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Abstract. In this paper, we present a high resolution spectral estimation method for 2-D isotropic ranoom fields with covariance 
functions equal to weighted sums of cylindrical harmonics. Such fields are often used to model some types of background 
noises in geophysics and in ocean acoustics. The approach that we present differs from previous 2-D spectral estimation 
techniques by the fact that we take maximal advantage of the symmetries implied by both the isotropy and the special 
covariance structure of these fields. Note that isotropy is the natural generalization to several dimensions of the I-D notion 
of stationarity. Our approach is similar in spirit to I-D harmonic retrieval techniques, such as the MUSIC method, which 
rely on an eigenanalysis of the covariance matrix. In the 2-D isotropic context, we begin with a Fourier series representation 
of an isotropic field with respect to the angle 0 in a polar coordinate representation of the underlying 2-D space. We then 
obtain a spectral estimate by performing an eigenanalysis of the covariance matrix of samples of the zeroth-order Fourier 
coefficient process in order to extract the cylindrical harmonics. We also discuss the estimation of this covariance matrix and 
present examples to illustrate the high resolution and robustness properties of our procedure. 

Zusammenfassung. Es werden einige neue Abtasttheoreme fiir isotrope Zufallsfelder und die zugeh/~rigen Fourierprozesse 
entwickelt. Aufgrund dieser Theoreme wird ein Algorithmus vorgestellt, mit dem sich die zylindrischen Harmonischen eines 
isotropen Zufallsfeldes aus Werten der zugehSrigen Kovarianzfunktion gewinnen iassen. Der vorgeschlagene Algorithmus 
nutzt die Eigenwertstruktur der Kovarianzmatrix des normalisierten Fourier-Koeffizientenprozesses nuUten Grades; dieser 
Proze6 erweist sich als robust. 

R6sum6, Cet article propose une m6thode d'estimation spectrale ~ grande resolution pour les champs isotropes al6atoires 2-D 
dont la fonction de covarianc¢ est 6gale A une somme d'harmoniques cylindriques. Ces champs sont utilis6s souvent pour 
mod61iser divers types de bruits ambiants en g6ophysique et acoustique marine. La diff6rence principale entre l'approche 
que nous proposons et les autres m6thodes d'estimation spectrale 2-D est que nous utilisons de mani6re syst6matique l'isotropie 
et la structure des fonctions de covariance des champs que nous consid6rons. La propri6t6 d'isotropie est la generalisation 
naturelle/l plusieurs dimensions de la notion de stationarit6 pour les processus ~ une dimension. Notre approche est proche 
des m6thodes d'analyse harmonique l-D, teiles que la m6thode MUSIC, qui utilisent une d6composition de la matrice de 
covariance sous forme de valeurs et vecteurs propres. Pour la cas 2-D, nous utilisons une repr6sentation du champs isotrope 
en s6rie de Fourier par rapport ~ rangle 0 en coordonn6es polaires. Nouse obtenons une estim6e spectrale en d6composant 
la matrice de covariance du coefficient de Fourier d'ordre z6ro sous forme de valeurs et vecteurs propres, de mani~re 
d6terminer les harmoniques cylindriques. Nous d6crivons l'estimation de la matrice de covariance du coefficient de Fourier 
d'ordre z6ro, et nous pr6sentons plusieurs exemples qui illustrent la haute r6solution et la robustesse de notre approche. 

Keywords. Isotropic random field, Fourier coefficient process, cylindrical harmonics, eigenstructure analysis, harmonic 
retrieval. 

1. Introduction 

Array processing is a popular technique for solving estimation problems involving propagating waves. 
For example, in geophysical applications, arrays of sensors are often used to discriminate between 

* This work was supported by the National Science Foundation under Grant No. ECS-83-12921 and by the Army Research Office 
under Grant Nos. DAAG-84-K-0005 and DAAL03-86-K-0171. 

0165-1684/87/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland) 



122 A.H. Tewfik et al. / Retrieval of  cylindrical harmonics 

earthquakes and underground nuclear explosions. In sonar, an array of receiving hydrophones may provide 
data for determining the spatial coordinates of underwater targets. Arrays of receivers often work against 
a background noise field. Knowledge of the frequency-wave-number power spectrum of the background 
noise field is important for studying the performance of optimal array processing schemes [4]. Several 
multidimensional spectral estimation methods have been developed in the past and can be used to estimate 
the frequency-wave-number power spectrum of the background noise impinging on any given array of 
sensors. (See [9] for a good review of multidimensional spectral estimators and [10] for the application 
of some spectral estimation methods to array processing problems.) These methods are very general and 
do not attempt to exploit any special structure of the power spectrum to be estimated. 

In this paper, by contrast, we present a new high resolution spectral estimation method for a class of 
2-D isotropic random fields that is often used to model some types of background noises in both geophysics 
and ocean acoustics. Our algorithm uses the special structure of the covariance function of the isotropic 
random fields in this class. Isotropic fields are characterized by the fact that their mean value is a constant 
independent of position, and their autocovariance function is invariant under all rigid body motions, i.e., 
under translations and rotations. In some sense, isotropy is the natural extension of the notion of stationarity 
in one dimension. 

The specific class of2-D isotropic fields that we consider corresponds to fields whose covariance function 
can be modeled as a weighted sum of cylindrical harmonics. The term cylindrical harmonics is used in 
this context to denote a radially symmetric function f(~),l of the form Jo()tkr), where Ak is a fixed 
two-dimensional 'cylindrical frequency' measured in radians per unit distance. Such covariance functions 
arise in geophysics whenever the background noise field consists of either fundamental-mode or higher- 
mode Rayleigh waves propagating uniformly from all azimuths simultaneously [4]. The covariance function 
of the 'circle noise' [1] in ocean acoustics is also of this particular form. Note that the two-dimensional 
Fourier transform of a cylindrical harmonic is radially symmetric in the wave-number plane and consists 
of a cylindrical impulse at a radial frequency of Ak radians per unit distance (i.e., the Fourier transform 
is a 1-D sheet of impulses concentrated on a circle of radius Ag). Hence, our problem is to determine the 
number, location, and amplitude of the cylindrical impulses in the wave-number spectrum of an isotropic 
field. This problem differs from the one which was investigated by Lang and McClellan [8] and by Wax 
and Kailath [18], who extended Pisarenko's method [12] and the MUSIC method [3, 14] respectively, 
and used them to estimate power spectra which are equal to a weighted sum of multidimensional point 
impulses. 

