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A polynomial approach for maximum likelihood (ML)
estimation of superimposed signals in time series problems and
array processing was recently proposed [1]-[3]. This technique
was applied successfully to linear uniform arrays and to uniformly
sampled complex exponential signals. However, uniformly spaced
arrays are not optimal for minimum variance estimation of
bearing, range, or position, and uniform sampling of signals is not
always possible in practice. In this communication we make use of
the expectation-maximization (EM) algorithm in order to apply the
polynomial approach to sublattice arrays and to missing samples

in time series problems.
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I.  INTRODUCTION

The estimation of multiple superimposed
exponential signals in noise is of interest in time series
analysis and in array processing. Recently an effective
technique for computing the maximum likelihood (ML)
estimates of the signals was introduced by Bresler
and Macovski [1] and Kumaresan, Scharf, and Shaw
[2], [3]. We refer to this technique as the polynomial
approach since it is based on expressing the ML
criterion in terms of the prediction polynomial of the
noiseless signal. The polynomial approach relies on
the assumption that the array of sensors is uniformly
spaced. It is well known [4] that the optimal sensor
configuration is not uniform under many reasonable
criteria. For example, minimum bearing variance is
obtained by placing half of the sensors (with a spacing
of half the design wavelength) at each end of the given
aperture; minimum range variance is obtained by
placing one-fourth of the elements at each end and
half in the middle; and optimal position estimation is
obtained by placing one-third of the sensors at each
end and the middle. Furthermore, when operating
long uniform arrays, often some of the sensors do
not function and their outputs must be ignored,
yielding in effect a sublattice array. We present a
method for extending the polynomial approach to
sublattice arrays. We treat the sublattice array output
as an incomplete data observation. Therefore the
expectation-maximization (EM) algorithm is directly
applicable. This algorithm was only recently applied
to array processing problems by Feder and Weinstein
[5]- However, in [5] the EM algorithm is used to
estimate one signal at a time, while here it is employed
to enable the use of the polynomial approach that
estimates all the signals simultaneously. Since both
the polynomial approach and the EM algorithm are
not widely known, the basic principles of each of these
techniques are briefly reviewed here for clarity.

Note that although we concentrate on the
array problem, all the results that we describe are
equally applicable to the corresponding time series
problem discussed in [1], namely, the estimation of
superimposed complex exponential signals in noise.

This paper is organized as follows. The polynomial
approach for processing data collected over a uniform
array is reviewed in Section II. In Section III the
EM algorithm is briefly described with reference to
sublattice arrays. Section IV presents the proposed
technique. Simulation results of our procedure are
presented in Section V, and Section VI contains some
conclusions.

Il. UNIFORM ARRAYS AND THE POLYNOMIAL
APPROACH

Consider N narrowband radiating sources observed
by a linear uniform array composed of M sensors.
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The sources are assumed to be far enough from the
array, compared with the array length so that the signal
wavefronts are effectively planar over the array. The
signal at the output of the mth sensor can be expressed
by

N
Xm(t) = Zs,,(t —(m—=1)1) + v, (2),
n=1 )

m=12..,M, -T/2<t<T/2

where {s,(#)}2_; are the radiated signals, {v,,(£)}M_,
are additive noise processes, and T is the observation
interval. The delay of the nth wavefront at the

mth sensor, relative to the first sensor, is given by
(m—17,.

If d denotes the sensor spacing, ¢ the propagation
velocity, and v, the source bearing with respect to
the array perpendicular, the parameter 7, can be
expressed as

Ta = (d/c)sin(yn).

A convenient separation of the parameters {7, }
to be estimated may be obtained by using Fourier
coefficient, defined by

N
n=1

1 (112 _
Xm = —/ X (2)e™9 dt,
T J 12

Since we assume that the spectrum of the signals is
concentrated around wy, with a bandwidth that is small
compared with 27 /T, a single Fourier coefficient is
enough to completely describe the signals. Taking the
Fourier coefficients of (1) we obtain

N
X =Y Spemiwnlm=Dr

n=1

m=12,...M ()

where S, and V,, are the Fourier coefficients of s,(r)

and v,, (1), respectively. Equation (2) may be expressed

using vector notation as
X=A4S+V 3)

where

A
X=[‘X'17X21---7XM]T

A
S=[81,5,,...,Sn]"

A
V=[I/I’V21"-’VM]T

2

A=laj,ay,...,ayn]

A -

8, =[LA, A2, M- 12 N
An & g=jworn,

In general, the estimation procedure relies on more

than one realization of (3), corresponding for example
to several time samples or observation intervals.

