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The solution and linear estimation of 2-0 nearest-neighbor 
models (NNMs) are considered. The class of problems that can be 
described by NNMs is quite large, as models of this type arise 
whenever partial differential equations are discretized with finite- 
difference methods. A general solution technique is proposed for 
2-0 NNMs that relies on converting the system into an equivalent 
I-D two-point boundary-value descriptor system (TPBVDS) of large 
dimension, for which a recursive and stable solution technique is 
developed. Under slightly restrictive assumptions, an even faster 
procedure can be obtained by using the Fast-Fourier Transform 
(FFT), with respect to one of the space dimensions, to convert the 
I-D TPBVDS into a set of decoupled TPBVDSs of low order, which 
can be solved in parallel. The smoothing problem for 2-0 random 
fields described by stochastic NNMs is then examined. The 
smoother is expressed as a Hamiltonian system of twice the 
dimension of the original system, and is also in NNM form. NNM 
solution techniques are therefore directly applicable to this 
smoother. Our results are illustrated by two examples, correspond- 
ing to the discretized Poisson and heat equations, respectively. 

I. INTRODUCTION 

In two dimensions, a large class of physical processes can 
be described by nearest neighbor models (NNMs): When 
finite-difference methods are used to discretize linear 2-D 
partial differential equations of arbitrary type (hyperbolic, 
parabolic, or elliptic), and of any order, the resulting finite- 
difference approximation can usually be expressed in the 
form of a vector NNM. Consequently, it is not surprising 
that NNMs have been employed widely to model 2-D sto- 
chastic images [1]-[4], particularlyfor image restoration and 
coding, as well as for the control and estimation of dis- 
tributed parameter systems. 

This paper i s  concerned with the development of effi- 
cient estimation algorithms for 2-D random fields described 
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by stochastic nearest-neighbor models over a rectangular 
domain, when local boundary conditions, which include as 
special cases periodic, Dirichlet, and Neumann conditions, 
are imposed on the domain boundaries. As NNMs have an 
acausal structure, we shall focus our attention on the NNM 
smoothing problem, because this problem is also acausal, 
in the sense that the measurements need not be produced 
according to a specific order in 2-D space. A system is  said 
to be acausal if for an arbitrary partition of points in space 
between "past" and "future," future outputs are allowed 
to depend on both future and past inputs. Thus, both the 
class of 2-D estimation problems that we examine and the 
NNMs that are used to formulate these problems are com- 
pletely acausal. This i s  in contrast with early attempts at 
deriving 2-D estimation algorithms, which mimicked the 
structure of I -D  Kalman filters by introducing artificial 2-D 
causality concepts, such as quarter-plane or asymmetric 
half-plane causality (see the discussion appearing in [5, ch. 
41). On the other hand, because our goal is to obtain effi- 
cient estimation procedures, thealgorithms thatwedevelop 
for the NNM smoothing problem are recursive and are 
obtained by breakingdown noncausal processing steps into 
parts that are causal. As the original problem i s  noncausal, 
there i s  generally a large amount of flexibility in the choice 
of recursion directions for the algorithms that we propose 
and, consequently, causality appears as a computational 
artifice, not as a modeling assumption. 

The approach used here to formulate the NNM smooth- 
ing problem relies on the general results developed in [6]- 
[8] for the solution of estimation problems for boundary- 
value stochastic processes. From a historical point of view, 
I -D boundary-value systems and processes were first intro- 
duced by Krener [9]-[Ill in order to study the internal struc- 
ture of acausal systems and to formulate the stochastic real- 
ization problem for non-Markov processes such as 
reciprocal processes. In [6], [7], a general solution tech- 
nique was developed for the estimation of boundary-value 
stochastic processes in one or several dimensions. This 
approach is extremely general, and relies on the so-called 
method of complementary models introduced by Weinert 
and Desai [I21 for the study of the smoothing problem for 
I -D  causal systems. Specifically, it is shown that given both 
an internal model and appropriate boundaryconditions for 
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a boundary-value process, the smoothed estimate satisfies 
a Hamiltonian system of twice the size, and therefore of 
twice the order, of the original model. The reason the size 
i s  doubled i s  that it i s  necessary to estimate not only the 
state of the internal model of interest, but also the state of 
the complementary model. This approach was used to study 
the smoothing problem for l -D continuous boundary-value 
processes in [8], and for boundary-value I -D  descriptor sys- 
tems in [13]. Some rough results for the 2-D NNM smooth- 
ing problem were presented in [6, ch. 61, and the present 
paper i s  in fact an improved version of this earlier work. 
Subsequently, the complementary model technique was 
also used by Riddle and Weinert [14]-[I61 to study the 2-D 
smoothing problem for the Helmholtz equation and for 
2-D hyperbolic systems. Together with the present paper, 
these contributions illustrate the wide applicability of the 
boundary-value process smoothing solution proposed in 
[61, VI. 

An interesting feature of the NNM smoother i s  that it i s  
itself in NNM form.Thus, the class of NNM systems i s  closed 
under the smoothing operation. This property i s  rather sat- 
isfactory, as it indicates that NNMs are "natural" models 
for the study of noncausal estimation problems. From a 
practical point of view, becausewe seek to develop efficient 
estimation algorithms, this implies that it i s  important to 
obtain efficient NNM solution techniques. The solution 
proposed in this paper consists in solving the 2-D model 
in I -D fashion by writing the 2-D NNM dynamics column- 
wise in the form of al -D boundary-value system of very large 
dimension. This I - D  system has second-order dynamics, 
but can be rewritten as a I -D two-point boundary-value 
descriptor system (TPBVDS) of the type examined in 1171- 
[20], for which a number of recursive solution techniques 
involving different concepts of causality can be employed. 
Under slightly more restrictive conditions, this I -D  system 
can be decoupled into afamilyof low-order I -D subsystems 
by a fast-Fourier transform (FFT)-based transformation. This 
decoupling technique is  an extension of a method used by 
Hockney[21] toobtain fast Poisson solvers, and later applied 
by lain and Angel [22] to a 2-D estimation problem. 

In Section II, we describe 2-D NNMs, as well as the class 
of local boundary conditions that are used to specify the 
solution of these models. These conditions include as spe- 
cial cases periodic, Dirichlet, and Neumann boundary con- 
ditions. The transformation of a2-D NNM into a I -D TPBVDS 
isdiscussed in Section I l l ,  and ageneral solution technique 
is obtained for the transformed system. The FFT solver i s  
presented in Section IV for the case where the NNM sat- 
isfies periodic boundary conditions, or has vertically sym- 
metric dynamics with Dirichlet or Neumann conditions. The 
smoothing problem for stochastic 2-D NNMs is formulated 
in Section V, and the Hamiltonian system satisfied by the 
smoothed estimate i s  described and shown to be in NNM 
form. Section VI discusses two examples of 2-D NNM 
smoothers, corresponding to the discretized 2-D Poisson 
and heat equations, respectively. It is shown that the FFT 
decoupling technique of Section IV is  applicable to both 
of these examples. 

II. 2-D NEAREST-NEIGHBOR MODELS 

The 2-D nearest-neighbor models (NNMs) that will be 
considered in this paper are of the form 

x,,\ = A+-,,, + A2~1+1,/ + A~x,,,-I + A~X, , /+ I  + Bul,/ 

(1 1 

z,,, = CXJ,/ (2) 

where the state x ,  input U, and output z are vectors of 
dimension n, m, and p respectively, and Ak with 1 I k I 
4, B, and Care matricesof correspondingdimensions. Equa- 
tion (1) indicates that the state at point (i, j )  i s  specified by 
U,,,,  and by the states at points immediately to the left, to 
the right, above, and below point (i, j ) .  This explains why 
(1) i s  called a nearest-neighbor model. 

Models such as (I) and (2) arise naturally from the dis 
cretization of 2-D partial differential equations by finite dif- 
ference methods, as as can be seen from the following 
examples. 

Examples: NNM form of finite-difference discretizations 
ofPDEs. For each of the 2-D examples discussed below, the 
continuous space variables are denoted as t and s, and the 
corresponding discretized variables are i and j ,  respec- 
tively. Furthermore, except for the heat equation, it i s  
assumed that the same mesh size h i s  used to discretize t 
and s. 

a) Poisson equation: The discretized form of 

V2X(t, s) = u(t, s) (3) 

i s  given by 

which i s  exactly in the form (1). 
b) Heat equation: Let 

(5) 

where CY > 0. If t and s are discretized with mesh sizes h 
and k, that is, t = ih and s = jk, and if  backwards and central 
difference schemes [23] are used, respectively, to discretize 
axlat and a2x1as2, we obtain 

mx,,, = & - l , /  + dX1,/-1 + 4 , / + 1 )  + bu,,, (6) 

where m = 1 + 2ahlk2, n = ah/k2 and b = h. This model 
can then be brought to NNM form by dividing both sides 
of (6) by m > 0. Equation (6) corresponds to an implicit dis- 
cretization of the heat equation (S), where to compute xl,(  
for increasing values of i, it i s  necessary for each value of 
i to solve a linear system of equations for the coupled 
variablesx,,,, wherejvariesover all indexvalues. It i s  shown 
in [23, p. 691 that this discretization scheme i s  uncondi- 
tionally stable-it is stable for al l  choices of mesh sizes h 
and k. The motivation for selecting different meshes h and 
k to discretize t and 5 i s  that, to approximate the first-order 
derivative of xwith respect to t and the second-order deriv- 
ative with respect to s with the same degree of accuracy, 
one must have h = O(k2). 

c) Biharmonic equation: Vector NNMs can arise in a 
variety of ways. One of them is of course from the discre- 
tization of higher-order PDEs, such as 

(7) V4X(t, s) = u(t, s). 