This paper is organized as follows. In Section 2 we make clear the central role of the Fourier series 
representation of isotropic fields with respect to the angle 0 in a polar coordinate representation of the 
underlying 2-D space. We also demonstrate that the covariance function of the full process can be recovered 
from that of its zeroth-order Fourier coefficient process, i.e., the process obtained by averaging the random 
field on circles centered at the origin. Following some motivation for considering the class of isotropic 
covariance functions that are equal to a weighted sum of cyclindrical harmonics, we formulate the problem 
of retrieving cylindrical harmonics from the covariance of samples of the zeroth-order Fourier coefficient 
process. Then, in Section 3 we present a new algorithm for recovering such covariances by performing 
an eigenanalysis of the covariance matrix of samples of the zeroth-order Fourier coefficient process 
corresponding to the measurements. Both the theory behind this algorithm and its numerical implementa- 
tion are discussed. The proposed algorithm is very similar in spirit to the eigenstructure approach developed 
by Schmidt [14], and by Bienvenu and Kopp [3] for solving the 1-D harmonic retrieval problem. Section 

Throughout this paper we use ~" to denote a point in 2-D Cartesian space. The polar coordinates of this point are denoted by 
r and 0. 
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4 presents a method for estimating the covariance matrix that is used as an input to our procedure. Both 
the statistical properties of  the covariance estimate and its practical implementation are presented. In 

particular, our estimate is shown to be both unbiased and consistent, and an example is provided to 
demonstrate this fact. Finally, two examples are presented in Section 5 to illustrate the high resolution 
and robustness properties of our method. 

2. Cylindrical harmonics retrieval problem 

We begin this section by reviewing some of  the properties of isotropic random fields. In particular, we 
focus our attention on Fourier series representations of such fields with respect to the angle 0 in a polar 
coordinate representation of  the underlying 2-D space. 

2.1. Fourier series for isotropic random fields 

The covariance function 

K ( ~ )  = ~ [ z ( ~ ) z ( ~ +  ~)] (1) 

of  any zero-mean isotropic random field z(F) is a function of r only, so that, by abuse of notation, we 
can write 

K(F)=K(r).  (2) 

Such a field can be expanded into a Fourier series of the form [21] 

• I f  2~ z(~)  = 2.. z~(r) e ~"°, z . ( r )  = z(~) e -in° dO, (3), (4) 
21r Jo n = - o o  

where the Fourier coefficient processes of  different orders are uncorrelated, i.e., 

E[zn(r)Zm(S)] =0,  (5) 

for n # m. The covariance function l~(r, s) of the nth-order Fourier coefficient z.(r) is given by [21] 

k,(r, s) = E[z,(r)z,(s)] =2~rl J,(Ir)J~(Xs)$(X)X d~. (6) 
0 

In (6), Jn(" ) is the Bessel function of order n and S(A) is the power spectrum associated with z(~), i.e., 

I0 o S(2)  = : K(~) e -j~~ d~= 2~ K(r)Jo(Ar)r dr = S(A), (7) 

where A = 121 is the magnitude of the wave vector 2, and where we have taken advantage of the circular 
symmetry of  K(~). By using the addition theorem for Bessel functions [2], it can also be shown that 
kn(r, s) can be computed from K(r) as 

l f 2 "  k,(r, s)=2~ Jo K((r2+s2-2rs cos 0) 1/2) e -j"° d0. (8) 

Let us now make two comments. The first is that although z(~) is isotropic, z~(r) is not a stationary 
process, i.e., kn(r, s) is not a function of  r -  s. Secondly, both the covariance function K(r) of the full 
process z(~) and its power spectrum S(A) can be recovered exactly from ko(r, s) as follows. By specializing 
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(8) tO the case n = 0 we obtain, for s = 0, 

K ( r )  = ko(r, 0). (9) 

Furthermore, S(A ) can be recovered from k, (r, s) in general by observing that (6) implies that the nth-order 
Hankel transform [11] of kn(r, s) with respect to the variable r is just S(A)Jn(As)/2~r. Hence, given 
k~(r, s), S(A) can be computed as 

fo o S(A)  = 2~ Jn(Ar)kn(r, s)r  dr/Jn(As) .  (10) 

Thus, if we are interested in extracting information from K(r ) ,  or from its associated power spectrum 
S(A), then we can as well focus our attention on the covariance ko(r, s) without any loss of information. 
This important observation is the key to the high resolution spectral estimation procedure that we shall 
present in the next section. 

2.2. Motivation and problem statement 

As mentioned in the beginning of Section 1, array processing is a popular technique for solving estimation 
problems involving propagating waves. Such problems arise in geophysics and in ocean acoustics, among 
other fields. Arrays of receivers often work against a background noise field. Knowledge of the frequency- 
wave-number power spectrum of the background noise field is important for studying the performance 
of optimal array processing schemes [4]. In many applications, the medium in which the waves of interest 
are propagating supports surface waves, for example, Rayleigh and Love waves or internal ocean waves. 
In such applications, the background noise is often modeled as consisting of a large number of independent 
waves propagating from all azimuths simultaneously with the same velocity c m/sec and with the same 
frequency fo Hertz. The frequency-wave-number power spectrum of such a background noise has the form 
[1, 4] 

s(o~ : ~ )  = 2 ~ c 8 ( x  - Xo)/x, (11) 

where C is a positive constant and where Ao = 2"trfo/c is the wave-number of the background noise in 
rad/m. A background noise that has a frequency-wave-number power spectrum of the form (11) is called 
a circle noise in [1] and has a temporal frequency spatial correlation function (i.e., the inverse Fourier 
transform of S(to : )~) with respect to )~) of the form 

K(to:  ~) = CJo(Aor). (12) 

Observe that K(to:~) is a cylindrical harmonic. In some situations, the background noise can be a 
superposition of a number L of circle noises of different wave-numbers, and one is then interested in 
estimating both the cylindrical frequencies corresponding to the circle noise wave-numbers A~ and the 
cylindrical harmonics amplitudes Ct for 1 ~< I <~ L, in order, for example, to evaluate the performance of 
any processing array which is to be used in the presence of such a background noise field. 

