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Reconstructing Convex Sets from Support Line 
Measurements 

Abstruct-This paper proposes algorithms for reconstructing convex 
sets given noisy support line measurements. We begin by observing 
that a set of measured support lines may not be consistent with any set 
in the plane. We then develop a theory of consistent support lines which 
serves as a basis for reconstruction algorithms that take the form of 
constrained optimization algorithms. The formal statement of the 
problem and constraints reveals a rich geometry which allows us to 
include prior information about object position and boundary smooth- 
ness. The algorithms, which use explicit noise models and prior knowl- 
edge, are based on maximum likelihood and maximum U posteriori es- 
timation principles, and are implemented using efficient linear and 
quadratic programming codes. Experimental results are presented. 
This research sets the stage for a more general approach to the incor- 
poration of prior information concerning the estimation of object shape. 

Index Terms-Computational geometry, computed tomography, 
constrained optimization, set reconstruction, shape estimation, sup- 
port fines. 

I. INTRODUCTION 

N this paper we consider algorithms for reconstructing I 2-D convex sets given support line measurements for 
which the angles are known precisely but the lateral dis- 
placements are noisy. Our initial motivation for studying 
this problem was provided by a problem in computed 
tomography (CT) (see [I] ,  for example). Specifically, in 
CT one makes measurements of integrals of an object 
property (absorption density) along various straight lines. 
As illustrated in Fig. 1, perfect measurement of a projec- 
tion-i.e., of a full set of integrals along the parallel lines 
L ( t ,  8)  with 8 fixed-provides us with knowledge of the 
two extreme lines at this angle that just graze the set on 
either side. These are known as support lines. Note that 
knowledge of these support lines in this case is com- 
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Fig. 1. The geometry of computed tomography 

pletely equivalent to knowledge of the silhouette at this 
angle [2], [3], i.e., to a function that is 1 if L ( t ,  8)  inter- 
sects the object and 0 otherwise. Given such support lines 
from many different angles, it is possible to reconstruct a 
convex 2-D polygon, which contains the object, by inter- 
secting all of the halfplanes defined by the measurements. 
Here it is assumed that the direction of the outward-point- 
ing unit normal is given with each support line measure- 
ment. When the projections are noisy, however, such as 
is the case in low-dose CT, then the estimates of the lat- 
eral positions of the support lines will also be noisy. In 
this case, the set of measured lines may be inconsistent- 
that is, taken together, there may be no set S that has all 
of the measured lines as support lines. 

The consistency conditions on support lines, which will 
be discussed in detail later, form the basis of the algo- 
rithms presented in this paper. These algorithms use the 
consistency requirements, along with known noise statis- 
tics and prior information, to reconstruct a convex set that 
is in a specific sense the optimal estimate based on all the 
available information. In our work on CT, we have found 
that such knowledge of support-provided by a procedure 
of the type developed here-can assist dramatically in the 
problem of complete reconstruction, particularly when 
only limited data are available [4]. In this sense the work 
presented here can be viewed as a natural successor to that 
of Rossi and Willsky [ 5 ]  and Bresler and Macovski [6], 
who developed maximum likelihood (ML) methods for 
estimating parametric descriptions of objects in a CT cross 
section. In contrast to this previous work, we do not con- 
strain objects to lie within specified parametric classes but 
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rather use fundamental properties of support lines to de- 
velop geometric reconstruction algorithms. This frame- 
work also allows us to incorporate prior information con- 
cerning object shape in a more flexible manner by 
specifying prior distributions on sets of support lines 
rather than by constraining objects to be simple shapes 
characterized by a few parameters. 

It is also worth noting that the reconstruction problem 
considered in this paper is also of interest in a number of 
other applications. For example, in tactile sensing [7], a 
parallel plate robot jaw may provide two support line 
measurements as it clamps down on a “thick 2-D object” 
that is completely enclosed by the jaw. The jaw may then 
clamp down from different angles yielding a finite set of 
support line measurements, as in the CT example above. 
Other applications include robot vision [8] and chemical 
component analysis [9]. 

The problem described in this paper is fundamentally a 
problem in computational geometry [lo] and, in particu- 
lar, is an example of the problem of reconstructing shape 
from probing [11]-[14]. In contrast to most work in this 
field, which assumes perfect measurements of informa- 
tion such as points, lines, and sets, and focuses on issues 
such as algorithm complexity, we focus explicitly on an 
estimation/optimization theoretic perspective so that we 
may deal with uncertain measurements and, where appro- 
priate, incorporate prior knowledge. As we will see, the 
incorporation of measurement error statistics, prior 
knowledge, and the fundamental constraint on support 
lines-i.e., the consistency conditions-can lead to op- 
timization-based algorithms of considerable efficiency. 
Indeed the algorithms presented here are implemented 
with linear programming and quadratic programming 
methods, both useful tools in computational geometry. 

The support line measurements we consider in this pa- 
per have known angles evenly spaced over 2 r ,  In addi- 
tion, we assume that a support line measurement consists 
not only of a lateral position, but also indicates on which 
side of the line the object lies. A natural first guess at a 
reconstruction then would be to intersect the halfplanes 
determined by each of the support lines. To see why this 
intersection method might not be a desirable reconstruc- 
tion and also to give some insight into the fundamental 
support constraint, consider Fig. 2. Fig. 2(a) shows a set 
of six perfect support line measurements corresponding to 
the unit circle. The reconstruction resulting from the in- 
tersection method is the shaded hexagonal region, which 
is obviously the best reconstruction given these measure- 
ments. Suppose now, however, that there are measure- 
ment uncertainties and in particular that all six lines have 
the lateral measurement errors indicated in Fig. 2(b). In 
this case, the intersection method produces the diamond- 
shaped estimate indicated by the shaded region. Note that 
the two vertical lines on either side do not touch the dia- 
mond, and in fact, it should be apparent that given the 
other four measurements as indicated, there is no set that 
has these six lines as support lines. This demonstrates, 
geometrically, what is meant by inconsistency, 

Fig. 2.  A circle with (a) six true support lines, and (b) six noisy measure- 
ments. 

