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Estimation  for Rotational Processes with 
One Degree of Freedom-Part I1 : 

Discrete-Time  Processes 

Abstract-General  error  criteria  and  probability dishiutions on the much simpler than its discrete-time  analog.  However, the 
Chde are studied m with nsmg their Fourier reason  for  the  difficulties  is  easy  to interpret physically, 
series representations.  Conditional pbabiity densities for certain dis- 
mte-time folded normal processes, whirh are analogous to the continuous- and one can use this interpretation to  devise suboptimal 
time  processes associated with the bilinear problems  considered in Part I estimation schemes. 
of this sef- computed ~n intrinsic  physical  differenw betwen the As we shall  see,  although  the  discrete-time S estima- 
diserete-time and continnons-time problems is discussed, and  the  complex- tion  problem is considerably more complicated than its 
i@ Of the *fion equations in the discrete-time is in this continuous-time counterpart, the discrete equations dis- setting. Suboptimal sequential f i i  schemes are briefly discussed. In 
addition, Fourier analysis of conditional  probabiity distributions expases 

play  a  great  deal of  structure  that  can be utilized  to aid  in 
the inherent rich strurture in general classes of estimation problems their  analysis. This is  evident  not  only  in  the  physically 
on the circle. appealing  interpretation  one  has  for  the  discretized 

bilinear estimation problem, but also  in  the  success one 
has in  utilizing Fourier series  techniques to devise  estima- 
tion  methods.  Bucy and his  associates  [9],[10] have stud- 
ied  several  specific  problems  using Fourier series, and the 

I PART I ['I Of this series Of papers, we introduced results  presented  here and in [2k[4] contain Some of their 
and studied  a  class of continuous-time  estimation prob- results as special  (see  [31 and [41 for con- 

lems on the circle s'. For a certain class of bilinear and other discrete-time Fourier series re- 
problems, we  were able  to derive  easily  implemented sults). 
optimal  estimation  equations.  Extensions of these  results 
to  arbitrary Abelian  Lie  groups  were  presented and were In the  next  section we  investigate  the  estimation of 
shown to include  the  vector space Kalman-Bucy  filtering random variables on the circle  with the aid of Fourier 

results  as  a  special  case. As is  well known [6]-[8]. in  the series, and in  Section I11 we discuss  a  discrete-time analog 

vector  space  case,  the  discrete-time optimal linear  filter of the bilinear  estimation  problem  discussed  in [ 11. Section 

looks  much  like its continuous-time counterpart. This is IV deals  with  the  use of Fourier series to solve  general 

due in part  to the  fact that  in the  linear-Gaussian  case, discrete-time S' estimation  problems.  We  remark that 

the  relevant conditional densities are Gaussian, indepen- further discussions of the  concepts  developed  in this paper 

dent of the continuous or discrete nature of the  observa- are contained in [2] and [3]. 

tions. As in [l] ,  we  will  use  several  representations of SI 
interchangeably.  Referring to the  discussion  in [l], we  will 

I t  is One Of the main points Of this paper that the use  the 8 E[ - T,T) representation  to  define  all probability 
continuous-time  results  presented  in [l]  for the  circle and  densities on s I .  ln addition,  the  considerations  in section 
arbitrary Abelian  Lie groups do not extend to the discrete- 111 of this paper are related to another s 1 representation. 
time  case  in  nearly as nice  a manner as in  the  linear  case, There exists a natural projection from R 1 to s 1, here 
and thus we have  a  striking  example of a class of estima- identified with [ - .i;,T): 
tion  problems  for  which  the  continuous-time  solution  is 
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q ( x )  = x m o d 2 ~ .  (1) 

Two points .x1 and x2 are projected onto the same point 
if and only if they  differ by an integral  multiple of 2m. 
Also, since q ( x ,  + x 2 ) = [ 4 ( x 1 ) +  q(x,)]mod2m, q is  a 
homomorphism of R ' into SI with  kernel 

kerq= { 2 n a ( n E Z } .  ( 2 )  

