j = 2~ +2q + li,jh’> si,j = fj,jh”, 

where h is the grid spacing and li j is defined as l(ih, jh). Each grid point is 
assigned a color, either red or black, according to an alternating pattern as on 
a checkerboard. Then the local relaxation procedure can be written as: 

red points (i + j is even): 

ui~li+l)=(l-~~,~)u(~~+0~,~di,3! 

(~ul”)l,~ + r~(yl,j + bu(rj_l+ tU(rJ+l + si,j)> 

black points (i + j is odd): 

&?l) = (I- wi j)u$yj + mi,jd(f 
193 

(zum_:,‘,’ + ,-uI”+; ‘1 + bz&?‘,’ + t$‘j++l; + si, j), ) , , 

where oi,j is called the local relaxation parameter 

2 
oi,j = 

I++=& 

2 I ?r 

where 

and is given by 

One point related to convergence of KLR is worthy of comment. In the 
initialization phase, KLR calculates an array of local relaxation parameters 

oi, j, one per site, which are theoretically optimum for a particular boundary 
condition which our problem does not satisfy (because of the twisted 
boundary property). Therefore, KLR still converges to the correct solution, 
but it may do so more slowly than the predicted convergence rates. However, 
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we have found in our experiments that no slowdown is evident; the computa- 
tion time, in practice, is still of order fi, where N is the total number of 
points in the grid. 

4.3. Comparison of Approaches 

We show in the Appendix that the numerical solution of the variational 
formulation solves the Markov random-field MAP problem (21) exactly. 
Since (21) is just a quadratic program (QP) with linear equality constraints, 
as discussed in the Appendix, we could have gone directly to the solution 
rather than recasting the problem in the continuum. However, one gains 
insight into the problem and also realizes a couple of distinct advantages by 
making this reformulation, 

A most important insight that guided our development was the observa- 
tion that code intended to solve elliptical PDEs on lattices could be used 
directly to solve our _MAP problem. This led us to the particularly fast 
algorithm due to Kuo, and may guide us (and other researchers) in the future 
to newer and faster algorithms. Also, due to this reformulation, one may gain 
insight into the meaning and relevance of the boundary conditions. In our 
case, our only true boundary is at t = k T, and since g(t, 0) is prescribed to 
be zero there, we are using the Dirichlet boundary conditions. An alternative 
would leave g(t,O) unprescribed at the boundary, thereby using the 
Neumann boundary conditions. Aside from these insights, there may be more 
to learn by formulating a complete stochastic estimation problem on the 
continuum: an example of this type of work is found in [48]. 

The most important advantage that the variational formulation has over 
the MRF formulation occurs when the lattice size changes or the lattice is 
defined to be nonrectangular. Viewed as a problem on the continuum, the 
new solution involves nothing more than finding a new approximation to the 
partial derivatives over the new lattice. The MRF formulation, however, 
yields no natural way to detennine the new potential functions. Another 
advantage that results from the variational formulation is the relatively 
straightforward way in which we were able to derive initial Lagrange-multi- 
plier estimates. Without the continuous analog, it is difficult to see where 
approximations are appropriate. 

5. EXPERIMENTAL RESULTS 

5.1. Overview 
In this section, we present results from several simulation studies, each 

designed to demonstrate a different aspect of the sinogram MAP algorithms 
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FIG 5. The M IT ellipse. 

described in Section 4. The object that is used for all of the simulations in 
this section is an ellipse with the letters MIT in its interior, as shown in 
Figure 5. The ellipse is centered at the origin and rotated 45” in the 
clockwise direction, and has two values: 0 outside of the ellipse and 1 within 
the body of the ellipse, except within the letters, where the value is 0. The 
noise-free sinogram shown in Figure 6(a) is calculated using approximate 
strip integrals (see [49]) fr om analytic expressions for the ellipse and charac- 
ters in the interior. The sinogram has 81 rows and 60 columns, approximating 
g(t,e) over the angular range [r//2,&~//2] and the lateral range [ - T,T]. 
The 81 X 81-pixel image in Figure 6(b) is a reconstruction from the noise-free 
data of Figure 6(a) using convolution backprojection (CBP) with a ramp filter 
(see [49]). 

