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Boundary-value descriptor systems: well-posedness, reachability and
observability

RAMINE NIKOUKHAHt, ALAN S. WILLSKYt and BERNARD C.
LEVYt

In this paper we introduce the class of two-point boundary-value descriptor systems
(TPBVDS), discrete-time systems described by possibly linear dynamics and a set of
boundary conditions constraining the values of the system 'state' at the two
endpoints of the system's interval of definition. By introducing a standard form for
regular pencils we obtain a new and simple generalized Cayley- Hamilton theorem
that simplifies our investigation of well-posedness, Green's function solutions, and
reachability and observability for TPBVDS. There are two distinct notions of
reachability and observability that one can define for TPBVDS, associated with
processes that propagate inward from and outward toward the boundaries. We
investigate each of these in detail, obtaining, among other things, far simpler forms
for the reachability and observability results than found previously in the literature.
In addition, we describe several methods for the efficient solution of TPBVDS, one
involving recursions from each end of the interval toward the other and two others
involving recursions that proceed outward toward and inward from the boundaries.

1. Introduction
The class of descriptor systems has been the subject of numerous studies in recent

years (see, for example, Luenberger 1977, 1978, Verghese et al. 1981, Lewis 1983 a, b,
1984, 1985, Cobb 1981,1983, 1987, Bender 1985 a, b, Van der Weiden and Bosgra
1980, Verghese 1978, Yip and Sincovec 1981). The fundamental property with which
all of these studies have had to deal, in some form or another, is the fact that the
system function matrix for a descriptor system need not be proper, leading to
impulsive behaviour in continuous time and giving rise to non-causal responses in
discrete time. The non-causality of these models makes them a natural choice for
modelling spatially (rather than temporally) varying phenomena. Indeed, if one
considers generalizations of descriptor models to more than one independent variable,
one finds that these models arise in many contexts such as in describing random fields,
electromagnetic problems, gravitational anomalies, etc.

In the context just described it is natural to consider descriptor models together
with boundary conditions. While it has been recognized in the literature that discrete­
time descriptor models are often not well-posed when initial conditions are specified,
the implications of using general boundary conditions have not been investigated for
these systems. This paper presents the initial steps in such an investigation.

There have been two principal stimuli for our work. The first is the work of Krener
(1980, 1981, 1987) who developed a system theory for standard (i.e. not descriptor)
continuous-time linear systems with boundary conditions. (See also the related work
by Gohberg and Kaashoek 1984, 1986.) Krener's results expose the richness of
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1716 R. Nikoukhah et al.

boundary-value models and a number of important concepts such as new notions of
recursion that are more natural for such systems. The development in this paper
parallels Krener's, with some important differences required to deal with the possible
singularity of the system matrices involved.

The second stimulus for the study presented here has come from our work on
estimation for non-causal processes (Adams et al. 1984 b. c. Nikoukhah et al. 1986). In
particular in Nikoukhah et al. (1986) we have examined the estimation problem for
boundary-value descriptor systems. In addition to producing. among other things,
both algorithms and new types of generalized Riccati equations, this study also posed
a number of questions. Is the optimal estimator stable, and how is stability related to
reachability and observability? 00 reachability and observability guarantee existence
and uniqueness of positive definite solutions to the generalized Riccati equations?
Stepping back we see that there are more fundamental questions. What do reacha­
bility and observability mean for boundary-value descriptor systems? What does
stability mean for a boundary-value process defined on a bounded interval? In this
and in subsequent papers we provide answers to these questions.

In the next section we introduce the class of two-point boundary-value descriptor
systems and investigate their well-posedness, This leads us to the introduction of a
normalized form for these systems. This form not only normalizes the boundary
conditions in a manner analogous to that of Krener but also brings the system
matrices into a form that leads to statements of a generalized Cayley-Hamilton
theorem and of reachability and observability conditions that are significantly simpler
than ones found in the literature. In § 3 we introduce the two notions of recursion.
namely inward from and outward towards the boundary, that were first used by
Krener, and we investigate the processes associated with each. These provide the basis
for defining two concepts of reachability and of observability which are then examined
in detail in the following two sections.

Finally in § 6 we discuss the efficient solution of boundary-value descriptor
equations and then close with a brief discussion in § 7.

2. Well-posedness and normalized form
The two-point boundary-value descriptor system (TPBVOS) considered in this

paper satisfies the difference equation

Ex(k+ I) = Ax(k) + Bu(k), k=O, .... N-I

with the two-point boundary condition

V;x(O) + "[x(N) = v

and output

y(k) = Cx(k). k = 0, .... N

(2.1)

(2.2)

(2.3)

Here x and v are n-dimensional, while u and yare m- and p-dimensional, respectively.
As in Luenberger (1978), we can rewrite (2.1), (2.2) as a single set of equations

9'x = 14u (2.4 a)

where

x' = (x'(O)• ..., x'(N))

u' = (u'(O), ..., u'(N - 1), v')

(2.4 h)

(2.4 c)
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Two-point boundary-value descriptor systems 1717

-A E 0 0

O. -A E .0 0

[I' = (2.5 a)

O :·.·:::O····-A E

V; 0 0 Vr

~ = diag (B, , B, 1) (2.5 b)

We see from this immediately that the well-posedness of (2.1), (2.2)-i.e. the existence
ofa unique solution x(k), k=O, 1, ... , N, for any choice ofvand u(k), k=O, I, ... , N-I
-is equivalent to the invertibility of [1'. Note that the invertibility of [I' implies
that the submatrix consisting of all but its last block of rows has full row rank. This in
turn implies that a necessary condition for well-posed ness is that {E, A} comprise a
regular pencil (Van Dooren 1979), i.e. that I1.E + fJA is invertible for some and
therefore for 'most' 11. and fJ. Consequently throughout this paper we assume that this
is the case.

An important aspect of regular pencils is that they can be transformed into a form
that greatly simplifies the answering of a number of questions.

