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1. Introduction 
Many systems exhibit behavior at multiple temporal or spatial “scales.” Often, the 
existence of these different scales causes difficulty in the analysis of a system owing 
to either numerical ill-conditioning or excessive complexity resulting from explicit 
consideration of the detailed interactions within the system. A possible approach 
to such problems is to try to isolate the various scales of behavior and analyze 
them separately. This basic approach has been applied with success to the analysis 
of finite-state Markov processes with weakly coupled components and rare transi- 
tions. As has been shown by several authors (Coderch [5], Delebecque [9], Courtois 
[7], and others), processes with such structure exhibit behavior at several time 
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scales. Moreover, explicit identification of the behavior at various time scales has 
been addressed through the construction of reduced-order aggregate processes. 

The results presented in this paper address the decomposition of a general class 
of perturbed Markov processes and provide a computationally feasible algorithm 
for their analysis and uniform approximation. Some of the previous algorithms [7, 
lo] are applicable to only comparatively restricted classes of Markov processes. By 
considering such restricted classes, however, the algorithms for the construction of 
aggregated processes associated with various time scales are generally straightfor- 
ward and involve computations with clear probabilistic interpretations. At the 
other extreme, Coderch [5] and Delebecque [9] deal with a completely general 
class of perturbed Markov processes, and the former also proves the uniform 
convergence of a decomposition-based approximation. The price, however, that is 
paid for this generality and the guaranteed uniform convergence are algorithms of 
significantly greater complexity involving the computation of complex quantities 
that are not easily interpreted in probabilistic terms. 

The algorithm presented in this paper, which was originally outlined by Lou et 
al. [ 151 focuses on the gap between these two extreme sets of results. In particular, 
we present an algorithm for the construction of uniform multiple-time-scale 
approximations of singularly perturbed Markov processes that is as general as that 
of Coderch [5] and Delebecque [9] but has much the same straightforward, easily 
interpreted flavor as that of Courtois [7]. Indeed, when the class of systems is 
suitably restricted, the construction is essentially identical to that of Courtois [7]. 

The focus of this paper is on generators of continuous-time, finite-state Markov 
processes that are analytic functions of a small parameter t, representing the 
presence of rare transitions between sets of states. Consider such a Markov 
generator, A(‘)(E)’ of size 12 x ~1. The matrix probability transition function X(t) 
satisfies the dynamical equation 

g(t) = A”‘(~)x(t), 
X(0) = z, (1.1) 

whose solution can be written as 

X(t) = exp[A”‘(e)t]. (1.2) 

The goal is to obtain an approximation of this solution that (a) explicitly displays 
the evolution of the process for various orders of t (1, l/t, l/e2, . . . ) using 
appropriately aggregated, t-independent, Markov generators and that (b) converges 
uniformly over the interval t E [0, 00) to the true probability transition function as 
E 1 0. A solution (a) and (b) is presented in Coderch [5, 61, based on associating 
multiple time scales with different orders of eigenvalues of A”‘(t). Building on 
Kato’s [ 121 perturbation results for linear operators, Coderch et al. identify the 
subspaces associated with these various orders of eigenvalues and devise a sequential 
procedure for construction of the approximation. In particular, it is shown that the 
solution (1.2) can be uniformly approximated using the unperturbed “fast” 
evolution2 

exp[A”‘t 1, (1.3) 

’ The superscript (‘) is used here to maintain a uniform notation throughout the paper. It signifies the 
first generator in a sequence that will be constructed in the next section. 
2 Here A”’ = A(“)(O) for simplicity. To avoid confusion, we consistently write A(“)(c) when we are 
referring to the full generator, as in (1.2). 
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and a “slow” evolution 

(1.4a) 

where 

A(‘+) = i P’O’(E)A(‘)(E)P(‘)(E). (1.4b) 

Here P(‘)(E) is the eigenprojection associated with all the eigenvalues of order t 
or higher. The procedure can then be iterated to produce the desired approximation, 
consisting of exp[A”‘t], exp[A”‘tt], exp[A(‘)c2t], etc. There are, however, several 
drawbacks to this procedure. The first is the need to compute the entire c-dependent 
eigenprojections, P”)(E), P”‘(t), . . . , and a second is the absence of a simple 
probabilistic interpretation of the computations being performed. Finally, although 
at the end of the procedure Coderch [5] provides a way in which to reorganize the 
approximation so that it consists of increasingly aggregated (and hence simpler) 
Markov models at successively slower time scales, all computations are performed 
on the full, unaggregated process. 

The approach taken by Courtois [7] overcomes all of these drawbacks. Specili- 
tally, in essence what Courtois does is to replace the slow evolution in (1.4a) and 
(1.4b) by 

exp[F”)(E)E t ] (1Sa) 

where 

F”+) = f p(o)A’O’(t)p’O’. (1.5b) 

Here PC’) = P(‘)(O) has a simple probabilistic interpretation as the ergodic projection 
of the unperturbed process 

PC’) = lim exp[A(‘)t]. (1.6) 
t-m 

This involves no c-dependent computations. Furthermore, we can always write 
p(O) = U’O’V’O (1.7) 

Here V(O) is a “membership matrix.” In the case in which there are no transient 
states generated by A(‘), it consists entirely of O’s and l’s whose rows identify which 
states of the process form individual ergodic classes of A(‘). Also the columns U(O) 
denote the ergodic probability vectors, one for each ergodic class of A(O), and finally 

V(O)U(O) = 1 (1.8) 

From (1.7) and (1.8), we see that (1.5a) can be computed in an even simpler 
fashion: 

exp[F(‘)(e)Et] = U(“)exp[A(‘)(~)~t]V(o), (1.9) 

where 

A’l’(E) = f V’O’A’O’(E)U(0) (1.10) 

is an aggregated Markov generator with one state for each ergodic class of A(‘). 
Indeed, (1.10) has an appealing probabilistic interpretation: We compute the 
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FIG. 1. Perturbed Markov process. 

transition rate between aggregated ergodic classes of A(‘) as an “average rate,” in 
which the rates of individual states in these classes are averaged using the ergodic 
probabilities of A(‘). 

Although the procedure just described has a number of appealing features, it 
cannot be applied to arbitrary processes. In particular, Courtois [7] focuses his 
development on the class of “nearly completely decomposable” processes intro- 
duced by Simon and Ando [20] and Ando and Fisher [I], in which A(‘) has no 
transient states. Although this condition can be relaxed somewhat (see Section 3), 
it is restrictive. Furthermore, although the ideas of Simon and Ando [20] and 
Courtois [7] do allow one to consider several levels of aggregation at different time 
scales, iterative application of this method, in general, cannot be performed, since 
the constraint of nearly complete decomposability may fail at one or more 
intermediate time scales. 