This equation can be decomposed as 

V2X(t, 5) = E(t, s) v2ut, 5) = u(t, SI. (8) 
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Then, using the discretization (4) of the Laplacian, and 
denoting 

we obtain 

(9) 

which, after inversion of the matrix multiplying X,,, is ir. 
NNM form. 

d) Poisson equation with a crossover term: Vector 
NNMs can also arise if  higher-order schemes are used to 
discretize second-order PDEs. Sometimes the use of a 
higher-order scheme is  dictated by the structure of the PDE 
itself. Consider for example 

( IO)  
a2 a2 

which is elliptic, provided that parameter a i s  such that Jal 
< 2. Then, when a first-order finite-difference discretiza- 
tion scheme is used to approximate the above equation, we 
obtain the following 9-point stencil model 

1 
XI,/ = 4 (X1-1,/ + XI+ l , /  + %,/-I + XI,/+') 

(11) 

where x, ,~ depends not only on its four nearest neighbors, 
but also on values of x at the four corners (i - 1, j - I), (i 
+ I , /  + I), (i - 1, j + I), and (i + 1, j - 1). It can be trans- 
formed to NNM form by state augmentation. Thus, if 

x:/ = ~ ~ , , / - l ~ l , / ~ l , / + l l  

the model (11) can be rewritten as 

0 0  0 0 0  

X I , /  = 

0 0 0  0 0  

(1 2) 

which is now in NNM form. Note that even though the sec- 
ond-order PDE ( I O )  i s  scalar, the state Xi,i has dimension 3. 
This is due to the presence of the crossover term aa2x(t, s)/ 
atas in (IO). 

For simplicity, it will be assumed below that model (1) is 
defined over the rectangular domain 1 5 i I I - 1, 1 I j 
I J - 1. Then, in addition to model (I), some boundarycon- 
ditions need to be specified. What constitutes a proper set 
of boundary conditions depends on the exact type of the 
partial difference operator (1) or the underlying PDE from 
which it comes. For example, if this operator i s  elliptic (non- 
causal), initial-value problems are ill posed. A general 
framework for specifying boundary conditions, which can 
accomodate operators of all types, and which can be used 
to model a wide class of PDE boundary conditions, consists 
in assuming that the boundary conditions on the edges of 
the rectangle 0 5 i 5 I ,  0 5 j 5 J are local in the sense that 
they involve only neighboring points along the boundary. 
An exception is that some coupling i s  allowed between 
points on opposite sides of the rectangle, enabling us to 
model periodic boundary conditions. We consider, there- 
fore, the following general form for NNM boundary con- 
ditions. 

Horizontal conditions: 

with 0 s j 5 J. 

Vertical conditions: 

V,x,,o + Wgx,,i + Vrx,,/ + WrX,,/-i = dv,, (13b) 

with 1 5 i I I - 1. 

The subscripts L, R, T, and B denote the left, right, top, and 
bottom edges of the rectangle, respectively. 

In (13a) and (13b), it i s  assumed that the boundary matri- 
ces VE and WE, with E = L,  R, B, T have size 2n x n. Thus, 
in conjunction with NNM model (I), the horizontal bound- 
ary conditions (13a) provide enough constraints to specify 
the states x0,/ and xI,/ with 0 5 j I J on the left and right 
edges of the rectangle Q = [0, I ]  x [0 ,  /I. Similarly, the ver- 
tical conditions (13b) introduce sufficient constraints to 
enable the specification of x , , ~  and xl,, with 1 I i 5 I - 1 
on the bottom and top edges of Q .  Note that there is a slightly 
asymmetry in the above specification, in the sense that the 
horizontal boundary condition (13a) holds fo r j  = O,J,  which 
has the effect of adding enough constraints to specify the 
corner states x ~ , ~ ,  x0,/, x / , ~ ,  and xI,/. However, this i s  clearly 
an arbitrary convention, and we can just as well use the ver- 
tical condition (13b) to specify the corner states. 

The conditions (13) are local since they involve only pairs 
of points located on opposite sides of the rectangle 0. Spe- 
cifically, the horizontal condition (13a) couples points ( O , j ) ,  
(1, j )  located along the left edge of Q with points (I, j )  and 
(I - 1,j) on the right edge, where all these points have the 
same row indexj. Similarly, thevertical condition (13b)cou- 
ples two pairs of points along the bottom and top edges of 
rectangle Q ,  respectively, and with the same column index 

The motivation for coupling points located on opposite 
edges of Q is that we want to be able to impose periodic 
boundary conditions. For example, if the horizontal con- 
dition (13a) takes the form 

1. 

XO,/ = x / - ~ , /  xl,/ = xI,/ fo r0  I j 5 J (14) 

the NNM system (1) can be viewed as being defined over 
a discretized cylinder with index set Q ,  = [I, I - I ]  x [0, J ] .  
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Then, after imposing periodic horizontal conditions, if we 
also select periodic vertical boundary conditions 

x,,O = x,,J-?, x , ,~  = x,,~ for 1 5 i 5 I - 1 (15) 

the NNM i s  now defined over a discretizedtorus, with index 
set QT = [I, I - I ]  x [ I ,  J - I] .  

Another interesting subclass of boundary conditions (13) 
corresponds to the case when the boundary conditions on 
the left and right, and bottom and top edges of Q are sep- 
arable, in the sense that independent boundary conditions 
are specified on each edge of Q .  In this case, the boundary 
conditions (13) take the form 

VLXO,/ + WLxl,) = dL, /  

VRX/,/ + W R X / - ~ , ~  = dR,/  

0 5 / 5 J 

O 5 / 5 J 

(1 6a) 

(16b) 

 VEX,,^ + WEX,,~ = ds,, 1 5 i 5 I - 1 (16~)  

VTx,,I + WTx,-l,l = dT,, 1 5 i 5 I - 1 (16d) 

where the boundary matrices VE and WE with E = L, R, 6, 
T have size n x n. Boundary conditions of this type arise 
extremelyfrequently in the study of PDEs, and in particular 
can be used to model Dirichlet or Neumann boundarycon- 
ditions, as i s  shown by considering several examples. 

Examples: Boundary conditions for discretized PDEs in 
NNM form. The PDEs considered in the following examples 
are assumed to be defined over the rectangle [0, T ]  x [0, 
SI, where if h and k are the mesh sizes used to discretize 
the continuous variables t and s, we have T = Ih and S = 
Jk. Also, as for the PDE discretization examples considered 
earlier in this section, it will be assumed that h = k, except 
for the discretization of the heat equation. 

a) Consider the Poisson equation (3) with the mixed 
boundary conditions 

a 
at 

a 

a 
as 

a 
as 

-mL - x(0, s) + nLx(O, s) = dL(s) (1 7a) 

mR x(T, S) + nRx(T, S) = d&) (17b) 

-mB - x(t, 0) + n,x(t, 0) = dE(t) (17~)  

mT - x(t, S )  + nTx(t, S )  = dR(t). (17d) 

These boundary conditions reduce to Dirichlet conditions 
when mE = 0 and nE = 1 for E = L, R, 6, T, and to Neumann 
conditions when mE = 1 and nE = 0 for all values of index 
E. Then, a straightforward discretization yields 

VE = n E  + mE/h WE = -mE/h (18) 

for E = L, R, 6, T, and the boundary vectors appearing in 
(16) are given by dE,k = dE(kh), where the index kvaries over 
[0, J] for E = L, R, and over [0, I ]  for E = B, T. 

b) Consider now the heat equation (5)  with initial con- 
dition 

x(0, s) = f(s) (19a) 

and boundary conditions 

x(t, 0) = gE(t) x(t, S )  = gT(t). (1%) 

After discretization, we find 

VE = 1 WE = 0 for E = L, 6, T (20a) 

with 

dL,/ = f ( j k )  d ~ , ~  = gdih) d,, = g,(ih). (20b) 