In other situations, one might be interested in finding the propagating surface modes that an isotropic 
medium of interest can support. In this case, one can excite the medium with a large number of independent 
wideband directional sources uniformly distributed over the circumference of a circle whose radius is 
large compared to any wavelength of interest, and all radiating towards the center of the circle. One then 
measures the response of the medium close to the center of such a circle. If the isotropic medium can 
support only a finite number of wave-numbers, then the resulting waves will have a frequency-wave-number 
power spectrum of the form (11). 
Signal Processing 
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In all of the above situations, there is a need to estimate isotropic covariance functions that are equal 
to a weighted sum of cylindrical harmonics. This is the problem that we consider in this paper. We shall 
assume that we are given some noisy measurements y(~) of a Gaussian isotropic random field z(~) whose 
covariance function is of  the form 

L 

K(r) = E PiJo(Xtr), (13) 

or, equivalently, whose power spectrum is of the form 

L 

S(A)= E PIS(A-A,)/A. (14) 
/=1  

Specifically, we assume that measurements y(~) are made on a finite set of concentric circles of radii 
{ri : 1 ~< i ~< I}, and that y(ri, O) is given by 

y(ri, O)=z(ri, O)+n(r~,O), 0~< 0<~2~r. (15) 

In (15), the observation noise n(r~, O) is uncorrelated with z(F) and is a zero-mean Gaussian white noise 
process of intensity o.2 in the discrete radial coordinate r~ and the continuous angle coordinate 0, i.e., 

E[n(r,, 0)] =0,  E[n(ri, O)n(rj, ~b)]= o.2 8-~' 8 ( 0 -  ~b). (16), (17) 
ri 

Our objective is to solve the cylindrical harmonics retrieval problem, i.e., to simultaneously estimate the 
measurement noise power o .2 and to reconstruct S(A) by finding the cylindrical harmonics powers Pt and 
the cylindrical harmonics frequencies At. 

Note the parallel between the cylindrical harmonics retrieval problem that we have described above 
and the 1-D harmonic retrieval problem where one is interested in estimating a stationary covariance 
function that is equal to a weighted sum of exponential functions. In the 1-D case, the objective is to 
estimate both the location and amplitude of a number of 1-D impulses in the frequency domain while, 
in the 2-D case, the goal is to find the location and amplitude of a number of cylindrical impulses in the 
wave-number plane. It will turn out that the algorithm that we propose in the next section for solving the 
cylindrical harmonics retrieval problem is very similar in spirit to 1-D harmonic retrieval procedures 
[3, 14] based on an eigenanalysis of a covariance matrix, even though our algorithm uses samples of the 
nonstationary covariance function of the zeroth-order Fourier coefficient process corresponding to the 
measurements y(~). 

Finally, observe that the harmonic retrieval problem can be solved by using any of the high resolution 
2-D spectral estimation methods. As mentioned earlier, these methods are very general and do not exploit 
any special property of the power spectrum to be estimated. By comparison, our procedure takes explicitly 
into account the isotropy property of y(~), as well as the special structure (14) of the spectrum that we 
want to estimate. 

3. The eigenstructure approach 

In one-dimensional signal processing, several eigenstructure methods have been proposed to solve the 
1-D harmonic retrieval problem, i.e., the problem of  estimating covariance functions of the form 

L 

r(i,j) = o.2B,.j+ ~ Pt cos(2"trfl(i-j)At), (18) 
I = l  

VoL 13, No. 2, September 1987 
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where 8~j is the Kronecker delta. These techniques require an eigenanalysis of the autocorrelation matrix 
R = [r(i,j)]. In particular, Pisarenko's method [12] uses the value of the smallest eigenvalue of R as an 
estimate of the noise power tr 2. The locations of the frequencies ft are then determined by finding the 
zeros of a polynomial whose coefficients are the elements of the eigenvector corresponding to the smallest 
eigenvalue. The disadvantage of this method lies in the fact that, as the size of the matrix R grows (a 
necessary feature for resolving closely spaced frequencies), the number of close eigenvalues corresponding 
to the white noise component of the signal becomes large, leading to an ill-conditioned eigenvector 
determination problem [20]. To overcome this problem, Schmidt [14] and Bienvenu and Kopp [3] noted 
that the computation of the subspace spanned by the eigenvectors corresponding to the set of smallest 
eigenvalues is much less sensitive to perturbations in the entries of the matrix R than the computation 
of individual eigenvectors. The methods they proposed use the whole eigenspace associated with the 
cluster of smallest eigenvalues to estimate the frequencies of model (18). In this section, we shall develop 
an algorithm for solving the cylindrical harmonics retrieval problem which is very similar in spirit to those 
of Schmidt [14] and Bienvenu and Kopp [3]. 

3.1. Mathematical theory 

In the remainder of this section we shall assume that we are given a finite number of samples 
{ko(r,, rj): 1 ~< i,j<~ n} of the covariance function of the zeroth-order Fourier coefficient process yo(r) 
corresponding to the measurements y(ri, O) of (15). A procedure for estimating ko(r,, rj) from the given 
measurements will be presented in the next section. Note that, under the assumptions of Section 2 (see 
(13)-(17)), ko(r~, rj) is of the form 

cr 2 8~ j 
ko(r, rj)= L PtJo(Atr,)Jo(At~)+ ". (19) 

i=l 2"tr ri 

The first step in our algorithm is to construct a symmetric matrix out of the given sample values of ko(r, s). 
Denote 

k o = ~  ko(r,, rj). (20) 

Note that kq is a normalized version of ko(r. ~). The normalization is introduced here to make the 
measurement noise intensity constant instead of inversely proportional to r~ (see (19)). This will enable 
us to solve the cylindrical harmonies retrieval problem by performing an eigenanalysis of the normalized 
zeroth-order eovariance matrix R = [ko]." In particular, note that the matrix R can be written as 

R = S+  (o'2/2xr)I,×,, (21) 

where S is an n x n symmetric matrix with entries 

L 

so = Y, ~ PiJo(Atr,)Jo(Ats). (22) 
1=1 

Furthermore, it is clear from (22) that S can be decomposed as 

S = CDC T, (23) 

where D = diag{Pl} is an L x L diagonal matrix, and where C is an n x L matrix with entries 

cq = ~ Jo(Ajri). (24) 

In the sequel, we shall assume that C has full column rank. Hence, the rank of S is equal to min{n, L}. 
Signal Processing 
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This key observation will allow us to recover both the measurement noise power o.2 and the cylindrical 
harmonics frequencies At by performing an eigenanalysis of the matrix R. 

