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Stability, Stochastic Stationarity, and Generalized
Lyapunov Equations for Two-Point Boundary-
Value Descriptor Systems

RAMINE NIKOUKHAH, BERNARD C. LEVY, MEMBER, 1EEE, AND ALAN S. WILLSKY, FELLOW, IEEE

Abstract—In this paper, we introduce the concept of internal stability
for two-point boundary-value descriptor systems (TPBVDS’s). Since
TPBVDS’s are defined only over a finite interval, the concept of stability
is not easy to formulate for these systems. The definition which is used
here consists of requiring that as the length of the interval of definition
increases, the effect of boundary conditions on states located close to the
center of the interval should go to zero. Stochastic TPBVDS’s are
studied, and the property of stochastic stationarity is characterized in
terms of a generalized Lyapunov equation satisfied by the variance of the
boundary vector. A second generalized Lyapunov equation satisfied by
the state variance of a stochastically stationary TPBVDS is also
introduced, and the existence and iq of positive definite
solutions to this equation is then used to characterize the property of
internal stability.

1. INTRODUCTION

ONCAUSAL physical phenomena arise in many fields of
science and engineering. These phenomena correspond
usually to processes evolving in space, instead of time. To model
such processes, the usual state-space models familiar to system
theorists are not appropriate, since these models were developed
primarily to describe causality, in the sense that the ‘‘state’” of a
system at a given time is a summary of the past inputs sufficient to
compute future outputs. One is then led to ask: what is a natural
class of models to describe noncausal phenomena in one dimen-
sion? It is the goal of this paper, as well as of earlier papers and
reports [1]-[4], to suggest that perhaps the most natural class of
discrete-time noncausal models in one dimension is the class of
two-point boundary-value descriptor systems (TPBVDS’s). This
conclusion is drawn from the observation that the impulse
response of a time-invariant descriptor system is noncausal, and
that the dynamics of these systems are symmetric with respect to
forwards and backwards propagation. In addition, for systems
defined over a finite interval, two-point boundary-value condi-
tions enforce noncausality in the sense that both ends of the
interval play a symmetric role in the expression of the boundary
conditions.
The noncausality of discrete-time descriptor systems is a well-
known feature of these systems. It is, for example, much in
evidence in the early work of Luenberger [5]-{7], where it is

Manuscript received July 7, 1988; revised January 26, 1989. Paper
recommended by Associate Editor, J. D. Cobb. This work was supported by
the National Science Foundation under Grant ECS-8700903, by the Air Force
Office of Scientific Research under Grant AFOSR-88-0032, and by the Army
Research Office under Grant DAAL03-86-K-0171.

R. Nikoukhah is with the Institut National de Recherche en Informatique et
en Automatique (INRIA), Rocquencourt, France.

B. C. Levy is with the Department of Electrical Engineering and Computer
Science, University of California, Davis, CA 95616.

A. S. Willsky is with the Department of Electrical Engineering and
Computer Science, and the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139.

IEEE Log Number 8930791.

pointed out that two-point boundary-value conditions are usually
needed to guarantee well-posedness. In Lewis [8], it was shown
that these systems could be decomposed into forwards and
backwards propagating subsystems, so that their solution involves
recursions in both time directions. However, in spite of these
useful observations, it is fair to say that most of the literature on
descriptor systems has focused mainly on issues of structure [9],
[10], and their implication for the control of descriptor systems
[11]-[14]. This is primarily due to the fact that in continuous time,
descriptor systems display an impulsive behavior, which until
recently has been the focus of attention.

The study presented here has been influenced significantly by
the work of Krener [15]-[18] on the system-theoretic properties of
the standard (i.e., nondescriptor) continuous-time boundary-value
systems, and on the analysis of stochastic boundary-value
systems. The results of Krener, as well as related work by
Gohberg, Kaashoek, and Lerer [19]-[21], have pointed out that
boundary-value linear systems have a rich internal structure. The
results of this paper, and of [1]-[4] combine in some sense the
degree of noncausality attributable to the boundary contributions,
which was already present in [15]-[21], with an additional source
of noncausality, namely the noncausal dynamics of discrete-time
descriptor systems.

Another motivation for this paper is our desire to analyze the
properties of optimal estimators for noncausal models developed
in [22]-[25], [4]. A new class of Riccati equations for TPBVDS’s
is obtained in [25], [4], and it is of interest to determine conditions
under which positive-definite solutions exist, and the implication
of these conditions concerning system stability. One purpose of
this paper is to define and study the property of stability for
TPBVDS’s. The notion of stability is not easy to formulate for
these systems, since they are defined over a finite interval.
However, a relatively natural concept is that of infernal stability,
whereby as the length of the interval of definition of a TPBVDS
grows, the effect of the boundary conditions on states located
close to the center of the interval goes to zero. A theory of
stability that parallels the standard causal theory is developed by
considering stochastically stationary TPBVDS’s, and by showing
that stochastic stationarity can be characterized in terms of
generalized Lyapunov equations. The existence and uniqueness of
positive-definite solutions to these equations is then characterized
in terms of the property of internal stability.

This paper is organized as follows. Section II provides some
background information on the properties of displacement two-
point boundary-value descriptor systems [2], [4], which is the
class of systems considered in this paper. These systems are such
that their Green’s function is invariant under time-shifts, and they
play, therefore, the same role for TPBVDS’s as time-invariant
systems for causal nondescriptor systems. In Section III, the
notion of internal stability is introduced and characterized. In
Section 1V, we examine stochastic TPBVDS’s, and study in
particular stochastically stationary systems. Two generalized
Lyapunov equations which must be satisfied, respectively, by the
state variance and the boundary variance of the boundary vector
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are introduced, and the property of stochastic stationarity is
characterized in terms of the second of these equations. It is
shown in Section V that the covariance function of a stochastically
stationary TPBVDS satisfies a second-order descriptor equation,
with appropriate boundary conditions. Finally, in Section VI the
existence and uniqueness of solutions to the generalized Lyapunov
equation satisfied by the state variance is characterized in terms of
the property of internal stability. The concluding Section VII
describes the impact of the results of this paper on the study of the
TPBVDS estimators and generalized Riccati equations introduced
in [25] and [4].

II. DISPLACEMENT SYSTEMS AND REACHABILITY CONCEPTS

The two-point boundary-value descriptor systems (TPBVDS)
considered in this paper satisfy the difference equation
Ex(k+1)=Ax(k)+ Bu(k),

O0<k=N-1 .1)

with the two-point boundary-value condition

Vix(©) + Vyx(N)=v. 2.2)
Here E, A, and B are constant matrices, x and v are n-
dimensional vectors, and u is an m-dimensional vector. We refer
the reader to [1]-[4] for studies of some of the basic system-
theoretic properties of this class of systems.

It was shown in [1] that, without loss of generality, it can be
assumed' that the system (2.1), (2.2) is in normalized-form, i.e.,
it satisfies the following two properties: i) there exists some
scalars « and 3 such that

aE+BA=1I (2.3)

so that £ and A commute; and ii) the boundary matrices V;and ¥V
satisfy

ViEN+ V,AN=I 249
A slight generalization of the above normalized form was
introduced in [2]. Specifically, (2.1), (2.2) is said to be in block-
normalized form if (2.4) holds and
E=diag (Ey, "+, Ey),

A=diag (A4, -+, Ay) (2.5)

where: i) the block sizes of E and A are compatibie; ii) for each j,
there exists (o, B;), possibly varying with j, such that

oG E+BA=1; 2.6)
and iii) the eigenmodes of distinct blocks of the system are
different, i.c., for any (s, t) # (0, 0), [SE; — tA;| = O for at
most one value of j. Any well-posed TPBVDS can always be put
in normalized or block-normalized form, and we will frequently
assume that our system is in one of these two forms.

