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Asymptotic Orders of Reachability in Perturbed 
Linear Systems 

CUNEYT M. OZVEREN, GEORGE C. VERGHESE, MEMBER, IEEE, AND ALAN S. WILLSKY, FELLOW, IEEE 

Abstract-A framework for studying asymptotic orders of reachability 
in perturbed linear, time-invariant systems is developed. The systems of 
interest are defined by matrices that have asymptotic expansions in 
powers of a perturbation parameter E about the point 0.  The reachability 
structure is exposed via the Smith form of the reachability matrix. This 
approach is used to provide insight into the kinds of inputs needed to 
reach weakly reachable target states, into the structure of high-gain 
feedback for pole placement, and into the types of inputs that steer 
trajectories arbitrarily close to almost (A ,  B)-invariant subspaces and 
almost (A,  B)-controllability subspaces. 

I. INTRODUCTION 

A. Motivation 

N this paper, we develop and apply a theory of asymptotic I orders of reachability in linear time-invariant systems 
parametrized by some small variable E.  The approach draws in 
part on the algebraic formulation of [l], [2]. To provide a 
motivation for the key issues in our approach, consider the 
following discrete-time system as an example. 

Example 1.1: 

This system is reachable but the reachability matrix 

is not very far from a singular matrix, in that its condition number 
is approximately lo4. This leads to numerical difficulties in 
determining reachability, as shown in [3]. Also, consider the 
minimum energy control problem for this system. The minimum 
energy control to reach x[2]  = [l 01' (where ' denotes the 
transpose) fromx[O] = 0 is u[l] = -0.5 and u[2] = 1.5, while 
the minimum energy control for x[2] = [l 11' is u[l]  = 49.7 
and u[2] = -49. This order of magnitude difference be- 
ween controls is another indication of near unreachability . 
Still further indications may be obtained, for example, by 
considering how small a perturbation of the system matrices 
suffices to destroy reachability (in this case, of the order of 0.01), 
or by examining the magnitude of feedback gain required to shift 
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poles by various amounts (in this case, to move the eigenvalues by 
2, feedback gains of magnitude approximately lo2 are required, 

0 
Our treatment of problems of this type is qualitative rather than 

numerical in nature: we assume that small values in the system are 
modeled by functions of a small parameter E, which implicitly 
indicates the presence of different orders of coupling among state 
variables and inputs. The formulation that we use permits the state 
space to be decomposed according to the "asymptotic orders of 
reachability " of different target states. Specifically, we consider 
continuous-time and discrete-time systems of the form 

as illustrated in Example 3.1). 

X ( t )  =A(E)X( t )  + B ( € ) U ( t )  (1.1) 

(1.2) 

Here A(€)  and B(E),  in general, have entries from the field L(E) of 
functions / ( E )  that have asymptotic expansions (see [4]) of the 

x [ k +  1 I = A  ( € ) X [ k ]  + B(€)U[k l .  

form 

m 

I(€) = ZiEi (€+O) 
-k 

for some finite k ,  so, 

A ( € )  : L"(€)+L"(E), B(E) : L"(E)+L"(E). 

(Strictly speaking, we should write = instead of = in 

(1.3) 

(1.4) 

(1.3) to 
emphasize that the series on the right is asymptotic and not 
necessarily convergent [4], but this abuse of notation is common.) 

Defining these systems over L(E) permits us to examine the 
effect or necessity of high gain feedback. However, many of our 
results will involve matrices over the ring T(E) of functions f ( ~ )  
that have asymptotic expansions of the form 

m 

For verification that T(E) is a ring, see [4, p. 151. The ring T(E) is 
easily shown to be a principal ideal domain and L(E) is its field of 
fractions. This allows us to use various results on matrix canonical 
forms such as the Smith form [5, App. B.21 in our development. 
(The symbols L(E) and T(E) have been chosen to serve as 
mnemonics for "Laurent-series like" and "Taylor-series like. ") 

The above formulation strongly suggests connections with work 
on parametrized linear systems [6], [7], and more generally with 
studies of systems over rings [8], [9]. The approach in this paper 
owes something to our earlier work [l], [2] on an algebraic 
framework for multiple time scale decomposition in singularly 
perturbed systems, and therefore takes a relatively independent 
track. The important task of making and exploiting explicit 
connections with the literature on systems over rings is left to 
future work. (Sontag [ 101 has shown us that explicit connections 
are not only possible but may be quite fruitful.) 

This work was particularly motivated by the numerical prob- 
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lems encountered in various pole placement methods and in 
evaluating system reachability . Pole placement and related nu- 
merical issues are addressed using various approaches in the 
current literature [11]-[ 141. In multiinput systems, unlike single- 
input systems, the feedback matrix that produces a given set of 
poles is not unique, and the additional degrees of freedom may be 
used to attain other control objectives (see [14]). One may, for 
example, attempt to minimize the maximum feedback gain; [12] 
addresses this problem via numerical examples involving balanc- 
ing the A and B matrices and redistribution of the feedback 
task among the inputs. These examples contain some intuitive 
ideas, but have not led to systematic procedures that work well for 
well-defined and substantial classes of systems. One of our 
objectives here is to suggest an analytical approach to understand- 
ing and structuring feedback gains for pole placement. 

Another area of numerical work involves criteria to measure 
controllability. Boley and Lu [16] use the "distance to the nearest 
uncontrollable system" as a criterion. They define this by the 
minimum norm perturbation that would make a system uncontrol- 
lable. They also relate this concept to state feedback by measuring 
the amount that the eigenvalues move due to state feedback of 
bounded magnitude. Connections may also be made to the 
literature on balanced realizations [ 151 where the singular values 
of the controllability Grammian are used to indicate nearness to 
uncontrollability . 

The issue of controllability in perturbed systems of the form 
(1.1) has been examined by Chow [ 171. He defines a system to be 
strongly controllable if the system is controllable at E = 0. 
Otherwise, he calls it weakly controllable and concludes that pole 
placement of such systems will require controls with large gains. 
Chow looks at systems with two time scales (slow and fast), and 
he proves that a necessary and sufficient condition for such a 
singularly perturbed system to be strongly controllable is the 
controllability of its slow and fast subsystems. 

Our analysis goes further than Chow's in that we examine the 
relative orders of reachability of different parts of the state space. 
As already mentioned, the methods we use have some similarity to 
those used by Lou et al. [l], [2], who relate the multiple time 
scale structure of the system (1.1) to the invariant factors of A(€) ,  
when this matrix has entries from the ring of functions analytic at 
E = 0. The results in [l], [2] actually hold for A(€) defined over 
the considerably more general ring T(E) used in this paper, 
although this fact was not recognized there. The Smith decompo- 
sition of A(€) plays a key role in the analysis of [I], [2], while the 
Smith decomposition of the reachability matrix is central to the 
development in this paper. While the primary focus of the work in 
[l], [2] is on time scale structure, some attention is paid there to 
control. In particular, [l] gives results on the use of feedback in 
(1.1) to change the time scale structure of the system. The work in 
[ 181 may be seen as a continuation of the work in [ 11, [2] in that it 
analyzes the effect of control and feedback on the system of (1.1). 
This paper is based on the work in [ 181. 

