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Optimally Robust Redundancy Relations 
for Failure Detection in Uncertain Systems* 
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A geometric interpretation of the concept of analytical redundancy leads to 
computationally simple procedures, involving singular value decompositions, Jor 
determining redundancy relations that are maximally insensitive to model uncertainties. 
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Al~traet--All failure detection methods are based, either 
explicitly or implicitly, on the use of redundancy, i.e. on (possibly 
dynamic) relations among the measured variables. The 
robustness of the failure detection process consequently depends 
to a great degree on the reliability of the redundancy relations, 
which in turn is affected by the inevitable presence of model 
uncertainties. In this paper the problem of determining 
redundancy relations that are optimally robust is addressed in a 
sense that includes several major issues of importance in practical 
failure detection and that provides a significant amount of 
intuition concerning the geometry of robust failure detection. A 
procedure is given involving the construction of a single matrix 
and its singular value decomposition for the determination of a 
complete sequence of redundancy relations, ordered in terms of 
their level of robustness. This procedure also provides the basis 
for comparing levels of robustness in redundancy provided by 
different sets of sensors. 

1. INTRODUCTION 

A WIDE VARIETY of  techniques has been proposed in 
recent years for the detection, isolation and 
accommodation of failures in dynamic systems (e.g. 
the surveys in Willsky, 1976 and Isermann, 1984). In 
one way or another, all these methods involve the 
generation of signals that are accentuated by the 
presence of particular failures if these failures have 
actually occurred. The procedures for generating 
these signals depend in turn on models relating the 
measured variables. Consequently, if any errors in 
these models have effects on the observables that are 
at all like the effects of any of the failure modes, then 
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these model errors may also accentuate the signals. 
This leads us directly to the issue of robust failure 
detection, i.e. the design of a system that is 
maximally sensitive to the effects of failures and 
minimally sensitive to model errors. 

The work described here focuses on directly 
designing a failure detection system that is 
insensitive to model errors (rather than designing a 
system that attempts to compensate the detection 
algorithm by estimating uncertainties on-line, 
(Leininger, 1981; Hall, 1981; Willsky et al., 1980). 
The initial impetus for this approach came from the 
work reported in Deckert et al. (1977) and Deckert 
(1981), in the context of aircraft failure detection. 
The noteworthy feature of that project was that the 
dynamics of the aircraft were decomposed in order 
to analyze the relative reliability of each individual 
source of potentially useful failure detection 
information. In this way, a design was developed 
that utilized only the most reliable information. 

In Chow and Willsky (1984) the results of initial 
attempts to extract the essence of the method used in 
Deckert et al. (1977) and Deckert (1981) were 
presented in order to develop a general approach to 
robust failure detection. As discussed in those 
references and in others (Lou, 1982; Hall, 1981; 
Potter and Suman, 19771, all failure detection 
systems are based on exploiting analytical re- 
dundancy relations or (generalized) parity checks. 
These are simply functions of the temporal histories 
of the measured quantities that have the property of 
being small (ideally zero) when the system is 
operating normally. Essentially all the recently 
developed general approaches to failure detection 
make implicit, rather than explicit use of all these 
relations. That is, these general methods use an 
overall dynamic model as the basis for designing 
failure detection algorithms. While such a model 
certainly captures all the relationships among the 
measured variables, it does not in any way 
discriminate among these individual relationships. 
For this reason, a top-down application of any of 
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these methods mixes together intormation of 
,,arying levels of reliability. What would clearly be 
preferable would be a general method for explicitly 
identifying and utilizing only the most reliable of the 
redundancy relations. 

One criterion for measuring the reliability of a 
particular redundancy relation was presented in 
Chow and Willsky (1984) and was used to pose an 
optimization problem to determine the most 
reliable relation. This criterion specifies robustness 
with respect to a particular operating point, thereby 
allowing the possibility of adaptively choosing the 
best relations. However, a drawback of this 
approach is that it leads to an extremely complex 
optimization problem. Moreover, if one is interested 
in obtaining a list of redundancy relations ordered 
from most to least reliable, one must essentially 
solve a separate optimization problem for each 
relation in the list. 