Definition 2.1

A regular pencil {E, A} is in standard form if for some 11. and fJ

I1.E + fJA = I (2.6)

Note that any standard linear system (with E = 1) is in standard form (take 11. = I,
fJ = 0). Furthermore any well-posed TPBVDS can be transformed to standard form.
Specifically, find 11. and fJ so that II1.E + fJAI of- 0 and premultiply (2.1) by (I1.E + fJA) - '.
This does not change the system or the 'state' variable x, but the new E and A matrices
now satisfy (2.6). It is worth noting that one can also deduce that any regular pencil
can be put into standard form by examination of its Kronecker canonical form (Van
Dooren 1979), although that construction involves a similarity transformation on x as
well (see § 6).

A pencil in standard form has a number of important properties, a few of which are
summarized in the following result.

Proposition 2.1

Suppose that {E, A} is in standard form. Then

(i) E and A commute and thus have a common set of generalized eigenvectors
(which we refer to as generalized system eigenvectors).

(ii) The pencil {Ek
, Ak

} is regular for all k > O.

(iii) For any k, I> 0, there exist coefficients 11.0' ... , I1.n - , so that

n-l

EkA'= II1.,An-'-IE'

;=0
(2.7)

Proof

Suppose without loss of generality that 11. of- 0 in (2.6). Then E = yl + <5A where
y = 1/11. and <5 = - fJll1.. The commutativity of E and A then follows immediately. The
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1718 R. N ikoukhah et al.

remainder of (i) follows from the fact that E and A can be put into Jordan form by the
same similarity transformation. Indeed the Jordan blocks must be of commensurate
dimensions (i.e. no block of E or A can straddle rows of several blocks of the other
without extending to include all of the rows of those blocks. (For example, two 4 x 4
matrices in Jordan form, one with two 2 x 2 Jordan blocks and the other with one
3 x 3 and one I x I Jordan block, do not commute.)

Assume then that E and A are in Jordan form. Since {E, A} is regular, E and A
cannot have a zero eigenvalue associated with a common eigenvector. This in turn
implies statement (ii). Finally to prove (iii), take any Ek A' and replace E by yl + <5A.
Then apply the usual Cayley- Hamilton theorem to all powers of A higher than n - I.
Finally, multiply each Ak in the resulting expression by 1 = (aE + fJA)n-k-l. Expand­
ing yields an expression of the form of (2.7). 0

Statement (iii), which states that {An-I, EAn- 2 , ••• , E" - 1 } span the same subspace
as {A k E'l k, / ~ O}, is a generalization of the Cayley-Hamilton theorem. Note that this
statement is considerably simpler than those in the literature (Lewis 1983 b, 1984,
Mertzios and Christodoulou 1986) for pencils not in standard form.

Standard form also provides us with the following simpler well-posedness
condition.

Theorem 2.1

Suppose that {E, A} is in standard form. Then the system (2.1), (2.2) is well-posed
if and only if

(2.8)
is inverti ble.

Proof
One method for deriving this result is to apply row elimination to solve for x(O)

and x(N) from (2.4). Methods similar to this will be used in the next section in defining
inward and outward processes. In this proof we use a different method that provides
some computations we can use immediately. To begin, let w be any number such that

r=wEN+1_A N+ 1 (2.9)

is invertible (this can always be done since {EN+ 1, AN+'} is regular). Then we can
express [/ as

where

[/, =

1

o
0 0

1 0

(2.10)

(2.11)

with

o 0 1 0

SN' = (V;A N- kEk+ w/'fA N- k- 1 e: I )r-!, k = 0, ... , N - I

SNN=(V;EN+ /'fAN)r- 1

(2.12 a)

(2.12 b)
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Two-point boundary-value descriptor systems 1719

and

-A E 0

0 -A E

9;=

0 0 0

wE 0 0

Note that 9'2 is invertible, with

ANr- 1 EAN-lr- I

wENr- 1 ANr- 1

9'-' - WEN-I Ar- 1 wENr- 1
2 -

wEAN-Ir- 1 wE 2 AN- 2 r - '

0 0

0 0

(2.13)

-A E

0 -A

EN- l Ar- I ENr- 1

EN- 2A2r- 1 EN-I Ar- I

EN- 3A3r- 1 EN- 2Ar-' (2.14)

wENr- 1 ANr- 1

Consequently 9' is invertible if and only if.9'; is invertible. Examining (2.11), (2.12) we
see that this is the case if and only if the matrix in (2.8) is invertible.

Deftnition 2.2
The system (2.1), (2.2) is in normalized form if {E, A} is in standard form and if

V; EN + "fAN = I (2.15)

This form is the counterpart of Krener's (1980,1981,1987) standard form. Note that
any well-posed system can be put in normalized form by left multiplication of (2.1)
and (2.2). Specifically we first transform {E, A} to standard form as described
previously, to obtain new E and A matrices, and we then multiply (2.2) by
(V;EN+ "fAN) - I to obtain new V; and "f matrices satisfying (2.15). From this point
on we assume that (2.1), (2.2) is in standard form.

Next, note that if (2.8) is invertible, the inverse of .9'; has the same form as (2.11)
except that the last block row of 9', I is

(-S;JSNO' -S;JSN1>"" -S;JSN.N-I,S;J)

Using the expressions for 9',1 and 9':; I we can then write down the Green's function
solution of (2.1), (2.2):

where

N-I
x(k) = AkEN-kV+ L G(k,I)Bu(l)

1=0

I~ k

l<k

(2.16)

(2.17)

(2.18)

Here Gik, I) is called the Green's function or the TPBVDS. When E and A are both
invertible, (2.17) can be simplified:

{

_ AkEN- k"f EI- NAN- I- I , I~k

G(k, I) =
AkEN-kV;E'A-I-I. i c«
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1720 R. N ikoukhah et al.

For simplicity, in the rest of the paper we assume that r is invertible for w = I and
use the expression (2.17) for G with w set equal to I. This assumption is equivalent to
assuming that no (N + I )th root of unity is an eigenmode of the system (where a is an
eigenmode if lerE - AI = 0). All of the results in the paper have obvious extensions to
the case of an arbitrary value of w, as we simply must carry w along in the various
expressions.

3. Inward and outward processes
One of Krener's most important observations in his work was that boundary­

value systems admit two notions of recursion, namely expanding inward from or
outward toward the boundaries. In this section we introduce the counterparts to these
notions for TPBVDS. As we will see, the possible singularity of both E and A leads to
several differences in our context.

