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In this paper we develop an algebraic approach to the multiple time scale analysis of 
perturbed linear systems based on the examination of the Smith form of the system 
matrix viewed as a matrix over a ring of functions in the perturbation parameter. 
This perspective allows us to obtain a strengthened version of the results of Coderch 
er a/. (1983) and to provide a bridge between these complex but general results and 
previous explicit, conceptually simple, but somewhat restrictive results such as those 
described by Kokotovic (1981) and Chow (1982). In addition, our algebraic 
framework allows us to investigate a variety of other problems. In this paper we 
study the problem of developing valid time scale decompositions in cases in which 
weak damping terms discarded in the approaches of Kokotovic (l981), Chow (1982) 
and Coderch er al. (1983) must be retained. Also, our approach exposes the role of 
the invariant factors of the system matrix in determining its time scales. This leads 
naturally to the problem of time scale modification (i.e. invariant factor placement) 
via state feedback. We present a result along these lines. 

1. Introduction 
This paper is concerned with the multiple time scale analysis of the perturbed 

N-dimensional linear system 

where A(&) has a Taylor expansion in the small parameter E. If there is a drop in the 
rank of A(&) a t  E =0, the system (1.1) is termed singularly perturbed and can exhibit 
multiple time scale behaviour. The analysis of such behaviour has been the subject of a 
number of previous investigations. In particular, several researchers (Kokotovic 1975, 
1981, Chow 1982, Khalil 1984, Campbell 1978, and Campbell and Rose 1979) have 
made numerous important contributions by investigating systems in what we shall 
call explicit form: 

The explicit forms actually considered by Kokotovic (1981) and Chow (1982) have 
e appearing on the left-hand side rather than the right-hand side. There is no 
significant difference in considering the form (1.2), since the systems in Kokotovic 
(1981) and Chow (1982) can be brought to this form by the change of time scale 
T = t /&.  
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282 X.-C. Lou et al. 

Let 

and let A,, denote the Schur complement of A , ,  in A: 

It is known that if A,, and A,, are non-singular, the eigenvalues of (1.2) occur in 
two groups, one being of order 1 and lying 'close' to the eigenvalues of A,, , and the 
other being of order E and close to the eigenvalues of&AZ2. If both the latter matrices 
are Hurwitz, then the system exhibits well-behaved two-time-scale structure, in the 
following sense: 

where 

and 

i2At) = A22x2At) 

x 2 m  = x,(O) 

The subscripts s and f denote slow and fast subsystems. 
The O(E) terms in (1.3) are uniform in t 3 0, so that ( 1.5) and ( 1.6) provide a 

uniform approximation of the state transition matrix of (1.1). That is, 

lim sup (lexp A ( E ) ~  - T - I  exp (A,(&)t)TII = 0 
e l 0  f a 0  

where 

A,(&) = diag (A,,  

and 

The decomposition provided in (1.5)-(1.6) or, equivalently, in (1.7)-(1.9) has 
found significant applications. One important limitation of these results, however, 
is the assumption that the system is given in the explicit form (1.2) or its obvious 
generalizations (e.g. by expanding the A-matrix in (1.2) to include a third row of 
blocks, each of which is multiplied by c2). O n  the other hand, there are several 
advantages if the system has the form in (1.2). Specifically, there is a simple check to 
see if the system has a time scale decomposition in the sense of (1.7) and (1.8) (namely 
A , ,  and A,, must both be Hurwitz), one immediately knows what the time scales are, 
and the subsystems describing the behaviour at each time scale are easily obtained. 
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Time scale analysis of singularly perturbed linear systems 283 

In contrast to the results just described, we have the work of Coderch et al. 
(1983) that had as its principal objective the development of a general procedure 
for determining if the system (1.1) has well-defined time scale structure and for 
constructing a decoupled time-scale decomposition as in (1.7) with 

Ad(&) = diag (ck' A, ck'A, .,, ckmA,)  (1.10) 

(and with an appropriate choice for T) without assuming that the system is in 
the special form of (1.2). This objective is achieved by Coderch et al. (1983) through 
a rather elaborate sequence of operations on the Taylor series coefficients of A(&),  
involving cascaded projections onto progressively slower subspaces. A major ad- 
vantage of this result is its generality-with it we can analyse general systems as in 
(1.1) without assuming some special form. A price that is paid for this, however, is that 
the results and procedures developed are rather complicated, involve the computation 
of numerous pseudo-inverses, and generally d o  not lend themselves to easy inter- 
pretation or computation. 

The work presented in this paper bridges the gap between the intuitively and 
computationally simple but somewhat restrictive results of Kokotovic (1981) and 
Chow ( 1982) and the quite general but rather complicated ones presented by Coderch 
et a!. (1983). The key to constructing this bridge is an  examination of the algebraic 
structure of A(&) considered as  a matrix over the ring W of functions of e that are 
analytic a t  c = 0. In particular, by considering the Smith form of A(&) we not only 
provide the basis for transforming a general system (1.1) to its explicit form, but also 
make clear the role of the invariant factors of A(&) in specifying the time scales present 
in the dynamics (1.1), a role that is suggested but not developed in Coderch et al. 
(1983). This approach provides some valuable additional perspectives on  the results in 
Kokotovic (1981), Chow (1982) and Coderch et al. (1983), and it also allows us to 
consider and solve a number of additional problems. Several of these are presented in 
the later sections of this paper, while others will be the subject of future papers. We 
note here that another approach to the main results of Coderch et al. (1983) is 
described by Khalil (1984), who proceeds by transforming A(&) to a similar block- 
diagonal form. There is a clear point of contact between our work and the results of 
Khalil (1984), as our proof of the sufficiency of certain conditions for the existence 
of a time scale approximation, presented in $4, is very much in the spirit of the 
methods used by Kokotovic (1981), Chow (1982) and Khalil (1984). O n  the other 
hand, our results go significantly farther than previous efforts in that, for the first time, 
we make clear the role of the Smith form and the invariant factors of A(&) and present 
a procedure that minimizes the number of &-dependent computations required by 
identifying and discarding non-critical, &-dependent terms in A(E) and in its explicit 
form. 

In the next section, we introduce a new definition of what we call a strong time 
scale decomposition. Based on this, we present a new result that allows us to state 
a strengthened version of the main result of Coderch et al. (1983) and to obtain a 
criterion for identifying higher-order terms in a system matrix A(&) that can be 
discarded without affecting the investigation of the existence of strong time scale 
behaviour. In $ 3 we then introduce the Smith form of A(&) and use it to transform 
(1.1) to its explicit form. We also perform some initial analysis that allows us to focus 
subsequent discussions on the case in which A(&) is Hurwitz for 0 < E $ E,  for some 
c0 > 0. In 5 4 we develop what can be viewed as a generalization of the procedure in 
Kokotovic (1981) and Chow (1982) to analyse systems in explicit form. This produces 
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284 X.-C. Lou et al. 

both a set of necessary and sufficient conditions for a system to have a strong time scale 
decomposition and a procedure [or constructing the corresponding strong multiple 
time scale approximation. 

With these results established, we can then consider two important extensions. In 
9 5 we consider a generalization of the definition of a time scale approximation that 
allows us to construct such approximations for a large class of systems violating the 
conditions of 8 4. In § 6 we address the problem of modifying and controlling the time 
scales of the system 

through the use of feedback 

2. Well-defined multiple time scale behaviour 
T o  begin this section we give two different definitions of what one might mean by 

well-defined multiple time scale behaviour. The first of these is essentially the standard 
definition that is stated or implied in previous treatments. The second, stronger 
definition is new, as  it requires the consideration of an entire family of systems. By 
introducing this definition we can make several new observations concerning time 
scale decompositions and can give a stronger interpretation of the results of Coderch 
er aL (1983). 