In the above formulation, no boundary condition i s  spec- 
ified on the right edge of Q .  This is unsatisfactory, because 
our NNM formulation requires thatthere should be as many 
constraints as there are variables to be computed. The key 
step i s  to observe that, as the discretized equation (6) is 
causal with respect to time, the values of xI,/ on the right 
edge do not affect any of the other variables, and can there- 
fore be assigned arbitrarily, so that the boundary condition 
on the right edge is  assumed to have the form 

where dR,/ is arbitrary. 
c) Examine the Poisson equation (11) with a crossover 

term, and with Dirichlet boundary conditions obtained by 
setting mE = 0 and nE = 1 in (17). Then, a simple discret- 
ization of these conditions i s  not sufficient to specify the 
NNM boundary conditions, because, as was observed 
above, we must consider the vector NNM system (12). Fur- 
thermore, owing to the state augmentation procedure used 
to construct Xi,/, if the scalar discretized PDE (11) is defined 
over the domain [0, I ]  x [0, J], the domain of definition of 
NNM (12) i s  only [0, I ]  x [I, J - I ] .  Over this domain, the 
discretized Dirichlet boundary conditions for the scalar 
equation can be rewritten in the NNM form (16) as 

Ill. SOLUTION OF BOUNDARY VALUE NEAREST-NEIGHBOR 
MODELS 

In this section, a method for computing the solution of 
the boundary-value problem specified by the NNM dynam- 
ics (1) and boundary conditions (13) i s  described. The 
method employed relies on a column stacking operation, 
whereby the variables x l , /  along the ith column of the rect- 
angular domain Q are combined to form a large state vector 
xi.This procedure i s  used to transform the2-D NNM dynam- 
ics, as well as the boundary and corner conditions, into an 
equivalent I -D two-point boundary value system of very 
large size with second order dynamics. This I -D  dynamical 
system is then formulated as a I -D  two-point boundaryvalue 
descriptor system (TPBVDS) of the type studied in [171-[20]. 
Using a TPBVDS solution technique proposed in [17, app. 
B] and [13], a recursive procedure i s  obtained for solving 
NNM models. It relieson decouplingtheTPBVDSdynamics 
into forward and backward stable filters with zero initial 
and final conditions, respectively. The true boundary con- 
ditions are then taken into account by adding a correction 
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term to the solution obtained for zero boundary condi- 
tions. 

A. Column Stacking and Well Posedness 

This section established the notation that will be used in 
the remainder of this paper. As indicated above, the first 
step of our solution i s  to perform a column-stacking oper- 
ation, where the state, input, and output vectors along the 
ith column of rectangle Q = [0, I] x [0, /] are represented 
by 

XT = N o  X l l  . . . x;/-1 .;/I, 4 = [U:, . . . &lI 

(224 

z: = [zlo z;1 . . . .;/-I .,:/I. (22b) 

Here x,, uI, and z, have dimensions nu + I), mu - I), and 
pU + I), respectively. Note that x, and z, have two more block 
entries that U,, because x , , ~  and zl,/ are defined on the edges 
of the rectangular domain Q ,  whereas ul, /  i s  only defined in 
the interior. Then, by combining the NNM relations (1) for 
afixed value of i and 1 I j I / - 1 with the vertical boundary 
conditions (13b) for the same value of i, we obtain the I -D  
dynamics 

1 5 i 5 I - 1 (23) 

(24) 

where 0 denotes the Kronecker product of two matrices 
[24], with 

@ + x , + ~  + sox, + k x , - ,  = n, 

z, = (I 0 o x ,  

=[ -A1 

0 

and 

As the boundary matrices V,, V T ,  WE, and W, have size 2n 
x n, it i s  easy to check that the matrices ak with k = 0, -, 
+ are square and have dimension nu  + 1). The relation (23) 

defines, therefore, a I - D  system with second-order dynam- 
ics evolving over the interval [0, I ]  and driven by inputs n, 
which are expressed in terms of the inputs U, , /  of the NNM 
and of the boundary vector dv,l associated with the vertical 
conditions on the bottom and top edges of rectangle Q .  

By considering also the horizontal NNM boundary con- 
dition (13a) on the left and right edges of Q ,  we obtain the 
boundary condition 

r L X o  + A L x ~  + rRx/ + AXI-1 = dH (26) 

for system (23), where 

rL = I @ v[ rR = I @  VR (27a) 

A L = l @  WL A R = I @  WR (27b) 

and 

dL = [d;,, dL,1 * . . d&, / - i  dL,& (27~) 

Noting again that the boundary matrices V,, VR and WL, 
WT have size 2n x n, it i s  easy to check that rL, rR, AL, and 
AR have size 2(/ + l ) n  x (1 + l)n, and that vector dH has 
dimension 2g + 1)n. Thus, the boundary conditions (26) 
and dynamics (23) define a boundary value system over [0, 
I], where the number of constraints imposed by (23) and (26) 
equals the total number of variables that need to be com- 
puted, namely vectors x, for 0 5 i I 1. One possible method 
of solving this system consists in combining all the equa- 
tionsthat defineit intoasinglematrixequationofverylarge 
dimension of the form 

E x  = n (284 

X T  = [ x i  . . . x:] nT = [dL n: n; n:- 1~ 

(28b) 
where 

a+ 
. . .  

AR a- a0 a+ 

0 

. . .  

(29) 

i s  a matrix of size (I + 1)(1 + 1)n. Then, the I -D boundary- 
value system (23), (26) i s  well posed over interval [0, I]- that 
is, there exists a unique solution x, with 0 5 i 5 I for all 
possiblechoices of inputs n,and boundaryvector dH, if and 
only if E is  invertible. Because system (23), (26)was obtained 
from theoriginal NNM by column stacking, the invertibility 
of E i s  therefore a necessary and sufficient condition for the 
well-posedness of the NNM (I), (13). Note that the concept 
of well-posedness i s  used here in a mathematical sense, 
where we require only that the matrix equation (28a) admit 
a unique solution. By contrast, for numerical well-posed- 
ness (in order to guarantee that the solution of (28a) does 
not change significantly for small perturbations of the 
matrix E), C would need to have a low condition number 
[25, p. 27. By using an argument similar to the one appear- 
ing in Theorem 1 of [26], it i s  also easy to check that the in- 
vertibility of E implies that the second-order dynamics (23) 
must be regular. Thus, the determinant of the polynomial 
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matrix 

9(z) = 9+z* + #?.,z + #?- (30) 

i s  not identically zero for all z. 
In practice, the matrix E has such a huge dimension that 

it is neither possible nor desirable to invert it directly. In 
the special case when E i s  obtained by discretizing an ellip- 
tic PDE, iterative inversion methods, such as the successive 
overrelaxation (SOR) [27, preconditioned conjugate gra- 
dient [25,ch.10Ilor multigrid[28]methodscan beemployed 
to solve (28a). Although these solution techniques are lim- 
ited in scope, they are usually more efficient than thetotally 
general solution technique described below, which applies 
to NNM operators of all types. 

B. Stable Two-Filter Solution 

Thegeneral solution technique that we propose relieson 
transforming the I -D dynamics (23) in such away that stable 
forward and backward recursions can be used to compute 
x,. In some sense, this method falls within the class of 
marching methods [29], [30]. Marching methods were orig- 
inally developed when itwas realized that, by column stack- 
ing, noncausal 2-D models such as (1) could be transformed 
into I -D  dynamical systems such as (23). Then, in the special 
case when 9, i s  invertible, (23) can be expressed as 

x,+, = -'P;'[+.,x, + #?-x,-, - n,] (31) 

which i s  now a causal system that can be used to compute 
x, recursively, provided that the boundary condition (26) is 
properly taken into account. In addition to requiring that 
either 9+ or #?- be invertible, one major drawback of the 
naive approach described above is  that there i s  no guar- 
antee that the causal system (31) i s  stable. An important crit- 
icism of marching methods, at least in this simplistic form, 
has therefore been that they are numerically unstable, and 
are not appropriate for solving NNMs on large lattices. The 
solution presented here can be viewed as a stabilized 
marching method, where instead of attempting to propa- 
gate the whole system (23) in the forward (or backward) 
direction, we break it into smaller parts, which are stable 
when propagated in their respective forward and backward 
directions. 

Instead of considering directly the second-order system 
(23), we transform it into a TPBVDS of the type examined 
in [17]-[20]. To do so, consider the augmented state 

Then, the dynamics (23) and (24) and boundary condition 
(26) can be expressed as 

(33) Eq,,, = Fq, + Gn, 1 5 i 5 I 

2 ,  = Hq, (34) 

and 

uLql + uRql = dH 

respectively, where 

(35) 

UL = [A, U R  = [ r R  ARl. (36~) 

The relations (33)-(36) define a TPBVDS over the interval [I, 
I ] .  This system has first-order dynamics, and it i s  easy to 
check that 

(37) 

where 9(z) i s  the second-order matrix polynomial defined 
in (30), so that no new dynamics have been introduced by 
going from (23) to (33). Owing to the simple nature of the 
augmentation procedure(32), wecan alsoconcludethatthe 
TPBVDS (33)-(36) is well posed over the interval [I, I ]  if and 
only if the second-order system (23) with boundary con- 
dition (26) i s  well posed over [0, I], which in turn was shown 
to be equivalent to the well-posedness of the original NNM 
system. It has been shown [ I 7  that an arbitrary TPBVDS of 
the form (33), (35) i s  well posed if and only if the matrix 

s = u~E'-' + uRP' (38) 

i s  invertible. The invertibility of S in (38) can therefore be 
used to characterize the well-posedness of the NNM (I), 
(13). As the size of this matrix i s  "only" 2( j  + l)n, the inver- 
tibility of S is  much easier to test than that of the matrix E 
which was used to characterize NNM well-posedness in 
(28a). 