Each of the processes associated with these recursions have interpretations as state
processes: the outward process summarizes all that one needs to know about the input
inside any interval in order to determine x outside the interval, while the inward
process simply uses input values near the boundary to propagate the boundary
condition inward. In Krener's context the outward process represented a 'jump', i.e.
the difference between x at one end of any interval and the value predicted for x at that
point given x at the other end of the interval and assuming zero input inside the interval.
In our context we cannot necessarily predict in either direction (because of the possible
singularity of E and A) and therefore must use a slightly modified definition of the
outward process:

zo(k, I) = E/-k x(l) - A'-kX(k), k < 1 (3.1)

Note that this definition agrees with Krener's if E = I. However, in general zo(k,l) can
only be propagated outward whereas in Krener's case the outward process could be
propagated inward as well. An explicit expression for zo(k, I) in terms of the inputs
between k and 1can be obtained by premultiplying (2.4) by

[0 ... 0 Ak - I - I EAk- I - 2 •.• Ek- I - I 0 ... 0]

This yields
I-I

zo(k, I) = L Ej-k A'- j-l Bu(j)
j=k

Also, we have the recursive relations

zo(k - I, I) = Ezo(k, I) + A/-k Bu(k - I)

zo(k, 1+ I) = Azo(k, I) + E/-k Bu(l)

(3.2)

(3.3)

(3.4)

Furthermore, as in Krener (1987), it is straightforward to show that the four-point
boundary-value system

Ex(k + I) = Ax(k) + Bu(k) (3.5)

V;x(O) + Vrx(N) = v (3.6)

EL-KX(L) - AL-KX(K) = zo(K, L) (3.7)

has the same solution as (2.1), (2.2) for k E [0, N]\[K + I, L- I] (i.e. over [0, K] and
[L, N]), so zo(K, L) does indeed summarize all we need to know about inputs between
K and L.
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Two-point boundary-value descriptor systems 1721

The inward process z;(k, I) can also be defined in a manner analogous to that of
Krener (1987). Unfortunately in the present context z;(k, I) is a complex function of the
boundary matrices, the boundary value v, and the inputs u(j), j E [0, N - I]\[k, 1- I].
Specifically, as we demonstrate below, for k < I, z;(k, I) has the form

z;(k, /) = W;(k, I)x(k) + Wr(k, I)x(l)

=FkI[u(O) u(l) ... u(k - I) u(l) u(1 + I) ... u(N - I) v] (3.8)

and, in addition

z;(O, N) = v, W;(O, N) = V;, Wr(O, N) = V,

zi(k, k) = x(k) = Fkk(u(O), ... , u(N - I), v)

(3.9)

(3.10)

where the FkI are linear functions of their arguments. Furthermore the TPBVDS

Ex(k + I) = Ax(k) + Bu(k)

W;(K,L)x(K) + Wr(K, L)x(L) = z;(K, L)

(3.11)

(3.12)

has the same solution as (2.1),(2.2) for k E [K, L], so zi(K, L) does indeed represent an
inwardly-propagated boundary condition for the original system.

Let us first indicate how (3.8)-(3.10) can be computed in a recursive manner. The
basic idea here is to eliminate values of x near the boundary from (2.4) in order to
obtain a reduced set of equations. The resulting right-hand side will then involve the
remaining u's and a new boundary condition (see (2.4 e)). Specifically, suppose we
wish to propagate one step in from the left, i.e. to compute z,( I, N). Note that for 51' in
(2.5 a) to be invertible it is necessary for

to have full column rank. Consequently we can find a block matrix [T P] offull row
rank so that

[T p{ -V;AJ =0

Premultiplying (2.4) by the matrix

0 I 0 0

0=
0 0 I 0

T 0 0 P

then eliminates x(O) and leaves us with the following TPBVDS on [I, N]:

Ex(k + I) = Ax(k) + Bu(k)

TEx(l) + PV,x(N) = Pv + TBu(O)

(3.13)

(3.14)

(3.15)

(3.16)

It is easy to see that this system is well-posed, since rank (051') = rank (0) =
rank (51') - II and the system is defined over an interval with one less time step. The
boundary matrices in (3.16) are not necessarily in normalized form, so we then need
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1722

to premultiply (3.\6) by

yielding

R. Nikoukhah et al.

W;( i, N) = ATE, Wr(l, N) = API'(

F IN[U(O), v] = APv + ATBu(O)

(3.\7)

(3.18)

(3.\9)

In a similar fashion we can move the right boundary inward, in this case premultiply­
ing (2.4) by

J 0 0 0

0 I 0 0

0 0 J 0

0 0 S Q

when [S Q] is a full-rank solution of

[S Q][~J=o

(3.20)

(3.21)

It is also possible to obtain a direct rather than a recursive expression for the W's
and at the same time to expose the relationship between the inward and outward
processes that we will use in § 5. Using the expression (3.\) for the outward process Zo

and (2.4) we can write

_Ak Ek 0 0 x(O) zo(O, k)

0 _A'-k E'-
k 0 x(k) zo(k, I)

0 0 _AN-I EN-I x(l) zo(l, N)

V; 0 0 I'( x(N) v

As we did earlier, we construct a full-rank matrix

(3.22)

[T;(k, I) 1f(k, I) P(k, I)]

so that

[T;(k, I) 1f(k,l)

[

Ak

P(k, I)] 0

V;

(3.23)

if we then multiply (3.22) by

O(k, I) = [0 J 0 0 ]
T;(k, I) 0 1f(k, I) P(k, I)

(3.24)
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[

_Al-k

T;(k,l)£k

Two-point boundary-value descriptor systems

E1
-

k
- [X(k)]

-7f(k,I)AN
- ' _ x(l)

[
zo(k, I) ]

= T;(k, l)zo(O, k) + 7f(k, I)zo(l, n) + P(k, I)v

1723

(3.25)

Equation (3.25) is essentially the result of eliminating all variables in (2.4) other than
x(k) and x(I) by propagating outward to summarize all inputs between k and I and
inward to summarize the effect of the boundary condition and inputs from 0 to k and
I to N. Consequently we can identify the second block of equations as specifying an
unnormalized version of the inward process. Therefore letting

we have
A(k, I) = [T;(k, I)E' - 7f(k, I)A N

-
k

] - 1

W;(k, I) = A(k, 1)T;(k, I)E k

Wr(k, I) = -A(k, 1)7f(k, I)A N
- '