Definition 1 
The system (1.1) has a multiple time scale decomposition if there exist constant 

matrices A, ,  A,, ..., A,, T and integers 0 < k, < k2 < ... < k, such that 

lim sup llexp (A(&)[) - T - '  exp {diag [ c k l ~ ,  ck2A2 ... E~~A,]~}TII  = 0 (2.1) 
r 1 0  IPO 

In this case we say that [{A,}, {k,}, T I  defines a multiple time scale decomposition of 
(1.1) or of A(c).  

To introduce the second definition we first need the following definition. 
(Throughout this paper we assume that all matrix functions of c are analytic at zero.) 

Dejnition 2 
The perturbed family F{A(c)} associated with the matrix A(&) is defined as 

follows: 

Dejnition 3 
The system (1.1) has a strong multiple time scale decomposition if there exist 

constant matrices A , ,  A,, ..., A,, T and integers 0 < k, < k2 < ... < k, such that 

lim sup llexp (F(&jt) - T -  ' exp {diag [ E ~ ~ A ,  ... ckmA,]t}TII = 0 (2.3) 
6 1 0  I P O  

for all F(E) E F{A(E)}. In this case we say that [{A,}, {k,}, TI defines a strong time 
scale decomposition of (1.1) or of A(&). 
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Time scale analysis of singularly perturbed linear systems 285 

Clearly the second of these definitions is significantly stronger than the first. 
Intuitively, the elements of ~ { A ( E ) }  should be thought of as  mild perturbations of 
A(&), and the strong-sense definition requires that any such perturbation must result 
in a system that has the same time scale decomposition as (1.1). More precisely, 
an immediate consequence of Definition 3 is that if A(&) has a strong time scale 
decomposition, then any G(E) E ~ { A ( E ) }  is asymptotically equivalent to A(&), i.e. 

lim sup llexp (A(&)t) - exp (G(~)t)l) = 0 
E I O  l d 0  

T o  illustrate these ideas, let us consider several examples. First, note that the scalar 
system 

2(t) = ~ ( t )  (2.5) 

trivially has a time scale decomposition according to Definition 1 but not according to 
Definition 3 since (1 + E) €9 {I} is not asymptotically equivalent to 1. O n  the other 
hand, it is not difficult to check (and it can be seen immediately from the results in 
several papers) that 

does have a strong time scale decomposition. 
Consider next the system matrix 

This matrix has a trivial time scale decomposition, but it does not have a strong time 
scale decomposition, since it is not asymptotically equivalent to the matrix 

Finally, we note that 

does not have a strong time scale decomposition since it is not asymptotically 
equivalent to 

These examples indicate that there are problems when there are eigenvalues that 
are in the right half-plane, are purely imaginary, o r  are zero with non-trivial Jordan 
blocks. T o  see that these examples span all possible cases, we need to briefly re- 
examine and strengthen the main result of Coderch et al. (1983). In particular, 
although it is not discussed, Coderch et al. in fact provide the basis for determining if a 
system has a strong time scale decomposition and for constructing that 
decomposition. The system considered by Coderch et al. (1983) is the singularly 
perturbed LTI system (1.1) with a slight change in notation, the purpose of which will 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
a
s
s
a
c
h
u
s
e
t
t
s
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
,
 
M
I
T
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
6
:
2
4
 
5
 
J
a
n
u
a
r
y
 
2
0
1
1



286 X . 4 .  Lou et al. 

become clear shortly. 

where the matrix A,(&) is an analytic function of at & = 0 .  Suppose AO(&) has 
eigenvalues I ,(&),  ..., I.,(&) where A,(&) -P 0 as E -+ 0, i = I ,  ..., m < n. Then the total 
projection for the zero-group of eigenvalues of AO(&), PO(&), is the projection onto the 
subspace spanned by eigenvectors and generalized eigenvectors corresponding to 
A1(e), ..., I,,,(&) of AO(&) (Kato 1966). 

Since AO(&) is analytic at e = 0, it has a series expansion of the form 

It can be proven (Coderch et al. 1983, Kato 1966) that if Foo has semi-simple 
nullstructure (SSNS), i.e. if its zero eigenvalue is semi-simple (has geometric multi- 
plicity equal to its algebraic multiplicity), then the matrix 

has a series expansion of the form 
m 

A,(&) = 1 cPFlp (2.14) 
p=o 

(otherwise A,(&) will have E - I  terms). If F l o  also has SSNS we define A2(&) as 

where PI(&) is the total projection for the zero-group of eigenvalues of A,(&). This 
process can be continued until it terminates a t  

if the matrix F,, does not have SSNS or  if rank F,, + rank Flo + ... +rank F,, 
equals the normal rank of AO(&), i.e. the constant rank that AO(&) takes on some 
interval (0, e O ]  A matrix A,(&) is said to satisfy the multiple semi-simple null structure 
(MSSNS) condition if the latter of these conditions holds. If, in addition, all F,, are 
semi-stable, i.e. if for each value of k F,, has SSNS and all of its non-zero eigenvalues 
have strictly negative real parts, then we say that AO(&) satisfies the multiple semi- 
stability (MSST) condition. 

The main result of Coderch et al. (1983) is that if A(&) satisfies MSST, then 

for some non-singular 7; semi-stable Ai, and uniquely determined integers k,; and A(&) 
has a time scale decomposition in the sense of Definition 2. O n  the other hand, as our 
examples (2.5), (2.7), (2.9) show, MSST is not necessary for A(&) to have a time scale 
decomposition. What we show in Theorem 1 is that MSST is necessary and sufficient 
for A(&) to have a strong time scale decomposition. 

In order to prove our strengthened version of the main result in Coderch et al. 
(1983) we need two results. 
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Time scale analysis of singularly perturbed linear systems 287 

Proposition I 
Let G(E) E F { A ( & ) } .  Then 

where the superscripts G and A denote the sequences defined in (2.12)-(2.16) for G(E)  
and A(&),  respectively. 

Proof 
See Appendix A. 

Proposition 2 
Suppose that [ { A , } ,  {k , ) ,  T I  defines a multiple time scale decomposition of AO(&) 

and suppose further that A , ,  ..., A, are semi-stable. Then (2.17) holds and hence A(&) 
satisfies the MSST condition. 

Proof 
See Appendix B, 

We can now state the folowing theorem. 

Theorem 1 
The system (2.1 1) has a strong time scale decomposition if and only if AO(&) 

satisfies the MSST condition. 

Proof 
As stated previously, it is proved by Coderch et al. (1983) that the MSST condition 

is sufficient to satisfy the weaker Definition 1. That this condition is sufficient for the 
stronger definition follows directly from Proposition 1. The proof of necessity is also 
straightforward. Specifically if AO(&) has a strong time scale decomposition as in (2.1), 
then, thanks to Proposition 2, all we need to show is that the A,  must be semi-stable. 
This can be done by contradiction. Specifically, if A, is not semi-stable, then it has a 
right half-plane eigenvalue, a pair of purely imaginary eigenvalues, o r  a non-trivial 
Jordan block corresponding to the zero eigenvalue. Showing that any of these 
conditions precludes the existence of a strong time scale decomposition is a minor 
variation on our previous discussion of the three examples (2.5), (2.7) ,  (2.9). 

