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Abstract-In this paper, we present a new linear MEM algorithm 
for 2-D isotropic random fields. Unlike general 2-D covariances, iso- 
tropic covariance functions which are positive definite on a disk are 
known to be extendible. Here, we develop a computationally efficient 
procedure for computing the MEM isotropic spectral estimate corre- 
sponding to an isotropic covariance function which is given over a finite 
disk of radius 2 R .  We show that the isotropic MEM problem has a 
linear solution and that it is equivalent to the problem of constructing 
the optimal linear filter for estimating the underlying isotropic field at 
a point on the boundary of a disk of radius R given noisy measurements 
of the field inside the disk. The spectral estimation procedure described 
in this paper is guaranteed to yield a valid isotropic spectral estimate 
and is computationally efficient since it requires only O(BRLz)  opera- 
tions, where L is the number of points used to discretize the interval 
[O, R ] ,  and where B is the bandwidth in the wavenumber plane of the 
spectrum that we want to estimate. Examples are also presented to 
illustrate the behavior of the new algorithm and its high resolution 
property. 

I. INTRODUCTION 
HE need for efficient power spectral estimation tech- T niques arises in a number of practical applications, 

such as speech processing [ 13, radar [2], sonar [3], image 
processing [4], and seismic signal processing [5], to men- 
tion a few. For one-dimensional signals, the maximum 
entropy spectral estimation method (MEM) has become 
very popular due to the fact that it can provide excellent 
frequency resolution, and that it can be implemented in a 
computationally efficient way [6]. Because of the multi- 
dimensional nature of the signals arising in many appli- 
cations (e.g., in geophysical problems, imaging, sonar, 
etc.), a number of maximum entropy algorithms have been 
developed over the past ten years ([7]-[ lo]) for estimating 
two-dimensional spectra. These algorithms are very gen- 
eral and do not attempt to exploit any special structure of 
the power spectrum to be estimated. Since 2-D polyno- 
mials do not possess in general a quarter-plane factor- 
ization [ l l ] ,  [12], most of the known 2-D MEM algo- 
rithms involve solving a nonlinear optimization problem 
that cannot be reduced to a linear prediction problem as 
in the 1-D case [13]. Furthermore, 2-D covariance func- 
tions which are positive definite on a subspace of the plane 
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R2 do not necessarily have a positive-definite extension to 
the whole plane [lo], [14]. Thus, for any given set of 
stationary covariance data, the 2-D MEM problem is not 
guaranteed in general to have a solution. This can consti- 
tute a major problem, in practice, since the covariance 
values that are usually used as an input to the direct 2-D 
MEM spectral estimation algorithms are estimates, rather 
than exact values, of the true covariance values, and thus 
may not correspond to an extendible positive-definite 
2-D function. A good review of the various 2-D MEM 
algorithms and of the extendibility issue can be found in 

In this paper, by contrast, we present a new linear MEM 
algorithm for 2-D isotropic random fields. Isotropic fields 
are characterized by the fact that their mean value is a 
constant independent of position and their autocovariance 
function is invariant under all rigid body motions, i.e., 
under translations and rotations. Isotropic fields arise in  a 
number of physical problems of interest among which we 
can mention the modeling of background noises in seis- 
mology [ 151 and ocean acoustics [ 161, [ 171, the investi- 
gation of temperature and pressure distributions in the 
atmosphere at a constant altitude [ 181, the analysis of tur- 
bulence in statistical fluid mechanics [19], and the rep- 
resentation of rainfall structure in hydrology [20]. 

An important property of isotropic covariance functions 
which are positive-definite over a disk is that they always 
have positive-definite isotropic extensions to the whole 
plane [21]. Here, we develop a computationally efficient 
linear procedure for computing the maximum entropy 
isotropic power spectral estimate corresponding to a co- 
variance function that is given over a disk of radius 2R. 
The maximum entropy power spectral estimate is the one 
that maximizes the entropy of the underlying random field. 
Our 2-D isotropic MEM algorithm is similar in spirit to 
the 1-D MEM procedure as will become clear from what 
follows. By using a nonsymmetric half-plane spectral fac- 
torization and the properties of radially symmetric func- 
tions which are zero outside a disk in the space domain, 
we show that the isotropic MEM problem is equivalent to 
the problem of constructing the optimal linear filter for 
estimating the value of the underlying isotropic field at a 
point on the boundary of a disk of radius R given noisy 
observations of the field inside the disk. We then present 
a computationally efficient and robust procedure for com- 
puting the isotropic MEM spectral estimate. Our proce- 
dure is based on a Fourier expansion of the optimal linear 
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estimation filter in terms of the angle 8 in a polar repre- 
sentation of the underlying 2-D space, and on the fast re- 
cursions that were derived in [22] for solving filtering 
problems for isotropic random fields. These recursions are 
very similar to the Levinson's equations of one-dimen- 
sional prediction. The computational complexity of our 
procedure is O ( B l U 2 )  where B is the bandwidth in the 
wavenumber plane of the spectrum that we want to esti- 
mate, and where L is the number of points used to discre- 
tize the interval [0, R]. Note that our results show that 
the isotropic MEM spectral estimation problem has a lin- 
ear solution. It was previously shown in the 2-D discrete 
space case that the MEM spectral estimation problem has 
a linear solution whenever the underlying field is Gauss- 
Markov [23]. However, there is no contradiction between 
our results and those of [23], since the condition of [23] 
is only sufficient but not necessary. 

This paper is organized as follows. In Section 11, we 
review some properties of isotropic random fields. In par- 
ticular, we discuss Fourier expansions of such fields in 
terms of the angular coordinate 8 in a polar representation 
of the underlying 2-D space. Such expansions will be later 
used to develop an efficient procedure for constructing the 
MEM spectral estimate. In Section 111, we derive an 
expression for the isotropic MEM estimate. The MEM 
spectral estimation problem is then related to the problem 
of finding the best linear filter for estimating an isotropic 
field on the boundary of a disk given noisy observations 
of the field inside the disk. By using Fourier expansions 
of the optimal linear estimation filter and the efficient re- 
cursions of [22], a fast and robust method for computing 
the MEM estimate is developed in Section IV. The nu- 
merical implementation of our procedure is described in 
Section V.  Particular attention is given in this section to 
the issues of numerical stability and convergence of our 
implementation. Finally, several examples are presented 
in Section VI to illustrate the behavior of our algorithm, 
and particularly to demonstrate its high resolution prop- 
erty. 

11. FOURIER SERIES FOR ISOTROPIC FIELDS 
In this section, we review some of the properties of 

isotropic random fields. Specifically, we focus our atten- 
tion on Fourier series representations of such fields with 
respect to the angle 8 in a polar coordinate representation 
of the underlying 2-D space. 

The covariance function 

Le., the 2-D FouGer transform of K (  3), is actually a 
function of h = I X I only [24], and with a slight abuse of 
notation we will write this as S (  A ) .  Furthermore, it can 
be shown that S (  A )  is 2 a  times the Hankel transform of 
K (  r )  viewed as a function of the scalar r = I 7 1,  i.e., 

S ( h )  = 2 a  i dr rJo(hr)  K ( r ) ,  (2.3) 

where Jo(  ) denotes the Bessel function of order 0. By 
using (2.3) and the addition theorem for Bessel functions 
[25], we can write 

W 

0 

W 

K(I 3 - s'l) = c k,(r ,  s)e j , ( ' - ' ' ,  (2 .4)  
n =  -a 

where 

k , ( r ,  s) = - im J,( hr) J,( As) S (  h ) h  dX,  (2.5) 

and where 3 = ( r ,  8) and s' = (s, 6 ) .  In (2.5), J,,( a )  is 
the Bessel function of order n. Alternatively, k,  ( r ,  s) can 
be computed from K (  - ) as 

2 a  0 

( 2 . 6 )  

(2 .7)  

Note that since K (  * ) is a real and even function of 8, then 

IC,(?-, s )  = k- , ( r ,  s) .  

Alternatively, (2.7) can be derived by using (2.5) and the 
fact that 

J n ( x )  = ( - l)"J-,,(x). (2 .8)  
Equation (2.7) will prove useful in Section IV where we 
develop an efficient method for computing the MEM 
spectral estimate. 

