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ABSTRACT 

Singularly perturbed models of the form i(t) = A( c)x( t), with A(r) analytic at 
0, nonsingular for E E (0, q,], and singular at c = 0, arise naturally in various problems 
of systems and control theory. Under a so-called multiple semisimple null structure 
(MSSNS) condition on A(c), the eigenstructure of this matrix has a multiple-scale 
property that allows the asymptotic eigenstructure of the matrix to be studied via 
reduced-order matrices associated with the separate scales. Under a stronger multiple 
se&stability or MSST condition, this eigenstructure decomposition translates into a 
time-scale decomposition of the solution r(t) of the system. This paper is aimed at 
illuminating the MSSNS and MSST conditions. Using ideas from an algebraic ap- 
proach that we have developed for the study of singularly perturbed systems, we show 
(among other results): that the Smith decomposition of A(E) permits transformation 
to a form in which the scales become explicit and the computations become 
transparent and simple; that this form allows us to identify perturbations of A(c) that 

all have the same scale-based decompositions; that the eigenstructure of A(c) does 
indeed display multiple scales under MSSNS, and that the eigenvalues in this case can 
be approximated using reduced-order calculations; that A(E) has MSSNS if and only 
if the orders of its invariant factors equal the orders of its eigenvalues; that this 
happens if and only if the orders of its invariant factors and principal minors are 
related in a specified way; and that A(c) has MSST if and only if it is Hurwitz for 
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c E (0, r,] and has MSSNS and satisfies the requirement that the order in c of the real 
part of every eigenvalue is not greater than the order of its imaginary part. 

1. INTRODUCTION 

Various problems in systems and control theory give rise to singularly 
perturbed, linear, time-invariant, n&order models of the form 

i(t) = A(++) 

with the matrix A(r) being n X n, analytic at 0, nonsingular’ for c: E (O,e,] 
and singular at e = 0; see the recent books [l], [2] and survey [3]. Such 
models are found, for example, in studies of root-locus behavior under 
high-gain feedback [4-61, in the analysis of power systems [7], and in the 
context of Markov models [8, 91. The small positive parameter E in these 
respective contexts may, for example, represent the reciprocal of a high gain 
in a feedback controller, the reciprocal of the large rotational inertia of some 
generator, or a small failure rate or inspection rate in a reliability model. 

A key objective in the study of singularly perturbed models is to express 
the behavior of (1) as a perturbation of its behavior for c = 0. In particular, 
since A(r) becomes singular at z = 0, attention focuses on behavior associ- 
ated with those eigenvalues of A(r) that tend to 0 as c tends to 0, i.e. on the 
“ zero group” of eigenvalues of A(c) [lo]. A prototype for results on 
singularly perturbed systems is provided by the following example. 

EXAMPLE 1. Suppose 

where the Ai j are constant matrices. Zf A,, is nonsingular, then it is not hard 
to show that the eigenvalues of A(E) fall into two separate groups: a fast 
group that is asymptotically dominated by the eigenvalues of A,,, and a slow 
group -the zero group-that is asymptotically dominated by the eigenvalues 

‘Our results can be extended q&e easily (see [14], [15]) to the case where A( C) has 
semisimple null structure, i.e. where the eigenvalue at 0 has geometric multiplicity equal to its 
algebraic multiplicity, but for simplicity we avoid this case here. 
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of E&, where A, is the Schur complement of A,, in the matrix 

All Al2 A= A 
i 1 21 42’ 

(3) 

I.e., 

A, = A, - A,,A,‘A,,. (4) 

Note that our standing assumption on the nonsingularity of A(C) away from 
0 guarantees that X in (3) is nonsingular. With this assumption, it is easy to 
see that the assumed nonsingularity of A,, implies the nonsingularity of A,. 

The role of A,, in approximating the fast group of A(C) is easy to 
understand on the basis of simple continuity arguments, since the nonzero 
eigenvalues of A(0) are those of A,,. The appearance of Ass requires a little 
more motivation. For this, apply to A(r) a similarity transformation defined 
by the matrix 

qc) = (; KylZ), 

thereby obtaining 

WAW-W = 

(5) 

(6) 

where the *‘s denote constant matrices. Since the coupling between the 
nonsingular diagonal blocks that is induced by the off-diagonal blocks appears 
smaller in (6) than in (l), one might now be more inclined to believe the 
above claim regarding approximation of the fast and slow groups of eigenval- 
ues of A(r). A rigorous proof can be obtained by applying well-established 
arguments to the matrix in (6), for example a block version of Gerschgorin’s 
theorem [ll], or the arguments in [12], which we follow in Section 3. 

Further intuition for this separation result will be obtained when we 
continue the example later in this section. The conclusion for now is that 
knowing the eigenvalues of A,, and A, allows one to determine the 
dominant behavior of the eigenvalues of A( E), and hence to obtain asymptot- 
ically good approximations of them via reducedorder calculations. It should 
already be evident from the sketch above that the separation results are 
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unchanged if the Aij in (2) have higher-order terms appended to them. This 
fact will be elaborated on in Section 2. 

The special form of A(c) in (2) made the computations above quite 
transparent, while the condition that Air is invertible made the computations 
possible. The invertibility condition is equivalent to this special A(c) having 
what is termed multiple semisimple null structure, or MSSNS [8, 131. The 
MSSNS condition for a general A(e) plays a fundamental role in studies of its 
asymptotic eigenstructure, and a primary objective of the present paper is to 
illuminate this condition by presenting certain equivalent forms of this 
condition and by examining certain consequences of MSSNS. We begin in 
Section 2 with a review of results in [14], [15] that show how the Smith 
decomposition of a general A( C) yields a similarity transformation that brings 
this matrix to a special form -which we term the (reduced) explicit form -in 
which MSSNS is easily checked and scale-based decomposition easily carried 
out. This explicit form is an extension of the one in Example 1 above, and 
checking it for MSSNS reduces to checking invertibility of a sequence of 
Schur complements. The explicit form also allows us to identify perturbations 
of A(C) that have the same scale-based decompositions. 