A special class of two-point boundary-value descriptor systems
which is of great interest is the class of displacement TPBVDS’s
(21, [41.

Definition 2.1: A TPBVDS (2.1), (2.2) is a displacement
system if the Green’s function G(k, /) appearing in the solution

N-1
x(ky=A*EN~*+ > G(k, 1)Bu(l)
=0

2.7)

depends only on the difference between arguments k& and /, so that

G(k, )=G(k-1). (2.8)

' A necessary and sufficient condition [1] for (2.1), (2.2) to be well-
posed—i.e., to yield a well-defined map from {v, u} to x—is that, by
multiplication on the left only, E, A, V;, and V; can be brought to a form
satisfying (2.3), (2.4).
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Note that the above terminology is consistent with that of
Gohberg, Kaashoek, and Lerer [20] (see also [21]) in their study
of boundary value systems with standard nondescriptor dynamics.
Unlike for causal systems, the fact that the matrices E and A are
constant is not sufficient to guarantee that the TPBVDS (2.1),
(2.2) is a displacement system. The matrices E and A must also
satisfy some properties in relation to the boundary matrices ¥; and
V. The following characterization of displacement systems was
established in [2].

Theorem 2.1: A TPBVDS in block-normalized form is a
displacement system if and only if the matrices E and 4 commute
with both V; and V,, i.e.,

LE, Vil=1E, V/1=I[A4, Vi]=14, V;1=0 2.9

where
[X, Y]=XY-YX. (2.10)

The class of displacement systems is quite large. For example,
it includes cyclic systems, for which

V,'= _sz(EN_AN)~l (2113)
and anticyclic systems with
Vi=Vi=(EN+AM)-1, 2.11b)

Another useful result from [2] is as follows.

Theorem 2.2: Consider a displacement TPBVDS in block-
normalized form. Then V; and V; are also block diagonal with
block sizes compatible with those of E and A.

In the following, we shall restrict our attention to displacement
TPBVDS’s. For a system of this type, and in block-normalized
form, the Green’s function G(k, /) can be expressed as (see [2],

3D

Vl_Ak—l~1EN—k+l
- VfEl—kAN—l~l+k

k>1

k<l (2.12)

Gk, )=G(k-1)= {

We will also make use of the concepts of strong and weak
reachability for displacement TPBVDS’s. These concepts rely on
the outward and inward processes z,(k, /) and z;(k, 1) ([1], [2];
see also [16], [7]) associated with (2.1), (2.2). For a subinterval
[k, 11 of [0, N1], these processes characterize, respectively, the
effect of the inputs u(-) inside, and outside, this subinterval on the
boundary states x(k) and x(/). For a displacement TPBVDS, they
can be expressed as [2]

-1
Zo(k, l)=E""x(1)—A""x(k)=E Es~kA4!=s-1Bu(s) (2.13)

s=k
zi(k, )=V, EN-"*kx(k)+ VfAN"*"x(I) (2.14a)
=EN-14ky, 4 I",EN_IZU(O, k)— VfAng(l, N). (2.14b)

Then, we have the following definitions.
Definition 2.2: The system (2.1), (2.2) is strongly reachable
on [k, 1] if the map

{u(s) : s € [k, 11} =z,(k, 1) (2.15)
is onto. It is weakly reachable off |k, /] if the map
{u(s) :s €10, k—1] U [/, N=-1]1}-zi(k, ]) (2.16)

with the boundary vector v = 0, is onto. The system is strongly
reachable if it is strongly reachable over some interval. It is
weakly reachable if the union of the range spaces of (2.16) for all
k, lis R".

To characterize the properties of strong and weak reachability,
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the following matrices were introduced in [2]:

R, (k)=[A¥"'B EA*-2B --- Ek-'B], 2.17)

R, (k)=[V.EN-¥Ry(k) V;A*R(N-k)]. (2.18)
The following was then shown.

Theorem 2.3: The system is strongly reachable iff the range
Im (R;) of R, = R(n) is equal to R". The system is weakly
reachable iff

U Im (R, (k)=R". (2.19)
k

Finally, it was proved in [2] that strong reachability implies weak
reachability.

III. STABILITY

The concept of stability, which is relatively easy to define for
causal systems, is more difficult to describe for TPBVDS’s, since
these systems are defined over a finite interval. By analogy with
the causal case, we will require that as the length of the interval of
definition [0, N] tends to infinity, the effect of the boundary
conditions should vanish for points far away from the boundary.

A. Internal Stability

Consider a displacement TPBVDS defined over a finite
interval, and for which the boundary condition (2.2) corresponds
to a physical constraint of the problem which cannot be modified.
Then, when the dynamics (2.1) and boundary condition (2.2) are
fixed, we want to study the effect of increasing the size of the
domain [0, N] of definition of the TPBVDS on the state variables
x(k) located close to the center of this domain. One issue which
arises in this context is that if the TPBVDS (2.1), (2.2) is
originally in block-normalized form for a length N of the interval
of definition, and if we increase the length to N without changing
the matrices V;, V;and the vector v appearing in (2.2), the system
will not remain in block-normalized form, since (2.4) will not be
satisfied. However, if we renormalize (2.2) by a left multiplica-
tionby (V;EN + V;AN)~! and change the matrices V;, V,and the
vector v accordingly, the TPBVDS will be block-normalized. In
this context, it is possible to describe internal stability as follows.

Definition 3.1: The displacement TPBVDS (2.1), (2.2) in
block-normalized form is internally stable if as the length N of
the interval of definition tends to infinity, the effect of the
boundary value v on any x(k) located near the midsection of
interval [0, N] goes to zero, i.e.,

lim EN2AN2(V,EN+ V,AN)~1=0.
N-eo

3.1

To interpret condition (3.1), note that according to (2.7), and
taking into account the renormalization described above to put the
TPBVDS in block-normalized form as the interval length N is
increased, the effect of the boundary vector on state x(k) is given
by A*EN-X(V.EN + V;AN) 'v. Thus, for k = N/2, which
corresponds to a point in the middle of interval [0, V], the effect
of v on x(N/2) is ENANY(VEN + V,AN) 'v.

There is another interpretation of the above notion of stability,
which we will state without proof. Specifically, as we change NV
without changing V; and V}, except for the renormalization, we
actually are changing the entire Green’s function of the TPBVDS.
Thus, what we have is a sequence of Green’s functions Gu(k),
1 — N = k < N, indexed by N. Internal stability is then
equivalent to

N

lim % |Gk <o
® k=1-N

3.2)
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which relates the concept of stability to the summability of the
system’s Green’s function Gy(k) as the interval N of definition
tends to infinity.

As an illustration of the above concept of stability, consider a
system that describes the heat distribution around a ring. Since the
ring is closed, this system has a periodic boundary condition x(0)
= x(N'), which is independent of the size of the ring. In this case,
if a perturbation in heating conditions is applied at one point of
the ring, one would expect that as the size of the ring increases,
the effect of this perturbation will become smaller and smaller for
points which are located on the opposite side of the ring.