(3.26)

(3.27)

(3.28)
and

zi(k, I) = A(k, I) [T;(k, l)zo(O, k) + 7f(k, I)zo(l, N) + P(k, I)v] (3.29)

In the case of standard linear systems reachability corresponds to the ability to
drive the state of the system to an arbitrary value by appropriate choice of the input
sequence. It is well known that if such a system is reachable it is possible to reach an
arbitrary state value by proper choice of the n previous input values, where n is the
dimension of the system. In the case of a TPBVDS, however, there is a distinction
between the concept of reach ability by choosing the inputs in an n-point neighbour­
hood and the concept of reachability by choosing the inputs in the whole domain of
definition (i.e. [0, N]). The first concept we shall refer to as strong reachability and the
second concept as weak reachability. These concepts correspond, respectively, to
Krener's reachability on and reachability off which he in turn defines in terms of the
outward and inward processes, respectively. We shall do the same in the next two
sections in which we also analyse the corresponding observability concepts.

4. Strong reachability and observability
We begin with an examination of reachability, and for this we need the following.

Definition 4.1

The system (2.1), (2.2) is strongly reachable on [K, L] if the map

{u(k) IkE [K, L]} ---> zo(K, L)

is onto. The system is strongly reachable if it is strongly reachable on some interval.

From (3.2) we can write

[

u(K) ]
zo(K, L) = R,(L- K) :

u(L- 1)

(4.1)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
a
s
s
a
c
h
u
s
e
t
t
s
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
,
 
M
I
T
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
6
:
4
4
 
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1724

where

R. Nikoukhah et al.

R,(J) = [Aj-, B: EAj- 2 B : ... :Ej-l B]

In anticipation of the following result, define the strong reachability matrix

R, = R,(n)

and strong reachable subspace

9l, = 1m (R,)

(4.2)

(4.3)

(4.4)

Theorem 4.1

The following statements are equivalent.

(a) The system (2.1), (2.2) is strongly reachable.

(b) The strong reachability matrix R, has full rank.

(c) The matrix EsE - tA: B] has full rank for all (s, t) # (0, 0).

(d) The state x at any point k E [n, N - n] can be made to assume any desired
value by proper choice of inputs u(J), j E [k - n, k + n - I], and this can be
accomplished for any choices of V; and Vr for which (2.1), (2.2) is well-posed.

Before proving this result, let us make several comments. Note first that condition
(c) is one of the reachability conditions found in the descriptor literature (Lewis 1985,
Yip and Sincovec 1981). By introducing the standard form of a regular pencil we are
able to obtain a condition, namely that (4.2) is of full rank for j = n, that is far simpler
than those presented previously. Note also that as for standard linear systems,
condition (b) tells us that a system is strongly reachable if and only if it is strongly
reachable over intervals of length n. On the other hand, in condition (d) we require
that x(k) can be driven to an arbitrary value by applying appropriate inputs over the
2n-point symmetric neighbourhood of k. In fact, one only needs an n-point
neighbourhood of k, but the extent of this interval before and after k depends on the
matrices E, A and B (i.e. on the causal/anticausal structure of (2.1)). Condition (d)
simply uses the union of all such n-point intervals and therefore is appropriate for all
TPBVDS. Finally, note that strong reachability does not depend on the boundary
matrices V; and Vr (as long as (2.1), (2.2) is well-posed). This can be seen directly from
the definition of zo(k, I) or from condition (b).

Proof
The equivalence of (a) and (b) follows immediately from the generalized

Cayley-Hamilton theorem (statement (iii) of Proposition 2.1). As an alternative
proof, note that

1m [R,(k+ I)] = E 1m [R,(k)] + A 1m [R,(k)] (4.5)

so that 1m [R,(k + 2)] = 1m [R,(k + I)] if 1m [R,(k + I)] = 1m [R,(k)]. Also, thanks
to (2.6)

1m [R,(k)] £; 1m [R,(k + I)]

Simple dimension counting then shows that

1m [R.(k)] = Im [R.(n)] 'V k ~ n

(4.6)

(4.7)
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Two-point boundary-value descriptor systems 1725

The equivalence of statements (b) and (e) is proved as follows. First assume that
a¥-O in (2.6). In this case

9P,=lm[B:AB; ... :A n- 1BJ (4.8)

(This can be verified by settingj = n in (4.2) and then by replacing E by (yl + bA).)
Also, (2.6) allows us to write

where

sE - tA = ul - vA

u = (sla), v = t - sPla

(4.9)

(4.10)

Note that (u, v) = (0, 0) if and only if (s, t) = (0, 0). Thus statement (c) is equivalent to
showing that [ul - vA : BJ is of full rank for (u, v) ¥- (0,0). Note that this is trivially the
case for u ¥- 0, v = 0 since [I:BJ has full rank. If v ¥- 0, we can clearly divide ul - vA
by v. Consequently, statement (c) is equivalent to [wl- A: BJ being offull rank for all
w ¥- O. The equivalence of this statement and that of (4.8) being the entire state space,
is the well-known result for standard linear systems (see, for example, Kailath 1980).
For the case in which a =0, we can argue in a similar fashion by reversing the roles
of E and A. Note also that if a¥-O and P¥- 0, then

9P,= 1m [B:AB: '" :A n- ,
BJ = [B; EB: ... :£"-1 B] (4.11)

Finally, consider the equivalence of statements (b) and (d). Because of the linearity
of the system, we can assume that v = 0 and u(j) = 0 for j E [0, k - n - IJ and
j E [k + n, N]. In this case (2.16), (2.17) and (3.2) allow us to write

x(k) = Ak[A - EN- k(V;A + I-(EjEkJr- l AN-.-nzo(k, k + nj

+ EN-k[E - Ak(V;A + I-(E)AN-kJr- 1 Ek-nzo(k - n, k) (4.12)

Let ~ be an arbitrary vector and choose inputs u(j), j E [k - n, k - IJ so that
zo(k - n, k) = En~ and u(j), j E [k, k + n - 1] so that zo(k, k + n) = - An~. With
these choices which can be found since R, has full rank, (4.12) reduces to

x(k) = ~ (4.13)

This shows that (a) implies (d). To show the reverse implication, we make the
following choice for V; and 1-(:

where

V;=~-'E

1-(= y~-I A

(4.14a)

(4.14 b)

(4.15)

and y is any number that makes ~ invertible. Note that (2.1), (2.2) with this choice for
V; and I-( is in normalized form. Let us take v = 0 and u(j) = 0 for j E [0, k - n - IJand
j E [k + n, N]. Then in this case (2.16), (2.17) reduces to

x(k) =~[An-I EN-n-' Bu(k- n) + An- 2EN- nBu(k -n-1) + ... + fNBu(k- I)

+ yANBu(k) + yAN- l EBu(k + 1)+ ... + yEn-' AN- n+ I Bu(k + n - I)]

(4.16)
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1726 R. N ikoukhah et al.

