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Abstract. In this paper we study the system-theoretic properties of  two related classes 
of  shift-invariant two-point  boundary-value descriptor systems (TPBVDSs), namely 
displacement systems for which Green's  function is shift-invariant, and stationary 
systems for which the input -output  map is stationary. For such systems it is possible 
to obtain detailed characterizations of the properties of  weak reachability and 
observability introduced in [16] and of  minimality as well. An important difference, 
that has also been noted before in a different context [9], is that there is a certain 
level of  nonuniqueness in minimal realizations. Another  property that is studied in 
this paper  is that of  extendibility, i.e., the concept of  considering a TPBVDS as 
being defined on a sequence of  intervals of  increasing length. Necessary and sufficient 
conditions for extendibility are given. 

I. Introduction 

It has been long recognized [11], [12] that discrete-time descriptor systems, 
which may exhibit noncausal behavior, generally require the specification 
of boundary conditions in order to be well-posed. For this reason such 
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models are a natural class for describing phenomena in which the indepen- 
dent variable is space, rather than time. Indeed, it was precisely this 
motivation that led Krener [9], [10] to investigate the system-theoretic 
properties of standard (i.e., nondescriptor) boundary-value models in con- 
tinuous-time and Adams and coworkers [1]-[3], [16] to investigate estima- 
tion problems for rather general classes of boundary-value models. 

In this paper we continue the development of a system theory for 
two-point boundary-value descriptor systems (TPBVDSs) begun in [13] and 
[17]. Much of our motivation stems from a desire to analyze the properties 
of optimal estimators for noncausal models as developed in [1]-[3], [14], 
and [15]. For example, a new class of generalized Riccati equations arises 
in [14] and [15], and it is of interest to determine conditions under which 
positive-definite solutions exist and the implications for filter stability. 
A second motivation for our work is to parallel and go beyond the theory 
of Krener [9], [10] and Gohberg and Kaashoek [5]-[7], for descriptor 
models in discrete time. Reference [17] and this paper carry out that parallel, 
with important differences caused by the possible singularity of the system 
matrices. In subsequent papers we will go beyond the system-theoretic issues 
investigated in [5]-[7], [9], and [10] and will consider questions such as 
stability, Lyapunov equations, and Riccati equations. 

In the next section we introduce the class of TPBVDSs, and define and 
characterize two notions of shift-invariant systems, namely displacement 
and stationary systems. As with the systems considered in [5]-[7], [9], and 
[10], shift invariance requires the system matrices to have certain properties 
which facilitate our analysis. In Section 3 we review the notions of inward 
and outward processes introduced for TPBVDSs in [17] and show in 
particular that the inward process has a simple form for displacement 
systems. We also introduce the notion of extendibility and characterize this 
property for displacement and stationary systems. Section 4 develops the 
properties of reachability and observability for displacement systems, while 
in Section 5 we present minimality results for stationary systems. Some 
extensions are presented in Section 6, and we conclude with a brief dis- 
cussion in Section 7. 

2. Shift-invariant two-point boundary-value 
descriptor systems 

A TPBVDS is described by the following dynamic equation, boundary 
condition, and output: 

Ex(k+l)=Ax(k)+Bu(k) ,  O<-k<-N-1, 

V,x(O)+ Vsx( N )  = v, 

y(k) = Cx(k), k=O, 1 , . . . ,  N. 

(2.1) 

(2.2) 

(2.3) 
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Here x and v are n-dimensional, u is m-dimensional, y is p-dimensional, 
and E, A, B, V~, Vy, and C are constant matrices. We also assume that N -> 2n 
so that all modes can be excited and observed. In [17] it is shown that if 
(2.1)-(2.2) is well-posed, we can assume, without loss of  generality, that 
(2.1)-(2.2) is in normalized form, i.e., that there exi~,t scalars a and/3 such 
that 

aE + flA = I (2.4) 

(this is referred to as the standard form for the pencil {E, A}) and in addition 

V~EN + VyA N = I. (2.5) 

Note that (2.4) implies that E and A commute and also that {E k, A k} is 
regular for all k>-0 (see [17]). 

As derived in [17], the map from {u, v} to x has the following form: 

N--1 
x(k) = AkEN-kV + 2 G(k, j )Bu(j) ,  (2.6) 

j=0  

where Green's function G(k, j) is given by 

fAk(A-EN-k(V~A+wVfE)Ek)EJ-kAN-J-IF-1,  j>--k, (2.7) 
G(k, j) = [EN_k(wE _ Ak ( V~A+ wVfE)AN-k)EJAk-J-IF -1, j < k, 

and where o) is any number for which F is invertible, where 

F & ~oE N+I -- AN+I. (2.8) 

In marked contrast to the case for causal systems (E = / ,  Vf = 0), G(k, j) 
does not, in general, depend on the difference in its arguments. Borrowing 
terminology from [5]-[7] we introduce: 

Definition 2.1. The TPBVDS (2.1)-(2.2) is a displacement system if (with 
the usual abuse of notation) 

G ( k , j ) = G ( k - j ) ,  O<-k<-N, O<-j<-N-1.  (2.9) 

With v = 0 in (2.2), we have that (2.1)-(2.3) define a linear map of the form 

N--I 

y ( k ) =  ~] W(k, j )u( j ) ,  (2.10) 
j=0  

W(k, j) = CG(k, j)B. (2.11) 

Definition 2.2. The TPBVDS (2.1)-(2.3) is stationary if (again with the usual 
abuse of notation) 

W ( k , j ) = W ( k - j ) ,  O<-k<-N, O<-j<-N-1.  (2.12) 
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Theorem 2.1. The TPBVDS (2.1)-(2.3) is stationary if and only if 

0~[ V~, E ]Rs = Od V~, A ]R~ = 0, (2.13a) 

Q[VI, E]R~= Os[ Vr A]R~ = 0, (2.13b) 

where [X, Y] = X Y -  YX, and 

Rs = [ a n - l B i E a n - 2 B ]  " ' '  [ E n - I B ] ,  (2.14) 

rCAn-' 1 
Q :  [CEAn-Z I . (2.15) 

L ci"- '  J 

Corollary. The TPBVDS (2.1)-(2.2) is a displacement system if and only if 

[ V~, E]  = [ V~, A] = 0, (2.16a) 

[ Vf, E] =[Vy, A] =0. (2.16b) 

The matrices Rs and Os in (2.14), (2.15) are the strong reachability and 
strong observability matrices of the TPBVDS (see Section 4). Thus (2.13) 
states that V~ and Vy must commute with E and A except for parts that are 
either in the left nullspace of Rs or the right nullspace of Os. If Rs and Os 
are of full rank--i.e.,  if the TPBVDS is strongly reachable and strongly 
observable-- V~ and Vr must commute with E and A. Turning to the corollary, 
we see that this is precisely the condition for a TPBVDS to be displacement, 
so that a displacement system is always stationary. Furthermore, the only 
way in which a TPBVDS can be stationary without being displacement is 
if the system is not strongly reachable or strongly observable. The results 
of causal system theory might then suggest that this distinction between 
displacement and stationary is a trivial artifact caused by the use of possible 
nonminimal realizations. However, as in the case of continuous-time bound- 
ary-value systems [10], the story is different for TPBVDSs. Specifically, as 
is shown in Section 5, a TPBVDS can be minimal without being strongly 
reachable or strongly observable. 