B. Decomposition of a Displacement TPBVDS

Our first objective is to characterize the property of internal
stability for a TPBVDS in terms of the system dynamics and
boundary conditions. This characterization relies on a particular
decomposition for displacement TPBVDS’s, obtained using the
following Weierstrass-type decomposition (see [26, p. 28]) of a
regular matrix pencil. Note that (2.6) guarantees that the pencil
zZE — A is regular.

Lemma 3.1: Given a TPBVDS, there exists invertible matrices
F and T such that

I 00

Ep=FET= [o Ay o] (3.3)
0 0 I
A; 0 0

AD=FAT—[0 1 0] (3.3b)
00U

where A, and A, have eigenvalues inside the unit circle, and U
has eigenvalues on the unit circle.

The transformation (3.3) can be achieved by left-multiplication
of (2.1) by F and by performing the state transformation

x(k)=Txp(k). 3.4

Observe that E and A p, satisfy (2.5), (2.6) with (ay, 81) = (a3,
B3) = (1, 0) and (a3, B2) = (0, 1). Also, by construction the
eigenmodes of the three blocks are different.

To complete the transformation of our system, B is replaced by

Bp=FB (3.5)
and the boundary matrices become
Vpi=LV,T, Vpr=LV,T (3.6)

where the normalizing matrix L is selected here such that relation
(2.4) is satisfied by the new TPBVDS. Finally, if the original
TPBVDS was a displacement system, the new TPBVDS is also a
displacement system since its Green’s function is related to the
original Greens’s function through

Gpk—D=T"'G(k-DF~. 3.7

In this case, since the TPBVDS specified by (3.3), (3.5), and (3.6)
is a displacement system in block-normalized form, we can
invoke Theorem 2.2 to conclude that the matrices V p; and ¥ prare

block diagonal, i.e.,
Vo 0 0
and VDf= 0 sz 0 (38)
0 0 ng

Vi 0 0
VD,'= [ 0 ViZ 0
0o 0 v
which yields the main result of this section.
Theorem 3.1 (Decomposition of a Displacement TPBVDS):
Through the use of a state transformation 7, and by left
multiplication of (2.1) and (2.2) by invertible matrices F and L,
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an arbitrary displacement TPBVDS can be decomposed into three
decoupled subsystems of the form

X/(k+ 1)=Afo(k)+Bfu(k), V,'1X/(O)+ VfIXf(N)=l)], (393)

Xp(k)=Apxp(k+1)— Bpu(k), Vizxp (0)+ Vixp(N)=v,5, (3.9b)

XK+ 1) = Uxp (k) + Bpu(k), Visxm0)+ Visxm(N)=v;  (3.9¢)
where the matrices A, and A, have their roots inside the unit
circle, and U has its roots on the unit circle. The subsystems
(3.92)-(3.9c¢) are displacement systems, in normalized form.

In what follows, for convenience only, we will refer to (3.9a)-
(3.9c) as the forward, backward, and marginal parts of the
system, respectively. Note, for example, that the dynamics of
(3.9a) look like forward dynamics and those of (3.9b) look like
backward dynamics, but the boundary conditions in each case can
make each of these noncausal.

C. Characterization of Internal Stability

The main feature of the decomposition (3.9) of a displacement
TPBVDS is that it reduces the study of internal stability for a
TPBVDS to the study of these properties for each of its
components.

Lemma 3.2: Consider a displacement TPBVDS given by

x(k+1)=Ax(k)+ Bu(k) (3.10a)

Vix(0)+ Vix(N)=v (3.10b)

where A has all its roots inside the unit circle. Then, the system

(3.10) is internally stable if and only if the matrix V; is invertible.
Proof: Taking into account the definition (3.1) of internal

stability, we see that (3.10) is internally stable if and only if

lim AN2(Vi+ V;AN)=1=0

N—o

which is clearly equivalent to requiring that V; should be
invertible. 0
This yields the following characterization of internal stability.
Theorem 3.2: A displacement TPBVDS is internally stable if
and only if the decomposition (3.9) of this system is such that
boundary matrices V;, and V7, are invertible, and the system does
not have any eigenmode on the unit circle.

Proof: The first part of the above characterization is
obtained by applying Lemma 3.2 to the forward and backward
components (3.9a) and (3.9b). The condition concerning the
eigenmodes on the unit circle is derived by noting that no choice
of boundary matrices Vj; and V;; satisfying (2.4) will guarantee
that

lim UN(Vis+ Vi UN) =1 =0, [

D. Stable Extendibility

There is another natural way in which one might consider
defining stability for a TPBVDS, which we now briefly describe.
As this notion does not lead to particularly surprising results, we
omit the details and refer the reader to [3]. The basic idea stems
from the observation that the inward process z;(k, /) can be
thought of as the inward propagation of the boundary conditions
so that the solution to (2.1) with boundary condition (2.14a) is the
same as the solution of (2.1), (2.2) over the interval [k, /]. Thus,
the Green’s function of (2.1), (2.14a) is the restriction of the
Green’s function of (2.1), (2.2). It is natural then to ask if one can
propagate the boundary condition outward to obtain an extension
of the Green’s function. The following definition and theorem are
from [2].

Definition 3.2: A displacement TPBVDS (2.1), (2.2) is
extendible if for any K < 0 and L = N, there exist boundary
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matrices Vi(K, L) and V4K, L) so that the TPBVDS specified by
(2.1) and the new boundary condition

Vi(K, L)x(K)+ VA{(K, L)yx(L)=v(K, L) 3.11)

is such that

i) the new extended system is a displacement system;

ii) the Green’s function G(k — /) of the original system is the
restriction of the Green’s function G.(k — ) of the extended
system

G(k—=1)=G,(k—1)  for [k—I|<N. (3.12)

Theorem 3.3: A displacement TPBVDS in block normalized
form is extendible if and only if the following two conditions are
satisfied:

i) Ker (E™) C Ker (V)) (3.13a)

ii) Ker (4") C Ker (V)). (3.13b)
In this case one choice for the boundary matrices of the extended
system (which is also in block-normalized form) is

Vi(K, L)=V,EN(EP)L-X (3.14a)

VAK, LYy=V;AN(AP)L-K (3.14b)
where E? and A? are the Drazin inverses [27, p. 8] of E and A4.

For an extendible TPBVDS, we have an entire family of
extensions over intervals of increasing size, all of which can be
thought of as the restriction of a system defined over (— o0, ).
This leads directly to the following.

Definition 3.3: An extendible displacement TPBVDS is stably
extendible if the Green’s function G, (k) obtained by extension to
(— o0, ) is absolutely summable, i.e.,

3 Gkl < oo. (3.15)

Theorem 3.4: An extendible displacement TPBVDS is stably
extendible if and only if the decomposition (3.9) of this system is
such that

Vii=Vi,=0 (3.16)
and the system does not have any eigenvalue of the unit circle,
i.e., it does not contain a marginal component of the form (3.9c).

Proof: See [3].

From condition (3.16), we can immediately deduce that stable
extendibility implies internal stability, since subsystems (3.9a)
and (3.9b) must each satisfy the normalization condition (2.4), so
that boundary matrices V;, and ¥V, are invertible. Theorem 3.4
shows that the class of stably extendible TPBVDS’s consists of
systems obtained by combining completely decoupled forward
and backward causal subsystems. Thus, this class does not contain
systems that have a truly acausal behavior since we can associate a
time direction to each subsystem. The class of internally stable
subsystems, on the other hand, is far richer and does include
systems with acausal response characteristics.

