
I I I. APPLICATIONS 

The MLL, as shown in Fig. 1, can be used for demodulation of 
FM. The input frequency to the V, transfer function is found to be 
of the first order. The M L L  can be used for precision frequency 
synthesis. The block diagram is shown in Fig. 3. The frequency 
depends only on a single time constant. The same principle can 
be used for speed control of motors. The speed also would depend 
only on a single time constant. This i s  a novel method for speed 
control which uses neither a frequency nor a voltage reference. 

Like the PLL, the MLL can also be used for frequency multipli- 
cation.This isdone bytheuseofacombinationofthe blocks shown 
in Figs. 1 and 3. The control voltage generated by the MLL in Fig. 
1 is used to set the resistance of the frequency synthesis block in 
Fig. 3. The multiplying factor i s  equal to the ratio of the resistance 
used in the MLL to that used in the frequency synthesis block if 
the associated capacitances are equal. 

A multiplier is  used in Fig. 2 in order to achieve a large dynamic 
range for R and to minimize distortion. An FET voltage variable 
resistance can be used for on-chip tuning of monolithic filters [I]- 
[3].Thisapplication i s  based on the master-slaveconfiguration pro- 
posed earlier [2]. The MLL i s  the master which sets the time con- 
stants for all the other filters on the chip. This i s  possible despite 
the fact that the MLL uses a passive differentiator while the slave 
filters use integrator transfer function blocks. A third order 
Chebychev filter was built and the ability to vary the pass-band 
edge based on a frequency input to the MLL was illustrated using 
discrete matched FETs. 

I. INTRODUCTION 

The localization of radiating sources bya passivearray of sensors 
is a problem of considerable importance, occurring in a variety of 
fields ranging from radar, sonar, oceanography, and seismology 
to radio-astronomy. Therefore, this problem has received consid- 
erableattention in the literature, resulting in avarietyof estimation 
schemes, most of which are suboptimal or limited to special cases. 
A comprehensive literature survey, including more than 120 ref- 
erences is included in [I]; see also [2] for many other references 
not discussed in [I]. Here we concentrate on maximum-likelihood 
estimation inspired by the recent work of Ziskind and Wax [3], and 
Feder and Weinstein [4]. Unlike [3], our approach is not limited to 
narrow-band signals radiated by omnidirectional sources, and in 
contrast with [ 4 ] ,  we do not assume known signals or random sig- 
nals with known statistics. However, our approach can be con- 
sidered as a modification of a special case of the EM (Expectation- 
Maximization) algorithm for unknown deterministic signals [5]. This 
modification enables the algorithm to converge considerably faster 
than the EM algorithm. 

II. PROBLEM FORMULATION 

Consider N radiating sources with arbitrary radiation patterns 
observed by an array of M sensors. The signal at the output of the 
mth sensor can be described by 
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m = 1, 2, ' . . , M, -TI2 I t 5 TI2 

where 

{ S A t ) )  ;=1 

{VJt)) :=1 

are the radiated signals, 

are additive noise processes, and Tis the observation interval. The 
intensities a,,, and the delays T,, are parameters related to the 
directional pattern and relative location of the nth source and the 
mth sensor. 

A convenient separation of the parameters to be estimated is 
obtained by using Fourier coefficients defined by 

1 J'L 
X,(w,) = 3 l-,, x,(t) e-'-'' dt  

where 
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We use e,, to represent all the parameters of interest associated 
with the nth signal, namely 

{an7,,) :=, and {7mn1:=1. 

Our main goal is to estimate the set 

Note that if the spectrum of the signals is concentrated around w,, 
with a bandwidth that is small compared to 2dT, then (3) reduces 
to a single relation between the observation vector X(w,) and the 
parameters,i.e., L = 1. Inthiscase,it iscustomarytousemanyshort 
observation intervals or simply time samples, and the model 
becomes 

(4) 

where the dependence on the single frequency w ,  i s  suppressed, 
andjdenotestheindexofthedifferentsamples. Notethatthemain 
difference between the narrow-band case and the wide-band case 
is thatA is thesame in all the/equationsspecified by(4)whileA(wf) 
is different in each of the L equations given by (3) .  However, the 
estimation procedure discussed here is equallyapplicable in both 
cases. In this letter we concentrate on the narrow-band case. The 
modification for the wide-band case is straightforward and is 
described in [5]. 