Proof of the Corollary. We assume that Theorem 2.1 holds. From the 
theorem, a TPBVDS is displacement if and only if (2.13) holds with R~ and 
Os defined with C = B = L However, thanks to the generalized Cayley- 
Hamilton theorem for pencils in standard form [17], the matrices 
{AkEn-k-llO <- k <- n - 1} span the same set as {EkAJlk , j >-- 0}. Thus R~ and 
Os are of full rank, so that (2.13) is equivalent to (2.16). [] 

Proof of Theorem 2.1. What we must show is that (2.13) is equivalent to 

W(k + l , j +  l)= W(k, j )  (2.17) 
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for 0 -  < k-< N -  1, 0 - j - <  N - 2 .  Then, using (2.7), the commutativity of E 
and A, and performing some algebra we find that (2.17) is equivalent to 

CAk+I E N--k-l[ ViA + to VfE]A N-J-2E J+IF-~ B 

= CAkEN-k[ ViA+ toVfE]AN-J-~EJF-~B. (2.18) 

From the Cayley-Hamilton theorem and the fact that N -> 2M, we find that 
(2.18) is equivalent to 

O~A[ViA+toVfE]EF-~R~ = QE[ViA+toVfE]AF-'R~. (2.19) 

Define the strong reachability subspace 

Y~ = Im(Rs). (2.20) 

Then the generalized Cayley-Hamilton theorem implies that ~s is A- and 
E- and therefore also F-invariant. Furthermore, for almost all to, F is 
invertible so that the range of F - ~  is ~ .  Since this does not depend on 
to, we can deduce that (2.19) is equivalent to the following pair of equalities: 

Q[ A ViE - E VIA ]AF- ~ R~ = 0, (2.21) 

O~[ A VyE - EVyA ]E F-~ Rs = 0. (2.22) 

is regular, Y~=Im([ANRs]ENR~]) so that (2.21) is Since {E N, A N} 
equivalent to 

Os[A VIE - EVIA]AF-1ANRs = 0, (2.23) 

Os[ A VIE - EVIA ]AF-' E NR s = 0. (2.24) 

In a similar fashion we have that (2.22) is equivalent to the pair of equalities 

Os[ A VfE - EVfA ]EF-' A NR~ = 0, (2.25) 

Q[AVfE - EVyA]EF-'E NR~ = 0. (2.26) 

Using the commutativity of  E and A together with (2.5), we see that (2.25) 
is equivalent to 

Q [ - A  VIE + EVIA]E N+IF-1R~ = 0. (2.27) 

Using the definition of F, we see that (2.23) and (2.27) imply 

Q[ A VIE - E VIA ] Rs = 0. (2.28) 

In a similar fashion (2.24) and (2.27) can be shown to imply 

Os[ A VfE - EVyA ]Rs = 0. (2.29) 

The E- and A-invariance of ~ then imply that (2.28), (2.29) are, in fact, 
equivalent to (2.21), (2.22). 

Finally, note that thanks to the commutativity of E and A, (2.13a) implies 
(2.28) and (2.13b) implies (2.29). To see that the reverse of these implications 
holds, assume that a # 0 in (2.4) (if a -- 0, reverse the role of E and A). 
Then E = y I+6A with y # 0. Substituting this into (2.28) yields (2.13a). 
Similarly (2.29) implies (2.13b). [] 
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The characterization of the displacement property in (2.13) simplifies 
many computations. In particular, it is not difficult to check that Green's 
function of a displacement s~(stem is 

G(k)=IV~Ak-IEN-k,  k>O, (2.30) 
[ -  VyE-kAN+k-1, k <- O. 

Similarly, the weighting pattern of a stationary TPBVDS is given by 

=(,CV~Ak-'EN-kB, k > 0 ,  (2.31) 
W(k) (_CVIE_kAN+k_,B ' k<-O. 

3. Inward processes, outward processes, and extendibility 

As discussed in [10], inward and outward processes play an important role 
in the analysis of TPBVDSs. The outward process, which expands outward 
toward the boundaries, summarizes what we need to know about the input 
inside any interval in order to determine x outside the interval. The inward 
process uses input values near the boundary to propagate the boundary 
condition inward. 

The outward process has a simple definition and characterization [17]: 

zo(k, j) = EJ-kx(j) -- AJ-kx(k), k <j. (3.1) 

It is possible to express zo(k, j) in terms of the intervening inputs: 

j-1 
zo(k, j) = Y~ E~-kAJ-r-lBu(r) (3.2) 

r = k  

and to write outward recursions (k decreasing and j increasing). In general 
zo(k, j) can only be propagated in an outward direction. Note also that 
zo(k, j) does not involve the boundary matrices V~ and Vf. 

The inward process zi(K, L), K <- L, is a function of the boundary value 
v and the inputs {u (0 ) , . . . ,  u(K - 1)} and { u ( L ) , . . . ,  u ( N -  1)} so that the 
TPBVDS (2.1) with boundary condition 

V~(K, L)x( g )  + Vy(K, L)x(L)= zi(K, L) (3.3) 

yields the same solution as (2.1), (2.2) for K -< k -  < L see [17]. Here V~(K, L) 
and Vy(K, L) are assumed to be such that (2.1), (3.3) is in normalized form, 
i.e., 

V~( K, L)E L-K + Vy( K, L)A L-K = L (3.4) 

Note in particular the starting values and the "final values" 

zi(0, N) = v, V~(0, N) = V~, Vf(0, N) = Vy, (3.5) 

zi(k, k)=  x(k) for all k. (3.6) 
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For the general TPBVDS (2.1), (2.2) there are no simple formulas or 
recursions for zi, V~, and Vf (see [17]). However, we do have the following 
for displacement systems: 

Proposition 3.1. Assume that (2.1)-(2.2) is a displacement system. Then for 
k<-j 

V,.(k, j) = ViE N-j+k, (3.7) 

Vf(k, j) = VfA N-j+k, (3.8) 

zi(k, j )= E N-JAkv + EE N-JZo(O, k ) -  VfAkzo(j, N) (3.9) 

k-1 
= EN-JAkv+ ViEN-J y~ ErAk-r-lBu(r) 

r=0 

N-1 
- V f A  k ~ ES-lAN-S-'Bu(s). (3.10) 

s=l  

Proof. First, (2.5) guarantees that the definitions in (3.7), (3.8) yield 
TPBVDSs in normalized form for all k--<j. Equations (3.9) and (3.10) are 
then obtained by replacing x(k) and x(j) in 

zi(k, j )  = viEN-J+kx(k) + VfAN-j+kx(j) (3.11) 

by their expressions in terms of v and u in (2.6) using (2.30). Thus we have 
from (3.10) that zi(k,j) depends only on v and the values of u off the 
interval [k, j] .  Finally, to show that (2.1), (3.3) yields the same solution, 
we note that the pair of relations (3.1.) and (3.11) have a simple inverse: 

1  ,- lrzo(k,j)l 
x(j)j=L V,E~-J  +~ A J - ~ J l _ z ~ ( k , j ) J  �9 

(3.12) 

Thus x(j)  and x(k) can be obtained completely from zi(k, j) as we have 
defined it, and the outward process, which is not changed by restricting the 
size of the interval. Thus the values of x at these two points are correct, 
and therefore by moving in one step at a time we conclude that (2.1), 
(3.3), with the choice of V~ and Vy given by (3.7), (3.8) yields the correct 
solution. [] 

An important interpretation of the inward process is that the Green's 
function for the system (2.1), (3.3) on the smaller interval [K, L] is the 
restriction of the Green's function of the original system (2.1)-(2.2) defined 
on [0, N].  A logical question then is whether we can also move the 
boundary conditions outward to obtain an extension of the Green's function. 
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Definition 3.1. A stationary TPBVDS (2.1)-(2.2) is input-output extendible 
if, given any K - < 0 <  N < - L, there exists a TPBVDS over [K, L] with the 
same dynamics as in (2.1) but with new boundary matrices such that: 

(i) The new system is stationary. 
(ii) The weighting pattern W(k-j)  of the original system is the restric- 

tion of the weighting pattern We(k-j) of the new extended system, 
i.e., W(k-j )= We(k-j), 1-N<-k-j<-N. 