B. Outline 

Throughout the paper, e,(€) will denote the k-step reachability 
matrix 

~,(E)=[B(E)IA(€)B(E)I  * * * I A k - I ( ~ ) B ( ~ ) ]  (1.6) 

whereA(E), B(E) are as in (1.1)-(1.5). We shall simply write e(€) 
for (?,(E), and call this the reachability matrix. We also assume 
throughout that (A(€), B(E)) is reachable for all E E (0, a), some a 
E R+ , or equivalently e(€) is full row rank for all E E (0, a),  a 
E R+. 

In Section 11, we develop a theory of orders of reachability. We 
start with discrete-time systems and illustrate that the orders of 
reachability can be recovered from the Smith decomposition of the 
reachability matrix. We define a standard form which displays 
these orders explicitly. Also, we show that equivalent results hold 

for continuous-time systems. In Section III, this theory is 
extended to pole placement by full state feedback for systems with 
entries over T(E). We also provide a computationally and 
numerically reasonable algorithm for pole placement. Section IV 
develops connections with Willems' work on "almost invari- 
ance" [19], [20]. We show how to find an input that steers the 
trajectories of a system arbitrarily close to an almost (A, B)- 
invariant subspace and show that the subspace that a sequence of 
(A, B)-controllability subspaces converges to is almost (A, B)- 
invariant. In Section V, we summarize our results and suggest 
problems for further research. 

11. ORDERS OF REACHABILITY 

A. EJ-Reachability for  Discrete- Time Systems 

We start by developing our theory of asymptotic orders of 
reachability for systems of the form (1.2) in an analogous way to 
existing linear control theory. In order to provide a motivation for 
our approach, let us start with the following counterpart of 
Example 1.1. 

Example 2. I :  
r-m 

so 

This system is reachable for all E E (0, 2). The minimum energy 
control sequence needed to go from the origin to x[2] = [ 1 01 ' is 
u[l] = - 1/(2 - E )  and u[2] = 3/(2 - E), which are 0(1), 141. 
The minimum energy control sequence for x[2] = [ 1 11 ' is U[ 11 
= ( - E  + 1)/42 - E )  and u[2] = (26 - 1) /~ (2  - E ) ,  which are 

This characterization of target states by the order of control 
needed to reach them is now generalized as follows for the 
discrete-time system (1.2). 

Definition 2.2: X ( E )  E T"(E) is &reachable if there exists an 
0(1/@)input sequence % ( E )  = [u'[n - I] 1 . .  u'[O]]' suchthat 
X ( E )  is reached from zero in n steps using % ( E )  [i.e., X ( E )  = 
e(E)Q(E)1 ' 

Let 'X' be the set of all @-reachable states, then 'Xo C X' C 
Xc2 c . . and ' X J  is a T(6)-submodule of T"(E). We term ' X J  the 
&reachable submodule. 0 

Note that if X ( E )  is @-reachable, then (~/E)x(E) is not necessar- 
ily @-reachable. Thus, if we had considered target states in L"(E) 
in Definition 2.2, then the set of &reachable states would not be 
L(6)-subspaces. 

InExample2.1, To = Im[1 03' + E T ~ ( E ) ,  ' X I  = X2 = e - .  

= T'(E). 
An interesting property of the set of +reachable submodules is 

that all the structure is embedded in the Eo-reachable submodule. 
First of all, note that 'Xo is the restriction to T"(E) of the image of 
the reachability matrix under the set of all control sequence 
vectors % ( E )  in Tmn(c). Also, the +reachable submodule is 
simply obtained by scaling the €1-'-reachable submodule by 116. 
To state this formally. 

Proposition 2.3: 'Xo = {e(e)Tmn(~)} r l  T"(E) and ' X J  = (1/ 
E ) { X J - ~  f l  ET"(E)} = (l/c'){X~-' n E'T"(E)}, for nonnegative 
integers i ,  j and j 1 i .  

Proofi By Definition 2.2, 'Xo = { ~ ( E ) T ~ " ( E ) }  n T"(E), or 
in general ' X J  = (C?(E)(~/EJ)T~"(E)} f l  T"(E). Then, 

O(l/€). 0 
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The structure of the &reachable submodules is not always as 
easily obtained by inspection of the pair (A(€),  B(E)) as it was in 
Example 2.1. To illustrate this, consider an E perturbation of 
Example 2.1. 

Example 2.4: 

for which 

This system is reachable for all E E (0, 00). In this case, we find 
that x[2] = [l 01' is €-reachable, and x[2] = [ l  11' is e2-  
reachable. Therefore, even an E perturbation may cause drastic 
changes in our submodules. 

B. Smith Decomposition of e(€) 
The key element in our results is the Smith decomposition of 

e(€), since in effect this tells us how e(€) becomes singular as E 1 
0. The n x mn matrix C(E) ,  which has been assumed to have full 
row rank for E E (0, a), has a Smith decomposition [ l ,  2, 5, 21, 
221 

e ( E )  = P(E)D(E)Q(E) (2.1) 

where P(E), n x n, is unimodular over T(E),  Q(E),  n x mn is 
finite and full row rank at E = 0, right-invertible over T(E); 

D ( E )  = diag { E -hip - h ,  E - h +  I p-h+19 ' " 9  Ipo'  ' " 9  Ekrpk) (2*2) 

is n x n,  where IpI denotes a p ,  x p, identity matrix withp, = 0 
corresponding to absence of the ith block, and with P k  f 0. We 
shall term k the order of reachability of the system, for reasons 
that will become clear. The numbers p i ,  and hence D(E), are 
unique, although P(E)  and Q(E) are not. 

For the remainder of this section, we will assume without loss 
of generality that h = 0, as this can simply be achieved by scaling 
the input by eh .  Now, from Proposition 2.3 and (2.1), X J  = 
P(E)'YJ where 

y'= &,+€&,+I  + . * + ~ ~ - l - ' & ~ _ ~  + E ~ - J T " ( E )  (2.3) 

and E,  = Im [I,,, 01 ', n, = po + + pi. In fact, 'YJ is just the 
€'-reachable submodule of the new description obtained through 
similarity transformation by P(E) ,  and its structure immediately 
follows from the fact that the reachability matrix of the trans- 
formed system is D(E)Q(E) with Q(E)  right invertible over T(E). 
This transformed system is examined further in the next subsec- 
tion. 

* 

C. Standard Form 

Consider a pair (A(€), B(E)) with a Smith decomposition of its 
reachability matrix defined as above. We will term such a system 
an E k-reachab!e system with (reachability prder) indexes no, 
... , nk. k t  A(5) = P-'(E)A(E)P(E) and B(E) = P-I(E)B(E). 
The pair (A(€),  B(E)) will be called a standard form for (A(€) ,  
B(4). 

The system in Example 2.1 is already in standard form because 
it has a Smith decomposition with P(E) = I .  For the system in 
Example 2.4, a Smith decomposition of the reachability matrix is 

The structure of D(E) uncovers the previously hidden e2 structure. 

To see this more explicitly, transform the system by P(E)  

A standard form for a system is termed a proper standard 
form if A(€) has the following structure: 

(2.4a) 

where the p,. Note that in this 
case, due to the structure of A(€)  and e(€), satisfyirlg our 
assumption that h = 0 in (2.2) only requires scaling &E)- or 
equivalently B(E) such that its leading order term is E O .  Then, B(E) 
has the structure 

are over T(E),  and nj = 

(2.4b) 

Example 2.1 and the transformed version of Example 2.4 are 
both in proper standard form. In fact, the next result shows that 
finding one proper standard form is enough to conclude that all 
standard forms of a pair are proper. 