Note that if A(&) is invertible for E E ( O , E ~ ] ,  the A, in the strong time scale 
decomposition are all Hurwitz. 

Finally, it has been shown by Coderch et al. (1983) that if AO(&)  does not satisfy 
MSST, then for some q the limit as ~ 1 0  of 

does not exist. This indicates that a failure of the MSST condition does correspond to 
some type of non-convergent behaviour. However, the precise meaning and interpreta- 
tion of this could not easily be exposed without the concept of a strong time scale 
decomposition. Indeed, in addition to providing us with Theorem 1, this machinery 
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288 X.-C. Lou et al. 

makes it far simpler to prove the non-existence of the limit of (2.19). Furthermore, we 
now see that to verify the MSST condition and to construct a time scale decomposi- 
tion for A(&), we can equivalently examine these questions using any element of 
S(A(e)}-i.e. any such element must generate the same sequence F,,  if a strong time 
scale decomposition exists. Of course we can equivalently consider any element of 
F{SA(E)S-~}  where S is any constant invertible matrix. We make use of these facts in 
the next section to transform an arbitrary A(&) to its explicit form. 

, 3. Explicit form 
As mentioned in 6 1, our new approach employs the Smith decomposition of A(&) 

over the ring W of functions of e that are analytic a t  e = 0 (see Van Dooren et al. 1979, 
Verghese and Kailath 1981). The units of Ware  elements that d o  not vanish at E = 0. 
That is, since any element of W can be expanded in a Taylor series, 

we see that the set of units are those elements with a ,  + 0. It is also easily seen that W 
is a euclidean domain, with the degree or order O(d(&)) of any element d(e) E W being 
defined as the order of the first non-zero term in its Taylor expansion. Therefore A(&) 
has a Smith decomposition 

where P(E) and Q(E) are unimodular, i.e. IP(e)I and IQ(e)I are units (and thus P-l(&) 
and Q-l(e) are matrices over W) or, equivalently 

IP(o)l# 0, IQ(o)l+ 0 (3.3) 

and 

D(e) = diag (ck31 ... ~ ~ " 1  0) (3.4) 

where O <  k, < k, < ... < k, are integers, the identity matrices I may have different 
dimensions, and the zero matrix is only present if A(E) is singular in a neighbourhood 
of E = 0. The ek' are called the invariant factors of A(&). The actual computation of such 
Smith decompositions is discussed by Van Dooren et al. (1979) and Verghese and 
Kailath (1981) (in the terminology of Verghese and Kailath (1981), what is required is 
to transform A(&) to the matrix D(e)Q(e) which is 'row-reduced at 0' through row 
operations embodied in P - '  je)). Without loss of generality, we assume from here on 
that k, = 0; this can always be obtained by a change of time scale in (1.1). 

Rather than working with the system (1.1), we consider an E-independent change 
of variables 

y( t )  = P-'(O)x(t) (3.5) 

so that 

Next we note that if we define the constant matrix 

then 
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Time scale analysis of singularly perturbed linear systems 289 

(premultiply P- '(O)P(E)D(E)Q(E)P(O) by P -  (&)P(O) and postmultiply by P -  l(0) 
x Q-'(&)Q(O)P(O)). Therefore, we arrive a t  the explicit form of (1.1): 

which, if we express A in block form with blocks compatible with those in (3.4), can be 
written as 

Let us make several comments about the previous transformations. First of all, 
note that every element of F{A(E)} has the same explicit form. Secondly, if A(&) does 
not have a strong time scale decomposition, then, as in the examples in 8 2, there is no 
reason to expect that (3.9) is a good approximation of (3.6) (and therefore of (1.1)) in 
that the two systems need not be asymptotically equivalent. However, if any of the 
systems ( l.l), (3.6) or (3.9) has a strong time scale decomposition, then they all do, and 
(3.9) is asymptotically equivalent to (3.6). Therefore, we can focus on the explicit form 
if we are interested in strong time scale decompositions. Finally, note that the system 
(3.10) is an  obvious generalization of (1.2), and this observation provides the basis for 
our development in the next section. Before doing this, however, we first conclude this 
section by showing how we can deal with the zero diagonal block in D(E) SO that 
hereafter we can focus attention on the case in which there is no such block, i.e. the 
case in which A(E) is Hurwitz for E E (0, E , ] .  

Specifically, let us write D(E) in (3.4) as 

D(E) = diag (Dl ( 6 )  0) (3.1 1) 

(so that Dl  (E) consists of all of the non-zero invariant factors), and let us express A in 
(3.7) in blocks compatible with (3.1 I). 

We then have that 

Note that ( G I ,  G,,) has full row rank since 3 is invertible. In fact, it follows im- 
mediately from the development in the next section that D(E)A has MSSNS only if G, ,  
is invertible. Therefore, as  a first step in our overall procedure, we check the 
invertibility of G I , .  If it is not invertible, then we immediately know that (3.9) and 
hence (1.1) d o  not have strong time scale decompositions. If G I ,  is invertible, we 
perform the following &-independent transformation of (3.9) 
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290 X.-C. Lou et al. 

so that 

From this point on we can focus completely on the lower-dimensional, explicit form 
matrix D l  ( e ) G , ,  which is invertible for e E (0, E , ] .  If this has a strong time scale 
decomposition, then so do  (3.9) and (1.1), and the construction of the time scale 
approximations for these systems from the one for (3.15) involves the obvious reversal 
of the steps taken to obtain (3.15) from (1.1). 

4. Strong multiple time scale decompositions of systems in explicit form 
Based on the development and discussion in the previous section, we now focus 

attention on the following system in explicit form 

where 

D(E) = diag ( I  E * Z I  ... ~ ~ " 1 )  

and 

is invertible. The reasons for the notation introduced in (4.2) will become clear shortly 
(here the dashed lines in both matrices are in the same locations, so that A,, = A , ,  , 
R ,  = [ A , ,  ... A , , ] ,  etc.). 

One direct approach to determining necessary and sufficient conditions under 
which (4.1) (and thus (1.1)) has a strong time scale decomposition is to identify ex- 
plicitly the projections and similarity transformations used by Coderch et al. (1983) to 
check for MSST and to obtain the multiple time scale decomposition described in 
Theorem I. This is done in detail by Lou (1985). What we d o  in this section is to follow 
an approach that makes use of the results in $j 2 to obtain a set of necessary and 
sufficient conditions and a procedure for constructing a multiple time scale decomposi- 
tion that is much more in the spirit of Kokotovic (1981) and Chow (1982). Based on 
our initial review of the analysis of (1.2), it should not come as a suprise that successive 
Schur complements of A play an important role in our development. Also, since we 
are focusing on strong time scale decompositions, we have the luxury of throwing 
away many of the &-dependent terms that arise as we proceed. Specifically, whenever 
we run into a unimodular matrix U(E) multiplying our system matrix on  the left or 
right, we can replace it by U(0) and continue. Either both of these systems have the 
same strong time scale decomposition or neither has such a decomposition. 

The basic idea behind the approach we use here is to block-diagonalize D(E)A. We 
do  this in stages, 'peeling off' one time scale of (4.1) a t  a time, starting with the fastest. 
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Time scale analysis of singularly perturbed linear systems 29 1 

To begin, let us introduce some notation. Specifically, let D l ( & )  = D(E),  A, = A ,  and 

(here the dimensions of the ( n  - I )  identity matrices in (4 .6)  are the same as the last 
( n  - I )  blocks in D(E)) .  