In this paper an alternative measure of reliability 
for a redundancy relation is examined. Not only 
does this alternative have a helpful geometric 
interpretation, but it also leads to a far simpler 
optimization procedure, involving a single singular 
value decomposition. In addition, it allows, in a 
natural and computationally feasible way, issues 
such as scaling, relative merits of alternative sensor 
sets and explicit trade-offs between detectability and 
robustness to be considered. 

In Section 2 the notion of analytical redundancy 
for perfectly known models is reviewed and a 
geometric interpretation is provided, which forms 
the starting point for the investigation of robust 
failure detection. Section 3 addresses the problem of 
robustness using these geometric ideas, and solves a 
version of the optimally robust redundancy 
problem. In Section 4 extensions to include three 
important issues not included in Section 3 are 
discussed: noise, known inputs and the de- 
tection/robustness trade-off: The paper is concluded 
in Section 5 with a discussion of several other topics, 
including the relationship of these results to those in 
Chow and Willsky (1984) and the use of this 
formalism to measure and compare the levels of 
robust redundancy associated with different system 
configurations. 

2. REDUNDANCY RELATIONS 

This paper focuses attention on linear, time- 
invariant, discrete-time systems. In this section the 
uncertainty-free model 

x(k + 1) = Ax(k)  + Bu(k), (l} 

.v(k) = Cx(k) + Du(k), (2) 

is considered, where x is an n-dimensional state 
vector, u is an m-dimensional vector of known 

inputs, y is an r-dimensional xcctor of measured 
outputs, and A, B, C and D are known nmlricc-, of 
appropriate dimensions. A redundancv relation I ~  
this model is some linear combination of prcscm 
and lagged values ofu and y that is identicall> zero if 
no changes (i.e. failures) occur in (1), (21. 

As discussed in Chow and Willsk3 t1984). 
redundancy relations can be specified mathc- 
matically in the following way. The subspace of 
(s + 1 )r-dimensional vectors given by 

I ( -! i 

I 

P = ~'1 t'~ ('A = 0 (3} 
( 

is called the parity space of order s (to be 
distinguished from the s-step unobservable sub- 
space, which corresponds to the right null space of 
the matrix in (3) rather than its left null space). 
Denote (s + 1)r by N. Every vector v in (3) can be 
associated at any time k with a parity check, r(k): 

~y(k - s) 

r(k) = t a [ [  y(k s + 1) 1 / 

Ly(k) 

- H  u(k s + t~ i j  

J ku(k) 
(4) 

H = 

-D 
CB D 0 

CAB CB D 

CA2B CAB CB D 

_CA S- ' B CAB CB D 

(5) 

(The development in Sections 2 4 deals with a 
single fixed value ofs. Therefore, to avoid notational 
clutter, subspaces such as P in (3) or matrices such 
as H in (4) will not be indexed with the subscript s. 
Consideration of different values of s is contained in 
Section 5.) By (1), (2), the quantity in brackets ['i m 
(4), equals 

A 

LCA~J 

xlk  - s). t61 

Hence, by (3), the simple redundancy relation or 
parity check 

r(k) = 0 i7~ 

is satisfied. 
It is evident from (4) and (7) that a redundancy 
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relation is simply an input-output  model for (or 
constraint on) part of the dynamics of the system (1), 
(2). This interpretation of a redundancy relation 
allows contact with the numerous existing failure 
detection methods• These methods are typically 
based on a noisy version of the model (1), (2) that 
represents normal system behaviour, together with 
a set of deviations from this model that represent the 
several failure modes• However, rather than 
applying such methods to a single, all- 
encompassing model as in (1), (2), one could 
alternatively apply the same techniques to in- 
dividual models as in (4), (7), or to a combination of 
several of these, which serves to isolate individual 
(or specific groups of) parity checks• (See Section 5 
for some further comments on this point.) This is 
precisely what was done in Deckert et al. (1977) and 
Deckert (1981), for example• The advantage of such 
an approach is that it allows one to separate the 
information provided by redundancy relations of 
differing levels of reliability, something that is not 
easily done when one starts with the overall model 
(1), (2), which combines all redundancy relations• 

