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Abstract: This paper describes a smoothing algorithm that 
involves the parallel processing of the data in subintervals with 
little communication among the processors. Data in the subin- 
tervals are first processed in parallel starting from subinterval 
centers and processing outward to the subinterval boundaries. 
After an exchange of information among processors, a final set 
of parallel recursions, proceeding inward in each subinterval, 
yields the desired estimates. The proposed procedure is found 
in general to have a total on-line computational complexity 
slightly higher than that of the non-parallel implementations. 
However, since several processors are used in parallel, the 
running time of this algorithm is much smaller than that of a 
single smoother solution. Furthermore when the process to be 
estimated is reversible, an even-odd decomposition of the 
process yields a block diagonalization that yields a further, 
considerable reduction in the required computations. 

Keywords: Smoothing; reverse filter; forward filter; parallel 
processing. 

1. Introduction 

has led to the development of a number of parallel 
processing algorithms for optimal smoothing for 
linear state variable models. In this paper we 
present a new algorithm of this type which is 
highly parallel in nature and requires minimal 
communication among processors. As in [1-4], 
our algorithm involves the partitioning of the data 
interval of interest into subintervals, processing all 
data segments in parallel and then combining the 
results of these local processing steps. However, 
the approach we present is a significantly different 
alternative to these earlier methods. To under- 
stand our approach conceptually, it is useful to 
review two of the standard approaches to smooth- 
ing illustrated in Figure 1. One of these is the 
Mayne-Fraser two-filter smoother [5] in which the 
smoothed estimate is computed by a forward- 
filtered estimate and a reverse-filtered estimate. 
These two estimates can be computed in parallel, 
resulting in a total run time proportional to twice 
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The advent of cheap and powerful processors 
in the past few years, together with the relatively 
high cost of communication has made decentral- 
ized estimation schemes extremely attractive and 
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Fig. 1. Three processing structures for optimal smoothing: (a) 
Mayne-Fraser processing structure. (b) Rauch-Tung-Striebel 

processing structure. (c) A simple parallel algorithm. 
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the length of the entire data interval (once for the 
filter computations, the other for their combina- 
tion) and requiring the storage of these two inter- 
mediate estimates over the entire interval. Note 
also that both processors must have access to all 
of the data. A second approach, the Rauch-  
Tung-Striebel  algorithm [5], begins with the for- 
ward filtered estimate. At the end of this processing 
step we have the full smoothed estimate at the 
terminal point, and we then proceed with a recur- 
sive recursion for the smoothed estimate, using the 
forward filtered estimate as input. Because of its 
serial nature the total run time of this algorithm is 
proportional to twice the data interval length but 
requires the storage of only one intermediate 
estimate over the entire interval. 

It is relatively straightforward to devise an al- 
gorithm that represents a modest improvement to 
the computational demands of these two al- 
gorithms. Specifically, as illustrated in Figure l(a), 
we divide the data interval in half. The first 
processing step then consists of the parallel imple- 
mentation of a forward and reverse filter each of 
which operates over only one half of the data 
interval. At the point at which these computations 
meet, we can combine the estimates as in the 
Mayne±Fraser  smoother to obtain the smoothed 
estimate at that point, which can then be used to 
initialize parallel Rauch-Tung-St r iebe l  recursions 
on each subinterval. In this case the total 
processing time is proportional to the overall data 
interval (we have two parallel R a u c h - T u n g -  
Striebel algorithms over half the interval length) 
plus one additional calculation at the centerpoint. 
Data storage consists of two filtered estimates, but 
each over only half of the data interval. Note also 
that each of the processors needs to access only 
half of the data and the communications between 
processors is limited to the very simple trading of 
filtered estimates at the common interval end- 
point. 

In this paper we present the generalization of 
this simple algorithm to finer subdivisions of the 
data interval. As we will see, this can lead to 
significant reductions in processing time and data 
accessing requirements, with minimal inter- 
processor communication. When we divide the 
interval into three or more pieces, the question 
arises as to directions in which recursions should 
proceed in each subinterval. The algorithm we 
describe in Section 3 involves recursions that 

propagate radially outward toward and inward from 
the boundary points of each subinterval. The key 
to developing these recursions is the use of a joint 
dynamic model, described in the next section, for 
a stochastic process x(t)  and its time-reversed 
version x ( - t ) .  As we will also see in Section 2, 
considerable simplifications arise for the case of a 
stationary, time-reversible process if we transform 
the joint x(t), x ( - t )  dynamics into a form yield- 
ing the even-odd  decomposition of the process. A 
second question concerns the generalization of the 
Mayne-Frase r  combining step when we need to 
merge information at several boundary points. As 
we describe in Section 3, this generalization con- 
sists of a discrete two-filter-like computation in- 
volving only the interval end points. The result is 
a parallel procedure which has several attractive 
features and which is especially efficient for time- 
reversible processes. 