As the previous paragraph implies, the need for a more general algorithm can be 
traced to the role played by states that are transient at various time scales. To 
illustrate this, consider the process depicted in Figure 1. At E = 0, states 1, 2, and 
4 are individual ergodic classes, while state 3 is transient, so that its steady-state 
probability is 0. Consequently, application of the averaging implied by (1.10) 
(which uses the steady-state probabilities at E = 0) completely misses the possibility 
of transition from states 1, 2, or 3, to state 4. Thus, in this case, the approximation 
implied by ( 1.9) and ( 1.10) does not capture the fact that 4 is really a trapping state 
for E > 0. The problem in this example is that the critical path determining long- 
term behavior involves a sequence of (in this case, two) rare events (namely, a 
transition from states 1 or 2 to 3, followed immediately by a transition to state 4). 
Processes with such behavior arise in a variety of applications, and are of particular 
interest for analyzing the long-term reliability or availability of complex systems 
such as interconnected power networks (in which sequences of events lead, on 
infrequent occasions, to blackouts), data communication networks, and fault-prone 
systems possessing backup capability. The process depicted in Figure 1 can, in fact, 
be thought of as an (extremely simplified) example of a system consisting of two 
machines, one of which acts as a backup. States 1 and 2 correspond to both 
machines being in working order. If a failure of one machine occurs, there is a 
transition of the process to state 3 at which the machine is examined and 
then repaired (causing a transition to state 1) or replaced (causing a transition 
to state 2). However, on rare occasions, the second machine fails before the 
first is repaired or replaced, causing a stoppage in operation (and a transition to 
state 4). 

Though the importance of transient states has been recognized in previous work, 
no general approach has been developed. Korolyuk and Turbin [13a] have consid- 
ered a case in which there is a particular ergodic structure. Recently, Bobbio and 
Trivedi [3] have proposed a method, similar to our own, for analyzing the effect 
of transient states in the two-time-scale case. Multiple-time-scale analysis of per- 
turbed Markov processes with arbitrary ergodic structure is not available in these 
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works, however, particularly with respect to the construction of a uniform asymp- 
totic approximation. 

In this paper we perform this full multiple-time-scale analysis and prove uniform 
convergence. The key to our development is a method for handling transient states 
at various time scales (state 3 in the example) that couple ergodic classes at slower 
time scales (as state 3 does between states 1 and 4 and between states 2 and 4). In 
general, such transient states may not be transient in the full process and thus can 
be thought of as almost transient states. The way in which we accommodate the 
presence of such states is essentially a modification of ( 1.10). Specifically, recall 
that V(O) is a membership matrix indicating which states are in which ergodic 
classes. When there are transient states, it is necessary to consider an c-dependent 
membership matrix 6(‘)(e) to capture the fact that states that couple ergodic classes 
can be thought of as being “partly” in each. Therefore, in such a case, we must 
identify and retain certain e-dependent terms, but we can stop far short of the 
complete computations required by Coderch [5] and maintain the advantage of 
Courtois’s approach of working directly on increasingly aggregated versions of the 
process. 

In the next section we present our algorithm and illustrate it using the example 
introduced in this section, and in Section 3 we outline the derivation of the 
procedure and prove uniform convergence. Section 4 contains a discussion of 
several issues, including computational and numerical aspects of hierarchical 
aggregation. 

2. The Algorithm 
In this section we present and apply our algorithm for the construction of uniform 
multiple-time-scale approximations of singularly perturbed finite-state Markov 
processes. For simplicity, we assume that we begin with a Markov generator A(‘)(E) 
that has one ergodic class for t > 0.3 The basic algorithm involves the computation 
of a sequence of generators, the kth of which, A”“(E), captures all behavior at time 
scales of order 1 /tk or slower. The procedure is iterative, with Ack+‘)(t) determined 
directly from Ack’(e). There are essentially four steps involved at each step of this 
algorithm as shown below. 

Algorithm 

(0) Set kc 0. 
Begin with the generator A”‘(c) of a finite-state Markov process. 

(1) Partition the state set into the communicating classes El, E2, . . . , EN and the transient 
set T generated by A@‘(O). If there is only a single class (N = l), go to (5). 

(2) For each class E,, compute the ergodic probabilities of the member states at t = 0, 
u$), Vi E E,. 

(3) For each transient state j E T and each class E,, compute a term CT] (c) such that4 

iq(t) = $(t)(l + O(t)), (2.la) 

(2.lb) 

where 

V>:](E) = Pr(vCk’(c, t*) E E, I vck’(t, 0) = j, t* = ff$t I ~‘~‘(c, t) 4: T) 

and q@)(e, t) is a sample path of the Markov process generated by Ack)(f). 

(2.2) 

3 The generalization to more than one class is trivial, since we can reorder the states of the process so 
that A@‘(e) is block diagonal and then consider each block individually. 
4 Here O(r’) denotes a quantity of order 8. 



680 J. R. ROHLICEK AND A. S. WILLSKY 

(4) Form the matrices 

U(k) = [UyJ, 

Pk’(c) = [s;y(c)]. 

Then 

where u$, = 0 if i 4 E,, (2.3) 

(2.4) 

A’k+‘+) = f (?T(k)(t)A(k)(c)U(k). (2.5) 

Setkck+ 1 andgoto(l). 
(5) The overall approximation of the evolution of the transition probabilities can be 

written as 

exp[A”‘(e)t] = exp[ACO’t] 
+ (UCo)exp[A(‘)d] V(O) - U(“)V(o)) 
+ (U’0’U”‘eXp[A’2’t2t]V(I)V(0) _ U’o’U”‘V”‘V’o’) 

+ (U(O) . . . ~‘k-l’eXp[~‘k’~kt]~(k-l) . . . V’O’ 

- U(O) . . . u’k-l’v’k-I’ * . * V(O)) + O(c), 

where VCk’ = 6”)(O) = VCk’(0). 
This approximation is uniformly valid for t 2 0.5 

(2.6) 

As indicated in the previous section, (l)-(4) of the algorithm are very similar in 
structure to the algorithm of Courtois. In particular, compare (1.10) and (2.5). The 
computation in step (2) of the ergodic probabilities that form Uk) is identical to 
the corresponding step of Courtois’s algorithm. The critical difference, however, is 
the computation of the “membership matrix” V@)(t). In particular, “member- 
ship,” as needed here is defined in (2.2). Specifically, for each statej in the process 
corresponding.to A”“(c), we compute the probability that the process first enters 
each ergodic class EI of A@‘(O). If j is already a member of some EI, then the 
corresponding v::)(c) equals 1, that is, in this case we have exactly the same 
membership as if we used vck’(0), the quantity employed in Courtois’s algorithm. 
Furthermore, ifj is a transient state of A@‘(O) that does not couple ergodic classes 
(i.e., ifj has transitions in Ack’(t) into only one of the Er), we still have the same 
O-l membership as in V”“(0). However, ifj is a coupling transient state, v:fi? (E) in 
general will be nonzero and e-dependent for several values of I. Although there is 
some c-dependence to be captured here, (2. la) indicates that we actually only need 
to match the lowest order term in each vi:! (t ) and then can pick higher order terms 
as we like in order to ensure that the probabilities of membership sum to 1 
(eq. (2. lb)). This has important computational implications, as we discuss in 
Section 4. 