In the next two sections the main problem of this 
paper is addressed, i.e., the determination of 
optimally robust redundancy relations• The key to 
this approach is obtained by re-examining (3)-(7), 
in order to suggest a geometrical interpretation of 
parity relations• In particular, consider the model 
(1), (2) and let Z denote the range of the matrix in 
(3). Then the parity space P is the orthogonal 
complement of Z, and a complete set of parity 
checks, of order s and of the form (4), (7), is given by 
the orthogonal projection of the vector of input- 
adjusted observations 

I 
y ( k - s )  
y ( k - s +  1) 

y(k) 

] Fu(k-s)  )] 

- H  [ u ( k - s +  1 (8) 

Lu(k) 

onto P. 
To illustrate this, consider an example in which 

the first two components of y measure scaled 
versions of the same variable, i.e. 

y2(k) =ayl(k). (9) 

Then, as illustrated in Fig. 1, the subspace Z in 
Yl -Y2  space is simply the line specified by (9). 
Furthermore, in this case the obvious parity relation 
is 

r(k) = y2(k) -ayl(k), (10) 

which is nothing more than the orthogonal 
projection of the observed pair of values yl(k) and 
yz(k) onto the line P perpendicular to Z (Fig. 1). For 

xx Ya ~ Z 
p--~'x\ / . /Observed value 

"\  [//...'"~/~)lc of (Yl ,Y2) 
\ ...."'" Yt 

r = Y2-  aYl 

FIG. 1. An example of the geometric interpretation of parity 
relations. 

interpretations of the space P in purely matrix terms 
and in terms of polynomial matrices, the reader is 
referred to Desai and Ray (1981) and Lou (1982), 
respectively. It is the geometric interpretation, 
however, that will be utilized here. 

3. A GEOMETRIC APPROACH TO ROBUST 
REDUNDANCY 

Consider a model that is not driven by either 
unknown noise or known signals: 

x(k + l )  = Aqx(k) (11) 

y(k) = Cqx(k) (12) 

where q indexes the models associated with different 
possible values of the unknown parameters. 
Throughout this paper (except for a brief discussion 
in Section 5), only the case where q is taken from a 
finite set of possibilities, say q = 1, 2 . . . .  ,Q is 
considered• In practice, this might involve choosing 
representative points out of the actual continuous 
range of parameter values, reflecting any desired 
weighting on the likelihood or importance of 
particular sets of parameter values. 

Define the (s-step) observation space Zq by 

Zq = range 

Cq 
CqAq 

LCqAq 

(13) 

This is the subspace in which the window of 
observations for the system (11), (12) lives, as 
x(k - s) varies over all possible values. For a given 
q, the parity space is the orthogonal complement, 
Pq, of Zq. However, the orthogonal complement of 
one observation space will not be the orthogonal 
complement of another distinct observation space• 
It is therefore in general impossible to find parity 
checks that are perfect for all possible values of q, i.e. 
in general a subspace P that is orthogonal to Zq for 
all q cannot be found. 

What would seem to make sense in this case is to 
choose a subspace P that is "as orthogonal as 
possible" to all possible Zq. Returning to the simple 
example quoted, suppose that Y2 = ayl but that a is 



only known to lie in some interval. In this case the 
picture shown in Fig. 2 is obtained. The shaded 

regions here represent the range of (j,, ..t‘? i values 
consistent with the uncertainty in U. Intuitively. 
what would seem to bc a good choice for P 

(assuming that u is equally likely to lie anywhere in 

the interval) is the line that bisects the obtuse 
angle between the shaded sectors in Fig. 2. It is 
precisely this geometric picture that is generalized 
and built on in this paper. 