Proposition 2.5: If a pair (A(€), B(E)) has a proper standard 
form, then all standard forms of (A(€),  B(E)) are proper. 

Proof: Let e(€) = P I @ ) D ( ~ ) Q I ( ~ )  = P2(~)D(~)Q2(e) ,  then 
Ai(€)  = P,:'(E)A(E)P;(E), B;(E) = Plr1(€)B(E)_for i 3 1, 2 are 
two standard forms. Suppos_e that the pair (AI(€), BI(cJ) is a 
proper standard form. Let Aj(cJ = D-!(E)A~(E)D(E), B;(E) = 
D-I(E)B~(E) for i = 1,2.  NoteA,(E) and B1(clare both ojer T(E). 
We wish to show that the same is true for A2(e) and B2(e). Let 
R(E)  = D-I(E)P-I(E)P,(E)D(E), then R ( E )  is invertible over L(E),  
and Q2(€) = R(e)QI(c). But then R(E)  = Q~(E)QT(E) and R-' (E)  
= QI(e)Q;(e), where Q,?(E) denotes the right inverse of Qi(e), 
which exists over T(E). Thu_s, R(E) is unifiodular. Since_(Al(E), 
B , ( E ) ~  is over T(E) and Ad€)  = R(E)A~(E)R-I(E) ,  B2(€) = 
R(E)B~(E), the pair (A2(€), B2(€)) is also over T(6). Therefore, 

0 
A pair (A(€),  B(E)) is termedproper if it has a proper standard 

form. Thus, the systems in both Examples 2.1 and 2.4 are proper. 
It turns out that the condition that the coefficients of the 
characteristic polynomial of A(€)  are over T(E) is necessary and 
sufficient for a system to be proper. In general, we have the 
following. 

Proposition 2.6: The following statements are equivalent. 
1) (A(€), B(E)) is proper. 
2) e,(€) = [B(E)[ * IA'-I(E)B(E)] for all positive integers i is 

over T(E). To say this more simply, e,(€) is over T(e). 
3) The coefficients of the characteristic polynomial ~ ( A ( E ) )  of 

A(€) are over T(E). 
Proof: (1 -+ 2) Follows from the definition of a proper form 

and the structure in (2.4). 
(2 --t 3) It is not hard to show, using [8, Theorem 1.151, that 

T(E) is completely integrally closed. Since e,(€) is over T(E) ,  
the map { , ~ - I ( E ) B ( E ) } ~ ~  is over T(E). Finally, by invoking [8, 
Theorem 4.171, we achieve the desired result. An alternative 
proof may be obtained by working with the Jordan form of A(€) ,  
and using results in [23]. 

(3 2 1) Let A(€)  = D-I(E)A$)D(~), &e) = D-I(E)B(E).  
Since e,,(€) = QQ) is over T(E),  B(E) is also over T(E). Since the 
coefficients of ~ ( A ( E ) )  are over T(E), it follows from the Cayley- 

(AZ(€), B2(€)) is a proper standard form. 
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eamijton theorem that &,,(E) is over ~ ( € 1 .  In particular, 
A_(E)~,(E) is over T(E) and since Q(E) isjight invertible over T(E), 
A(€ )  is over T(E). Therefore, (A(€),  B(E))  is a proper standard 
form. 0 

As an immediate consequence of Statement 2 of Proposition 2.6 
we have the following important property of proper systems. 

Corollary 2.7: Given a proper pair (A(€),  B(E)),  x E XJ iff x is 
reachable with 0 (1 /~J )  control in p steps, for all p 2 n. 0 

For proper systems, therefore, it suffices to work with the 
Smith structure of (?,(E) = e(€). 

Let us also suppiement Proposition 2.k  with the following. 
Corollary 2.8: C,(E)-is over T(c)-iff C?n+I[~) is over ~ J E ) .  

= [B(E_)IA(E)(?,(E)], and (?,(E) is 
right invertible over T(E), A(€)  are B(E) are over T(E). Thus, 
E,(E) is over T(E). 

Proof: (-+) Since 

(+) Trivial. 0 
The standard form will prove to be very useful to us, especially 

for finding feedback to place eigenvalues (Section HI). In the 
Appendix we develop an algorithm to get to a standard form 
without first constructing the reachability matrix and then 
explicitly determining its Smith decomposition in order to obtain 
the transformation matrix P(E).  The algorithm works directly on 
the pair (A(€), B(E)) ,  and is a natural extension of the recom- 
mended procedure 231 for testing reachability of a constant pair 
(A, B) .  

D. Continuous Time 

A natural counterpart to Definition 2.2 for continuous time is as 
follows. 

Definition 2.9: x E T"(E) is EJ-reachable if 3 7  E W+ and u(t) 
E ( ~ / E J ) T ~ ( E ) ,  Vt E [0, 71, such that x(7) = x, with x(0) = 0. 

Let X' be the set of all EJ-reachable states, then Xo C X' C 
X2 C and 'XJ is an T(E)-submodule of T"(E). We term XI the 
+reachable submodule. 0 

These submodules have properties analogous to those of 
discrete time as the following proposition and corollary show (the 
proofs are given in detail in [ 181). 

Proposition 2.10: Given a continuous-time system described 
by the pair (A(€),  B(E)),  then Xo = (A(E)(@,) f l  T"(E) where 
(A(E)~@J = Z;A'-I(E)@, and is the image of B(E) over 
T ( 4 .  0 

Corollary 2.11: Xo = P ( E ) D ( E ) T " ( E )  where ( ? ( E )  = 
P(E)D(E)Q(E) is a Smith decomposition for the reachability 
matrix. 0 

Using the iterative relation XJ+ '  = (l/c){XJ fl ET"(€)} 
(Proposition 2.3), we can recover all the other reachability 
submodules from the Smith decomposition of the reachability 
matrix and Corollary 2.11. Therefore, all our results for discrete 
time also hold for continuous time. 

One important difference exists, however. By an €-dependent 
change of time scale in continuous time, we can satisfy Statement 
3 of Proposition 2.6, so there is no loss of generality in assuming 
that a continuous-time system (1.1) is proper. In discrete time, by 
contrast, an assumption that (1.2) is proper is restrictive. 

111. SHIFTING EIGENVALUES BY 0(1) USING FULL STATE 
FEEDBACK 

In this section, we restrict our attention to reachable systems 
over T(E).  These systems are proper and all eigenvalues of A(€)  
are continuous at E = 0. We address the problem of arbitrarily 
shifting the limiting values of these eigenvalues as E + 0, using 
full state feedback. In other words, we wish to find F(E) over L(E) 
such that &(E) = A(€) + B(E)F(E) has the desired eigenvalues as 
E -+ 0. 