As indicated above, the only elements of V(“)(t) that require calculation are those 
that correspond to the transient state set T. The calculation of (2.2), then, is a 
standard problem: We replace each ergodic class E, of Ack)(0) with a single trapping 
state Z and sum together all transition rates from each j E T into each El, forming 
an aggregate rate into the new state I; the probabilities in (2.2) are then simply the 
limiting transition probabilities as t + co of this simplified process. Furthermore, 
this is equivalent to considering the limiting possibilities of the derived discrete- 
time Markov chain whose transition at discrete time n corresponds to the nth 
transition of the continuous time process. The state transition matrix P(E) of this 
discrete-time process (with ergodic classes of Ack) collapsed into trapping states) 

5 Specifically, O(e) is some (matrix) function F(e, f ) such that limelo sup,ao 11 [F(t, t )/e] 11 = p < Q). 
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can be obtained directly from the original generator ACk)(c). 

681 

PI.jtc) = E 
Q(t) 

Pj,l(E) = 03 (2.7) 
iEE, -aj,j (f) ’ 

where j, k E T, j # k, and Z is a state representing a class EI. By suitably ordering 
the states, P(C) can be formed as 

P(E) = b-T(~) 0 

[ I Pm(E) z 

and the limit therefore becomes 

7 (2.8) 

lim P(C)” = 0 0 0 

= n-em [ PTR(C)(Z - PTT(E))-’ z I[ 1 V(t) . (2.9) 

The leading order terms of V(t) in (2.9) required in step (3) of the algorithm can 
be obtained in a variety of ways such as by repeated multiplication of P(e) (retaining 
only the leading order terms after each multiplication) or by series expansion of 
the inverse in (2.9) as 

(I - P&c))-’ = (I - PTT(0))-l mt, E”(L(C)(Z - PTT(0)))m, 

where 

L(c) = ; (P&E) - P&O)). 

Example 1. In order to illustrate the algorithm, consider the generator A”‘(C) 
associated with the state transition diagram in Figure 1. The communicating classes 
and transient set are 

E, = (11, E2 = (21, E3 = (41, T= (3). 
The ergodic probabilities are all degenerate in this case; 1 0 0 

UI,l = u2,2 = u4,3 = 1 or u(O) = 0 1 0 . I 1 0 0 0 
001 

Suitable terms S(C) that satisfy (2.1) above are 

or 
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FIG. 2. O( l/e) time scale. 

Using these terms, A(‘)(E) computed using (2.5) generates the process illustrated in 
Figure 2: 

A(‘)(E) = I 
1C 1 

---- 22 z O 
1 1 t 
z 

-2-2 
0 

; ; 0 I 
This procedure is now repeated since A”‘(O) generates two ergodic classes with 

the following ergodic probabilities: 

EI = (1, 21, E2 = (41, T= 4, 

Using this, the generator AC2’(c) is corn: 

Ac2’(c) = 

1 1 0 W(t) = o o 1 . [ 1 
puted: 

Since AC2)(0) generates only one ergodic class, namely (41, the algorithm is termi- 
nated. The set of e-independent Markov models from which the approximation is 
derived is shown in Figure 3. 

Note that the process of Figure 1 has explicitly only order t rates. However, as 
seen in Figure 3c, this process has time-scale behavior of order 1/c2. The fact that 
there is slower behavior than is explicitly visible in the original process is directly 
attributable to the presence of coupling transient states or, equivalently, to critical 
sequences of rare transitions. This is precisely the case in which the c-dependence 
of W(E) is critical. 

It is useful to make several comments about step (5) of the procedure that 
assembles an overall approximation of the transition probability matrix. The first 
term captures the fast, high-probability behavior at times of order 1. The next 
describes behavior at times of order l/e by capturing transitions between ergodic 
classes of the fast process, and, since these transitions are sufficiently rare that the 
fast process can reach equilibrium between two such transitions, the probability 
mass within each ergodic class is distributed using the fast-process ergodic proba- 
bilities. Similar interpretations can be given to subsequent terms. Such intuition is 
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FIG. 3. (a) O( 1) time scale. (b) O( l/c) time scale. (c) O( l/c*) time scale. 

certainly present or implicit in most previous works. Indeed this idea has led 
researchers to develop iterative methods for computing steady-state probabilities 
[4] and error bounds for these computations [8]. In contrast, what we prove in 
the next section is that the error in this approximation to the entire transition 
probability matrix (including the full transient behavior) goes to 0 uniformly for 
0 I t < m as t 1 0. Coderch [6] has a similar uniform convergence proof, but our 
result is stronger since we are able to work on successively aggregated ver- 
sions of the process, and we can also discard all but the essential E-dependent 
terms (whereas Coderch [6] keeps them all). Finally, it is interestiong to note 
that the final approximation in (2.6) uses only Vck)(0) = V’@(O), the same 
matrices that appear in Courtois’s development. The key point here is that while 
Vk’(0) is adequate for describing the kth time scale, V’k’(~) is in general needed 
to capture accurately all slower time scales. For example, the c-dependent terms of 
V(‘)(c) in Example 1 directly influence V(‘)(O). 

3. The Derivation 
The algorithm for the construction of multiple-time-scale decompositions of a 
singularly perturbed, finite-state Markov process is derived in this section. At the 
same time, the uniform convergence of the associated approximation (2.6) is 
established. The approach taken is as follows. We first derive the algorithm 
assuming that there may be transient states at any particular time scale provided 
that these states cannot “couple” aggregates (i.e., aggregated ergodic classes) at 
slower time scales. The proof of uniform convergence in this case involves keeping 
track of “weak” terms in the generator that can ultimately be ignored since they 
do not affect the multiple-time-scale decomposition. The uniform convergence 
result for this case is stronger than that of Coderch [5] in that the continuous time 
analog of Courtois’s multiple-time-scale procedure (using ergodic projections rather 
than the full perturbed eigenprojections) can be shown to provide a uniform 
approximation. Also, this result forms the backbone for our general algorithm in 
which we minimize the number of E-dependent terms that must be computed 
in order to generate the complete multiple-time-scale decomposition and uni- 
form approximation when there are transient states that couple aggregates. The 



684 J. R. ROHLICEK AND A. S. WILLSKY 

generalization to this case is proved in Section 3.2 by showing that it is equivalent 
to first constructing a process with an expanded state that does not have coupling 
transient states and then recovering the probability transition function of the 
original model after the procedure of Section 3.1 is applied to the expanded process. 