Clearly.  the range of q is  all of [ - .i;, 7 ) .  Thus, by  the  First 
Isomorphism Theorem for groups [ 111 
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S ' = R ' / k e r q g  R1/277Z (3) 

and any point B E[ - T,T) is identified with the equiva- 
lence class { 6 + 2 n 4 n  € 2 )  (we note  that since kerq is a 
closed subgroup of R I ,  R '/ker q is a Lie group (see [ 12]), 
and  one can show that the isomorphism (3) is a Lie group 
isomorphism-i.e., it is smooth). The mod277 equivalence 
of all elements of {x +2nnln E Z }  will be important in 
Section 111. 

11. FOURIER ANALYSIS  OF 

PROBABILITY DISTRIBUTIONS, 
ERROR CRITERIA, AND OFTIMAL ESTIMATION 

Let B be a random variable on S' (here we  will identify 
S with [ - 7 7 , ~ ) )  with probability density p ( 6 ) .  Given an 
error function 9, the estimation problem is to choose 
B E[-T,T) to minimize 

J ( i ) = & ( + ( e - e " ) ) = l r ~ ( e - e ' ) p ( e ) d e .  -r (4) 

We now Eill write down  necessary conditions for e" to 
minimize J(B) .  We assume that we havep(B)  and +(8) in 
Fourier series form: 

+(B)=do+ [c,sinnB+d,cosnB] 
00 

n = l  

where the Fourier coefficients are computed in 
way [17]. Note  that we have the interpretation 

ran= &(sinnB) ,  ~b,=&(cOsnB). 

We  will have more to say about the Fourier series decom- 
position of p in Section IV. 

A simple computation yields 

+bn(d,co~n8"-~,~in&)]; (8) 

and necessary conditions for a local minimum are 

Explicit solution of (9) is  possible only for certain error 
functions. Note that the sums in (8) and (9) are finite if 
the sum in either (5) or (6) is. The following example 
indicates how  this .finiteness can simplify the problem of 
finding the optimal estimate. 

Example I :  Consider the error function 

23 

+(e)=  1 -case. (10) 

This criterion has also been considered in [9] and [lo]. For 
this function we have 

J(e")=1-*(a,sin8"+b1cos8") (11) 

and the necessary conditions are 

a,cos8"-b1sin8"=0, a,sini+b,cosBI>0. ( 1 2 )  

If a, = b, =0, J ( g )  is independent of i. In any other case, 
examination of (12)  yields the optimal value 0, as the 
unique solution in [ - T,T) of 

- a1 I bl sin Bo = cos 0, = * (13) q+b: 

~ ( e " ~ )  = I - r d a m  . (14) 

We note  that this particular error function has some 
very appealing properties. First of all, since the optimal 
estimate is an explicit function only of the first mode of 
the probability distribution (i.e2 a, and bl), the computa- 
tional procedure to determine Bo is quite simple. In addi- 
tion, there is strong physical motivation for using  this 
criterion. First note (see [9J) that for small values of B 

Also, 

1-cose=#?2. (15) 

Thus, this  is, at least locally, a type of least squares 
criterion. In f x t ,  suppose that x ,  and  x2 are real-valued - 

random variz  Xes such that 

x;+x;=  1. 

That is, there exists a random variable 8 with 

x,=sinB, X,=cose. 

Suppose we  wish to choose I, and I, to minimize 

J = -  :& [( X,-I,) +(x , - - , )  ] 2 2 

subject to the constraint 

q +  a;= 1.  

That is, 
- - 

zl=sine, z,=cOse 

and, substituting into (18),  we have 

J=&(I-cos(8-8")). 

Thus, this error function is a constrained least squares 
criterion. 