Building on the explicit form, Section 3 deduces certain consequences of 
MSSNS and certain equivalent tests for it. In particular, it is shown that the 
eigenstructure of A(E) displays multiple scales under MSSNS, and that the 
eigenvalues in this case can be approximated using reduced-order calcula- 
tions. It is also demonstrated that A(e) has MSSNS if and only if the orders 
of its invariant factors equal the orders of its eigenvalues. 

Since eigenvalues are determined by principal minors while invariant 
factors are determined by all the minors, it is evident that MSSNS must imply 
some relation between these two sets of minors. We shown in Section 4 that 
in fact the MSSNS condition is satisfied if and only if the orders of the 
invariant factors and principal minors of A(c) are related in a specified way. 
The insights provided by these results can be applied, as outlined in that 
section, to the problem of scaling a matrix A(C) via a diagonal similarity 
transformation to induce MSSNS in it. 

Many of the results on MSSNS in Sections 3 and 4 turn out to echo results 
in [5]. The development in [5] is in the context of asymptotic root loci of 
systems under high-gain feedback, and in principle a mapping can be made 
between the formulation there and the one here. Though our route to results 
of interest for the system (1) is more direct, the treatment in [5] is of value in 
rounding out our treatment, and the interested reader is encouraged to 
examine that paper as well. 

The illustration in Example 1 involved eigenstructure decomposition. One 
can, with further assumptions, go beyond this to a time-scale decomposition 
of the solution x( t ) of (l), as shown next. 
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EXAMPLE 1 (Continued). Consider the system (1) with A(c) defined as 
in (2), so that 

Much of the systems and control literature (see [l]-[3]) focuses on this 
prototype example (or one that can be obtained from it by simply changing 
the independent variable from t to r = et). Take A,, to be nonsingular, as 
before. If 6 = 0, then x%(t) evidently remains constant at its initial value 
x,(O), while xi(t) is governed by the fast group of eigenvalues of A(O), 
namely the eigenvalues of A,,. Under the assumption that A,, is Hun&z 

and not just nonsingular, i.e. that all its eigenvalues he in the open left half of 
the complex plane, xl(t) settles down after a fast transient to a steady-state 
value that is readily calculated by setting ItI = 0 in (7): xr(co) = 
- A,‘A,,r,(oo) = - A,‘A,,x,(O). 

Under the same assumption of Hurwitz A,,, the behavior for small 
nonzero c is only slightly different from this: x2(t) now varies slowly instead 
of being constant, so that the behavior of xl(t), after a fast transient 
governed approximately by the eigenvalues of A,,, is well approximated by 
- A;lA12x2(t). Using this latter approximation for xl(t) in the equation for 
?a( t ) yields the following approximate governing equation for x2( t ): 

iz(t) =c(A,- A,,A,‘A&&) = 42~&) (8) 

The appearance of the matrix CA, here is consistent with what was claimed 
earlier, namely that the slow group of eigenvalues of A(r) is well approxi- 
mated by the eigenvalues of CA”,. If we assume that 6, is also Hurwitz, (8) 
yields a uniformly good approximation to the solution over an infinite 
interval. To summarize all this more precisely, what can be shown under the 
above assumptions is that 

x1(t) ( H x1&) + x1,(4 + Oh) 
4) = x&t) + w I ’ t 30, (94 

where 

fly(t) = A,,xlf(t), Xlf@) = 40 - %(O)> (9b) 

%(t) = - A,‘-%,x,,(t), (94 

%&) = &2X&), do) = %(OL (94 
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and the subscripts f and s respectively denote “fast” and “slow” parts of the 
solutions. 

The Hurwitz conditions above are equivalent to having the special A(e) 
in the example satisfy a so-called multiple semi&ability, or MSST, condition 
[S, 131. The MSST condition for a general A(E) plays a fundamental role in 
the time-scale decomposition of singularly perturbed systems; see [8] and 
[13]-[15]. The last reference, [15], contains particularly strong results on the 
connection between MSST and time-scale decompositions. In the present 
paper, our focus is not on the time-scale decomposition itself but on features 
of the MSST condition and on its relation to other system properties. The 
MSST condition is introduced along with MSSNS in Section 2, where the test 
for MSST for systems in explicit form is presented. We then show in Section 
3 that A(e) has MSST if and only if it is Hurwitz for c E (0, co] and has 
MSSNS and satisfies the requirement that the order of the real part of every 
eigenvalue is not greater than the order of its imaginary part. This result 
suggests the role of MSST in obtaining time-scale decompositions. 

2. DECOMPOSITION CONDITIONS FOR A(r) IN EXPLICIT FORM 

2.1. Definitions of MSSNS and MSST 
Before presenting our algebraic approach to scale-based decompositions 

and the conditions that enable these decompositions, we shall review the 
definitions of MSSNS and MSST presented in [8], [13]. First note that a 
matrix is said to have semisimple null structure, or SSNS, if the geometric 
multiplicity of the eigenvalue at 0 (when it is present) equals its algebraic 
multiplicity; it is said to be semistable if it has SSNS and all its nonzero 
eigenvalues have negative real parts. 