IV. StocHasTic TPBVDS’s AND GENERALIZED LYAPUNOV
EQUATIONS

In this section, we study the class of stochastic TPBVDS’s
given by (2.1), (2.2), where u(k) is a zero-mean white Gaussian
noise with unit intensity, and where v is a zero-mean Gaussian
random vector independent of u(k), and with covariance Q. Thus,
we have

Mlu(kyu™(DH]=18(k—1) 4.1
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where M[z] denotes the mean of a random variable z, and (k) is
the Kronecker delta function. In addition, it is assumed throughout
the remainder of this paper that the TPBVDS (2.1), (2.2) is a
displacement system in normalized form. The displacement
assumption is quite important, and all the results of this paper
concerning stochastic TPBVDS’s are restricted to this class of
systems.

In the continuous-time case, and for the usual nondescriptor
state-space dynamics, a related class of stochastic boundary-vaiue
systems was examined by Krener [17], [18], who studied the
relation existing between this class of systems and reciprocal
processes. In particular, Krener considered the problem of
realizing reciprocal processes with stochastic boundary-value
systems. Our goal here is somewhat different, in the sense that we
shall seek to obtain a complete set of conditions under which a
stochastic TPBVDS of the form (2.1), (2.2) is stochastically
stationary. It turns out that the characterization that will be
obtained involves a Lyapunov equation for the boundary variance
O which generalizes the standard Lyapunov equation for station-
ary Gauss-Markov processes.

Definition 4.1: A TPBVDS is stochastically stationary if

Mix(K)xT(D]1=R(k, )=R(k-1). 4.2)

if the TPBVDS (2.1), (2.2) is stochastically stationary, the

variance matrix P(k) = R(k, k) of x(k) must be constant, i.e.,

P(k) = P for all k. Thus, our first step at this point will be to

characterize completely the matrix P(k) for a displacement
TPBVDS in normalized form. Let

k
Ti(k)=>, A*/E/BBT(A*E/)T.

=0

@.3)

Then, using the Green’s function solution (2.7), (2.11), multiply-
ing by its transpose, and taking expected values, we obtain

P(k)=A*EN-¥QA*EN-X)T+ (V,EN-")(k— 1)(V,ENK)T
+(VARII(N-1-k)}V;AX)T. (4.4)
This expression can also be rewritten as

P(k)=A"EN"‘Q(A“EN”‘)T+RW(k)Rc(k) 4.5)
where R, (k) is the weak reachability matrix (2.18). From (4.5),
and noting from Theorem 2.3 that if the TPBVDS is weakly
reachable, we have
zTR,(k)=0

forall k = z=0 (4.6)

we can conclude that if the TPBVDS is weakly reachable and has
a constant variance P, then P is positive definite.

The expression (4.4) for P(k) is an explicit description, and is
valid in general for displacement TPBVDS’s in normalized form.
However, as in the causal case, where P(k) satisfies a time-
dependent Lyapunov equation, it is also possible to obtain an
implicit description for P(k) in the form of a recursion with
boundary conditions. Specifically, multiplying both sides of (2.1)
and (2.2) by their transposes, using the Green’s function solution
(2.7), (2.11), then taking expected values, it can be shown that
P(k) satisfies the TPBVDS

EP(k+1)ET— AP(k)AT=(V,EN)BBT(V,EN)T
—(V,AN)BBT(V,AN)T  (4.7a)
ViPO)VI= VPNV [=(VEN)Q(V,EN)T
—(V;AMQ(V;AM) T (4.Tb)

which can be viewed as a generalized time-dependent Lyapunov
equation for P(k).
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Equations (4.7a) and (4.7b) may or may not characterize
completely the variance P(k), i.e., they may have several
solutions, one of which will be (4.4). This corresponds to
situations where (4.7a) and (4.7b) do not completely capture the
structure of (4.4), and in this case, additional conditions would
have to be imposed to make sure that we obtain a unique solution
equal to (4.4). To obtain conditions under which (4.7a) and (4.7b)
specify P(k) uniquely, these equations can be rewritten in the
form of a TPBVDS of type (2.1), (2.2), and we can then apply the
well-posedness test for TPBVDS’s presented in (1]. Let p(k), ¢,
and w denote the vectors obtained by scanning the entries of
matrices P(k), Q, and W = BBT columnwise. We can then
rewrite (4.7a) and (4.7b) as

(E® E)pk+1)—(4 ® A)p(k)=(V.EN ® V,EMw
—(V;AN ® V;AN)w  (4.82)

(V; ® V)p@©)—(V; ® VOp(N)=(V.EN ® ViEN)q
—(V;AN ® V;AN)g (4.8b)

where ® denotes the Kronecker product [28]. Note that the right-
hand sides of the above equations are irrelevant as far as well-
posedness is concerned.

The well-posedness condition for the TPBVDS (4.8a), (4.8b)
reduces to the invertibility of the matrix

Fy=(V, ® V)(E ® E)N—(V; ® V/)(A ® A)Y

=(VEN) ® (VEM - (V;AN) ® (V;AN).  (4.9)
We obtain, therefore, the following result.
Theorem 4.1: Equations (4.7a) and (4.7b) characterize
uniquely the variance P(k) if and only if
N#

for all j and / (4.10)

where N; and p; are the eigenvalues of V;EN and VAN,
respectively.

Proof: Since matrices V;E"N and VAN satisfy (2.4), they
can be brought simultaneously to Jordan form. Furthermore, the
eigenvalues \; and p; corresponding to the same eigenvector z
satisfy

)\j'f'p.j:l‘ 4.11)
Then, it is easy to check that the eigenvalues of Fy must have the
form N\;\; — p;up, so that Fy is invertible as long as

Xj)\[#ﬁ,l.j[,l.[.

Taking into account (4.11), this gives (4.10). O

Note that in the causal case the eigenvalues \; and p; are all
equal to 1 and 0, respectively. Thus, according to Theorem 4.1,
P(k) is uniquely defined. This is expected, since in this case
(4.7a) is a forwards recursion for P(k), and (4.7b) is the initial
condition P(0) = Q.

Theorem 4.1 indicates that, except under very special circum-
stances, P(k) can be uniquely computed from the generalized
time-dependent Lyapunov equation (4.7a) and (4.7b). In addition,
when the TPBVDS is stochastically stationary, the matrix P(k) =
P is constant, and satisfies the two algebraic equations

EPET— APAT=(V,EN)BBT(V,EN)T—(V;AN)BBT(V;AN)T
4.12)
ViPVI—V,PVI=(V,.EN)Q( ViEN)T—-(V;ANM)Q(VAN) T
(4.13)

obtained from (4.7a) and (4.7b). Equation (4.12) is a generalized
algebraic Lyapunov equation, and by analogy with the causal
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case, it is tempting to think that, if a TPBVDS has a constant
positive definite variance matrix P satisfying (4.12), then the
TPBVDS is stochastically stationary. Unfortunately, this is not the
case, and the correct condition for stochastic stationarity, which is
condition (4.14) below, involves the variance Q of the boundary
vector v.