Now consider what the diamond estimate implies about 
the noise that produced the measurement errors. If the 
diamond estimate were identical to the true object, then 
the two vertical lines (the outermost lines) are in error 
since they do not touch the diamond, and the remaining 
four lines (the innermost lines) are perfect measurements 
since they do touch the diamond. Therefore, in order for 
this estimate to be optimal, the measurement process 
would have to be one that allows only outward perturba- 
tions for some support lines, where the amount of outward 
perturbation is completely unpredictable. This is not a 
reasonable noise model, in general. In contrast to the in- 
tersection method, the algorithms developed in this paper 
are based upon an explicit and reasonable noise model, 
and are derived using different optimality criteria together 
with this model. 

The paper is organized as follows. In Section 11, we 
define the support vector and describe the fundamental 
support line constraints. In Section I11 we define the set 
of all consistent support vectors, called the support cone, 
and elaborate on the geometry of the support cone and of 
objects represented by points in this cone. Section IV pre- 
sents the noise models and algorithms that use the ge- 
ometry of the support cone to advantage, and Section V 
contains experimental results. We give concluding re- 
marks in Section VI, including a brief discussion of how 
more elaborate models of prior shape information can be 
included. 

11. SUPPORT LINE CONSTRAINTS 

A .  Support Lines and Support Functions 

Fig. 3 shows what is meant by the support line & ( e )  
of a set S .  It is the line orthogonal to the unit normal w = 
[cos 8 sin e l T  that just “grazes” S in the positive w di- 
rection. The quantity h ( 8 )  is the value of the largest pos- 
sible projection of any point in S onto the w-axis. One can 
see that S lies completely in a particular one of the two 
halfplanes determined by L s ( 8 ) .  We may now define the 
above quantities precisely. The support line at angle 8 for 
the closed and bounded 2-D set S is given by 

where 

h ( 8 )  = supxTw. ( 2 )  
X€S 
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Fig. 3. The geometry of support lines 

The function h (8) is called the supportfunction of the set 
S;  for any particular value of 19 we call h (8 )  the support 
value at angle 8. 

The support function h ( e )  has important and well- 
known properties which are analogous to properties we 
shall be developing for the support vector defined below 
(see [15]-[17]). For example, h (8) uniquely determines 
the convex hull of S ,  hul( S ) .  It is also true that if h ( 8 )  
is twice differentiable then S itself must be convex and 
have a boundary that is continuous and smooth (i.e., it 
has continuously turning normals). In this case, the cur- 
vature of the boundary of S at the boundary point e (8) = 
L,(8) f l  S (see Fig. 3) is given by h ” ( 8 )  + h ( 8 ) .  Then, 
since S is convex, the curvature of its boundary must be 
nonnegative, which leads to the conclusion that support 
functions that are twice differentiable must satisfy the 
constraint 

bye) + h ( e )  I 0. ( 3 )  
The constraint we derive below is analogous to (3), but is 
more fundamental since it applies to any bounded set in 
the plane, not just convex sets with smooth boundaries. 
We shall also develop an analog to the radius of curva- 
ture, which will be exploited by algorithms designed to 
incorporate prior knowledge. 

B. Support Vectors and Constraints 
We shall require some additional notation in this sec- 

tion. From this point on, we consider a finite number M 
of angles 8, = 27r(i - l ) / M ,  i = 1, * * * , M ,  spaced 
evenly over [0, 2 ~ ) ,  and associated sets of lines L,, or- 
thogonal to the corresponding unit vector w, = [cos 8, 
sin In what follows the index i is always interpreted 
modulo M .  The line L, is defined by its lateral displace- 
ment h, ,  via 

L, = ( U  E F ( 2 1 U T W ,  = h , } .  (4) 

The most important quantity in this paper is the vector 
made by organizing the M lateral displacement values of 
the M lines under consideration as a vector h = [ hl h2 
hMIT. We call the vector h a support vector if the lines L,,  
for i = I ,  * * * , M are support lines for some set s E F ) ~ ,  

* 

Before proceeding to the basic theorem of this paper, 
let us characterize, in terms of the quantities defined 
above, the estimate produced by the intersection method 
introduced in Section I. Given measurements h,,  i = 1, 
* * * , M, of the lateral displacements of M lines, the in- 
tersection method simply produces the set of all points U 

E ‘k * that satisfy u T w ,  5 h, for all i = 1, . . . , M ,  i .e . ,  I 

S, = ( U  E W 2 ~ U T [ W I W *  * * U,] I [ h l h 2  * h , ] }  

( 5 )  

The two shaded regions in Fig. 2 correspond to S, for two 
different vectors h .  In Fig. 2(a), h is a support vector since 
the lines actually support S,; however in Fig. 2(b), h is 
not a support vector because there is no set that the given 
lines support. We now proceed to state the basic theorem 
of this paper, which characterizes precisely the consis- 
tency constraints satisfied by support vectors. 

Theorem 1 (The Support Theorem): A vector h E 2, ( M  
I 5 )  is a support vector if and only if 

hTC I [O * * * 01 ( 6 )  
where C is an M by M matrix given by 

r1 - k  o -kl 

- k  I 
L-k  0 0 1J 

and k = 1 / ( 2  cos (27r/M)). 
It is important to point out the similarity between the 

continuous support function constraint of (3) and the dis- 
crete support vector constraint of (6). The quantity -hTC, 
which has nonnegative entries, is analogous to the quan- 
tity h ” ( 8 )  + h ( B ) ,  which is also nonnegative. It can be 
shown, in fact, that in the limit as M + 00 the expression 
-hTC I 0 goes to h ” ( 8 )  + h ( 8 )  I 0 [18]. As a further 
extension of the analogy, we shall reveal in a subsequent 
section that the entries of the vector -hTC can be directly 
interpreted from the geometry as a type of discrete radius 
of curvature. This interpretation allows us to propose 
methods for incorporating prior shape information related 
to boundary smoothness in the algorithms of Section 111. 

It is possible to develop consistency conditions for non- 
uniformly spaced orientations that are similar to those 
stated in Theorem 1. If the set of orientations satisfies a 
certain geometric condition related to the relative angular 
spacing between adjacent orientations, then the form of 
the matrix C is identical to that in Theorem 1, except that 
the value of k is dependent on its position in the matrix. 
Therefore, many of the results and algorithms reported in 

_ _  
i .e.,  if h, = h ( 8 , )  where h ( 8 )  is the support function of , A vector inequality such as x r  5 y 7  where x, y E I ” implies that x, 5 

y, for i = 1 .  . . . . n. where x and y are the ith elements of the vectors x Some set S .  In this we refer to the h, as 
ues. .~ 

and y ,  respectively. 
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this paper apply to the case of nonuniform orientations 
with little modification. 