The M IT ellipse was chosen as a test object for this experiment because 
the loss of angular information has strikingly different effects depending on 
where the missing angles occur. For example, if the missing projections have 
lines that integrate along the long axi$of the ellipse, then the narrowness of 
the ellipse cannot be observed, but the detail of the letters in the interior is 
quite apparent from the observed projections. If, however, the missing angles 
occur along the short axis of the ellipse, then the letters cannot be observed 
well, but the narrowness is apparent. The first case is where information 



174 JERRY L. PRINCE AND ALAN S. WILLSKY 

FK:. 6. (a) A noise-free singoram and (b) its reocnstruction. (c) A noisy sinogram 

(SNR = 3.0 dB) and (d) its reconstruction. 

about the boundary of the object has a striking effect on the reconstruction; 
the smoothing effect helps in both cases. 

One noisy, two limited-angle, and two sparse-angle cases were derived 
from the noise-free sinogram and used as simulated observations. Figure 6(c) 

shows a noisy sinogram, created by adding independent samples of zero-mean 
Gaussian noise with variance u2 to each element of the true sinogram of 
Figure 6(a). The signal-to-noise ratio (SNR) of this sinogram is 3.0 dB, using 
the following definition of SNR: 

Ye- 2 2 &,Oj) 

SNR = 10 log 
n, nd j=l i-1 

o2 
(40) 

where g(ti,oj> is the true sinogram. Figure 6(d) shows a reconstruction of 
Figure 6(c) using CBP. Figures 7(a) and (b) show sparse-angle reconstruc- 
tions from, respectively, 15 and 10 evenly spaced projections of a 10.0 dB 
noisy observed sinogram of the ellipse (not shown). This corresponds to 
projections taken 12.0 and 18.0” apart, respectively. Figure 7(c) and (d) are 
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Frc. 7. Reconstructions from a noisy sinogram (SNR = 10.0 dB) from (a) 15 

sparse views, (b) 10 sparse views, (c) leftmost 40 views, and (d) rightmost 40 views. 

reconstructions from the first (left) 40 projections and the last (right) 40 
projections, respectively, of the same lO.O-dB noisy sinogram. The first 
limited-angle arrangement lacks projections with information about the nar- 
row dimension of the ellipse, while the second arrangement lacks detailed 
information about the letters within the ellipse. Each of these four recon- 
structions was made using CBP, using only the observed projections for both 
filtering and backprojection. 

Given an observed sinogram (perhaps noisy or only partly observed), the 
first processing step is to estimate the object mass using 

where fl is the set of observed projections and J is the number of elements 
in J? Each sinogram is then normalized by dividing each observation by r?r 
so that the normalized sinogram corresponds to an object with unit mass. The 
normalization is necessary so that the coefficients p, y, and K have the same 
qualitative effect on low-mass sinograms as on high-mass sinograms. Using 
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FIG. 8. Estimates produced by the primal-dual algorithm with (a) y = 0.05 and 
j3 = 0.01, (b) y = 0.5 and /3 = 0.01, (c) y = 0.05 and /3 = 0.1, and (d) y = 0.005 and 
/3 = 0.001. 

the normalized sinogram, the noise variance is estimated from the top and 

bottom rows, and this estimate is used as the true variance in subsequent 

computations. 

In general, the center of mass must also be estimated, perhaps using 
methods described in [3I] or [21], so that the observed projections can be 
shifted to correspond to an object centered at the origin. In these simula- 
tions, however, we assume that the object is already centered at the 
origin-which is very nearly true for the M IT ellipse. In order to study the 
effect of correct and incorrect convex-hull estimates, the convex hulls used in 
these studies are fixed and known, although not always correct. Experiments 
that show the full hierarchical procedure that first estimates the convex hull 
are described in [31]. 

5.2. Effect of Smoothing Coeficients 
The coefficient y has the effect of smoothing or blurring the sinogram in 

the horizontal direction; the coefficient /3 has a similar smoothing effect in 
the vertical direction. Figure 8 shows sinogram MAP estimates resulting 
from the full-view observations of Figure 6(c), using no support information. 



PROJECTION-SPACE RECONSTRUCTION ALGORITHM 177 

FIG. 9. CBP reconstructions from Figure 8. 

Figure S(a) corresponds to y = 0.05 and p = 0.01, Figure 8(b) to y = 0.5 and 
/3 = 0.01, Figure 8(c) to y = 0.05 and /3 = 0.1, and Figure 8(d) to y = 0.005 
and p = 0.001. Images reconstructed from these sinograms using CBP are 
shown in the corresponding panels of Figure 9. The reconstruction in Figure 
9(a)-which used what have been empirically shown to be good smoothing 
coefficients-should be compared with the unprocessed CBP reconstruction 
of Figure 6(d). 