Since A(e) is analytic at 0, it has a Taylor expansion: 

A(c) = f rPF1,. 
p=o 

(IO) 

Let M,(c) be the total projection for the zero group of eigenvalues of A(r), 
i.e. the projection onto the corresponding eigenspace [lo]. If F,, in (10) has 
SSNS, then it can be shown that 
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also has a Taylor expansion, of the form 

If F, also has SSNS, we can similarly define 

AA0 = M2(ry2’c) = f <P& 

p=O 

393 

where M,(r) is the total projection for the zero group of eigenvalues of 
AZ(e). This process can be continued, terminating when F,, does not have 

SSNS or when 

P%,)+ . . . + P(F,,) = n, 03) 

where p(F) denotes the rank of F, and n is the order of the system (1) i.e. 
the dimension of A(r). 

DEFINITION. A(E) is said to satisfy MSSNS if the above construction 
can proceed all the way to the stage m at which (13) is satisfied, with 
F 10,. . . , F,, all having SSNS. If in addition FIO,. . . , F,, are all semistable, 
then A(E) is said to sati& MSST. 

The significance of these two conditions emerges from the results in [8], 
[ 13]-[ 151. In particular, [ 151 shows that (1) has what is termed a strong 
time-scale decomposition if and only if it satisfies MSST. If the system 
satisfies only MSSNS but is stable for positive E, then it may still be possible 
to obtain what [14] and [15] term an extended time-scale decomposition. In 
any case, it is always possible under MSSNS to obtain an eigenstructure 
decomposition, as will be shown in Section 3. 

2.2. Transformation to Explicit Form Using the Smith Decomposition of 

A(E) 
The starting point for our results is the Smith decomposition of A(E). 

Note that the entries of A(E) are elements of the (local) ring of functions 
analytic at E = 0, i.e. functions expressible as Taylor series in c. This ring, 
which we shall denote by W, is a Euclidean domain [16], with the degree 
of an element being the order of the first nonzero term in its Taylor 
expansion- the degree of uiei + ai+iei+’ + * +. , a, # 0, is thus i. The units 
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in this ring are precisely those elements that have degree 0, i.e. those that are 
nonzero at E = 0. A square matrix U(C) over this ring, i.e. one with entries 
from this ring, is termed unimodular if det U(E) is a unit, or equivalently if 
det U(0) # 0, or equivalently if U- l(e) is also over this ring. 

It now follows from well-known results on Smith forms of matrices over 
Euclidean domains [16] that the n X n matrix A(C) has the decomposition 

A(4 =P(+WQ(d (144 

where P(C) and o(e) are unimodular matrices over W and 

D(e) = blockdiagonal( Zkl, cZk,, . . . , emPIZk_) (14b) 

with I,, denoting an identity matrix of dimension k i X k i, with k j = 0 
corresponding to absence of the jth block, and with k, # 0. The indices k j, 
and hence D(c), are unique, though P(C) and Q(e) are not. 

The above indices actually capture the invariant factor structure of A( c); 
in the pole-zero language of [ 171, which is devoted to rational matrix structure 
but has much that applies to local rings, the indices represent the zero 
structure of A(e) at z = 0. The ith invariant factor, by definition, is the ratio 
of the greatest common divisor (gcd) of all i X i minors of A( C) divided by 
the gcd of all (i - 1) X (i - 1) minors, with the first invariant factor being 
defined as the gcd of all the 1 X 1 entries. Since the gcd is only defined up to 
a unit, we can always represent it in the ring W by an element of the form e’ 
for some nonnegative integer r, so the invariant factors are also of this form. 
Now what the Smith decomposition in (14) captures is the fact that A( C) has 
kj invariant factors of the form ej-r, i.e. kj invariant factors of (degree or) 
order j-l. 

The decomposition (14) allows us to similarity transform the given model 
(1) to an equivalent model in which the potential for scale-based decomposi- 
tion is considerably more transparent, and the analysis is as direct as in 
Example 1. For this, define 

y(t) = P-y+(t) (15) 

so that, combining (1) and (14), one gets the explicit fmn model 

@a) 
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or 

x A&) A&) -.* 
. . . 

where the matrix A(C) is unimodular and given 

395 

, (16b) 

[We have dispensed with overbars for the entries of A(C) in (16b) so as to 
simplify the notation.] Since the unimodular transformation matrix P(e) in 
(15) is finite and nonsingular at e = 0, the asymptotic behavior of (1) may be 
retrieved without difficulty from that of the equivalent system (16). It is also 
easy to see from Section 2.1 that such a unimodular similarity transformation 
does not alter MSSNS or MSST. (For more on such “analytic similarity” of 
matrices, see [18].) 

We can go still further. Examination of (16a, b) might suggest that the 
potential for scale-based decomposition is, at least under appropriate condi- 
tions, completely displayed by D(C), with the unimodular matrix A(C) not 
contributing anything. This thought would lead one to examine a model in 
which A(E) is replaced by x(O): 

i(t) = D(+qO)z(t). (17) 

We shall term this the reduced explicit fbrm of (1). A key result in [14] (see 
also [15]), obtained by carrying out the computations of Section 2.1 in detail 
for A(E) given by (14), is that the models in (l), (16) satisfy MSSNS 
(respectively MSST) if and only if the above reduced explicit model satisfies 
MSSNS (respectively MSST). Furthermore, the eigenstructure decomposition 
of (17) obtained under the MSSNS condition is an eigenstructure decomposi- 
tion of (16) and (1); this will be discussed in Section 3. Similarly, if MSST is 
satisfied, then a time-scale decomposition of (17) is shown in [14], [15] to be a 
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timescale decomposition of (16) as well, and to yield a time-scale decomposi- 
tion of (1) on transformation by P(0). 