For the general case, the procedure will be to first 
compute an average observation space Z. that is as 
close as possible, in a sense to be made precise. to all 

the Z,. Then P will be chosen to be the orthogonal 

complement of Z,,. (This idea is also illustrated in 
Fig. 2. where the average observation space Z,, is 

depicted as the line that bisects the shaded region, 
and the line P then represents its orthogonal 

complement.) Note that the Z, are subspaces of 
possibly differing dimensions, embedded in a space 

of dimension N = (s + 1 )I’, corresponding to 
histories of the last s + 1 values of the r-dimensional 

output. Consequently, if determination of the p best 
parity checks is required (so that dim P = p). a 

subspace Z. of dimension N - p must be found. 

A preliminary scaling 

Before stating the criterion that defines Z,,, it is 
necessary to take account of a fact that has been 

glossed over so far. It is not sufficient to simply 

examine the subspaces in which signals lie: one has 
also to consider the characteristic magnitudes and 
directions of the excursions of signals in the 

subspaces to which they are confined. It will 

typically be the case that some components (or 
combinations of components) of x(li - s) are larger 
than others, because they may be measured in 

different units and excited differently. Hence certain 
excursions in observation space are more likely 
than others. To take account of this. assume for 

now that a non-singular scaling matrix ,‘M, can be 

found such that, with the change of basis 

s = M,w, (14) 

one obtains a variable MI that is governed by a 

similarity-transformed version of (11). (12) and has 

FIG. 2. Illustrating the choice of P in the presence of uncertain 
parameters. 

“equally likely” excursions of “unit length’ m eac11 

direction under the c&h model. This sort oi’ 

normalization is discussed more at the end of this 

section and in Section 4.1. where observation and 
process noise are incorporated into the model. (See 

also Daly rt ~1.. 1979. in which scaling is also 
considered in the context of the design of a failure 

detection system.) The columns of the matrix 

can now be used as a spanning set for Z,. The matrix 

in (15) will be denoted by the non-boldface Z,. In 
the remainder of this paper, a boldface capital letter 
will be used to denote the subspace spanned by the 

columns of a matrix that is denoted by the 
corresponding non-boldface capital. 

The criterion for the best choice of Z. may now be 

defined in the following manner. With Z, . . , Z, 
denoting the scaled matrices in (15) whose columns 
span the possible subspaces in which the obser- 

vation histories may lie under normal conditions, 
define the N x Qn matrix 

z= [Z,:...:Z,] (16) 

The optimum choice for Z0 is then taken to be the 
span of the columns of the matrix Z0 that minimizes 

IlZ - zoll;. (17) 

subject to the constraint that rank Z. = N - p, 

which ensures that the orthogonal complement P of 
Z0 has dimension p, Here lI$ denotes the Frobenius 
norm, defined as the root of the sum of squares of 

the entries of the associated matrix. The matrix Z0 is 

thus chosen so that the sum of the squared distances 

between the columns of Z and of Z0 is minimized, 

subject to the constraint that Z0 contains only 
N - p linearly independent columns. 

The optimization problem just posed is easy to 
solve. In particular, let the singular value decom- 

position (Klema and Laub. 1980; Golub and Van 
Loan, 1983) of Z be given by 

Z = C’ZC: 

where 
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and U and V are orthogonal matrices. Here 
0 1 _< 0 2 _< -.. _< a N are the singular values of Z, 
ordered by magnitude. Note that it is assumed that 
N <_ Qn. If this is not the case, it can be made so 
without changing the optimum choice of Z0 by 
padding Z with additional columns of zeros. As 
shown in Eckart and Young (1936) (see also Tufts et 
al., 1983), the matrix Zo minimizing (17) is given by 0 

0 0 : 
Z 0 = U Op+ 1 0 V. (20)  

0 
O" N 

Moreover, since the columns of U are ortho- 
normal, the orthogonal complement of the range Zo 
of Zo is given by the first p left singular vectors of Z, 
i.e. the first p columns of U. Consequently, an 
orthonormal basis for the parity space P is given by 