Under the assumption that the number of sources is known, the 
least squares estimates of {e,} is given by 

X ( / )  = AS(/) + V ( / ) ,  / = 1, 2, . . . , J 

where 1 1 .  ( 1  denotes the Euclidean norm and 0 is the given param- 
eter space. Equation (5) also represents the maximum-likelihood 
estimates under the assumption that the noise vectors { V ( j ) )  are 
1.i.d. zero-mean Gaussian with covariance u21. 

I l l .  THE ESTIMATION PROCEDURE 

Theminimization required in(5)is nottrivial sincethevectorS(/) 
and the matrix A are not known to the observer. However, when- 
ever A i s  known Q is minimized by choosing 

S ( j )  = (AHA)- '  AHX(j) (6) 

as the estimate of S ( / )  for j = 1, 2, . . , J, where ( . ) H  denotes the 
Hermitian transpose operation. Relation (6) enables us to update 
the estimates S ( / )  whenever we have a new estimate for A. The main 
principle of the algorithm i s  to perform successive minimization 
operationson each column ofA, holding all the restofthecolumns 
and theassociated componentsof S ( / )  fixed. For example, suppose 
that we want to perform a minimization with respect to the kth- 
column vector, then Q can be rewritten as 

. .  

I 

Q = 1 1  yk ( j )  - d e k )  S k ( / )  I / *  (7) 

wherea(8,) is the kth column of A, S k ( j )  is the kth component of 
S ( / )  and Y k ( / )  i s  given by 

Y k ( j )  = X ( j )  - A S k ( j )  (8) 

whereSk(/) issimplyS(j)with thekthcomponent replaced byzero. 
The minimization of (7) with respect to a(Bk) ,  using (6) with A 

replaced by a ( B k ) ,  is given by 

a ( 0 , )  = arg min C I1 y k ( / )  - a ( e k )  [aH@,)  a(Ok)I-' a H ( 8 k )  Yk(j)l12 

which is equivalent to 

' 
H i t ( l  I = 1  

$ ( e k )  = arg max l la(ek)  11 -' I (yk(j) lH a(e, )  1'. (9) 
O i t O  

Note that 
M 

Ila(ek)llZ = aLk. 
m = 1  

Since there is an extra degree of freedom (due to the estimation 
of both { a m n }  and {S(j)}),thereisnolossofgeneralityinassuming 
that 11 a ( 0 , )  11' = 1. This simplifies (9) considerably. Now note that 
a ( 0 , )  may be decomposed as follows: 

(10) 

(1 3) 

and U""" i s  the associated normalized eigenvector. 
The maximization described by (12a) can be performed by a sim- 

ple search over the space of i,, induced by all possible individual 
source locations, or by a simple gradient subalgorithm. 

The algorithm i s  summarized as follows: 

a) Initialization: Select A = A'". Set k = 1. 
b) Compute S ( j )  according to (6). 
c) Compute Rk according to (8),  (13). 
d) Find ik ,  hk according to (12). 
e) Update A with the new a@J; set k = k + 1; if k > N then 

k = 1. 
f )  Check the convergence of A;  if yes: done; if no: go to b). 

Observe that at each updating step (i.e., steps b) and e)), we 
decrease the cost function Q defined in (5). Since Q 2 0 the algo- 
rithm will converge at least to a local minimum of Q. Depending 
on the initial estimate of A and on the structure of Q, the local min- 
imum may or may not coincide with the global minimum. 