Observe that (2.4) is just an eigenfunction expansion of 
the positive-definite symmetric function K (  1 3 - s' 1 ) 
viewed as a function of the scalar variables 8 and 4. 
Hence, by using the Karhunen-Lokve theorem [26], we 
can expand z ( 3 ) as [27] 

W 

K (  3 )  = E [ z (  v ' )  z (  v' + 3) ]  ( 2 * 1 )  where 

of any zero-mean isotropic random field z ( 3 ) , I  is a func- E [ t , ( r )  ~ m ( s ) ]  = k n ( r 9  s) Sn,m, (2.11) 
tion of r only, so that, by abuse of notation we can write 

K ( 3 )  = K ( r ) .  (2.2) 
and where S,,,, is a Kronecker delta function. Equation 
(2.9) is very interesting since it can also be interpreted as 

'Throughout this paper, we use 7 to denote a point in 2-r) Cartesian z , ( r )  in a F o U k r  Series expansion Of Z (  7 ) in terms Of 
the angle 8 are independent. This observation plays a key space. The polar coordinates of this point are denoted by r and 0. 
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role in a number of works dealing with isotropic random 
fields (e.g., [22] and [27]), and we shall use it to relate 
the MEM spectral estimation problem to the filtering 
problem considered in [22]. Finally, observe that al- 
though z ( 7 ) is isotropic, the process z ,  ( r )  is not station- 
ary since k,,(r,  s )  is nor a function of r - s. 

111. ISOTROPIC MEM SPECTRAL ESTIMATE 
Consider now the following spectral estimation prob- 

lem. Suppose that we are given the value of the covari- 
ance function K,( 1 7 - s' 1 )  = E [  y (  7 ) y (  2 )],  of an 
isotropic random field y (  7 ) for I 7 - s' I I 2 R ,  and 
suppose that we wish to estimate the power spectrum of 
the "most random" isotropic field y (  ) whose covari- 
ance function is consistent with the set of known values 
of K,,( r). Furthermore, assume that y (  7 ) is given by 

y (  7 )  = z(  7 )  + v( 7 ) ,  7 E R2 (3 .1)  

where z ( 7 ) is an isotropic zero-mean Gaussian random 
field with a covariance function Kz(  1 7 - s' 1 ) = E [  z ( 7 ) 
z (  2 )], and where v ( 7 ) is a two-dimensional white 
Gaussian noise of strength P which is uncorrelated with 
z (  7 ). It is assumed that the noise intensity P is known, 
although it will be shown in Section IV how it can be 
estimated directly from the observations. Note that we are 
interested in estimating the power spectrum of y ( ) rather 
than that of z ( * ). As will become clear in the derivation 
in Appendix A of the main result of this section, the pres- 
ence of the additive white Gaussian noise v( * ) in y (  * ) 
guarantees the existence of a linear solution to the prob- 
lem of finding the MEM spectral estimate. By contrast, 
the general problem of finding the MEM power spectral 
estimate for an arbitrary 2-D isotropic random field does 
not necessarily have a linear solution. 

Our problem is really that of extending a radial posi- 
tive-definite function given its values inside a disk of ra- 
dius 2 R. It is well known [lo], [ 141 that, in general, 2-D 
positive definite functions defined over some finite do- 
main do not always have a positive definite extension on 
R2.  However, it was shown in [21] that every radial pos- 
itive definite function K ( r )  defined over a disk is ex- 
tendible. Specifically, it is proved in [21] that for every 
radial positive definite function K (  r )  defined on a disk of 
radius 2 R ,  there exists radially syrnme!ric positive-deji- 
nite functions K ( r )  on R2 such that K ( r )  = K ( r )  for 
r I 2 R .  Among all such extensions k, ( r )  of Ky ( r ) ,  we 
!re koking here for the one whose 2-D Fourier transform 
S,( X ) maximizes the normalized entropy H of the field 
y (  e )  where 

l W  
= - dX X In (gy(X)/P), (3 .2)  

and where we have used the fact that $,( x' ) = $,( A )  
since y (  ) is an isotropic random field [cf. (2.3)]. The 

2n 0 

exact form of the power spectrum $,( X )  that we seek is 
given in the following theorem. 

Theorem 3.1: The estimated power spectrum $, (A)  
which maximizes H in (3.2) subject to the positive defi- 
niteness constraint 

Sy(X) 2 0 V X  L 0 (3 .3)  
and the correlation matching constraint 

jm Sy( A )  Jo( Xr)X dX = ky(r) 
2n 0 

= K y ( r )  f o r r  I 2 R  

( 3 . 4 )  
is given by 

D 

where G ( R ,  x' ) is the 2-D Fourier transform of the func- 
tion g ( R ,  7 ) defined by the integral equation 

* g ( R ,  2 )  + P g ( R ,  T ) ,  r I R 

( 3 . 6 )  

and where &, = ( R ,  0 ) .  Furthermore, if K z ( 0 )  is finite 
a n d i f K z ( 1 7  - s ' I ) ~ L ~ ( d 7 d 2 ,  [ 0 , R I 2  x [ 0 , 2 n l 2 ) ,  
the resulting normalized entropy H is finite. 

The proof of Theorem 3.1 is based on the Lagrange 
multiplier method for solving constrained optimization 
problems [ 2 8 ] ,  and on a nonsymmetric half-plane (NSHP) 
factorization that we obtain for power spectra correspond- 
ing to positive-definite radially symmetric functions that 
are zero outside a disk of radius 2R in the space domain. 
However, unlike in the 2-D discrete space case [ 1 1 1 ,  [29], 
the NSHP spectral factor that we find has a bounded sup- 
port in the space domain, and its spatial support is in fact 
a disk of radius R .  The details of the proof of Theorem 
3.1 can be found in Appendix A. 

Several comments have to be made at this point. First, 
note that even though e-j"" - G ( R ,  x) in (3.5) is a 
function of x, its magnitude 1 - G(R, .  x' ) 1 is by 
construction a function qf X = I X 1 only, which is con- 
sistent with the fact that S, ( A )  is an isotropic power spec- 
trum. (See Appendix A for details.) Second, if we assume 
that K z (  I 7 - s' I ) E L2( [0, R]* x [0, 2nI2),  then it can 
be shown that the solution of (3.6) exists and is unique 
[30]. Third, observe that g ( R ,  7 ) is just the optimal lin- 
ear Jilter for estimating z (io) given the observations 
y (  7 ) on the disk of radius R centered at the origin. Given 
the observations y (  7 ) of (3.1) for 0 I r I ,R, we can 
express the linear least-squares estimate of z ( Ro)  as 

f(zo) = d u ' y ( u ' ) h ( u ' ) .  (3 .7)  
U C R  
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Using the orthogonality principle of linear least squares 
estimation [3 13, we find that the optimal filter h ( u' ) sat- 
isfies the integral equation 

P 

* h ( 2 )  du' + Ph( 7 )  r I R. 

(3.8)  
It then follows from the uniqueness of the solution to (3.6) 
that 

h ( 2 )  = g(R, 2 ) .  (3.9) 

Hence, solving the 2-D isotropic MEM spectral estima- 
tion problem is equivalent to solving a $filtering problem 
for the underlying signal field. This is analogous to the 
1-D continuous time case where the MEM spectral esti- 
mation problem is equivalent to a filtering problem for the 
underlying signal process [32]. In contrast, the MEM 
spectral estimation problem is equivalent to a prediction 
problem for the underlying signal process [6] in the 1-D 
discrete time case. In the next yction, we use (3.9) to 
compute g (R ,  7 ) ,  and hence S,( A), recursively as a 
function of R via the efficient recursions developed in [22] 
to solve a filtering problem for 2-D isotropic random 
fields. The notation g (R ,  7 ) [as opposed to g (  7 ) ]  is 
used here to stress the dependence of the filter g (R, i-' ) 
on the radius 2 R of the disk over which K,( - ) is given. 
It is this dependence that will be exploited below to com- 
pute g (  R, 7 ) recursively for increasing values of R .  In 
this respect, our method is similar to the 1-D MEM al- 
gorithms that use the Levinson equations of l-D predic- 
tion [6] to compute spectral estimates recursively as a 
function of the size of the interval over which correlation 
lags are given. Observe also that the choice of the poi$ 
Ro in (3.6) is not restrictive. In fact, we can choose Ro 
to be any point on the boundary of the disk of radius R 
centered at the origin. Specifically, by using the fact that 
z ( - ) is an isotropic r y d o m  field and the theory of [24], 
it can be shown that Sy( A) in (3.5) is invariant under ro- 
tations of the vector io. Finally, note that as mentioned 
earlier, it was previously shown in the 2-D discrete space 
case that the MEM extension problem has a linear solu- 
tion whenever the underlying field is a Gauss-Markov 
random field [23]. According to Theorem 1, the highly 
nonlinear MEM covariance extension problem has a Zin- 
ear solution whenever the underlying field is a Gaussian 
isotropic random field regardless of whether it is Gauss- 
Markov or not. This is not inconsistent with the results of 
[23], since the condition of [23] is sufficient but not nec- 
essary. Finally, note that we have so far assumed that 
K , ( r )  is known exactly for r I 2R. In practice, one is 
given the observations y ( ) over a finite disk, rather than 
exact values of K, ( r )  itself. However, K,( r )  can be es- 
timated directly from the observed data y ( 7 ) by using the 
procedure of [33] which is summarized in Appendix B. 