Theorem 4.2: A stochastic TPBVDS is stochastically station-
ary if and only if Q satisfies the equation

EQET-AQAT=V,BBTVT- VfBBTV}.. (4.14)

Proof: To prove sufficiency, we need to show that when
(4.14) is satisfied, thenR(k + 1,/ + 1) = R(k,[)forall k,! €
[0, N]. By using the Green’s function solution (2.7), (2.11) to
evaluate R(k, /) = M[x(k)xT(l)] for k = I, we obtain

R(k, 1)=AkEN_kQ(A[EN")T

1-1
+ E ViAk—j~IEN—k+jBBT(Vl_Al—j—lEN—Hj)T
j=0

k-1

+ ), VyAk-i-\EN-k+ipgT
j=l

. (ViAN—l—jHEj—l)T](k_l_ 1)

N-1

4+ 2 VfAN—]—j+kEj—kBBT(VfAN—l—j+IEj—/)T
j=k
@.15)
where 1(k) is the unit step function, i.e.,
1 for k=0
1t = {0 for k<0.

From (4.15), it is easy to check that

R(k+1,1+1)—R(k, )= AXEN-1-kK[AQAT-EQET
+V,BBTV]— VfBBTVfT](A’EN*"’)T (4.16)

which indicates clearly that when Q satisfies the generalized
Lyapunov equation (4.14), then R(k + 1,/ + 1) = R(k, ) for
all k, [.

Conversely, to prove necessity, assume that R(k + 1,/ + 1)
= R(k, I') for all k, I. Then, the right-hand side of (4.16) is zero
for all k, /. Thus, if

A=AQAT-EQET+V,BBTVT~V;BBTVT  (4.17)

we have

AKEN-1-kA(A'EN-1-)T=0 (4.18)

for all £, /. Taking into account (2.3), as well as (4.18), yields
A=(aE+BAY-1A(aE+BAYN-!

=N§_:l Nz—:l <N; 1><N; 1) aZ(N—l)—k~lBk+[
k=0 /=0

. AkEN—l—kA(AIEN—l—I)T=0 (4‘19)
which shows that Q must obey the generalized Lyapunov equation
(4.14). 0

Note that for causal systems (E = V; = I, V; = 0) the
boundary covariance matrix is simply P(0), (4.14) for Q is
identical to (4.12) for P (which is the usual Lyapunov equation),
and (4.13) reduces to P = Q. For a general TPBVDS, however,
P and Q are different quantities.
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When a TPBVDS is stochastically stationary, it must have a
constant variance. However, unlike in the causal case, the
converse is not always true. To see what happens, set k = [ in
(4.16) and note that R(k, k) = P(k). This gives
P(k+1)-P(k)=A*EN-1"¥[AQAT—-EQET + V,~BBTV,.T

- V/BBTVfT](A"EN““") 7. (4.20)
The relation (4.20) shows that when Q satisfies the Lyapunov
equation (4.14), then P(k + 1) = P(k) for all k, as expected.
Conversely, if P(k + 1) = P(k) for all k&, Q must satisfy the
equation
AKEN-'-¥AQAT-EQET+V,BBTVT
- V/BBTVIYA*EN-1-©)T=0 (4.21)
for all k. In the special case when either E or A is invertible, this
relation implies that Q must satisfy (4.14). In other words, if
either E or A is invertible, the TPBVDS (2.1), (2.2) is
stochastically stationary if and only if it has a constant variance.
However, this is not true in general, i.e., (4.14) is not necessarily

implied by (4.21), as can be seen from the following example.
Example 4.1: Consider the TPBVDS

1 00 00 0
[0 0 l]x(k+1)=[0 1 —l]x(k)
0 00 00 1
1
+|:0
0

1 00 00
00 0fxO+|0 1
000 00

where the variance of v is given by

1 N 1
o=~ N+2 N|.
1 N 1

0

—1] u(k) (4.22a)
1

—-—2Z20 o~o

] x(N)=v  (4.22b)

(4.23)

The system (4.22) is in normalized form and is a displacement
system. Then, it is easy to check that Q satisfies (4.21), but not
(4.14), and that (4.22) has a constant variance matrix

which satisfies both (4.12) and (4.13). This shows that a TPBVDS
may have a constant variance matrix even if (4.14) is not satisfied,
and therefore, the system is not stochastically stationary.

Note that the two generalized algebraic Lyapunov equations
(4.12) and (4.14) for P and Q have exactly the same form, and
differ only by their right-hand sides. Consequently, they admit
unique solutions under the same condition.

Theorem 4.3: The generalized Lyapunov equations (4.12) and
(4.14) have unique solutions if and only if the eigenmodes o, of
the TPBVDS (2.1), i.e., the values for which ¢E — A is singular,
are such that:

i) ojo#1

for all j and /; (4.24)

ii) the TPBVDS does not have both zero and infinite eigen-
modes, i.e., the matrices E and A4 are not both singular.

Proof: The proof is similar to that of Theorem 4.1.
Equations (4.12) and (4.14) admit unique solutions if and only if
the matrix M = E ® E — A ® A is invertible. But since E and
A satisfy (2.3), they can be brought to Jordan form simultane-
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ously, and we may denote by A; and u; the eigenvalues of these
two matrices appearing in corresponding Jordan blocks. Assum-
ing that E and A are in Jordan form, it is easy to check that the
eigenvalues of M are A\;\; — p;u,. Furthermore, the eigenmodes
a; = p;/\;. Combining these two observations, and noting from
(2.3) that \; and p; cannot both be zero, we see therefore that M is
invertible if and only if conditions i) and ii) are satisfied. .

Theorem 4.3 indicates that the class of TPBVDS’s such that the
generalized Lyapunov equations (4.12) and (4.14) have a unique
solution is somewhat restricted, since either £ and A must be
invertible.

Thus, it may happen that a TPBVDS has a constant variance
matrix P, but yet the generalized Lyapunov equation (4.12) may
not specify P completely, i.e., it may have several solutions. In
this case, in order to compute P, instead of using the implicit
specification of P provided by the Lyapunov equation (4.12), one
should use the explicit expression (4.4) for an arbitrary value of k.

V. COVARIANCE CHARACTERIZATION

In the previous section, it was shown that the variance P of a
stochastically stationary TPBVDS satisfies the Lyapunov equation
(4.12). As long as the conditions of Theorem 4.3 are satisfied, this
provides a simpler method for computing P than the explicit
evaluation of (4.4). To this point, however, the only characteriza-
tion that we have of the covariance function R(s) = R(! + s, /)
for a stochastically stationary TPBVDS is (4.15), which we would
need to evaluate for every individual value of s = K — /. Our goal
in this section is to obtain a recursive characterization of R (s) that
can be used to compute the covariance in a considerably more
efficient fashion. An interesting feature of the recursions that we
shall obtain is that unlike the causal nondescriptor case, where the
covariance satisfies first-order causal recursions, for the TPBVDS
case, the covariance satisfies second-order boundary value
recursions. Note, however, that this result is not totally unex-
pected, since it was shown by Krener [17] that the covariance of a
continuous-time stationary two-point boundary value process with
standard dynamics satisfies a second-order differential equation.

The starting point of our derivation is the observation that

ER(k+1, )=M[Ex(k+1)xT(I)]=MI[(Ax(k)+ Bu(k))xT(1)].