These results therefore justify our discarding all e-dependent terms in 
x(e), if our interest is only in testing for MSSNS or MSST and effecting the 
scale-based decompositions above. This is a major simplification, since tests of 
the MSSNS/MSST conditions in (17), and computations associated with 
scale-based decompositions of it, are as transparent and direct as those 
associated with the model in Example 1 (which is already in reduced explicit 
form). The existing literature on systems in the special form (7) can therefore 
be easily applied, with straightforward extensions, to the much more general 
systems described by (l), once the Smith decomposition (14) of A(E) has 
been determined. 

Another important consequence of the results above is that inferences 
made regarding (1) on the basis of computations with (17) also hold for any 
other system that has the same reduced explicit form, (17). The set of 
matrices A*(C) that give rise to the same reduced explicit form (17) as A(C) 
is precisely given by 

A,.,(e) =R(~)P(~)D(~)[~(O)+A(Z)]P-~(~)R-~(Z), (Isa) 

where R(r) is any unimodular matrix and A(r) is any matrix over W such 
that A(0) = 0. This can be rewritten as 

A,+&) = R(++)[Q-‘(e)tQ(O)P(O)+ A(L)]P-‘(~)~R-‘(~) 

= R(c)A(+,(c)R-‘(c), (3 

where U,(e) is a unimodular matrix such that U,(O) = 1. Each A(<) gives rise 
to a unique unimodular matrix satisfying this condition, and conversely. The 
set of interest is thus precisely characterized by (18b). 

The key to the above development is the Smith decomposition of A(c). 
Computation of the Smith form is nontrivial, of course, and involves oper- 
ations comparable to those required by [8], [13] to compute the Rip in 
(lo)-(13) (though we have found, for examples that are small enough to work 
out by hand, that computation of the Smith form is decidedly simpler than 
the necessary operations on the matrix coefficients of Taylor series). How- 
ever, our approach here permits the analysis of (1) to be separated into a 
transformation step, which involves determination of the Smith form and 
produces the reduced explicit form, and a greatly simplified decomposition 
step. In contrast, the operations of transformation and decomposition are 
interleaved in the approach of [8] and [13]. 

Partly because of its two-step nature, and partly because of the algebraic 
connections, our approach has also yielded several new insights and produced 
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new results, for example on feedback assignment of closed-loop time scales, 
on perturbations that preserve time-scale decompositions, on cdependent 
amplitude scaling of state variables to induce MSSNS, and so on; see [14], 
[15], and results in this paper. 

2.3. Checking MSSNS and MSST in the Reduced Explicit Form 
To simplify notation for the reduced explicit form, denote x(O) of (17) 

simply by A, and its entries A ij(0) by A ii. The description of interest to us is 

or 

then 

i(t) = D(c)Az(t) (194 

0 

"k, 

0 

. . . 

. . . 

. . . 

\ I 

I 

\ 

(19b) 

I 

The objective of this subsection is to present the tests of MSSNS and MSST 
for the reduced explicit form above. It is easy in principle, though nota- 
tionally a little cumbersome, to apply the operations specified in Section 2.1 
to the system (19) and thereby deduce the tests. We shall simply state the 
results obtained in [14]. One might anticipate these results in view of the 
similarity of (19) to (7); the conditions for MSSNS (respectively, MSST) are 
those that one would naturally impose in order to get an eigenvalue decom- 
position (respectively, time-scale decomposition) of the type in Example 1. 

To begin, suppose the k, X k, matrix A,, is nonsingular. Let A, denote 
$e matrix obtained as the Schur complement of A,, in A [ = x(O)], and let 
A,, denote its leading k, X k, submatrix, so 
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A, = A, - A,,A,11A,2. @Ob) 

Similarly, if A, is nonsingular, let A, denote the Schur complement of Azz 
in A,, and let A”, denote its leading k, X k, submatrix. The pattern in this 
construction is now evident. If at some stage j we have ki = 0, then the 
corresponding stage is skipped; we then relabel A j as A j+ i, denote its 
leading k j + 1 x k j + I submatrix by A” j + i, j + I, and proceed. Note that A 1 is to 
be taken as A and Ai, as A,,. The result now is the following: 

The matrix D(C) A in (19), and therefce A(e) as well, satisfies MSSNS 
(respectively, MSST) if and only if every A, for which k j f 0, j = 1,. . . , m, 
is nonsingulur (respectively, Hun&z). 

(Note that, for this paper, a Hurwitz matrix is one whose eigenvalues are in 
the open left half plane.) Since A is nonsingular-a consequence of our 
assumption that A(c) is nonsingnlar away from O-the nonsingularity of 
ff mm is guaranteed if those preceding A for which k # 0 are all nonsingu- 
lar. The index m here can be seen to be Jr e same one t h at appears in Section 
2.1. 

It was mentioned in Section 2.2 that P(C) and Q(e) in the Smith 
decomposition (14) are not unique. A consequence of this is that the matrix 
A = Q(O)P(O) is not uniquely determined by the decomposition. However, 
the results here do not depend on which decomposition is chosen. In 
particular, [14] shows that the above Schur complements obtained from 
different decompositions are related by similarity transformations. 

3. MSSNS/MSST, EIGENVALUES AND INVARIANT FACTORS 

3.1. MSSNS and the Orders of Eigenvalues and Invariant Factors 
This subsection will firstly establish the following characterization of 

MSSNS: 

RESULT 1. A(e) has MSSNS if and only if the orders of its eigenvalues 
equal the orders of its invariant factors, i.e. if and only if it has precisely k j 
eigenvaluesoforderj-1 forj=l,...,m. 
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An analogous result is presented as the central theorem of [5], but mapping 
the (high-gain feedback root locus) formulation and proof there to our setting 
here would lead to a considerably more cumbersome proof than the direct 
one below. 