The range of the mapping defined in (4.16) is

6.[EN-n-l~, + AN-n+ 1~,]

Assuming that (d) is true, this must also be all of IRn. Consequently we conclude that
~,= IRn for this choice of V;, I'f. Thanks, then, to statement (e) of the theorem, we see
that~, = IRn for any V;, I'ffor which the TPBVDS is well-posed, so that statement (a)
must also hold. 0

We next wish to consider the dual concept of strong observability. To do this we
proceed in a manner analogous to that for causal linear systems. Specifically, for such
systems observability corresponds to being able to reconstruct the state at some point
in time, given present and future observations, when all future inputs are zero. The
counterpart to this in our context is the following.

Definition 4.2
The system (2.1)-(2.3) is strongly observable on [K, L] if the map

z,(K, L) -> {y(k) IkE [K, L]} (4.17)

defined by (3.11), (3.12) with u == 0 is one-to-one. The system is strongly observable if it
is strongly observable on [K, L] for all K, L such that L- K ;;: n - I.

Since (3.11), (3.12) is in normalized form, we can adopt the Green's function
solution (2.16) to obtain an explicit expression for the mapping defined in (4.17).
Specifically

where

y(K)

y(K + I)
=O,(L- K)z,(K, L)

y(L)

(4.18)

O,(J) = (4.19)

In analogy with our reachability results, we define the strong observability matrix

O,=O,(n-l)

and the strongly unobservable subspace

ilJ, = ker (0,)

Theorem 4.2
The following statements are equivalent.

(a) The system (2.1)-(2.3) is strongly observable.

(b) The strong observability matrix 0, has full rank.

(4.20)

(4.21)
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(c) The matrix
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has full rank for all (s, t) "# (0, 0).

(d) The state x at any point k E [n, N - n] can be uniquely determined from the
outputs y(j), j E [k - n, k + n - I] and u(j), j E [k - n, k + n - 2]. This can be
accomplished for any choice of V, and Vr for which (2.1), (2.2) is well-posed.

The proof of this theorem is analogous to that for Theorem 4.1 and is therefore
omitted. Also, one can make similar comments concerning this result. For example,
thanks to the generalized Cayley-Hamilton theorem, statement (b) is considerably
simpler than expressions that have appeared previously. Also, strong observability
depends only on E, A and C and not on the particular choice of boundary matrices V,
and Vr.

5. Weak reachability and observability
As Krener noted, in contrast to strong reach ability and observability, the concepts

of weak reachability and observability depend intimately on the particular choice of
boundary matrices, as the structure of these matrices can increase reachability and
observability beyond that which might be apparent from an examination of system
dynamics alone. The examination of these weaker concepts for TPBVDS is somewhat
more complicated than in Krener's case because of the possible singularity of E and A.

Definition 5.1

The system (2.1), (2.2) is weakly reachable off [K, L] if the map FKL defined
in (3.8), with v == 0, is onto. The weakly reachable subspace 9fw (K , L) is the range
of this map. The system is weakly reachable if it is weakly reachable off [K, L] (i.e. if
9fw(K , L) = IRO) for all K, LE [n, N - n].

Note that the weak reachability condition is a natural counterpart to the causal
reachability definition in which we require that the state can be driven to an arbitrary
value from zero initial condition. Also, note the use of the wording 'reachable off',
emphasizing the fact that the inputs used in this case are confined to the exterior of the
interval [K, L].

An important property of a causal system is that the dimension of the reachable space
does not change, and in fact the reachable space itself is time-invariant. The following
theorem shows that the first of these statements is also true for TPBVDSs. Example
5.1 later in this section shows that the second is not.

Theorem 5.1

The dimension of 9fw (K , L) is constant for K, LE [n, N - n].

Proof

Let K, L be any points in [n, N - n]. From (3.29) (with v set to 0) we see that

9fw(K, L) = A(K, L) [T;(K, L)9f, + 1f(K, L)9f,] (5.1)
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1728 R. N ikoukhah et al.

Now assume that K - I E en, N - n] as well. We would like to show that

dim 99w(K - I, L) = dim 99w(K, L) (5.2)

To do this, we first must find 7;(K - I, L) and If(K - I, L). In fact, what we show is
that a possible set of choices for 7;, If and Pis

7;(K - I, L) = 7;(K, L)A

If(K - I, L) = If(K, L)

P(K - I, L) = P(K, L)

(5.3 a)

(5.3 b)

(5.3 c)

where A has the same eigenstructure as A except that the zero eigenvalue in A has
been replaced by I in A. Without loss of generality (since similarity transformations
have no effect on the dimension of the reachability spaces), we can assume that A is in
the Jordan form

where J is invertible and N is nilpotent. In this case

- [J 0 ]
A= 0 N+I

(5.4)

(5.5)

For (5.3) to be a valid choice, two conditions must be satisfied. First [7;(K - I, L)
If(K - I, L) P(K - I, L)] must be a full rank. This is obviously the case since
[7;(K, L) If(K, L) P(K, L)] is, and A is invertible. Secondly we must show that
(3.23) is satisfied with k = K - I and 1= L, i.e., we must verify

when we know that

- 7;(K, L)AA K
-

1 + P(K, L) V; = 0 (5.6)

(5.7)- 7;(K, L)A K + P(K, L) V; = 0

However, since K -I ;l>n, N K
-

1 =0, so that AAK
-

1 =AK
•

Consequently, we can write

99w(K - I, L) = A(K - I, L)[7;(K, L)A99, + If(K, L)99,] (5.8)