3.1 No COUPLING THROUGH TRANSIENT STATES. We first consider the case 
in which any almost transient state has transitions into a single ergodic class for 
t > 0. In this case we show that the “Courtois/Simon-Ando” approach is valid in 
that transient states have no effect on multiple-time-scale behavior. As men- 
tioned in Section 2, in this case the O@)(E) are composed of entries which are 
either 0 or 1 since each transient state is associated with a unique ergodic class. 
In order to analyze the more restrictive case, the following result is useful: 

LEMMA 1. Suppose 

F(t) = F, I(C) EFIZ(C) 

cF21(c) I ~F22tt) ’ 
(3.1) 

where 

(1) F, , (c) has eigenvalues with strictly negative realparts for all t E [0, E,,) for some 
co > 0, 

(2) F(c) has “well-defined multiple-time-scale behaviof’in the sense defined in [6]. 

Then 

F(c) and 0 
I EK(E) ’ 

where 

K(E) = F22(~) - EF&)F;:(E)F,z(E), 

are “asymptotically equivalent ” in the sense that 

;f{ II ev[F(E)tl - exp[W~)tlII = O(E). 

PROOF. This result is an adaptation of the basic perturbation result used by 
several authors. See, for example, Lou [ 161, Coderch et al. [6], or Kokotovic 
[13]. 0 

This result is applicable to perturbed Markov generators since (a) Coderch et al. 
[6] have shown that such matrices do have well-defined time-scale behavior 
and (b) it is straightforward to bring the generator into the form in (3.1) by an 
c-independent similarity transformation. Before doing this, let us introduce the 
following definition: 

Definition 1. Consider the perturbed Markov generator A(t) = A + B(E), with 
11 B(E) 11 = O(E). There is no coupling through transient states in this process if the 
following conditions hold. It is possible to partition the state set into sets RK, each 
of which consists, at E = 0, of a single ergodic class EK together, perhaps, with some 
transient states TK so that these transient states have transitions only into the 
particular class with which they are associated, even with E > 0. That is, if m E TK, 
then for any state n 4 RK, a,,(e) = 0. 
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If we assume that A(‘)(C) has no coupling through transient states, we can order 
the states of the process so that 

A”‘(E) = A(‘) + B”‘(C) 9 

where 1) B(‘)(t)]] = O(C) and 

A(‘) = diag(A1, Al, . . . , AN). 

Each A1 corresponds to a process with a single ergodic class and possibly some 
transient states that are uniquely associated with that class. If such states are 
present, then the no coupling assumption implies that certain corresponding 
elements of B(‘)(t) are identically zero. 

In order to transform A(‘)(E) into the form (3.1), let U(O) and V(O) denote the 
matrices of right and left zero eigenvectors of the unperturbed generator A(‘), where 
the kth column of U(O) and the kth row of V(O) have nonzero entries only 
corresponding to the states in the set Rk. Note that the matrices UC” and V(O) 
correspond to UCk) and V(“)(C) constructed in the Algorithm since there is no 
t-dependence in this case. Also, let Yco)(Zco)) be matrices whose columns (rows) 
span the right (left) eigenspace of the nonzero eigenvalues of A”‘. Furthermore, 
owing to the structure of A(‘), we can clearly choose these matrices such that 
A’“‘Y’o’ and Z(‘)A(‘) are block diagonal matrices with partitions consistent with A(‘) 
and that a similarity transformation T can then be constructed as 

T= T-1 = [y@,U’o’] 

Application of this similarity transformation A”‘(C) results in the form (3.1) 
given for F(E) in Lemma 1: 

TA(0)(t)T-l = &l(e) c-412(~) , 

~Az,(E) ~A22(4 1 
where 

A, 1 (E) = Z’“‘A’o’(~)Y(o), 
KATZ = Z’“‘B’o’(~)U’o’, 
~Az,(c) = VCo)BCo+)YCo) 
fA22(t) = V’“‘B’o’(e)U(o; 

Since Z(O) and Y(O) are associated with the nonzero eigenvalues of A”’ and since 
the original system has no eigenvalues in the right half-plane, A, ,(c) satisfies the 
conditions of Lemma 1. Applying Lemma 1 and expressing the result in the original 
basis yields the following uniform asymptotic approximation 

exp[A(‘)(E)t] = Y”‘exp[A, ,(O)t]Z(‘) + U~“~exp[Go~(~)~t]V~o~ + O(e) 
= exp[A”)t] + U(“)exp[G”‘(t)Et]V(o) - UCo)VCo) + O(C), (3.2a) 

where 

G”‘(c) = A22(~) - ~&I(~)A;!(~)&~E). (3.2b) 

From (3.2a) we see that the problem of uniformly approximating exp[A”)(E)t] 
has been reduced to that of approximating exp[~G”‘(~)t]; one time scale has been 
“peeled off” leaving a lower dimension problem. However, the procedure is not 
perfectly inductive since G(‘)(C) need not be the generator of a Markov chain. On 
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the other hand, it is very close to being one.6 Specifically, a careful examination of 
(3.2b) shows that G”‘(t) can be expressed as 

G(‘)(c) = A(‘)(E) + W(‘)(E), 

where A(‘)(E) is a Markov generator given by 

A(‘)(E) = i V(o)A(0)(e) U(o) 
t 

= i V(o) B’O+) U(o) E A(‘) + B”‘(c), 
E 

where 
A(‘) E A”‘(()) 3 II B”‘(~)ll = O(E), 

and 

(3.3) 

W")(c) = _ jV'O'B'O'(e)Y'O'(Z'O'A'O'(r)Y'O')-'Z(O)B(O'(r)U'O', (3.4) 

where it is straightforward to show that ]I W(‘)(t) I] = O(E). 
What will be shown is that the term W(‘)(E) can be entirely neglected. In the 

two-time-scale case, this follows from the fact that A”‘(c) is regularly perturbed, 
since all the nonzero eigenvalues of A(‘)(E) are O(l), and from the fact that W”‘(O) 
= 0. G(‘)(E) can then be uniformly approximated using G”‘(O) = A(‘). This yields 
the two-time-scale result 

exp[A”‘(t)t] = exp[A”‘t] + U(“)exp[A(‘)~t] V(O) - U’“‘V’o’ + O(E). 