I 
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We note that although the higher modes do not affect 
the estimate directly, we shall see in Seciion  IV that these 
coefficients have an indirect effect on 8. Specifically, we 
shall find that in dealing with random processes and 
time-varying densities, the time rates of change of a, and 
b,  depend, in general, on the other coefficients. 

Another possible error function, one that involves the 
first and second modes of the density, is 

Using the same type of approach as before, one can 
reduce the problem of finding the optimal estimate to the 
solution of a  quartic polynomial equation and the calcula- 
tion of several  functions-a procedure that  can  be  done 
easily  by computer. However, the complexity,  even  when 
we just  add in the second mode, .is such that no closed 
form for the  optimal  error in terms of the  Fourier 
coefficients is available (see [3] for details). 

As can be seen, the error analysis becomes increasingly 
more  difficult as the  number of nonzero  Fourier 
coefficients increases. For example, direct application of 
these ideas if += p or p2, where p is the kemannian 
metric (arc length) on S 1  (actually p(8) p(B,O)-see [l]), 
yields  extremely complicated equations. However, the 
l / n 2  behavior of the Fourier coefficients for these  two 
examples suggests truncating  the series and applying 
techniques such as those used  in the analysis for (1 - 
cos 0) and (1 -  COS^)^. For some further analysis for the 
criterion p2, we refer the reader to [22]. 

In the next section we  will encounter densities of the 
form 

where F is the folded normal density 

(if x is a normal random variable with mean 9 and 
variance y, then 0 = x  mod2m has the density F(8;  q, y)). It 
should be noted that it can be  shown  by using a result 
analogous to that in [ 131 that the set of densities. given  by 
(23) with  only  finitely many nonzero cn’s is dense in 
L‘( - m , ~ ) ,  and this  is  still true if all the yn’s are equal to 
some fixed y. We do not require that only finitely many 
cn’s be unequal to zero. The reason for this will be seen  in 
Section 111. 

Forp given  by  (23) we  will examine the optimal estima- 
tion problem for the error function 1 - cos8.  Note  that p 
in (23)  need nor be unimodal and symmetric about its 
mode (as it  would be if p =folded normal), and thus the 
results  discussed in [ll do  not apply. 

cos(@- g)) with respect to g, we need only know the 
lowest mode Fourier coefficients, a, and b,. If p is as in 
(23h 

(25) 
and (assuming a, and b, are  not both zero) the optimal 
estimate go is either tan-’a,/b, or tan-’u,/b,+m, de- 
pending upon the signs of a, and b, [9]. In  any case, the 
optimal cost  is  given  by 

m 
G (1 - cos(8 - io)) = 1 - 2 c,e-yJ2sinqn { [ n = l  l 2  

In genera1;this optimal error is  nor an increasing function 
of each of the “variances” y, individually. However, if all 
of the variances equal some  value y, it is easy to see that 
the optimal error is an increasing function of y. 

111. ESTIMATION OF DISC~TE-TIME FOLDED 
NORW PROCESSES 

We  wish to examine the problem of estimating a dis- 
crete-time random process on S given a series  of discrete 
measurements. One possible  model for the signal and 
measurement processes  is a discrete approximation to the 
continuous signal and measurement processes discussed in 
[ 11. We first approximate d e  measurement equations (see 
[l] for details) 

dz( t )=h(x(r ) , r )dr+r’ /2( t )mu( t )  (27) 

z ( t )  = ( ~ z ) (  t )  exp( RZ ( t ) )  (28) 

by the discrete equations 

Zk = exp(zkR) 
where 

and where A t  is the intermeasurement time, xk=x(kAt), 
rk=r (kAt ) ,  hk(’)=h(.,kAr),  and  w,=w(kAt)-w((k-l) 
A t ) .  