(Note that (4.25) may not be valid if K - 1 < n, since 99,(K - I) may be smaller than
99,.) Comparing (5.1) and (5.8) and using the fact that the A(k, I) are all invertible, we
see that (5.3) will hold if we can show that

A99, = 99, (5.9)

(5.10)

Note first that A99, £; 99" so that (5.9) is clearly true if A is invertible. If A is singular,
note that IX cannot be zero in IXE + pA = I, so that 99, is given by (4.8). Then assuming
that A and A are as in (5.4) and (5.5) and using the fact that J is invertible, we see that
(5.9) will hold if we can show that

[ ~ ~] 99,£; 99,

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
a
s
s
a
c
h
u
s
e
t
t
s
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
,
 
M
I
T
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
6
:
4
4
 
5
 
J
a
n
u
a
r
y
 
2
0
1
1



Two-point boundary-value descriptor systems

If we partition B compatibly with (5.4) we see that

1729

(5.11)

9l,=Tm[:: ::~····'·'·'''··~~~·;·~2···~····.·.·.···J"-~B1J (5.12)

where J.l is the nilpotency degree of N. Let J be n l x n1 and N be n2 x n2 (so that
n l + n2= nand J.l"; n2)' Suppose that [~'I ~2]' E 9l,; we wish to show that
[0 ~2]' E 9l,. However, if [~'l ~2]' E 9l" there exist inputs u" i = 0, ... , J.l- I so that

(5.13)

We then wish to show that we can augment this sequence with u" i = u, ... , n so that

i.e. so that

.-1

2: J'B1u,=0
i=O

(5.14)

(5.15)

The right-hand side of (5.15) is in the reachable space of (J, Bd. Furthermore, since
n - I - J.l ~ n1 - 1, the left-hand side of (5.15) can be driven to any point in the
reachable space of (J, Bd.

So far we have shown that 9lw (K - I, L) has the same dimension as 9lw (K , L) as
long as K - I ~ n. In a similar manner we can show that 9lw (K , L+ I) has the same
dimension as well, as long as L + I '" N - n. This then completes the proof of the
theorem. 0

Note that one immediate consequence of Theorem 5.1 is the following.

Corollary
The system (2.1)-(2.2) is weakly reachable if it is weakly reachable olfsome [K, L]

with K, LE En, N - n].

Hence, in order to test for weak reachability we need only examine the reachability
space 9lw (k, k) of z,(k, k) = x(k) for any k E En, N - n]. Note further that 9lw(k, k) is
the range space for the map from {ufO), ... , uiN - I)} to x(k) (with the boundary value
set to zero); i.e. weak reachability corresponds to being able to drive x(k) to an
arbitrary value using the entire interval of the controls. Thanks to statement (d) of
Theorem 4.1, we see that weak reachability is indeed weaker than strong reachability
which corresponds to being able to drive x(k) to an arbitrary value using only inputs
within n time steps of k.

While (5.1) provides in principal a method for computing weakly reachable
subspaces, it involves a significant amount of computation in order to determine
A(K, L), T;(K, L) and T,(K, L). As the next theorem shows, there is an easier method
for computing 9lw(k, k).
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1730 R. N ikoukhah et al.

Theorem 5.2

Let k E en, N - n]. Then

Plw(k, k) = 1m [A'EN-'(V;A + VcE)R,:R,]

= 1m [A' EN-' V;R,: A' EN-' VcR,: R,] (5.16)

Proof
From (2.16), (2.17) (with w = 1 for simplicity) we see that

Plw(k, k) = 1m [A'(A - EN-k(V;A + I'fE)E')R,(N - k):

EN-'(E- A'(V;A + I'fE)AN-')R,(k)] (5.17)

That is, if WE Plw ( k, k), then there exist x, y E Pl, so that

W = A'[A - EN-'( V;A + I'fE)£k]x + EN-'[E - A'( V;A + I'fE)AN-']y

= (AH
IX + EN- H I y) - A' EN-'(V;A + I'fE) [E'x + AN-ky] (5.18)

Since Pl, is E- and A-invariant, we see that

(5.19)

(5.21)

(5.22)

The first equality in (5.16) will be proved then if we can show that any W in the range of
[A' EN-'( V;A + I'fE)R,: R,] is in Plw(k, k). Clearly any such W can be written as

W = S - AkEN-k(V;A + I'fE)1 (5.20)

with s, I E Pl,. Comparing this to (5.18) we see that we will be finished if we can show
that there exists X, y E Pl, so that

[
A

H 1
EN-Hl][X] = [s]

Ek AN
- ' Y I

The matrix on the left-hand side of (5.21) is invertible, and solving (5.21) we obtain

[
X] = [r- 1

A
N-' -r- I

EN-HIJ[SJ
y -r-IEk r-IA H 1 _ I

where r is defined in (2.9) (with w = I). Since Pl, is E- and A-invariant, it is also r- I

invariant, so that X and yare in Pl,.
Finally we need to verify the second equality in (5.16). Since Pl, is E- and

A-invariant and V; EN + I'fAN= I, we see that

1m [(V;A + I'fE)R,:R,] ~ 1m [V;R,: I'fR,] (5.23)

On the other hand,

Im[V,R :R]=lm[V,(EN+1-AN+ 1)R :R]
(5.S r 5.S

S; 1m [( V;A + I'fE)ENR,: (V;EN + I'fAN)AR,: R,]

S; 1m [( V;A + I'fE)R,: R,] (5.24)

Similarly

1m [V;R,: R,] S; 1m [( V;A + I'fE)R,: R,] (5.25)
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Two-point boundary-value descriptor systems 1731

Combining (5.23), (5.24), (5.25) we see that

1m [(V;A + J.ofE)Rs;Rs] =Im [V;Rs: J.ofR,] (5.26)

Finally

1m [Ake-k(V;A + J.ofE)Rs;Rs] = Ake-klm [(V;A + J.ofE)Rs;Rs] +als

=Ak e-k 1m [V;Rs; J.ofRs ] + als

1m [A k EN
-

k V;Rs; Ak EN
-

k J.ofRs ; Rs] (5.27)

D

Note from (5.16) that als <;; Rw(k, k) for k E en, N - n], consistent with our earlier
statement that weak reachability is indeed a weaker condition.