To estimate the noise power o "2, we note that if n > L, then the n -  L smallest eigenvalues of R are 
exactly equal to  o '2 /2~.  Hence, the measurement noise power can be computed as 2'n'P, min, where/tLmi n is 
the smallest eigenvalue of R. 

The location of the cylindrical harmonics can be determined by observing that if Ym = [Ym(i)], 1 <~ m ~< 
n --L, is an eigenvector of R corresponding to the repeated eigenvalue cF/2~r, then 

Sym =0. (25) 

Equation (25) implies that 

L 

E Ptx/~ Jo(Atr,) ~ v~/Jo(htrj)Ym(j) = 0 Vi. (26) 
i=l j=l 

If  we denote by fro(A) the quantity 

fro(A)= ~ x/-~Jo(Ar~)ym(i), (27) 
i = 1  

then equation (26) is equivalent to 

CD[ f"(: A') ] = o, (28) 

where CD has full rank, so that we must have 

fm (At) = 0 (29) 

for 1 ~< m < n - L and 1 <~ l<~ L. Hence, the cylindrical harmonic frequencies Al appearing in (13) must be 
the roots of the equation 

f,.  (A) =0. (30) 

However, equation (30) is not useful as a practical way of computing the values of the cylindrical 
frequencies. The roots of  (30) are very sensitive to perturbations in the entries of the matrix R because 
the coefficients of (30) come from a single eigenvector associated with the smallest eigenvalue of R. To 
avoid this problem, we can use the whole eigenspace associated with the smallest eigenvalue of R, and 
take our estimates of the cylindrical frequencies to be the roots of the equation 

r I - -L  

f2(A) =0. (31) 
m = l  

Finally, to compute the amplitudes P~ of the cylindrical harmonics, we use the fact that 

L 0-  2 

ko(r,, rj) = X ~ PtJo(Atr,)Jo(A,ri)+X"-8¢i, 1 <~ i,j<~ n. (32) 
I = 1  

Because of  the symmetry of R, there are only ½n(n + 1) identities of the form (32). By properly scanning 
the indices i and j, these ½n(n + 1) identities can be written in matrix form as 

k = Ap,  (33) 
Vol. 13, No. 2, September 1987 
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where the vectors k and p = [Pt] are of size ½n(n + 1) x 1 and p x 1 respectively, and where A is a matrix 
of appropriate dimensions. The estimated cylindrical harmonics amplitudes are then taken to be equal to 
the entries of the optimal solution p* to (33), i.e., the one that minimizes the Euclidean norm of the error 
IIk-Apll. Note that it is well known that p* is given by [16] 

p* = (ATA)-~ATk. (34) 

3.2. Numerical implementation 

The eigenvalues and eigenvectors of R can be computed numerically by first reducing the matrix R to 
a tridiagonal form by means of Householder transformations and then using the QR algorithm to generate 
the eigenvalues. The eigenvectors of R can be computed by saving and then multiplying together the 
transformations used in the first step. The above procedure has been implemented as part of a singular 
value decomposition routine available through Linpack (see [6]) and was found to be numerically robust 
and highly accurate. Its only deficiency lies in its complexity; it requires O(n 3) operations where n is the 
size of the square symmetric matrix R. 

In practice, due to inaccuracies in the estimated values of ko(ri, rj), the computed smallest eigenvalues 
of R are not all exactly equal, and the noise power has to be computed as the average of the n - L cluster 
of smallest eigenvalues of R. Furthermore, the separation between the 'large' eigenvalues of R and the 
'small' eigenvalues of R is sometimes not well marked and it is difficult to determine the exact number 
of harmonics in the given zeroth-order Fourier coefficient covariance data. In this case, statistical methods 
can be used to determine the number of cylindrical harmonics. (See [19] for a discussion of how statistical 
methods can be used to determine the number of signals in the one-dimensional case.) 

The search for the cylindrical harmonics is done by plotting v(A) = 1/~ ~,~_~ f2(A), where fm (A) is defined 
in (27). The roots of equation (31) correspond to peaks of v(A). This step is numerically robust and poses 
no problems. 

Finally, the estimation of the amplitudes of the cylindrical harmonics via equation (34) is done by 
performing a QR decomposition of the matrix A. The total number of operations involved in this step is 
of the order of ½n(n + 1)L 2-~L 3, where L is the number of harmonics to be estimated and ½n(n + 1) is 
the total number of correlations available. 

3.3. Summary 

In summary, given sample values of the covariance function ko(r, rj) corresponding to the zeroth-order 
Fourier coefficient process associated with the measurements y(F) of (15), the cylindrical harmonics 
retrieval problem can be solved by performing the following steps: 

Step 1. For a suitably large n, determine all of the eigenvalues and eigenvectors of the n x n covariance 
matrix R obtained from the normalized Sample values of the zeroth-order Fourier process covariance 
function. The noise power is equal to 2~r/2, where /2 is the average of the n -  L cluster of smallest 
eigenvalues of R. The number L of larger eigenvalues is equal to the number of cylindrical harmonics. 

Step 2. Let f,, (A), 1 <~ m ~< n - L, be the functions given by (27) and which are specified by the eigenvectors 
ym corresponding to the n - L  smallest eigenvalues of R. Determine the roots of equation (31) by plotting 
v(~)= n-L 2 I/~,n = ~f'-(A). The computed roots are the estimates of the values of the L cylindrical frequencies 
in (13). 

Step 3. Using equation (34), determine the amplitudes {P~:I <~ I<~ L} of the L cylindrical harmonics. 
The next section examines the problem of obtaining unbiased and consistent estimates of ko(ri, rj) from 

the given field measurements. 
Signal Processing 
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4. Estimation of the covariance functions 

129 

The algorithm that we presented in the previous section is based on the knowledge of ko(ri, rj), the 
covariance function of the zeroth-order Fourier coefficient process corresponding to the measurements 
y(F). However, in practice, one is given the measurements themselves rather than ko(r~, t)). In this section, 
we present an unbiased and consistent procedure for estimating the nonstationary covariance function 
ko(r. rj) from the measurements. This procedure is well suited for the sampling geometry that we introduced 
in Section 2, and where the isotropic random field of interest is measured along a discrete set of concentric 
circles (see the discussion preceding (15)). Other methods for estimating ko(r. rj) from the data can be 
found in [17]. 