2. Outward dynamic models and even-odd decom- 
positions 

Consider the following, n-dimensional dynamic 
model defined for - ½ T < t < ½ T: 

~(t)  = F ( t ) x ( t )  + G( t )u ( t ) ,  (2.1) 

y( t )  = H ( t ) x ( t )  + v( t ) ,  (2.2) 

where u(t) and v( t )  are independent, zero-mean 
white noise processes with unit intensity, indepen- 
dent of the initial condition x ( - ½ T ) .  From [6] 
we have that the reversed-time Markovian model 
for x(t)  is given by 

- -X( t )  = - - I F ( t )  -{- G ( t ) G T ( t ) H  l ( t ) ] x ( t )  

- G( t )~ ( t )  (2.3) 

where H(t)  is the covariance of x(t)  satisfying 

~I(t) = F ( t ) H ( t )  + I I ( t ) F T ( t )  + G(t)GT(t)  
(2.4) 

and fi(t) is a unit intensity white noise indepen- 
dent of the future of x(t). If we define 

z ( t ) = Y l - l ( - t ) x ( - t ) ,  w ( t ) = f i ( - t ) ,  (2.5) 

some algebra yields 

~(t) = F T ( - - t ) z ( t )  -- I I - ' ( - t ) G ( - t ) w ( t )  
(2.6) 
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and combining this with (2.1), (2.2) yields the 
following 2n-dimensional dynamic model defined 
for 0 < t < ½T: 

0 
[ 2 ( t ) ]  [F(0t ) F T ( _ t ) ] [ X ( t )  
[ -~(t )  [ = [z(t) I 

G(t) 
+ 

0 

0 ] 
- / 7 - a ( - t ) G ( - t )  

[ u ( t )  
" [ w ( t )  ] (2.7) 

y ( - t )  (0 t)  0 ] [ x ( t ) ]  
H ( t ) I - I ( - t )  J[  z ( t )  j 

[ v ( t )  ] (2.8) 
+ L v ( _ t )  ' 

where, by construction, [ u T ( t ) ,  w T ( t ) ]  T and 
[vT(t), vT(--t)] T are independent, unit intensity 
white noise processes. Note that (2.7), (2.8) de- 
scribes a dynamic system for the joint evolution of 
x( t )  and x ( - t ) ,  propagating outward from 0 to 
± ½T. Note also that while (2.7), (2.8) appear to 
describe decoupled evolution for the two parts of 
the state, statistical coupling exists, thanks to the 
initial condition [x(0), z(0)] which has as its (sin- 
gular covariance) 

/ 7 ( 0 )  I ] 

I H - a ( 0 )  " 

To carry our analysis further, we focus on the 
time invariant stationary case, i.e. when F, G, and 
H are constant and x( t )  is a stationary process. 
We also assume that (F, G, H )  is a minimal reali- 
zation so that, in particular, the constant state 
covariance matrix H is the unique positive deft- 
nite solution of the Lyapunov equation 

F H  + H F  T + GG v = 0. (2.9) 

Also, without loss of generality, we can assume 
that G has full column rank and, thanks to the 
following result, t h a t / 7  is diagonal and that there 
exists a signature matrix 

S = diag(In~,- In2)' nl + n2 = n, 

such that 

SF = FTs. (2.10) 

Proposition. A minimal model of the form (2.1)- 
(2.2) with F, G, H constant and 17 satisfying (2.9) 
can be transformed into another minimal realization 
( F, G, H, 17) such that there exists a signature 
matrix S obeying 

SF  = fiTs, 

and such that ffl is diagonal. 

Proof.  First, use the transformation 

X( I ) = /7-1/2X( t ) 

tO obtain a new realization ( F, G, H, I } in which 
the variance of the state process is identity. Next, 
find a symmetric nonsingular P such that 1 

pf i  = fiTp. (2.11) 

Decompose P as 

p = VA1/ZSAX/ZvT 

where V is a nonsingular orthogonal matrix, A a/2 
is diagonal, and S is a signature matrix. Note that 
A1/zSA 1/2= SA has the eigenvalues of P on its 
diagonal. Apply the transformation 

~( t )  = A1/ZVTx(t) 

to obtain a new minimal realization ( F, G, H, A ). 
It is a simple matter to check that the state vari- 
alice 

E[ ~(t)y~V(t)] = A (2.12) 

is diagonal, and that 

s P =  fi ts .  [] 