In the process of proving Result 1, we shall also be demonstrating the 
earlier claim that under MSSNS the eigenvalues of A(r) fall into separate 
groups, with k j eigenvalues of order j - 1 in the jth group, j = 1,. . . , m, and 
that the eigenvalues in these groups can be approximated via the eigenvalues 
of reduced-order matrices. The precise result will be stated after proving 
Result 1. 

Proof Since the unimodular similarity transformation P(E) described in 
Section 2.2 preserves MSSNS/MSST, as well as eigenvalues and invariant 
factors, it suffices to consider a matrix A(c) that is already in explicit form: 

A(E) = D(++) (214 

i 
I k, 0 *.’ 0 

0 dk, * ‘. 0 
= . . . 

with A(E) unimodular. 
To show the “only if” part first, assume that A(c) has MSSNS. Following 

arguments in [12], let 

di(r, h) = det[e-(j-l)A(E) - AZ] (22) 

and 

fi(e,X) =detF(e,X), (ma) 
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ci-lz h 0 . . . 0 0 

0 Ej-2z kz . . . 0 0 

6 ;, ..: . Ezkl-, 6 

0 0 . . . 0 zkj+kj+l+ ... +k. 

[c-(j-l)A(,) - AZ], 

Pw 

fi(C, A) =cvdj(c3 A)> u=j&-i)ki. (24) 
i-l 

For e + 0, d j(~, A), regarded as polynomials in X, will have the same roots. 
Also, jj(e, X) is a continuous function of e at f = 0, with 

IA,, A, . . . A,~ . . . A l?TI \ 

A,, A, a-. Azj .-a A 2m 

jj(O,h)=det : i 
AjjlhI ..a A;, 

(WI 
Ajl Aj2 a.. 

0 0 .** 0 . . . 
Azk 1+1+ . . . +k, 

The A i j here are the same as in (19), i.e. submatrices of the reduced explicit 
form. The latter determinant is easily evaluated by iteratively using the fact 
that 

= det A,,det A”, (26) 

if A,, is nonsingular. The result of the evaluation, invoking the characteriz_a- 
tion of MSSNS in Section 2.3 to ensure that the Schur complements Aii 
below (which are the same as those in Section 2.3) are nonsingular for 
i=l ,...,j-1,is 

(det[Xjj-hZ])h”, w= E ki. (27) 
j+l 
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Thus 4(0, h ) has k j roots thtt are identical to the k j eigenvalues of A jj, 
which we shall denote by X,(A .j), i = 1,. . ., kj. 

It follows that @e, h) and h ence di( e, h) have ki roots that, after 
appropriate matching, can be made arbitrarily close to these respective 
eigenvalues by choosing 6 small enough. Now (22) shows that the roots of 
d .(c, h) are the eigenvalues of z -(j-r)A( c). Hence there are ki eigenvalues 
o J A(C), which we shall denote by 

j-l 

'siti Sj= C k,, i=l,..., kj, (28) 
q-1 

such that h, +i/ej-l can be brought arbitrarily close to Ai( A,,) by choosing 
c small eno&h (we are assuming for notational simplicity that the indexing 
follows the matching). The conclusion, since all the eigenvalues of Ajj are 
nonzero by the assumption of MSSNS, is that A(C) has precisely kj eigen- 
values of order j - 1. 

For the “if” part, suppose that Ajj is singular, but Ail for i = 1,. . . , j - 1 
are nonsingular. Then fi(0, A) in (27) has at least w + 1 roots at 0, so 
c -(i- ‘)A ( C) has at least w + 1 eigenvalues that can be made arbitrarily close 
to 0 by choosing e small enough. It follows that A(r) has at least w + 1 
eigenvalues of order higher than j - 1. However, it has only w invariant 
factors of order higher than j - 1. m 

This result is of intrinsic interest as a characterization of MSSNS. It also 
leads naturally to the results of Section 4 and provides approaches to the 
problem of inducing MSSNS by amplitude scaling of state variables via 
(nommimodular) c-dependent diagonal similarity transformations. The proof 
of Result 1 also establishes: 

RESULT 2. Under MSSNS, the eigenvalues of A(E) converge asymptoti- 
cally to the eigenvalues of zj-lffjj, j = l,..., m. 

3.2 Relating MSST to MSSNS and the Eigenvalues of A(e) 
It is of interest to see precisely what sorts of stability conditions on the 

original system (1) will make MSST a consequence of MSSNS. The new result 
to be proved in this subsection is the following: 

RESULT 3. A(C) has MSST if and only if(i) it has MSSNS, and (ii) it is 
Hwwitz for c E (0, E,,], and (iii) the order of the real part of every eigenvalue 
is not greater than the order of its imuginuy part. 
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The third condition requires that the order of the damping be at least as 
significant as the order of the oscillation frequency. 

Some elementary examples may help to illustrate the result before we 
present the proof. The first condition rules out the matrix 

from having MSST, even though it satisfies the other two conditions, but 

satisfies all three conditions and has MSST. The third condition rules out 

Proof. To prove_ the “only if” part, note from Section 2.3 that MSST 
implies that all the A .j, j = 1,. . . , m, are Hurwitz. They are hence a fortimi 
nonsingular, so A(c) has MSSNS and (‘) 1 is established. It then follows from 
Result 2 that the eigenvalues of A(c) converge asymptotically to those of 
&‘A. .) so (ii) and (iii) follow. 