It should be noted from Fig. 9(b) that excessive smoothing of the 
sinogram in the horizontal direction results in circular blurring of the 
reconstructed image. Similarly, the haziness of the image in Figure 9(c) 
results from excess smoothing of the sinogram in the vertical direction, which 
effectively produces a low-pass filtering effect on each projection. There is 
noticeable improvement in both reconstructions shown in Figure 9(a) and (d) 
over that in Figure 6(d); however, there are important differences. For one, 
the contrast between the ellipse body and the background is better for the 
larger smoothing coefficients of Figure 9(a). However, that enhancement also 
accompanies a decreased definition of the ellipse boundary. This effect could 
be due to the quadratic prior energy function, which has been reported to 
overpenalize large differences in pixel values across true boundaries [50]. 
The legibility of the internal letters, however, appears to be best in the 
highest-contrast image, shown in Figure 9(a). 
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5.3. Effect of Known Support 
Figure 10 shows the effect of varying K for known (correct) support. The 

different values of K are given by (a) K = 0.0, (b) K = 5.0, (c) K = 10.0, and 
(d) K = 10,000. In each case, the full-view observations of Figure 6c were 
used, and y = 0.05 and p = 0.01. The object reconstructions were made 
using full-view CBP, and should be compared with those of Figures 6(d) and 

9(a)-(d). 
We see from- the set of experiments shown in Figure 10 that known 

support sharpens the boundary of the ellipse considerably. However, in the 
image with the sharpest boundary [Figure IO(d)], the letters in the ellipse are 
not as legible as the images in the other panels-the contrast of the letters 
does not appear to be as large. This is likely to be due to the mass constraint, 
which, for K large, must produce an estimate that has all its mass (for a given 
projection) between the two support values. But in addition there is a 
smoothness requirement which is attempting to reduce abrupt variations 
within the projections. This may have the overall effect of increasing the 
magnitude of (normally small) values of line integrals that pass through the 
internal letters. 

FIG. 10. Effect of known support for (a) K = 0.0, (b) K = 5.0, (c) 

(d) K = 10,oOO.o. 

K = 10.0. and 
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FIG. 11 Effect of incorrect support for (a) K = 0.0, (b) K = 5.0, (c) K = 10.0, and 
Cd) K = 10,OOO.O. 

5.4. Effect of Zncorrect Support 

In this set of experiments we examine the effect of using support 
information which is incorrect. Figure 11 shows results where the support 
corresponds to an ellipse which has been rotated 90” from the correct 
orientation. The observed sinogram is that of Figure 6(c), and the algorithm 
used the smoothing coefficients y = 0.05 and /3 = 0.01. The different recon- 
structions in Figure 11 correspond to setting K to (a) K = 0.0, (b) K = 5.0, 

(c) K = 10.0, and (d) K = 10,000. 
This set of experiments shows that as K grows larger, the image values 

outside the assumed region of support grow smaller. Eventually, this effect 
overwhelms the evidence of the observations and virtually obliterates the 
parts of the true ellipse that lie outside of the incorrect support. But the mass 
constraint and the smoothing coefficients also affect the appearance of the 
final image. Since each projection has mass m, when the support width is 
incorrectly narrowed and K is too large, the sinogram values must be very 
large within the region of support just to accommodate the required mass, 
and the values will typically be very much larger than the observations. As 
mentioned previously, this will have the effect of reducing the contrast of the 
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FIG. 12. Effect of using an incorrect support which is rotated counterclockwise 
by (a) O.O”, (c) 15.0”, (c) 30.0”, and (d) 45.0”. 

inner details of these projections, and the effect on the image is to eliminate 
contrast within even the intersection of the correct support and the incorrect 
support. On those projections that have support values that are much too 
wide, it is the smoothing terms that dominate. In order to lower the overall 
energy of the sinogram (that is, the energy term in the Markov random field), 
the vertical pair potentials-or equivalently, the vertical derivatives-should 
be small. Therefore, these projections tend to become as smooth as possible 
over the prescribed support and contribute to the image a “shadow” ellipse 
which corresponds to the incorrect support. 

Figure 12 shows a sequence of reconstructions that have kept K to the 
constant 5.0, but vary the orientation of the assumed object support. In these 
reconstructions, we have used the support of an ellipse that has the same size 
and eccentricity at the true object support, but has been rotated in the 
counterclockwise direction by (a) O.O”, (b) I5.0”, (c) 30.0”, and (d) 45.0”. 