4.1. Theory 

Let us start by assuming that measurements of the field y(~) are available at all the points inside the 
disk DR. = {~:0~ < r~< R*}. Then, to estimate /Co(r, rj) we can use a two-step procedure. In the first step, 
we estimate K(r) using the given data. In the second step, we substitute our estimate of K(r )  into (8) 
with n = 0 to obtain ko(r, rj). 

K(r )  can be estimated by using a simple extension of the 1-D techniques that were developed to estimate 
the covariance function of  ergodic stationary processes. Observe that, along any line d~ = d'o in a tomo- 
graphic coordinate system, 2 y(~) is stationary. Hence, given the measurements {y(t, ~bo):-R*~ < t ~< R*} 
along this line we can estimate K(r )  using a simple extension of the 1-D techniques as 

= 1 f R* 
/((r:~bo) R*2 j_R.y(t ,  dpo)y(r+t,d~o)ltl dt. (35) 

Since measurements of y(~) are assumed to be available all over the disk De. ,  we can compu te / ( ( r :  ~o) 
for all t#o, 0 ~  < ~bo~<Xr, and t a k e / ( ( r )  to be the average of the /~(r:  d~o) over all ~bo. In other words, we 
can estimate K(r) as 

1 fR* fo2,, /~(r) = - - ~  J ° ds dOsy(s,O)y(r+s,O). (36) 

Note that we have used the weight function w(t)= Itl in (35) to guarantee that / ( ( r )  corresponds to a 
spatial average. 

Next, we can use / ( ( r )  to obtain an estimate of ko(r, r~) by simply subst i tut ing/((r)  for K(r) into 
(8). Thus, we take as our estimate of ko(r, rj) the quantity 

^ 1 fo '~ ko(ri, ~)=~-~ dOI(((r~+r2-2rlrj cos 0)'/2). (37) 

Note that, according to (37), one needs to estimate K(r) for 0 < - r<~2r* in order to be able to estimate 
ko(r,, rj) for O<-r,, r~<-r*. 

Let us now study the unbiasedness and consistency properties of the estimates (36) and (37). It is a 
simple matter to show tha t /~ ( r )  is an unbiased estimate of K(r). Equation (36) implies that 

E[ / ( ( r ) ]  = ~rl~'" dO sK(r) = K(r), (38) 

2 A tomographic coordinate system (t, ~k) is a modified polar coordinate system where t takes both positive and negative real 
values, and where $ varies from 0 to w. 
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which proves t h a t / ( ( r )  is indeed an unbiased estimate of K(r) .  Furthermore, it can be shown tha t /~ ( r )  
is a consistent estimate of K (r) under the assumption that the underlying random field is Gaussian. The 
proof of this fact uses a number of properties of the Bessel functions and can be found in Appendix A. 

To show that ~(ri ,  rj) is an unbiased and consistent estimate of ko(ri, rj), we note that (8) and (37) 
imply that ko(ri, rj) and ko(ri, p)) are linearly related to K(r )  and/~( r ) ,  respectively. Hence, it immediately 
follows from the unbiasedness and consistency properties of / ( ( r )  that /~o(r, r~) is an unbiased and 
consistent estimate of k0(r, rj). Thus, by using (36) and (37), we are able to obtain an unbiased and 
consistent estimate of the nonstationary covariance function ko(r, rj). 

4.2. Numerical implementation 

In practice, we are given the values of the field y(F) at discrete points {(r, 0j):l  <~ i<~/, 1 ~<j ~< J}. Let 
us assume for simplicity that ri = iA, where A is a positive number, and that 0~ = (j  - 1)2"rr/J. The estimate 
/ ( ( r )  can be computed by approximating the 2-D integral (36), with a rectangular rule in the radial 
coordinate s and with a trapezoidal rule in the angular coordinate 0, as 

2 y. iy ( iA,  ( j - I ) ~ ) y ( ( i + l ) A ,  1) ~ ) .  f~(la ) ~ - ~  _ - ( j -  (39) 

The estimated covariance ko(i,j) can then be computed by similarly approximating the integral (37) with 
a trapezoidal rule as 

ko(ll, 12) ~ f f j~a /~  12+12-21,12cos( j -1)  - . (40) 

Note that to compute ~ ( l l ,  12) via (40) we may need the value of /~( . )  at points not equal to some 
multiple of A. However, if A is chosen small enough, we can interpolate the values o f /~( r )  at the required 
abscissae from the values o f /~ ( r )  at the points r =/cA using any of the known interpolation schemes. In 
our experiments we used a linear interpolation procedure. Better, but computationally more expensive, 
ways of approximating the integrals in (36) and (37) can be found in [5]. 

4.3. An example 

We now illustrate the behavior of our estimation procedure with an example. The example clearly 
indicates the fact that as more and more data is available, the estimates that we get become better and 
better. This is to be expected since our estimators are consistent. 

4.1. Example. In this example we used the method of [15] to generate an isotropic random field with a 
covariance function consisting of two cylindrical harmonics at 0.1 rad/m and 0.3 rad/m. The amplitudes 
of both harmonics were taken to be equal to 10 watt. The field was generated on a circular polar grid at 
the points (0.1 i, (j-1)~2~r).  We then added to this field a 2-D white noise field of intensitg 3 watt x m 2. 
Thus, over the rectangular grid r = i, s =j ,  the covariance function of the zeroth-order Fourier coefficient 
corresponding to the resulting field has the form 

ko(i, j )  = 10Jo(0.1 i)Jo(0.1j) + 10Jo(0.3 i)Jo(0.3j) + 2~/8~j. (41) 

The corresponding power spectrum is shown in Fig. 1. Using the values of the resulting field over the 
disk 0 ~< r ~ 30, we used (39) to compute/~ (IA) for A = 0.1 and for 0 ~< 1 ~< 200, and then used these values 
Signal Pro~ssing 
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Fig. 1. True spectrum S(A) for Examples 4.1 and 5.1. 
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to compute ko(i , j)  for 1 <~ i,j<~ 10 via (40). The estimated covariance funct ion/~(/A) that we computed 

is plotted in Fig. 2 together with the exact covariance function. Fig. 2 shows that the relative error in the 

estimated values of  K ( I A )  was less than 2.2 per cent for l<~ 10 and less than 130 per cent for all I. The 

corresponding relative error in the estimated values of  k.o(i,j) was on the average around 40 per cent and 

was equal to 246 per cent in one case. By using the values of  the field over the disk 0 <~ r ~< 100 we obtained 