Before proceeding with the proof, we give a brief in- 
dication of the geometric intuition behind it. First, con- 
sider the situation depicted in Fig. 4, in which we have 
shown two lines Lj- and Li+ A third line Li is parallel 
to the dashed line in the figure, and we seek constraints 
on the lateral displacement of this line so that the three 
lines L, - L;, and Lj+ could possibly be support lines of 
some set. If Li - I and Li + are support lines of a set S, 
then S is contained in the set Dj illustrated in the figure. 
Now suppose that the line Li were located to the left of 
(and parallel to) the dotted line. Then it is possible to con- 
struct a set S C D; that touches each of the three lines 
L j _  ,, Li, and Li+ ,-these lines are consistent. However, 
if Li were measured to the right of the dotted line, then it 
is impossible to construct such a set-these lines are in- 
consistent. When stated in mathematical notation and ap- 
plied to all lines Lj ,  i = 1, * . , M ,  this relationship 
yields precisely the vector constraint in (6). 

The above observation leads to the necessity of (6), but 
in order to establish the sufficiency of (6) we need to de- 
fine a new set s, E M2, which may be thought of as another 
choice of reconstruction different than S,. As shown in 
Fig. 5 ,  S, is formed from the convex hull of the points of 
intersection of lines Lj and Li + for i = 1, * , M. For- 
mally, we have that 

S, = hul(Yl, ~ 2 ,  * * , v M )  ( 8 )  

(9)  

where the vi’s are given by 

vi = L~ n L ~ + ~  

and hul( ) denotes the convex hull. We refer to the points 
Y, as vertex points rather than vertices because, as one can 
see from Fig. 5(b), they need not be distinct points. In 
Fig. 5(a) the support line L1 is located to the right of the 
point L2 n L5, and from our discussion on Fig. 4, we 
know that these lines do not satisfy (6). Note that in this 
case S, # S,. However, in Figs. 5(b) and 5(c) the lines 
do satisfy (6) and S, = S,. Indeed what we show in the 
proof is that (6) implies that S,  = S ,  and h is the support 
vector to this set. 

Proof of Theorem I :  First, we show the necessity of 
condition (6). By hypothesis, h is a support vector of some 
set S. Now consider the set D, = { U E R2 I u T [  w, -, w, + I ] 
I [ h, - h, + I ] ] defined by the two support lines L, - and 
L, + as shown in Fig. 4. Note that by hypothesis M I 5 ,  
which implies that 8, + - 19, - I < a. This in turn implies 
that the two lines L, - I and L, + have a finite intersection 
point p ,  (see Fig. 4), and that w, may be written as a pos- 
itive combination of w , - ~  and These two facts are 
necessary, and easily allow us to conclude that the sup- 
port value at angle 8, for the set D, is pTw, .  Then, since S 
C D, we must have that h, 5 pTw,.  With some algebraic 
manipulation (see Appendix A), this inequality may be 
shown to be equivalent to the condition given by the ith 
column of (6). 

Fig. 4. For consistency, line L, must lie to the left of the dotted line 

/ 

L5 
\ 

/ L3 

, L3 

L5 
\ 

(C) 
Fig. 5 .  (a) Inconsistent lines, the sets SE and S,, and the vertex points v,. 

(b), (c) Consistent lines, the sets SE and S,, and the vertex points U,. 

To prove the sufficiency of (6) we must show that a 
vector h that satisfies (6) is a support vector for some set. 
In Appendix B we show that (6)  implies that SB = S,  = 
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S, and what remains then is to show that S has h as its 
support vector. To see this, first note from the definition 
of S, in ( 5 ) ,  that we must have 

sup xTw, 5 h,. 

On the other hand, v r  E S, = SE = Sand V T W ,  = h,. Con- 
0 

(A shorter proof of Theorem 1 has recently been ob- 
tained by C.  Karl [19]; it is based on an alternate char- 
acterization of support functions given in [20] .) 

The immediate use of the support theorem is as a test 
of consistency. Given a test vector h we may determine 
whether h specifies a consistent set of support lines by 
evaluating hT C and seeing whether the elements of the 
resultant row vector are all nonpositive. From an esti- 
mation viewpoint, we see that if we are trying to estimate 
a support vector h from a set of noisy m e a s u r e m p ,  then 
we must make sure that our estimate h satisfies hT C I 0. 
In the following section we examine the geometry of these 
constraints in more detail. 

X € S  

sequently, h, is the support value at this angle. 

111. OBJECT AND SUPPORT CONE GEOMETRY 
A .  Geometry of the Support Cone 

The convex polyhedral cone given by 

e = ( h  E P’IMIhTC I [O * * 01) (10) 
consists of all M-dimensional support vectors. We call e 
the support cone.2 The matrix C is circulant and, there- 
fore, its eigenvalues are given by the discrete Fourier 
transform of the first row 1211. After simplification (see 
Appendix A), the eigenvalues are found to be 

We now recognize that exactly two eigenvalues are iden- 
tically zero: X2 = X M  = 0. Hence, C is singular, and a 
basis for the nullspace 32 (and also of the left nullspace 
since C is symmetric), is found to be 

nl = [ I  cos o0 cos 2e0 . . . cos ( M  - 

where Bo = 2 7 r / M .  
The geometrical consequence of C being singular is that 

the support cone C is not a proper cone; i.e., there is a 
linear subspace ( of dimension 2 ) contained entirely in C. 
Therefore, the support cone is composed of the Cartesian 
product of a proper cone, C, = { h E C I hTnl = 0 ,  hTn2 
= O } ,  and 32, the nullspace of C. Accordingly, any sup- 
port vector may be written as the sum of two orthogonal 
components, h, and h,, as 

’(2 is a cone because it obeys the usual property of cones: if h is in  e 
then a h (  a > 0) is also in e .  It is a polyhedron because it  is the intersec- 
tion of a finite number of closed half spaces in ~ M ,  

where h, E C, and h,, E 32. We will see in the following 
section that the nullspace component of a support vector 
h may be interpreted as a simple shift of the set in the 
plane that corresponds to h. 