The use of this procedure is illustrated in the second part 
of Example 6.1 where we compute MEM isotropic power 
spectral estimates starting from the observations y ( ). 

An important point to note in our development is the 
following. In our procedure, we hegin either with real data 
or a direct knowledge of K y ( r )  for r I 2R. From this 
latter quantity, our algorithm then determines an estimate 
$( A )  of ( 2 a )  times the Hankel transform of K y ( r ) ,  0 I 
r I 00, and from this we then directly have theAestimate 
:f the 2-D spectrum of the isotropic field [ i.e., Sy ( A ) = 
S,( A)] .  Note that the central portion of this procedure 
involves using a 1-D function Ky(  r )  for r I 2 R to esti- 
mate a I-D function S,( A). This raises the natural ques- 
tion: why not use standard 1-D spectral estimation algo- 
rithms for this process? The answer is as follows. First, 
note that K,( r )  (extended to r < 0 by making it an even 
function) is the correlation function of the 1-D process 
obtained by looking at the field along a straight line. Thus, 
the result of using a standard I-D spectral estimation al- 
gorithm would be an estimate of the spectrum S,( A )  of 
this 1-D process. This is obviously an estimate of the 
1-D Fourier transform of K , ( r )  which is very different 
from the Hankel transform relation (2.3) between K, ( r )  
and the true 2-D spectrum. From this we see that 1-D 
methods are not directly applicable, as they estimate the 
wrong quantity. However, since the 2-D spectrum S,( A )  
of y (  - ) is obtained from the corresponding 1-D spectrum 
SI( A)  through an inverse 1-D Fourier transform followed 
by a Hankel transform, it can be shown [34] that 

du 
(3.10) 

" d  

One could then try to develop a 1-D spectral estimation 
technique to estimate the 1-D spectrum SI( A )  of the iso- 
tropic random field y (  ) restricted to a line, subject to the 
constraint that the 1-D estimate SI( A )  must be such that 
the corresponding 2-D estimate $,( A )  obtained through 
(3.10) is positive definite. Such a constraint is extremely 
difficult to satisfy. In fact, for a 3-D isotropic random field 
y ( * ), the constraint (3.10) would take the form (see 1341) 

(3.11) 

which indicates that for $,( A )  to be positive, the 1-D 
spectral estimate SI( A )  would have to be monotonically 
decreasing, a constraint which is exceedingly difficult to 
enforce. The above approach is therefore more compli- 
cated than the one proposed here which estimates the 
2-D spectrum S, ( A )  directly. Note also that our approach 
maximizes the normalized 2-D entropy H given by (3.2), 
which is not identical to the 1-D entropy. 

Finally, it is worth noting that although we focus our 
attention in this paper on the problem of finding the MEM 
estimate of a 2-D isotropic spectrum, all the results de- 
scribed here can be extended. to more than two dimen- 
sions. In particular, the isotropic MEM spectral estima- 
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tion problem for an M-D random field model of the form 
(3.1) will have a linear solution. 

IV. A FAST ALGORITHM FOR COMPUTING $ ( A )  
In order to use (3.5) to compute the MEM spectral es- 

timate sy( A ) ,  we need to know the optimal linear esti- 
mation filter g (  R ,  7 ) and the noise intensity P .  In the 
1-D discrete time case where the MEM spectral estima- 
tion problem is equivalent to a prediction problem, the 
constant P appearing in the numerator of the MEM spec- 
tral estimate is equal to the variance of the prediction er- 
ror, and can be computed directly from the known lags of 
the signal covariance function [6]. In contrast, in the con- 
tinuous 2-D isotropic case the constant P in (3.5) is equal 
to the intensity of the observation white Gaussian noise 
process and cannot be reliably computed from the known 
values of K,( r ) .  

A .  Estimation of the Noise Intensity P 
Given the measurements y (  7 ), the noise intensity P 

can be estimated by passing y (  7 ) through a 2-D filter 
whose wavenumber response is zero, or almost zero, 
within the region of the wavenumber plane that contains 
the spectral support of z ( 3 ). The noise intensity can then 
be computed from the knowledge of the wavenumber re- 
sponse of the filter and from the t$al power of Pf of the 
filtered signal. Specifically, if F (  A ) is the wavenumber 
response of the filter, then P can be estimated as 

(4.1 ) 
Pf P =  s, 1 F( x' ) I 2  d x' 

Note that this approach is analogous to estimating the in- 
tensity of a 1-D additive white Gaussian noise process by 
passing the noisy measurements of a signal of interest 
through a 1-D bandpass filter followed by an output power 
measurement stage, with the bandpass filter specifically 
designed to block the signal. 

B. Eficient Computation of g ( R ,  3 ) 
Next, the filter g ( R ,  3 ) can obviously be computed by 

discretizing the integral equation (3.6) using any of the 
rules outlined in [35, ch. 51 and by solving the resulting 
linear equation. Such an approach has two major draw- 
backs. The first is that it is computationally very expen- 
sive since it requires O ( M 3 N 3 )  operations, where M and 
N are the number of discretization steps used to approxi- 
mate the integral (3.6) in the angular variable and the ra- 
dial variable, respectively. Second, the accumulation of 
rounding errors and approximation errors made during the 
numerical compuiation of g( R ,  7 ) and of its 2-D Fourier 
transform G ( R ,  5 ) can destroy the circular symmetry of 
the quantity 1 e-j'"' - G ( R ,  x' ) 1 2 ,  so that the estimated 
power spectrum sY( A )  can turn out to be nonisotropic. 
Let us now present a computationally efficient procedure 
for computing S,,( A )  that has the additional feature of 

guaranteeing that $( A )  is an isotropic power spectrum. 
As mentioned earlier, our procedure exploits the relation- 
ship between the 2-D isotropic MEM problem and a fil- 
tering problem for isotropic random fields to compute 
$( A )  recursively as a function of the radius 2 R of the 
disk over which K,( r )  is known, much in the same spirit 
as the 1-D MEM algorithms that compute 1-D spectral 
estimates recursively as a function of the number of the 
known covariance lags. Our approach is based on a Fou- 
rier series expansion of g ( R ,  3 ) in the space domain as 

m 

g ( R ,  3 )  = c g , (R ,  r)ejne,  (4 .2)  
n = -m 

and on a corresponding Fourier series expansion for 
e-j''Ro - G ( R ,  K) in the wavenumber plane. In the re- 
mainder of this section, we shall show how to compute 
the coefficients gn(  R ,  r )  efficiently and then us: the Han- 
kel transform of those coefficients to compute s,( A )  in a 
robust fashion. 