IV. AN EXAMPLE 

To illustrate the behavior of the algorithm, let us consider an 
example. Specifically, consider a uniform linear array of five sen- 
sors separated by half a wavelength of the actual narrow-band 
source signals. The sources are two narrow-band emitters located 
in the far field of the array. In this case, if y,, denotes the bearing 
of the nth source, n = 1,2, relative to the perpendicular to the array 
baseline, the differential delay is given by 7," = (rn - I)* sin (7"). 
The first source at a bearing of I O o  was observed with the intensity 
vector a:[1,0.8,0.6,0.4,0.2]; the second source at a bearing of 30' 
was observed with a: = [I ,  1, 1, 1, I ] .  In this case, the difference 
in intensity may be viewed as caused by the directional pattern of 
the sensors rather than the directional pattern of the sources. We 
generated 50 independent samples at an SNR of 30 dB. The initial 
guess was y\') = 3 O ,  y;" = 42O, a:"! = ay' = [I, 1, 1, 1,1]'. The algo- 
rithm converged to within one degree of the right result in 16 iter- 
ations as shown in Table 1. Note that the residual relative errors 
in a, and az  are, respectively, 4.8 and 12.3 percent. (The relative 
error is defined by 1 1  8, - a,  1 1  / 1 1  a, 11.) This result is rather impressive 
if we consider that 110 independent parameters ({a,}, { rn} ,  SCjN 
have been estimated simultaneously. 

V. CONCLUSION 

We have presented a general algorithm for obtaining maximum- 
likelihood estimates of superimposed signals. Perhaps one of the 
mostdistinctivefeaturesof thealgorithm i s  itsabilitytoobtain esti- 
mates of the intensityvectors {a,,}. Theseestimates may be useful 
in their own right, but also their estimation is essential even if one 
i s  only interested in the delays in cases where it is not appropriate 
to assume omnidirectionality. For example, whenever a source is 
in the near field of the array, its radiation pattern can rarely be 
assumed omnidirectional. This is also important in applications in 
which it i s  unrealistic to assume that the radiation pattern of each 
sensor i s  accurately known (this usually requires frequent cali- 
brations and a large memory). 
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Table 1 Evolution of the Algorithm for the Example 

Iteration Y1 Y L  
No. (degrees) a:  (degrees) a;  

0 3.00 (1. 1, 1 ,1 ,  1) 42.00 (1, 1, 1, 1 , l )  
1 12.22 
2 11.41 
3 17.24 
4 11.16 
5 11.15 
6 11.10 
7 11.09 
8 11.06 
9 11.04 

10 11.02 
11 11.01 
12 10.99 
13 10.97 
14 10.96 
15 10.94 

35.01 
33.91 
33.31 
32.87 
32.51 
32.22 
31.98 
31.78 
31.61 
31.46 
31.34 
31.23 
31.13 
31.09 
31.02 

I ,  0.83, 0.63, 0.38, 0.15) (1, 0.69, 0.62, 0.76, 0.85) 

I ,  0.84, 0.63, 0.39, 0.15) (1, 0.81, 0.75, 0.81, 0.87) 

16 10.93 (1, 0.84, 0.63, 0.39, 0.15) 30.98 (I, 0.86, 0.83, 0.86, 0.91) 

Other featuresofthealgorithm, including itsapplication toarray 
processing of wide-band signals, correlated signals (multipath), and 
cases when only few time samples are available, and its application 
to spectrum estimation of superimposed signals, are discussed in 

As mentioned in the Introduction, the algorithm may be viewed 
as a modification of a special case of the EM algorithm proposed 
in [4]. According to the theory of the EM algorithm, the estimates 
generated in the M-step should be used in the €-step. This may be 
applied to the present algorithm as follows. Instead of updating 
S C j )  using (6) in step (b), S(  j )  i s  updated by replacing only its kth 
component by the estimate, a H ( 8 , )  Y k ( j ) ,  which can be computed 
in step d), following the computation of f k  and a k .  Note that d H ( 8 k )  

Y k ( j )  is simply the value of S k ( j )  that minimizes (7) whenever a(8 , )  
i s  known. I t  i s  clear that the last procedure typically will require 
more iterations than the proposed procedure since the updating 
of S (  j )  i s  done without using all the currently available information. 

Finally, we would like to emphasize that the algorithm will con- 
vergetothe right resultonlyiftheinitialestimatesaregoodenough. 

~51. 

Fast initial estimates can be obtained by simpler methods such as 
MLM, MEM, or MUSIC procedures (see, for example, [I]). 
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