In that case we use the index j to denote different
realizations:

X; =A4S;+V,, i=12,...,J. “)

Note that in this form the parameters of interest are
embedded in the matrix 4 and they are separated
from the amplitude and phase of the signals which
are given by S;. Instead of estimating {r,} directly,
we concentrate on estimating {),}"_,. Under the
assumption that the vectors {Vj}§=1 are independent
identically distributed (IID), zero mean, and Gaussian
with covariance 021, the ML estimates are given by

{A:}3%1 = argmin{RY;
An€UC

R ®
R=)|IX;— 4Sj|
j=1
where || - || denotes the Euclidean norm and UC stands

for the unit circle which is the parameter space, in this
case.

The minimization required in (5) is not trivial since
the vectors {S;} and the matrix 4 are not known to
the observer. However, whenever A is known (i.e.,
{A:}Y_, are known), R is minimized by choosing

S; = (A%4) 141X, ©)

as the estimate of S;, for j =1,2,...,J, where ( )
represents the Hermitian-transpose operation.
Substituting (6) in (5) we obtain

J J
R=Y |IX;— A4 47 4"X;|2 = SOXEPX; (7)
j=1 j=1

where
P32 — A4 4)~14H.

The polynomial approach relies on the introduction of
the polynomial b(2) = boz" + byzN~! + ... + by, whose
zeros are the parameters of interest {A,}_,. Observe
that by definition the M x (M — N) Toeplitz matrix B
defined by

by by_1 - bo 0
BHE
0 by bn_1 - by

is orthogonal to A4, i.e., BA4 = 0 and hence Py =
B(B"B)~1BH. Now the minimization in (5) can be
expressed in terms of the coefficients {b;}¥ , as

J
b=argmin) _X"B(B"B)-1BYX,,
besd,

@

j=1

where b = [by,by_1,...,bo)7, and 6, is the space of all
the vectors whose associated polynomials have zeros
only on the unit circle.
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The algorithm for the minimization required in (8)
is based on the relation

BUX; = X;b (9)
where X; is the (M — N) x (N + 1) matrix defined by
X2[X,(N +1: M),X;(N : M —1),...,X;(1: M —N)]

and X;(k : r) describes a subvector of X; consisting of
all the components from the kth component to the rth
component. Substituting (9) in (8) we obtain

J
b=argminb®'Ch; 23 XHB¥B)'X;. (10)
beé, i
j=1
This relation is used in the minimization algorithm
[1-3]. The algorithm starts with any initial estimate b®
of b and proceeds as follows.

1) Initialization. k =0, b®*) = b©,

2) Compute C*) according to (10) using b®) to
construct the matrix B®).

3) Find b®*D = argmin, ., bBHC®D.

4) Check convergence of b. If no: k = k + 1, go back
to 2). If yes: continue.

5) Find the roots of the polynomial b(z) whose
coefficients are given by b®+1,

Note that this algorithm can be employed only
if the number of signals is known. In practice one
must first estimate N, the number of signals present,
and only then use the above algorithm. A method for
estimating N is described in [7].

lll.  SUBLATTICE ARRAYS AND THE EM
ALGORITHM

We are primarily interested here in the problem
where the measurements are taken along a sublattice
array of M’ sensors. The sublattice array may be
described by a binary vector [ of length M. The mth
component of / is 1 if the mth sensor of the full array
is part of the subarray and it is zero if the sensor is
missing. Equation (4) may be converted to describe
a sublattice array through a left-multiplication by a
transformation matrix G. The M’ x M matrix G is
constructed by eliminating all the zero rows in diag(/).
For example an array of three elements in positions 1,
2, § is described by IT = (1,1,0,0,1) and

10000
01000
0 00O0T1

G =

Multiplying (4) by G we obtain, for a given sublattice
array, the equation

=127

Y, = GX; = G(AS; +V)), 1)

We refer to {X;} as the (unavailable) complete data
and to {Y;} as the observed data.