Assume now t h a t / 7  is diagonal and that S and 
F satisfy (2.10), and consider the following change 
of variables, yielding the even and odd state 
processes respectively: 

x~(t)  = x ( t )  + Sz ( t ) ,  (2.13) 

Xo(t ) = x ( t )  - S z ( t ) ,  (2.14) 

and the even and odd observations ye(t) and 
yo( t ) as 

ye(t)  = y ( t )  + y ( - t ) ,  (2.15) 

yo(t)  = y ( t )  - y (  - t ) .  (2.16) 

1 The existence of a possibly nonsymmetric P (satisfying 
(2.11)) follows from the similarity of ff and fiT. However in 
this case, pT has the same property, as does the symmetric 
matrix P + pT (see also [6]). 
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From (2.7), (2.8), specialized to the stationary 
case, and (2.10) we find that 

= ~o(t)] 
n- l sa  l[w(t)J (2.17) 

with 

E[[xe(°)]ix:(0) x>~l] Ltxo(O)/ 
=[ (I+17j lS)(l~+S) /7--/7-1 ](2.18) 

H -  H -1 (1-  H-1S)(H - S) 

and 

ye(t)]=l[H(I+FIS)  H( l - l IS)][xe( t ) ]  
yo(t)J H( / - I IS )  H(l+IIS)][Xo(t ) 

1 
In general there is no particular reason to pre- 

fer the model (2.17)-(2.19) over the model (2.7), 
(2.8). However, we do obtain a considerable sim- 
plification if the process y( t )  is statistically time 
reversible [7], i.e. if E[y(t)yT(O)] is symmetric for 
all t (note that this is always true if y ( t )  is scalar). 
In this case the results of [7] imply that 

1 7 = I ,  H S =  H, S G =  GO (2.20) 

where Q is an orthogonal matrix. From this we 
find that (2.17) reduces to 

[2(e(t) ] 0][Xe(t ) 0 
FjL o t)] 

0o]r , t, L.~(t)] (2.21) 
where ~l(t)  and ~2(t) are independent white noise 
processes of unit intensity. Also the initial covari- 
ance for (2.21) is 

4 diag(I~,, 0, 0, I~2) 

so that Xe(t ) and Xo(t) are independent processes 
(note that the initial uncertainty in x(0) is distrib- 
uted between Xe(0 ) and Xo(0 ) according to the 
structure of S). Furthermore (2.19) becomes 

Ye(/) [Xe(t) [+1(t) ,o(,,]:[0" o] ] Lxo(t) L82(t) 
(2.22) 

where ~l(t) and ~2(t) are independent white noise 
processes with unit intensity, so that the even and 
odd measurements are decoupled as well. 

3. The parallel smoothing algorithm 

In this section we describe a parallel algorithm 
for computing the optimal estimate of x ( t )  satisfy- 
ing (2.1) for T O < t 1 < T u given the measurements 
(2.2) over the same interval. The procedure we 
describe involves three steps. To begin, we divide 
[To, T N] into N equal intervals [~_ ~, T,], i = 
1 . . . . .  N, each of length T. 

Step 1. As illustrated in Figure 2(a) this step 
consists of the parallel computation of outward 
filtered estimates on each subinterval. Specifically, 
consider one of these intervals, say the i-th, and 
let - 1 T < t < 1T denote the independent varia- 
ble measured relative to the center of this interval, 
namely T, l +  ½T. Over this interval, we recur- 
sively compute 

~ ( t l - t ,  t)  and : ~ ( - t l - t ,  t)  

and their error covariances for 0 < t < ½ T, where 
~(s I - t, t) denotes the estimate of x ( s )  based on 
( y ( r )  l [ r  I < t }. Using the similarity transforma- 
tions as described in the preceding section, we see 
that this is a standard Kalman filtering computa- 
tion using, for example, the model (2.7), (2.8) for a 
general, time varying model or (2.21), (2.22) for 
stationary models with time-reversible outputs. 

r,, r,, r,, ,q  
k~' 'J) \~' 'U  \~' ' l) 

(o) 

) 0 0 ( 
(b) 

,~ (~, ,~ (~, ,~ (~, 
' j )  \~, ,J) \~' ,J) ~, 

(el 

Fig. 2. Parallel processing algorithm. (a) Step 1: Outward filter 
propagation. (b) Step 2: Communication among processors to 
estimate endpoints. (c) Step 3: Inward computation of 

smoothed estimate. 
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Step 2. Let us now revert back to the original time 
reference. From the endpoints of the subinterval 
computations of Step 1 we now have computed 