We can rewrite the zk equation as 
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and we see that, given 2,; - - , Z k - l ,  the new information 
contained in 2, is equivalent to the new information in 
Z L l I Z k .  In addition, this information is equivalent (see. 
[ 1J) to knowledge of 

- 
A Z k  = A Z k  mod2m, A Z k  E [ - T, T) .  (33) 

It is here that we see a marked difference between the 
discrete- and continuous-time  problems. In  the con- 
tinuous-time case [l], the continuity of the random pro- 
cesses  involved  results in our knowing dz(t), not just 
&( t )mod2~.  However,  in the discrete-time  problem, the 
ambiguity associated with our lack of knowledge of the 
number of rotations that  occur in the At between  mea- 
surements is reflected in the fact 'that our information is 
Azkmod2r  and not Azk. In some  sense, this makes the 
discrete-time  problem  more  interesting,  since  this 
"mod 2n"  ambiguity (a type of "cycle-slip" phenomenon) 
directly affects the f o r m  of the conditional distributions 
we  will consider (this is not the case in the continuous- 
time  problem [ 11). 

Motivated by  this  discussion, we can  state precisely a 
discrete-time analog of the continuous-time problem of 
[l]. Let x k  be a discrete-time  real-valued  signal  process 
satisfying 

x,+ , = a(xk ,k)  + b1/2(xk,k)wk,  xo= 0 (34) 

where {w,}  is a unit variance white Gaussian sequence. 
Consider an observation process { y k }  defined by 

yk = h ( x,, k) + Q2uk (35) 

where {u,} is a unit variance Gaussian  sequence inde- 
pendent of {w, } .  The problem is to det_ermine the condi- 
tional pJobability distributions p,(x,kl Y,) and pe(O,kl Yk) 
where Yk = { jl, - - ,yk} and 

0, = x, mod am,  0, E [ - T, T) (37) 

and  to determine optimal estimates with  respect to some 
given criteria. We note that one can interpret 0, as angu- 
lar orientation and x, as total angle swept. 

Our attack on this  problem can be  divided into three 
parts. First, to gain insight into the problem, we consider 
the general one-stage case  (Section 111-A). All of the 
essential features of the multistage problem  are contained 
here. The approach in  Section 111-A is intuitive and in- 
volves the use of delta functions. The reader is referred to 
[2] and [3] for the rigorous but tedious measure-theoretic 
details. In Section 111-B  we specialize to the linear- 
Gaussian case, and in  Section 111-C  we consider the 
two-stage and multistage  problems  for  the linear- 
Gaussian situation. In Section 111-C  we also  briefly  dis- 
cuss  some of the computational problems associated with 
the  multistage  results. For a luniting argument relating the, 
continuous-time and discrete-time  problems, the reader is 

referred to [2] and [3], and the details of some suboptimal 
estimation schemes are contained in [3] and [5]. Also, the 
reader is referred to [3] and [5j for further related results 
concerning conditional probabilities. 

A. The One-Stage Problem 

Let x and u be  independent real-valued random 
variables with a priori densities p x ( a )  and p,(v). We  wish 
to  compute the conditional density pxlJ(al P )  where 

y = h ( x ) + u ,  y = y m o d 2 ~  (38) 

and h : R '+R is a  measurable function. By the smooth- 
ing property of conditional densities [14], 

Now y is a deterministic function of y ,  so the  "density" 
pyl, is given  by 

where 6 is the Dirac delta function. Also, since y deter- 
mines y uniquely, (39) becomes 

We now must interpret 6( P - Cmod2n)  as  a function of 5. 
Clearly, what we mean by this is 

8(p-'5mod2a)= x S(p+2nn-[). (42) 
+oo 

n =  -oo 

Substituting (42) into (41), we have 
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In these equations the effect of the mod277 measure- 
ment ambiguity is quite evident. If  we know y = p + 2n77 
where r" = p, the conditional density for x is pxl,,(al /3 + 
2n77). Thus, for our  problempxll(aI #3) is the weighted sum 
of the conditional densities pxlv (a1 /3 + 2n77) where the 
weighting constant for the nth term can be shown to be 
the conditional probability that y = /3+2nr  given 9 = p 
(see  [2] and [31). We note that these results have been 
derived informally. Rigorous derivations of these and 
several somewhat more general results are contained in [2] 
and 131. 