P = Eul . . . . .  upl (21) 

and u l . . . . .  up define optimum redundancy relations 
or parity checks.t 

There are additional reasons for choosing this 
method for determining Zo and P, apart from the 
fact that the computation just described is quite 
straightforward. Firstly, minimization of the crite- 
rion in (17) does produce a space that is as close as 
possible in a natural sense to a specified set of 
directions, namely the columns of {Zq, 
q =  1 . . . . .  Q}. Thanks to the scaling (14), these 
columns represent a complete set of"equally likely" 
directions in the observation space Zq (correspond- 
ing to the "equally likely" values of the scaled state 
w = [1, 0 . . . . .  0] T, [0, 1 . . . . .  0] T, etc.). A second (and 
more precisely stated) reason follows from an 
alternative interpretation of the choice of P that 
provides some very useful insight. 

Specifically, recall that what is required is to find a 
subspace P that is as orthogonal as possible to all 
the subspaces Zq. Translating this to statements 
about bases for these spaces, this would be an N x p 
matrix P, normalized by the condition that it must 
have orthonormal columns, i.e. pTp  = Ip, SO that P 
is the orthogonal projection onto the subspace P, to 
make each of the matrices PTZq as close to zero as 
possible. Now, as shown in the Appendix, the choice 
of P given in (21) also minimizes 

(2 
J = ~ IIpTzqI[ZF, (22) 

q= l  

t Note that ifap+ 1 = 0, then (a) Zo actually has rank less than 
N - p  and (b) there is a perfectly robust parity space of 
dimension at least p + 1. 

yielding the minimum value 

P 
J* = ~ a 2. (23) 

i=1 

In fact, as illustrated in the Appendix, the same 
choice of P can also be shown to minimize other 
physically meaningful criteria. 

Some important points about the result (22), (23) 
should be noted. To begin with, one can now see a 
straightforward way in which to include unequal 
weightings on each of the terms in (22). Specifically, 
if aq are positive numbers, then minimizing 

Q 

J~ = ~ aqllPXZqll2v (24) 
q = l  

is accomplished using the same procedure described 

previously, but with Zq replaced by x~qqZq. 
Carrying this one step further, if the aq are 
normalized so that they sum to one, they can be 
thought of as representing the prior probabilities for 
each of the possible system models. Thus J1 in (24) 
can be interpreted as the expected value of IIPWZqll2, 
where the expectation is taken over the model 
uncertainty. Furthermore, if the scaling (14) is 
interpreted as producing a state w with unit 
covariance, i.e., E[ww x ] = I, then []PxZq[[2v can be 
interpreted as Eo(llr(k)]l 2, where r(k) now (unlike in 
(4)) is being used to denote the vector whose entries 
are the complete set of parity checks determined by 
the projection P, 

~y(k - s) 1 

r(k) = Px I. y(k - s + 1)] = PTZqw(k - s), (25) 
/ Ly(kl 

and Eq represents the expectation over w ( k -  s), 
assuming that the data are generated by the qth 
model. Combining this with the probabilistic 
interpretation of the aq, 

J1 = E(llr(k)ll2), (26) 

where E denotes expectation over w(k - s) and the 
model uncertainty. It is on this interpretation that 
the next section is built. 

Finally, note that the optimum value (23) 
provides an interpretation of the singular values as 
measures of robustness and provides a sequence of 
parity relations ordered from most to least robust: 
ul is the most reliable parity relation, with a 2 as its 
robustness measure; u2 is the next best relation, with 
a 2 as its robustness measure etc. Consequently, from 
a single singular value decomposition, a complete 
solution to the robust redundancy relation problem 
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can be obtained for a.fixed value of s, i,e. for a fixed 
length time history of output values. 

A natural extension of the minimization criterion 
(24), (26) is then provided b) 

4. THREE EXTENSIONS 
In this section three extensions of the result of the 

preceding section are developed through 
modifications that entail no fundamental increase in 
complexity. The treatment of noise is first addressed 
in Section 4.1, while the inclusion of known inputs is 
discussed in Section 4.2. Finally, the issue of 
designing parity checks for robust detection of a 
particular failure mode is examined in Section 4.3. 