B.  Object Geometry 
Given a (consistent) support vector h ,  there are, in gen- 

eral, an entire family of sets that have h as their support 
vector. The largest of these sets, which is uniquely deter- 
mined by h,  is the polygon S, defined in (5 ) .  We call SE 
the basic object of support vector h. Two examples of 
basic objects for M = 5 are shown in Figs. 5(b) and 5(c). 
Note that for M small, S, may not be a good approxima- 
tion to the true set S ,  but as M gets larger, S, becomes an 
increasingly better approximation to hul( S ) . 

Suppose we were to add a nullvector h, to support vec- 
tor h. What happens to the basic object? We show here 
that it is simply shifted (or translated) in the plane. We 
start by noting that any nullvector may be written as 

h, = Nu ( 1 3 )  

N = [nl ~ z ]  (14) 

where 

[see (1 l)] and U is a two-dimensional vector. Next, we 
notice that S, may be written as 

Now suppose that w is an element of S,; then, clearly, w 
satisfies 

h L Nw. ( 1 5 )  

Now we may add, component by component, (13) and 
(15) (preserving the inequality), yielding 

h + h, 2 N(w + U ) .  

Finally, we now see that w + U must be an element of 
the basic object corresponding to h + h,, i .e.,  the new 
basic object is just a shifted version of S,. Clearly. the 
reverse holds as well: shifting S, by U corresponds to add- 
ing the nullvector N u  to h.  

The extreme points of the basic object, which we have 

in (9) [see Figs. 5(b) and 5(c)]. An explicit equation for 
the vertex point vi is easily found using the definition of 
Lj and Li+, and solving a system of two linear equations 
(see Appendix A). We find that 

termed vertex points, are given by the points v l ,  . . . , v M  

1 sin O i + l  -cos B i + l  

-sin Bi cos Oi [hi hi+il v i  =-  
T 1  

sin Bo 

j =  1, * . .  , M ,  (16) 

where Oo = - Oj = 2 a / M .  The “shift” property 
given above relates to the relative position of two identi- 
cally-shaped and oriented basic objects. It turns out that 
a useful definition of the absolute position of a basic ob- 
ject is the average position of its vertex points, denoted 
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i. The relationship between the support vector h and Y is 
found to be (see Appendix A) 

We shall see in Section IV that (17) can be used as a 
constraint on estimated support vectors if the position of 
the true object is known a priori. Note, in particular, that 
when h has no nullspace component, i.e., h is in ep, then 
NTh = 0 and, therefore, V = 0-the basic object is cen- 
tered on the origin. 

Now we develop the idea of “discrete radius of cur- 
vature” to characterize the smoothness of the boundaries 
of basic objects. Suppose that in Fig. 4, the line Li were 
to pass through the intersection point pi of Li - and Li + I .  

Then the boundary of S,  is “sharp” at that point. As Li 
moves toward the left of pi, the boundary is made 
“smoother. ” Now consider the more detailed drawing in 
Fig. 6. As the boundary is traced along the ith face from 

to vi, the outward unit normal to the boundary 
changes in angle by Bo = Oi - el - I over a distance A. In 
analogy to the usual radius of curvature, which is defined 
as the rate of change of arclength with respect to the angle 
the unit normal makes to the x-axis, we define the ith 
discrete radius of curvature as 

It can be shown from the geometry (see Appendix A) that 
the distance from pi to Li is given by pi = -hTci, where 
ci is the ith column of C. Then, by simple trigonometry, 
we have that 

and, hence 
1 

pi = rieo tan Bo. 
L 

Hence, the vector p = -hTC has elements that are pro- 
portional to the discrete radii of curvature ri .  The ele- 
ments of p that are small correspond to “sharp” comers; 
the larger elements correspond to “smoother’ ’ bounda- 
ries. We use this idea in Section IV to incorporate prior 
knowledge about object shape. 

This completes the discussion of geometry of the sup- 
port cone and basic objects. Using the constraints estab- 
lished in Section I1 and the geometrical ideas established 
in this section, we proceed to develop algorithms for es- 
timating support vectors (and hence the basic objects) 
given noisy observations. The geometrical ideas play a 
role both in the development of prior information to be 
included in the statement of the algorithms, and in the 
execution and analysis of the actual computational meth- 
ods. 

The algorithms we develop in the following section are 
constrained optimization algorithms because the support 

I U: 

L,- ,  ’ . 

Fig. 6. Three support lines and a face of S,. 

vectors to be estimated are constrained to lie in the sup- 
port cone. Fortunately, the constraints are linear inequal- 
ities, which are simple enough to allow efficient compu- 
tational methods. A further constraint, which may be 
imposed if the position of the object is known a priori, is 
a linear equality constraint, which is even simpler. The 
algorithms are designed to illustrate how to incorporate 
these constraints along with prior information and noise 
models to reconstruct convex sets. We have elected to 
demonstrate only the simplest formulations necessary to 
accomplish this goal. As a result, the algorithms use the 
very efficient computational methods of linear program- 
ming (LP) and quadratic programming (QP). In Section 
VI, we discuss possible extensions, which include more 
sophisticated models of prior information, that will un- 
doubtedly lead to somewhat more complex algorithms. 

IV. ESTIMATION ALGORITHMS 
We now present three estimation algorithms based on 

the ideas developed in Sections I1 and 111. We assume that 
the measured support values are given by 

y i = h i + n i ,  i = l ; * - , M  (21) 

where hi are the true support values which we are esti- 
mating and ni are samples of either 1) independent white 
Gaussian noise with zero mean and variance a2, or 2) uni- 
formly distributed noise over the range [ -7 ,  7 1. Because 
of the noise, it is likely that the measurement vector y = 
[yl  - * , yW]‘is not a feasible support vector. Therefore, 
the first objective of the following algorithms is to obtain 
a feasible support vector from the measurements. The 
second objective is to use prior information to guide the 
estimates toward “preferable” values. The development 
begins with the Closest algorithm, which uses a minimum 
of prior knowledge in a maximum likelihood (ML) for- 
mulation, and concludes with the Close-Min algorithm, 
which uses prior shape information in a formulation much 
like maximum a posteriori (MAP) estimation. The algo- 
rithms also tend to increase in complexity as we proceed, 
but are each solved by efficient quadratic or linear pro- 
gramming methods. 