B. The  Linear-Gaussian  Case 

+m 

px&71(al p1)= cn(P1)N(a;a1qn7ab3+ bl) (55) 
n =  -m 

where the cn, qn, and y3 are computed from (53) and (54) 
with the above substitutions. 

It remains to include the effect of the additional mea- 
surement j2.  To do this, we refer to (43x47)  and assume 
that p , ( v ) = N ( v ; O , y J  and h(x)=hx. In this case, the a 
priori density for x,-the density for -x2 just before we 
process~2-ispX2,11, which  is  given  by (55). This density is 
of the form 

+ m  

p x ( . ) =  2 dkN(a;qk,yl) (56) 
k =  - m 

where 
In  order  to interpret these one-stage equations and + m  

extend them to the multistage case, we  now  limit our 2 d k = l ,  dk>O. (57) 
discussion to the linear-Gaussian case-i.e., where k = - m  

a(x,k) = akx (48) In this case (43) becomes 

then substituting into (43H47) and using known results 
about linear measurements, we have 

Thus the nth term is evaluated by an optimal linear 
estimator which takes as its measurement p + 2 n r .  

C. The Multistage  Probiem 

We  now consider the multistage linear problem. It will 
suffice to consider only  two  stages,  since this will indicate 
the type of recursions necessary in building the discrete 
filter. Thus, consider (34H37) with ak, hk, and bi/2 given 
by (48)-(50) and with po l (v )=  N ( v ; O , r , )  and p,,  
= N(v;O, rJ .  Also, let the a priori density for x1 be 
N(a; 0, b&. The preceding analysis shows that  the density 

B = pl, and h = h,. Then, it is  easy to see that the density 
pXlly,(aI P J  is  given  by (52x54)  with q = O ,  ~ 1 = b o ,  Y ~ = I I >  

Px,,&4 P I )  is  given by 

From this computation we can see_ a pattern. After m 
measurements, the density px(x,ml Y,) is an m-times in- 
finite sum of normal densities, all with the same variance 
-the one given  by linear theory-and the mean of the 
(i1,i2; - ,i,)th term is the linear result if 

The coefficient of this term is the conditional probability 
that (61) holds, and it is a nonlinear function of the 
measurements [the update equation for these coefficients 
is  (60)]. 

It is clear that  any practical implementation of these 
results requires some'approximate scheme.  We  will  briefly 
discuss two approaches and refer  the reader to [3] and [5] 
for more detailed remarks. We also note that truncation 
procedures for sums of normal densities have been  consi- 
dered by Buxbaum and  Haddad [ 151 in relation to a 
different class of estimation problems, and our first 
approach is motivated by their work. 

Since the coefficients in the series 
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are the conditional probabilities for the various yi, it d l  ,u1 

would  seem reasonable to seek truncation methods based 
Fk + 2xT 

on the properties of these  probabilities. Therefore, we -* q11’=11 d 
consider the following: we are given a positive  integer N i 
and wish to  recursively  choose 2N real  numbers - 2m4-p 

Linear 

F i l t e r  il Decision 
+ ragi=: 

V “ ( ~ ) } L  { P A 4 L  with 
k ‘1,2K+1 =l,ZK+1 

COTpuCe 

I d . !  and 

such  that the density 

hJjl 

1e.g. lax. 

Likelihwd 

or n p t h e s i s  
Testing) 

N I 

n =  1 
X1, ‘N1 

Linear 

“approximates” (62). The motivation for this form is F i l t e r  i.N 

following: we have  the interpretation of (61) as being 
computed  by an infinite bank-of linear filters,  which also 
compute the appropriate probabilities ci,,. . ., c; therefore, 
we  wish to truncate the bank of filters in order to make 
the computations feasible.  See  Fig.  1,  which illustrates the 
basic concept  behind  such  a truncation procedure. 