Example 3. I: The eigenvalues of A(€)  in Example 2.1 are at XI 
= 1 + O(E)  and X2 = 2 + O(E) .  A state feedback of [2 41 shifts 
these eigenvalues to 3 + O(E)  and 2 + O(E) .  It is not hard to see 
that there is no O( 1) state feedback that can arbitrarily place h2 as E 

+ 0. However, a state feedback gain of [5 - 1 / ~ ]  shifts the 

eigenvalues to 3 + O(E) and 4 + O(E). Here both eigenvalues are 
moved as E + 0, but an O( 1 / ~ )  feedback gain has to be used. Note 
that the closed-loop system 

is not over T(E) but it is €-reachable with the same indexes, no = 
1 and nl = 2, as the original system, and is in proper standard 

We shall now show that, for systems over T(E), the order of 
feedback gain necessary and sufficient to place the limiting values 
of all eigenvalues as E 0 is directly given by the order of 
reachability of the system. Let us start by looking at Eo-reachable 
systems. In all that follows, A denotes a self-conjugate set of n 
numbers, X(A) denotes the spectrum of A ,  and Z denotes the 
set of all integers. Define 

a=min {r lv l l ,  3F(~)=0(1/~') ,  

form. 0 

r E Z  

S.t .  X(A(E) +B(E)F(E))I,=o=A}. (3.1) 

Hence, CY is the smallest order of feedback gain that will produce 
arbitrary placement of the limiting eigenvalues as E + 0. 

Lemma 3.2: The pair (A(€),  B(E)),  over T(E), is Eo-reachable 
iff a = 0. 

Proof: (4) If the pair (A(€),  B(E)) is eo-reachable, then, 
( ? ( E ) [ ~ = ~  has full row rank. Thus, the pair (A(O), B(0)) is 
reachable, and vA, 3F:W" + W" s.t. X(A(E) + B ( E ) F ) ~ , , o  = 
X(A(0) + B(0)F) = A. Hence CY i 0. Now assume CY < 0. 
Then, lim,lo F(E) = 0 for those F(E) of O(~/E") that produce 
arbitrary placement of the limiting eigenvalues as E --t 0 according 
to (3.1). But then limflo (A(€) + B(E)F(E)) = A(O), so no limiting 
eigenvalue as E --* 0 is moved, which is a contradiction. We 
conclude that CY = 0. 
(e) Conversely, assume that CY = 0, then VA, 3F = F ( E ) ( , = ~  

s.t. h(A(0) + B(0)F) = A. Thus, the pair (A(O), B(0)) is 
reachable, and (?(E)(,=, has full row rank, so the pair (A(€),  B(E)) 
is Eo-reachable. 0 

Proposition 3.3: The pair (A(€),  B(E)) ,  over T(E),  is E ~ -  
reachable iff CY = k. 

proof: (+) If the pair (A(€), B ( ~ ) ) j s  Ek-reachable, then the 
pair A(€) = D-'(E)P-I(E)A(E)P(E)D(E), B(E) = D-I(E)P-I(E)B(E) 
is Eo-reachable and is owr  T(E) (Propositio_n 2.9. Thus, by 
Lemma 3.2,yA, 3 an 0(1)F(~) s.t. X(A(E) + B(E)F(E))I,=~ 5 A. 
Let F(E) = F(E)D-'(E)P-~(E), then F@) is O(l/ek). Since (Ad€) ,  
B(E)) is proper, the coefficients of ~ ( A A E ) )  are over T(E). Thus, 

lim X(A( E )  + B( E)F(  E ) )  = lirn X(A ( E )  + B( E ) F ( E ) )  (3.2) 
e10 e10 

and CY 5 k. To see that the equality must hold, note first that 

where the are over T(E). Now, if CY < k ,  then the last n - 
nk- I columns of p(0) = limelo F(E)P(E)D(E) = 0 for those F(E) 
of O( I/€") that produce arbitrary eigenvalue placement according 
to (3.1). But then 

Iirn e10 (A(€ )  + B ( E ) E ( E ) ) =  [ Ak,:(o) ] (3.4) 

were * denotes some constant entries, and the limiting eigenvalues 
corresponding to A k , k ( ~ )  are not moved, which is a contradiction. 
We conclude that a = k. 
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(+) Clearly, the pair (A(€), B(E)) is @-reachable for somej. By 
the first part of this proof, a = j .  Hence, j = k and the pair is ek- 
reachable. 0 

Note that if some pair (A(€),  B(E))  over T(E) is eo-reachable, 
then the closed-loop pair (AF(E), B(E)) ,  where AF(€) = A(€)  + 
B(E)F(E),  is Eo-reachable for all F(E) of O(1). Thus, we have the 
following result. 

Corollary 3.4: Given a pair (A(€) ,  B(E)) over T(E), the 
reachability indexes ni, as defined in Section 11-C, are invariant 
u_nder any feedback of the form F(E) = F(E)D-I(E)P-'(E) where 

0 
The EJ-reachable submodules of the standard form are uniquely 

determined by the indexes, and the €'-reachable submodules of the 
original system are uniquely determined by the +reachable 
submodules of the standard form, via P(E). Thus: 

Corollary 3.5: Given a pair (A(€),  &E)) over T(E), the EJ- 

reachability submodules are invariant under any feedback of the 
0 

For the more general class of proper systems over L(E), the 
orders of feedback gains do not necessarily match the orders of 
reachability. Let us consider the following example. 

F(E) is O(1). Also, the closed-loop pair is proper. 

form F(E) = F(E)D- *(c)P- l ( ~ ) ,  where F(E) is O( 1). 

Example 3.6: The pair 

A(€ )=  [ x l i e ]  , B ( t ) =  [ ; '1 
0 2E 0 0  

corresponds to an €-reachable system in proper standard form. Let 
r 

where thefi are all scalar constants, then det ( X Z  - A,=(€)) = X3 
- (fi + &)A2 + (fif4 - fd3 - 2)X + 2fi. Clearly,f, E R can 
be chosen appropriately to match any third degree polynomial 
with real coefficients. Therefore, all eigenvalues of A(€)  can be 
arbitrarily moved as E -+ 0 using only O(1) feedback gains. What 
happens in this example is that an 0(1) gain for the third state 
component produces an 0(1 /~)  input for the second component. 
Therefore, even with O( 1) gains, the input values themselves will 
be O ( ~ / E ) ,  as would be expected when producing shifts in the 

0 
The overall effect of O( I) feedback on the eigenvalues, even for 

systems over T(E) ,  is a more subtle issue than the order of 
feedback necessary to shift the limiting eigenvalues. Consider the 
following example. 

limiting eigenvalues for this €-reachable system. 

Example 3.7: Let 

The reachability order indexes are no = 1 and n ,  = 2. The 
eigenvalues of A(€)  are at * & Feedback of [ - 1 - 11 moves the 
eigenvalues to - 1 and - E .  Thus, the effect of feedback is larger 
than O(E), namely O(&). (It is worth noting that the original 
system did not have well-behaved time scale structure in the sense 
of [ l ,  21, and that the feedback produces well-behaved time scale 

We leave these problems for further research. Section V 
suggests some potential extensions. 

An extension of Algorithm A.3 can be used to compute the 
feedback matrix necessary to shift eigenvalues by some desired 
amount. Application of Algorithm A.3 produces a pair (Ak(e), 
&(E)) ,  where Ak(€) = S-'(E)A(E)S(E), & ( E )  = S-'(E)B(E), 
where (Ak(0), Bk(0)) is reachable and S(E)  is the product of all the 
similarity transformations used to achieve the final pair. From the 
pair (Ak(0), Bk(0)), we can compute a feedback matrix F such 
that the eigenvalues of AkF(0) = Ak(0) + Bk(0)F are as desired. 
We have that X(AkF(~))Ir=O = h(AkF(0)) and that (AkF(e), B(E) )  is 
proper. Let F(E) = FS-'(€) andAF(E) = A(€)  + B(E)F(E). Since 

structure .) 0 

S(E) is invertible for E E (0, a) for some a E W' , (AF(€), B(E))  is 
also proper. Therefore, as in the proof of Proposition 3.3, the 
eigenvalues of AF(E) are as desired. 