At this point, the NNM problem has been reduced to the 
solutionofaTPBVDSoverafinite interval.Thesystem struc- 
ture of TPBVDSs was studied in detail in [17-[20], and sev- 
eral solution techniques were proposed in [17, app. B] and 
[13]. As mentioned previously, the solution described here 
relies on breaking the descriptor dynamics (33) into smaller 
parts that arecausal and stable in the forward and backward 
directions, respectively. Specifically, because the NNM that 
we consider i s  assumed to be well posed, the matrix pencil 
z€ - F i s  regular, and according to Weierstrass's canonical 
decomposition of a regular pencil [31], there are some 
invertible matrices M and T such that 

Iz€ - F (  = I9(t)J 

where theeigenvalues of matrices Ffand Fb have magnitude 
less than or equal to 1. Reliable numerical methods for per- 
forming the decomposition (39) are described in [32]. Fur- 
thermore, if Iz€ - F J  has no zero on the unit circle, then all 
theeigenvaluesof Ffand Fbare strictly insidethe unit circle. 
If we define Bf and Bb such that 

MB = 

then the transformed state variables 

satisfy the forward and backward recursions 

qr,,+1 = Ffqf,, + Bfn, 

qb,r = Fbqb.,+l - Bbnv 

632 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 4, APRIL 1990 



These recursions are asymptotically stable if zE - F has no 
zero on the unit circle. Under the transformation (41), the 
boundary condition (35) takes the form 

where 

[UL,f UL,b] = ULT-’ [UR,f  UR,bl = URT-’. 

Note that although the forward and backward dynamics 
(42a) and (42b) for q f  and qb are decoupled, the boundary 
conditions remain coupled, so that q f  and qb cannot be 
computed separately. Let q:,, and q:,, be the solutions of 
(42a) and (42b) with zero initial and final conditions, respec- 
tively. Then 

qf,i = F;-’qf,l + 4, (45a) 

qb.1 = Fb-jqb,, + d.i, (45b) 

Substituting(45) inside(43),and solvingforqf,, and qb,,gives 

where 

K = [UL,f + UR,fF:-l UR.6 + U~,bFb-l]. (47) 

Note that the transformation (39)-(41) does not affect the 
well-posednessof theTPBVDS, sothatthe matrixKis invert- 
ible i f  and only if S is invertible in (38). Finally, substituting 
(46) inside (45), we find 

(48) 

The solution in the original basis can then be obtained by 
inverting (41). 

From a practical point of view, the solution technique 
described above consists in propagating the forward and 
backward filters (42a) and (42b) for q:,, and q;,,, and then 
combining the resulting values with the boundary condi- 
tion (43) to obtain qf,, and qb,, via (48). The most compu- 
tationally demanding part of this algorithm i s  the com- 
putation of q?,, and q:,,. 

TheaboveTPBVDS solution i s  SimilartotheMayne-Fraser 
[33],[34] two-filter formula forthe I-Dfixed-interval smooth- 
ing problem. Although it may seem that there i s  little rela- 
tion between the fixed-interval smoothing problem for dis- 
crete-time causal systems and the solution of TPBVDSs, it 
turns out that the I -D discrete-time smoother can be 
expressed as a TPBVDS (see 16, section 5.3]), which expains 
why the same solution technique can be used for these two 
problems. 

The TPBVDS solution described here i s  not the only one 
that can bedeveloped. In [ l qan  alternative solution method 
i s  proposed that relies on stable recursions propagating 
inwards and outwards with respect to the center of the 
interval where the TPBVDS is defined. This choice is a man- 
ifestation of the fact that, because causality appears here 
only as a computational device, we are not restricted to pro- 
cess the 2-D NNM data in any particular order. 

IV. FFT SOLVER 

One drawback of the NNM solution described above i s  
that the vectors x, obtained by column stacking have very 
large size. The matrices E and F appearing in the TPBVDS 
(33)-(36) have size 2(/ + l )n ,  and therefore the matrices Ff 
and Fb obtained by pencil decomposition have a very large 
dimension. In addition, even if  E and Fare sparse, there is 
no guarantee that Ff and Fb will also be sparse, so that the 
forwards and backwards recursions (42) require in general 
a large amount of computation. In this section, we consider 
several special cases where some additional structure is 
present, which can be exploited to obtain fast NNM solvers. 
Specifically, we consider the cases where a) the NNM i s  
defined over adiscretized cylinder, and b) the NNM dynam- 
ics (1) satisfy the symmetry condition A3 = Ad, and the 
boundary conditions on the bottom and top edges are either 
of Dirichlet or Neumann type. For these cases, the FFT or 
the discrete sine and cosine transforms (DST, DCT) can be 
used to transform the high-order TPBVDS obtained in (33)- 
(35) into decoupled low-order I -D TPBVDSs, which can be 
solved in parallel. As fast algorithms can be used to imple- 
mentthe FFT, DSTand DCTand their inverses, this solution 
technique i s  very efficient. It i s  worth noting that the use 
of the FFT was first proposed by Hockney [21] to obtain a 
fast Poisson solver. The FFT was later employed by lain and 
Angel [22] (see also lain [35]) to obtain an efficient solution 
fora2-Destimation problem expressed in termsof the Pois- 
son equation, and it was used in [14]-[I61 to get fast smooth- 
ing algorithms for hyperbolic PDE models. The fast NNM 
solver described here can beviewed as an extension of these 
earlier results. 

A. NNM Over a Discretized Cylinder 

conditions (14a) are periodic 
In the first case, it is assumed that the vertical boundary 

x , , ~  = x , , , - ~  x,,, = x,,, for 1 5 i 5 l - 1 (49) 

in which case the domain Q corresponds to a discretized 
cylinder. Then, it i s  easy to check that the components x , , ~  
and x,,, need not be included in the stacked vector x,, whose 
dimension is therefore only n() - I), and in (23), we can 
identify 

a,, = l @ I - Z,’@ A3 - Z ,  @ A4 

a- = - I  @ Al 

(50a) 

a+ = -I @ A2 n, = ( I  @ B)u, 

(Sob) 

where Z, is the (/ - 1) x () - 1) circular shift matrix 

r o  I 1 

I O l O l  
I n I  

The special structure of the I -D  system specified by (23), 
(26), (27), and (50) can be exploited by performing a state 
transformation on x, which decouples this system into / - 
1 subsystems of dimension n. To do so, let D be the (1 - 
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1) x (1 - 1) discrete Fourier transform (DFT) matrix with 
entries 

dk,/ = ’ 1 5 k,  j I 1 - 1 (52a) 

where 
(52b) 

The matrix D has the property that it is  unitary, that is, 

= e-l2H/O-l) 

DDH = DHD = I ,  and it diagonalizes Z,, so that 

Z, = DADH with A = diag { U ’ - ’ } .  (53) 

Then, consider the state transformation 

(DH (23 O x ,  = E, = [.ill . . t t ,  . . t:,-lIT (54a) 

where the new state vector E ,  is  partitioned into subvectors 
E,,, of size n. Similarly, let 

(54b) 

where U ,  and 6 are also partitioned into into vector entries 
U,,/ and 6,. Using the transformation (54), and taking into 
account (50), (53), as well as the Kronecker product iden- 
tities 

(A 8 8) (C  @ D) = AC 8 8D 

(DH 8 /)U, = U ,  (DH 8 I)dH = 6 

(A C3 B) - ’  = A-’  Q3 5- ’  
(55) 

the I -D system (23), (26) i s  transformed into] - 1 decoupled 
subsystems of the form 

( I  - @-( / - ’ )A  3 - w/-’AJF,, /  = ATE,-i./ + A2F,+1,/ + Bu,,, 
(56) 

where 1 5 j 5 I - 1, and with boundary conditions 

Vita,, + W ~ t i . ,  + v~t,,, + WREJ-I,/ = 8,. (57) 

The dynamics (56) and boundary conditions (57) have 
exactly the same structure as the second-order boundary 
value system (23), (26). This system can therefore be 
expressed in TPBVDS form and solved by the two-filter solu- 
tion technique of Section 111. Theadvantageof this approach 
is that the decoupled systems (56), (57) have size n, whereas 
the system (23), (26) has dimension (1 + 1)n. Thus, the total 
numberof operations required to solvethefamilyof decou- 
pled systems (56), (57) i s  O(/]) ,  whereas the complexity of 
the algorithm presented in Section Ill i s  O(/]’). In fact, the 
most computationally demanding step of the fast NNM sol- 
ver described above i s  not the solution of subsystems (56), 
(57). It is the implementation of the transformations (54b) 
of the original inputs and boundary vectors and of the 
inverse transformation 

x, = (D 8 I)t, (58) 

which relates the solution of the decoupled TPBVDSs to the 
original coordinate system. Because of its Kronecker prod- 
uct form, the transform (58) consists of n decoupled FFTs 
of length] - 1, represented here by D.The number of oper- 
ations required by (56) is therefore O(/ log]), and, because 
this transformation as well as transformations (54) must be 
performed for every value of i, the complexity of the fast 
NNM solver described above i s  O(/) log ]). 