Example 5.1
Consider the system (2.1), (2.2) with

(5.28)

(5.29)

This system is in normalized form for all N. Since E = I, strong reachability reduces to
the usual notion of reachability for causal systems. Clearly then als is spanned by the
vector [I 0 OF. From (5.16) we find that alw(k, k) is spanned by [1 0 O]T and
[0 0 I]T for k even and by [I 0 OF and [0 I OF for k odd. This example
illustrates the mechanism through which some states may be weakly but not strongly
reachable. It also demonstrates another fact peculiar to boundary-value systems:
while the dimension of alw(k, k) remains constant for k E en, N - n], this subspace is
not dynamically-invariant. In particular, while the dynamics (5.28) allow the input to
influence only the first component of x(k), the boundary matrices (5.30) couple the
first and third components, allowing indirect control of the third. The A-matrix then
produces the oscillatory behaviour in alw(k, k).

Theorem 5.2 provides us with a computable weak reachability condition: we check
to see if either of the matrices in (5.16) is full rank. The following result provides a
simpler result of this type as no powers of E or A must be computed.

Theorem 5.3
The system (2.1), (2.2) is weakly reachable if and only if either of the matrices

or

has full rank.

[EA( V;A + J.ofE)R s; Rs]

[EAV;R s; EAJ.ofR,: R,]

(5.30 a)

(5.30 b)
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1732 R. N ikoukhan et al.

Proof
We begin by showing that for any subspace ~ of IR"

E~ + ~, = IR"-E2~ + ~, = IR"

Let .9 be a subspace so that

Then

(5.31)

(5.32)

E2~ +~, = E(E~ + ~,) + fJi, = E(ff EB~,) + fJi, = Eff EB~, (5.33)

Dimension counting then show that the right-to-Ieft implication in (5.31) is true.
Suppose that E~ + fJi, = IR". Then

E2~ + fJi,= E(E~ + fJi,) +~, = E(IR") +~,;2 E~ +~, = IR" (5.34)

Note that by iterating (5.31) we see that if Ek~ + ~, = IR" for some k > 0, it equals
IR" for all k > 0. A similar statement can be made with E replaced by A, and com­
bining these we have that Ek A'~ + fJi,= IR" for some pair k, I>°if and only if
EA~ +~, = IR". The theorem then follows from the application of this result with
~ = 1m {( V;A + ItfE)R,}. 0

Now let us briefly present the corresponding concept of weak observability, and
some relevant results.

Definition 5.2
The system (2.1)-(2.3) is weakly observable off[K, L] if the map from zo[K, L] to

{y(j) ij E [0, K] u [L, N]}, defined by (2.3) and the four-point boundary-value pro­
blem (3.5)-(3.7) with v = 0, u == 0, is one-to-one. The weakly unobservable subspace
(!)w(K, L) is the kernel of this map. The system is weakly observable if it is weakly
observable off [K, L] (i.e. if (!)w(K, L) = {o}) for all K, L E [n - I, N - n + I].

Theorem 5.4
The dimension of (!)w(K, L) is constant for K, LE [n - I, N - n + I].

Corollary
The system (2.1)-(2.3) is weakly observable if it is weakly observable off some

[K,L].

A consequence of this last result is that in order to test for weak observability we
need only examine the unobservability space (!)w(k, k + I) of zo(k, k + I) = Bu(k).
Furthermore, note that (!)w(k, k + I) is the kernel of the mapping from Bu(k) to the full
sequence of measurements y(O), ... , YIN) (with v set to zero). This is weaker than
strong observability which involves the use of outputs restricted to lie within n time
steps of k.

Theorem 5.5

Let k E en, N - n]. Then

o;(k, k) = ker [ 0, ] = ker [0, V; A~~k- 1 Ek] (5.35)
o (ll,A + V.E)A N- k- t Ek

s r 0, VrAN-k-1 Ek
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(5.36 a)

Note that (9w(k, k) S;; (9" demonstrating again that weak observability is a weaker
condition.

Theorem 5.6

The system (2.1)-(2.3) is weakly observable if and only if either of the matrices

[Os( V;A :sVrE)AEJ
(5.36 b)

has full rank.

6. Efficient solution of TPBVDS
Unlike causal systems, the solution of a TPBVDS cannot be computed using a

simple recursion since the solution x(k) depends on inputs over the entire interval.
There are, however, several efficient methods for solution which we describe in this
section.

6.1. Two-filter solution

In his study Krener derived a solution by solving his continuous-time linear
system assuming a zero initial condition and then correcting for the actual boundary
conditions. Since E and A may both be singular for a TPBVDS, the analogous
procedure, first described in Nikoukhah et al. (1986), is somewhat more complex as
we must identify which parts of the system can be solved in the forward and backward
directions.

From Kronecker's canonical form for a regular pencil (Van Dooren 1979) we can
find non-singular matrices T and F so that

~J

FET-I=[I OJ
° A2

[

A I
FAT-I = °

(6.1 a)

(6.1 b)

and all of the eigenvalues of A [ and A 2 have magnitudes no larger than 1. (The
decomposition in Van Dooren (1979) splits the pencil zE - A into forward dynamics
corresponding to a pencil of the form zl- AI and backward dynamics corresponding
to 1z - I - A2 where A2 is nilpotent. The only difference in (6.1), (6.2) is that the unstable
forward modes of AI have been shifted into the backward dynamics A 2 .) Define

Then we obtain

[
X , (k)J = Tx(k)
x 2 (k)

x[(k + I) = Alx,(k) + B[u(k)

x2(k) = A2X2(k + I) - B2u(k)

(6.2)

(6.3 a)

(6.3 b)
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where

R. N ikoukhah et al.

[::]=FB (6.4)

(6.5)

Note that (6.3 a), (6.3 b) are asymptotically stable recursions if IzE - AI has no zeros
on the unit circle. Finally, given the transformation (6.2), the boundary condition (2.2)
takes the form

[Vii: V2.J [Xl (O)J + [V
If

: V2f] [XI (N)J = v
X2(0) X2(N)

[Vii: V2J = v;r ', [V1f: V2f] = VrT- I (6.6)