1)  Interpretation of the Fourier Coeficients g, ( R ,  r ) :  
Substituting (4.2) and (2.4) into (3.6) and equating the 
Fourier coefficients on both sides of the resulting equation 
yields the countably infinite set of integral equations 

+ +  

kn(r ,  u )  g , ( R ,  u ) u  du 

+ Pg,(R,  u )  0 I r I R.  (4 .3)  

Equation (4.3) is quite interesting because it also arises in 
the context of filtering for isotropic random fields [22]. In 
particular, the Fourier series expansions (2.9) are used in 
[22] to convert the 2-D problem of estimating the value 
of z ( R ,  0 )  on the boundary of a disk of radius R given the 
observations y (  7 ) inside the disk, into a countably infi- 
nite number of 1-D estimation problems where the objec- 
tive is to estimate each of the signal Fourier coefficient 
processes z ,  ( R  ) given the corresponding observations 
Fourier coefficient processes yn(  r )  on the interval 0 I r 
I R .  By comparing (4.3) to equation (2.21) of [22], it 
becomes clear that the coefficient g, ( R ,  r )  is only a scaled 
version of the optimum linear filter for estimating zn ( R )  
given { y , ( s ) :  0 5 s 5 R } .  Furthermore, it is shown in 
[22] that the optimum linear filter for estimating z , ( R )  
given { y , ( s ) :  0 I s i R }  obeys a quasi-linear hyper- 
bolic system [36], [37] of partial differential equations 
which when properly scaled take the form 
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with 

and with the initial conditions 

(4.7) 

g,(R, 0) = 0, for n # 0. (4.8) 

Note that as claimed earlier, the coefficients g, (R, r ) ,  and 
kence the filter g (R,  7 ), and the power spectral estimate 
Sy(  A), can be computed recursively as a function of the 
radius 2R of the disk over which Ky(  r )  is given via (4.4) 
and (4.5). In this respect, (4.4) and (4.5) are similar to 
the Levinson recursions of 1-D prediction. Equations (4.4) 
and (4.5) can be derived by exploiting the special struc- 
ture of k, ( r ,  s )  as displayed by (2.5), and by using the 
properties of Bessel function (see [22] for details). The 
numerical computation of g,(R, r )  via (4.3)-(4.5) has to 
be performed with some care. In particular, one has to 
study carefully the stability and convergence properties of 
any numerical method used to solve the coupled partial 
differential equations (4.4) and (4.5) [36], [37]. In Sec- 
tion V, we present a stable and convergent numerical 
method for computing g, (R,  r). Our method is compu- 
tationally very efficient and requires 0 ( L2 ) operations 
where L is the number of discretization points in the in- 
terval [0, R ]  where we want to compute gn(R ,  r ) .  

2) Fourier Expansions in the Wavenumber Plane: 
Next, we expand - G(R, i) in terms of 
the angle 4 defined by A = ( A ,  n / 2  - 4)  in a polar 
representation of the wavenumber space. Then, by using 
the theory of [24, ch. 51 and the expansion 

00 

C J,,( AR)e-j"@ (4.9) e - j h . R o  = 
n =  - w  

we can write 

- 2aGn(R, A))e-'"'. 

(4.10) 

In (4.10), Gn(R, A )  is the nth-order Hankel transform of 

Gn(R, A) = lo g,(R, r )  Jn( Ar)rdr .  (4.11) 

Since the magnitude of - G(R, ) is a function 
of X only, it follows from (4.10) that 

gn(R,  r )  W I ,  i.e.3 
m 

- -  

m 

- 27rGn(R, A)12.  (4.12) 

Equation (4.12) is a little surprising at first sight because 
it claims that the square magnitude of a function of the 
variable 4 is equal to the sum of the square magnitudes 
of its Fourier coefficients in a Fourier expansion in terms 
of 4. However, the functions that we consider here have 
a very special structure since their magnitude is not a 
function of 4 by construction. An example of such func- 
tions is provided by the function X sin 4 - 

jdh2 cos2 4 + 1 whose squared magnitude A' + 1 de- 
pends on A only. Observe also that (4.12) implies that 

- G(R, i) is an "all-pass" function of the 
variable 4. 

A further simplification of (4.12) is possible by noting 
that (2.7) together with the uniqueness of the solution of 
(4.3) [22] imply that 

gn(R, r )  = g - n ( R ,  r ) .  (4.13) 

Hence, it follows from the fact that 

J - , ( A ~ )  = ( - l ) " J n ( A r )  (4.14) 

that 

G-,(R, A) = (-1)"G,(R, A) .  (4.15) 

By combining (4.12), (4.14), and (4.15) we can rewrite 
(4.12) as 

l e -JX'Ro - G(R, i)12 = ( J , ( A R )  - 27rGo(R, A ) / '  
- -  

+ 2 c IJ,(AR) 
n =  I 

2 
- 2aGn(R, A ) l  . (4 .16)  

In practice, of course, one would compute only a finite 
number N + 1 of the coefficient functions G, (R,  A ) ,  and 
one wouldpbtain an approximation to the estimated power 
spectrum Sy(  X )  as 

D 

(4.17) 

where 

1 CN(R, A )  l 2  = IJo( AR)  - 2nGo(R, A )  l 2  
+ 2 IJn( A R )  - 27rGn(R, 

n = l  

(4.18) 

The number N can be determined by noting that 

J, , (x)  = 0 forx >> 1 and n > x. (4.19) 

Hence, if we are interested in computing $( A )  over the 
disk A I B in the wavenumber plane, we can take N = 
BR provided that BR >> 1, and in this c!se (4.17) and 
(4.18) give a very good approximation to Sy ( A). 

Let us now make a few comments. First, note that 
(4.17) and (4.18) guarantee that S,( A )  is isotropic since 
(4.18) involves a sum of positive terms that depend on A 
only. Second, observe that the nth-order Hankel trans- 
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forms in (4.11) can be implemented efficiently by using 
any of the existing fast Hankel transform algorithms [38]- 
[40]. These techniques require O ( L  In L )  operations, 
where L is the number of discretization points at which 
g ,  (5, r )  is available. Hence, our procedure for construct- 
ing s,( A )  requires O (  L 2 )  per coefficient and its complex- 
ity in practice is O(BRL2)  operations. Finally, note that 
in our procedure, the coefficients g , ( R ,  r )  are computed 
recursively as a function of R via (4.4) and (4.5), so that 
the spectral estimate ,$( A)  can be easily updated when- 
ever new measurements become available, Le., as the disk 
radius R is increased. 

C. Summary 
The procedure for computing $ ( A )  approximately can 

therefore be summarized as follows. 
1) Estimate K,( r )  for 0 I r I 2 R and k, ( r ,  s) for 0 
I r ,  s I R and for 1 n 1 I N ,  from the given data using 
the procedure outlined in [28] and summarized in Appen- 
dix B. 

2) Use a stable and convergent numerical method, such 
as the one appearing in the next section, to compute 
g , ( R ,  r )  recursively from (4.3)-(4.5) for n I N and for 
a suitably chosen N .  

3) Evaluate the nth-order Hankel transforms G, ( R ,  A )  
by using a fast Hankel transform method. 

4) Compute an approximation to $,,( A )  via (4.17) and 
(4.18). 

V .  NUMERICAL COMPUTATION OF THE COEFFICIENTS 
g , ( R  r )  

Recall that the fast algoGthm that we proposed in the 
last section for computing S,( A )  involves the solution of 
the quasi-linear hyperbolic system of partial differential 
equations (4.4) and (4.5). It is quite possible to discretize 
a system of partial differential equations in an apparently 
natural way and yet obtain completely erroneous compu- 
tational results. This is especially true for propagation 
problems described by parabolic and hyperbolic equa- 
tions. The reason for this numerical ill behavior is that 
roundoff and other computational errors coupled with a 
bad choice of a discretization scheme may lead to both 
numerical instability and convergence problems. In this 
section, we present a stable and convergent method for 
computing g , ( R ,  r )  via (4.3)-(4.5). Our approach is based 
on the merhod of characteristics for solving hyperbolic 
partial differential equations [36], [37]. The basic idea is 
to replace the original system of hyperbolic partial differ- 
ential equations with an equivalent system of differential 
equations each involving differentiation in only one of the 
variables of an appropriate coordinate system. The re- 
sulting system can then be solved in a well-behaved, sta- 
ble, and convergent manner. Specifically, let us consider 
a new coordinate system a ,  defined by 

a = R + r  (5.1) 

p = R - r .  (5.2) 

Equations (4.4) and (4.5) can now be rewritten in the new 
coordinate system as 

(5.3 

- (&(?) + 4P(n a2  - + p2 l ) )  g n + l ( a ,  0). 