8. Vertically Symmetric NNMs 

NNMs defined over a discretized cylinder are not the only 
ones that give rise to fast solvers. When the NNM dynamics 

(1) have the vertical symmetry A, = A4 (which i s  the case for 
the Poisson and heat equations, as well as the biharmonic 
equation described in Section II), and when the boundary 
conditions on the bottom and top edges are of Dirichlet or 
Neumann type, it is possible to obtain fast solvers. 

We consider first the case of Dirichlet conditions. In this 
case, we have 

X,,O = d ~ , ,  XI,/ = d , ,  (59) 

sothat it isnot necessaryto includexl,oandxf,,inthestacked 
vector x, introduced in (32a). This vector has therefore 
dimension n(/ - 1). With thisobservation,thedynamics (23) 
take the form 

n, = ( I  @ + 

with 

n = z + z T  (61 a) 

where Z denotes here the ( J  - 1) x (] - 1) truncated shift 
matrix 

r o  1 1 

lo 
Let S denote the (] - 1) x (1 - 1) discrete sine transform 

(DST) matrix with entries 

= (;)I” sin (y y )  1 5 k, j I ] - 1. (62) 

The matrix S is symmetric and orthonormal, that is, S = ST 
and S2 = I ,  and it diagonalizes TI, so that 

STIS‘ = A = diag {A,} (63) 

where A, = 2 cos (id]) with 1 5 j I ] - 1. Thus, if we replace 
D H  by S in the state transformation (54a) and in the defi- 
nition (54b) of 6, and if we define 

(64) 

where n, is given by (60b), then the I -D system (23), (261, 
whose dynamics and boundary matrices are specified 
respectively by (60a) and (27), can be decomposed into ] - 
1 decoupled subsystems of the form 

Y, = (S @ On, 

( I  - XIAJE,,, = A I ~ - T , /  + A2Ei+1,/ + vi,/ (654 

with boundary conditions 

VLtO,, + WLtl,, + VRt,,, + WR€/-l , /  = 6, (65b) 

where 1 I j I J - 1. These subsystems can be written in 
TPBVDS form and solved in parallel. Furthermore, the FFT 
can be used to implement the discrete sine transform S, so 
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that the complexity of the resulting fast NNM solver i s  iden- 
tical to that of Section IV-A. 

Consider now the case where the NNM is such that A, 
= Ad, but where the boundary conditions on the bottom 
and top edges are now Neurnann conditions, that i s  

(66) 

for 1 5 i 5 I - 1. In this case, the expressions (60) for the 
I - D  dynamics remain unchanged, except that the matrix II 
appearing in these expressions i s  now defined as 

x i , o  - x i , l  = d ~ , i  xi,/ - x i , / - 1  = d,i  

II = Z + Z T  + diag {I, 0, * . . , 0, I} 

F 1  1 
1 0 1  

1 0  0 
1 - - 1 0 . - .  1 

0 1  

L 
In order to diagonalize II, we can use the (/ - 1) x (/ - 1) 
discrete cosine transform (DCT) matrix K whose entries are 

r i 1 / 2  [*J for, = I 

for2  5 j 5 

with 1 5 I S  1 - 1. The matrix K is  orthonormal, that is, K K J  
= K J K  = I ,  and it diagonalizes II, so that 

K ' I I K  = A = d' 1% { 4) 

- 1 

(69a) 

with 

Consequently, if K plays the same role as D and S in the 
state, input and boundary vector transformations consid- 
ered earlier in this section, the I -D  system (23), (26) with 
dynamics and boundary matrices given by (60) and (27) i s  
transformed into ) - 1 decoupled subsystems specified by 
(65), where the only difference is  that the eigenvalues A, 
appearing in these systems are now given by (69b). These 
subsystems can be solved in parallel, and as the FFTcan also 
be used to implementthe DCT, thecomplexityof the result- 
ing algorithm is O(/)  log )). 

V. NNM SMOOTHER 

In this section we examine the smoothing problem for 
2-D random fields described by a NNM driven by white 
Gaussian noise. Note that as NNMs are intrinsically acausal, 
the only linear estimation problem that preserves the acau- 
sality of the system formulation i s  the smoothing problem. 
Given noisy NNM observations over the rectangle Q ,  the 
general approach developed in [6],[7] for estimating bound- 
ary value processes i s  used to show that the smoother 
dynamics and boundary conditions are themselves in the 
form of a NNM of twice the size of the original NNM. Thus 
the class of NNMs, unlike say the class of I - D  causal sys- 

tems, is closed under the smoothing operation. A conse- 
quence of this observation i s  that the two-filter solution 
techniques described in Sections Ill and IV can be used to 
compute the NNM smoothed estimate. 

A. Operator Characterization of the NNM Smoother 

The NNM smoothing problem can be described as fol- 
lows. First, assume that the input sequence uf,, driving the 
NNM (1) i s  a zero-mean white Gaussian noise sequence 
definedovertheinteriorfi =[I,/ - I ]  x [I,) - l ] o f  rectangle 
Q ,  and with intensity 

E[U,,,U{~I = Q&,k6,,. (70) 

The boundary vectors dH,,  and d , ,  appearing in boundary 
conditions (13) are also assumed to be zero-mean white 
Gaussian noise sequences that are mutually uncorrelated, 
as well as uncorrelated with the noise ul,/  and with inten- 
sities 

E[d~,,dL,sl = U H ~ , ,  Etdv,,dC,kl = nv&. (71) 

Given the definitions of the inputs and boundary vectors 
above, the state x l , /  of NNM (1) i s  a zero-mean 2-D Gaussian 
random field. We are given some noisy observations 

Y f , ,  = C X , , ,  + r,,/ ( i ,  i )  E 6 (72) 

of this field over the interior domain 6. Here r f , /  i s  a zero- 
mean white Gaussian noise sequence uncorrelated with 
the driving noise uf,/ and the boundary and corner vectors, 
and with intensity 

where R > 0. In addition to the above interior measure- 
ments, we may also be given some boundary measure- 
mentsthat haveastructure similartothe boundaryand cor- 
ner conditions described in Section I I  

YH, /  = H L x O , ,  + G L x l , /  + H R x / , /  + G R X / - l , /  + rH, /  (74a) 

In the above measurements, fH , /  and rV, ,  are assumed to be 
zero-mean white Gaussian noises, which are mutually 
uncorrelated, and uncorrelated with U ,  r, and the boundary 
vectors, and with intensity 

E [ r H , / r A , s l  = RH6/s  E [ r V , i r ; , k l  = R V 6 ~ k .  (75) 

The motivation for considering boundary observations that 
have a form different from the interior observations is that 
(74) can be used to model the case where we observe the 
discretized normal derivative of a PDE along the boundary 
of a domain. For example, when the normal derivative i s  
observed along the left and right edges of Q, if h i s  the dis- 
cretization mesh, the measurements can be expressed as 

where rL,/ and f R , ,  are uncorrelated white Gaussian noises. 
These boundary measurements clearly correspond to a spe- 
cial case of (74a). An example of this type appears in the 
inverse resistivity problem considered in [36], where a 
potential distribution i s  imposed on the boundaryof a resis- 
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tive medium, and the resulting current density, which is 
proportional to the normal derivative of the potential, is 
measured on the boundary. 

The N N M  smoothingproblem consists in computing the 
conditional mean 

%,/ = m , , I Y l  (77) 

where Y denotes the Hilbert space of zero-mean random 
variables spanned by the interior observations yl, /  for (i, j) 
E 8, and by the boundary observations yH,/  with 0 5 j 5 J,  
and yv,, with 1 I i 5 I - 1. To solve this problem, we will 
use the general results obtained in [6], [7l for the estimation 
of boundary value processes. However, because these 
results are expressed in abstract operator form, our first 
step will be to rewrite the NNM (I), (13) and observations 
(72) and (74) in operator form. 