• l , l , l . l , l . i . l . ) , l , l . l , l . l , l ' l , l ' [ . l ,  I 

• • • E x a © t  C o v a ~ a n c ~  

o 

o 

. l , l * l , l , l , l , I t l , l , l , l , l , l , l , J , l , l * l ~ l  I 

0 50 I00 150 200 

l a g  

Fig. 2. Plot of exact and estimated covafian~ Nnctions ~r Example 4.1 when the estimated covanance K(r) is computed ~om 
data inside the disk 0 ~ r ~ 30. 

the estimated covariance function I~(IA) that is plotted in Fig. 3. In this case, the relative error in the 

estimates K ( I A )  was less than 1.6 per cent for l<~ 10 and less than 70 per cent for all 1, while the relative 

error in the estimated values of ko(i , j)  was on the average around 30 per cent and was still equal to 246 

per cent in one case. Note that as with any covariance estimation method, whether in 1-D or in 2-D, one 
expects a degradation in performance as l increases because of the reduction in the extent of  spatial 
averaging that can be done. This effect can clearly be seen in this example. Indeed, Figs. 2 and 3 show 
that the large relative errors in the values o f / ~  (lA) occur for large lags. Furthermore, by comparing Figs. 
2 and 3 we observe an increase in the range of  lags over which I~(1A) can be estimated accurately when 
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Fig. 3. Plot of exact and estimated covariance functions for Example 4.1 when the estimated covariance /~(r) is computed from 
, data inside the disk 0<~ r~ < 100. 

we expand the set of  available data. The overall improvement  in the accuracy of  our estimates when more 

data is used in (39) is a direct result of  the fact that our estimator is consistent and should not come as 
a surprise. Also note that the improvement in the estimates of  ko(i,j) when more data is used is relatively 

smaller than the corresponding improvement in the estimates of  K(IA) for large values of  I. This seems 
to be due to the fact that the relative improvement  in the accuracy of the estimates of  K (IA) for small l 

is small and that these values tend to be used repeatedly in computing ko(i,j). Furthermore, part of  the 

inaccuracy of  the estimated values of  ko(i, j )  is due to both the approximation errors and the interpolation 
errors that occur in the process of  computing ~( i , j )  via equation (40). However, as we shall see in the 
next section, the inaccuracy of the estimated values of  ko(i,j) does not seriously affect the performance 

of our cylindrical harmonics retrieval algorithm. 

5. Examples 

The objective of  this section is to illustrate some properties of  the algorithm of Section 3 with two 
examples. The first example uses the synthetic data generated for Example 4.1 while the second example 
uses exact covariance values. Example 5.1 clearly displays the robustness of  our procedure and its high 

resolution properties, even when relatively inaccurate estimates of  ko(i,j) are used as an input to our 
method. Example 5.2 is meant to show the robustness of  our algorithm in the presence of  modeling errors. 

5.1. Example. In this example we consider the data generated for Example 4.1 and use the resulting 
estimates of  ko(i,j) as an input to our procedure. Recall that the exact form of ko(i,j) for the data of  
Example 4.1 is 

ko( i,j) = 10Jo(0.1 i)Jo(O.lj) + lOJo(O.3i)Jo(O.3j) +2-~i 8~j. (42) 

Also recall that this corresponds to a signal with a power spectrum consisting of two cylindrical impulses 
at 0.1 r a d / m  and 0.3 r a d / m  respectively, and which have both an amplitude of 10 watt, i.e., the power 

Signa l  P rocess ing  
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spectrum of  the signal is of the form 

S(A) = 10 6(A -0 .1 )  + 10 8(A -0 .3)  (43) 
A A 

Observe that the noise intensity in the data of  Example 4.1 is 3 watt x m 2. Thus, the total noise power in 
the wave-number band [0, 1] rad/m is only 0.25 dB lower than that of  either cylindrical impulse. The 
exact power spectrum of  the observations (i.e., of  the signal plus noise field) is shown in Fig. 1. 

When we used the estimates of k o ( i , j ) ,  1 <<- i , j  <~ 10, which were computed in Example 4.1 from the data 
inside the disk 0 <~ r ~< 30, we obtained the results shown in Table 1 and Fig. 4. Table 1 lists the eigenvalues 

Table 1 

Eigenvalues of R in Example 5.1 when 

~ ( i , j )  is computed from data inside the 

disk 0 <~ r <~ 30 

395.6348871 
48.78233281 

1.953576725 

1.329499295 

0.963524627 

0.655533921 
0.476865723 

0.444997037 

0.245708484 

0.168982806 
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Fig. 4. Plot of v(A) for Example 5.1 when ~(i,j) is computed from data 
inside the disk 0 ~  < r ~  < 30. 

of  R. It is clear from this list that two eigenvalues are considerably larger than the other ones and must 
therefore be associated with cylindrical harmonics. However, there exist several intermediate eigenvalues 
which might correspond to low-energy harmonics. To determine whether this is the case, we plot in Fig. 
4 the function v(A) formed with the eigenvectors of R corresponding to its five smallest eigenvalues. Note 
that this means that our initial guess for the number of cylindrical harmonics is five. From Fig. 4 we see 
that v(A) has only two peaks corresponding to the presence of  cylindrical harmonics at 0.134 rad /m and 
0.285 rad/m,  so that the intermediate eigenvalues of R do not correspond to low-level harmonics. These 
intermediate eigenvalues can be attributed to the fact that we have used noisy estimates of the covariance 
k o ( i , j )  as an input to our algorithm. The five smallest eigenvalues of R correspond to an estimated noise 
intensity of  2.50 watt x m 2. Finally, the amplitudes of  the cylindrical harmonics were computed via (34) 
to be 10.29 and 9.69 watt, respectively. Hence, the estimated signal power spectrum is 

8(X -0.134) 6(A -0.285) 
S()~ ) = 10.29 Jr 9.69 (44) 

Note that our algorithm is quite robust since it performed well even though the relative error in the 
estimated values of k o ( i , j )  is relatively large, as was noted in our discussion of  Example 4.1. 