If there are more than two time scales 1 and l/c in the original process, A”‘(t) 
is again a singularly perturbed Markov generator. W(‘)(t), therefore, cannot be 
ignored only on the basis of its being O(t) when considering the order l/c* and 
slower time scales, as was done above. In particular, discarding an arbitrary O(E) 
term can lead to errors in subsequent time-scale approximations. Thus, in order to 
show that we can discard W(‘)(E), we must determine some special property that it 
possesses that guarantees that W(‘)(E) has 120 effect on slower time-scale approxi- 
mations. To do this, let us first give a precise definition of what we mean by “weak” 
terms associated with a Markov generator. 

Definition 2. Let F(t) be the generator of a Markov process with one ergodic 
class for E > 0. W(E) is weak with respect to F(c) if (a) lTW(c) = 0 and (b) for any 
element w;,-(c) there exists a path S = (s, = j, g . . . Sk = i) through the process 
state space such that 

wi,j(t) = ~O(fs,sl&,s, * * * f,,sk-,>- (3.5) 

Condition (a) is necessary to avoid perturbation of the zero eigenvalue of F(E), 
which is associated with the sum of the probabilities being identically 1. In the 
derivations presented, however, this condition is satisfied by construction; therefore, 
we concentrate on property (b). Roughly what this property means is that if we 
think of Wi,j (E) as a “transition rate” from state j to state i (although it may be 
negative), we can find a product of rates in the generator F(E) leading from j to i 
that is of lower order in c and therefore represents a significantly more likely 
sequence of events. 

6 Though the columns of G”‘(r) sum to zero, some of the off-diagonal elements may be small but 
negative. 
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In the Appendix we provide a proof of the following: 

LEMMA 2. Suppose that A”‘(E) is as in (1.3) and (1.4) and there is no coupling 
through transient states; then W(‘)(E) (3.4) is weak with respect to A”‘(t) in (3.3). 

Thanks to this lemma, an iterative procedure can now be defined and analyzed. 
Specifically, suppose that we have constructed G@)(E) = A’@(c) + Wck)(c), where 
(a) A(“)(E) = A@’ + Bck’(t) is a Markov generator with no coupling through transient 
states, ]I B(% ]I = O(E), and (b) G@)(E) has well-defined time-scale behavior. Apply- 
ing Lemma 1 and stating the result as in (3.2), we obtain the following uniform 
approximation: 

exp[Gck)(E)t] = exp[A(k)t] + U(k)exp[G(k+‘)(~)~t] V’@ - U@‘Vk) + O(E), 

where 
G(k+‘+) = A(k+1)(E) + W(k+l)(,), 

A@+‘+) = ; V(k)A(k+)U(k) = f V’k’B(k)(#J(k), 
(3.6) 

and 

W(k+‘)(c) = Wy+‘)(e) + Wy+‘yE), 

wy+yt) = + I/www(~) u(k), 

~$k+‘)(~) = _ t v’k’(B’k’(t) + w(k)(t))y(k)(z(k)G(k)(E)y(k))-'z(k) 

x (Bck’(c) + W’k’(t))U(k). 

Note that for k = 2, 3, . . . the term W(“)(E) consists of two parts, namely, the 
“projection” W\“(E) of the preceding weak term Wck+‘)(e), and a new term 
Wik)(c) defined similarly to the weak term computed previously in (3.4). We know 
from Lemma 1 that under the conditions stated above Gck+‘)(c) has well-defined 
time scales and by construction that Ack+‘) (t) is a Markov generator. By assumption 
in this section, there is no coupling through transient states in Ack+‘)(e). What we 
must show, however, is that the property of “weakness” is preserved; that is, we 
must show that both Wlk+“(e) and W:~+‘)(E) are weak. Thus, in order to continue 
the iterative procedure, we need to verify the following, which is done in the 
Appendix. 

LEMMA 3. Suppose that GCk)(e) = Ack)(c) + Wck)(c) satisfies the following: 

(1) GCk)(c) has well-defined time-scale behavior; 
(2) Ack)(f) = Ack) + Bck)(c) is a Markov generator with no coupling through ,transient 

states, 11 B(k)(~)l] = O(t); 
(3) Wck)(c) is weak with respect to Ack’(t). 

Then 

GCk+‘)(t) has well-defined time-scale behavior, and 
W(k+l)(~) is weak with respect to Ack+‘)(e) in (3.6). 

What we now have is the following: We proceed by first applying (3.2), followed 
by the iterative application of (3.6). At each stage we accumulate weak terms. 
However, at the last time scale, we know that we can discard the weak terms, since 
there are no further time scales to be perturbed. Consequently, we can actually 
discard these weak terms as we proceed, since we know that they only produce 
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weak terms at slower time scales. Thus, the following sequence of approximations 
is constructed for a system exhibiting k time scales and no coupling transient states 
at any intermediate time scale: 

exp[A(‘)(t)t] = exp[A(“t] + U(O)exp[G(‘)(E)tt]V(‘) - U(‘)V(‘)+ O(E), 
exp[G(“(c)t] = exp[A”‘t] + U”‘exp[G’*)(~)~t]V”’ - U(‘)V(‘) + O(E), 

(3.7) 
exp[G(“-‘)(t)t ] = exp[A(k-2)t] + U(k-2)exp[G(k-‘)(t)~t] Vk-*) 

- u’k-*‘VW) + qE), 
exp[Gck-‘)(E)t] = exp[A’k-“t] + O(c). 

Note that there is no problem here in determining when to stop the procedure. 
Stop when Ack-‘) has exactly one ergodic class. From Coderch [5] we know that, 
since A”‘(t) does have well-defined time-scale behavior, there is a k such that this 
is true, and this k is associated with the slowest time scale. The approximation 
(2.6) follows directly by collapsing the equations in (3.7). 

Note also that in order to construct this approximation, we never need to 
calculate Yck), Zck), or any of the terms Wck)(c). Rather, at each time scale we begin 
with Ack)(e) = A (k) + Bck)(c) and compute the ergodic classes and probabilities 
associated with Ack’ to form Uk) and V (k). A@+‘)(E) is then calculated using (3.6). 
At this point, of course, we have only dealt with the case in which there is no 
coupling through transient states at any stage of the procedure. We now modify 
the procedure in order to remove this restriction. 