This algorithm was applied in [18] to a fifth order, weakly 
reachable system over W with one input. The system was first 
parametrized by replacing certain small entries by (constant 
multiples of) powers of E. The feedback gain to place the limiting 
eigenvalues calculated for the parametrized system by the above 
approach was evaluated at the specific value of E corresponding to 
the original system. This approach produced far better numerical 
results than calculating the feedback directly for the given system. 
Similar concerns have been expressed by authors interested in 
numerical issues of multivariable pole placement for linear time- 
invariant systems (as explained in Section I-A). Our approach 
would attempt to address those issues by scaling the pair (A,  B )  
appropriately. Unfortunately, ( A ,  B )  has to be parametrized by E 

first if E does not represent some (small) physical parameter. 
Further study of this problem is left for future research, although 
some heuristic suggestions for parametrizations are made in 
Section V. 

IV. ALMOST INVARIANT SUBSPACES 

A .  (A(€)) ,  B(c))-Znvariance and Almost (A,  B)-Invariance 

In this section, we use our framework to provide some new 
insights on the notions of almost (A,  B)-invariance and almost (A,  
B)-controllability , introduced into the geometric approach to 
linear systems [24] by Willems [19]. These concepts have 
applications to disturbance decoupling, robustness, noisy gain 
stabilization, and cheap control. 

To provide orientation and give the flavor of our approach, we 
consider the following example. 

Example 4.1: Let 

A = [ ;  x] ,.=[;I. 
It is easy to see from the results in [ 191 that Vu = Im [ 1 01 ' is an 
almost (A,  @-invariant subspace. Consider the L(E)-subspace Ve 
generated by [I E] I .  Since 

this subspace is an (A, B)-invariant L(E)-subspace [24]. As E -+ 0, 
9, + Im [ 1 01 ' (over W), which is the almost (A, B)-invariant 
subspace identified above. So we have found an (A,  B)-invariant 
L(E)-subspace V, that converges asymptotically to an almost (A, 
B)-invariant subspace. Using the relation ( - 1 / ~ )  = - F(E)[ 1 E ]  ' 
with F(E) = [l/e 01, Vc is AF(t) invariant, where 

Furthermore, P, is a coasting subspace 1191, i.e., it is (A, B)- 
invariant but has no (A ,  B)-controllable part, whereas V u  is a 
sliding subspace [19], i.e., it is almost (A, B)-invariant but it has 
no ( A ,  B)-invariant part. 

Note that an eigenvalue of AF(e) -+ + m as E -+ 0. -on the other 
hand, consider the (A ,  !)-invariant L(E)-subspace Ve generated 
by [ 1 - E ]  ' . As E +-O, 9, -+ V u  also. By going through the above 
procedure, we get F(E) = [ - l / ~  01 and 

L J 

Now the eigenvalue of A ~ E )  that blows up approaches - as 
E + 0. 0 

We proceed with proving some results related to the above 
observations. 
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Definition 4.2: A subspace V, C L"(E) is (A(€),  B(E))- 
invariant if ~ F ( E ) :  L"(E) -+ s.t. AF(c)V, C V,, where 
AF(e) = A(€)  + B(E)F(E). We denote the family of (A(€),  B(E))- 

A straightforward consequence of this definition is the follow- 
ing well-known result [24]. 

Proposition 4.3: V, E V, iff A(E)V, C V, + 63, where 63 = 
B(€)Lrn(E). I? 

Let V, C L"(E) and V(E)  = [ul(e)l - * * I u ~ ( E ) ]  be a matrix such 
that its columns form a basis over L(E) for Ve. Let V(E) = 
P y ( ~ ) D y ( ~ ) Q y ( ~ )  be a Smith decomposition of V(E) such that 
Py(e) is n x p,  Dy(e) and Qy(e) are p x p .  Then the columns 
pi (€)  of Py(c) form a basis over L(E) for Vc such that p i ( € )  E 
T"(E) and the columns of Pv(0) are a basis over W. We use this for 
the existence of the desired basis in the following definition. 

Definition 4.4: Let V, C L"(E) and { U ~ ( E ) ,  . . ., up(€)}  be a 
basis over L(E) for V, such that U;(€) E T"(E) and the set of 
vectors {u,(O), * *  * ,  u,(O)} forms a basis over R for some Vu c 
W". Then we say that 9, converges asymptotically to V,, or 9, 
xV, (this is convergence in the Grassmanian sense). 0 

One can always construct a matrix " ( E )  over T(E) ,  such that 
"(0) = Z and U;(€) = W(c)u;(O). Thus, an alternate representa- 
tion of 9, would be W(E)V,. We use these notions to connect our 
results to their counterparts in [19] and [24]. 

The following result enables us to establish a connection 
between our framework and the notion of almost (A, B)- 
invariance. It provides a method to compute approximations for 
the distributional inputs required to steer the trajectories of an 
almost (A, B)-invariant subspace exactly through that subspace. 
Using these high gain feedback approximations one can steer 
trajectories arbitrarily close to an almost (A, B)-invariant 
subspace. 

Denote the family of almost (A, B)-invariant subspaces by Vu. 
We then have the following result. 

Proposition 4.5: For a pair (A, B), if V, E V, then 3Ve E V, 

The proof is very similar in principle to that of Willems [19] 
and it is given in detail in [ 181. However, note that the converse of 
the above proposition does not hold, although [19] claims that it 
does. To illustrate this, consider the following example. 

invariant L(E)-subspaces by V,. U 

such that Ve z V u .  0 

Example 4.6: Let 
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A =  [;: and B =  [ t ]  . 
Consider V = {U,(€), u ~ ( E ) ,  u ~ ( E ) }  where u ~ ( E )  = [l 0 0 0 E O]', 
U ~ ( E )  = [0 0 0 1 0 01 ', u ~ ( E )  = [0 1 0 0 0 11 ' and { } denotes 
span over L(E). V E V, and V d: where d: = {u1(0), uz(O), 
~ ~ ( 0 ) )  and { .}  now denotes span over R. But d: is not an almost 
(A,  B)-invariant subspace (this can easily be tested using 

I? 
Willems [19] poses the problem of finding an input that steers 

the trajectories of a system arbitrarily close to an almost (A, B)- 
invariant subspace. Our approach shows how this can be done. 
We show below how to construct an (A, B)-invariant L(E)- 
subspace that converges asymptotically to the almost (A, B)- 
invariant subspace. The desired input then follows on calculating 
the feedback that makes the (A, B)-invariant L( €)-subspace 
&(€)-invariant. 