A. The Closest Algorithm 
Here, we assume the Gaussian noise model given 

above. In the absence of any prior probabilistic knowl- 
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edge we may form the maximum likelihood estimate of h 
given the measurement vector y and subject to h E (2 as 
(see, for example, [22]) 

h, = hwL = argmax -4 ( y  - h)T(y  - h ) ,  (22) 
h : h T C c  0 

where the function argmax returns the value of the argu- 
ment ( h ,  in this case) that maximizes the objective func- 
tion. We see that this estimate is the support vector h in 
(2 that is closest (in the Euclidean metric) to the obser- 
vation y .  If y is in (2 then h, = y ,  otherwise the solution 
may be found by (efficient) quadratic programming (QP) 
methods (see, for example, [23] and [24]). 

B. The Mini-Max Algorithm 
The Mini-Max algorithm incorporates the following 

prior knowledge: objects of interest tend to have smooth 
boundaries. To cause objects to have smooth boundaries 
we define the Mini-Max estimate to maximize the mini- 
mum discrete radius of curvature. As the problem is 
stated, however, the solution is unbounded, since basic 
objects circumscribing circles of ever increasing radii have 
unbounded discrete radii of curvature. This problem is 
partially solved by incorporating the uniform noise model. 
In this case, since the noise is bounded by fy, each ele- 
ment of the true solution cannot be farther than y away 
from the corresponding element of the observation. For- 
mally, we write that the true vector, and therefore the es- 
timate, must be an element of the hypercube 

U3 = ( h  E M ( y  - [yy - - 71' 

I h 5 y + [yy * * y I T ) .  (23 1 
Finally, recognizing that the estimate must also be in the 
support cone, and recalling the proportionality of p,  = 
-hTci to the discrete radius of curvature ri [see (20)], we 
define the Mini-Max estimate as 

hww = argmax min { -hTcI,  -hTc2, * . - , -hTcM) 
h : h s e  nG3 

(24)  
where ci, . 

The solution to (24) may be found by linear program- 
ming (LP) techniques (see [25], for example). To show 
that this is so, we define a new scalar variable p ,  which 
satisfies 

* , cw are the columns of C. 

p 5 -hTci i = 1,  e . .  , M .  (25) 
Now consider the two augmented vectors 

L J  L J  

We now notice that the solution to (24) may be found by 
maximizing uTb, subject to the original constraints and 
the new constraints given in (25). The new objective 

function is clearly linear in U ;  and both sets of constraints 
are linear in U. Therefore, the augmented problem is an 
LP and may be solved by any LP code, or a QP code with 
the Hessian matrix set to zero. 

Unfortunately, as is often true of LP's, the solution to 
(24) may not be unique. We may see a potential non- 
uniqueness by observing that adding a vector from the 
nullspace of C does not change the value of the objective 
function. Therefore, providing that the constraints are still 
met, there may be a family of shifted objects, each one 
corresponding to an optimal solution to (24). The Mini- 
Max estimate is also tied to the observations only by the 
hypercube 63, and as y (and therefore the size of 63 ) in- 
creases, the influence of the measurements on the solution 
may decrease dramatically. For example, we expect that 
the basic object corresponding to the estimate resulting 
from this objective function will be as large as possible 
given the bounds, and as near to circular as possible so as 
to maximize the minimum discrete radius of curvature. 
Thus, even if the true object is quite eccentric, and the 
observation is just barely infeasible, the Mini-Max esti- 
mate may resemble a circle if the bound y is large. We 
shall see examples of both types of behavior in Section 
V. In addition, these observations provided part of the 
motivation for the next algorithm. 

C. The Close-Min Algorithm 
The Close-Min algorithm is designed to combine the 

Closest and Mini-Max algorithms to produce an estimate 
that attempts to match the observations, as in the Closest 
algorithm, yet also incorporate prior knowledge, as in the 
Mini-Max algorithm. The concept is simple: we define a 
new cost function that is a convex combination of the two 
objective functions. We note that this method resembles 
MAP estimation where the Closest objective function 
plays the role of the logarithm of the measurement density 
(assuming the Gaussian model), and the Mini-Max objec- 
tive function plays the role of the logarithm of the prior 
density. The tradeoff between these two objective func- 
tions is controlled by the parameter a ,  which has a value 
between 0 and 1. This provides the means for weighting 
prior information and that available from the measure- 
ments as is done in optimal MAP estimation. 

The Close-Min estimate is defined as 

h ,  = argmax afc(h)  + ( 1  - a ) f w ( h )  (27) 
h : h E e n  53 

where 0 I a I 1 and 

fM(h)  = min { -hTcl, -hTc2, * , -hTcM) 

are the objective functions corresponding to the Closest 
and Mini-Max algorithms, respectively. The solution to 
(27) may be found using QP after augmenting h as in (26). 
Note that provided a # 0, the constraint 63 may be re- 
moved and the solution will be unique. 
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-1 

1 -  

D. Shi@ Corrected Algorithms 
As we suggested previously, prior positional informa- 

tion may be included in the estimation process. Suppose 
one knows that the true object is centered at 7, that is, that 
the average position of its vertex points is V .  Then the 
estimate should also be centered at V .  From (17) we see 
that this may be assured provided that we enforce the fol- 
lowing linear constraint 

- BIntersection Method -- B C l o s e s t  

(C) (d) 
M 
2 

N T h  = -F. 

0 -  

Since this is a linear equation, (28) may be incorporated 
into the three algorithms as an additional linear constraint 
causing no essential change in the nature of the solution 
method. The effect of this added prior knowledge can be 
quite dramatic, however, as we shall see in the following 
section. 

i 
V. EXPERIMENTAL RESULTS 

To show the behavior of the three algorithms, we use 
noise-corrupted measurements of a 10-dimensional sup- 
port vector corresponding to either 1 )  a circle with radius 
1 /2 ,  centered on the origin or, 2) an ellipse, also centered 
on the origin, with major axes in the x-direction with ra- 
dius 3/4 and y-direction with radius I / 3 .  The measure- 
ments are given by (2 1) where ni are independent random 
variables, uniform over the range [-y, y], with several 
values of y. To plot the data (for either the feasible sup- 
port vectors or infeasible observations) we simply connect 
the vertex points { v I ,  v2, . * . , v M ,  v I  1 in sequence, pro- 
ducing a vertex plot. For a (feasible) support vector, this 
plot produces an outline of the basic object; however, for 
a (infeasible) measurement, the plot crosses itself, clearly 
demonstrating the infeasibility. We refer to a point where 
a vertex plot crosses itself as a point of inconsistency. 