Definition 3.2. A displacement TPBVDS (2.1)-(2.2) is extendible if, given 
any K<-O<N<-L, there exists a TPBVDS over [K,L] with the same 
dynamics as in (2.1) but with new boundary matrices such that: 

(i) This new system has the displacement property. 
(ii) The Green's function G(k-j)  of the original system is the restriction 

of the weighting pattern Ge(k-j) of the new extended system, i.e., 
G(k- j )= Ge(k-j), 1-N<-k-j<-N. 

For any matrix F, define its Drazin Inverse [4], F D, and its invertible 
modification if; as follows. Let T be an invertible matrix such that 

0] 1 
where M is invertible and N is nilpotent (e.g., real Jordan form will do). 
Then 

FD = T [ ) ~  -x 00]T-a , (3.14) 

o] 1 
N + I  

These matrices have a number of important properties: 

(i) F D and F commute with each other and with F. 
(ii) If  F is invertible, F D = F -1, and ~" = F. 

(iii) If ~ is the degree of nilpotency of N, then for k >-/x 

Fk+IFD --- F k, Fk~ = F k+l. 

(iv) 

(v) The condition 

is equivalent to 

(3.16) 

FDF = FDF. (3.17) 

Ker(F ~') c Ker(G) (3.18) 

GFDF = G. (3.19) 

(vi) If Y( is an F-invariant subspace, then FDF~c ~7( and is also 
F-invariant. 
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Theorem 3.1. A stationary weighting pattern is extendible if  and only i f  

0~[ V~ - V~EDE]R~ = 0, (3.20a) 

Os[ Vy - VfADA]R~ = 0. (3.20b) 

Corollary. A displacement TPB VDS is extendible if  and only if  

V~ - V~EDE = 0, (3.21a) 

Vf - VfADA = 0. (3.21b) 

The corollary follows from the theorem exactly as in the proof of the 
corollary to Theorem 2.1. Note also that, thanks to (3.18) and (3.19), (3.21) 
is equivalent to 

Ker(E ~) c Ker(V~), (3.22a) 

Ker(A") c Ker(Vy), (3.22b) 

while (3.20) states that (3.22) holds modulo the strongly unreachable and 
unobservable subspaces. The interpretation of (3.22) is straightforward. 
From (3.7), (3.8) we see that moving in the boundaries involves left multipli- 
cation of V~ and Vy by powers of E and A, respectively. Thus if we first 
extend outward sufficiently far and then move back inward, we will have 
annihilated the parts of V~ and Vf acting on the nilpotent portions of E 
and A, respectively. Recovering the original system then requires that there 
is no such portion of V,. or Vy to annihilate, which is what (3.22) states. 

Proof of Theorem 3.1. Suppose that we begin with a stationary TPBVDS 
(2.1)-(2.3). Then extendibility is equivalent to the existence, for each K -> N, 
of matrices V~,K and Vy, K sO that the TPBVDS (2.1), (2.3) with 

V~,K x(O) + Vf, K x ( K )  = v (3.23) 

is stationary and in normalized form, and the weighting pattern of (2.1), 
(3.23), (2.3) agrees with that of (2.1)-(2.3) over the range of lags arising in 
(2.1)-(2.3) (obviously V~,N = V~ and Vy, u--  Vy). 

Let us first show the necessity of (3.20). In particular, since (2.1), (3.23), 
(2.3) is stationary for each K, we can use (2.31) to write the weighting 
pattern matching condition: 

CVi, K A k-I E K - k  B = C V i A  k-I  F_N-k B, 

CVf, K E-kA  K +k-' B = CVfE-kA N+k-I B, 

V K _ N ,  k =  1 , . . . , N ,  (3.24a) 

VK>-N,  k = - N + l  . . . .  ,0. 

(3.24b) 

Writing K = N + j  and using Cayley-Hamilton and (2.13a) we find that 
(3.24a) is equivalent to 

Os[V~,N+jE j -  V,-]Rs = 0, Y j - 0 .  (3.25) 
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Thus we see that for each j there exists a matrix M: so that 

QM:Rs = 0, (3.26) 

Ker(E j) c Ker( V~ + Mfl. (3.27) 

Applying (3.18), (3.22) to (3.27) we see that (3.26) yields 

0~[ V,. - V~Er)E]R~ = O~M~EDER~. (3.28) 

Since Y~ is E-invariant, property (vi) implies that there exists a matrix Q 
so that 

EDER~ = R~Q. (3.29) 

Equation (3.20a) then follows from (3.26) and (3.27). Similarly (3.26b) 
implies (3.20b). 

To show the sufficiency of (3.20) we need to construct matrices V~.K and 
Vy, K. It is straightforward to check that several alternate forms for the 
solutions can be given. For example, 

V,-.K = V~/~ N-K, (3.30a) 

V:,K = V:,4 N-K (3.30b) 

have the required properties. Alternatively, 

V,-.K = p(ED) K, (3.31a) 

V:,K = (I  - P)(AD) K (3.31b) 

with 

P = V,E" (3.32) 

and indeed both of these forms yield the correct boundary matrices for 
K < N as well. [] 

The matrix P introduced in (3.32) is an extremely useful one for simplify- 
ing the description of extendible systems. In particular, the specification in 
(2.1)-(2.3) is equivalent to providing a 7-tuple 

(C, V~, Vf, E, A, B, N)  (3.33) 

so that the TPBVDS is in normalized form over [0, N].  For an extendible 
system, we need only 

(C, P, E, A, B) (3.34) 

with the requirement that (E, A) be in standard form. The corresponding 
7-tuple over [0, N]  is then 

( C, p( EO) N, ( I-- P)( AD) N, E, A, B, N). (3.35) 
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Also, the weighting pattern W(k), k ~ ( - ~ , ~ )  can be conveniently 
expressed in terms of P: 

~ CPED( AED)k-I B, k> O, 
W ( k ) = [ - C ( I - P ) A D ( E A D )  kB, k<_O. (3.36) 

Finally, it is worth noting that while not all stationary or displacement 
systems are extendible, for any such system we can find one that is extendible 
and is "almost the same" in that the responses--y(k) for stationary systems, 
x(k )  for displacement systems--are identical for the original and modified 
systems for k~ In, N - n ] .  In fact, by examining (2.32) and (2.33) we see 
that such a TPBVDS can be obtained by replacing V~ and Vy by the lowest 
rank matrices ~ and ~ satisfying 

~ E ' =  VIE", (3.37a) 

VfA'= VsA'. (3.37b) 

These choices guarantee that the ~ and ~ annihilate the nilpotent portions 
of E and A which affect behavior only near the boundary. 