Recall from [19] that any almost (A, B)-invariant subspace V, 
can be represented as 9, = V + (Ru where V is (A, B)-invariant 
and (Ru is almost (A, B)-controllable. Furthermore, any almost 
(A, B)-controllability subspace (Ru can be represented as (R, = 
(Ro d (Rs where 63, is the suprema1 (A, B)-controllability 
subspace in a, and @Is is a sliding subspace. By a construction in 
the proof of Proposition 4.5 in [18], illustrated in the example 
below, we can find V, E V, where V, = Q(e)(Rs, Q(E)  over T(E) 
and Q(0) = Z ,  where V, is a coasting L(E)-subspace whose 
associated eigenvalues approach - 03 as E -+ 0. The feedback F(E) 

algorithms ISA and ACSA [19]). 

that makes V, an AF(E)-invariant L(6)-subspace can be calculated 
and provides the desired input. Those eigenvalues of AAE) that 
correspond to @is approach - w as E -+ 0. This increases the 
magnitude of the feedback gains, and the generated inputs and 
their derivatives approach impulses in the limit. The eigenvalues 
corresponding to (R, can be assigned by the usual pole placement 
methods. 

As an illustration of the procedure, consider the following 
example, which contains the essential features of the general case. 

Example 4.7: Let 

where 

V u  is an almost (A, B)-invariant subspace, and in fact it is a 
sliding subspace. Consider V, = { u ~ ( E ) ,  uZ(e)} ,  where u ~ ( E )  = [ 1 
- E  E ' ]  ' and u ~ ( E )  = [0 1 - 2~1'  . Note that V, is a coasting L(E)- 
subspace, i.e., it is (A, B)-invariant but not (A, B)-controllable. 
Furthermore, q(0)  = C l ,  uz(0) = 172 and V, XV,. Also, u ~ ( E )  
= P(E)I;, for i = 1, 2 ,  where 

W E ) =  [ ;: 32 81 
gets its lower triangular entries from a Pascal triangle construction 
with alternating signs (see [18]). Solving the equations 

A ( € ) [ U I ( E ) l V Z ( E ) I  = [Ul(t)lU2(E)lg"(E)+Bg"(~), 

- F ( E ) [ U I ( E ) I  K?(E)l 

yields -F(E)  = [ 2 / ~  1 1 ~ '  01' and 

-2/E - I /$  0 [ :  ; : I  A , ~ ( E ) = A + B F ( E ) =  

with Ve being AF(E)-invariant. Note that the desired input u(t)  = 
F(E)x(t). On the other hand, the eigenvalues of AF(c) that 
correspond to V, are both at - 1 / ~ .  They are stable and approach 

0 -w as E -+ 0. 

B. (A(€),  B(E))-Controllability and Almost (A,  B)-Znvariance 

We now proceed with the notion of (A(€),  B(E))-controllability 
L(E)-subspaces, adopting Wonham's definition [24] of (A, B)- 
controllability subspaces. The notation ( A ( E ) ~ @ )  will be used to 
denote 63 + A(~)63 + A 2 ( ~ ) 6 3  . e .  

Definition 4.8: (R, c L"(E) is an (A(€),  B(E))-controllability 
subspace if there exist maps F(E):L"(E) --t Lm(e) and G(c):Lm(e) 
-+ Lm(e) such that (R, = (A(€)  + B(E)F(E)I Im (B(E)G(E))) .  We 
denote the family of (A(€),  B(E))-controllability L(E)-subspaces by 
Re. 0 

To put the above definition into a more usable form, consider 
the following proposition, which simply restates results of 
Wonham [24] in the present framework. 

Proposition 4.9: a) (Re E R, iff there exists a map F(E):L"(E) 
-+ Lm(c) such that a, = (A(€)  + B(E)F(E)I@ n (Rf) where 63 
represents the range of B(E) over L(E).  b) (R, = (AF(~)163 n ( R e )  
for every map F(E) E F((RJ, where F(@J represents the family 
of feedback matrices F(E) such that (Re  is AF(c)-invariant. 0 

Let (Rf E R, and (Re  x@,. Then, it turns out that (Rfl 
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is almost (A, E)-invariant. Finding inputs for steering trajectories 
arbitrarily close to a,, is done by calculating an F(E) such that a, 
is AF(E)-invariant and the eigenvalues corresponding to CRe are 
continuous at E = 0 and asymptotically stable. The following 
lemma and proposition show this. 

Lemma 4.10: Given a pair (A, B), let CRc E R, and af 
r a n ,  then vO(l)xo s.t. d(xo, @,,)I is O(E)  and t17 > 0, 3 

an input function u( t )  s.t. d(xo(t, E), a,,) is O ( E )  for 0 < t < 7, 
where xo(t, E )  is the trajectory defined by u(t)  and the initial 
condition xo. 

Proof: Here we first need to find a trajectory in af which is 
O(1) for 0 < t < r. Find F(E) s.t. af is AF(E)-invariant and the 
eigenvalues of AF(e) corresponding to 6ic are all continuous at E 
= 0 and asymptotically stable. Then VO(l)xl E a,, xl(t ,  E )  E 
t1t > 0 where xl( t ,  E )  is the trajectory defined by the initial 
condition xI and the input specified by F ( E ) x ( ~ ) .  Since the 
eigenvalues of AF(c) corresponding to are all continuous at E 

= 0 and stable, xl ( t ,  E) is O(1). Therefore, d(xl(t ,  E ) ,  a,,) is O ( E ) ,  
since 61c r a n .  Consider x2(f ,  E ) ,  the trajectory defined by 
the initial condition x2 = xo - x l ,  with xI E af chosen such that 
x2 is O(E). Since the eigenvalues of AF(e) are continuous at E = 0, 
V T  > 0 x2(t, E) is O(E) for 0 < t i 7. Thus, d(xo(t, E), an) is O(E) 
for 0 < t I r. 0 

Proposition 4.11: Given a pair (A, B), let CR, E R, and CR, 
XCR,,  then a,, E V,. 

Proof: Pick some 7 > 0 and apply Lemma 4.10. Thus, 
3u(t)  s.t. d(x(t ,  E ) ,  a,,) is O(E)  for 0 < t 5 r. Then 3 ~ ,  > 0 s.t. 
d(x(t ,  E), a,) < 6 for 0 < t I rand V E  5 E , .  Use x(r,  E )  as the 
initial condition to reapply Lemma 4.10 for the interval 7 < t 5 
27. Find > 0 s.t. I E, and d(x(t ,  E,), an) < 6 for 7 < t I 
27. Repeated use of Lemma 4.10 achieves the desired result. 0 

To illustrate these, consider the following example. 
Example 4.12: Let 

and 

Note that a,, = Im [ 1 0 01 ' + Im [0 0 01 ' and it is an almost (A, 
B)-invariant subspace. Let F(E) = [ - 3 0 - 2 / ~ ] ,  then @le is 
AF(E)-invariant and the eigenvalues corresponding to CRe are at 
- 2, - 4, asymptotically stable and O( 1). Pick the initial state xo of 
Lemma 4.10 as xo = [ l  0 01'. Let xI = [l E 01' E Then, 
xl(t, E) = [-e-' + 2c2', --e-' + &e-2', -€e-' - ~ e - ~ ' ] '  E 
af, and d(xl(t,  E), a,,) is clearly O(E)  for any finite 7. On the other 
hand, x2 = [O - E  01' andx2(t, E )  = [ 2 ~ e - ~ ' ,  2 ~ ~ e - ~ ' ,  -E2e-2r 1 '. 
Thus, d(xo(t), a,) is O(E). So, in the spirit of Proposition 4.11, 
this may be bounded by any 6 for any given r by picking an 
appropriate E = E , .  Then, using x(7, E) as the new initial state and 
repeated use of this procedure achieves the desired result. U 

In this section, we examined the notions of almost (A, B)- 
invariant and almost (A, B)-controllability subspaces in the 
framework that we have developed in this paper and [18]. We 
outlined a method for calculating inputs that steer trajectories 
arbitrarily close to almost (A, @-invariant subspaces or equiva- 
lently force the eigenvalues corresponding to sliding parts of 
almost (A, B)-controllability subspaces to approach - 03. We 
also analyzed the properties of limits of elements in V, and R, as E 
+ 0 from a trajectory point of view. 