The most obvious  method of truncation is to choose the 
N largest c’s at each stage. Call them c,(m);. ,c,(m), 
and let 

4(m)’ N 7 Pi(m)=yi(m). (65) x C j ( 4  
j =  1 

Then we take the density (64) and use  it to continue the 
procedurei.e., to propagate forward in time [as in (55)] 
and to process the next measurement [as in (56)-(60)]. 
Once  having applied (56)-(60),  we choose the N largest 
coefficients and repeat the process. 

Of course, we cannot directly implement (56)-(60), 
since  these equations involve an infinite number of coef- 
ficients. Thus, we must  assume (a priori) that for any 
value of y”, there are only a finite number of values of n 
such  that P ( y  =y” + 2n77ly”) > 0. This approximation is not 
too severe,  since we can show that  P(y=y”+2n77(y”) 
-e -n2. Having  made this assumption, we compute only a 
finite number of c’s from which we choose the N largest. 
Finally, we note that Buxbaum and  Haddad [ 151 found 
this  type of approach to be quite effective. Thorough 
discussions of this and several other truncation methods 
are contained in [3],  [5], and [15]. 

We remark  that [2] and [3] contain a result relating the 
discrete- and continuous-time problems. This result states 
that if our discrete-time  problem is a discretization of the 
continuous one, then, as the time At  between  measure- 
ments becomes  small, the term in the conditional density 
cogresponding to n rotations between measurements (Ay 
= Ay + 2na) goes to zero as Thus, for small A t ,  a 
rather crude truncation procedure may provide adequate 
accuracy. In fact, it  may  be appropriate to  approximate 
the discrete filter by the continuous filter preceded by a 
sample and hold (see the continuous filter design  in [l]). 

Fig. 1. Conceptual diagram of the truncation method for suboptimal 
discrete-time  filtering. 

An additional comment  can  be  made if we are in: 

the linear case, the conditional density pe(8,kl Yk, is an 
infinite sum of folded normal densities. For instance, if we 
let 13= xmod2a with  the  density for x given  by  (52h we 
have 

terested hl studying 8 k =  XkmOd277 as opposed LO xk. In 

+r.- 

Since F(a;q,y)= F ( a ; q + 2 n ~ , y ) ,  we need  only  keep 
those qn that  are inequivalent mod277. For example, sup- 
pose y1 and yz are rationally related-i.e., yI/y2 is a 
rational number-and h = 1. Then let no be the smallest 
positive integer such  that yln, is an integral multiple of 
(yI  + y2). Referring to (53), we have that there are only no 
distinct folded normal densities in (66)  with “means” 
qo, - . ,yn,- ,. In this case, we can write  (66) as a sum of a 
finite number of folded normal densities  where the coef- 
ficient of each of the terms is computed by summing the 
cn( 8 )  corresponding to all those qn that are equivalent 
mod277 to  a particular qj. Thus, if we approximate y, and 
yz so that no is small, poll is the  sum of only a few  terms. 

We  now comment on the optimal estimation problem. 
We  assume that 

+00 
A(.>= 2 cnN(a;ynYY). (67) 

n= -00 

As is  well known, the mean &(x) is the minimum 
variance estimate of x on R and in this case, 

Then in  the folded normal case depicted in  Fig. 1, the 
optimal estimate is a linear combination of the outputs of 
the various linear filters, and the coefficients are the same 
as the coefficients computed  to decide which terms to 
keep. 



28 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, FEBRUARY 1975 

If  we  wish to estimate 8 = x m o d 2 ~ ,  we  use the 
of Sectiqn 11. In particular, if  we yish  to minimize 
cos(8- e)) ,  the optimal estimate Bo is  given  by 

results 
& (1- 

(69) 

So, again refemng to Fig. 1, the optimal estimate is a 
nonlinear function of the outputs of the linear filters and 
the coefficients cn. 