In this framework, the NNM dynamics (1) take the form 

(Lx ) , , ,  = Bu,,, (78) 

where, if D, and D2 denote, respectively, the backward hor- 
izontal and vertical shift operators 

DlXI,/ = &-I , /  DPXI,/ = %,/-I  (79a) 

we have 

L = I - AID, - A2Dq1 - A3D, - A,D;'. (79b) 

Note that in (78) x and Lx are defined over the domains Q 
and 8, respectively. Let also Ab be the restriction operator 
such that 

xb = A b X  (80) 

i s  the restriction of x to the first and last two columns and 
rows of 0. Define 

where the vectors x i  are defined as in (22a), and let 

where 

x;' = [x:, x:, . . . x / - l , / l  (82) 

i s  the vector obtained by scanning the states x l , ,  along the 
j th row of Q, where we omit the first and last elements of 
each row. Then, the restriction of x b  can be represented in 
vector form as 

xb' = [ x :  x ;  x; x ; ]  (83) 

and the boundaryconditions (13)can be written in operator 
form as 

VXb = d b  (844 

with 

and 

The matrices rLI rR, AL, and AR, and vector dH appearing in 
the above expressions are defined in (27), and 

r B = I @ V B  r r = I @ V T  (85a) 

A B = / @  WE A T = / @  WT (85b) 

d: = [db,i dC,2 . . * d C , , - i I ,  (85~) 

where the matrices FE, rT ,  AB, and A' have size 2(1 - 1)n x 
(I - 1)n and the vector d v  has dimension 2(1 - 1)n. Finally, 
the vector db given by (84c) i s  a zero-mean Gaussian vector 
with variance 

A minor technical issue connected with the definition (83) 
of boundaryvector xb i s  that several entries, namelyx,,,, x ~ , ~ ,  

Xb. For example x , , ~  i s  the first entry of x1 in x L  as well as the 
first entry of x; in xB. The objective of this rather odd def- 
inition i s  to make sure that the smoother boundary con- 
ditions (91) below provide enough constraints to specifythe 
smoother completely, and in particular at the four corners 
of domain 0. A consequence of this choice, however, i s  that 
constraints have to be added that force the duplicate entries 
to be the same. As this i s  primarily a bookkeeping opera- 
tion, these constraints are only taken into account implic- 
itly. 

Similarly, the interior and boundary observations (72) and 
(74) can be denoted in operator form as 

y = C x + r  (87) 

Yb = H X b  + rb  (88a) 

X I J - ~ ,  xl,, and xI-l,o, x / - ~ , ~ ,  x ~ - ~ , ! - ~ ,   XI-^,] appear twice in 

where 

are obtained by scanning the horizontal and vertical 
boundary observations and noises, and the matrix H has a 
structure identical to that of V 

with 

eE = I @ HE (88d) 

The covariance of the zero-mean Gaussian vector rb  i s  given 

\k, = I @ CE for E = L, R, B, 7. 

by 

Then, it was shown in [6], [7l that the smoother dynamics 
and boundary conditions could be expressed in operator 
form as 
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where B * ,  C*, V * ,  and H *  are the adjoint operators of B, 
C, V, and H, respectively, and where Lt denotes the formal 
adjoint of the difference operator L. Lt and the boundary 
operator E are defined through the Green's identity 

( L x ,  A)sfj) = ( x ,  Lth)S@) + (Xbr EAb)Sb (92) 

where s(b) and Sb are the vector spaces of n-vector func- 
tions indexed over the domain 6, and over the first and last 
two rows and columns of Q, respectively, and where (., .)s 
denotes the inner product over these spaces. The variable 
AI,/ appearing in (90) i s  the conditional mean of AI,/ with 
respect to the space Y spanned by the observations, where 
AI,/ i s  the state of the complementary model associated with 
x l , / .  The concept of complementary model was originally 
introduced by Weinert and Desai [12], and it i s  the key ele- 
ment used in [6],  [q to derive the smoothing equations (go), 
(91). Note also that (90) has a Hamiltonian structure similar 
to that of the smoother for I -D  causal processes [37l. 

Again, becauseof the specific scanning schemeemployed 
in the definition of k b  and Ab, both of these vectors contain 
duplicate entries, which must be constrained to be the 
same. This i s  only an artifact of the mathematical derivation 
employed to obtain the smoother (91), and all boundary- 
value duplications can be removed in subsequent uses of 
the smoother. 

with 

0 A: " 1  a4 = b 4  (97c) 

where (96) is almost in NNM form. This relation can be 
brought to NNM form by noting that a0 i s  invertible with 

where 

f l  = (I + BQBTCTR-lC)- l  

P2 = ( I  + CTR-'CBQBr)-' 

This yields 

B. NNM Characterization of the Smoother 

As such, the operator characterization (go), (91) describes 
completely the NNM smoother. However, this character- 
ization can be made more explicit by noting that for the 
Green's identity (92), it can be shown that 

( L t N , , ,  = AI , /  - A,Th-l,,  - ATAr+i,/ - AXh, / - i  - A ; ~ , / + I  

(93) 

and 

(Xbr €Ab  )Sb 

(94) 

with 

Substituting (93) into the operator description (90) of the 
NNM smoother dynamics, we can rewrite these dynamics 
as 

which is now in NNM form. 
Similarly, by using (94, (95) and taking into account the 

structure (84b), (88c) of boundary matrices V and H, the 
boundary conditions (91) for the NNM smoother can be 
rewritten more explicitly as 
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VI. SMOOTHING EXAMPLES 

In this section, the results of the previous sections are 
applied to implement the NNM smoother for two exam- 
ples, corresponding to the discretized stochastic Poisson 
and heat equations, respectively. In particular, it i s  shown 
that the FFT solver developed in Section IV can be used to 
implement the NNM smoother for both of these examples. 

+ [: ] = [ “1 R;’yv,,. (100b) 

h , 1 - 1  G: 

But these boundary conditions are precisely in the form 
(13)! Thus, the NNM solution techniques developed in Sec- 
tions Ill and IVaredirectlyapplicabletothe NNM smoother 
(99), (loo), because the smoother itself i s  in NNM form. The 
fact that the class of NNM models i s  invariant under the 
smoothing operation i s  also quite satisfying, as it indicates 
that these models are perfectly adapted to the study of non- 
causal estimation problems. 

C. Smoothing Error Dynamics 

x - 2 admits the operator characterization 
It was also shown in [6], [q that the smoothing error R = 

[c*;-lC -By*][-;] = [ B  0 C * R - ’  O ][;I (101) 

with boundary condition 

[v*n;lv + H*R;’H E ]  [ -:] = V*n;’db - H*R;lrb. 

(102) 

The 2-D NNM that corresponds to the operator expression 
(101) i s  identical to (99a), except for the input term 

Similarly, theoperator representation (102) of the boundary 
conditionsyields boundaryconditions identical to (IOOa, b), 
but with different right-hand sides. 

The model (103) for the smoothing error can be used to 
compute the error covariance P(i,j; k,  I )  = E[R,,,R[,I, which 
i s  a useful quantity if we want to evaluate the performance 
of the NNM smoother. 

A. 2-0 Poisson Equation 

The dynamics of the process to be estimated are given 
by 

x;,j = :(xj-I,j + x;+l,/ + x;,j-l + x;,j+i) + ul,j (104) 

where the variance of the white Gaussian noise process uI, /  
is q. The boundary conditions are in Dirichlet form 

YE = 1 WE = 0 for E = L, R, B, T (105) 

in (16), where the variance of the zero-mean boundary vec- 
tors dE,k is ? T ~  The interior observations are simply the pro- 
cess itself plus some additivewhite Gaussian noise process 
r,, /  of unit variance 

Y , , ~  = x,,) + r I , /  (i, j )  E fi (1 06) 

and we assume that the state x i s  observed exactly on the 
boundary 

Y L , ~  = x0.1 YR./  = XI,/ YE,, = X,,O Yr,,  = x~,I. (Ion 
Therefore, for this problem the matrices Ak with 1 I k I 
4, B, C, Q, and R are all scalars, and, in particular 

(108a) 

B = C = R = I  Q = q. (108b) 

Substitutingthesevalues insideexpression (96) forthe NNM 
smoother, we find 

Al = A2 = A3 = A4 = 114 

Taking also into account the form of the boundary con- 
ditionsand observations(107) inside(100), it iseasytocheck 
that the NNM smoother boundary conditions are of Di- 
richlet type 

go,! = YL,/ &,/ = Y R . /  %,o = YE,, %,I = Yr., (110a) 

&,/ = 0 A , /  = 0 A,,O = 0 A,]  = 0. 