4. Reachability and observability 

As discussed in [17], there are two notions for both reachability and 
observability. In this section we review these definitions and present addi- 
tional results for displacement systems. 

Definition 4.1. The system (2.1)-(2.2) is strongly reachable on [K, L] if the 
map 

{u(k): k e [K, L]} ~ zo(K, L) (4.1) 

is onto. The system is strongly reachable if it is strongly reachable on some 
interval. 

From (3.2) we can write 

zo(K, L) = R s ( L -  K)  , (4.2) 

u(L'-  1) 

Rs(j)  = [ AJ-I BIEAJ-2 BI " " " IEJ-~ B ]. (4.3) 

Note that Rs = Rs(n). Furthermore, a TPBVDS is strongly reachable if and 
only if R~ has full rank, and the strongly reachable spaces have the usual 
nesting property, i.e., 

~s(k) = Im[R~(k)] c Im[R~(k+ 1)] = ~ ( k +  1). (4.4) 
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Definition 4.2. The system (2.1)-(2.3) is strongly observable on [K, L] if the 
map 

zi(K, L) -~ {y(k) : k ~ [K, L]} (4.5) 

defined by (2.1), (3.3), and (2.3) with u-= 0 on [K, L] is one to one. The 
system is strongly observable if it is strongly observable on some [K, L]. 

With u --- 0, we have 

y ( K )  ] = Os(L-K)zi(K, L), (4.6) 

y(L) 

[ CE j ] 

Os(j)= [CAEJ-']. (4.7) 

[CAJ J 

Note that O~ = Os(n - i). Furthermore, a TPBVDS is strongly observable if 
and only if Os has full rank. In addition, the strong unobservability subspaces 
have the usual nesting property 

Q(k+l )=Ker (Os(k+l ) )cQ(k )=Ker (Q(k ) ) .  (4.8) 

For future reference we define the strongly unobservable subspace 

~s = Ker(Os). (4.9) 

Definition 4.3. The system (2.1)- (2.2) is weakly reachable off [ K, L] if the map 

{u(k): k c [0, K - 1] ~ [L, N -  1]} ~ zi(K, L) (4.10) 

with v = 0 is onto. The weakly reachable subspace ~w(K, L) is the range of 
this map. 

In contrast to strong reachability, weak reachability involves the bound- 
ary matrices as well as E, A, and B. For the general TPBVDS (2.1)-(2.2) 
the investigation of weak reachability, in [17], is somewhat complicated 
since no simple form exists for the inward process. The situation is far 
simpler for displacement and extendible displacement systems. 

Proposition 4.1. For K, L ~ [ n, N - n ] we have that for a displacement system 

~tw(K, L ) -  Im[ V~E NR~I VfANRs] = V~E N~2s + VyAN~ts. (4.11) 



REACHABILITY, OBSERVABILITY, AND M1NIMALITY FOR TPBVDSs 325 

Proof. From (3.9) and (4.2) we see that 

~w(K, L)= V,.EN-L~(K)+ VfAKI~s(N-L). (4.12) 

Thus, for K, N-L- - -n ,  what we would like to show is that 

V~EN-L~+ VyAK~ = V~ENy~+ VyAN~. (4.13) 

This follows easily from the fact that 

E s ~ s = E r ~ ,  As~=ArY~ for s,r>-n, (4.14) 

which in turn follows from the E- and A-invariance of Yt~ and dimension 
counting. [] 

Thus we see that far enough from the boundaries the weakly reachable 
space for a displacement system is constant. However, the displacement 
property by itself is not enough to guarantee that the weakly reachable 
spaces near the boundaries are contained in the space defined in (4.11). 
This property does hold if the TPBVDS is extendible. 

Proposition 4.2. Define the following matrix and subspace 

Rw = [ V~Rs] VyR~], 9~w = Im[Rw]. (4.15) 

Then for an extendible displacement system the following two properties hold: 

~w(K, L) = ~w for K, L e [ n , N - n ] ,  (4.16) 

~w(K, L) c 5~w for all K, L. (4.17) 

Proof. Thanks to the invariance of 9~s and the fact that ~s(J) c ~s, (4.17) 
follows if we can show (4.16). However, for an extendible displacement 
system, (3.22) holds, which, since N > 2n, implies 

V~EN~ = V~s, VyAN~s= V f~  (4.18) 

proving the proposition. [] 

For a nonextendible system, 9~w may be larger than 9~w(K, L) for any 
K and L. However, recall that in this case the weakly reachable space need 
not be contained in the weakly reachable space (4.11) far from the boundary. 
The net effect is that the union of the weakly reachable subspaces over all 
(K, L) pairs can be larger that any one of them. In fact, by examining the 
range of the mapping in (3.10) for all values of k and j  and using Cayley- 
Hamilton, we have the following: 

Proposition 4.3. For any displacement system 

~_J ~w(K, L) = ~w. 
K,L 

(4.19) 
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We call a system weakly reachable if 

U ~w(K, L) = R" (4.20) 
K,L 

(note that in [17], we called a system weakly reachable if Y~w(K, L ) =  R" 
for all K , L ~ [ n ,  N - n ] ;  we see later why this new definition of weak 
reachability is more appropriate). Clearly, a displacement system is weakly 
reachable if Ytw = R". 

In analogy with the strong reachability result in [17], we state without 
proof  the following. 

Proposition 4.4. A displacement system is weakly reachable if and only if the 
matrix [sE - tA I ViB I VfB] has full rank for all (s, t) # (0, 0). 

Another important fact follows, which justifies our use of the terms 
"strong" and "weak." 

Proposition 4.5. The following inclusion always holds: 

(4.21) 

Proof. The E- and A-invariance of Yt~ guarantees the existence of M1 and 
M2 so that 

R~M1 = E NRs, R~M2 = ANR~. (4.22) 

Therefore, since V~EN + VyA N = I, 

~ = Im[R~] = Im[( ViE N + VfAN)R~] = Im[ V~RsM1 + VyRsM:] 

c Im[ V~R~] VyRj = ~w. [] (4.23) 

As we would expect, there is a dual set of concepts and results for weak 
observability: 

Definition 4.4. The system (2.1)-(2.3) is weakly observable off [K, L] if the 
map 

zo(K, L) ~ {y(k): k ~ [0, K]  u [L, N]} (4.24) 

with v = 0 and u( j )  = O, j ~ [0, K - 1] u [L, N -  1] is one to one. The weakly 
unobservable subspace ~w(K, L) is the kernel of this map. 

Proposition 4.6. For K, L c [n, N - n] we have that for a displacement system 

[ O~ENV~7 
~w(K, L) = Ker k OsANVlJ" (4.25) 
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Proposition 4.7. Define the following matrix and subspace: 

Ow = l Os VIJ' ~w = Ker[ Ow], 

then for an extendible displacement system we have 

~w(K, L) = ffw for K , L ~ [ n , N - n ] ,  

t~wC 0w(K, L) for all K, L. 

(4.26) 

(4.27) 

(4.28) 

Thus, not only is the dimension of the weakly unobservable space constant 
for K, L far from the boundaries (which is always the case [17]), the space 
itself is constant. Furthermore, in the extendible case we have a simpler 
form for the unobservable space, as well as the nesting property. 