Let Y = YN, Y),...,YJ)T and X = [X],X],...,X]]*
denote, respectively, the observation vector, and the
complete data vector. From (11) they are related by

Y = FX (12)

where
F £ diag{G}

is a block diagonal matrix with J blocks of G. The
complete data vector X is Gaussian with given
covariance 02 and unknown mean 6. The parameter
vector @ is defined by

A
6=[675,63,...,6]]"

where
8,2 48;.

If f(X | 6) is the density of x given 8, we have
therefore

In{f,(X|6)} = -MJIn(o”) - || X~ 6]*/0>  (13)
and the ML estimate of 8 given X is then easy to
compute. In fact, it requires the minimization of

J
X - 8| =>_|IX; - A4Sl (14)

j=1

and it was shown in Section II how the polynomial
approach could be used to perform this minimization.

When we are only given the observation vector Y
corresponding to an incomplete data set, if fy(Y | 8)
denotes the density of y given 8, the ML estimate of
given Y is

6 = argmaxf, (Y | 6) = argmaxin{£,(Y | )}  (15)
6€0 oco

where © is the parameter space. However In{fy(Y | 6)}

cannot be expressed as simply as in (13), (14), and the

maximization of In{f,(Y | 8)} is therefore more difficult

to achieve.

The EM approach [6] to the ML estimation
problem consists of estimating the complete data
vector X from the given observation vector y and then
substituting the estimate X in (14) to perform the
minimization over the parameter space ©. However,
since X depends, in general, on 8 as well as Y, several
iterations of the above procedure are necessary in
order for the parameter 8 to converge. A rigorous
justification of the EM algorithm is as follows. First
from Bayes’ rule

In{fy(Y 16)} = In{£x(X| 0)} - In{fx(X | Y,6)}. (16)

Taking the expectation of (16) over x given Y and
under the assumption that the parameter vector is
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equal to &', we obtain

LO)=In{f(Y|0)} =Q©|0)-H@|6) (17)
where
Q(816") = E{In{f,(X | 6)} |Y,8'}
H(8|6') 2 E{ln{f;x(X|Y,8)} |Y,8'}.
Using Jensen’s inequality it is easy to verify that
H(6|6)< H®'|6". 18)

The EM algorithm may be described by the following
sequence [6].

1) Initialization. Set p = 0, and 6(?) = @.

2) E-step. Determine Q(6 | 8P)).

3) M-step. Choose 8%+ to be the value of 6 € © that
maximizes Q(8 | 8%).

4) Check the convergence of 8. If no, p=p +1, go
back to 2). If yes, stop.

In every cycle of the algorithm the likelihood
function L(0) is increased, since

L(g(pﬂ)) = Q(g(r”) [ g(p)) - H(g(P+1) | g(r))
> Q6P | 6@y — H@®P |6 = L(6WP)

where the inequality holds due to (18) and due to the
M-step.

In Section IV we apply this algorithm to the
sublattice array problem. Step 3) is solved using the
polynomial approach described in Section II.

IV. . PROPOSED ALGORITHM

The application of this rather general algorithm to
the problem at hand requires only the determination of
Q(0 | &'). From (13), and using the expression

X=E{X|Y,0'}=¢ +FI(FFIy-"\(Y—-F¢') (19)
for the conditional mean of x, we find that

Q(616'y=K—-||X-6|?/0? (20)

where K consists of terms independent of 8. Thus,
as was claimed above, the maximization of Q(8 | 8")
reduces to the minimization of
J
2 5
Ry =|X-6|* =3 |X; - 48| @n
j=1

and the M-step of the EM algorithm may be
performed by using the polynomial approach to
minimize (21).