When we used the estimates of  k o ( i , j ) ,  1 <~ i , j  <~ 10, which were computed in Example 4.1 from the data 
inside the disk 0 ~< r ~< 100, we obtained the results shown in Table 2 and Fig. 5. Table 2 lists the eigenvalues 
of  R and Fig. 5 is a plot of v()t). In this case, the estimated signal power spectrum that we find is given 
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Table 2 

Eigenvalues of R in Example 5.1 when 
ko(/ , j )  is computed from data inside the 
disk 0 ~  < r ~  100 

470.6285589 

73.75886486 

1.966603612 

1.321482724 
1.079630800 

0.825874114 

0.717595417 

0.545082122 

0.416322808 
0.217525026 
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Fig. 5. Plot of v(A) for Example 5.1 when ~ ( / , j )  is computed from data 
inside the disk 0 ~  < r ~  < 100. 

by 

8(A -0.096) 8(A -0.298) 
S(A) = 9.62 + 10.35 (45) 

A A 

The estimated noise strength using the values of the four smallest eigenvalues of R (see Table 2) is 
2.98 watt x m 2 (note the improvement in the estimates in general, and in the location of the cylindrical 
frequencies in particular). This improvement is a direct result of the fact that we have used more accurate 
estimates of ko(i,j) as an input to our algorithm. In fact, the performance of our algorithm is limited only 
by the accuracy of the estimated values of ko(i,j). With the exact values of ko(i , j) ,  1 <~ i,j<~ 10, used as 
an input to our procedure, the computed eigenvalues of R and a scaled-down version of the corresponding 
v(A) formed with the eigenvectors corresponding to the five smallest eigenvalues of R, are shown in Table 
3 and Fig. 6, respectively. In this case, the estimated noise intensity is 3 watt x m 2 and the estimated signal 
power spectrum is exactly equal to the actual signal power spectrum. 

Table 3 

Eigenvalues of R in Example 5.1 when 
the exact values of ko(i,j) are used 0'3 

446.88880110 

66.36065499 0 
,v--4 

0.477464780 . 
qJ 

0.477464780 ,.~ 
0.477464780 

0.477464780 "~ 
,....q 

0.477464780 ID~ 
0.477464780 
0.477464780 "< 
0.477464780 
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Fig. 6. Plotofv(A)forExample5.lwhentheexactvaluesofko(i,j)areused. 
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Finally, to demonstrate the high resolution property of our algorithm, we used a conventional spectral 
estimation method on the estimated values of  the field covariance function K(r) that were computed in 
Example 4.1 using the data inside the disk 0 ~< r ~ 100. The conventional power spectral estimate was taken 
to be equal to a weighted Hankel transform of the estimated field covariance function K(r) [9]. The 

weighting function that we chose was of  the form 

w ( r ) = {  20c°s-l(~°r)-lrx/1-(2~r)2 otherwise.0~<r<~20' (46) 

The Hankel transform of  this weighting function is 

2~rJ~(10A)/A 2, (47) 

and is positive for all frequencies. Hence, the expected value of  the conventional power spectral estimate 
obtained by using this window is guaranteed to be positive [9]. The computed estimate is shown in Fig. 
7. Note that the conventional method does not resolve the two cylindrical harmonics. This should not 

q~ 
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. . . . . . .  " . . . .  o ' 2  . . . . . . . .  0 ' i  . . . . . . . .  0 4  0 s  

Frequency 
Fig. 7. Plot of the conventional power spectral estimate of Example 5.1. 

come as a surprise since the resolution of conventional spectral estimation is always inversely proportional 
to the spatial extent of the interval over which K(r), or its estimate, is given, regardless of  the choice of  
the window [9]. In our case, an estimate of K(r) was computed over the interval [0, 20]. This implies 
that the resolution of any conventional spectral estimation method is on the order of  0.3 rad/m, which is 
much larger than the separation between the cylindrical harmonics of  (43). 

5.2. Example. In this example we demonstrate the robustness of  our algorithm with respect to modeling 
errors. Since we have already analyzed the effect of  errors due to inaccurate covariance estimates in 
Example 5.1, we shall use exact covarianee data in order to focus our attention on errors due to inaccuracies 
in the signal power spectrum model. 

Consider a signal power spectrum of  the form 

S(A) = 10 8(A -0 .1 )  I- 15 8(A -0 .2 )  /- 10 8(A -0 .3 )  Jr 100(u(A -0 .4)  - u(A - 0.3)), (48) 
A A A 

where u(A) is a unit step function. Note the presence in (48) of  a relatively strong unmodeled colored 
noise component  whose total power is only 1.76 dB lower than that of  the strongest cylindrical harmonic. 
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The measurement noise power cr 2 is taken to be 1 watt × m 2 corresponding to a total white noise power 
in the wave-number band [0, 1] rad /m which is only 6,7 dB lower than the power of the strongest harmonic. 
Let us further assume that we are given exact values of ko(i, j )  for 1 <~ i, j <~ 10. The computed eigenvalues 
of the 10x 10 symmetric matrix R = [~/~ ko(i,j)] are listed in Table 4. Examination of  these eigenvalues 
reveals the presence of four cylindrical harmonics, a fact that is confirmed by the scaled-down plot of  
the v(A) (Fig. 8) which is formed with the eigenvectors corresponding to the two smallest eigenvalues of  

Table 4 

Eigenvalues of R in Example 5.2 

. . . .  I . . . . . . . . . .  I . . . .  I . . . .  I . . . .  [ . . . .  I . . . .  I . . . .  I . . . .  

O~ 
I 

732.4243282 ~ ~ 
99.73272777 
0.827748745 
0.160029111 ~ 
0.159159233 -~ 
0~159155971 
0.159154672 ~ 
0.159154011 ,~ 
0.159153889 
0.159151870 o 

0.0 01 0.2 03 04 05 

Frequency  
Fig. 8. Plot of v(A) for Example 5.2. 

R. In this example, the estimated measurement noise power is 1 watt x m 2 and the reconstructed signal 
power spectrum is found to be of the form 

S(A)= 10.95 8(A-0"104) t-15.19768(A-0"208) +10.95 8(A-0"31)  ~-1.39 8(A-0"387) (49) 
A A A A 

Note that the presence of a strong unmodeled colored noise component in the signal power spectrum has 
introduced a small bias in the estimated positions of  the cylindrical harmonics, and has led to estimated 

cylindrical harmonics amplitudes which are slightly higher than their true values. Also note the presence 
of a spurious cylindrical harmonic at 0.387 rad /m in the reconstructed power spectrum given by (49). 
This spurious cylindrical harmonic is solely due to the unmodeled colored noise component. The fact 
that the unmodeled colored noise component gives rise to a spurious cylindrical harmonic is reminiscent 
of what happens in the 1-D case, since it was observed in [7] that 1-D harmonic retrieval methods which 
are based on an eigenanalysis of  the covariance matrix do produce spurious 1-D harmonics in the presence 
of an umodeled colored noise component. 