(5 .4 )  
Note that in the new coordinate system, each partial dif- 
ferential equation involves differentiation with respect to 
only one of the independent variables (Y and 0. Referring 
to Fig. 1, we see that given the values of g , ( R ,  r )  and 
g, + ( R ,  r )  on the line AB, we can compute g ,  ( R ,  r )  and 
g, + 1 ( R ,  r )  within the triangle ABC by integrating (5.3) 
and (5.4) along the characteristic directions a = constant 
[for (5.4)] and 0 = constant [for (5.3)], or equivalently 
along lines of slope f 4 5 "  in the ( R ,  r )  plane. Specifi- 
cally, if the values of g, ( R ,  r )  and g, + R ,  r )  have been 
computed inside the triangle OAB (see Fig. l ) ,  and in par- 
ticular on the line AB, then by integrating (5.3) along /3 
= constant lines starting on AB, we can compute the sum 
g , ( R ,  r )  + g,+l(R, r) inside the parallelogram ABGF. 
Similarly, by integrating (5.4) along a = constant direc- 
tions starting on AB, we can compute the difference g ,  ( R ,  
r )  - g,+ l ( R ,  r )  inside the region ABED. Thus, g , ( R ,  r )  
and g, + I (  R ,  r )  can be uniquely determined within the tri- 
angle ABC (the intersection of regionsABED and ABGF ). 
The values of g , ( R ,  Y )  and g , + l ( R ,  r ) ,  which are outside 
triangle ABC, will have to be computed using the integral 
equation (4.3). Our numerical procedure is based on (4.3), 
(5.3), and (5.4). To compute g , (R* ,  I - )  and g n + l ( R * ,  r )  
for 0 I r I R*, we divide the interval [0, R * ]  into L 
subintervals of length A = R * / L .  If we denote by G, ( k ,  
I )  = g , (kA ,  l a ) ,  and if at stage k we assume that G,(k ,  
I ) and G, + k ,  1 ) have been computed for 0 I I I k 
( i .e . ,onthel ineABofFig.  l ) ,  thenG,(k , I )andG,+, (k  
+ 1 , l )  can be evaluated for 0 < 1 I k - 1 by integrating 
(5.3) and (5.4) along the characteristic directions R = 
constant f r .  For I = k ,  k + 1 (i.e., outside of the tri- 
angle ABC), G , ( k  + 1, I )  and G , + , ( k  + 1, I )  can be 
computed by solving a two-by-two linear system obtained 
by discretizing the integral (4.3) (see Fig. 1 ) .  Specifi- 
cally, if we use a simple Euler difference method to in- 
tegrate (5.3) and (5.4), and solving for G,(k  + 1 ,  1 ) and 



804 IEEE TRANSACTIONS ON ACOUSTICS. SPEECH. A N D  SIGNAL PROCESSING, VOL. 36, NO. 5. MAY 1988 

t R  

points computed via 
the coupled PDEs 

o points computed vi0 
integral equations 

O 1  
r 

Fig. 1 .  Discretization scheme and numerical implementation of the recur- 
sions for g, ( R ,  r ) .  

G , + , ( k  + 1, 1 ), we obtain the following recursions for 
0 < 1 I k -  1: 

- - P , ( k )  
I n  n 

& ( Z + l )  & 

n + l  A 
2 + J I k - & ( 1 + 1 )  & 

1 n  n A 
& ( I - 1 )  & 

1 1 n + l  n + l  A 

2 &k & ( I - ] )  & + + - P , ( k )  + 

where 

Similarly, if we discretize (4.3) using the trapezoidal rule, 
we obtain for 1 = k ,  k + I 

PG,(k + 1, 1 )  = kr,((k + l ) A ,  [A) 
k 

- 27r c k,,(ZA, iA) G , ( k  + 1 ,  i)iA2 

- xk,(ZA, ( k  + 1 ) A )  

. G , ( k  + 1, k + l ) ( k  + ])A2. 

i =  I 

( 5 . 8 )  

Other integration rules can be used as well, instead of the 
ones we have chosen. Note that our algorithm involves 
only numerical integration of ordinary differential equa- 
tions and thus can be implemented in a well-behaved, sta- 
ble, and convergent manner. Furthermore, it can be 
checked that this approach requires O(  L 2 )  operations per 
Fourier coefficient g, ( R ,  r ) .  

VI. EXAMPLES 
In this section, we present three examples to illustrate 

the behavior of our 2 - D  isotropic MEM procedure. The 
first example is meant to illustrate the high resolution 
property of our procedure using both exact and estimated 
covariance data for the case of a signal power spectrum 
consisting of two cylindrical impulses in an additive white 
Gaussian noise. In particular, we use exact covariance 
values in the first part of this example to demonstrate the 
high resolution property of our algorithm and to study the 
effect of increasing the radius of the disk over which the 
covariance function is given on the spectral estimates that 
we obtain. In the second part of this example, we generate 
a random field with the desired covariance function and 
use the procedure of Appendix A and the method of Sec- 
tions IV and V to compute MEM spectral estimates. The 
results that we obtain show that our procedure does not 
seem to suffer from the spectral line splitting problem ob- 
served in 1-D MEM spectral estimates [6, Section 11-E]. 
In the second example, we use exact covariance data cor- 
responding to a smooth signal spectrum to study the effect 
of varying the number N + 1 of terms used in (4.17) and 
(4.18) to compute the 2 - D  isotropic MEM estimate. Fi- 
nally, the third example illustrates the behavior of our al- 
gorithm when dealing with a signal that has a power spec- 
trum consisting of both a smooth and an impulsive 
component, 

Example 6. I :  To demonstrate the resolution capability 
of our algorithm, let us consider a signal power spectrum 
consisting of two cylindrical impulses which are spaced 
closer than the classical Fourier resolution limit of a / R ,  
where 2 R  is the radius of the disk over which the co- 
variance function is given. Specifically, consider the sig- 
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v ) L  
4 .  

E I L  

v). 

nal covariance function 

K , ( r )  = 10J0(0.2r) + 10Jo(0.4r) (6.1) 

given over a disk of radius 20 m. Covariance functions of 
the form A K o ( B r )  are often used in seismology [15] and 
in ocean acoustics [ 161, [ 171 to model some types of back- 
ground noise fields. Note that K , ( r )  corresponds to a 
power spectrum consisting of two cylindrical impulses at 
0.2 rad/m and 0.4 rad/m, i.e., 

S,( A )  = 506( X - 0.2) + 256( X - 0.4).  (6.2) 
Observe also that the separation between the two cylin- 
drical impulses is smaller than the resolution limit of any 
classical spectral estimation method, which is of the order 
of 0.3 rad/m in this case. Furthermore, let us assume that 
the additive white noise intensity P is 3 W m2. Thus, 
the total noise power in the wavenumber band [0, 0.51 
rad/m is 6.27 dB lower than that of either impulses. The 
true power spectrum of the observations (i.e., of the sig- 
nal plus noise field) is shown in Fig. 2. Fig. 3 shows the 
estimated power spectra that we obtain when the order N 
of the highest Fourier coefficients that we use in (4.18) is 
10. Note that we can clearly see two peaks at the correct 
impulse locations. Observe also that the estimated spec- 
trum of Fig. 3 is relatively smooth. This is to be expected 
since the MEM power spectral estimate is the smoothest 
of all possible spectra that satisfy the correlation matching 
constraint. While MEM does a good job of resolving the 
peaks of the power spectrum of this example, one might 
prefer to use the method of [33] if the spectra of interest 
are exclusively of the impulsive form of (6.2). This cor- 
responds to using Pisarenko's method [41] or the MUSIC 
method [42], [43] rather than the MEM method in the 
1-D case to estimate power spectra corresponding to a sum 
of sinusoids in a white Gaussian noise. 

Next, to study the effect of the radius 2 R of the disk 
over which the covariance Ky ( r )  is assumed to be given, 
we double the value of 2 R  from 20 to 41 m. The power 
spectrum that we obtain in this case using 21 terms in 
(4.18) is plotted in Fig. 4. Note that this spectral estimate 
is quite peaky and that the peak at 0.2 rad/m is twice as 
large as the one at 0.4 rad/m. This improvement is quite 
natural, and in fact as 2 R tends to infinity, one expects to 
be able to reconstruct the power spectrum exactly. 