Proposition 4.8. For any displacement system 

Cw(K, L) = Cw. (4.29) 
K,t 

We call a system weakly observable if 

Cw(K, L) = {0} (4.30) 
K,L 

(again this is in contrast with the weak observability definition in [17] where 
we required that ~w(K, L) = {0} for all K, L e In, N - n]). Clearly, a displace- 
ment system is weakly observable if 0w---{0}. 

Proposition 4.9. A displacement system is weakly observable if and only if the 
matrix 

-sE - tA] 
cv, | 

j 

has full rank for all (s, t) ~ (0, 0). 

Proposition 4.10. The following inclusion always holds: 

CwCGs �9 (4.31) 

5. Minimality 

In this section we present minimality results for stationary and extendible 
stationary systems. These results are analogous to those in [10], with 
differences due to possible sin~gularity of E and A. 

Definition 5.1. A stationary TPBVDS is minimal i fx  has the lowest dimension 
among all TPBVDSs having the same weighting pattern. 



328 N I K O U K H A H ,  W I L L S K Y ,  A N D  L E V Y  

Theorem 5.1. A stationary T P B V D S  is minimal i f  and only i f  

(a) Y~w=R ", (5.1) 

(b) ffw = {0}, (5.2) 

(c) 0 ~  ~ .  (5.3) 

Note that this theorem is concerned with stationary rather than displace- 
ment TPBVDSs. Thus, ~w may differ from the weak reachability subspace 
and ~Tw from the weak observability subspace. Nevertheless, these spaces 
are the keys to minimality. Also, as we will see, we need to introduce three 
different Hankel matrices and, as in [10], we may have a certain level of 
nonuniqueness in minimal realizations that is not present in the causal case. 

Proof. We begin with the description of reduction procedures if any of the 
conditions (5.1)-(5.3) are not satisfied. Consider first the case in which 
~ w r  R". Suppose further that ~w is A- and E-invariant. In this case let ~2 
be any subspace such that 

~w@ ~2 = ~". (5.4) 

Performing a similarity transformation compatible with (5.4) we can assume 
that 

[A011 A121, ' (5.5a) 
A = A:~A E~J' L v~, v~J' 

v~ = v{ ,  v{~J c = [ c ,  I C=l, B = . (5.5b) 

The 0-blocks in A and E follow from the assumed invariance, the 0-block 
in B from the fact that Im[B] c ~s (Cayley-Hamilton) and ~ c ~w (Propo- 
sition 4.5 which holds for any TPBVDS). Furthermore, using (4.17) we can 
conclude that 

i k j ~--- f k j - -  V21AllEllB1 V21AI lE l lB  1 - O. (5.6) 

From the form (2.31) for the weighting pattern of a stationary system 
we can then conclude that the weighting pattern of our system is given by 

r v i a k - l ~ N - k u  k > 0 ,  
~"1 - - 1 1  ~ X l l  " t " l l  ~ 1 ,  (5.7) 

W ( k )  ~- _l,-~ i r f  i~ -k  zlN+k--ll2l k<_O, 
~,-~ 1 r1 1 J t -~  11 f a l l  L , ' I ,  

so that we have apparently reduced our system to 
(C~, Vile, vf~, Ell ,  AH, B0. Note that assuming that E and A are in stan- 
dard form, so are Eli and AI~. However, the boundary matrices ViH and 
VlYl need not be normalized and indeed tl~ere is no guarantee that this 
TPBVDS is well-posed. However, thanks to the following result, we can 
modify the boundary matrices in order to make it well-posed while leaving 
the weighting pattern unchanged. 
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Lemma 5.1. Consider a (possibly not well-posed) TPBVDS (2.1)-(2.2), with 
E and A in standard form and for which (2.13) and the following hold: 

Os( ViE N + VfAN)R~ = QR~. (5.8) 

Then we can find ~,  Vy so that (2.5) and (2.13) hold for f,', and ~, and 
furthermore 

Os V~Rs = O~R~,  OsVfRs = QVfRs. (5.9) 

Proof of Lemma 5.1. Let 

so that 

X =  I - [ E E S  + VyA N] (5.10) 

OsXRs = 0. (5.11) 

Let a and b be any scalars such that (aE N + bA s)  is invertible, and then take 

= Vi + aX(aE N + bAN) -1, (5.12a) 

Vf = Vf + b X ( a E  N -t- bAN) -1. (5 .12b)  

From (5.11) and the A- and E-invariance of ~ and 0~ we have 

OsAkEJXArESRs=O, k,j, r, s>-O, (5.13) 

from which we can easily check that (2.13) holds for ~ and l~f and 
that (5.9) holds as well. Finally, (2.5) can also be checked by direct 
calculation. [] 

The significance of this lemma can be seen as follows. Note first that 
the block elements of the matrix OsViRs are {CAkEn-k-IV~AJE"-J-IB, 
0 -  k, j -  n - 1}. Furthermore, thanks to (2.13), for a stationary system these 
are the same as {CV~AmE 2 . . . .  2B, 0 < - m <-2n- 2}. From Cayley-Hamilton 
and (2.31), we can conclude that QV~Rs provides us with a complete 
specification of W(k), k> 0--i.e., given O~V~Rs we can completely deter- 
mine W(k), k > 0 .  Similarly, O~VyR~ specifies W(k), k<_O. Thus what 
Lemma 5.1 says is that as long as (2.13) and (5.18) hold, we can modify 
the boundary matrices to obtain a stationary TPBVDS in normalized form 
with the same weighting pattern. 

To apply this lemma to our reduced system, we must show that (2.13) 
and (5.8) hold for this system. Note first that (2.13) holds for our original 
system (5.5). This together with (5.6) allows us to conclude that (2.13) holds 
for the reduced system as well. Furthermore, (5.5), (5.6) also imply much 
more: 

CAkEJB k j = CIAllEllB1, (5.14a) 
i k j CViAkEJB = Cl VI IAl lE l lB1 ,  (5.14b) 

CVfAkEJB = CI VflAklE~IBI. (5.14c) 
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Therefore, since our original system was assumed to be in normalized form 
f N k j C1 [ v i i i  E N .~ VllAll]AIa E 11B1 = C[ ViE N + VfA N ]AkEJB 

_ k j = CAkEJB - C1AllEllB1 (5.15) 

from which we conclude that 
0 ~ [  i N I N l 1 1  O~R~, VILE11 + VI1All]R s = (5.16) 

where O~ and R~ are the strong observability and reachability matrices for 
(5.8). 

Thus we have provided a procedure for reducing the dimension of a 
stationary TPBVDS if ~w ~ R", provided that ~w is E- and A-invariant. If 
this is not the case, we use the following. 

Lemma 5.2. Consider any stationary TPB VDS. Then we can construct another 
TPBVDS with the same weighting pattern, dimension, and ~w so that ~w is 
E- and A-invariant. 