4.1. Observation and process noise 
In addition to choosing parity relations that are 

maximally insensitive to model uncertainties, it is 
also important to choose relations that suppress 
noise. Consider the model 

x(k + 1) = Aqx(k) + Bqu(k), (27) 

y(k) = Cqx(k) +Dqu(k), (28) 

where u(.) is a zero-mean, unit covariance, white- 
noise process. It is assumed that x and y have 
attained stationarity and that the steady state 
covariance of x is given by 

Q 
d = y~ aqEq(llr(k)ll 2) (32) 

,,I = I 

where 

r{k) = Pry(k) ~33) 

and where Eq denotes the expectation over w(k - s) 
and U(k), assuming that the data is generated by the 
qth model. As before, J is to be minimized by choice 
of P that satisfies PVP = I. and the parity space P 
will then be taken to be the range of P. 

For simplicity, first assume that aq = 1 for all q. It 
is then quite directly seen that 

Q 
J = ~ tr[PV(ZqZ~+ I4qH~)P] 

q=l 
(2 

= ~ HPr[Zq:Hq]]]~ ,. !341 
q=l 

From this it is evident, given the previous results, 
that the optimum choice of P is computed by 
performing a singular value decomposition on the 
matrix 

Sq = MqM~q (29) T =  [ZI:HI"...  :ZQ:HQI. (35) 

The time window of observations for (27), (28) is 
now given by 

y ( k -  s + 1 = . qAq 

Lv(k) LGG 

Mqw(k - s) 

[ u(k - s) ] 

H [ u ( k - s + l )  -I'- qL 

u(k) 

(30) 

where w ( k -  s) has zero mean and unit 
covariance--cf .  (14), (15) and the discussion at the 
end of Section 3 and/-/q has the same structure as 
in (8), except that all matrices are replaced by their 
subscripted versions, since it is the qth model that is 
under consideration. More compactly, (30) may be 
written 

Y(k)  = Zqw(k  - s) + H~U(k), (31) 

with the definitions of the symbols being obvious 
from (30). In particular, note that the U(k) has unit 
covariance and is independent of w(k - s). 

If the aq are not all identical, then T is simply 

modified by scaling Z~ and Hq by x,/aq, 
It is evident from the above that the effect of noise 

is simply to define additional directions to which the 
columns of P should be as orthogonal as possible. 
That  is, P is to be chosen so that the parity check r(k) 
has minimal response both to the likely sequences of 
values of the ideal noise-free observations (as 
specified by the columns of Zq) and to the directions 
in which the observation noise and process noise 
have their maximum effects (as determined by the 
columns of/-/q). The solution of this problem yields. 
as before, a complete set of parity checks, 
corresponding to the left singular vectors of T, 
ordered in terms of their degrees of insensitivity to 
model errors and noise (as measured by the 
corresponding singular values). 

4.2. Known inputs 
The analysis of the preceding section can be 

modified somewhat to allow consideration of the 
case in which some of the driving terms in (27) are 
known inputs. To simplify the discussion in this 
section, assume all the components of u(k) are 
known inputs. The extension to the case when there 
are both known inputs and noise is straightforward. 

The key difference between the case in which u(k) is 
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unmeasured and the case in which it is measured is 
that in the latter the measured output y(k) can be 
adjusted to account for the effect of the measured 
inputs u(k) (see the discussion in Section 2). That is, a 
vector of parity checks of the form 

.x [Y(k)7  
r(k) = r LU(k)J (36) 

can be defined, where pTp = Ip. The question then 
is, how is the robustness of r(k) measured. Clearly, 
since U(k) is known, a robustness measure relative 
to any specified input sequence U(k) can be defined. 
This approach is closer to the spirit of the work of 
Chow and Willsky (1984). As discussed in Section 5, 
such an approach allows one to adjust the parity 
matrix P on line by (in effect) scheduling it with 
respect to U(k), but the price that is paid for this is 
significantly greater on-line and off-line com- 
putational complexity. 