Finally, to study the behavior of our algorithm when 
data measurements, rather than exact correlation mea- 
surements, are given, we synthesized an isotropic random 
field with a power spectrum of the form (6.2) using the 
method described in [44]. We then added to the resulting 
field a white Gaussian noise field of intensity 3 W m2. 
Using the value of the observations y (  ) over disks of 
various radii, we obtained estimates of the covariances 
Ky ( r )  and k, ( r ,  s )  using the spatial averaging procedure 
of Appendix B. Particular attention was given in this step 
to the numerical computation of an estimate of k, ( r ,  s )  
via (B.3) to avoid the possible errors that may have re- 
sulted from the highly oscillatory nature of the integrand. 
In our experiments, we used an integration rule based on 
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Fig. 3 .  Plot of the estimated power spectrum in Example 6.1 when exact 

covariance data are given over a disk of radius 20 m and with N = IO.  
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3 

Frequency 
Fig. 4 .  Plot of the estimated power spectrum in Example 6.1 when exact 

covariance data are given over a disk of radius 40 m and with N = 20. 

Filon's procedure [35] to implement (B.3) numerically. 
Fig. 5 is a plot of the power spectrum that we obtain when 
we use the observations available over a disk of radius 
100mtoes t imateKy(r ) forO I r I 20andk , ( r , s ) fo r  
0 5 r,  s 5 10 and for 0 I n I N = 5, and then feed 
those estimates as an input to our algorithm. Note the 
small bias in the position of the spectral peaks which are 
now located at 0.215 rad/m and 0.40 rad/m, respec- 
tively. Fig. 6 shows the power spectrum that we obtain 
when we use the observations available over a disk of ra- 
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Fig. 5 .  Plot of the estimated power spectrum in Example 6.1 when esti- 

mates of the covariance function are computed over a disk of radius 20 
m given the data over a disk of radius 100 m and with N = 5 .  
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Fig. 6.  Plot of the estimated power spectrum in Example 6.1 when esti- 

mates of the covariance function are computed over a disk of radius 20 
m given the data over a disk of radius 30 m and with N = 5.  

dius 30 m to estimate Ky(  r )  for 0 I r I 20 and k,, ( r ,  s )  
for 0 I r,  s I 10 and for 0 I n I N = 5. Observe that 
the peak at 0 .4  rad/m is now barely visible, and that the 
peak at 0.2 rad/m is displaced to about 0.185 rad/m. This 
degradation in the quality of our spectral estimate is not 
surprising since we are now using less accurate estimates 
of Ky(  r )  as an input to our procedure. 

We conclude this example by computing a power spec- 
tral estimate using the values of K,,( r )  for 0 I r I 20 
estimated from the observations inside a disk of radius 
30 m when the noise intensity is only 0.0001 W * m2 
instead of 3 W - m2. Note that the total noise power in 
the interval [0, 0.51 rad/m is now 51 dB lower than that 
of each of the two cylindrical impulses. The spectrum that 
we obtain in this case is plotted in Fig. 7. Note the definite 
presence of the two peaks which are now displaced to 
about 0.18 rad/m and 0.408 rad/m, respectively. How- 
ever, no line splitting is observed. In the l -D case, MEM 
algorithms have been observed to yield two close peaks 
where only one is present whenever the underlying signal 
is a pure sinusoid with a weak additive noise component 
[6]. This phenomenon is called the line splitting problem 
and is more pronounced when the initial phase of the si- 
nusoid is an odd multiple of 7r/4 and when the signal-to- 

E 
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4 
c, 
al 

4 

2 

Frequency 
Fig. 7 .  Plot of the estimated power spectrum in Example 6.1 when esti- 

mates of the covariance function are computed over a disk of radius 20 
m given the data over a disk of radius 30 rn and when P = O.OOO1 W . 
m2 and N = 5 .  

noise ratio is high. In the 2-D isotropic case, there is no 
corresponding initial phase effect. Furthermore, our pro- 
cedure is based on the computation of the filters g, (R, r )  
and thus conceptually involves minimizing the estimation 
error in all possible directions. Hence, our procedure cor- 
responds to the 1-D MEM algorithms based on minimiz- 
ing the forward and backward prediction errors [6]. Such 
approaches are known to alleviate the line splitting prob- 
lem in the 1-D case. 

Example 6.2: In this example, we study the effect of 
varying the number of terms in the series (4.18). Consider 
a signal covariance function of the form 

K , ( r )  = 0.25rKl(0.25r) (6 .3)  

where K , ( x )  is a modified Bessel function of first order 
[25], and assume that the noise intensity is 1 W * m2. 
Covariance functions of the form A r K l ( A r )  have been 
used in hydrology to model the correlation structure of 
rainfall [20]. The power spectrum corresponding to such 
covariance functions is smooth and is given by 

2A2 
( h2 + A2)*' 

SAX)  = (6 .4)  

The true power spectrum corresponding to the observa- 
tions (i.e., the signal plus noise fields) for this example is 
shown in Fig. 8. 

To study the effect of N in (4.18) on the shape of the 
estimated power spectrum, we fixed 2R to be 20 m. Fig. 
9 shows the power spectrum that we obtain when we pick 
N = 1 .  Note the presence of ripples in this case. Such 
ripples can easily be mistaken for cylindrical impulses of 
the type discussed in Example 6.1.  With N = 3, we ob- 
tain the power spectrum of Fig. 10. Note that this estimate 
is quite smooth. However, a spurious small and broad 
peak is still visible around 0.56 rad/m. If we pick N = 
10, we obtain the power spectrum shown in Fig. 11. 
Comparing Figs. 8 and 1 1 ,  we see that this estimate is 
good except around the origin of the wavenumber plane. 
Experimental results indicate that the quality of our spec- 
tral estimates close to the origin improves with the num- 
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Fig. 8. True observation power spectrum for Example 6 .2 .  
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Fig. 9. Plot of the estimated power spectrum in Example 6.2 when exact 

covariance data are given over a disk of radius 20 m and with N = 1 .  
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Fig. 10. Plot of the estimated power spectrum in Example 6.2 when exact 

covariance data are given over a disk of radius 20 m and with N = 3. 

ber of discretization points used. In this example, we used 
100 discretization points, and the quality of the spectral 
estimate that we obtained is good for X > 0.1 rad/m. To 
get better spectral estimates close to the origin, one needs 
to use a very large number of discretization points. For 
example, when we increased the number of discretization 
points from 100 to 150, we obtained only a slight im- 
provement over the case that we show here. Finally, note 
that in this case B = 1 and R = 10, so that N = BR = 
10. 

E 
J 
r, 
0 
Q, 

u 

3 

0.0 0.2 0.4 0.6 0.8 

Freq u en cy 
Fig. 11. Plot of the estimated power spectrum in Example 6.2 when exact 

covariance data are $;en over a disk of radius 20 m and with N = 10. 

To conclude, one should compute 2-D isotropic MEM 
spectral estimates via (4.17) and (4.18) by gradually in- 
creasing the number N + 1 of terms used until the result- 
ing estimates stop changing noticeably as N is increased. 
In general, this requires computing roughly BR + 1 terms 
as mentioned in Section IV. 

In conclusion, these experimental results, and others we 
have obtained, indicate that the quality of the spectral es- 
timate, computed via the technique that we propose, de- 
pends strongly on the size of the interval over which the 
observations covariance function Ky ( r )  is known and on 
the accuracy of the estimates of Ky ( r )  that are used. When 
inaccurate estimates of Ky ( r )  are used, our algorithm 
yields a biased estimate with a bias that is inversely pro- 
portional to the accuracy of the input covariance esti- 
mates. The number of terms that have to be used in (4.18) 
is on the order of BR + 1, where 2 R is the radius of the 
disk over which K y ( r ) ,  or its estimate, is known, and 
where B is the bandwidth in the wavenumber plane of the 
spectrum that we want to estimate. Finally, our procedure 
does not seem to suffer from the line splitting problem 
observed with 1-D MEM algorithms. 