Employing the forward/backward representation (6.3) of the dynamics, a general
solution to (2.1), (2.2) is derived as follows. Let x?(k) denote the solution to (6.3 a)
with zero initial condition, and let x~(k) denote the solution of (6.3 b) with zero final
condition. Then

XI (k) = A~ x(O) +x?(k)

x2(k) = A~-kx2(N) + x~(k)

Substituting (6.7) into (6.5) and solving for XI(O) and x 2 (K ) yields

[
XI(0)J -I { 0 O}=H v- Vlfxl(N)- V2 ; X 2(0)
x2(N)

where

[
Xl (k)J = [A~
x2(k) 0

(6.7 a)

(6.7 b)

(6.8)

(6.9)

(6.10)

The solution in the original basis can then be obtained by inverting (6.2).
Note that the transformed matrices in (6.1), (6.2) commute and are in fact in a form

close to our normalized form (see discussion in the next section). However, the full
importance of transforming the system into normalized form, and in particular its
implication for a generalized Cayley-Hamilton theorem and the resulting form of
reachability and observability results, has not been previously recognized. Also, the
algorithm just described provides an equivalent well-posedness condition, namely the
invertibility of H in (6.9).

6.2. Parallel outward-inward solution

A second efficient algorithm can be constructed by noting that the solution X can
be recovered from the outward process z, and the inward process Zi' For simplicity, let
us assume that N is odd and that E and A commute (as they would if (2.1), (2.2) is in
normalized form). It is then possible to specify a recursive algorithm for the
computation of zoU, N - j) for j = 0, ... , (N - 1)/2, starting from the initial condition
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at the centre of the interval (with j = (N - 1)/2):

zo((N - 1)/2, (N + 1)/2) = Bu((N - 1)/2)

and propagating symmetrically outward from the centre:

1735

(6.11)

zo(j-I, N -j+ 1)= EAzo(j, N -j) +AN- 2j+, Bu(j-l) + e- 2j+' Bu(N -j)

(6.12)

Similarly we can compute z;(j, N - j) recursively inward from the initial condition

zi(O,N)=v (6.13)

using a recursive procedure based on that outlined in § 3 (see (3.13)-(3.21)).
The solution x can then be computed as

[
x(j) ] [_A

N- 2j
E

N- 2j
]-'[zo(j,N-j)] (6.14)

x(N -j) = W;(j, N -j) Wr(j, N -j) z;(j-N -j)

where the inverse on the right-hand side of (6.14) is guaranteed to exist thanks to the
wen-posed ness or(2.1), (2.2).

6.3. Serial outward-inward solution

As a first step in this algorithm we compute zo(j, N - j) outward from the interval
centre as in (6.11), (6.12). We then use these values, together with the boundary
condition v, to solve for x(j) and x(N - j) recursively as we propagate back toward the
interval centre. To begin, note that

[
X(O) ] = [ - A

N
EN]-'[Zo(O,N)]

x(N) V' V' v
(6.15)

where the inverse indicated on the right-hand side of(6.15) is again guaranteed to exist
thanks to well-posedness. To continue with the inward recursion, note that from (3.1)

(6.16)

while from (2.1)

DjEx(j) + Ax(N - j) = DjAx(j - 1) + Ex(N - j + I) + DjBu(j - I) - Bu(N - j)

(6.17)

for any j E [1, (N - 1)/2] and any scalar Dj • We then have the recursion

[
x(j) ] = [_A

N- 2j
E

N- 2j]-1

x(N - j) DjE A

[
zo(j,N-j) ]

x DjAx(j _ I) + Ex(N - j + I) + DjBu(j - I) - Bu(N _ j)

(6.18)

where Dj is chosen so that the inverse on the right-hand side of (6.18) exists (for
example, if IzE - AI has no roots on the unit circle, Dj can be taken equal to I).
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7. Conclusion
In this paper we have analysed some or the system-theoretic properties of

TPBVDSs. As in Krener's analysis or continuous-time, non-descriptor, boundary­
value systems, there are actually two distinct concepts for reachability and for
observability of TPBVDSs, and in this paper we have investigated each of these. In
addition, we have described three methods for the efficient solution of TPBVDSs, one
based on a variation on Kronecker's form Ior a regular pencil and two on the
inward-outward recursions and processes that play such an important role in the
analysis of these systems.

An important step in our analysis is the introduction of a standard form for
regular pencils. This form permits us to obtain a simple form for a generalized
Cayley-Hamilton theorem which in turn leads to simpler reachability and observa­
bility results than have appeared previously in the literature. It is worth noting that
this generalized Cayley-Hamilton theorem and the resulting reachability and
observability results continue to hold if E and A take the form

(7.1)

where E" A, are in standard form, i.e. «.E, + PiA, = I, but where (cx l , Ptl and (cxz, pz)
need not be the same. An example of such a form is the variation of Kronecker's form
given in (6.1), (6.2).

There are a variety of extensions and complements to the results presented in this
paper. Many of these involve the examination of stationary TPBVDSs, i.e. models as
in (6.1), (6.2) but for which the Green's function G(k, I) in (2.17) depends only on k - I.
As we will describe in a subsequent paper, the analysis of stationary TPBVDSs can be
significantly simplified and extended. For example, the description and recursive
computation of the inward process z;(k, I) is far simpler in the stationary case. In
addition, for such systems the weak reachability and unobservability spaces are time­
invariant (i.e. they do not rotate). As a simple example, consider the class of cyclic
processes, i.e. processes for which \Ii = - Vr = I (so that x(O) = x(N) if v = 0). Not only
is such a process stationary but from (5.16), (5.35) we see that in this case weak and
strong reachability and observability concepts coincide.

There are also a number of other system-theoretic concepts that can be developed
in detail for a stationary TPBVDS. For example, there exists a minimal realization
theory for such systems analogous to that described by Krener. In addition, it is
possible to develop a concept of stability for such systems, reflecting the effect that the
boundary conditions have on the process near the centre of the interval as the
boundaries recede. Not only is such a concept useful in determining the numerical
well-posedness of algorithms such as those described in § 6, but it also provides the
basis for analysing stochastic TPBVDSs and the properties of optimal estimators for
such processes (Nikoukhah et al. 1986).
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