What will be done instead is to follow the same 
philosophy as used up to this point. That  is, attempt 
to find a single matrix P that minimizes the norm of 
r(k) on the average, as w(k - s) and U(k) vary over 
their likely range of values. More precisely, assume 
that U(k) is zero mean, and 

w(k s)/  _ s), = NqN~, (37) 
q 

Eq U(k) [w~(k UT(k)] 
l 

so that the optimum choice of P is obtained from the 
singular value decomposition of [R1 :R2:...:R(2]. 

4.3. Detection vs robustness 
The methods described up to this point involve 

measuring the quality of redundancy relations in 
terms of how small the resulting parity checks are 
under normal operating conditions. That is, good 
parity checks are maximally insensitive to model- 
ling errors and noise. However, in some cases one 
might prefer to broaden the viewpoint. In particular, 
there may be parity checks that are not optimally 
robust (in the sense that has been discussed) but that 
are still of significant value because they are 
extremely sensitive to particular failure modes. In 
this subsection, a criterion that takes such a 
possibility into account is considered, focusing, for 
simplicity, on the noise-free case. The extension to 
include noise or known inputs as in the previous 
subsection is straightforward. 

The specific problem to be considered is the 
choice of parity checks for the robust detection of a 
particular failure mode. Assume that the unfailed 
model of the system is 

x(k + 1) = Aqx(k), (42) 

y(k) = Cqx(k), (43) 

while if the failure has occurred the model is 

where Nq is any square root of the covariance matrix 
above. As an example, if a feedback control of the 
form u(k) = Gw(k) is used, then 

x(k + 1) = Aqx(k), (44) 

y(k) = Cqx(k). (45) 

U(k) = Lqw(k - s) (38) 

for a matrix Lq that is easily written in terms of G, Aq, 
Bq and Mq (omitting the explicit details here), so that 

N J = [I LJ]. (39) 

If process noise was also included, there would not 
be a deterministic coupling of U(k) and w(k - s), 
and a straightforward modification of (38) would 
provide the appropriate form for Nq. 

Consider now the criterion (32), with all of the aq 
taken to be 1 for the sake of simplicity. A direct 
calculation yields 

(2 
J = ~ IlPWRqll 2, (40) 

q = l  

where 

,41, 

For example, returning to the simple case 
y 2 ( k )  = aya(k), then under unfailed conditions one 
might have 

al < a < a 2 (46) 

while after a failure 

al < a < fi2. (47) 

This is illustrated pictorially in Fig. 3. In this case, 

, / / / 'Z. : {Z(a) ,a,s asa,} 

/ ~ .  : { 2 ( a ) , % ~ o , % }  

FIG. 3. Illustrating robust detectability. Here Z represents the set 
of values of (Yl, Y2) that can occur under normal operation, while 
Z represents the corresponding set after the occurrence of a 

failure. 

AUTO 22:5-E 
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one would like to choose the line P on to which one 
projects in such a way that a small projection is 
obtained if no failure has occurred and a large value 
results if a failure occurs. That is, P should be ~as 
orthogonal as possible" to Z and "as parallel as 
possible" to Z. 

Returning to the general problem, again assume 
that q takes on one of Q possible values, and let Z~ 
and 2~ denote the counterparts of Zq in (15) for the 
unfailed and failed models, respectively. There is 
now a trade-off: PTzq should be made as small as 
possible for all q and pV2q made as large as possible. 
A natural criterion, for minimization over all P 
satisfying p r p  = I. is provided by 

(2 
J ~. IIP"ZqlI~" T -  , = - l i P  Z.ll~. (48) 

q I 

Define the matrices 

number of useful parity relations liw deteclmg Ihi:, 
particular failure modc equals the number ,.~i 
negative eigenvalues of H S t t  ~. 