V. CONCLUSIONS 

In this paper, we have developed an algebraic approach to high 
gain controls for linear dynamic systems with varying orders of 
reachability. Based on this approach, we addressed the issues of 
high gain inputs for reaching target states, high gain feedback for 
pole placement, and high gain inputs for steering trajectories 
arbitrarily close to almost (A, B)-invariant subspaces and almost 
(A, E)-controllability subspaces. 

The results presented here suggest several directions for further 
research. It is of interest to analyze the orders of feedback gains 
for shifting the limiting eigenvalues as E --* 0 in the more general 
case of proper systems, rather than just systems over T(E). 
Intuitively, if a mode is €-reachable but "l/~-observable," in that 
it has a l l c  coupling to other states, then it should be possible to 
shift its eigenvalue by O( 1) using O( 1) feedback gain. A related 
problem is that of changing the dynamics of a given continuous- 
time system that has multiple time scales [ 1 ,  21 without changing 
its time scale structure. This would involve shifting an eigenvalue 
A, where AIEJ is continuous at E = 0, by some aEJ, a # 0. 

A key problem that bears attention is that of parametrizing 
systems over R. Two heuristic methods could be suggested for 
this. One is to recognize small entries in the matrix, either isolated 
or added to another entry, and replace these with powers of E .  
Another method for parametrization could come from numerical 
reachability tests [3], where for example small singular values at 
different stages of a test may be replaced by (appropriate powers 
of) E. 

It will be important to develop dual results for systems with 
observations y [ k ]  = C ( E ) X [ ~ ]  or y ( t )  = C ( E ) X ( ~ ) .  This could 
then lead to research on connections to optimal control [25], [26] ,  
realization theory, balanced realizations [ 151 and so on. 

Very interesting and important generalizations may be expected 
from more explicit connection to and exploitation of the rather 
large literature on systems over rings, as represented in [6]-[9] for 
example. In particular, extensions to problems involving outputs 
will undoubtedly emerge from this. 

APPENDIX 

Here we develop an algorithm to recover a standard form 
without forming the reachability matrix and computing its Smith 
decomposition. The proofs and details on the algorithm are 
presented in [ 181. Our algorithm can only deal with a pair (A(€), 
E ( € ) )  over T(E), so this restriction is assumed here. The structure 
of a pair (A(€), E(€)) in standard form is then as follows: 

(A.la) 

r Bo(E)  1 
(A.lb) 

Proposition A.1: An Ek-reachable pair (A(€),  B(E))  over T(E) 
is in proper standard form with indexes no, * * e ,  nk iff A(€)  
and B(E) satisfy the following condition. Let Fi(e) = 
D;'(E)A(E)D~(E), Gi(c) = D;'(E)B(E) where Q(E) = diag {Ipp, 
... , E ' Z ~ ~ + .  . . + p k }  then the reachable subspace of (Fi(0), Gi(0)) is 

' d(x, L )  = inf,,,,((x - x'I(. 
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Definition A.2: Let 

(A.2a) 

r BO(E)  1 } P o  

(A.2b) 

then (A,(€), &(E)) is the E’-reachabIe subsystem of (A(€),  B(E))  
with indexes no, a ,  n,. 

As with the submodule structure, the €‘-reachable subsystem 
contains all @-reachable subsystems for j = 0, . . . , i - 1. The 
subsystems are layered with weak couplings of different orders of 
e between each component. Also, 

(A.3) 
and the sequence {e,(€) T i ( € )  @ E ‘ +  T“-”‘(E)} converges to ’yo 
in k steps. In other words, the Eo-reachable submodules of the E‘- 
reachable subsystems approximate the Eo-reachable submodule of 
the system in standard form up to E ’ + ’  accuracy. We use this in 
Algorithm A. 3 below. 

Computation of the reachability matrix is very costly. One has 
to calculate A’(E)B(E) with all the terms in the expansions ofA(E) 
and B(E). Thus, it is desirable to work directly with the pair (A(€),  
B(E)) .  The following algorithm takes advantage of Proposition 
A.l to recover the &reachability indexes. At every step, the 
reachable subspace of a pair, evaluated at E = 0, is computed. 
Then the pair is updated by an appropriate scaling of the 
unreachable part by l / ~ .  The algorithm uses the higher order 
coefficients of the asymptotic expansions only when necessary. 
Also, it is possible to recover the actual Smith decomposition of 
the reachability matrix from the algorithm, if the transformations 
used in the algorithm are restricted to be permutation matrices and 
lower triangular matrices, although this restriction compromises 
numerical stability (see [ 181). 

e,(E)Tm“‘(€) @ €‘+IT“-”’(€) Il yo 

Algorithm A.3: 
Initialize: AO(e) = A ( € ) ,  Bo(€) = B(E),  i = 0 
Step i: 

1. Find U, such that 

L A  

with (Al, B I )  reachable. This determines n;. 
2. If nj = n then go to End, else continue. 
3. Let = D ; I ( E ) U _ I A ~ ( E ) U ~ D ~ ( E ) ,  Bj+l = 
D;I(E)U,:I(E)B;(E) where D;(E) = diag {Z”., dn-”;}. 
(It is not necessary to carry out the computat?lon for all the 

4. Increment i ,  go to Step i .  
coefficients of A;(€)  and &(E); see [18, Note 11.) 

End: k = i ,  the system is Ek-reachable with indexes no, . . . 

ACKNOWLEDGMENT 

nk. d 

The authors are very grateful to Prof. E. Sontag and the 
reviewers for their painstaking comments on the first version of 
this paper. The authors have tried to reflect their suggestions in 
this revision. 

REFERENCES 

[I] X.-C. Lou, A. S. Willsky, and G. C.  Verghese, “An algebraic 
approach to time scale analysis of singularly perturbed linear systems,” 
Int. J .  Contr., 1988. 