VII. CONCLUSION 
In this paper, we have presented a new linear MEM 

algorithm for 2-D isotropic random fields. Our procedure 
differs from previous 2-D MEM algorithms by the fact 
that we take maximal advantage of the symmetries im- 
plied by isotropy. Unlike general 2-D covariances, iso- 
tropic covariance functions which are positive definite on 
a disk are known to be extendible. Here, we have devel- 
oped a computationally efficient procedure for computing 
the MEM isotropic spectral estimate corresponding to an 
isotropic covariance function which is given over a finite 
disk of radius 2 R. We have shown that the isotropic MEM 
problem has a linear solution which can be obtained by 
constructing the optimal linear filter for estimating the un- 
derlying isotropic field at a point on the boundary of a disk 
of radius R given noisy measurements of the field inside 
the disk. Our procedure is based on Fourier series expan- 
sions in both the space and wavenumber domains of the 
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inverse of the MEM spectral estimate. Furthermore, our 
method is guaranteed to yield a valid isotropic spectral 
estimate, and it is computationally efficient since it re- 
quires only O(BRL2) operations, where L is the number 
of points used to discretize the interval [ 0, R ]  , and where 
B is the bandwidth of the spectrum that we want to esti- 
mate. Finally, we have presented examples to illustrate 
the behavior of our algorithm and its high resolution prop- 
erty. 

There are several directions in which one can try to ex- 
tend this work. In particular, it would be of interest to 
obtain bounds on the variance of the spectral estimate 
(3.5). Note that Cramer-Rao bounds for the variance of 
1-D AR and ARMA spectral estimates were presented in 
[45], and confidence intervals for 1-D and 2-D MEM 
spectral estimates were derived in [46] and [23]. It is not 
yet clear whether these results can be extended to the 
MEM estimate (3.5). In addition, 2-D covariance func- 
tions, which are constant along ellipses rather than along 
circles, arise in some cases of practical interest. Such co- 
variance functions become radially symmetric under an 
appropriate scaling and rotation of the underlying coor- 
dinate axes, and the techniques of this paper can then be 
used to estimate a warped version of the power spectrum 
of the underlying random field. A challenging problem 
here is to develop an algorithm for finding the correct 
scaling and rotation operations to be performed given lim- 
ited measurements of the random field. More generally, 
another interesting problem is to extend some of the ideas 
that appear throughout this paper to homogeneous, but not 
necessarily isotropic, covariance functions which are de- 
fined continuously over the plane. This will require a study 
of filtering problems for homogeneous fields aimed at de- 
termining whether the homogeneity property can be ex- 
ploited in higher dimensional spaces to develop fast fil- 
tering algorithms. 

APPENDIX A 
Proof of Theorem 3.1: The problem that we consider 

in Section I11 is mathematically the problem of finding 
the $,( A )  that maximizes the entropy H 

subject to the positive definiteness and correlation match- 
ing constraints 

( i)  3,( X) I o for x I 0, ('4.2) 

for r I 2R. (A.3) 
By using the approach outlined in [28] for solving opti- 
mization problems with global pointwise inequality con- 
s!raints, we find that the MEM power spectral estimate 
S,( X )  is given by 

I 

Af2R. X) $,(A) = (A.4) 

where 
2R 

A(2R, A )  = 1 a(2R,  r )  Jo( Xr)r  dr,  ( A S )  

and where a ( 2  R, r )  is the Lagrange multiplier function 
associated with the constraints (A.2) and (A.3). Observe 
that A ( 2  R, A )  can be interpreted as being the zeroth-order 
Hankel transform of the function a ( 2  R, r )  which is zero 
outside the disk r I 2 R. Note also that 

0 

$ ( A )  = P + $ ( A )  (A.6) 

where $( A )  is the estimated power spectrum of the pro- 
cess z (  - ). Hence, if we assume that K z ( 0 )  is finite, we 
must have 

lim $ ( A )  = 0, 64.7) 
X + w  

for otherwise the integral 

sow gZ( X)X dX = K,(O)  (A.8) 

would fail to converge. Taking (A.7) into account, we 
can rewrite (A.4) as 

P 
1 - B(2R, A )  $,(A) = (A.9) 

where 
lim B(2R, X )  = 0, 

h + w  
(A. 10) 

and 
B(2R, A )  < 1 ( A . l l )  

since $( A )  is strictly positive for all A. Note that (A.4), 
(A.5), and (A.9) imply that B (  2 R, A) is the Hankel trans- 
form of a function b( 2 R, 3 ), that is, zero outside the disk 
5f radius 2 R centered at the origin of the plane. Now let 
X = ( X I ,  A,) in a Cartesian representation of the wave- 
number plane and consider the function 1 - B(2R, 

) viewed as a function of XI  only (i.e.,  with X2  
fixed). Then (A. l l )  implies that 1 - B(2R, ) 
is strictly positive for all values of X I ,  so that we can use 
the results of [47] to factor 1 - B ( 2  R, X )  as 

(1  - B(2R, A ) )  = (1  - F(R,  X I ,  A,)) 

(1  - F*(R,  XI, A,)) (A.12) 

where F(R,  h,,  X 2 )  is the 2-D Fourier transform of a real 
function f( R, 3 )2 that is causal in the Cartesian coordi- 
nate r l ,  where 3 = ( r , ,  r 2 ) ,  i.e., where 

f (R,  F )  = 0, for r ,  < 0. (A.13) 

Substituting (A. 12) into (A.9), we obtain 

P 
$ ( A )  = 

( 1  - F(R,  XI ,  X2))(1 - F*(R,  XI,  X 2 ) ) .  

(A. 14) 

'The reason for the notation f(R, 7 ), as opposed to f ( 2 R ,  7 ), will 
become clear in the seouel. 
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Equation (A.14) is the continuous space version of the 
well-known result in the discrete space case [ l l ] ,  [29] 
that any power spectral density function S( e Ju, e J ' ) ,  

and on which it must remain finite. From the above dis- 
cussion, we conclude that 33 must satisfy the following 
two constraints: 

which is strictly positive for all ( u ,  u )  E [ -a, nI2, can 
be written in factored form as i) 33 C { 3: r < 2Rand - a / 2  < 8 < a / 2 }  

ii) 33 f l  { ?: ? + 3 ~ 3 3  a n d r  > 2 R )  = 4. 
I s 2  

A h ,  z 2 )  A*(z1, z 2 )  
S(Z1, 2 2 )  = (A.15) 

where the filter A ( z l ,  z 2 )  has a nonsymmetric half-plane 
support. In fact, (A. 14) could have been derived by using 
(A.4) and (A. 15) and the transformations 

A simple geometrical picture shows that the only subset 
of R2 that satisfies the above t y o  constraints is a disk of 
radius R centered at the point Ro = (R,  0), Le., 

9 = ( 3 :  ( 3  - iiol < R ) .  (A.20) 

Next denote by C the causal space of functions of x' which 
are the Fourier transforms of functions that are zero for 
rl < 0 in a Cartesian coordinate representation of the spa- 
tial domain [i.e., where 3 = ( r l ,  r2)], and denote by a 
the anticausal space of functions of X which are the Fou- 
rier traqforms of functions that are zero for r1 > 0. Since 
F * ( R ,  is the ~ ~ ~ r i ~ ~  transform of a function that is 

D( x')  = ( 1  - F * ( R ,  x'))- '  - 1 

1 + j h l  
21 = - 1 - j X l  

1 + j X 2  
22  = ~ 1 - j X 2  

(A.16) 

+ (A*17)  

where and A2 are allowed to take complex values. The 
transformations (A. 16) and (A. 17) are analogous to those 
which are used in the 1-D context to map the continuous 
time case into the discrete time case, and vice versa. 

for r ,  > 0, then 

(A.21) 
However, "like in the discrete space ' 1 9  [ 2 9 i 9  must also correspond to the Fourier transform of a func- 

tion that is zero_for rl > 0. To see why this has to be 
true, factor D( 

where A ( z l ,  z 2 )  often corresponds to a filter with an un- 
bounded spatial support, the filter f(R, 3 ) has a finite 
support in the spatial domain. According to Theorem ) as [501 
3.4.2 in [48], which is originally due to Plancherel and 
Polya [49], and which states that a function f( z' ), z' E 
C2, is an entire function of exponential type if and only 
if it is the Fourier transform of an L2 function which van- 
ishes identically off some bounded domain, B ( 2 R ,  1 1 ) 
where ii E C2, must be an entire function of exponential 
type since it is equal to the Fourier transform of a function 
that is zero outside the disk of radius 2 R in R2. By using 