G.1)

Using (2.7), (2.11) to compute M[u(k)x7(I)], we find that (5.1)
yields

ER(k+1,1)—AR(k, )= —=BBT(V;Ek-1AN-1-tk=InT

for k=1. (5.22)
Similarly, it can be shown that
Rk, I+ 1)ET—R(k, DAT=V,A*--\EN-*-hBBT

for k>1. (5.2b)

Combining (5.2a) and (5.2b), we obtain therefore
[ER(k+1, [+ 1)~ AR(k, I+ DIET—[ER(k+1, 1)
—AR(k, D]JAT=0 (5.3)

for k > [/, which holds independently of whether the TPBVDS
(2.1), (2.2) is stochastically stationary or not.

In the special case when the TPBVDS that we consider is
stochastically stationary, but setting &k — / = s + 1 in (5.3), we
obtain the following result.

Theorem 5.1: The covariance R(s) of a stochastically station-
ary TPBVDS satisfies the second-order descriptor recursions

ER(s+1)ET+AR(s+ DAT=AR(S)ET+ER(s+2)AT (5.4)
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with the boundary conditions

ViR(0)+ V:R(N)=Q(EN)T (5.5a)
LO)YV,A)T+L(N-1)(V/E)T= -BBTV]  (5.5b)

where
L(s)=ER(s+1)—AR(s), 0=s<N-—1. (5.6)

Furthermore, the second-order boundary-value system (5.4),
(5.5) is well-posed.

The recursions (5.4) are similar to the second-order differential
equation obtained by Krener [17] for a continuous-time stationary
two-point boundary value process with standard dynamics. We
still need to derive the boundary conditions (5.5) and to show
that, when combined with (5.4), they define a well-posed system.
To do so, we use (5.2a), where the TPBVDS is now assumed to be
stochastically stationary. Setting k¥ — / = s inside (5.2a) gives
(5.6), where

L(s)= —BBT(V,ESAN-1-9)T., (5.7

Then, noting that

L(s+1)AT—L(s)ET=0, O=<s=N-2 (5.8)

it is easy to check that the coupled system of first-order descriptor
equations (5.6), (5.8) is equivalent to (5.4). A set of boundary
conditions for this system will therefore be also applicable to
(5.4).

Suppose for the moment that the function L (s) appearing on the
left-hand side of (5.6) has already been computed, with either the
analytical expression (5.7), or through recursions (5.8). For the
first-order recursions (5.6) for R(s), we can use the boundary
condition (5.5a), which is derived by multiplying (2.2) on the
right by x7(0), taking expected values, and using the Green’s
function expression (2.7). The pair (5.6), (5.5a) defines a well-
posed TPBVDS for R(s), since its dynamics and boundary
matrices are the same as for system (2.1), (2.2).

This leaves us with the problem of computing L(s) for0 < s <
N — 1 from the first-order recursions (5.8). However, we already
know that the solution must be given by (5.7). This implies in
particular that

L©O)=-BBT(V;AN-HT (5.9a)

and

L(N-1)=~BBTV{(EN-YHYT, (5.9p)
Combining (5.92) and (5.9b) yields the boundary condition
(5.5b). Furthermore, the well-posedness of the TPBVDS system
(5.8), (5.5b) for L(s) is guaranteed by the well-posedness of
2.1), 2.2).

In the above discussion we have focused our attention on a
specific set of boundary conditions, namely (5.5a), (5.5b), for the
second-order system (5.4). However, there exist many choices of
boundary conditions involving only R(0), R(1), R(N — 1), and
R(N), which when combined with (5.4) will define a well-posed
boundary-value system. For example, one obvious boundary
condition is given by R(0) = P, where P can be found either by
solving the algebraic Lyapunov equation (4.12) or by using
analytic expression (4.4).

Example 5.1: Consider the anticyclic system

x(k+1)=x(k)+ bu(k) (5.10a)

1/72)(x(0)+x(N))=v (5.10b)

where the variance of v is g. In this case, both sides of the
generalized Lyapunov equation (4.14) are equal to 0, so that the
TPBVDS (5.10) is stochastically stationary independently of the
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choice of g. The Lyapunov equation (4.12) for the state variance p
also reduces to zero on both sides, and cannot therefore be used to
compute p. However, by direct evaluation of (4.4), it is easy to
verify that
p=r(0)=Nb%/4+q. 5.11)
We now compute the covariance function (k) of (5.10) for k €
[0, N]. We use the second-order recursion (5.4), which here takes
the form
rik+2)=2r(k+1)-r(k). (5.12)
Since r(0) is already known, we only need (1) to be able to solve
(5.12) in the forward direction. But according to (5.9a), we have

r()-r(0)= - b2/2
so that
r(1)=(N-2)b%/4+q
and then using (5.12), we find

r(k)=(N-2k)b¥/4+q. 6.13)

VI. LyAPuNov STABILITY THEORY

For causal systems, the relationship between the existence of a
positive definite solution to the standard Lyapunov equation and
stability is well known. Specifically, for a causal and reachable
system, the Lyapunov equation has a positive definite solution if
and only if the system is strictly stable. In this section, for the
class of displacement TPBVDS’s, we study the relation existing
between the existence and uniqueness of positive definite solutions
to the generalized Lyapunov equation (4.12) for the state variance
P, and the property of internal stability. Note that, whereas the
generalized Lyapunov equation (4.14) for Q was the key to the
characterization of stochastic stationarity derived in the previous
section, (4.12) for P plays the main role in our study of internal
stability. An important feature of this equation, which was not
present in the causal case, is that it depends on the interval length
N. This dependence on interval length is in fact the key to its
usefulness in characterizing internal stability.

Since our study is centered on the generalized Lyapunov
equation (4.12), it is useful to observe that this equation may
admit a nonnegative definite solution P even when the system
cannot be made stationary by any choice of boundary vector
variance Q, i.e., there may be a nonnegative solution to (4.12)
when there is no nonnegative solution to (4.14). This is illustrated
by the following.

Example 6.1: Consider the system

x(k+1)=1/2)x(k)+u(k) (6.1a)

m(x(0)+2x(N))=v (6.1b)
where m = (1 + 2(1/2)V)~!, and u(k) is a white noise sequence
with unit variance. System (6.1) is in normalized form and
internally stable. The generalized Lyapunov equation (4.14) for g
takes the form
3/4)g= —3m? (6.2)
which yields a negative value of g, so that the system cannot be
made stationary over any interval [0, N]. Yet, the Lyapunov
equation (4.12) if given by
B/ p=m2(1-4(1/4") (6.3)
and its solution p is positive provided that N is larger than 1.
However, this solution is z0¢ the state variance of (6.1), which in
this. case is not even constant. This can be seen by noting from
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(4.3), (4.4) that the state variance is given by

a4 (4.3
p(k)—4k+3m (1 4N+4k

which is clearly not constant.

Example 6.1 shows that the generalized Lyapunov equation
(4.12) may admit a unique positive definite solution P even when
the TPBVDS (2.1), (2.2) cannot be made stochastically stationary
for any choice of boundary vector variance Q, but in general this
matrix P bears no relation whatsoever to the state variance.
However, it will be shown below in Theorem 6.3 that, for an
internally stable displacement TPBVDS, independently of the
choice of boundary matrix Q, as the interval length N — oo, the
variance matrices P(k) of states near the center of the interval
approach a constant matrix P* which is the solution to the
generalized Lyapunov equation (4.12) with N set equal to co.