As a next step we prove the following lemma. 

Lemma 1 
Consider the constant matrix 

where ( N ,  L) has full row rank and N is square. Then M has SSNS if and only if N is 
invertible. 

Proof 
Suppose N is invertible. Then 

which clearly has SSNS. On the other hand, if N is not invertible, then there exists 
x + 0 so that N x  = 0 .  Furthermore, since ( N ,  L) has full row rank, we can find x ,  
and x ,  so that N x ,  + Lx ,  = x. If we then define 

we have that M z  # 0 but M 2 z  = 0 ,  showing that M  does not have SSNS. 0 

Letting e = 0 in (4.3), we have 

Since A, is invertible, [A, ,  R , ]  has full row rank. Consequently, from Lemma 1 we 
see that the system matrix (4.10)  describing evolution at  the fastest time scale has 
SSNS if and only if A l l  is invertible. Suppose, then, that A,, is invertible. Consider the 
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similarity transformation 

A , ,  +ek2A;: R ~ D ~ ( E ) w ~  E~~A;:R~D,(E)A, I (4.1 1) 
E ~ ~ D ~ ( c )  wl ek2D2(e)A2 

where 
A,=z , -  w,A;:R, (4.12) 

which is invertible (since A, and A l l  in (4.2) are both invertible). Note further that 

where U(0) = V(0) = I  (see Appendix C). 
Since we are interested in strong time scale decompositions, we can discard U(e) 

and I/(&). From Proposition 2 and Theorem I we can immediately conclude that 
for diag (A,, ek2D2(e)A2) to have a strong time scale decomposition, A, ,  must be 
Hurwitz. Furthermore, we have now reduced the problem to the examination of the 
explicit form matrix D2(&)A2 with one less time scale. 

Consider now the following recursion beginning with A, in (4.2) and defined 
recursively as follows 

Here the block size of each A,, is the same as that of the ith block in the original 
explicit form systems (4.1), (4.2). (Note that at the last step 2, = A,.) Using the results 
of 9: 2 then yields the following theorem. 

Theorem 2 
The explicit form system (4.2) has MSSNS if and only if each A,, is invertible. 

Furthermore, the system (4.2) satisfies the MSST condition, and hence has a strong 
time scale decomposition if and only if each of the A,, is Hurwitz. In this case 
lim sup 1 1  exp (D(c)A~) - T -  exp {diag [A, ,  ek2A2, ... eknA,,]t}~ 11 = 0 (4.16) 
ClO 1 3 0  

where 
T = T , - ,  ... TI (4.17) 

1 A;,' R1 

T1 = [o 1 ] 
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Time scale analysis of singularly perturbed linear systems 293 

(here the upper left-hand identity block is of dimension equal to  the first ( i  - I) blocks 
of (4.1) and (4.2)). 

We close this section with several final comments. First, note that the recursive 
procedure just described for peeling off successively slower time scales actually yields a 
sequence of approximations over successively longer time intervals, i.e. 

lim sup llexp(D(e)At) - T - I  exp {diag [A,, ... ekrl,, 0 ... O]t}TII = O  
e l 0  ~ s [ O , e ' - ' . ' ~ )  

(see Coderch et al. (1983) and Khalil(1984) for similar comments). Secondly, we note 
that an  alternative approach to  that of showing the sufficiency of the conditions in 
Theorem 2 is presented by Lou et al. (1984) using an approach much in the spirit of 
Khalil (1984). Specifically, consider the following equations 

It is straightforward to check that these equations have solutions L,(e) and H,(E) fore 
small enough, that 

that 

is unimodular, and that the similarity transformation specified by T,(E) block- 
diagonalizes D, (E)A~,  i.e. 

where 

Noting then that G,(O) = A , ,  and that G*(E) = D2(e)AZC(~) where C(0) = 1, we can 
conclude that D,(e)d,  has a strong time scale decomposition if and only if 

does, where 

This process can then be iterated to  consider the next time scale. 
Comparing this procedure with that described previously, and in particular with 

(4.1 1)  and the subsequent development, we see that, thanks to  Theorem 1, we d o  not 
have to d o  quite so much work (although, as  described in Appendix A, we actually use 
this full block-diagonalization procedure in the proof of Proposition 1). Rather, 
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instead of fully block-diagonalizing D , ( E ) A ~  using the full TI(&), we simply use Tl(0), 
the key being that we have raised the order of the upper right-hand element of (4.1 1) 
sufficiently so that (4.13) holds. In a sense, what we have done in (4.1 1 )  is a first step 
in an iterative approach to block-diagonalizing D 1 ( ~ ) A 1 .  Specifically, think of the 
transformation in (4.11) as an attempt to approximately zero the (1, 2) block of 
D,(E)A, by raising its order. If  we then attempt to approximately zero the (2, 1) 
block of G(E) (using a lower-block-triangular similarity transformation), we shall raise 
the order of this term. Carrying this process on for a number of steps, we obtain better 
and better approximate block diagonalizations and hence have a series expansion 
for TI(&). What we have shown here is that when looking for strong time scale 
decompositions, we can stop after the first term in the series. In the next section, we 
describe a procedure for constructing a weaker form of a time scale decomposition for 
systems not satisfying the MSST condition. This procedure requires keeping ad- 
ditional terms of the series or, equivalently, performing the iterative, approximate 
block-diagonalization procedure for more than one iteration. 

5. Time scale decompositions for systems without MSST 
In this section, we describe a procedure for constructing a somewhat weaker time 

scale decomposition for systems that d o  not satisfy the MSST condition. T o  motivate 
and illustrate the essential ideas behind this procedure, we begin with an  example. 
Specifically, consider the system matrix 

Since A(0) is not semi-stable we immediately see that this matrix does not have a 
strong time scale decomposition. In fact, it is not difficult to see that it does not even 
have a time scale decomposition in the sense of Definition 1. The reason for this stems 
from the requirement that the system matrices A,, A , ,  ... in (2.1) be independent of e. 
Examining A(&) in (5.1), we see that its eigenvalues ( - E  f j) have the property that 
their real parts are of higher order in than their imaginary parts. Consequently, when 
we attempt to use a constant system matrix to approximate (5.1) we throw away the 
crucial damping. From this perspective, it seems evident that what one should seek to 
do  in this case is to keep at least some of the &-dependent terms in A(&) in order to 
preserve its principal damping characteristics. The procedure we develop in this 
section does exactly that. 

We begin our development with the following. 