Proof. To begin, assume aE + flA = I with a ~ 0. If  a = 0 reverse the roles 
of E and A in what follows. The key to this result is (2.13) from which we 
can deduce that 

A~w C ~ w + Q .  (5.17) 

Also recall that ~s is A-invariant. A basic result [18] is the following: Let 
D be a matrix such that 

Im(D) = ~Ys. (5.18) 

Then, thanks to Proposition 4.5, we can find a matrix F so that 

F ~  = {0}, (5.19) 

(A + D F ) ~ w  C ~w. (5.20) 

Suppose we then let 

, 4 = A + D F ,  E = E - ( f l / a ) D F  (5.21) 

(so that a/~ +ft.4 = I). From (5.18), (5.20), and (5.21) we see that 

CAkE j = CAkE j, ,~kEJB ---- AkEJB (5.22) 

for all k and j, so that O~= 0~, Rs=/~s, where tg~, /~s are the strong 
observability and reachability matrices for (C, E, A, B). Also, since the 
original system is stationary and D and F satisfy (5.18), (5.20), 

C3s[A , V~]/~ = C3~[/~, Vy]/~s = 0, (5.23a) 

C3~[/~, V~]/~ = Os[/~, Vi]/~s = 0. (5.23b) 

Furthermore, 

Os(V~/~ N + Vf.4N)R~ = Q ( V i E N +  VfAN)R~= O~Rs. (5.24) 
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Thus  applying Lemma 5.1, we can construct V~, Vy so that the system 
(C, E, A, V~, Vy, B) is in normalized form and has the same weighting pattern 
as the original system. The only remaining thing to be checked is that ~w 
for this system is equal to the original ~w. 

From the definition of V~, Vy we have for rl, r2 ~ ~ = ~s 

~r,  + ~-r2 = V~r, + Vfr2+ q, (5.25) 

q = - (aE,  N + b~N) - l (ar l  + br2) 

+[V~EN + Vf ,4N](aEN +b.4N)-I(ar~+br2).  (5.26) 

Since ~ is/~- and ,4-invariant, the first term in (5.22) is in ~ .  Also, thanks 
to (5.22) 

E N r = E N r ,  ,4Nr=ANr,  r E ~  s. (5.27) 

Thus, since the original system is in normalized form, we can conclude that 
q =0  and, thanks to the definition (4.17) of  ~w, Lemma 5.2 is proved. [] 

Reducing the dimension of  the realization if (5.2) is violated is the dual 
of what we have just considered, and we omit the details. When (5.3) is 
not satisfied there is a subspace Y ~ {0} such that 

~ O Y  = Y~ + Os. (5.28) 

Let ~ be any subspace such that ~ /gGY=R"  and perform a similarity 
transformation of the TPBVDS to represent it in a basis compatible with 
(5.4). This yields a model as in (5.5b), (5.5c) with the additional fact that 
(?2 = 0. To put the reduced system in normalized form we apply Lemma 5.1. 

What remains to show is that two stationary TPBVDSs with the same 
weighting pattern and both satisfying (5.1)-(5.3) must have the same 
dimension and consequently are minimal. Consider two such systems 
(Cj, Ej, Aj, Vj ,  V f ,  Bj), j = 1, 2, and without loss of generality assume that 
both are in normalized form with the same a and/3. What we know is that 

c 1 v  i zl k - l l~ N - k l~ ['~ v i zt k - l l~ N - k l~ 
- - l ' ~ t l  ~ '1  Lsl = ~-'2 - -2za2  "t"2 L ' 2 ,  0 < k -  N, (5.29a) 

~ / ' f  l ~ - k A N + k - - l  l~ i,~ ~ f f  t s  D 
C1--1z -~1  Z~tl Z~l ~ ~-2 v 2 ~ , 2  ~12 D 2 ,  1 - N - -  < k - < 0 .  (5.29b) 

The following lemma allows us to conclude considerably more: 

Lemma 5.3. Let {Ei, Ai}, i = 1, 2, be two regular pencils so that aE~ + /3A~ = I, 
i = 1, 2, and dim(G)  = ni. Assume that N>-2  max(n1, n2). Also assume that 
for  some matrices {Mj, Ni}, i = 1, 2, 

M~A kE N-1-kN1 ---- l,,2,~2A/t ak~_N--~-k ~mr,2, 0 --< k --< N - 1. (5.30) 

Then for all K, L, 

M I A K E L N ~  r L = M2A2 E2N2 .  (5.31) 
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ProoL Note first that for K + L_< N - 1 we can write 

E ~ A~ = E ~ A,L( aE, + flAi) N-1-K-L (5.32) 

and in this case (5.31) follows directly from (5.30). For K + L  > _ N, let us 
assume for simplicity that a # 0. From what we have first shown for K + L-< 
N -  1, we know that for 0-< k -< N -  1 

MIA~N1 = M2A~N2. (5.33) 

From results on the causal partial realization problem [8] and the fact that 
N>-2ni, we can conclude that (5.33) then holds for all k->0. Equation 
(5.31) then follows since we can write Ei as ( I -3A~) /a .  [] 

We now have 

i K L i K L 
C 1 V 1 A  1 E 1 B 1 = C 2 V 2 A 2  E 2 B 2 ,  (5.34a) 

C1V(AKELB,= f K L C2 V2A2 E2 B2 (5.34b) 

for all K and L, and, since (2.5) holds for both systems, we can conclude 
that 

C~AK ELB, = C2AK ELB2 (5.35) 

for all K and L. We now introduce three different Hankel matrices. For 
simplicity, let us assume that N is odd. Then (5.34), (5.35) imply that 

H~, = O~[ ( N -  1)/2]R~w[ ( N + 1)/2] 

= O~[(N-  1)/2]R2w[(N+ 1)/2], (5.36) 

Hout = O~w[(N- 1)/2]R~[(N+ 1)/2] 

= O~r 1)/2]R~[(N+ 1)/2], (5.37) 

Hs = O~[(N - 1)/2]R~[( N + 1)/2] 

= O~[(N-  1)/2]R~[(N+ 1)/2], (5.38) 

where for j = 1, 2 

RJw=[V~R[[(N+I)/2][ VfRd[(N+l)/2]] ,  (5.39a) 

O{[(N-1)/2]V;:] 
OJw= O d [ ( N - 1 ) / 2 ] v f ] '  (5.39b) 

and R[ and Od denote the strong reachability and observability matrices 
for system j. The first two of the three Hankel matrices (5.36)-(5.38) have 
simple interpretations. Specifically, assume that ( N - 1 )  is divisible by 4 
and let k = ( N - 1 ) / 4  and 1=3(N-1 ) /4 .  Then Hi, corresponds to the 
input-output  map resulting from applying inputs off the interval [k, l] and 
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observing it on the interval.  Hout cor responds  to driving the system on [k, l] 
and  then observing it outs ide  this interval.  