3.2 TRANSIENTSTATESTHATCOUPLEAGGREGATES. Ourbasicapproachtothis 
general case is to reduce it to the one considered in the previous subsection by 
expanding the state space, when necessary, by defining an associated generator 
that satisfies the no-coupling constraint. Specifically, consider a generator A(E) = 
A + B(t) where A generates N ergodic classes. The state space can be partitioned 
intoN+ 1 partsE,,E2,..., EN, T where the EK are the ergodic classes of A and 
T is the set of transient states. The set T is then “split” into N copies T, , T2, . . . , 
TN such that each copy is as:ocia;ed with a unique ergodic class. Specifically an 
associated generator A(E) = A + B(E) is constructed on this expanded state space 
such that once the process is in a state s E Tk, the next state entered that belongs 
to E = E, U E2 U . . . U EN must be in Ek. By construction, then, A(E) satisfies 
Definition 1. The precise nature of this construction can be stated as follows: 

LEMMA 4. Let A(E) = A + B(c) and let U and V be the ergodicprobability and 
membecship_matrices for theAunperturbed generator A, Then there exist C, D(e), 
A(E) = A + B(t), and U and V similarly derivedfrom A such that 

(1) ~w+Wtl = cexp[&MW4, 
(2) A(t) does not exhibit coupling through transient states, 
(3) @J = u, 
(4) VD(0) = V, 
(5) D($ U ,= D(0) U = U, 
(6) CA(E) U = A(E) U, 
(7) The range ofD(~) is h(c)-invariant. 

The construction of A(E) can be described as follows. Let i, k be elements of E 
(i.e., recurrent states of A(E) and A(t)). Then, the transition probability from i to 
k in A(E) is the same as in A(t). Next, let j E T, and let jr, . . . , j, denote the 
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FIG. 4. Example 2. 

corresponding copies of j in the expanded process. The basic idea behind the 
construction is that a transition to the state j, corresponds to a transition in the 
original process to state j, together with the decision that the next ergodic class that 
will be entered is E,. Consequently, the transition rates into the j, must reflect the 
probability of this additional decisions. Specifically, if k E E, then 

(3.8) 

where vI,j (E), defined in (2.2), is precisely the probability of that decision. Similarly, 
transitions out of j, must be adjusted to reflect conditioning on knowledge of which 
ergodic class will be visited next. Specifically, the transition rate from j, to any state 
in an ergodic class other than EI is 0, as is the rate from j, to any state in TK, 
K # Z, that is, to any copy of any transient state corresponding to a subsequent 
transition into a different ergodic class. The remaining transition rates out of j, 
are specified as follows: 

1 
&,j,(c) = ai,j(e) - 

VI,j (El ’ 
i E E,, 

VI k(c) 
&k,,j,(f) = ak,j Cc) 1 

“12 CE) ’ 
k1 E TI. 

(3.9) 

The construction of C is quite simple: The various copies of each transient state 
are collapsed by summing their probabilities. Specifically, for each i E E, Ci,i = 1, 
and cj,j, = 1 for each j E T and all its copies jr, . . . , j,. All other elements of C are 
0. In the case of D(t) the initial probability of each transient state j must be split 
by again making a decision concerning which EI is visited first. Thus, for each 
i E E, [D(E)]i,i = 1, while for j E Z 

di,,.i(~) = Vl,i(~)3 (3.10) 

with all other elements of D(t) equal to 0. The several properties (l)-(7) in the 
lemma then follow directly from the construction (see Rohlicek [ 181 for detailed 
verification). 

Example 2. We illustrate the state expansion construction on the simple process 
depicted in Figure 4 for which 

A’o’(c) = ,’ 
1 0 [ 1 -1-t 0 * 

0 fz 0 

In this case the construction of Lemma 4 calls for a splitting of the transient state 
2. Following the procedure cited in Lemma 4, the key quantities are the probabilities 
that the perturbed process first enters each of the unperturbed recurrent classes 
(viz., E, = (1) and E2 = (3)), given that it starts in any particular transient state. 
These can be compared as the limiting probabilities of the process illustrated in 
Figure 5, which is obtained from the chain in Figure 4 by making each unperturbed 
recurrent class a trapping state. The expanded state process is depicted in Figure 6 
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FIG. 5. Modified process. 

1 
E/i+E 

\ 

i+E 
4 

Rci. 6. Expanded state process. 

and the associated matrices are 

1 0 

&= O0 [ 1 01’ 
0 0 

Note that, as desired, states 2 and 4 in Figure 6 are transient but do not couple the 
ergodic classes ( 1) and (3). Consequently, the procedure of Section 3.1 can be 
directly applied. 

A similar expansion of the state set can be performed using the generator Gck)(c) 
defined in (3.6). In this case, the following properties also follow: 

LEMMA 5. Suppose G(E) = A(E) + W(E) where A(E) is a Markov generator and 
W(E) is weak with respect to A(E). Let C, D(t), and A be determined as in Lemma 
4 from A(E). Then G(E) = A(E) + I%(E) can be constructed such that 

(1) eFp[G(e)t] = Cexp[&E)t]D(t) + O(t) and 
(2) W(E) is weak with respect to A(E). 

Lemma 5 is essentially a minor extension of Lemma 4, and we limit ourselves 
here to a brief sketch of the proof. We refer the reader to Rohlicek [ 1 S] for a 
complete proof. The only complication here is that G(E) is not necessarily a Markov 
generator. Nevertheless, we can follow the same construction for G(E) as that for 
A(t), where in this case the VJ,I(E), computed as in (2.7)-(2.9) with gi,j(t) in place 
of ai,j (t ), are not given direct probabilistic interpretations. This construction yields 
the same C matrix as that produced from A(E) and a slightly different set of v~,~(E), 
which show up in both G(E) and the corresponding D(E) matrix. The weakness of 
W(E), however, implies that the difference in the vJ,i(E) values is higher order, from 
which we can immediately conclude that we can replace the D(E) computed from 
G(E) with that constructed from A(c) and incur only an O(E) error. Finally, we can 
write G(E) = A(E) + W’(t) + W”(E). Here W’(E) results directly from the 
construction, that is, it is obtained from W(E) in the same way A(E) is obtained 
from A(E) (see (3.8)-(3.9)). The weakness of W(t) allows us to conclude that W’(E) 
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is weak. The term W”(t) captutes the fact that the G(t) used slightly different 
vI,j((E) values than those used in A(E). The fact that this difference is higher order 
allows us to conclude that W”(E) is also weak. 