The estimation step (19) of the EM algorithm can
also be simplified further by using the block diagonal

structure of F and the relations GGH = I and GHG =
diag(!) to rewrite (19) as

X, = diag(1)} + G"y,; (22)

where [ is the complement of / (zeros and ones are
interchanged). The parameter vector 6} is simply the
estimate of AS; obtained in the previous cycle and
therefore (22) may be written also as

XP*D = diag(T){A(4™4)" 149K} + GHy;
= diag(){(I - B(B"B)~"'BMX;}» + GMy;

using the notation of the polynomial approach. As one
would expect (22) states that the components of X;
that correspond to existing sensors are always equal to
the observed data, i.e., the corresponding components
of Yj.

The proposed EM algorithm may be summarized as
follows.

1) Initialization. Select initial values for
{As}Y_,; find the corresponding b©®.
Compute: A1 =G 4; S; = (4Al4,)~14lly;;
X0 = diag(7)4S; + GHY; (see (22)).
Set: p=0.
2) Use the minimization algorithm for uniform arrays.
a) Construct
X =ZPWN+1: M),...%P01: M-N)].
Set k =0, b = b,
b) Construct B using bgk).
Compute C = Y°7_, XH(B¥B)~1X;.
c) Compute

b&k”) =argminy, ., bl Cb;.

d) Check convergence of by. If no: k =k + 1, go
back to 2)b). If yes: b® = b¥**D, continue.

3) Construct B using b(®).
Compute

X¢*D = diag(@)(1 - B(B"B)"' BHKY + Gly;.

4) Check the convergence of X j-Ilfno:p=p+1,go
back to 2). If yes: continue.

5) Find the roots of the polynomial b(P)(z) whose
coefficients are given by b(»). These roots are our
estimates of the parameters of interest {A,}_,.

Once we have the estimates of {\,}V_,, it is easy
to obtain the estimates of the direction of arrival of the
signals.

V. EXPERIMENTS

Two sets of experiments are described here. One
uses signals S; drawn from a normal distribution, and
the other uses deterministic signals.
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GAUSSIAN SIGNALS, 10 SNAPSHOT, SOURCE AT 10 DEGREES

3
25k CRLB i
2l o -RMS ERROR
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1+ J
03 * \\
. \\‘\
0 .
s 0 5 10 15 20 25

SNR (dB)

Fig. 1. Bias and rms error for Gaussian source at 10°, based on
200 experiments for each SNR value.

A. Gaussian Signals

To illustrate the behavior of the algorithm, consider
a linear uniform array of 6 sensors separated by half
a wavelength of the actual narrowband source signals.
Now assume that the second, fourth, and fifth sensors
are removed, yielding in effect an array described
by T =(1 0 1 0 0 1). Note that only 3 sensors are
used, which are separated by one wavelength and 1.5
wavelengths. The Rayleigh resolution criterion for this
array is 23°. To show the “super-resolution” properties
of the proposed procedure, we place one source at a
bearing of —5° and a second source at a bearing of
10° relative to the perpendicular to the array baseline.
The signals S; and noise V; are random complex
Gaussian vectors, with covariance matrices o2 - I and
o2 . I, respectively. In each experiment J = 10 samples
(snapshots) are used. The initial guess in each case
is generated by using simple beamforming [7] over
the selected field of view of [-20°,20°]. Since the
sources cannot be resolved by the beamformer we used
30 = 4, —1°, 49 = 9, + 1° where 4 is the initial
guess of the bearing to the ith source and 7, is
the bearing for which the beamformer obtains its
maximum. For each signal-to-noise ratio (SNR) =
-1,2,5,...,20 (dB) we performed 200 experiments.
The SNR is defined by 10log;o(c?/02). The bias
and the root mean square (rms) error are displayed
in Fig. 1 for the first source, while the results for the
second source are displayed in Fig. 2. The
Cramer-Rao lower bound (CRLB) was calculated
according to the formulas in [8].

The 99.74 percent confidence intervals for the
rms error are between 84 and 114 percent of the
rms values shown in the figures. The 99.74 percent
confidence intervals for the bias are approximately
between (b — 0.21) - rrhs and (b + 0.21) - rrhis, where b
and rifis are the bias and rms error estimates shown in
the figures.