X.-C. Lou, G. C. Verghese, A. S. Willsky, and P. G. Coxon, 
“Conditions for scale-based decompositions in singularly perturbed 
systems,” Linear Alg. Appl. (Special Issue on Linear Algebra in 
Electrical Engineering), 1988. 
C. C. Paige, “Properties of numerical algorithms related to computing 
controllability,” IEEE Trans. Automat. Contr., vol. AC-26, Feb. 
1981. 
N. G. de Bruijn, Asymptotic Methods in Analysis. New York: 
Dover, 1981. 
M. Vidyasagar, Control System Synthesis: A Factorization Ap- 
proach. 
E. W. Kamen and P. P. Khargonekar, “On the control of linear 
systems whose coefficients are functions of parameters,” IEEE Trans. 
Automat. Contr., vol. AC-29, Jan. 1984. 
E. D. Sontag, “An introduction to the stabilization problem for 
parametrized families of linear systems,” Contemporary Math., vol. 
47, 1985. 
J. W. Brewer, J. W. Bunce, and F. S. Van Vleck, Linear Systems 
Over Commutative Rings (Lecture Notes in Pure and Applied 
Mathematics). New York: Marcel-Dekker, 1986. 
Y. Rouchaleau and E. D. Sontag, “On the existence of minimal 
realizations of linear dynamical systems over Noetherian integral 
domains,” J. Comp. Syst. Sci., vol. 18, 1979. 
E. D. Sontag, private communication, June 1987. 
P. H. Petkov and N. D. Christov, “A computational algorithm for pole 
assignment of linear multi input systems,” IEEE Trans. Automat. 
Contr., vol. AC-31, pp. 1044-1047, Nov. 1986. 
R. V. Patel and P. Misra, “Numerical algorithms for eigenvalue 
assignment by state feedback,” Proc. IEEE, vol. 72, pp. 1755-1764, 
Dec. 1984. 
G. S. Miminis and C. C. Paige, “An algorithm for pole assignment of 
time invariant linear systems,” Int. J .  Contr., vol. 35, no. 2, pp. 341- 
354, 1982. 
B. C. Moore, “On the flexibility offered by state feedback in 
multivariable systems beyond closed loop eigenvalue assignments, ” 
ZEEE Trans. Automat. Contr., pp. 689-692, Oct. 1976. 
L. Pernebo and L. M. Silverman, “Model reduction via balanced state 
space representations,” IEEE Trans. Automat. Contr., vol. AC-27, 
Apr. 1982. 
D. Boley and W. S. Lu, “Measuring how far a controllable system is 
from an uncontrollable one,” IEEE Trans. Automat. Contr., vol. 
AC-31, pp. 249-251, Mar. 1986. 
J. H. Chow, “Preservation of controllability in linear time-invariant 
perturbed systems,” Int. J. Contr., vol. 25, pp. 697-704, 1977. 
C. M. Ozveren, “Asymptotic orders of reachability in linear dynamic 
systems,” M.S. thesis, Mass. Inst. Technol., Jan. 1987. 
J. C. Willems, “Almost invariant subspaces: An approach to high gain 
feedback design-Part 1,” IEEE Trans. Automat. Contr., vol. AC- 
26, Feb. 1981. 
H. L. Trentelman, “Almost invariant subspaces and high gain 
feedback,” Ph.D. dissertation, Rijksuniversiteit Groningen, May 
1985. 
G. C. Verghese and T. Kailath, “Rational matrix structure,” IEEE 
Trans. Automat. Contr., vol. AC-26, Apr. 1981. 
P. M. Van Dooren, P. Dewilde, and J. Vandewalle, “On the 
determination of the Smith-Mc Millan form of a rational matrix from 
its Laurent expansion,” IEEE Trans. Circuits Syst., vol. CAS-26, 
Mar. 1979. 
T. Kato, A Short Introduction to Perturbation Theory for  Linear 
Operators. New York: Springer-Verlag, 1982. 
W. M. Wonham, Linear Multivariable Control: A Geometric 
Approach, 3rd Ed. 
H. L. Trentelman, “Families of linear-quadratic problems: Continuity 
properties,” IEEE Trans. Automat. Contr., vol. AC-32, Apr. 1987. 
1. C. Willems, A. Kitapqi, and L. M. Silverman, “Singular optimal 
control: A geometric approach,” SIAM J. Contr. Optimiz., vol. 24, 
Mar. 1986. 

Cambridge, MA: M.I.T. Press, 1985. 

New York: Springer-Verlag, 1985. 

Ciineyt M. Ozveren was born in Istanbul, Turkey, 
on July 20, 1962. He received the B.S. and M.S. 
degrees in electrical engineering and computer 
science and the Electrical Engineer degree, all from 
the Massachusetts Institute of Technology. 
Cambridge, in 1984 and 1987, respectively. 

He is currently pursuing the Ph.D. degree at the 
Massachusetts Institute of Technology. From 
January to August 1988 he conducted research at the 
Institut de Recherche en lnformatique et Systemes 
AICatoires, France. His research interests are 

associated with the analysis and control of large scale dynamic systems 
including applications to communications systems, manufacturing systems, 



OZVEREN er al.: ASYMPTOTIC ORDERS OF REACHABILITY 923 

and economics. Currently, he is interested in the analysis and control of 
discrete event dynamic system. 

Mr. Ozveren is a member of Sigma Chi, Tau Beta Pi, and Eta Kappa Nu. 

George C. Verghese (S’74-M’78) received the 
B.Tech. degree from the Indian Institute of 
Technology, Madras, in 1974, the M.S. degree 
from the State University of New York, Stony 
Brook, in 1975, and the Ph.D. degree from Stanford 
University, Stanford, CA, in 1979, all in electrical 
engineering. 

He then joined the Massachusetts Institute of 
Technology, where he is now an Associate 
Professor, holding the Soderberg Chair in Power 
Engineering for 1986-1988, and is affiliated with 

the Laboratory for Electromagnetic and Electronic Systems. His research 
interests are in the areas of systems, control, and estimation, especially as 
applied to power electronics, electrical machines, bulk power systems, and 
chemometrics . 

Dr. Verghese is an Associate Editor of Autornatica. 

Alan S. Willsky (S’70-M’73-SM’SZ-F’86) 
received both the S.B. and the Ph.D. degrees from 
the Massachusetts Institute of Technology, 
Cambridge, in 1969 and 1973, respectively. 

In 1973 he joined the M.I.T. faculty, where he 
currently holds the position of Professor of 
Electrical Engineering. From 1974 to 1981 he 
served as Assistant Director of the M.I.T. 
Laboratory for Information and Decision Systems. 
He is also a founder and member of the Board of 
Directors of Alphatech, Inc. He has held visiting 

positions at Imperial College, London, and L’Universit6 de Paris-Sud. He is 
the author of the research monograph Digital Signal Processing and Control 
and Estimation Theory and is coauthor of the undergraduate text Signals 
and Systems. His present research interests are in problems involving abrupt 
changes in signals and systems, multidimensional estimation, 
decision-directed signal processing, and the asymptotic analysis of control and 
estimation systems. 

Dr. Willsky is a Fellow of the IEEE. From 1969 to 1973 he held a Fannie 
and John Hertz Foundation Fellowship. In 1975 he received the Donald P. 
Eckman Award from the American Automatic Control Council. He was 
awarded the 1979 Alfred Nobel Prize by the ASCE and the 1980 Browder J.  
Thompson Memorial Prize Award by the IEEE for a paper excerpted from his 
monograph. He is Editor of the M.I.T. Press Series on Signal Processing, 
Optimization, and Control, was Program Chairman for the 17th IEEE 
Conference on Decision and Control, has been an Associate Editor of several 
journals including the IEEE TRANSACTIONS ON AUTOMATIC CONTROL, is 
a member of the Board of Governors of the IEEE Control Systems Society, 
and was Program Chairman for the 1981 Bilateral Seminar on Control 
Systems held in the People’s Republic of China. He also gave the opening 
plenary lecture at the 20th IEEE Conference on Decision and Control. 