Definition 4 
Let A(&) be Hurwitz for E ~ ( 0 ,  E ~ ]  and let the Smith form of A(&) be as in (3.2) 

with D(c) = diag ( I  EI ... &"-'I). Then A(&) has a weak multiple time scale 
decomposition if 

lim sup llexp (A(8)t) - T - I  exp {diag [Ao(&) &A,(&) ... &"-I A,(~)]t}Tll = O  
e l 0  I P O  

where T is a constant matrix and each of the A:(&) has the properties that Ai(0) 
is invertible and each of its purely imaginary eigenvalues is semi-simple (i.e. has 
algebraic multiplicity equal to its geometric multiplicity). 
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Time scale analysis of singularly perturbed linear systems 295 

Let us make several comments about this definition. First, using the procedure 
described a t  the end of § 3 we can actually weaken the assumption that A(&) is Hurwitz 
by assuming only that A(&) is semi-stable for E E (0, e,] (so that there may be a zero 
block in D(E)); however, for simplicity here we use the stronger assumption. Also, the 
assumption that D(E) has the particular form stated in the definition is no real 
restriction and again we include it here for convenience only (if some power of c 
between zero and n - 1 is not an invariant factor, then the corresponding step of our 
procedure is simply dropped). Finally, let us discuss the assumptions on Ai(0). Note 
first that requiring A,(O) to be invertible is equivalent to assuming that A(&) has 
MSSNS, while the further semi-simplicity assumption eliminates matrices such as 

which are Hurwitz for E > 0 but for which 

grows without bounds as  &LO. In essence, what we are considering in this section is 
the extension of our theory of time scale decompositions to include those A(&) with 
eigenvalues that converge to points on the imaginary axis other than the origin. Con- 
sequently, i t  is not suprising that the multiple semi-simplicity condition is extended 
to include all eigenvalues converging to the imaginary axis. 

Definition 5 
A matrix A(&) has multiple semi-simple imaginary eigenstructure (MSSIES) if it 

has MSSNS and if each of the purely imaginary eigenvalues of each of the A,, defined 
in Theorem 2 is semi-simple. 

Essentially by definition we have that MSSIES is necessary for A(&) to have a weak 
time scale decomposition.t In fact, the procedure we describe in this section proves the . - 
following theorem. 

Theorem 3 
Let A(&) be Hurwitz for E ~ ( 0 ,  E ~ ] .  Then A(&) has a weak multiple time scale 

decomposition if and only if it has MSSIES. 
For the remainder of this section we assume that A(&) is Hurwitz and has MSSIES. 

As a first step in our procedure, we transform the dynamics of(1.1) in a manner similar 
to that used in 5 2. Specifically, let A(&) have the Smith form given in (3.2) and define 

t Indeed if this is not the case, then (5.2) leads to a contradiction, since 

lirn sup (lexp ( A ( ~ ) t ) l l  = co 
6 1 0  1 2 , O  

but exp {diag [A,(E) ... &"-'A,- I (~ ) ] t}  is uniformly bounded. 
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so that 

where A(&) = Q(E)P(E). In $ 5  3 and 4 we performed a slightly different similarity 
transformation and also replaced Z(E) by A =  4 0 ) .  In the present context we cannot 
throw away the &-dependent terms in A(&). However, as the following result shows, we 
can do  so in the similarity transformation relating x ( t )  and y(t). 

Lemma 2 
Suppose that (Al(&), ..., An(&); T) defines a weak time scale decomposition of 

D ( E ) ~ ( E ) .  Then (Al(&), ..., A,(E); TP-'(0)) defines one for A(&). 

Proof 
See Appendix D. 

Let us introduce some notation. Specifically, let 

where, as in (4.3), the partition indicated is compatible with that of 

D(E) = diag ( I  61 ... 6"-' 1) = diag ( I  eD2(&)) (5.6) 

By assumption, A:(&) has MSSNS, so A:,(&) is unimodular. Consider next an  arbi- 
trary (possibly 6-dependent) matrix 

and define two similarity transformations on F: 

We also define a third similarity transformation, I-, obtained by first applying the 
@-transformation to F and then applying the Y transformation to OF@-'  ( is .  we 
construct 'Y using the blocks of OF@-'). We can now state the following. 

Lemma 3 
Define the following sequences of matrices: 

I-', ( E )  = I--transformation for A ~ ( E )  

A f +  '(6) = I-f (&)A; (&)I-!(E) - 
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Time scale analysis of singularly perturbed linear systems 297 

where A:(&) is given in (5.5). Then A:(&) has the form 

where Af , ( E )  is unimodular. Furthermore, A; , ( E )  and EF; ( E )  converge to  the matrices 
appearing in the block-diagonalization of A , ( & )  obtained as in (4.21)-(4.26). 

Proof 
Equation (5.12) can be verified by direct calculation. See KhaIi1(1984), Kokotovic 

(1975), Kokotovic et al. (1980) for the convergence result (which is not used in what 
follows). 

In 5 4, we contented ourselves both with replacing Z(E) in (5.5) with Z(0)  = K and 
with performing only the first step of the iteration. In the present context we can d o  
neither of these. O n  the other hand, it is still not necessary to go to the limit. To make 
this precise, we begin with some notation. Specifically, let N denote the dimension of 
A(&); ,Ii(&) the eigenvalues of A(&); and M an upper bound on the maximum order of 
the real parts of the ,Ii(A(.s)), i.e. 

Since we have assumed that A(&) is Hurwitz such a bound can be found. For example, 
if A(&) is a polynomial matrix, we can take M equal to the highest-order power of 
appearing in IA(E)I. 

Given N and M, let 
K = N M + 1  (5.14) 

and consider carrying out K steps of the iteration described in Lemma 3. This 
produces 

where we have introduced the notation A,,(&) = A:,(&) and A!(&) = F?(E). Next, we 
perform the same procedure a t  the next time scale. That is, write 

and perform K steps of the iteration in Lemma 3 involving the sequence r;(&) and 
producing AZ2(&) and A:(&). Continuing this process we obtain a complete sequence 
A, , (E ) ,  ..., A,,,,(E) and can state the following theorem. 

Theorem 4 
Suppose that A(&) is Hurwitz and has MSSIES. Then D ( E ) ~ ( E )  has a weak time 

scale decomposition as  in (5.2) with Ai(&) = &(E)  and T as in (4.17)-(4.19). 

Proof 
A straightforward calculation shows that 

E ( E ) D ( E ) A ( E ) C - ~ ( E )  = G(E) + H ( E )  
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and 

where 

G(E) = diag (A,, (E) &Az2(&) ... en-' A,,,,(&)) 

O(H(6)) = K 

As in Lemma 2, we can replace Z(E) by Z(0). However, Z(0) = 7; since T:(E) = I for 
k > O a n d  

with A:(O) and R?(o) equal to  A,, and R,, respectively, from (4.14) and (4.15). 
What remains to  be shown, then, is that G(E) and G(E) + H(E) are asymptotically 

equivalent. This is done in Appendix E. 
The key idea behind this result is that we must approximate the eigenstructure of 

A(&) accurately up to  a t  least the order of the damping in each eigenmode. For 
example, the matrix 

is asymptotically equivalent to  the matrix in (5.1), i.e. it is allowable to  neglect the 
higher order (8') damping. O n  the other hand, the two matrices 

are not asymptotically equivalent since, compared to the order of damping, the 
difference in frequency (between 1 and 1 + E) is very significant. 

What the procedure we have described does is to  perform a sufficient number of 
iterations to guarantee that the difference between the eigenvalues of A(&) and its 
approximant are of higher order than the real (i.e. the damping) part. Admittedly the 
procedure is conservative-typically one can get by with fewer iterations and can 
discard additional higher-order termsretained by the procedure-but it is guaranteed 
to  work. 

6. Assignment of time scales by state feedback 
The results of 9 3  3 and 4 establish the role of the invariant factors of A(&) in 

determining the time scales of the undriven system (1.1). For the driven system (1.1 l), 
- 

t Here O(H(&j) denotes the minimum order of all elements o iH(~) .  As an aside, note that the 
diagonal blocks of H(E) are zero. 
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it is then natural to pose the question of time scale o r  invariant factor assignment. 
Specifically, it is of interest to  determine what freedom there is in assigning the 
invariant factors of 

i ( t )  = F ( E ) x ( ~ ) ,  F(E)  = A(&) + B(E)K(E) (6.1) 

by application of state feedback as in (1.1 2) .  The following is a result in this direction. 