We now can piece together a complete algorithm: At any stage k we begin with 
Gck)(e) = Ack)(e) + W(“)(E) (starting with G(O)(c) = A(‘)(E)); we first expand the state 
space, thereby eliminating all coupling transient states, and then perform the 
aggregation step described in Section 3.1 to produce Gck+l)(t). This yields the 
following uniform approximations: 

exp[G’k)(c)t] 
= Cck)exp[G(k)(E)t]D(k)(c) + O(E) 
= C’k)(exp[A(k)t] + fi(k)exp[G(k+l)(c)ct ]Vck) - Q(k)V(k))D(k)(~) + O(E) 
= exp[A(k)t] + U(k)exp[G(k+‘)(t)ct]V(k)(c) + O(t). (3.11) 

Here tick), Vtk) are the ergodic probability and membership matrices corresponding 
to Ack) and , 

G(k+l+) = f $W&k)(t)@ = A(k+l)(t) + w(k+U(c)m (3.12) 

Also, with Ck) and Dck)(e) constructed from Ack)(c) as in Lemma 4, we obtain the 
final form in (3.1 l), where it is straightforward to check that 

v(k+) = q(k) D’k+), (3.13) 

where Vck’(~) is defined in (2.4) using the actual VI,j(e). 
Combining Lemmas 2-5 shows that this procedure yields the sequences of 

matrices U(j) v(i) A(‘) i = 0 1 . . and the uniform approximation (2.6). However, 
we can take’ this’ several step: ‘farther. Specifically, although we have. used state 
expansion in order to prove that we can construct a uniform approximation, we 
do not actually need to perform this expansion to obtain the approximation. 
Indeed, although (3.11) implies a two-step procedure for computing Ack+‘)(e), it is 
a straightforward consequence of Lemma 4 that we can compute Ack+‘)(e) directly 
from Ack)(,): 

A(k+I+) = t vW(c)A(k)(c)u(k) (3.14) 

(see Rohlicek [ 181 for the demonstration of the validity of (3.11)). 
Finally, when this procedure reaches the last time scale, we can discard all of the 

accumulated weak terms, since at this point they are a regular perturbation. 
Furthermore, we can also replace the Vck’(t) with the Vck)(e) introduced in the 
algorithm in Section 2, since the difference between these is of higher order and is 
consequently weak. This then yields the following: 

THEOREM 1. The iterative algorithm given in Section 2 (eqs. (2.1)-(2.6)) yields 
the uniform multiple-time-scale approximation (2.6). 

There is another extremely important consequence of the derivation we have 
just sketched. We state it in the following: 

COROLLARY 1. Let F(E) and G(C) be two Markov generators so that F(E) = G(E) 
+ W(E), where W(E) is weak with respect to G(t). Then F(E) is asymptotically 
equivalent (defined in Lemma 1) to G(C). 
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This corollary has the useful consequence that, if one is trying to construct an 
approximation of a Markov process with a generator A(E) that can be separated 
into a simpler generator A(E) and a relatively weak part W(t), then the weak part 
can safely be “pruned.” A direct application of this is that only the leading order 
terms in t of any transition rate need to be considered in the construction of the 
approximation. This corollary not only implies that we can use V(@(t) rather than 
V(“)(E) but also has significant additional computational implications elaborated 
on in the next section. 

4. Conclusion 
In this paper we have developed a new procedure for the hierarchical, multiple- 
time-scale approximation of singularly perturbed, finite-state Markov processes. 
Our results bridge the gap between conceptually simple results such as those of 
Courtois [7] and the significantly more complex results of Coderch [5] and 
Delebecque [9]. In addition to providing a general algorithm, our work also provides 
additional insight into the nature of multiple-time-scale approximations and the 
role played by almost transient states. In particular, if we write out the expression 
for a single element of A@+‘)(c) in (2.3, we obtain 

(4.1) 

The first term corresponds to the usual average rate between aggregates used by 
Courtois. The second term, on the other hand, involves transient states, and the 
additional weighting, captured by ?.,,i, reflects the critical “split membership” of 
transient states that couple ergodic classes. 

Another insight our work provides concerns Coderch’s eigenprojection interpre- 
tation. In particular, as we have seen, the key to Coderch’s approach is the 
eigenprojection P(E) of a Markov generator A(c). When there are no-coupling 
transient states, we can approximate P(E) by P(O), which has an easily computed 
factorization UV that can be exploited to construct an aggregated process at the 
next time scale. When there are such coupling states, this approach fails, but what 
our results show is that we can approximate P(E) by the factored approximation 
m(c), which can again be calculated in a straightforward manner and exploited 
to construct an aggregate approximation. 

Application of our decomposition to the area of reliability analysis seems natural 
[ 17, 2 11. If faults occur at rate O(E) and are repaired at rate O(l), then at 6 = 0, 
there exist many transient states. Furthermore, the goal of fault-tolerant design in 
general is to create an apparent failure rate that is orders of magnitude smaller 
than the natural failure rate. In the context of this paper, this corresponds to 
reaching some implied state only at time scales of order l/c* or slower. As we have 
seen, such implicit time-scale behavior requires the presence of coupling transient 
states. 

Other applications may be found in engineering techniques based on very large 
Markov models. For example, such models have been used as the basis of estimation 
algorithms in speech recognition [2] and electrocardiogram analysis [ 1 I]. In appli- 
cations, computational requirements grow quickly as more ambitious analysis tasks 
are undertaken. Use of multiple-time-scale decomposition of the underlying model 
may suggest possible hierarchical approximation methods that are computationally 
feasible. 
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Finally, let us comment on numerical and computational aspects of hierarchical, 
multiple-time-scale approximation algorithms in general and our procedure in 
particular. First of all, an assumption common to our work and previous treatments 
is the use of e-independent Markov generators in the approximation at each time 
scale. This raises an important point that provides insight into why one would seek 
this type of approximation. Specifically, there is an implicit assumption in this and 
previous work that the c-dependent perturbation terms in A(‘)(c) capture all rare 
events and ill-conditioning in the original Markov process. To the extent that it is 
true, all of the O(1) computations in our or any other procedure are well- 
conditioned. Thus, by using these e-independent generators for each time scale, the 
approximation of (1.2) becomes a numerically stable problem, since the effect of 
the small parameter c is isolated from the approximation at any particular time 
scale. 

In our case the critical quantities to be calculated in each step of our algorithm 
are the ergodic probabilities that comprise II”’ and the leading order terms of the 
trapping probabilities v~,,(E) for each transient state j. Since e-dependence is 
completely absent in the Uck’ calculation, the terms of interest are guaranteed to 
be 0( 1). The calculation of the leading order coefficient of vI,j(c) is also an 0( 1) 
computation. In fact, referring to (2.7)-(2.8) and the accompanying discussion, we 
see that this computation consists of a clearly stable symbolic part-identifying the 
lowest power of E in the various elements of P(c>” and an O(1) computation 
corresponding to the multiplication of the coefficients of these leading order terms 
as we compute the successive powers of P(c). 