(110b) 

As the NNM smoother dynamics are vertically symmetric 
and the boundary conditions are in Dirichlet form, the FFT 
solver described in Section IV-B can be used to solve (log), 
(110). Let { p, , I } ,  and { T , , ~ }  be the sequences obtained 
by applying the discrete sine transform S given by (62) to 
theestimates {,t,,/}, {i,,]}, andobservations { y,,,} forafixed 
index i. That is, 

1/2 1-1 

/ = 1  
= (;) c 9,,k sin ( k j d / )  1 5 j I / - I (Ills) 
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Let also 

be the sequence representing the effect of the DST on the 
boundary conditions (11Oc) and (110d) on the bottom and 
top edges. Then, by applying the DST to the columns of the 
NNM smoother (109), (IIO), we obtain the decoupled sub- 
systems 

where 1 5 j 5 ] - 1, with boundary conditions 

t o , /  = t r , /  'f,, = t R , /  Po,, = Pf,/ = 0 (113) 

where { q L , , }  and { tR, / }  denote the DST transforms of the 
boundary measurements { y r . / }  and { y R , / } ,  respectively. 
These subsystems can then be written in TPBVDS form and 
solved by decomposing the TPBVDS model into forward 
and backward stable components. By observing that the 
modescrof the system (112)arethezerosof thedeterminant 
of the matrix 

(114) 

where w = U + U-', it i s  clear that if U i s  a mode, so is U-', 

so that in theTPBVDS decomposition, there will be two for- 
ward stable and two backward stable modes. Unfortu- 
nately, even for this simple example, the TPBVDS decom- 
position cannot be computed in closed form. 

B. Discretized Heat Equation 

Consider now the discrete heat equation 

mx,/ = XI -%/  + m L - 1  + X,,/+l) + ul, /  (115) 

where the variance of noise ul,/ i s  q. Assume also that the 
boundary conditions, interior observations, and boundary 
observations are the same as for the previous example. 
Then, the NNM smoother takes the form 

and the boundary conditions are given by (110a) and 

with &,, free. This last feature just corresponds to the fact 
that the f i  dynamics are anticausal in the i direction, so that 
the values of A I , /  with i 2 1 are not affected by io,/. Again, 
the NNM smoother dynamics (116) arevertically symmetric, 
and the vertical boundary conditions are in Dirichlet form, 
so that the FFT solver of Section IV-B is applicable to this 
system. Performing the transformations ( l l la ) - ( l l ld ) ,  the 
NNM smoother i s  decoupled into] - 1 subsystems of the 
form 

I rn - 2n cos 
I L 1 

L,,/ =I PI + 1,/ 

with 1 5 j 5 ] - 
TPBVDS system 

rn - 2n cos 

1. But equation (118) i s  equivalent 

where the boundary conditions are given by 

t o , /  = 9r,/  Pf,/ = 0. 

D the 

(119) 

(120) 

Thus, in this particular case, no state augmentation is nec- 
essary to bring the transformed smoother to TPBVDS form, 
because the heat equation i s  causal in the i direction. Thus, 
if we apply the DST transform to vertical index j in equation 
(115), the coupling with respect to the j variable i s  elimi- 
nated, and weobtain a standard causal I -D  system, for which 
the smoother is the standard I -D  smoother, given here by 
(119). This implies that the usual Riccati equations for the 
forward and backward filtered and predicted error vari- 
ances can be used to decouple the dynamics (119) (see [8], 
and [6, section 5.3.21 for a description of the decoupling 
transformation), yielding the standard Mayne-Fraser [33], 
[34] two-filter implementation of the I -D  smoother. 

VII. CONCLUSIONS 

A general smoothing method has been obtained for 2-D 
random fields described by 2-D NNMs with local boundary 
conditions. This smoothing procedure relies on a general 
approach to the formulation of noncausal estimation prob- 
lems developed in [6], [7]. In this approach, both the state 
of the system and of i t s  complementary model need to be 
estimated, and accordingly, the smoother i s  described by 
a Hamiltonian system of twice the dimension of theoriginal 
system. For the NNM case, it turns out that the Hamiltonian 
i s  itself in NNM form, with local boundaryconditionsof the 
type to specify the class of NNM systems. This property 
indicates that NNMs capture well the intrinsic noncausality 
associated with estimation problems in several dimen- 
sions. 

One of the main themes of this paper i s  that straight- 
foward attempts at extending I -D  Kalman filtering tech- 
niques to several dimensions are misguided, because ran- 
dom fields in several dimensions are usually not generated 
causally, and multidimensional random observations are 
often not obtained sequentially, but all at one time. This 
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implies that noncausal random field models, such as NNMs, 
and smoothing problems provide the most natural ways to 
formulate multidimensional estimation problems. In other 
words, a purelynoncausal formulation of multidimensional 
estimation problems should be employed. However, it i s  
still possible to reintroduce recursiveness at the algo- 
rithmic level in order to obtain fast estimation techniques. 
As causality i s  in this case a computational device, many 
different types of recursions are possible, reflecting the 
great amount of latitudewe have in processingtheavailable 
data. 

An important limitation of the results presented here i s  
that we have assumed that the domain of definition of the 
2-D NNMs under consideration was rectangular. For prac- 
tical applications, random fields are usually defined over 
irregular domains, so that at first sight the results devel- 
oped here have a limited applicability. However, this 
impression i s  incorrect, because recently developed 
domain decomposition techniques for PDEs [38] make it 
possible to divide an irregular domain in rectangular sub- 
domains, and then to solve the original problem over each 
subdomain separately, while handling the coupling 
between subdomains with a preconditioned conjugate gra- 
dient algorithm. This approach would lead here to a parallel 
implementation of 2-D NNM estimation algorithms, were 
observations over different subdomains could be pro- 
cessed in parallel, and then combined to obtain an overall 
estimate. In addition to being parallel, this approach also 
makes it possible, provided that the conditions of Section 
IV are satisfied, to use FFT solvers over the rectangular sub- 
domains, as shown in [39]. The application of domain 
decomposition techniques to NNM estimation problems 
seems therefore to be a promising area for future research. 

REF ER EN c E s 

[I] A. K. Jain, “Advances in mathematical models for image pro- 
cessing,” Proc. /€€€, vol. 69, pp. 502-528, May 1981. 

[2] A. K. Jain, ”Partial differential equations and finite difference 
methods in image processing, Part I: Image representation,” 
1. Optimization Theory and Applic., vol. 23, pp. 65-91, Sept. 
1977. 

[3] A. K. Jain and 1. R. Jain,“Partial differential equationsand finite 
difference methods in image processing, Part I I :  Image res- 
toration,” /€€€ Trans. Automat. Control, vol. AC-23, pp. 817- 
834, Oct. 1978. 

[4] A. K. Jain, Fundamentals of Digital lmage Processing. Engle- 
wood Cliffs, NJ: Prentice-Hall, 1988. 

[5] A. S.  Willsky, Digital Signal Processing and Control and Esti- 
mation Theory: Points of Tangency, Areas o f  Intersection, and 
Parallel Directions. Cambridge, MA: MIT Press, 1979. 

[61 M. B.Adams, “Linearestimation of boundaryvaluestochastic 
processes,” Sc.D. dissertation, Dept. of Aeron. and Astr., 
M.I.T., Cambridge, MA, Apr. 1983. 

[n M. B. Adams, A. S. Willsky, and B. C. Levy, “Linear estimation 
of boundary-value stochastic processes, Part I: The role and 
construction of complementary models,” I€€€ Trans. Auto- 
mat. Control, vol. AC-29, pp. 803-811, Sept. 1984. 

[8] M. B. Adams, A. S. Willsky, and B. C. Levy, “Linear estimation 
of boundary-value stochastic processes, Part 2: I - D  smooth- 
ing problems,” /€€€ Trans. Automat. Control, vol. AC-29, pp. 
811-821, Sept. 1984. 

[9] A. J. Krener, “Boundaryvalue linear systems,“Asterisque,vol. 

[IO] A. J. Krener, ”Acausal realization theory, Part 1: Linear deter- 
ministic systems,” SIAM /. Control and Optimization, vol. 25, 
pp. 499-525, May 1987. 

[ I l l  A. J. Krener, “Reciprocal processes and the stochastic real- 
ization problem for acausal systems,” in Modeling, Identifi- 

75-76, pp. 149-165, Oct. 1980. 