As in the continuous-time case, we can consider the 
multidimensional (general Abelian Lie group) analog of 
the results of this section. For instance, let x be an 
n-dimensional normally distributed random variable, w a 
k-dimensional normal random variable independent of x ,  
and C a  k X n matrix. Define the measurement F: 

y = c x + w  (70) 

1 Q i < k ,  

yi m o d 2 ~ ,  k, < i Q k. 

Then the conditional density pXll can be written as  a 
(k - k,)-times countably infinite sum of normal distribu- 
tions, the (r,, - * , rk-k,)th of which  is the conditional 
density assuming 

y k l + i = y k l + i + 2 r i ~ ,  i=l; . .  , k - k ,  (72) 

and the coefficient of this term is the conditional probabil- 
ity that (72) holds, given y”. 

IV. FOURIER ANALYSIS OF CONDITIONAL 
PROBABILITY DISTRI~UTIONS 

In Section I1 we saw  how one could express the optimal 
estimate of a random variable on S 1  in terms of the 
Fourier coefficients of the probability density of the ran- 
dom variable. In view of this, in considering the condi- 
tional probability distribution of a  random process  on S ’, 
it is natural to seek methods for tracking the Fourier 
coefficients. In this section we  will consider a general 
single-stage S ’  estimation problem. Extensions to multi- 
stage problems with measurement noise independent from 
stage to stage is immediate. We note that the results of 
this section have also been discussed  in  [2] and [3], and 
Fourier series techniques have been used  in  [3],  [4],  [23], 
and [ 101 to aid in the analysis of a variety of discrete- and 
continuous-time estimation problems. 

Let 8 be a  random variable on the circle with a priori 
density 

Suppose that we take a single  (possibly nonlinear) mea- 
surement y of t? and that the noise density pYle(vI() exists. 
Since for fixed v, P,,p(vIt) is periodic in .$ with period 27r, 
we can write pyp(vI() in Fourier series form in E: 

m 
~ y l e t v I t ) = d o ( v ) +  2 [~n(~)sinn5+dn(~)cosnE] (74) 

n = l  

where the en's and dn’s are functions of v. Applying  Bayes’ 
rule, we can compute the Fourier series form for the 
conditional densitypol,(51v): 

where 

a n  (’1 P n  (I) an( l )=  - bn(l)= ___ 
2TC(V) ’ 2TC (v) 

=- do(v) + f 5 [a,(0)cn(v)+bn(O)dn(v)] (77) 
277 n = l  

Note  that the equations for c, ak,  and Pk are bilinear in 
the Fourier coefficients of Po([)  and pYle(v1t). Thus, the 
computation of poly  involves the (in general, nonlinear) 
computation of the coefficients { c n ( v ) }  and {dn(v) }  (here 
v is the actually observed measurement value), the evalua- 
tion of the bilinear equations (77)-(79), and the normali- 
zation (76). Thus, although the equations (77)479) look 
complicated, they are highly structured [(77)-(79) look like 
convolutions of infinite series].  We note that this approach 
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is  extremely general, in that the only restriction 00 the 
form of the measurement is that the conditional density 
PY le exist. For example, in addition to measurements such 
as 

y=(O+r;)rnod2a (80) 

which are considered in the previous section, using the 
Fourier series approach we can also consider measure- 
ments such as 

y = sin8 + o. (8 1) 

The reader is referred to [3] and [4] for examples of these 
Fourier techniques and discussions of the extension of 
these results to multistage problems and the problem of 
computing conditional distributions for random processes 
on S given a sequence of observations (as well as the 
continuous observation case). 