To illustrate what can happen if we allow t-dependencies in the generators used 
at each time scale, consider again the process depicted in Figure 4. Suppose we 
initially group states 1 and 2 together as one ergodic class at the fastest time scale 
and state 3 as the other. In doing this, we keep the t rate from state 2 to state 1 as 
part of our fast time-scale model (and in essence are then treating it in the same 
manner as the 0( 1) terms), while the E rate from 2 to 3 is viewed as a perturbation. 
With this grouping, there are no transient states, and thus we can directly apply 
Courtois’s procedure. In doing this, we find that the “fast” ergodic probability 
vector for the (1, 2) class is 

which, as expected, contains a small value for the probability of being in state 2. 
This is the source of the difficulty with this approach. First of all, it becomes 
necessary to know ahead of time which small terms should be thought of as small 
and which should not. Also, since these probabilities are used as weights in 
computing the aggregate behavior at the next time scale, it is actually necessary to 
know the O(t) component of u(t) to within O(E*) in order to extract a uniformly 
valid approximation. As the next paragraph makes clear, this is a far more stringent 
numerical requirement than is needed in our procedure. Furthermore, if this 
approach is used for the model presented in Section 1, states 1, 2, and 3 must all 
be grouped together. Not only must the small ergodic probability be calculated, 
but what was a set of two small (degenerate) problems has become larger; the 
advantage of decomposition is partially lost. 
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Finally, let us comment on the significant computational implications of 
Corollary 1. Specifically, this states that it is only the leading order terms in all 
transition rates that matter at any stage of our procedure. Consequently, errors of 
order E in the computation of Uck’ or v@‘(c) have y10 effect on the asymptotic 
approximation, since errors that are introduced into the approximation by such 
perturbations in our calculations are at worst of the same order as the accuracy of 
the overall computation. This lemma also has another important implication. 
Specifically, thanks to this lemma, using only knowledge of the (integer) orders of 
the elements of A’@(c) we can determine the location of the nonzero entries in U@) 
and the orders of magnitudes of the entries in Vck’(c). Therefore, the orders of 
magnitude of the transition rates in A (k+‘)(~) can be determined. Consequently, the 
problem of determining the structure of the full set of time-scale models (i.e., what 
states are aggregated at what stage and the orders of the transition rates between 
these aggregates) involves only connectivity calculations on the state transition 
graph where transitions are labeled with their orders of magnitude. Such analysis 
is then essentially an extension of the type of analysis method used by Siljak [ 191 
for large-scale systems. This structural property suggests an interesting problem, 
namely, the effect that a change in the order of one or more transition rates has on 
the overall time-scale structure. Rohlicek [ 171 presents an example of this applied 
to the problem of determining the effect on overall system reliability of adjustments 
in component failure rates and the rates at which faults are detected or incorrectly 
indicated. 

Appendix 

A 1. PROOF OF LEMMA 2.’ First note that the term [ZA(c)Y]-’ in (3.4) can be 
expressed as an infinite series 

(ZA(t)Y)-’ = (Z(A + B(t))Y)-’ 
= (I + D-‘ZB(t)Y)-‘D-l 

= -, (-D-‘ZB(E)Y)~D-‘, where D = ZAY. 

Since Z and Y are associated with the nonzero eigenvalues of A, D-’ exists. 
Substituting this expression into (3.4) gives 

EW(‘)(E) = VB(c)SB(t)U + VB(E)SB(E)SB(E)U + ... + 
= &I(E) - K*(c) + * * - + 

where S = YD-‘Z = diag(S,, . . . , &). 

Without loss of generality, we assume that the states of each block are ordered 
with any transient states at the end, so that the ergodic probability vectors can be 
written as 

where rr > 0, Ale = 0. 

If B(c) is partitioned consistently with A(E), then from the no-coupling assumption, 
the (Z, J) block must have the form 

B~,J(c) = B”;(‘) , [ 1 B@) 1 0 I,J for Z # J. 

’ We drop the superscript VJ) in this proof to simplify the notation. 
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The (Z, J) elements of A(‘)(t) and C,(t) can now be expressed as 

ca:‘%c) = lTb,~(~)u~, 
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and 

[an(~)lI,./ = c lTJh,~,(4S~, - - - SK,BK,,J(E)UJ. K,&...& 
There must therefore exist a sequence of aggregate states (K,, Kz, . . . , Km) 
such that 

From the structure of B,+,(e) shown above, and the positivity of ?rJ, it follows 
that for an Z # J, 

II BI,J(411 = NI lTBip3WJII> = WCiW. 
In (Al) the path (J, K,, K2, . . . , K,,,, I) may have cycles. A new path (J, KI, 
KG, . . . . K A,, I), m ’ I m can be constructed by removing the cycles in the 
original path. Since the number of states is bounded by the dimension of A(c), 
m’ 5 dim(A(E)). Using this new path, the entry of C,(t) in (Al) can be bounded: 

[fCm(E)]I,J = em+ '@iI BI,K;.(~ * * * II BK',,J(~), 

from which it follows that 

[tCm(~)]I,J = cm+ ‘O(a>:Lh,(f) - se a:!,,(c)). 

Introducing this bound on the (Z, J) elements of C,(c), C(E), . . . allows bounding 
the infinite series for w$(c) as 

w$(t) = cO(a~~~mB(f) . - - as:,,(t)), 

where the path (J, KY, . . . , Kg,, , I) corresponds to the path used in the bound for 
C,,,(E), for the m that results in the term of lowest order. Cl 

A2. PROOF OF LEMMA 3. First, G@‘)(c) h as well-defined time-scale behavior 
by Lemma 1. The proof that W @+‘)(c) is weak with respect to Ack+‘)(t) follows the 
proof of Lemma 2 with the following exception. We first write Gck’(c) as 

Gtk’(c) = Ack) + (Bck’(c) + Wck+)) = Ack’ + Bck’(t). 

Using the nonnegativity of the off-diagonal blocks of Bck’(e), 

w::h) = ~o(II BJ,s~(~)II * * * II %,I(~) II), Z#j 

for some path (Z, S1, . . . , S,,, J), S, # Z, Si # S;,, , S, # J; therefore 

11 BJ,&) II = o( II BJ,I(~) 11) + EO( II BJ.,(~) II . . * II Bs,,d~)Il ). 
This expression can be substituted into (Al) where II BJ,,(c) 11 appears. Equa- 
tion (Al) is therefore valid for some new path (K,, . . . , K,,,), and the remainder 
of the proof follows as in Lemma 2. q 
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