1151 

1231 

r241 

[37l 

cation and Control, C. I. Byrnes and A. Lindquist, Eds. North- 
Holland, Amsterdam, The Netherlands, 1986, pp. 197-211. 
H. L. Weinert and U. B. Desai, “On complementary models 
and fixed-interval smoothing,“ /€E€ Trans. Automat. Control, 

R. Nikoukhah, M. B. Adams, A. S. Willsky, and B. C. Levy, 
“Estimation for boundary-value descriptor systems,” Cir- 
cuits, Systems, and Signal Processing, vol. 8, pp. 25-48, 1989. 
L. R. Riddle, “Recursive estimation for distributed parameter 
systems,” Ph.D. dissertation, Dept. of Electrical and Com- 
puter Engineering, The Johns Hopkins Univ., Baltimore, MD, 
1987. 
L. R. Riddle and H. L. Weinert, ”Recursive linear smoothing 
for the 2-D Helmholtz equation,” in  Proc. IFACSymp. on Con- 
trol of Distributed Parameter Systems, 1986. 
L. R. Riddle and H. L. Weinert, “Recursive linear smoothing 
for dissipative hyperbolic systems,” Mechanical Systems and 
Signal Processing, vol. 2, pp. 77-96, Jan. 1988. 
R. Nikoukhah, A. S .  Willsky, and B. C. Levy, “Boundary-value 
descriptor systems, well-posedness, reachability and observ- 
ability,” lnt. 1. Control, vol. 46, pp. 1715-1737, Nov. 1987. 
R. Nikoukhah, A. S. Willsky, and B. C. Levy, “Reachability, 
observability and minimality for shift-invariant two-point 
boundary-value descriptor systems,” Circuits, Systems, and 
Signal Processing, vol. 8, pp. 313-340, 1989. 
R. Nikoukhah, B. C. Levy, and A. S .  Willsky, ”Stability, sto- 
chastic stationarity, and generalized Lyapunov equations for 
two-point boundary-value descriptor systems,” /€€E Trans. 
Automat. Control, vol. AC-34, pp. 1141-1152, Nov. 1989. 
R. Nikoukhah, “Adeterministicand stochastic theoryfortwo- 
point boundary-value descriptor systems,” Ph.D. thesis, Dept. 
of Elec. Eng. and Comp. Science, and Report LIDS-TH-1820, 
Lab. for Information and Decision Systems, M.I.T., Cam- 
bridge, MA, Sept. 1988. 
R. W. Hockney, ”A fast direct solution of Poisson’s equation 
using Fourier analysis,”/. Assoc. Comput. Mach., vol. 12, pp. 
95-113, 1965. 
A. K. Jain and E. Angel, “Image restoration, modelling, and 
reduction of dimensionality,” / € E €  Trans. Computers, vol. 

G. D. Smith, Numerical Solutions of Partial Differential €qua- 
tions: Finite Difference Methods, 3rd Ed. Oxford: Clarendon 
Press, 1985. 
J. W. Brewer, ”Kronecker productsand matrixcalculus in  sys- 
tem theory,” / € € E  Trans. Circuits Systems, vol. CAS-25, pp. 772- 
781, Sept. 1978. 
C. H. Golub and C. F. Van Loan, Matrix Computations. Bal- 
timore: The Johns Hopkins Univ. Press, 1983. 
D. G. Luenberger, “Time-invariant descriptor systems,” 
Automatica, vol. 14, pp. 473-480, Sept. 1978. 
D. M. Young, Iterative Solution o f  Large Linear Systems. New 
York: Academic Press, 1971. 
S .  McCormick, MultigridMethods. Philadelphia: SIAM, 1987. 
R. E. Bank, “Marching algorithms and block Gaussian elim- 
ination,” in Sparse Matrix Computations, J. R. Bunch and D. 
J. Rose, Eds. New York: Academic Press, 1976, pp. 293-307. 
R. E. Bank and D. J.  Rose, ”Marching algorithms for elliptic 
boundary value problems. I: The constant coefficient case,“ 
SlAM 1. Numerical Analysis, vol. 14, pp. 792-829, Oct. 1977. 
F. R. Grantmacher, The Theory of Matrices. New York: Chel- 
sea Publishing Co., New York, N.Y., 1960, vol. 2. 
B. KAgstrom and A. Ruhe, Eds., Matrix Pencils, Lecture Notes 
in Mathematics, Berlin: Springer Verlag, 1983, vol. 973. 
D. Q. Mayne,”Asolutionof thesmoothingproblemfor linear 
dynamic systems,“ Automatica, vol. 4, pp. 73-92, Nov. 1966. 
D. C. Fraser, “A new technique for the optimal smoothing of 
data,” D.Sc. dissertation, Dept. Aeronautics and Astronau- 
tics, M.I.T., Cambridge, MA, Jan. 1967. 
A. K. Jain, “A fast Karhunen-Loeve transform for digital res- 
toration of images degraded by white and colored noise,” 
/€E€ Trans. Computers, vol. C-26, pp. 560-571, June 1977. 
K. C. Chou, “A multi-resolution approach to an inverse con- 
ductivity problem,” M.S. thesis, Dept. of Electrical Engi- 
neering and Computer Science, M.I.T., Cambridge, MA, Dec. 
1987. 
G. C.Verghese, B. Friedlander,andT. Kailath, “Scatteringthe- 
ory and linear least-squares estimation, Part 1 1 1 :  The esti- 

vol. AC-26, pp. 863-867, Aug. 1981. 

C-23, pp. 470-476, May 1974. 

640 PROCEEDINGS OF THE IEEE,  VOL. 78, NO. 4, APRIL 1990 



mates,” / € E €  Trans. Automat. Control, vol. AC-25, pp. 794-802, 
Aug. 1980. 
R. Glowinski,C. H. Colub,C. A. Meurant, and J. Periaux, Eds., 
First lnt. Symp. on Domain Decomposition Methods for Par- 
tial Differential €quatiom. Philadelphia: SIAM, 1988. 
T. F. Chan and D. C. Resasco, “A domain decomposed fast 
Poisson solver on a rectangle,” SlAM /. Scientific Stat. Com- 
puting, vol. 8, pp. s14-s26, Jan. 1987. 

Bernard C. Levy (Senior Member, IEEE) was 
born in Princeton, N.J., on July31,1951. He 
received the diplomaof lngenieur Civil des 
Mines from the Ecole Nationale Superieure 
des Mines in  Paris, France, and the Ph.D. in  
electrical engineering from Stanford Uni- 
versity, Stanford, CA. 

While at Stanford University, he held an 
INRIA Fellowship, and worked also as 
Teaching Assistant, Research Assistant, and 
Instructor. From June 1979 to  June 1987, he 

was Assistant, and then Associate Professor in the Department of 
Electrical Engineering and Computer Science at MIT. Since July 
1987, he has been Associate Professor in  the Department of Elec- 
trical Engineering and Computer Science at the University of Cal- 
ifornia, Davis. During the past three years, he has also been a con- 
sultant for the Charles Stark Draper Laboratory in Cambridge, MA. 
His research interests are in  the areas of multidimensional and sta- 
tistical signal processing, inverse problems, estimation, detection, 
and scientific computing. 

Milton B.Adams Jr. (Member, IEEE) received 
the Sc.B. and Sc.M. degrees from Brown 
University, Providence, RI  in  1971 and 1972, 
respectively and the Sc.D. Degree in Aero- 
nautics and Astronautics from MIT in 1983. 

He has been at the C.S. Draper Labora- 
tory since September of 1972 and i s  cur- 
rently the leader of the System Sciences 
Division of the Decision and Control Direc- 
torate. Over the last several years his 
research interests have focused on the 

application of heuristic search and learning to the development 
of algorithms for automated, autonomous mission, and trajectory 
planning, and on the design of hierarchical mission management 
systems that control autonomous real-time planning and plan exe- 
cution. 

Alan S. Willsky (Fellow, IEEE) received the 
S.B. degree and the Ph.D. degree from 
M.I.T. in 1969 and 1973, respectively. 

From 1969 through 1973 he held a Fannie 
and John Hertz Foundation Fellowship. He 
joined the MITfacuIty in  1973. From 1974 to 
1981 he served as Assistant Director of the 
MIT Laboratory for Information and Deci- 
sion Systems. H i s  present position i s  Pro- 
fessor of Electrical Engineering. He i s  also 
a founder and member of the board of 

directors of Alphatech, Inc. He has held visiting positions at Impe- 
rial College, London, L’Universite de Paris-Sud, and the lnstitut de 
Recherche en lnformatique et Systemes Aleatoires, Rennes, France. 
His present research interests are in problems involving multi- 
dimensional and multiresolution estimation and imaging, discrete- 
event systems, and the asymptotic analysis of control and esti- 
mation systems. 

Dr. Willsky received the Donald P. Eckman Award from the 
American Automatic Control Council in 1975. He is Editor of the 
MIT Press series on signal processing, optimization, and control, 
was program chairman for the 17th IEEE Conference on Decision 
and Control, has been an associate editor for several journals, 
including the IEEE TRANSACTIONSON AUTOMATICCONTROL, has served 
asamemberoftheBoardof Covernorsand Vice PresidentforTech- 
nical Affairs of the IEEE Control Systems Society, and was program 
chairman for the 1981 Bilateral Seminar on  Control Systems held 
in the People’s Republic of China. He gave the opening plenary 
lecture at the 20th IEEE Conference on Decision and Control, and 
was made a Distinguished Member of the IEEE Control Systems 
Society. He i s  the author of the research monograph DigitalSignal 
Processing and Control and Estimation Theory and i s  co-author of 
the undergraduate text Signals and Systems. He was awarded the 
1979 Alfred Noble Prize by the ASCE and the 1980 Browder J.  
Thompson Memorial Prize by the IEEE for a paper excerpted from 
his monograph. 

LEVY et al.: 2-D NEAREST-NEIGHBOR MODELS 

7 -  

641 