D( x') = D,( x') + Da( i), (A.22) 

where D,( x' ) and D,( x' ) belong, respectively, to C and 
a. Equations (A.21) and (A.22) imply that 

F*(R,  x' ) = D,( x' ) + Do( x' ) - D,( x') F * ( R ,  x' ) 
- D,( x') F * ( R ,  x') (A.23 ) 

this fact and the factorization given in [21], it can be 
shown that F ( R ,  $ ) is also an entire function of expo- 
nential type and must therefore be the Fourier transform 

and since F* ( R ,  x' ) is the Fourier transform of a function 
that is for rl > o, we must have 

of a function that is zero outside a bounded domain by the 
above mentioned theorem. Let us now study the spatial 
support 33 of the filterf( R,  3 ). Equation (A. 12) implies 

D,( x') = D,( x') F * ( R ,  x') (A.24) 

or 

(A.25) 

which proves our assertion. Combining (A.21) with 
(A. 14), we obtain 

that 
D,( x') = 0 

6(2R, 3 )  =f(R, 7 )  + f ( R ,  - 7 )  

- Sp, 7 ' ) f ( R ,  7 + 3 ' ) O ' .  
- 

( A .  18) 1 gY( i ) ( l  - F ( R ,  x'))e'""' d X ,  = P 6 ( r , )  
--OD 

Since b(  2R, 7 ) is zero for r > 2 R, and since f(R, 3 ) for rl > 0. (A.26)  
and f(R, - 3 ) appear on the right-hand side of (A. 18), 
then 9 must lie inside the half-disk { 7: r < 2R and 
- a / 2  < 8 < a / 2 } .  Equation (A.18) implies also that 

Furthermore, if we take the inverse Fourier transform of 
(A.26) with respect to h2, we get 

the convolution 
r 
f(R, 3 ' ) f ( R ,  7 + 7 ' ) d F '  (A.19) J, 

ky( 13 - s ' l ) ( S (  s') - f(R, s')) d t  = P6( 3)  s, 
for rl > 0. (A.27 ) 

has to be zero outside the disk { 7: r < 2 R } .  Hence, the 
productf(R, 7 ' ) f ( R ,  7 + 3 ' )  must vanish identically 
for all 7: r > 2 R, except maybe on a set of measure zero, 

To compute f(R, 3 ) from the above integral equation, 
we note that (A.20) implies that for any 3 E 33 and any 
? E 9, we have I 3 - ? 1 < 2 R, so that 
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ky(13- ? l ) = K y ( 1 7 -  s.1) 
V 7  E 9 and V s '  E 9 (A.28) 

by the correlation matching constraint (A.3). Since 
Ky(  7 )  = P6(  7 )  + K,( 171) is known by assumption for 
r < 2 R ,  then f (  R ,  7 ) can be computed as the solution 
of the following integral equation: 

K , ( r )  = iD K,(I 7 - s ' ( ) f ( R ,  ?)  ds' + P f ( R ,  s') 

V 7 E D .  (A.29)  

Oncef( R ,  7 ) has been computed via (A.29), then (A.27) 
can be used to extend K, ( r )  beyond the disk r < 2 R .  
Finally, if we make the change of variables 

(A.30) 

(A.31) 

+ + 
- 1  r = R o - r  

-+ 
3' = R,, - ? 

we obtain from (A.29) 
n 

* g ( R ,  s ' )ds ' '  + P g ( R ,  3 ' )  
Vr' < R, (A.32)  

where we defined 

g ( R ,  s") =f(R, 20 - S I ) .  (A.33) 

Note that (A.32) is just (3.6) with 7 and u' replaced by 
7' and s'', respectively. Furthermore, observe that (A.33) 
implies that 

G ( R ,  i) = F * ( R ,  x')e-Ji. io (A.34) 

) is the 2-D Fourier transform of g( R ,  7). where G (  R ,  
Hence, 

11  - F ( R ,  i))' = 11  - F*(R,  x)12 
= 11 - G ( R ,  i ) e i c . R n 1 2  

= - G ( R ,  i)12. (A.35) 

Combining (A. 14) with (A.35), we obtain 

which is (3.5). 
We conclude this appendix by sketching a proof of the 

fact that the normalized entropy H is finite. Consider the 
integral 

(A.37)  

Since Kz( ) E L2 by assumption, then it follows from 
Theorem 7.4 in [32] that 

(A.38)  
where 

r n  - 

f i ( O ' ,  X2) = lim -!- 1 F ( R ,  i ) e i x l r d X I ,  . + 0 + 2 ~  -m 

(A.39) 
and 

m 

(A.40)  

Substituting (A.39) and (A.40) into (A.38) and inter- 
changing the operations of limit and integration, yields 

H = 2 f ( R ,  O + ,  0) .  (A.41) 

If Kz(Of, 0)  is finite and since K,( ) E L2,  (A.29) implies 
that f (R, O + ,  0) is finite, and hence, that H is finite. 

APPENDIX B 
Estimation of the Covariance Functions 

The algorithm that we presented in Sections I11 and IV 
for computing sy ( X) is based on the knowledge of k, ( r j ,  
r- ), the covariance function of the nth-order-Fourier coef- 
ficient process corresponding to the measurements y ( 7 ). 
However, in practice, one is given measurements of the 
field itself rather than k,, ( r , ,  rJ) .  In this appendix, we 
summarize a procedure developed in [33] to compute an 
unbiased and consistent estimate of the nonstationary 
covariance function k,, ( r i ,  rJ )  directly from the measure- 
ments. Let us start by assuming that measurements of the 
field y (  7 ) are available at all the points inside the disk 
DRi = { F: 0 I r I R * } .  Then, to estimate k, , (r , ,  rJ ) ,  
we can use a two-step procedure. In the first step, we es- 
timate K (  r )  using the given data. In the second step, we 
substitute our estimate of K (  r )  into (2.6) to obtain k,, ( r , ,  

K ( r )  can be estimated by using a simple extension of 
the 1-D techniques that were developed to estimate the 
covariance function of ergodic stationary processes. Ob- 
serve that along any line 4 = 4o in a tomographic coor- 
dinate ~ y s t e m , ~  y (  7 )  is stationary. Hence, given the 
measurements { y ( t ,  &): -R* I t I R* } along this 
line, we can estimate K ( r ) ,  using a simple extension of 
the 1-D techniques, as 

'J ) *  

'A tomographic coordinate system ( t ,  4 )  is a modified polar coordinate 
system where t takes both positive and negative real values, and where 4 
varies from 0 to 7r. 
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Since measurements of y (  7 ) are assumed to be available 
all over the disk DR*, we c%n compute K (  r :  +o) for all +o, 
0 I +o I T ,  and take K ( r )  to be the average of the 
E (  r :  $o) over all &,. In other words, we can estimate 
K ( r )  as 

1 R* 2r 
~ ( r )  = ?rR*2 S, ds S, de s Y ( s ,  e )  Y ( r  + s, e ) .  

(B.2) 

Note that we have used theA weight function w( t )  = I t I 
in (B. 1) to guarantee that K (  r )  corresponds to a spatial 
average. 

Next, we can use I?( r )  ,to obtain an estimate of kn ( ri, 
5 )  by simply substituting K (  r )  for K (  r )  into (2.6). Thus, 
we take as our estimate of k, ( r i ,  r j )  the quantity 

112 ’ 

- 2 r i 5  cos 0 )  )epJne. (B.3) 

Note that according to (B.3), one needs to estimate K (  r) 
for 0 5 r I 2r* in order to be able to estimate kn ( ri, r j )  
f o r 0  I r i ,  rj I r*. 

It is shown in [33] that I?( r )  is an unbiased estimate of 
K (  r). Furthermore, since tn ( ri ,  r j )  and k, ( ri, r j )  are re- 
lated linearly to K (  r )  and K( r), respectively, then it fol- 
lows immediatlely from !he unbiasedness and consistency 
properties of K (  r )  that k, ( ri ,  r j )  is an unbiased and con- 
sistent estimate of k , ( r i ,  r j ) .  Thus, by using (B.2) and 
(B.3), we are able to obtain an unbiased and consistent 
estimate of the nonstationary covariance function 
kn(ri, rj)* 
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