The main objective of this section is to characterize the property
of internal stability in terms of positive definite solutions of
(4.12), regardless of whether such solutions correspond to the
variance of a stochastically stationary TPBVDS or not. Specifi-
cally, it will be shown that for a displacement TPBVDS with no
eigenvalues on the unit circle, if for any N, the generalized
Lyapunov equation (4.12) has a nonnegative definite solution P,
then the system (2.1), (2.2) is internally stable. The assumption
that there are no roots on the unit circle is introduced here to rule
out a situation such as that of Example 5.1, where since the
Lyapunov equation (4.12) is identically zero, it has positive
definite solutions, even though the TPBVDS is unstable since it
has an eigenvalue on the unit circle.

Our results will require the following lemma.

Lemma 6.1: Let A and V be two square matrices which
commute, i.e.,

6.9

AV=VA. 6.5

Then, if V is singular, there exists a right (left) eigenvector of A
in the right (left) null space of V.

Proof: We focus on the right eigenvector case. Let x € Ker
(V). Then,

VAx=AVx=0

and consequently Ax € Ker (V). Thus, Ker (V) is A invariant,
which implies that 4 has at least one eigenvector in the null space
of V.

We can now prove the following result.

Theorem 6.1: Assume that the TPBVDS (2.1), (2.2) is a
weakly reachable displacement system with no eigenvalues on the
unit circle. Then, if for some N, the generalized Lyapunov
equation (4.12) has a nonnegative definite solution P, the
TPBVDS is internally stable.

Proof: Since the TPBVDS that we consider has no eigen-
modes on the unit circle, the decomposition of Theorem 3.1 takes

the form
_Jr o _[Ar O [ B,
e=g &) <[5 0] - [3]

where the eigenvalues of A and A, are inside the unit circle, and

[Va 0 vy ©
v ][00

0V
To prove stability, we need to show that ¥}, and ¥V, are invertible.
Using the above decomposition, the generalized Lyapunov equa-
tion (4.12) becomes

(6.6a)

(6.6b)

Py~ AP AT=Vi BBV~ (Vi AN)BBI(V AN)T (6.70)

ApPpA]—Py=(VAY)B,BI(ViyAY) - V1, B, BTV T,

VT, (6.7b)
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PpAT—APp=Vi BB (Vo AY) = (Vi AN)BBIVT, (6.7¢)

where

P, P,
p=|_ 1 ‘Pl 6.8
B €8
Clearly, if P is nonnegative definite, so is P;. Since we also
know that A, is strictly stable, from (6.7a) we can conclude that if
xT is an arbitrary left eigenvector of A, then
XT(VuBiBIVE - (Vi AY)BBT (Vi AY) T)x20.  (6.9)
We would like to show that V;, is invertible. To do so, assume the
contrary. Then, according to Lemma 6.1, there exists a vector x
such that

xTAp=NxT, (6.10a)

xTV;=0. (6.10b)
We also know that the system is weakly reachable, and from the
characterization of weak reachability presented in [2, Proposition
4.4], we have

XT[ V,-]Bf Vlef] +0
so that

xTV; Br#0. (6.11)
Now, taking (6.10b) into account in (6.9), and observing that Ay
and V; commute, we find that

0=XTV/|A}VBf= )\NXTVlef (612)
where A is the eigenvalue appearing in (6.10a). But (6.12) is
compatible with (6.11) only if we have A = 0, so that x7 must be
in the left null space of both A ;and V;;. However, in this case the
matrix

Vi+ VpAY

characterizing the well-posedness of the forward stable subsystem
is not invertible, which contradicts our assumptions. Thus V;
must be invertible. Similarly, it can be proved that V, is
invertible. 0.

As in the causal case, the above result has also a converse, i.e.,
given an internally stable TPBVDS, there exists a positive definite
solution to the Lyapunov equation (4.12). However, this result is
only valid for large N, and it requires stronger conditions than
those of Theorem 6.1. First, the conditions of Theorem 4.3 on the
eigenmodes of the TPBVDS must be satisfied, so that (4.12) will
be guaranteed to have a solution independently of the choice of
input matrix B and of boundary matrices V; and V7, in which case
this solution will in fact be unique. The second condition is that
the TPBVDS must be strongly reachable, instead of weakly
reachable as in Theorem 6.1. This is due to the fact that we need
to make sure that as N = oo, the solution of (4.12) is positive
definite, instead of merely nonnegative definite.

Theorem 6.2: Consider a displacement TPBVDS which is
internally stable, strongly reachable, and whose eigenmodes o,
satisfy the conditions of Theorem 4.3 for the existence of a unique
solution Py to the generalized Lyapunov equation (4.12). Here the
interval length N is allowed to vary, and the dependence of P on
N is denoted by the subscript N of Py. Then, there exists N* > 0
such that Py is positive definite for all N > N*. Furthermore, as
N = oo,

Py 0
0 P;

where P¥ and P} are, respectively, the solutions of the usual

Py—P*= [ (6.13)
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algebraic Lyapunov equations for the forward and backward
stable subsystems, i.e.,

Py ——A,P}"AfT= BfoT, (6.14a)

P}—A,PfAT=B,BT. (6.14b)

Proof: First, observe that since the interval length N varies,
the boundary matrices Vy, Vy, and Vp, Vj, associated,
respectively, to the forward and backward stable subsystems need
to be rescaled in order to satisfy the normalized form identity (2.4)
for all N. The rescaled boundary matrices are given by

Vn(N)=(Vi1+Vf1A}V)_1Vi1,

Vfl(N)=(V,-1+Vf]A}")*lVfl (6.15a)
Via(N)=(ViaAY + Vi) "1V,

Vi(N)= (Vi AN+ V) 'y (6.15b)

and since the TPBVDS is internally stable, the matrices V;, and
V;, are invertible, so that as N — oo,

Via(NY=1, Va(N)=V Vi, Vi(N)=V 5 Vi, Va(N)- L

(6.16)

Consider now the matrix Py given by (6.8), whose entries
satisfy (6.7a)-(6.7c), where the boundary matrices on the right-
hand side are replaced by the scaled matrices (6.15). We want to
show that for V large enough, the solutions P 'r.~nand Py, y of (6.7a)
and (6.7b) are positive definite and tend to P¥ and P} given by
(6.14), and that the solution Pp, x of (6.7¢) goes to zero as N —
oo,

The first step is to observe that, as N — oo, since the scaled
boundary matrices tend to finite limits given by (6.16), the right-
hand side of (6.7c) tends to zero. But the eigenmodes of the system
are such that the solution Py is unique, and therefore the solution
Py, n of (6.7c) is unique and tends to zero as N goes to infinity.

Next, consider Lyapunov equation (6.7a), and observe that
since the TPBVDS is strongly reachable, the matrix pair (4, By)
is reachable in the usual sense for causal systems. But since the
system is internally stable, V,; (V) given by (6.15a) is invertible,
and noting that it commutes with A4 ;, we can conclude that the pair
(A, Via(N)By) is also reachable in the usual sense. Then, the
solution Py y of (6.7a) can be expressed as

Prn=P}/—P;, (6.17)
where P/, and P are, respectively, the solutions of
Pf*,NfAfPf*,NA}~= Vil(N)BfoTI/il(N)T (6.18a)

Prn= AP AT=V(N)AFBB](Vi(N)AY)T. (6.18b)

Since (A, Vi1(N)By) is reachable, P}, is positive definite for all
N, and since V;;(N) = Ias N - oo, Sy~ P¥, where P}" is the
unique positive definite solution of (6.14a). Furthermore, as N —
oo, the right-hand side of (6.18b) tends to zero, so that P N tends
to zero. From (6.17), we can therefore conclude that there exists
an integer N* such that Py, is positive definite for all N = N*,
Similarly, it can be shown that the solution P, of (6.7b) is
positive definite for large enough N and tends to P}, which is the
unique positive definite solution of (6.14b).