Fdrf the “if” part, it follows from (i) and Result 2 that the eigenvalues 
X.si+i, i=I ,..., ki, j=l,..., m, of A(e) converge asymptotically to those of 
<]-‘A jj. From the nonsingularity of the Schur complements A jj, we see that 

‘s.+i 

~~o*=A,(djj) #O. 

It follows from (iii) that 

A8.+i 

b Re (j-1 

t-+0 

A=Rehi(Ajj) #O Wb) 

Now (ii) implies that the limit above is negative, and it follows that the Schur 
complements are Hurwitz. The results of Section 2.3 then show that A( C) has 
MSST. n 
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The assumption of MSST has dominated studies of time-scale decomposi- 
tions. However, systems such as (31) that satisfy conditions (i) and (ii) of 
Result 3, but not condition (iii), have been considered in [ 141, [15], where it 
is shown that so-called extended time-scale decompositions can be obtained 
under appropriate conditions. The basic idea here is to retain some critical 
e-dependent terms in the scale-based _decomposition, rather than simplifying 
all the way to the constant matrices A jj. 

4. MSSNS, PRINCIPAL MINORS, AND AMPLITUDE SCALING 

4.1. MSSNS and Principal Minors 
Denote the eigenvalues of A(r) by hi, i = 1,. . , , n, and its j X j principal 

minors by M(j) i = 1 I 3 ,‘..> n. It is then well known that 

det[XI-A(c)] =X”-K-1(~hi)+X”-2( c hih,) - ... 
i#k 

+( -l)“(X,...X,) (33a) 

= A* - h”-‘( &$,f/‘)) + h”-2( xM!2)) - . - . + ( - l)"M("). 

Evidently the characteristic polynomial and hence the eigenvalues of A(E) 
are determined by its principal minors. In addition, the orders of the 
coefficients CM,!j) of the characteristic polynomial suffice to determine the 
(fractional or integer) orders of the eigenvalues, via the classical “Newton 
polygon” construction reviewed below; see also [S], [19]. 

The invariant factors of A(e) are determined by the gcd’s of all its minors 
of each dimension. However, Result 1 and (33) lead one to conclude that, 
under MSSNS, the orders of the CM,!i) suffice to compute the invariant 
factors. We show in this subsection that under MSSNS the gcd’s of the 
principal minors of each dimension suffice to determine the invariant factors. 
In the process, we clarify the role that MSSNS plays in this determination, 
obtain an alternate characterization of MSSNS, and develop insights that will 
be useful in the amplitude scaling problem considered in the next subsection. 
Again, there are connections with results in [5], and the reader may wish to 
explore these (see especially Appendix C in [S]). 
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order to state our results, some additional notation is needed: 

will denote the order of the ith invariant factor, so a, = j - 1 if j is 
the smallest integer for which i < k 1 -t * . . + k j, with the k j defined 
as in Section 2.2; 
will denote the (possibly fractional) order of the ith eigenvalue, with 
the eigenvalues assumed to be numbered such that b, < . * * < b,; 
will denote the order of the gcd of all j x j principal minors M{j) of 
A(C); and 
will denote the order of the sum CM,!j) of these principal minors. 

As mentioned above, the standard Newton polygon construction [.5, 191 
can be applied to the relationships embodied in (33a, b) to compute the bi 
from the rj. The basis for this lies in the following lemma. 

set 
LEMMAS. Gioen a set of real numbers x j, j = 1,. . . , n, there is a unique 
of real numbers yi, i = l,..., n, such that the following hold: 

Yl< ** . GYYn, CL11 

f: Yif"j> all j, 04 
i=l 

t: yi = xj when yj# yjil or j = n. W) 
i=l 

The numbers yi may be obtained as the slopes of the segments of the 
“lower hull ” in the (Newton diagram) plot of xi versu.s j (with the origin 
included, i.e. x0 = 0); see Figure 1. 

The values of j that appear in (L3), i.e. values where yl z yj+i or j = n, will 
be termed corner points. 

Though this lemma is not explicitly articulated in the usual approaches to 
the Newton polygon, it is easily seen to underlie them. Both for this reason 
and because a proof follows easily from the construction described in the 
lemma and Figure 1, we omit the proof here; see [14] for details. The lemma 
is of potential value in other settings as well, which is why we have isolated it. 

What makes Lemma 1 applicable to computing the bi from the rj is the 
fact that these two sets of numbers satisfy the above inequalities, with the 
substitutions x j + rj and yi + bi. To see this, note first that (Ll) is trivially 
satisfied, by definition. Also, (33) shows that the sum of the j X j principal 
minors equals the sum of all j-fold products of the eigenvalues, so that (L2) is 
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FIG. 1. Newton polygon construction. 

satisfied. Equality fails to hold in (L2) precisely when there are cancellations 
of the lowest-order terms when summing the j-fold products of eigenvalues. 
For example, if n=2, A,= -1, and X,=l+e, then b,=O (and b,=O) 
but ri = 1. However, if b, # bi+ 1, then there will be only one j-fold product 
of eigenvalues that has order b, + . . - + bi, namely the product A,. . * hi, 
and all other j-fold products will have higher order, so equality holds in (L2). 
Also, if j = n, then there is only one term in the sum, namely Xi . . . A,, so 
equality holds again. Thus (L3) is established. The conclusion is that the bi 
are given by the slopes of the segments of the lower hull in the Newton 
diagram for the points ri. 