We note that Fourier analysis has previously  been ap- 
plied in [23] and [lo] to the specific signal form (81), and 
infinite dimensional optimal estimation equations were 
derived. These equations can be interpreted as consisting 
of an infinite bank of phase tracking loops [23], [4], and 
such an interpretation leads directly to finite dimensional 
approximations obtained by “truncating” the bank of 
filters [lo], [4] (for some successful simulations, see [4], 

This idea of “truncating” a bank of filters is  essentially 
the same as the “truncation” of the infinite set of Fourier 
coefficient update equations (75)-(79), a problem that we 
now  briefly consider. First of all, since we can only store a 
finite number of terms,  we mu~c  truncate  the various series 
in some manner. As discussed in Section 11, this is not 
terribly serious since the coefficients fall off rapidly in 
size.  Also, if  w,e are using an estimation criterion such as 
& (1 - cos(8 - 8) )  (as one would  in phase tracking prob- 
lems [4],  [9]), at  any stage we actually use only a, and b, .  
Of course, (75)-(79) show that,  in general, all of the a 
priori coefficients directly influence each of the updated 
coefficients. 

The question of truncating the probability densities is in 
itself an interesting problem. Suppose we keep the first N 
modes of pe and the first M modes of pYle.  It is  easy to 
check that, in general, pel, ,  will then have nonzero terms 
up to the ( N +  M)th mode. Thus, if  we are considering a 
sequence of measurements, we must  devise techniques for 
sequentially truncating the conditional density. As dis- 
cussed  in  [3] and [4], if we keep N modes of the a priori 
density pe, and if  we make some assumption about the 
shape of pe (this is called “assumed density” approxima- 
tion [ 191),  we can use {an,bn}f= to approximate the 
higher coefficients, which can then be used in computing 
the first N “updated” coefficients (of the conditional 
density pel , , ) .  Such a procedure may provide better ac- 
curacy than a straight truncation of the equations. An 
example that shows the type of errors that enter when we 
truncate the various Fourier series  is presented in [3]. 

Once we have approximated the various infinite series 

1241). 

and the infinite set of update equations (75)-(79), we are 
left with the problem of performing the update computa- 
tions in real time. As noted earlier, the Fourier coefficient 
update equations possess a convolution-type structure. 
Therefore, the fast Fourier transform-high-speed convolu- 
tion techniques of Stockham [21] will be of value in 
designing efficient methods for performing the necessary 
computations. 

Finally, once an approximation to (75)-(79) is  imple- 
mented, we can then use  the Fourier analysis results of 
Section I1 to obtain an optimal estimate directly as a 
function of the Fourier coefficients. It is  this feature that, in 
fact, motivated the development of the Fourier coefficient 
update coefficients. 

Our discussion concerning suboptimal phase estimation 
schemes arising from the Fourier series approach has been 
quite superficial and is meant only to indicate the impor- 
tant issues. The reader is referred to [3] and [4] for more 
detailed discussions and for numerical results for a spe- 
cific continuous-time phase tracking problem. 

V. CONCLUSIONS 

In this paper we have studied several  classes of discrete- 
time estimation problems on the circle. In particular, we 
have considered the discrete-time analog of the con- 
tinuous-time bilinear estimation problem examined in [ I], 
and  an intrinsic difference between the continuous and 
discrete problems was  discussed. This difference stems 
from the loss of information between the discrete mea- 
surements. It is significant that, unlike the vector space 
case,  this  loss of information causes a strlking increase in 
the complexity of the expression for the conditional prob- 
ability distribution. The problem of suboptimal estimation 
techniques motivated by the form of the conditional den- 
sity has been considered briefly. 

In addition, Fourier series techniques have  been  used to 
investigate a general class of discrete-time S estimation 
problems. Optimal estimation equations and highly struc- 
tured sequential equations for conditional densities have 
been presented. The problem of suboptimal Fourier series 
estimation has been briefly  discussed. 

The results of this paper indicate that rather general 
classes of estimation problems on S ’ possess a great deal 
of structure, and it  is the hope of the authors  that this 
structure can be successfully  utilized to develop efficient 
and  accurate estimation techniques. The reader is referred 
to [3],  [4], and [5] in which  this question is considered in 
more detail and in which some further results are re- 
ported. 
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