We have therefore shown that as N = oo, P;y and P,y
approach positive definite matrices P} and P}, and the Py v
tends to zero. Thus, the matrix Py is positive definite for
sufficiently large N and has the limit P* in (6.13).

Example 6.2: Consider system (6.1), which is both internally
stable and strongly reachable. Then, the solution of the general-
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ized Lyapunov equation (6.3) is

4 4
pN=§ mz <1_4_N>

which is positive definite for N = 2. Furthermore, as N = oo,

PN P*=4m?/3 6.19)
where p* is the solution of the generalized Lyapunov equation
(6.3) with N = oo,

It is worth noting that when N = oo, if the TPBVDS is
internally stable, in the coordinate system corresponding to
decomposition (6.6), the generalized Lyapunov equation (4.12)
takes the form

EPET—APAT=w, (6.20)
BBT 0

= f

w [ ) —BbB[]' (6.21)

Then, independent of whether eigenmodes g; satisfy the condi-
tions of Theorem 4.3, one solution of (6.20) is P* given by
(6.13), (6.14), which is nonnegative definite regardless of the
reachability properties of the TPBVDS (2.1), (2.2). In other
words, for N = oo, the conditions of Theorem 6.2 can be
weakened, thus giving the following result.

Corollary 6.1: Let the displacement TPBVDS (2.1), (2.2) be
internally stable. Then the generalized Lyapunov equation (4.12)
with N = oo has a nonnegative definite solution P*. This solution
is positive definite if the system is strongly reachable.

For an internally stable TPBVDS, the solution P* of (4.12)
with N = oo has the following stochastic interpretation.

Theorem 6.3: Let displacement system (2.1), (2.2) be inter-
nally stable. Then, for any choice of boundary variance Q, as N
goes to infinity, the variance matrix of states located close to the
center of interval [0, N] converges to the solution P* of the
generalized Lyapunov equation with N = oo,

Proof: Let Py(k) be the variance matrix of the state x(k) of
(2.1), (2.2) defined over [0, N]. If / is an arbitrary but fixed
integer, we must show that

1\1Jim Py((N/2)+1)=P* (6.22)

where for simplicity it has been assumed that N is even. Our
starting point is expression (4.4) for the state variance, i.e.,
PN((N/2)+ 1)=A(N/2)+IE(N/2)—IQ(A(N/2)+IE(N/2)—I)T
+(V(N)EWND-HIT(N/2)+ 1~ 1)
. (I/i(N)E(N/Z)-l) T
+(VANYANDHOTI(N/2)~1-1)
. (V](N)A (N/2)+1) T
where T1(k) is given by (4.3), and boundary matrices V;(N) and
V4(N) are obtained by rescaling ¥; and V; so that the normalized
form identity (2.4) is satisfied for all N. Then, in the coordinate
system corresponding to decomposition (6.6) of the TPBVDS in
its forward and backward stable components, by using expres-
sions (6.16) for the limit of V;(N) and VAN) as N = oo, and

taking into account the fact that A, and A, are stable matrices, we
find that

00

00 00
+[0 1] TI(co) [0 1]' (6.23)

lim Py((N/2)+1)= [é g] II(w) [’ 0]
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But since

[o 5] =2 7]

commute with both £ and A4, (6.23) can be rewritten as

k
Al]l_l:l; PN((N/Z)”):,}H& %A"‘/E!
j=

. BfB} 0 k-j giyT
[ o BBT (AX-IEN)T. (6.24)
Thus,
hllim PNy((N/2)+ 1)
AiBBI(A)T 0
Jj=0
0 2 ABBL(AYT
j=0
= P}k 0 = P*, (6.25)
L 0 P}
This completes the proof of Theorem 6.3. O

Example 6.3: Consider the TPBVDS (6.1). According to
(6.19), the solution of (4.12) with N = oo is p* = 4m?2/3. Then,
setting Kk = (N/2) + [ in expression (6.4) for the state variance,
we obtain, as expected

Al]im PN((N/2)+1)=4m?/3=p*.

Theorem 6.3 shows that, regardless of the boundary variance
Q, the state variance of an internally stable displacement
TPBVDS converges to the constraint matrix P* given by (6.13),
(6.14). However, an even more interesting observation is that
under the above assumptions the TPBVDS will converge to a
stochastically stationary system as N = oo. More precisely, if
we denote by

Rn((N/2)+k, (N/2)+1) = M[x((N/2) + k)xT(N/2) + )]
(6.26)

the correlation matrix of states x((N/2) + k) and x((IN/2) + 1),
where k and / fixed integers, by using the analytic expression
(4.15) for the correlation matrix and following steps similar to
those used in the proof of Theorem 6.3, it can be shown that in the
coordinate system corresponding to the forward and backward
stable decomposition (6.6), we have

Al]l_l}; RN((N72)+ k), (N/72)+1)

=R*(k-1)
k—1-1 ;
AYIPY =% AKI\BBT(A)T
= =0 6.27)
0 PH(ALNHT

where for convenience it has been assumed that k& = /. Since the
limit obtained in (6.27) depends only on £k — /, we can therefore
conclude that independently of the choice of boundary variance
Q, an internally stable TPBVDS converges to a stochastically
stationary system as N — oo. This stochastically stationary system
is separable into forward and backward causal components, which
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are, however, correlated through the input noise #(k). This last
fact can be seen from (6.27), where if we denote by x*(k) the
limiting process obtained by letting N — oo, and by shifting the
left boundary of the interval of definition to — o0, the cross-
correlation Rf(k — 1) between the forward component x*(k)
and the backward component x¥(/) is nonzero for k = I, since
both of these processes depend on the noise over interval {4, k1,
whereas the cross-correlation between x}(k) and x}" (!) is zero,
since they depend on the noise over disjoint intervals.

VII. CONCLUSIONS

In this paper, in spite of the fact that two-point boundary-value
descriptor systems are defined only over a finite interval, we have
been able to introduce a concept of internal stability for these
systems and to develop a corresponding generalized Lyapunov
stability theory. As was mentioned in the Introduction, this paper
is part of a larger effort devoted to the study of the system
properties, and the developement of estimation algorithms for
TPBVDS’s. In particular, the smoothing problem for TPBVDS’s
was examined in [25], [4], where it was shown that the smoother
itself is a TPBVDS which can then be decoupled into forward and
backward stable components through the introduction of general-
ized Riccati equations that were studied in [25] and [4]. An
interesting question which arises in this context is whether for a
strongly reachable and observable TPBVDS, the smoother is
internally stable in the sense discussed in this paper. It turns out
that this is the case, as will be proved in a subsequent report. In
other words, the concept of internal stability developed here for
TPBVDS’s appears to be the natural generalization of the
corresponding notion for standard causal state-space models and
leads to just as rich a set of system-theoretic results.
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