Figs. 7(a) and 8(a) show both the true basic object cor- 
responding to the circle (dashed line) and the vertex plot 
for the measured vector (solid line), where y = 0.2 and 
y = 0.4, respectively. Figs. 9(a) and 10(a) show the cor- 
responding figures for the ellipse. The shaded regions 
shown in the (a) panels of Figs. 7-10 are estimates pro- 
duced by the intersection method, which is described in 
Sections I and 11. One can see that, in each case, there is 
at least one measured line that does not support the shaded 
region, which clearly demonstrates the infeasibility of the 
measurements. It is important to point out that the set con- 
structed from the raw measurements using the intersection 
method is a bad estimate of the true set, in general. This 
is because, as mentioned before, the construction of this 
set essentially ignores the support lines that are farthest 
out. In contrast, each of the algorithms proposed here uses 
all of the measurements to ‘‘pull” the inner support lines 
out, if necessary. 

In panels (b)-(d) of Figs. 7-10, the shaded regions cor- 
respond to the estimated basic objects produced by the 
three algorithms using the measurements shown in the re- 
spective (a) panels. The results of the Closest algorithm 
are shown in the (b) panels, the Mini-Max algorithm in 

-1 

0 -  

- BIntersection Method -- aCClosest 

-I 4 mCloze-Min -1 1 B Mini-Max 

-1 0 1 -1 0 1 

Fig. 7. (a) The true object (circle), the measured support vector ( y  = 0.2),  
and the reconstruction obtained using the intersection method. (b) Clos- 
est, (c) Mini-Max, and (d) Close-Min estimates. 

0 -  

-1 - @Mini-Max -- Close-Min 

-1 0 1 -1 0 1 

Fig. 8. (a) The true object (circle), the measured support vector ( y  = 0.4), 
and the reconstruction obtained from the intersection method. (b) Clos- 
est, (c) Mini-Max, and (d) Close-Min estimates. 

- 1 1 Mini-Max BClose-Min 

-1 0 1 -1 0 1 

Fig. 9. (a) The true object (ellipse), the measured support vector ( y  = 
0.2) ,  and the reconstruction obtained from the intersection method. (b) 
Closest, (c) Mini-Max, and (d) Close-Min estimates. 
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1 

0 

-1 

1 

0 

-1 

Intersection Method -- Closest 

Mini-Max (c) 

-1 0 1 -1 0 I 

Fig. 10. (a) The true object (ellipse), the measured support vector (y = 

0.4), and the reconstruction obtained from the intersection method. (b) 
Closest, (c) Mini-Max, and (d) Close-Min estimates. 

the (c) panels, and the Close-Min algorithm in the (d) 
panels. For comparison, we have also included the outline 
of the true basic object (dashed line) in each of these 
panels. The most important observation to make here is 
that the Closest estimates strongly resemble the measure- 
ments, the Mini-Max estimates strongly resemble our 
prior expectation (large circular objects) and the Close- 
Min estimates “blend” these two outcomes. Note that we 
have chosen (Y = 0.5 for the Close-Min experiments; 
clearly, there is a range of different estimates correspond- 
ing to different a’s, which should yield figures ranging 
between the Closest and Mini-Max solutions. 

Let us examine the results in more detail. The Closest 
estimates show the following behavior: the lines are 
moved just enough in order to correct the points of incon- 
sistency. Note that, around a point of inconsistency, the 
inner lines are “pulled” out and the outer lines are 
“pushed” in. This is in accordance with the Closest cri- 
teria, which adjusts the lateral positions of the lines in 
order to make them consistent and to minimize the sum 
of the squares of the lateral movements. For example, in 
Fig. 7(b) we see that three lines were moved to correct 
the single point of inconsistency. Note that it is possible 
to move only one line to fix such a point, but clearly that 
move yields a larger squared difference between obser- 
vation and support vector. Because of this behavior, the 
Closest estimate always produces a basic object that is 
larger than the intersection method (provided that the 
measurement is infeasible). Then, for almost all noise 
models, we expect that the Closest estimate is better than 
the intersection method, since it is not as biased toward 
small figures. 

To clarify some of the behavior of the Mini-Max esti- 
mates, it is useful to examine the estimates together with 
the bounds imposed by the hypercube 63 of (23). Fig. 11 
shows the vertex plots for the Mini-Max estimate (solid 
line), the inner bound yo = y - [yy . * y]‘ (dotted 
line), and the outer bound Yb  = y + [ y y * * y l T  (dashed 

-1 0 1 

Fig. 11. The observation bounds and the Mini-Max estimate. 

line) for the example shown in Fig. 7. First, this figure 
demonstrates how the Mini-Max estimate, in an effort to 
maximize the minimum discrete radius of curvature, pro- 
duces a figure that is as large as possible given the bounds, 
yet is also nearly circular (that is, nearly a regular poly- 
gon). Second, it is clear from the figure that the estimated 
basic object may be shifted down a short distance and still 
remain within the bounds. Since, as we have already 
pointed out, adding a nullvector to the estimated support 
vector does not affect the value of the Mini-Max objective 
function, any feasible shifted version of the solution is 
also optimal. Therefore, in this example, the solution is 
not unique. In the shift-corrected algorithms discussed be- 
low, this component of nonuniqueness is eliminated by 
imposing a known object position. As we shall see, this 
simple correction has dramatic effects on the Mini-Max 
estimates. 

The Close-Min algorithm produced the “blended” es- 
timates that we expected. In particular, where the Closest 
algorithm corrected the points of inconsistency, it invari- 
ably left a sharp comer on the boundary. The Close-Min 
algorithm produced estimates that appear quite similar to 
the results of the Closest algorithm but which have 
smoothed these comers. 

Finally, we present one experiment that demonstrates 
the results of shift correction applied to the Mini-Max al- 
gorithm. Fig. 12 shows three vertex plots corresponding 
to the true support vector (solid line), the Mini-Max es- 
timate from Fig. 7(c) (dotted line), and the Mini-Max 
shift-corrected (for V = 0 )  estimate (dashed line). We see 
that the shift correction does not simply shift the original 
Mini-Max solution down. To understand this we recall 
Fig. 11. We saw that due to nonuniqueness we could shift 
the solution vertically over a finite range. But, evidently, 
none of these shifted positions causes the sum of the ver- 
tex points to be exactly zero. To allow this to occur, the 
shift-corrected algorithm was forced to shrink the esti- 
mate as well. Clearly, prior information about the posi- 
tion of the object may have a very strong influence on the 
performance of the algorithms. 