Since bo th  systems satisfy (5.1)-(5.3) and N>-2ni, we have that  
i O w l ( N -  1)/2]  is full rank.  Consequen t ly  f rom (5.39) we can find a matr ix  

U so that  

R ~ [ ( N +  1)/2] = UR~[(N+ 1)/2].  (5.40) 

Similarly, we can obtain  an analogous  express ion for  R~ in terms of  R~. 
These  al low us to conclude  that  

r a n k ( g ~ [ ( N  + 1)/2])  = r a n k ( R E [ ( N  + 1)/2])  = p (5.41) 

and in an analogous  way we can show that  

r a n k ( O ~ [ ( N -  1)/2])  = r a n k ( O ~ [ ( N -  1)/2])  = to. (5.42) 

Finally, condi t ion  (5.3) together  with (5.38) imply  that  

p - (nl - to) = rank Hs = p - ( n  2 - to) (5.43) 

f rom which we see that  

nl = n 2 .  [ ]  (5.44) 

Corol lary  5.1. Let (Cj, Ej, Aj, V~, v f ,  Bj), j = 1, 2, be two minimal reali- 
zations, where {Ej, Aj}, j = 1, 2, are in standard form for the same c~ and ~. 
Then there exists an invertible matrix T so that 

B2 = TB1, (5.45a) 

C2 = C1T -1, (5.45b) 

1 i T - I  i 1 V2 T)Rs = (5.46a) Os ( V1 - 0 ,  

O~(V{- T-' V~T)R~ = 0, (5.46b) 

(31 - T-1A2T)R~ = 0, (5.47a) 

(El  - T-1E2T)R~ = 0, (5.47b) 

O ~ ( A I -  T-1A2T) = 0, (5.47c) 

O~(E~ - T-1E2T) = 0, (5.47d) 

where R~ and O~ are the strong reachability and observability matrices for 
system 1. 

Proof.  Since ~ ( 6 ~ )  have the same dimension,  we can find invertible T ( W )  
so that  

R 2 = TRy, (5.48) 

O~W- 1 - Os.  (5.49) 
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From (5.38) we can then conclude that 

0~[ W -  T]R~ = 0. (5.50) 

Assume that we have chosen a basis for each of the two systems compatible 
with the decomposition (7~O [G~ n ~ ] G  ~ .  The requirement (5.48) implies 
that T must have the form 

T= T~ T~ , (5.51) 
0 0 

where T1, T2, T3, and T4 are fixed and * are arbitrary. Similarly, (5.49) 
implies that W is given by 

w =  wl w 2 .  (5.52) 

w3 w4 

Finally, by direct computation we can check that (5.50) implies 

Wl = T4, T3 = W3 = 0 (5.53) 

so that with the indicated degrees of freedom we can take 

W =  T =  T4 W2 . (5.54) 

o w4 

Proceeding with the proof, note that (5.45a), (5.45b) follow from (5.49), 
(5.50), and (2.4). Also, the equality of the weighting patterns of the two 
systems is equivalent to 

V1Rs = ,--~ -2--~, (5.55a) 

o l l f f l 2 , 1 O 2  f 2 s - l ~ , s  - s V2Rs (5.55b) 

from which (5.46) follows. From the invariance of g2s and Cayley-Hamilton 
we conclude that 

A2R2s = TA1R~, E2R~ = TE2R~ (5.56) 

from which (5.47a) and (5.47b) follow. Equations (5.47c) and (5.47d) are 
verified in a similar fashion. [] 

Corollary 5.2. Every extendible T P B V D S  has a minimal  realization that is 
also extendible. 



R E A C H A B I L 1 T Y ,  O B S E R V A B I L I T Y ,  A N D  M I N I M A L I T Y  F O R  T P B V D S s  3 3 5  

Proof. This result follows once we show the following. Assume that we have 
two realizations (C~, Ej, A t, V~, V f ,  Bj), j =  1,2. Then if one of these is 
extendible, so is the other. First, it is not difficult to obtain the following 
generalization of  Lemma 5.3: if (5.30) holds, then for all P, Q, K, L->0 

M~(AD)P(ED1)~ 1 = M2(A~)P(ED)~  (5.57) 

Thus not only do we have that (5.55) holds but also 
1 i D 1 2 i D 2 = 0 s V2E2 E2Rs, Os VIEI ERs (5.58a) 

o ~ f D  1 2 f D 2 V I A  1 AR~ = O~ V2A2 A2Rs. (5.58b) 

The result then follows from the characterization of extendibility in 
(3.20). [] 

Let us make several comments about these results. The proof  we have 
given here is much in the spirit of  Krener [10], although we have taken 
some care in the necessity portion to put our reduced or modified systems 
back into normalized form and to verify that the resulting systems had the 
desired properties (Lemmas 5.1 and 5.2). Also, as noted previously, it is 
the spaces ~w and 6w that play a critical role in minimality, although these 
need not be the weak reachability or unobservability spaces unless the 
system is displacement. The key point here appears to be that the difference 
between the stationarity property and displacement property seems unim- 
portant when we look only at input-output  behavior since it is the projection 
of the weak reachability and unobservability spaces, as seen through O~ 
and Rs, that are important, and these are the same as the projections of 
~w and Ow. Finally, note that if we start with a displacement system and 
follow the reduction procedure described in the proof, we do not necessarily 
end up with a displacement system. However, thanks to Corollary 5.1, there 
may be a certain level of nonuniqueness in minimal realizations--both in 
the state space isomorphism T and, more importantly, in the boundary and 
system matrices. A conjecture that remains open is that we can use this 
freedom to choose a minimal realization that is also a displacement system. 

6. Block standard and normalized forms 

A well-known result for causal systems is the following. Suppose that A is 
block diagonalized with no common eigenvalues among the blocks. Then 
reachability and observability of the entire system is equivalent to the 
reachability and observability of all of  the individual subsystems defined 
by the block structure of  A. The same type of result is easily shown to hold 
as well for TPBVDSs. 

Definition 6.1. The regular pencil {E, A} is in block standard form (BSF) if 

E = diag(E1,17,2 . . . .  , EM), (6.1) 

A = diag(A1, A 2 , . . . ,  AM), (6.2) 
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where each {Ei, Ai} pair is in standard form, i.e., there exist ag,/3i such that 

a~Ei + fl,A~ =/ ,  i=  1 , . . . ,  M, (6.3) 

and furthermore {Ei, A~} and {Ej, Aj}, i ~ j ,  have no eigenmode in common. 
That is for any pair (s, t) ~ (0, 0), [sE~ + tA~[ = 0 for at most one value of i. 

In (6.1), (6.2) E and A commute, and, as in [17], we can readily check 
that well-posedness of (2.1)-(2.3) when E and A commute is equivalent to 
the invertibility of V~EN+ VfA N. Consequently, we can premultiply (2.2) 
by the inverse of this matrix to obtain a generalization of normalized form: 

Definition 6.2. The TPBVDS (2.1)-(2.2) is in block normalized form (BNF) 
if {E, A} is in BSF and (2.5) holds. 

In general, there is no reason for V~ and Vy also to be block-diagonal 
for a system in BNF. However, in the stationary case we have the following 
result: 

Theorem 6.1. A TPBVDS in B N F  is stationary if and only if it has a 
representation where V~ and Vf are in the same block diagonal form as E and 
A, i.e., 

V~ " i , VM), (6.4) = dlag(V1,. .  �9 

Vy = diag( V{, . . . , V~) ,  (6.5) 

and, moreover, each of  the subsystems ( Ck, Ek, Ak, V~, V f ,  Bk) is stationary. 

Corollary 6.1. A TPBVDS in B N F  is displacement if and only if V~ and Vf 
are in the same block-diagonal form (6.4), (6.5) as E and A, and, moreover, 
each of  the subsystems is displacement. 