Theorem 5 
Assume that A(&),  B(E) are left coprime, i.e. that [A(O) B(0)]  has full row rank. Let 

b denote the rank of B(0). Then 

(a )  F (E )  can have no more than b non-unit invariant factors. 

( b )  There exists a K ( E )  such that F(E)  has 6'1, ..., E'" as its invariant factors, for 
arbitrary non-negative integers j,, ..., j, (with the convention that E" = 0).  

Proof 
We first show that we can further assume that 

ACE) = diag ( 1  ... 1 ckl ... e k ~ ) ,  ki > 0 (6.2) 

and that B(E) is upper triangular. Specifically, suppose that A(&) has the Smith form 
given in (3.2). We can then write 

Thus we can equivalently consider the invariant factors of D(E)  + B(E)K(E) ,  where 
B(E) = P - ' ( E ) B ( E ) ,  R(E) = K ( E ) Q - ' ( E ) .  Furthermore, using elementary column opera- 
tions we can show that B(E)U(E)  = B ( E )  where U(E)  is unimodular and B ( E )  is upper 
triangular. Consequently, we have the equivalent problem of invariant factor as- 
signment for D ( E )  + B(E)K(E),  where K ( E )  = U - ' ( ~ ) R ( E ) .  

Suppose then that A(&) is given by (6.2) and B(E) is upper triangular. Furthermore, 
for notational simplicity and without loss of generality we assume that both A(&) and 
B(E) are N x N. Let us first prove the second part of the theorem statement. Note first 
that for [A(O), B(0)]  to  have full row rank it must be true that L < b, and B must have 
the form 

where * represents an arbitrary element in W (Actually, what we can conclude is that 
the last L diagonal elements of B(0) are non-zero. By right-multiplications we can 
make these values unity.) 
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Assume first that L =  b. Then we can construct a unimodular matrix V ( E )  SO that 

and let 

K ( E )  = V ( E )  diag (0 ... 0 ~ j l  - E~~ ... E j b  - E k b  ) (6 .6 )  

It is straightforward then t o  show that A(&) + B ( E ) K ( E )  has the desired invariant 
factors. lf L <  b, we are in essence replacing some of the unit invariant factors of A(&)  
with non-unit invariant factors. Since rank B(0)  = b, b - L of the first N - L columns 
of (6 .4 )  are linearly independent a t  = 0 .  Then, just  as in constructing (6 .5 ) ,  we can 
construct a unimodular matrix V ( E )  SO that 

i.e. so that b - L of the first N - L rows are zero except for a single entry of unity, and 
so that these rows and the last L rows are linearly independent. In this case, it is 
then simply a matter of performing a permutation similarity transformation so that 
the transformed version of A(&) is as in (6 .2 )  with some of the ki =0 ,  while the 
transformed version of B(E) V ( E )  is given by (6 .5 ) .  From this point on, the construction 
is the same as  before. 

To prove the first statement in the theorem, let M = rank ( A ( 0 )  + B(O)K(O)) = 
number of unit invariant factors of F(E) .  Also, assume that V ( E )  has been con- 
structed so that (6 .5 )  holds (perhaps after the permutation similarity transformation 
described previously if L <  b). Letting K ( E )  = V - ' ( E ) K ( E ) ,  we see that 

where the * terms may be zero o r  non-zero; however, since b 3 L, there are b-  L 
independent column vectors in the first n -  L columns of the matrix multiplying 
~ ( 0 )  in ( 6 . 8 ) .  Consequently, adding B(O)K(O) to A(0)  can reduce the rank of A(0)  by 

I 
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a t  most b - L. Thus 

Some results are also available for the case of non-coprime A(&), B(E). In this case 
F(E) is of the form 

F(E) = W(E)F(&) (6.10) 

where 

F(E) = Z(&) + B(E)K(E) 

Here W(B) is a greatest common left division of A(&), B(E) and $ E ) ,  RE) are left 
coprime. If the invariant factors of F(E) ,  W(E) and F(c) are denoted by fi(&), wi(&) and 
J(E) and ordered such that the ith one divides the ( i  + l)th, we have (thanks to the 
Binet-Cauchy formula-see Vidyasagar 1985) 

The first divisibility condition in (6.12) shows that every invariant factor of F(E) 
must contain the corresponding invariant factor of W(E). The J(E) are governed by 
Theorem 4, and conclusions about the J(E)  can then be drawn from the second 
divisibility condition in (6.12). 

7. Conclusions 
In this paper we have developed an  algebraic approach to  the time scale analysis of 

singularly perturbed linear systems that exposes the role played by the Smith form of 
A(&) viewed as a matrix over the ring of functions analytic a t  E = 0. This approach 
bridges the gap between previous easily interpreted but restricted results (Kokotovic 
1981, Chow 1982) and more recent results (Coderch et al. 1983) that are completely 
general but quite intricate. Our  work not only provides a simple interpretation of the 
MSSNS condition introduced by Coderch et al.  (1983) in terms of the invertibility of 
successive Schur complements of a particular matrix but also allows us to state 
and prove a strengthened and more precise version of their main result using the new 
concept of a strong multiple time scale decomposition. 

The framework and concepts introduced in this paper also open the way for the 
investigation of additional questions. Several of these we have considered here as well. 
In particular, we have investigated the relaxing of the so-called MSST condition by 
developing a procedure involving iterated Schur complementation in order to  
guarantee that weak but essential damping terms are retained. In addition, we have 
investigated the problem of time-scale modification via state feedback, which in our 
context corresponds to changing the invariant factors of the system matrix. Another 
question that can be asked concerns the fact that the Smith decomposition is not 
unique. As shown by Lou (1985), while the use of different Smith decompositions 
leads to  different time scale approximations, the successive Schur complements in 
these approximations are similar. Also, there is the problem of computing the Smith 
decomposition of A(&). Some ideas related to this are given by Lou (1985), but these 
remain to  be developed. In a sense, we have traded the difficult tasks of computing 
&-dependent projections and pseudo-inverses that are needed in the approach of 
Coderch et al.  (1983) for the Smith form computation in our approach. However, in 
our work this computation is identified as a separate task which need not be carried 
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through the remaining analysis and therefore does not obscure the intuition behind 
our results. 

Finally, note that in Coderch et al. (1983) the orders of the various time scales of 
(1.1) are shown to correspond to the orders of the eigenvalues of A(&). O n  the other 
hand, in this paper we have shown that the orders of the invariant factors determine 
the time scales. It should not come as too much of a surprise that there is a relation- 
ship between the orders of eigenvalues and invariant factors and that the MSSNS 
condition plays a central role in this relationship. This is the subject of a forthcoming 
paper. 

ACKNOWLEDGMENTS 
We should like to thank P. G. Coxson, J. R. Rohlicek and M. Vidyasagar for 

numerous valuable discussions on the subject of this paper and related topics. 
The work of the authors was supported by the Air Force Office of Scientific 

Research under Grant AFOSR-82-0258, and by the Army Research Office under 
Grants DAAG-29-84-K-0005 and DAAL03-86-K-1071. 

Appendix A 
Proof of Proposition I 

This proof of (2.17) uses several of the ideas introduced and developed in $ 5  3 and 
4. We first need the following lemma. 