VI. CONCLUSIONS 
In this paper we have introduced several important ideas 

related to the reconstruction of convex sets from support 
line measurements. The primary contribution of this pa- 
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0 

Mini-Max 
- 1 - - Shift-Corrected Mini-Max i 

-1 0 1 

Fig. 12. Shift-corrected Mini-Max estimate. 

per is in the formulation of the problem as a constrained 
optimization problem that includes the fundamental sup- 
port vector constraint, prior information, and uncertainty 
in the measurements. We have shown how knowledge of 

1) fundamental geometric constraints, 
2) object shape and position, and 
3) underlying measurement noise models, 

may lead directly to optimization-based or probabilistic- 
based algorithm formulations. We have shown how these 
methods produce better reconstructions that the conven- 
tional intersection method, which does not use any of the 
available modeling information. 

The algorithms we have proposed in this paper are of 
the very simplest type. However, they serve the purpose 
of illustration of the fundamental ideas, and they are im- 
plemented using particularly efficient codes. The Closest 
algorithm gives the constrained maximum likelihood es- 
timated assuming the noise is Gaussian. It requires the 
minimum amount of prior knowledge about the set to be 
reconstructed, and is implemented in a straightforward 
manner using quadratic programming techniques. The 
Mini-Max algorithm gives one method to produce 
smoother boundaries, which results in fast linear pro- 
gramming codes. However, the Mini-Max solution is not 
necessarily unique and tends to produce large, nearly cir- 
cular objects. The Close-Min algorithm blends the pre- 
ceding two objective functions to produce estimates that 
balance the prior information and the information con- 
tained in the measurements. Finally, we have shown that 
prior knowledge of object location can lead to consider- 
able improvement for the resulting shift-corrected algo- 
rithms. Note that object location is one quantity that can 
typically be estimated with great accuracy in CT appli- 
cations. 

Many extensions of this work are possible, both in the 
inclusion of additional constraints or in the development 
of more elaborate objective functions. Among the possi- 
ble constraints one might consider including is a known 
object area. The area of a basic object is a quadratic func- 
tion of h,  however, which leads to inherently more com- 
plicated computational methods. A simpler extension of 
the constraints may arise if one has only partial informa- 
tion about the position of the object in the plane. For ex- 

ample, if the position were bounded, then instead of hav- 
ing two linear equality constraints (corresponding to the 
x and y position) as in the shift-corrected algorithms, one 
would have four linear inequality constraints. 

A potentially important extension of the form of the ob- 
jective function involves the development of explicit prior 
probabilities on support vectors. For example, if one in- 
terprets the Close-Min algorithm as an explicit MAP for- 
mulation, one finds that the implied prior distribution on 
h strongly favors large objects. This, in general, is not 
desirable. One would prefer to specify a prior distribution 
that permits separate control of size and smoothness, for 
example, and perhaps also makes explicit such quantities 
as eccentricity and orientation. Once specifying such prior 
distributions, the algorithms may be formulated precisely 
using MAP techniques with the additional knowledge of 
the measurement noise statistics. Results along these lines 
will be reported in a subsequent paper. 

Another extension of these methods may be made to 
account for situations where one has missing measure- 
ments. This application is particularly important to the 
CT problem mentioned in Section I in the case when one 
has limited-angle or sparse-angle observations. For ex- 
ample, suppose one has M measurements but wishes to 
reconstruct a support vector of dimension 2M.  One may 
think of this as an interpolation or extrapolation proce- 
dure, and provided there is some prior shape information, 
this may be accomplished with relatively simple additions 
to the current algorithms [ 181. 

APPENDIX A 
FORMULAS 

We collect here for convenience several formulas and 
brief derivations that are often referred to in the text. Here 

The point p i  of intersection of Li-  I and Li+ I (see Fig. 
eo = 2 - r r / ~ .  

4) : 

Also 
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Since hi I p T q ,  we see that this result yields the neces- - 1 1 
sary result in Theorem 1. vY = - C - [h; h;+l]  

M ; = I  sin 8, 
Discrete radius of curvature: 

p .  = -hTC. 
1 -  

= PTW; - hi. 

Vertex points: 

V T  = [hi h + I l  [mi  m;+11-I 

sin el 
= L h T [  M ] 

sin O M  

sin -cos 

-sin 8; cos ei 
1 

sin Bo 
-- - 

Eigenvalues of the constraint matrix: 
M 

2 
M 

= - hTn2. , M  - C In e - J 2 ~ ( k - I ) ( n - 1 ) / M  k =  1, a . .  

n = l  
k -  

- e - j27r (k -  1 ) / M  = 1 +  
2 cos 2 4 4  

-' e - j27r (k -  I ) ( , -  I ) / M  + 
2 cos 2 n / M  

COS 2 ~ ( k  - 1)/M = I -  
cos 2 T / M  . 

APPENDIX B 
PROOF OF THEOREM 1 (continued) 

To complete the proof, we must show that (6) implies 
SE = S,. This is done in two stages. First we show that 
S,  C S,, then that S,  C SE.  Since SE is a bounded (con- 
vex) polytope (proof omitted), it may be written as 

SE = hul ( e l ,  e2, - * , ep)  (B1) 
The x and y coordinates of the center of gravity of the 
vertex points: 

where ei are the extreme points of SE.  Consider one par- 
ticular extreme point of SE, ej; it must satisfy with equal- 
ity at least two inequalities in (5). Let one of those in- 
equalities be indexed by k .  Then we have sin 0; + I - 1 ,  1 

[-sin ei 1 e;Cdk = hk, ( B 2 )  
V ,  = - C -[hi h;+1] Mi= I sin eo 

i.e., ej lies on the line Lk. Two of the vi's also lie on L k :  

v k -  and v k .  Now suppose ej could be written as the con- 
vex combination of v k  - and v k .  Then any extreme point 

-- - M sin 1 Bo ([::;I:] - h T [  :::: 1) of points SE could in S,. be And written since as both the convex SE and S,  combination are convex, of then two 

we must have that S,  c S,, proving this stage of the theo- 

We now show that ej can indeed be written as the con- 
vex combination of v k  - I and v k .  Here, there are two pos- 
sibilities: v k -  I = v k  and v k -  # v k .  Each of these cases 
require some development. 