This set of experiments shows that a modest choice of K, together with a 
less severe support error, will produce an image that retains many of the 
details of the true image with only a small “shadow” due to the incorrect 
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FIG. 13. Effect of using an incorrect support which is too small in (a) and (b) 
and too large in Cc> and Cd). 

support. However, it is clear that an incorrect support estimate can produce 
results much worse than having not introduced any support information 
whatsoever [compare these results with that of Figure 11(a)]. 

In Figure 13 we show a sequence of reconstructions that have used 
K = 5.0, but with support which is the incorrect size. Figure 13(a) and (b) 
show two cases where the support is too small, and Figure 13(c) and (d) 
show two cases where the support is too large. Overall, the size of the 
support increases from Figure 13(a) to (d). The reconstruction using the 
correct support and K = 5.0 may be seen in Figure 12(a). 

We may conclude from this set of experiments that it is preferable to err 
on the side of using a support estimate that is too large than too small, in 
general. Although the boundaries are not as sharp when the support is too 
large, the loss of contrast in the interior and the effect of double boundaries 
for small support is much more undesirable. 

5.5. Sparse-Angle Studies 
Figure 14 shows the results of several sparse-angle experiments. The (a) 

and (b) images correspond to the 15-view and lo-view lo-dB cases respec- 
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FIG. 14. Sparse-angle studies with y = 0.05 and p = 0.01. (a) 15 observed 

projections and known support. (b) 10 observed projections and known support. (cl 15 
observed projections and no support. Cd) 10 observed projections and no support. 

tively, where y = 0.05 and p = 0.01, the support is known, and K = 10,000. 
The (c) and (d) images correspond to the 15-view and IO-view cases, 
respectively, with the same smoothing coefficients, but with K = O.O-i.e., no 
known support information is used. 

This experiment demonstrates nicely the potential of the algorithm. In 
either sparse-angle case, the contrast of the image is improved dramatically 
over those in Figure 7. And while the boundary is quite sharp, as expected, 
in the case of K = 10,000, it is quite clear what the shape of the object is in 

the case of K = 0.0. The loss of contrast in the interior of the ellipse when 
K = 10,000 remains evident in these experiments, however. 

5.6. Limited-Angle Studies 

Figure 15 shows the results of several limited-angle studies. The (a) and 
(b) images are reconstructions obtained with known support (with K = 10,000) 
from the two limited-angle cases. The experiment resulting in panel (a) uses 
the first 40 (leftmost) projections, whereas panel (b) uses the last 40 
(rightmost) projections. Panels Cc) and (d) correspond to the same observa- 
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FIG. 15. Limited-angle studies with y = 0.05 and p = 0.01. (a) Left 40 projec- 
tions and known support. (b) Right 40 projections and known support, (c) Left 40 
projections and no support. (d) Right 40 projections and no support. 

tions as in (a) and (b), respectively, but in these cases no support information 
was used. As in the sparse-angle studies, the smoothing coefficients for all 
four studies were y = 0.05 and p = 0.01. 

These limited-angle studies show behavior which is similar to the 
sparse-angle studies. The boundary of the ellipse is quite sharp, as expected, 
in the case of K = 10,000, and there is an accompanying loss of contrast in the 
interior. The images generated using K = 0.0 have different problems, how- 
ever. In particular, the image in Figure 15(c) shows good contrast in the 
letters in the interior but is unable to provide any boundary definition on the 
long sides of the ellipse. This is because the leftmost 40 projections which 
are observed view the ellipse from the broad side, and so do not contain 
information about the narrow ellipse dimension. The image in Figure 15(d) 
suffers from the opposite problem. There is a loss of definition of the letters 
in the interior because many of the projections that would normally be 
obtained from the broad side of the ellipse are missing. It is in the first case 
that support knowledge can aid tremendously; unfortunately, when projec- 
tions from the broad side of the ellipse are missing, there is little that our 
method can do to provide any additional clarity of the interior detail. 
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6. DISCUSSION 

It is generally acknowledged in the computed-tomography literature that 
in the case of noisy and limited-angle or sparse-angle data, prior knowledge 
is essential in order to obtain good reconstructions. (See [51] or [52], for 
example, for a mathematical treatment of the ill-conditioned nature of the 
limited-angle tomography problem.) We have focused on using three types of 
prior knowledge: 

(a) line integrals close in either angle or lateral displacement tend to be 
similar in value, 

(b) Radon transform functions are constrained to a certain functional 
subspace, and 

(c) knowledge of th e convex hull of the object is equivalent to knowledge 
of a particular region of support of the object’s Radon transform. 