~(T-a IT-,, ~) and ~(T IT-a, T), 

i.e. the estimates of the endpoints given local data, 
and their corresponding error covariances 

P ( T - 1 1 T - ~ , T )  and P ( T I T - a , T ) -  

What we accomplish during the second step of the 
computation is to use these local estimates to 
compute x(T IT0, TN), i.e. the full smoothed 
estimate at each of the endpoints based on all of 
the data. The form of the required calculations, 
which can be deduced from the smoothing results 
of [8,9], consists of a Mayne-Fraser-like two-filter 
computation involving the endpoints only, as il- 
lustrated in Figure 2(b). In particular the forward 
recursion computes the estimates 

2 ( T _ ,  IT0, T/) and 2 ( T I T  0, T) 

and the corresponding error covariances as i in- 
creases, starting with initial conditions 

2(T0 17,0, 7"1) and 2(T  a IT0, 7,1). 

The processing involves communication from 
processor to processor as i increases, using only 
the endpoint filtered estimates computed in Step 
1. 

Specifically using the results of [8,9], we obtain 
the following recursions: 

~(T-~ 17,o, T) 

= e(T_,  17"o, T) 

" [P-a(T/_ 1 [To, T-1))~(T/-1 [To, Ti-l)  

+e-a(T-1 IT-l, T)~(T-a IT-l, T)], 
(3.1) 

~(T 17,0, T) 

= ~(r, IT-a, T) 

+ e ; ( -~r ,  ½r) 

• [~(T-a 17,o, T)-~(T-1 It,_1, T)]. 
(3.2) 

The covariance P(T-a  IT-l ,  T/) is one of the 
endpoint covariances computed in Step 1. The 
other covariances and quantities required in (3.1), 

(3.2) are computed recursively as follows (again 
based on [8,9]): 

e-l(T_a 170, T) 

= P-a(T,-1 IT0, T~-a)+ e - a (T , - ,  IT- l ,  T) 

- H -a,  (3.3)  

e(T IT0, T) 

= e(T IT-a, T) 

+ ~;( -  ~T, ~T) 

• [e(T-a 17,0, T ) - e ( T - a  IT-a, T)] 
• ~ r (  _ ½T, ½T) ,  (3.4)  

Here the transition matrix ~ for each interval is 
calculated as follows, where we again revert to the 
locally centered variable t: 

~ ( - ½ T ,  t) 

= (F( t ) - - ed ( t )nT( t )n ( t ) )~ ( - -½T,  t), 
(3.5) 

• ; ( - ½ T ,  - ½T) = I ,  (3.6) 

with Pd(t) computed from 

Pd(t) = F( t )Pd( t )  + Pd(t)FT(t)  

+ G(t )GT(t )  - pd( t )HV( t )H( t )Pd( t ) ,  

(3.7) 

e~(- ½7,) =0. (3.8) 

Alternatively, ~ o ( -  ½T, ½7,) can be obtained as 

• ;(-½7,, ½7,)= e(T_~, T)e-~(T_a IT-a, T) 
(3.9) 

(cf. [9]), where P(T-a ,  T) is the cross-covariance 
of the Step 1 filtering errors at t = T-1 and t = T, 
and is readily obtained from the Step 1 covariance 
calculations. The term / / -1  is subtracted in eq. 
(3.3) to account for the fact that the a priori 
information on x( .)  was used twice, in computing 
both 

2(T,-a ITo, T-a)  and 2 (T-a  IT- l ,  T)- 

In parallel with this forward recursion, there is 
also an analogous backward recursion. Specifi- 
cally, a set of equations for computing 

.~(TIT/,  TN) and P (TIT , ,  TN), 



258 A.H. Tewfik et al. / Parallel smoothing 

given 

)~(Tt+ 1 [Zt+l, TN) and P(T~+~ IX+,, TN) 

can easily be derived from [8,9], and in fact, this 
set of equations is very similar to the set of 
equations (3.3)-(3.6). 