Proof of Theorem 6.1. Consider a TPBVDS in BNF. We first prove the 
following: 

Lemma 6.1. The strong reachability and observability matrices of  the overall 
system have the following form : 

Rs = d i ag (R~ , . . . ,  R f ) .  W, (6.6) 

Os = V. d i ag (O~ , . . . ,  Off),  (6.7) 

where W and V are invertible matrices and Rg~ and 0~ are strong teachability 
and strong observability matrices of  the kth block of  the system. 
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Proof. We begin by putting the pencil in standard form by premultiplying 
E and A by ( a E + f l A )  -1 for some a and ft. Note that (c~E+flA)  -I is 
block-diagonal, as are the new E and A matrices. Indeed, all we have done 
is to modify the system so that (6.3) is satisfied with all c~g equal to a and 
all fig equal to/3. Assume a # 0 (otherwise reverse the roles of E and A). 
In this case the condition that no two blocks of E and A have the same 
eigenmode now implies that no two blocks of A have the same eigenvalue. 
Also 

~ = Im[ BIABI . . . IA~-IB]. (6.8) 

Equation (6.6) then follows from the usual causal system result, and (6.7) 
can be verified similarly. [] 

Note that Lemma 6.1 demonstrates the equivalence of strong reachabil- 
ity/observability of the overall system and of all of  the subsystems. Also, 
since every block is in standard form we can see that the strong reachability 
and observability spaces are E- and A-invariant. 

An examination of the proof  of Theorem 2.1 shows that if we assume 
that E and A commute, the necessary and sufficient conditions for station- 
arity are (2.28) and (2.29). Let V~l and V{I denote the M-blocks of Vii and 
Vs, respectively, then let ~ and V I be obtained from V~ and V I by nulling 
the off-diagonal blocks. What we wish to show is that (C, E, A, V~, Vi, B) 
is in BNF and has the same weighting pattern. 

That it is in BNF follows immediately since we have not changed E and 
A and 

K E  N + ~ A  N = V~E N + VyA N = I. (6.9) 

Thus what we need to show is that 

Os ~Rs  = Os V~Rs, (6.10) 

Os Vfns= os VfRs. (6.11) 

We focus on (6.10) as (6.11) follows similarly. Thanks to (6.6) we need to 
show that 

Ok ~zi oJ  --k;,,s =0,  j #  k. (6.12) 

From (2.28) we immediately find that for j # k 

k i j _  k i j 
O~ [ Ek VkjAj]Rs - O~ [ Ak VkjEj]R~. (6.13) 

Recall that {Ej, Aj} and {Ek, Ak} are in standard form, and indeed by a 
block-diagonal transformation we can assume that o~Ej+flAj= o~Ek+ 
flAk = I for a single given pair a and ft. Furthermore, assume that a # 0 
(otherwise reverse the roles of  E and A), so that (6.13) implies that 

k i j k i j 
Os [ Vk jA j ]Rs  = Os [ A k V k j ] R  s . ( 6 . 1 4 )  
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Since ~J  is AFinvariant and 0~ is Ak-invariant, we have that (6.14) implies 
that 

0 ~ [  ' j k , Vkjp(Aj)]Rs = Os [p(Ak) Vkj]Rs (6.15) 

for any polynomial p. Take any generalized eigenvector v of Aj in ~J  
corresponding to the eigenvalue A i of Aj, then there is an integer m so that 

( A j ]  -- A j )ml3  = O. (6.16) 

Let p(x)= (h i - x )  m. Also, let w be any generalized left-eigenvector of Ak 
in (0~) • corresponding to the eigenvalue ~g Of Ak. Then, from (6.15) we have 

O =  ~ i t i w Vgjp(Aj)v = (6.17) =wp(Ak)Vkjv (hi m , --~k) W VkjV. 

Since (Aj--/~k)m # 0, we can conclude that 

, i w Vkjv = 0. (6.18) 

But, since Yt~ is Aj-invariant and 6~ is Ak-invariant, the columns of R~ 
and rows of O~ are spanned by such v's and w's, respectively, yielding 
(6.12). [] 

Note that if the overall system is not both strongly reachable and observ- 
able, there is some freedom in the choice of V~ and Vs. What the theorem 
says is that we can always choose these to be block-diagonal. If, however, 
all of  the subsystems are strongly reachable and observable, then the only 
possibility is for V~ and Vf to be block-diagonal. This is what happens in 
Corollary 6.1. Note also that since we can always take the boundary matrices 
to be block-diagonal, we see that minimality of the overall system is 
equivalent to minimality of all of  the subsystems. 

Note that for a stationary TPBVDS in BNF with V~ and Vf as in (6.4), 
(6.5), Theorem 6.1 and Theorem 2.1, applied to each subsystem, allow us 
to deduce that (2.13) holds, which in turn allows us to obtain the simple 
form for the weighting pattern given in (2.31). More importantly, Lemma 
6.1 allows us to study reachability and observability of individual eigen- 
modes. 

Theorem 6.2. The zero and infinite modes of a minimal, extendible, stationary 
TPBVDS are strongly reachable and observable. 

Proof. We focus on reachability, as observability is proved similarly. Zero 
and infinite modes correspond to pairs of the form (s, t) with either s = 0 
or t = 0  so that IsE+tAl=O. As the two cases are identical, we focus on 
the case when s = 0 (zero eigenmode). From Lemma 6.1 and Theorem 6.1 
we know that we need only look at the individual part of the system having 
eigenmode zero. That is, we need only consider the case of an extendible 
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stationary TPBVDS with A being nilpotent. In this case since E and A are 
in standard form, E is invertible, so without loss of generality we can take 
E = L Then since A N = 0, the normalized form condition (2.5) implies that 
V~ = L Also, (3.20) implies 

Os VfRs = 0 (6.19) 

so that by Corollary 5.1 we can set Vf=0 without affecting the weighting 
pattern, minimality, or Y~s. In this case, however, (4.17) implies that ~w = ~s,  
so that (since Y~w = R") the system is strongly reachable. [] 

Corollary 6.2. The zero and infinite mode portions of the weakly reachable 
(observable) and strongly reachable (observable) subspaces of an extendible 
displacement system are identical 

ProoL The argument exactly follows the proof  of Theorem 6.2 up to 
(6.19). However, since we are now dealing with an extendible displacement 
system, we can immediately conclude (from (3.22)) that $% = 0 (rather than 
resorting to minimality as in the theorem). From (4.17) we then have 

Y~w = ~s. [] 

7. Conclusions 

In this paper we have developed some of the system-theoretic properties 
of TPBVDSs. As we have seen, within the classes of stationary and displace- 
ment systems we can perform relatively simple and explicit computations 
that allow us to derive detailed characterizations of reachability, observabil- 
ity, and minimality. As had already been noted for continuous-time, nonde- 
scriptor boundary-value systems, minimality for TPBVDSs is a bit more 
complicated than for causal systems. Indeed, there is a certain degree of 
nonuniqueness in minimal realizations. One open problem that we have 
noted concerns whether we can use this freedom to guarantee that 
a displacement system always has a minimal realization that is also 
displacement. 

Another concept that we have introduced and studied in this paper is 
extendibility, i.e., the idea of  thinking of a TPBVDS as being defined on a 
sequence of  intervals of  increasing length. Once such a notion is introduced, 
it becomes possible to talk about asymptotic properties such as stability. 
This is one of the subjects of [15] in which we also examine the concept 
of stochastic stationarity for TPBVDSs driven by white noise. As might 
be expected, there is some relationship between stability and stochastic 
stationarity (although it is more complex than in the causal case), and a 
new type of  generalized Lyapunov equation plays a central role in this 
relationship. 
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