In the case where v k -  = v k ,  we show that ej = v k  - I 
= v k .  First, since ej and v k  are on the line perpendicular 
to w k ,  we may write ek as 

sin OM sin 

sin el sin O M -  rem. 

ej = v k  + pa : ,  (B3)  

I sin ( e ,  + e,) - sin (e, - e,) 

sin ( e ,  + e,) - sin (e, - e,) 
-- 

M st, e, h~ [ - 

COS e, 1 
M LCos e M d  

2 
M 

= - hTnl 

where 
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is the perpendicular to wk. Taking inner products of both 
sides of (B3) with wk- and using the fact that ej is in Ss 
we may write 

w l - l e j  = h k - l  + / 3 ~ l - ~ w ;  I h k - I  

and, similarly, for wk + I 

okr+iej = hk+i + P w k T + i ~ ;  I hk+i .  

Hence, 

, L ~ W ~ - ~ W ;  5 0 and @ w k + l w ;  I 0. 

After simplifying the above expressions using the defini- 
tions of wk - I ,  wk + I ,  and U : ,  we are led to the contradic- 
tory equations 

,6( -sin e,,) 5 0 and P(sin 0,) 5 0, 

hence, P must be zero, and therefore ej = vk = vk-  
required. 

result relating the unit vectors wk - I ,  wk, and wk + 

the geometry it is easy to verify that 

as 

In the case where vk- I # vk we first need an auxiliary 
From 

where e,, = 2 a  / M .  Next, since ej,  v k  - I ,  and vk all lie on 
the same line Lk, and vk- I and vk are distinct points, we 
may express ej as a linear combination of vk - and vk using 
the single parameter a as 

ej = avk-I + ( 1  - a)vk .  035) 
Taking the inner product of both sides of (B5) with c.dk - I 

we have 

eT0k-I = (YVl-1wk-I + ( 1  - a1)v ;Wk- l  

= ahk-1 + (1  - a)v;wk-I 

5 hk-1. (B6) 
The last inequality results from the fact that ej is, by def- 
inition, in S E .  Now we eliminate wk - from (B6) using 
(B4) yielding 

ahk-1 + ( 1  - (Y)vl(2 cos 8 o W k  - w k + l )  I h k - 1  

which may be further reduced to 

( 1  - a ) ( 2  COS OOhk - h k - l  - h k + l )  5 0. (B7) 

Since from (6 )  the quantity 2 cos Oohk - hk- - hk + 

must be nonpositive we immediately recognize that a I 
1. 

Taking the inner product of both sides of (B5) with wk + 

and using a similar sequence of steps leading to (B7) one 
may show that 

a ( 2  cos eohk - hk-l - h k + I )  I 0 (B8) 

from which we conclude that a 2 0. Hence, we have that 
0 I a I 1 and, therefore, that ej is, in fact, a convex 
combination of vk - and v k .  This completes the proof that 
SE c s,. 

Now we begin the proof that S ,  C SB. In what follows, 
we show that vi E S B  for each i = 1, * * , M .  Since SE 
is convex this is sufficient to prove that S ,  is contained in 
SE.  Accordingly, we intend to show that 

vT[uI w2 w M ]  5 [ h ,  h2 - - a  h M ]  (B9) 

for all i = 1, * - * , M .  Substituting expressions for vi and 
w i , j =  1, * . * , M into (B9) and simplifying yields 

where qij = hi sin ( Bi+ I - e j )  - hi+ I sin ( 0 ;  - e j ) .  Our 
task is to show that (B10) is true given hTC I 0. 

Equation (B10) is true if each term is separately true. 
Hence, we must show that 

1 
- (hi sin ( B i + l  - 0,) - hi+l  sin (0 ;  - O j ) )  I hj 
sin Bo 

(B11) 
f o r i  = 1, * , M (each v i )  a n d j  = 1, . . * , M [each 
term in (B9)]. Because of the rotational symmetry of the 
problem we may, without loss of generality, choose j = 
1 and prove that (B11) is true for i = 1, * , M .  Since 
0; = ( i  - 1 ) 2 a / M  = ( i  - 1)8,,, then f o r j  = 1 we may 
simplify (Bl 1) to 

1 
- (hi sin ioo - h i + l  sin ( i  - l )eo)  I h l .  (B12) 
sin Bo 

Denoting the left-hand side of (B12) by E; we have for i 
= 1 that 

( h ,  sin Bo - 0) = hl 
1 

sin Bo 
El = - 

which satisfies (B12) trivially. The general expression Ei 
for i = 2, , M may be related to E; using the relation 
hTC I 0 as follows. From (B12) we have that 

1 
E. = - (h i  sin ieo - h i + l  sin ( i  - i)e,,) ' sin Bo 

Using the formula sin ia = 2 sin ( i  - 1 )a cos a - sin ( i  
- 2 ) a ,  this becomes 

1 
E. = - [hi(2 sin ( i  - i )eo  cos e,, - sin ( i  - 2)e0) ' sin e,, 

- h i + l  sin ( i  - i)e,,] 

- [(2hi cos e,, - h i + l )  sin ( i  - l )eo  
1 

sin e,, 
- - 

- hi sin ( i  - 2)eo] .  0313 1 
Now we notice that the ith constraint in hTC I 0 may be 
written as 2 cos 0, hi - h, + I 5 hi - . Using this inequality 
in (B13) yields 
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which may be reduced to Ei I This is the result [23] A. H. Land and S.  Powell, Fortran Codes for Mathematical Pro- 

r241 D. Goldfarb and A. Idnani. “A numerically stable dual method for 
gramming. London: Wiley-Interscience, 1973. that we sought. Now we may conclude that 

~~ 

solving strictly convex quadratic programs,” Math. Program., vol. 

[25] D. G. Luenberger, Linear and Nonlinear Programming. Reading, 
27, pp. 1-33, 1983. E M  I EM-1 I * * I E2 I El = hl 

which concludes the proof of sufficiency and, hence, the - MA: Addison-Wesley, 1984. 
theorem. U 
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