Some further connections between the numbers defined above should be 
noted. In general it will be the case that 

pj < rj. (34) 

Equality fails to hold precisely when the leading (lowest-order) terms cancel 
out upon summing the j x j principal minors. When equality holds in (34), 
we shall say that the no-cancellation conditim holds. It is also evident from 
the definition of the ai that 
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Furthermore, the definition of invariant factors in Section 2.2 shows that 
a,+ ..* + a I is the order of the gcd of all j x j minors of A(e), so in 
particular 

j 
C ai f Pj* 

i=l 
(36) 

What (35) and (36) demonstrate is that, with the substitutions xi + pj and 
yi + a j, the integers pi and ai satisfy (Ll) and (L2). If (L3) was also 
satisfied, then Lemma 1 would imply that the a, can be uniquely determined 
from the pi, as the slopes of the segments of the lower hull in the Newton 
diagram for the points pi. 

The next result shows that MSSNS guarantees (I3) with the above 
substitutions, so under MSSNS the invariant factors can indeed be de- 
termined from the gcd’s of the principal minors of each dimension, using the 
Newton polygon construction associated with Lemma 1. The result below 
also shows that under MSSNS (34) holds with equality (i.e., the no-cancella- 
tion condition holds) at the comer points. Conversely, if (L3) holds with the 
preceding substitutions, and if the no-cancellation condition holds at the 
comer points, then A(c) satisfies MSSNS. When A(r) is in explicit form, 
then the no-cancellation condition need not be checked: A(c) in explicit form 
has MSSNS if and only if (I-3) holds with the preceding substitutions. 

RESULT 4. A(c) has MSSNS if and only if 

i ai=pj=ri when ajfai+l. (37) 
i-1 

Furthermore, when A(c) is in explicit form, only the first equality in (37) 
needs to be checked, because it implies the second. 

Proof. To prove the “only if” part first, assume A(r) satisfies MSSNS. 
ThenfromResult1wehavethatbi=ai,i=1,...,n.Nowsupposeaj#ai+, 
Then bj f bj+l, so by our earlier arguments b, + . . . + b, = rj. Hence aI 
+ . - . + a j = r.. Combining this with the inequalities in (34) and (36) 
demonstrates t h e result. 

For the “if” part, note from (34) that the lower hull for the points r. in 
the Newton polygon construction cannot he below that for the pj. Fur&er- 
more, since (37) shows that the comer points for the rj hull coincide with 
those for the pi hull, the two hulls must be the same. Hence the numbers bi 
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obtained by applying Lemma 1 to the rj must be the same as the numbers ai 
obtained by applying Lemma 1 to the pi. In other words, bi = ai, so by 
Result 1 the matrix A(r) has MSSNS. 

Suppose now that A(r) is in the explicit form (16) and that the first 
equality in (37) holds, so a j + a j+r and a, + . . . + a j = pi. Now examina- 
tion of the explicit form shows that there is only one principal minor of order 
pi, namely the leading principal minor of appropriate size (its size is actually 
k, + * *. +k,, where 9 is the smallest integer for which k, +2k, 
+ . . - + 9k,+, > pi). Hence rj = pi, i.e., the second equality in (37) holds 
and the no-cancellation condition is satisfied at the comer points. n 

The need to check the second equality in (37) when A(E) is not in explicit 
form can be illustrated by the case of the matrix 

i 

1 -1 

1 i -1+r2 ’ 

which has p, = 0, p, = 2 and a, = 0, us = 2, so (Ll)-(L3) are satisfied with 
the substitutions above; but ri = 2, rs = 2 and b, = 1, b, = 1, so indeed the 
matrix does not have MSSNS. For an example to illustrate how we might use 
all the above results, consider the following. 

EXAMPLE 2. Let 

(39) 

It is easily seen that this is not in explicit form. To determine the ai, we use 
the definition of invariant factors in Section 2.2, which involves examining all 
minors of each dimension. A quick inspection shows that there are 1 X 1 and 
2 x 2 minors that are of order 0, so a, = 0, us = 0. There is a 3 X 3 minor 
(which happens to be the leading principal minor) of order 3, and none of 
order 2; hence a3 = 3. Finally, the determinant is of order 10, so u4 = 7. 
Examining the principal minors, we see that pi = 1, p, = 0, p, = 3, p, = 10. 
Hence the ui and pj satisfy (Ll)-(L3), with the former being the slopes of 
the lower hull of the latter set of points in the Newton diagram. Now if the 
no-cancellation conditions hold at the comer points, i.e. if r, = p, and 
rs = p,, then we shall be able to conclude from Result 4 that A(C) does 
indeed satisfy MSSNS. Since there is only one 2 X 2 principal minor of order 
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0 and only one 3 X 3 principal minor of order 3, these conditions are indeed 
satisfied. With the assurance that A(E) satisfies MSSNS, one can now 
proceed with the additional work required to transform it to explicit form and 
carry out scale-based decompositions of it. 

4.2. Amplitude Scaling to Induce MSSNS 
While unimodular similarity transformations do not affect MSSNS (or 

MSST), nonunimodular similarity transformations may do so, by modifying 
the invariant factors of the matrix (the eigenvalues are of course preserved). 
In particular, such transformations may be used to induce MSSNS in a matrix 
that does not satisfy it, after which scale-based decompositions may be 
carried out as earlier. Our aim in this section is only to illustrate what is 
possible. 

We restrict ourselves to nonunimodular transformations that are diagonal, 
which correspond to e-dependent amplitude scaling of the individual state 
variables. Such transformations, in addition to preserving eigenvalues, also 
preserve all principal minors of the matrix they act on. The results of the 
previous subsection then show that a necessary condition for such a transfor- 
mation to induce MSSNS is that the no-cancellation condition pi = rj is 
satisfied at the comer points of the Newton diagram for either of these sets of 
indices. 