Lemma A. I 
Let H(E) be obtained from A(&) by a similarity transformation 

where S(E)  is unimodular. Then 

This result follows easily from the fact that the sequence of eigenprojections and suc- 
cessive system matrices defined as  in (2.1 2)-(2.16) for A(&) and H(E) are all related by 
the same similarity transformation. Equation (A 2) then follows on examination of the 
leading-order terms of the successive system matrices. 

Consider next any G(E) E ~ { A ( E ) } ,  i.e. 

with 

U(0) = V(0) = 1 

Then, by performing similarity transformations it is straightforward to check that 
Proposition 1 will be proved if we can verify the following lemma. 

Lemma A.2 
Proposition 1 holds if 
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Time scale analysis of singularly perturbed linear systems 303 

G(E) = D ( E ) ~ ( E )  

with Z(0) = A, which is invertible. 

The proof of this lemma is a straightforward variation on the developnlent in $ 4. 
As in 4 3, let us assume without loss of generality that k, = 0 (since otherwise we can 
divide (A 5) and (A 6) by ckl). The result is then proved by induction on n, the number 
of time scales. For n = 1 the result is immediate, since 

Clearly 

A(&) = diag (I O)A = 

Furthermore, thanks to Lemma 1, F t 0  = Fgo has SSNS if and only if A,, is invertible. 
I f  A , ,  is singular, the procedure stops. If A,, is invertible, we have already achieved 
the normal rank of A(&) (and G(E)) SO that all subsequent Fko are equal to zero. In 
either case, the lemma is verified. 

I f n >  1, then 

with 
D*(E) = diag ( I  ~ ~ ~ - ~ ~ l  

and G(E) has a form analogous to (A 10) with Aij(&) replacing Aij. Again (A 9) holds, 
and, as before, the procedure stops if A,, is singular. If A,, is invertible, we can use the 
same procedure as sketched at the end of $ 4  to block diagonalize A(&) and G(E). 
Specifically, consider (4.21) and (4.22) replacing A,, by A, , .  R ,  by A,,, S , ( E )  by 
D+(&)A,, and F,(e) by D,(E)A,~. Again, because of the invertibility of A,, , solutions 
Lfje) and H ~ ( E )  exist to these equations, with 

Similarly, we can solve (4.21) and (4.22) with analogous replacements but with Aij(c) 
substituted for Aij. This yields solutions L ~ ( E ) ,  H ~ ( E ) .  Applying the corresponding 
diagonalizing similarity transformations (4.24), (4.25) to A(&) and G(E), and noting 
that Tf(0) = Ty(O), we see that, thanks to Lemma A.1, we have reduced the problem 
to one with one fewer time scales, i.e. we are left to examine 

From the invertibility of 2 and A,, we can immediately deduce the invertibility of 
[A,, + A,,Lf(&)] and [A2,(&) + A,,(E)L~(E)]  in a neighbourhood of e =O. Since 
these matrices are equal a t  e = 0, the result is proved by induction. 0 
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Appendix B 
Proof of Proposition 2 

Without loss of generality, we assume that the similarity transformation T i n  (2.1) 
is the identity (if this is not the case, we can simply perform an initial &-independent 
similarity transformation on AO(&))  Furthermore, since A, ,  ..., A, are assumed to be 
semi-stable, we can perform another &-independent similarity transformation so that 
what we are given are Hurwitz matrices GI ,  ..., G, so that 

lim sup llexp(AO(&)t) -exp {diag(O &''GI ... E'"G,)~}II = O  (B 1) 
e l 0  t S O  

and what we should like to show is that 

As a first step, note that (B 1) implies that for any integer r 

lim sup Ilexp(Ao(e)t)-exp{diag(O E'IG, ... ek)Gj 0 ... O)tll=O (B3)  
e l 0  r ~ [ O . c - ~ l  

where 

(here, for completeness ko = 0, k,,, = w). Note also that, since Foo = Ao(0), 

lim sup llexp (AO(&)t) - exp (Foot)ll = 0 
~ 1 0  l ~ [ O , l )  

From (B 3)-(B 5) we can conclude that if k, > 0, Foo = 0, PO(&) = I, and A,(&) = 
AO(t;)/c. Consequently, we can simply replace AO(c) in (A 1) with A,(&) and reduce 
each of the ki by 1. Continuing in this fashion we find that Fko =0,  k < k , .  From 
Coderch et a/.  (1983) we then have 

lim sup llexp (AO(c)t) - exp { F k , o ~ k l t }  11 = 0 
e l 0  ~ E [ O , E ? ' I  

and from (B 3) and (B 6) we conclude that 

The remainder of the proof proceeds by induction on n. The case of n = 1 is 
essentially complete, since in this case the sup on the left-hand side of (A 6) can be 
taken over [0, I/&') for any r > k,.  Consequently an  argument identical with the one 
used in the preceding paragraph shows that Fko = 0 for all k > k,  . T o  consider the case 
of n > I ,  we assume, without loss of generality, that k, = 0 (since as we have seen, if 
k, > 0 then AO(&) is divisible by ckl so we can rescale time to eliminate this factor). 
Next, write AO(&) as  the sum of two commuting matrices: 

Note that, from Coderch et a/.  (1983) and (B 7) 

lim sup /lexp [(I - P O ( ~ ) ) A O ( ~ ) t ]  - exp {diag (0 GI 0 ... 0)t)ll = 0 (B 9) 
610 1 S O  

Then, using ( B  8) and performing several standard manipulations we obtain the 
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Time scale analysis of singularly perturbed linear systems 

following 

Ilexp (Ao(@) - exp {diag (0 GI ek2G2 ... eknG,,)t} 11 
< Ilexp (A, (E)E~ - exp {diag (0 0 ck2G2 ... Ek"Gn)t}ll 

x llexp [(I - Po(4)Ao(4tlll 

+ llexp [(I - PO(~))AO(e)t] - exp {diag (0 GI 0 ... O)t}l] 

x llexp {diag (0 0 ek2G2 ... ek"G,,)t} 11 (B 10) 

Note that since n > 1, (B 9) implies that 

llexp [(I - P o ( ~ ) A o ( E ) ~ I I I  

is bounded away from zero uniformly in t. Consequently (B l) ,  (B 9), (B 10) and the 
semi-stability of G, ,  ..., G, imply that 

lim sup Ilexp (A,(s)t) -exp {diag (0 0 E ~ ' - '  G2 ... E ~ " - ~ G ~ ) ~ } I I  = 0 (B 11) 
c 1 0  1,o 

and consequently (B 2) follows by induction. 0 

Appendix C 
Verification of (4.13) 

Let us rewrite (4.1 1) as 

where 

G,,(E) = A l l  + E ~ ~ A ; , L R ~ D ~ ( E ) w ~  (C 2 a) 

G,,(E) = ek2A;,L R ,  D2(e)A2 (C 2 b) 

G,,(E) = E ~ ~ D ~ ( E ) w ,  ( C  2 4  

G 2 2 ( ~ )  = E ~ ~ D ~ ( E ) A ~  (C  2 d) 

Note that GI ,(e) is invertible in a neighbourhood of E = 0. Let 

From (C 2) we see that C,(O) = E(0) = I, and a straightforward calculation yields 
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and the quantity in brackets on the right-hand side of ( C  6 )  is obviously invertible in a 
neighbourhood of E = 0. Let 

Again we can check that U 2 ( 0 )  = I and 

so that (4.13) is verified with U(E)  = C,(E) - 'C;  '(8) and V ( E )  = E - ' ( E ) .  0 