The above two examples, and others, show that, overall, our algorithm is quite robust, that it has a 
strong resolution property, and that its accuracy is really limited only by the accuracy of the estimated 
values of ko(i,j). 

6. Conc lus ion  

In this paper we have presented a high resolution spectral estimation method for isotropic random 
fields with a covariance function equal to a weighted sum of cylindrical harmonics. Such fields are often 

Signal Processing 



A.H. Tewfik et al. / Retrieval of cylindrical harmonics 137 

used to model some types of background noise in geophysics and in ocean acoustics. The algorithm that 
we have obtained takes maximal advantage of the symmetries implied by the special structure of covariance 
functions which are equal to a weighted sum of cylindrical harmonics. Our approach is similar in spirit 
to the 1-D spectral estimation methods based on harmonic retrieval from an eigenanalysis of the covariance 
matrix. In the 2-D isotropic context, the spectral estimate is determined by performing an eigenanalysis 
of the covariance matrix of samples of the zeroth-order Fourier coefficient process corresponding to the 
given noisy observations of the underlying field. We have also discussed the estimation of this covariance 
matrix and presented examples to illustrate the high resolution and robustness properties of our procedure. 

Appendix A. Proof of the consistency o f /~ (r )  

The variance of the es t imator / ( ( r )  of (36) is given by 

A 1 f di, f D d i  2 var(K (r)) - (,IrR.2) 2 .Ion. , .  

X E[y(s , ,  O,)y(r+sl,  01)y(s2, O2)y(r+ sz, 02)]- K2(r). (A.1) 

In (A.1), dii denotes the infinitesimal unit of area dli = s~ ds~ d0~ and DR* is the disk of radius R* centred 
at the origin, so that DR* = {~: r <~ R*}. Using the moment factoring property of jointly Gaussian random 
variables, we obtain from (A.1) 

'IoIo var(K (r)) = (,rr R-.2)2 di,  diE{K((s2+ s 2 -2s,s2 cos(01- 02)) '/2) 
R* R* 

x K(((r+s,)2+ (r+s2)2-2(r+s , ) (r+s2)  cos (0 t -  02)) I/2) 

+ K((s21 + (r+ s2) 2 - 2sl(r + s2) cos(O, - 02)) '/2) 

x K( ( ( r+s , )2+s2-2 ( r+s , ) s2  cos(01- 82))1/2)}. (A.2) 

Substituting the identity [2] 

K((s~+ s22 - 2sis2 cos(0, - 02)) 1/2) = 

into (A.2) yields 

var(K(r))  = c.(r, R*), 
n = - o o  

where 

kn(s,, s2) e -j't°'-e2) (A.3) 
n = - o o  

(A.4) 

= 4 -~  rR* f f *  c, (r ,R*)  R . 4 j  ° ds, ds2s l s2{k . ( s , , s2)k . ( r+s l , r+s2)+kn(s l , r+SE)k , ( r+s l , s2)} ,  

(A.5) 

and where we have used the fact that the series jn (A.3) is uniformly convergent to interchange the orders 
of summation and integration [13]. To investigate the behavior of c,(r, R*) as R* tends to infinity, let us 

Vol. 13, No. 2, September 1987 



138 A.H. Tewfik et al. / Retrieval of cylindrical harmonics 

substitute (6) into (A.5) to obtain 

c.(r,R*)= dA, dA2S(A,)S(A2){d2(A,,A2;r,R*)+d.(A,,A2;r,R*)d.(A2,A,;r,R*)}, 
0 0 

(A.6) 

since 

But 

] IOR** dSl $1Jn(t~lSl)Jk(A2Sl) I ~<R * .2  

Hence, 

1 Vsl~>0andVA,~>0, (A.14) 

and (A.11) implies that 

ds, s,J.(A,s,)Jk(A2s,) <2(R**- R*)/(~r A.C'X-~IA2). (A.15) 
• R * *  

lim enk(AI,A2;R*)-=-O VA1,A2~>0,  (A.16) R*~o O * 
Signal Processing 

(A.13) 

where 

R* 2 d.(A1, A2; r, ) = ~  Jo* dsl siJ.(A~sl)J.(a2(sl+ r)). (A.7) 

We now invoke the Bessel addition theorem [2] 

J . (A( r+s ) )=  ~ J.-k(Ar)Jk(AS) (A.8) 
k=-oo 

and use the fact that (A.8) is a uniformly convergent series to rewrite (A.7) as 

d.()q, A2; r, R*) = ~ J.-k(A2r)e..k(A~, A2;R*), (A.9) 
k=-oo 

where the series (A.9) is also uniformly convergent, and where 

e.k(A,, AE;R*)=2_2_ fR* ' R .2 Jo ds, s,J.(A~s,)Jk(A2s,). (A.10) 

As R* tends to infinity and for any ;h ~> 0 and any A2/> 0, there exist a constant R**< R* such that 

2 
x4E ,x  Vs,>R**. (A.11) 

Furthermore, we have 

lim en, k(Al, AE;R*) R*~oo 

= lim ~ dsl s~J~(A~s~)Jk(AESt)+ lim ~ dsl slJ~(A~sl)Jk(A2s2). (A.12) 
R*--,~ R *  0 R*~co/(~ R** 
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and  since (A.9) is un i fo rmly  convergent ,  this means  that 

lim d , ( A ~ , A 2 ; r , R * ) = O  VA~,A2~>0andVr~>0 .  (A.17) 
R*-,co 

I f  we now assume that K (0) < oo and  if we use the Lebesgue domina ted  convergence theorem to in terchange 

limit and  in tegrat ion [13], we obta in  from (A.6) and  (A.17) 

l im c,(r, R*)  =0.  (A.18) 
R*-~oo 

Finally,  the above equa t ion  and  the fact that the series (A.4) is un i formly  convergent  imply  that 

l im v a r ( K ( r ) ) = O ,  (A.19) 
R*~oo 

which is the desired result. 
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