Our amplitude-scaling results are drawn from the thesis [14], which 
includes results on a systematic amplitude-scaling procedure for matrices 
A( r ) that satisfy certain conditions. Since these conditions are not only rather 
strong but also hard to test for, we do not attempt to do more than illustrate a 
simple case of the procedure here. We begin with a canonical example that 
serves to illustrate the basic idea behind the procedure. 

EXAMPLES. Let 

A(E) = 

0 Cal 0 . * * 0 
0 0 co2 . . . 0 

. . . . 

. . . 

;, ;, (j . . : <a,-, 
CO” 0 0 . . . 0 

(40) 

The nonnegative integers a, can be seen to be the orders of the invariant 
factors of A(e), though not necessarily in ascending order now. The j X j 
principal minors for j < n and hence the corresponding pj, rj are all 0, while 
a,+ ... + a,, = p, = r,,. By applying the Newton polygon construction to 
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the rj or by directly evaluating the characteristic polynomial of A(E), it is 
easily seen that the eigenvalues all have the same order, namely b = r,,/n. 
Thus A(C) will have MSSNS if and only if all the ai are equal (and equal 
to b). 

Now defining the similarity transformation 

S(e) =diagonal[E”l,...,e”n-l,l] (41a) 

with 

wi=wi+l+b-ai, i=l,...,n-1, w, = 0, (41b) 

form 

10 1 0 **. 0 
0 0 1 **. 0 
. . . . . . . , . 

;, ;, ;, ..: ; 

1 0 0 ‘a’ 0 

(42) 

it is easily verified that 

/ 0 eb 0 **. 0 
0 0 2 *.* 0 

S(c)A(e)S-r(c) = f { ; ‘. . ; 

0 0 0 .** Cb 
Cb 0 0 *.* 0 

so that this transformed matrix has MSSNS. 

\ 

/ 

The following procedure is suggested by examples such as the above, and 
can be guaranteed to work under certain strong conditions [14]. The first 
step is to transform A(E) to its explicit form. We assume from now on that 
this has been done, and use A(E) to denote the matrix in explicit form. In the 
second step, we identify what may be termed a skeleton in A(r). A skeleton 
consists of n elements, precisely one from each row and column of the 
matrix, with the order of the element in the ith row being ai. There has to be 
at least one skeleton in A(E), because of our standing assumption of 
nonsingularity away from 0. 

In the third step, we similarity-transform A(E) with a permutation matrix 
that brings the elements of the skeleton to the locations of the l’s in the 
blockdiagonal canonical circulant matrix, whose diagonal blocks take the 

(43) 



410 SHELDON X-C. LOU ET AL. 

Though [14] considers the case of multiple blocks, we restrict ourselves here 
to the case of a single block, i.e. to the case where the elements of the 
skeleton, after transformation, lie at the locations of the n X n circulant 
matrix (43). Let Zi now denote the order of the skeleton element in the ith 
row of the transformed matrix. 

The final step of the procedure is to transform the matrix with the 
similarity transformation 

with 

S(r) =diagonal[e”l,...,e’“nm1,1] (44a) 

~~=~~+r+b~--a~, i=l,..., n-l, w, = 0, (44b) 

where the bi are the orders of the eigenvalues. Under conditions described in 
[14], the resulting matrix satisfies MSSNS. 

We illustrate this procedure with an example. 

EXAMPLE 4. Consider the explicit form matrix below, with the skeleton 
elements enclosed in brackets: 

A(E) = (45) 

Since the matrix is in explicit form, it is easy to check for MSSNS. The matrix 

A,, referred to in Section 2.3 is simply the (I, 1) entry of the A(e) here 
evaluated at e = 0, and is 0, so MSSNS does not hold. This fact can also be 
seen after determining that a 1 = 0, a2 = 1, a3 = 1, a4 = 6, and b, = b, = b, 
= b4 = 2. 

The similarity transformation that brings the skeleton elements to the 
canonical positions mentioned above simply involves interchanging the first 
and third rows and then the first and third columns. The result is the matrix 

’ 2 c [f] c3 2’ ’ 

A,(r) = 1: :t r; 
G] * 

(46) 

\ [P] c8 c6 c7 , 
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Now using (44) we find that w1 = 4, w2 = 3, ws = 2, wq = 0. Transforming 
A,(r) with the resulting S(e) gives 

A,(<) =S(c)A,(c)S-‘(c) = 

\ 

, (47) 

I 

which is easily seen to have MSSNS (it is in explicit form, with invariant 
factor orders all equal to 2). 

The amplitude-scaling procedure illustrated above is further developed in 
[14]. It has been used to motivate the amplitude scaling carried out in [20], 
and to treat some further generalizations. 

5. CONCLUSION 

The algebraic approach to the analysis of singularly perturbed systems of 
the form (l), as described here and in [14], [15], has added a useful dimension 
to what continues to be an active area of study. It has provided novel ways to 
understand and interpret previous results, and has yielded new results and 
new tools for analyzing singularly perturbed systems. In particular, the 
MSSNS and MSST conditions that have been crucial to earlier work in 
singular perturbations have been examined and illuminated from the alge- 
braic viewpoint in this paper. The connections with (frequencydomain) 
techniques and results developed in the study of asymptotic root loci are also 
much more evident in our setting. 

Fresh questions have arisen naturally in the context of this algebraic 
approach. For example, it is of interest to further understand conditions and 
procedures for the extended time-scale decompositions mentioned briefly at 
the end of Section 3. Also, Section 4 has only touched on the task of inducing 
MSSNS by nonunimodular similarity transformations, and has not discussed 
in any detail the problem of relating properties of the transformed system 
back to the original system. Another worthwhile task is to understand 
connections with the Jordan structure of A(e), perhaps making deeper 
contact with the results of [lo], [21] in the process. 
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