Appendix D 
Proof of Lemma 2 

We have that 

lirn sup llexp ( D ( E ) ~ ( E ) ~ )  
8 1 0  180 

- T - '  exp {diag [Ao(&) & A I ( & )  ... &"-'A,- I ( ~ ) ] t } T I I  = 0 ( D  1 )  

Therefore 

lirn sup llexp (A(&)[ )  - P(&)T-'  
r 1 0  120 

x exp {diag [Ao(&) & A l ( & )  ... 8"- ' A,- l ( ~ ) ] t ) T P - ' ( ~ ) I I  = 0 ( D  2) 

What we must show is 

lirn sup IIP(&)T-' exp {diag [Ao(&)  ... E ~ - ' A , - ~ ( E ) ] I } T P - ' ( E )  
8 1 0  I80 

- P(0)T-'  exp {diag [Ao(&) ... en-'  A n - , ( ~ ) ] t ) T - '  P(O))ll = 0 ( D  3) 

A simple triangle inequality argument shows that the left-hand side of ( D  3) is 
bounded above by 

lim sup ll(P(&) - P(0))T-'  exp {diag [Ao(&)  ... E"-' A n - I ( ~ ) ] t } T P - l ( & ) I I  
c 1 0  120 

+ lim sup IIP(0)T-' exp {diag [Ao(&) ... & " - I  A,-,  ( & ) I t }  
e l 0  130 

x T ( P -  ' (8) - P -  ' (0 ) )  I (  
The first term in ( D  4) is in turn bounded above by 

r 

From the construction in 5 5, we know that each Ai(&) is Hurwitz for E > 0 and, 
since Ai(0) has MSSIES, we know that llexp {diag [Ao(0)  ... 6"-'  An- 1(0)1t} 1 1  is 
bounded. From this we conclude that the limit in ( D  5) is zero. Obviously a similar 
argument works for the other term in ( D  4),  and the lemma is proved. 0 
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Appendix E 
Completion of the proof of Theorem 4 

The result we need to prove is the following proposition. 

Proposition E. 1 
Suppose that the N x N  matrix G(E) is Hurwitz. Suppose further that 

and let K = M N  + 1 .  Then G(E) is asymptotically equivalent to G(E) + H(E) ,  where 
H(E) is any matrix with O(H(E))  = K :  

Proof 
The proof is a variation on the methods of Coderch et al. (1983), Kato (1966) and 

Lou (1985). First, from Kato (1966) we have the following lemma. 

Lemma E.l 
Let A(&) = B(E) be an  N x N matrix. Then 

min OIIi(A(&))  - l i ( B ( & ) ) ]  > 'N 

Next, recall the definition of the resolvent of a matrix A(&) 

R ( I ,  A)  = [A(&) - 111 - ' ( E  4) 

so that 

1 
exp ( A ( E ) ~ )  = - - 1 exp (It)R(i., A) dl. 

2ni 1 frk 

where the T, are positively-oriented contours enclosing disjoint portions of the 
complex plane and all of the eigenvalues of A(&). Consider, then 

2ni exp [(G(E)  + H(&))t] - exp [G(&)t] 

exp ( I t : )  [R(i., G )  - R ( I ,  G  + H)]  d l  ( E  6 )  

where we choose the T k  carefully. Specifically T ,  is a circle centred at ~ , ( G ( E ) ) ,  of 
radius of order O[Re ( l , (G(e ) ) ) ] ,  and completely contained in the left half-plane 
{Re ( I )  < 0). More precisely, we require the maximum value of Re ( I )  on T k  to also be 
of order OCRe ( l . , (G(~) ) ) ] . t  Also, for E small enough ( E  3) guarantees that this circle 
includes I , (G(&)  + H(E)) .  The circle may also include other pairs of eigenvalues, but 

t For example, the circle { A :  (1  - 1 ,  (G(&))I = Re (I ,(G(&))} will do unless another singular- 
ity lies on it. 
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308 T i m e  scale analysis of singularly perturbed linear sys tems 

for e sufficiently small this happens only if 

Consider next a single term in ( E  6) and suppose that the radius of T, is of order m .  
If we let I' = A/&"' we can rewrite this term as 

L. exp (eml't) [R(emA', G) - R(eml',  G + H)]em dl '  

where r,., the image of rk under this mapping, has radius of order 1, is completely 
contained in the left half-plane, and in fact consists of points with negative real parts of 
order 1. Consequently, the norm of ( E  8) is bounded above by 

IIR(&"'I', G) - R(eml', G + H) IIem dl' ( E  9) 

Also, we can write 

R(A, G) - R(I,  G + H) = R(I, G) {I - [I + HR(I ,  G)]- ' } ( E  10) 

Note that, thanks to ( E  3) and (E  7), R(1, G) is of order I/&" on  Tk. Consequently 
(since m < M) HR(I ,  G) is of order a t  least m ( N  - 1) + 1, and we can write the series 

which converges uniformly for I E T,. Obviously the same statements can be made for 
R(eml', G) and HR(eml', G) on  T,, and therefore we conclude that 

O(I(R(emA', G) - R(&'"I', G + H)Ilem) 2 m ( N  - 1) + 1 ( E  12) 

uniformly on  T,.. Since Tk, has perimeter of order 1 in length, ( E  9) converges to zero 
as  ~ 1 0 ,  and the result follows. 0 

REFERENCES 
CAMPBELL, S. L., 1978, J .  difi Eqns, 29, 362. 
CAMPBELL, S. L., and ROSE, N. J., 1979, SIAM JI math. Anal., 10, 542. 
CHOW, J. H., (editor), 1982, Time-Scale Modeling of Dynamic Networks with Applications to  

Power Systems (Berlin: Springer-Verlag). 
CODERCH, M., WILLSKY, A. S., SASTRY, S. S., and CASTANON, D. A,, 1983, I.E.E.E. Trans. autom. 

Control, 28, 1017. 
KATO, T., 1966, Perturbation Theory for Linear Operators (Berlin: Springer-Verlag). 
KHALIL, H. K., 1984, I.E.E.E. Trans. autom. Control, 29, 1054. 
KOKOTOVIC, P. V., 1975, I.E.E.E. Trans. autom. Control, 20, 812; 1981, Automatica, 17, 789. 
KOKOTOVIC, P. V., ALLEMONG, J. J., WINKELMAN, J. R., and CHOW, J. H., 1980, Automatica 16, 

23. 
Lou, X.-C., 1985, An algebraic approach to the analysis and control of time scales. Ph.D. thesis, 

Department of Electrical Engineering and Computer Science, MIT, Massachusetts. 
Lou, X.-C., VERGHESE, G. C., WILLSKY, A. S., and VIDYASAGAR, M., 1984, An algebraic approach 

to analysis and control of time scales, American Control Conf., San Diego, California. 
VAN DOOREN, P., DEWILDE, P., and VANDEWALLE, J., 1979, I.E.E.E. Trans. Circuits Syst., 26, 180. 
VERGHESE, G., and KAILATH, T., 1981, I.E.E.E. Trans. aurom. Control, 26, 434. 
VIDYSAGAR, M., 1985, Control System Synthesis: a Factorization Approach (Cambridge, Mass.: 

MIT Press). 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
a
s
s
a
c
h
u
s
e
t
t
s
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
,
 
M
I
T
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
6
:
2
4
 
5
 
J
a
n
u
a
r
y
 
2
0
1
1