In Section 3, we developed a Markov random-field (MRF) model of sino- 
grams that contains prior information about the mass and center of mass of 
the unknown sinogram, the convex support of the object, and the expected 
similarity of line integrals which are close in either angle or lateral displace- 
ment. The primal-dual MAP estimation algorithm developed in Section 4 is 
based on a variational formulation that leads to an efficient solution of the 
original Markov random-field MAP estimation problem. Even with the 
necessity of keeping and updating Lagrange multipliers, this method is fast 
and memory efficient, and is parallelizable in both the primal phase and the 
dual phase. 

The simulations presented in Section 5 show the range of results that may 
be obtained using this approach. The improvement over the unprocessed 
CBP reconstructions is quite dramatic in all cases where the support was 
correct or nearly correct. In particular, the boundary of the ellipse is made 
much sharper, and the letters within the ellipse can be made out in all of the 
processed cases, and in none of the unprocessed cases. 

In most cases the convex support of the object is not known a priori. In 
other research, we have reported several methods to estimate the convex hull 
of objects from the available data [53, 54,‘31]. These methods require two 
steps: (1) estimation of the support values from observed projections and 
(2) estimation of a complete set of feasible support values for all projections 
(including the ones corresponding to missing observations). The feasible 
support values uniquely identify a convex polyhedron, which serves as our 
estimate of the convex support of the object. In the second step, different 
types of prior geometric knowledge about the shape of the object may be 
used to force estimates to be circular, be elliptical, or have smooth bound- 
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aries. For example, knowledge that the M IT ellipse is an ellipse leads to 
nearly perfect support estimation from the noisy, sparse-angle, and limited- 
angle cases used in Section 5, even though the size, eccentricity, and 
orientation of the ellipse are not known a priori. Estimating the convex 
support, mass, and center of mass of the object is viewed as a part of a 
hierarchical reconstruction algorithm in [31]. With these steps in place, the 
only user inputs that are required are the values of the smoothing coefficients 
/3 and y. 

In this paper only two consistency constraints were imposed: mass and 
center of mass. We have observed that these constraints provide a small but 
visible improvement in the reconstructed images; the dominant effect is due 
to the sinogram smoothing coefficients (see [31]). However, these are but two 
of an infinite number of constraints that may be exploited. A method that 
incorporates a much larger number of consistency constraints and that 
requires no prior geometric knowledge related to these constraints-e.g. 
mass and center of mass-is described in [31]. The two methods contrast in 
the following way. The approach described in this paper characterizes, 
through the mass and center of mass, a functional subspace in which the 
desired sinogram must lie, and forces this to happen using Lagrange multi- 
pliers. The alternative approach characterizes the subspace orthogonal to the 
desired sinogram, and again uses Lagrange multipliers to achieve this goal. 
The alternative method is also a generic primal-dual optimization algorithm; 
however, the Lagrange multipliers are scalars rather than functions. The 
primal stage is almost identical to that given herein, but the dual stage 
generally requires more computation and has less potential for parallelism. 

APPENDIX. EQUIVALENCE OF THE MRF AND VARIATIONAL 
SOLUTIONS 

In this Appendix we show that the numerical solution of the variational 
problem of Section 4 solves the Markov random-field problem of Section 3. 

First, we observe that (21) is a quadratic program (QP) which may be 
written as 

minimize +g’Cg + pTg 
subject to Ag = 6. 

The terms in the objective function are given by 
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where 

KFc(ti,ej)+ 2O2XY 19 1 l (6 e.)+2b,+2b, 

v=-2b 0) 

u = -2b,, 

and 

The mass and center-of-mass constraints constitute A and b so that 

where 

eT 

A, = 
eT 

0 

A, = 

in which eT = [1 1 . * . 11 and tT = [tl t, * * . t 
“d 

] [see (1511, and 
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(43) 

(44) 

(45) 

(46) 

h,=rnze. (47) 
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A necessary condition for the solution of this QP is [37] 

Gg=-ATA-p, (48) 

Ag=b. (49) 

Expanding a single scaIar equation in (48) and matching terms with (37) 

yields the desired equivalence provided that 

bti=$ 
t 

and 

b,,=;. 
a 

(50) 

Since (49) specifies the same discrete approximation to the mass and 
center-of-mass constraints as is used in the variational formulation, the 

equivalence is complete. 
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