Note that, at the end of this calculation, 

~ ( T i I T  0, T,) and ~(~[T~,  TN) 

and their respective covariances 

P(T, [To, T,.) and P(T,  IT,, TN) 

for all i are available, and can be used to compute 
the optimal smoothed estimates of x(t) at all of 
the endpoints, using standard smoothing results: 

IT0, TN) 

= Ps(T, ]To, TN)(p-I(Tg IT0, T,)~(T, [To, ~ )  

IT, IX, 7"N)), (3.10) 

IT0, TN)= P-I(  ITo, 

IT,, T N ) - H  ' 
(3.11) 

Step 3. In this last step, the data is processed in 
parallel in a radially inward direction toward the 
center of each interval, to yield the optimal 
smoothed estimate of x(t) for all t. Let us again 
revert to the locally centered time index for the 
i-th interval. The computation (3.10), (3.11) then 
provides us with the optimal smoothed estimate of 
x( .  ) at the endpoints. As illustrated in Figure 2(c), 
we can then use the Rauch-Tung-Str iebel  al- 
gorithm (based, for example, on the model (2.7), 
(2.8) or (2.21), (2.22)) starting from these end- 
points in order to reprocess the filtered estimate in 
an inward direction in order to compute the opti- 
mal smoothed estimate. Specifically let X~o(t) de- 
note the state of our outward model (i.e. as in (2.7) 
or (2.21)). Then the optimal smoothed estimate of 
Xeo(t), 2~o(t), for 0 < t < ½T is obtained as the 
solution of the backwards equation 

d ~ o ( t )  
dl  = ( ~ +  ~ f f fTp~°X( t ) ) xS ( t )  

-- fgfflTp~ol( t )~eo( t ) (3.12) 

with the initial condition ^s 1 Xeo(7 T)  obtained from 
Step 2. Here, the matrices ~- and ff are the 

dynamic matrices of the outward model (from 
(2.7) or (2.21)) and 2eo(t) and Peo(t) are the 
filtered estimate and error covariance calculated in 
Step 1. 

4. Computational complexity 

Let us first focus on the on-line complexity, 
both in terms of total computations required and 
the efficiencies due to parallelization. A careful 
examination of Steps 1 and 3 of our algorithm 
reveals that the total computational toad, in the 
worst case, is roughly ~ times the total load of the 
standard Rauch-Tung-Str iebel  algorithm. Since 
the actual run time of these two steps is propor- 
tional to 1/N times this load, we see that substan- 
tial savings in run time are achievable if a number 
of processors are used. Furthermore, in the re- 
versible case the total load of Steps 1 and 3 equals 
that of Rauch-Tung-Str iebel ,  yielding a further 
savings. Of course these savings are somewhat 
countered by the on-line computations involved in 
Step 2. Note that Step 2 only involves updating 
estimates at the interval endpoints, which, unless 
N is quite large, are quite few in comparison to 
the total number of data points. Thus the on-line 
load of Step 2 is typically negligible compared to 
that of Steps 1 and 3. It is worth noting, however, 
that the total run time for our algorithm is the 
sum of a term proportional to 1/N (Steps 1 and 3) 
and a term proportional to N (Step 2), so that 
there is an optimum number of processors in 
terms of minimizing run time. Note also that our 
algorithm offers advantages in data accessing, as 
each processor needs to use only a small part of 
the data, and the cost of this is the communication 
of n numbers (the forward and backward recur- 
sions of Step 2) to each of its neighbors. Note also 
that the total computational complexity of our 
procedure is lower than that of other parallel 
algorithms. 

Finally, let us briefly comment on the off-line 
complexity. In general the off-line computational 
requirements for Steps 1 and 3 are roughly twice 
those for the Rauch-Tung-Str iebel  algorithm, 
while in the reversible case the complexity for 
these steps is the same as for the standard al- 
gorithm. The off-line computations involved in 
Step 2 (given by (3.3), (3.4), (3.9), and (3.11)) are 
comparatively expensive per point, but again there 
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are usually relatively few such endpoints. Further- 
more for stationary processes (3.9) need only be 
calculated once. 

case the savings in run time and in data accessing 
should be even more dramatic. 

5. Conclusion 

In this paper we presented a new parallel 
smoothing algorithm based on a partitioning of 
the data interval and the use of outward dynamic 
models in each subinterval, leading to parallel 
outward-recursive processing in each interval, fol- 
lowed by the propagation of information concern- 
ing interval endpoints and then parallel inward-re- 
cursive processing. The total on-line computa- 
tional complexity of this procedure is at worst 
only marginally higher than that of non-parallel 
implementations. However, since a number of 
parallel processors are used, the running time of 
this algorithm is much smaller than that of single 
smoother procedures. A natural extension of this 
work is to consider parallel algorithms for smooth- 
ing for boundary-value processes - i.e. processes 
described locally by a model of the form (2.1)-(2.2) 
but with noncausal boundary conditions (cf. [10]). 
An interesting issue is the interpretation of infor- 
mation contained in data outside a particular in- 
terval as a boundary measurement. With such an 
interpretation, we should be able to use the results 
of Adams et al. [10] to derive another class of 
parallel smoothing algorithms. Furthermore it 
should also be possible to extend these ideas to 
estimation for two-dimensional fields, and in this 
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