GAUSSIAN SIGNALS, 10 SNAPSHOTS, SOURCE AT -5 DEGREES

3
\CRLB
25 . 1
2 . 0 - RMS ERROR
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0 - . “
0.5 . 1
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-15
-5 0 5 10 15 20 25
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Fig. 2. Bias and rms error for Gaussian source at —5°, based on
200 experiments for each SNR value.

We observe that the algorithm is efficient in
the sense that it converges to the CRLB even for
relatively low SNR. It is interesting to note that an
algorithm that is based on modeling the signals as
deterministic vectors is efficient, even though the
signals are random. Usually, algorithms that are
based on modeling the signals as random vectors use
additional information, such as the mean and the
covariance matrix of the signals [5]. We demonstrated
that efficient estimation of direction of arrival, of
random signals, can be obtained without a-priori
knowledge of the statistics of the signal.

Finally, note that eigenstructure techniques, such
as the MUSIC algorithm [7], can perform just as
well when many snapshots are observed. However,
the proposed technique performs well even for the
case of a single snapshot and of coherent signals as
demonstrated in the following section.

B. Deterministic Signals

Consider the same setting as in the previous
section, where we used a linear array of sensors
described by /T = (1 0 1 0 0 1), and 2 sources at
—5° and 10° relative to the perpendicular to the
array baseline. However, now, the signal vector is
fixed at S = (1 1)T and the noise V, is a random
complex Gaussian vector with covariance matrix
o2. 1. Only a single snapshot is used and therefore the
index j is suppressed. Again, the initial guess in each
experiment is obtained by using simple beamforming
over the interval [-20°,20°]. The SNR definition is
now modified to be 10log,,(1/02). For each SNR =
0,3,6,...,30 (dB) we performed 200 experiments. The
bias and rms errors are displayed in Figs. 3 and 4 for
the source at 10° and the source at —5°, respectively.
The CRLB was calculated analytically. Note that the
Fisher information matrix contains 36 elements (a 6 x 6
matrix), since we assume that the phase, amplitude,
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DETERMINISTIC SIGNAL, SINGLE SNAPSHOT, SOURCE AT 10 DEGREES
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Fig. 3. Bias and rms error for deterministic source at 10°, based
on 200 experiments for each SNR value.

and direction-of-arrival of the signals are unknown.
The 99.74 percent confidence intervals are given by the
same expressions as in the random signals case.

We observe that the algorithm is efficient even in
the case of a single snapshot and perfectly coherent
signals. This performance cannot be matched by any of
the eigenstructure methods. However, other exact ML
techniques are expected to perform just as well. These
exact ML techniques are described in {5, 9, and 10].
While the methods in [5, 9, and 10] are not limited to
narrowband signals in the farfield of a linear sublattice
array, they seem to require a higher computational
load. A complete analysis of the computational load
of each of these algorithms is not yet available.

VI.  SUMMARY

We have proposed a novel EM algorithm for
the estimation of superimposed signals observed by
nonuniform arrays. The algorithm is efficient and
requires a relatively low computational load even when
the number of samples is small and the signals

DETERMINISTIC SIGNAL, SINGLE SNAPSHOT, SOURCE AT -5 DEGREES

b\
; \ o.-RMS ERROR
. \ s * - BIAS ERROR

DEGREES
» W
e

0 -

-5 0 5 10 15 20 25 30 35

SNR (dB)

Fig. 4. Bias and rms error for deterministic source at —5°, based
on 200 experiments for each SNR value.

are perfectly coherent.

Note that convergence theorems exist for the
EM method. However, convergence theorems
for the polynomial approach are not yet available
and therefore further investigation is required to
prove the convergence of the proposed technique.
The experiments reported here did not reveal any
convergence problems.

Finally, we would like to emphasize that the
EM algorithm is guaranteed to converge to a local
maximum of the likelihood function. Thus we would
expect that the algorithm described here will converge
to the globally optimum result only if the initial
estimates are good enough. Fast initial estimates
can be obtained by using simpler methods such as
beamforming or the MUSIC techniques (see {7] for
a review of these methods).
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