As a second comment, contrast the procedure 
used here with the singular value decomposilion of 
Z used in Section 3, which corresponds essentially to 
performing an eigenvector eigenvalue analysis oi 
Z Z  ~. First, assume that \ '  - 2Qn, denote ()~l b~ /x. 
and define 

o-~ = ";-l . . . . .  a~,, = - )-s. (56 J 

a~:+ l = 2K+l . . . . .  <~' = ),~-, 

and 

Z = diagonal [o-, . . . . .  o-N 1. 57) 

From (52) 

and 

then 

H =  [ Z I : Z 2 : . . . : 2 Q : Z I : Z 2 : . . . : Z e l  (49) 

S = block diagonal [ - l e , , , l e , , ] ,  (50) 

J = tr [ p T H S H T p  I. (51) 

It is straightforward (Lou, 1982) to show that a 
minor modification of the result in Eckart and 
Young (1936) leads to the following solution. An 
eigenvector eigenvalue analysis is performed on the 
matrix 

H S H  ~ = U Y S E U  ~. (5Sl 

Assuming that Z is non-singular (which implies 
K = Qn),  define 

V = ' 2  1UrH.  1591 

Then V is S-orthogonal, 

VSI/q = S, (60) 

and H has what is called an S-singular value 
decomposition 

H = UZV.  {611 

H S H I =  U A U  x (52) 

where U is orthogonal and 

A = diagonal [')~1 . . . . .  ) ' N ~  "]~1 < " '  --< ";',~' (53) 

Then the opt imum choice for P is the first p columns 
of U: 

P = [ul . . . . .  Up]. (54) 

The corresponding minimum value of J in (48), (51) 
is 

P 

J * =  Y, ';-i. (55) 
i I 

Two comments are in order about  this solution. 
The first is that no more that Qn of the 2~ can be 
positive. In fact the parity check based on Uq is likely 
to have larger values under failed rather than 
unfailed conditions iff ),q < 0. Thus the maximum 

Thus, instead of the singular value decomposition of 
Z that was used in Section 3, the modified problem 
considered in this subsection calls for the S-singular 
value decomposition of H. 

5. CONCLUSIONS 
This paper has developed methods for determin- 

ing robust parity relations for failure detection in 
dynamic systems. The approach used builds on the 
geometric interpretation of a set of parity checks as 
an orthogonal projection of a window of obser- 
vations. In the noise-free case with a perfectly 
known model, this projection is on to a subspace 
orthogonal to the set of all feasible observation 
sequences. When one takes noise and model 
uncertainty into account, it is in general not possible 
to find a subspace that satisfies this requirement 
exactly, and roughly speaking what the basic 
approach produces is a subspace (and associated 
orthogonal projection) that is closest to being 
orthogonal to the space of likely observation 
sequences. 



Optimally Robust Redundancy Relations 341 

In this development several extensions of this idea 
have been considered, most notably allowing the 
determination of parity checks that are optimally 
robust for the detection of a specific failure mode. In 
each of the cases considered, a single singular value 
decomposition (or a variation of it, in the case of 
Section 4.3) produced a complete sequence of 
orthogonal parity relations, ordered in terms of a 
meaningful measure of robustness. The remainder 
of this section consists of brief discussions of several 
issues concerned with the interpretation and use of 
these results. 

5.1. A graphical picture of robust redundancy 
In all three formulations considered in Sections 3, 

4.1, and 4.2, the problem of finding the p best parity 
checks was considered. An obvious question, then, is 
what is a good value of p? While the results do not 
give a precise answer to this question, they do 
provide a basis for obtaining a picture of the level of 
robust redundancy in a particular system 
configuration, as outlined next. 

Recall that the solutions to the problems provide 
rank-ordered lists of parity relations, with a figure of 
merit for each relation given by a corresponding 
singular value (or eigenvalue for the case of Section 
4.3). For example, consider the criterion (22). 
Minimization of J over all choices of the parity 
check matrix P subject to the constraint that 
PXP = Ip (i.e. that exactly p parity checks are 
specified) results in the value J* given in (23), 
namely the sum of the p smallest singular values of 
the matrix Z in (18). The solid curve in Fig. 4 
illustrates a plot of this minimum value J* as a 
function of p. Note that this curve must be convex, 
since the increment in J* when the number of parity 
checks is increased from p to p + 1 is a2 + 1, which is 
at least as large as the squares of any of the p 
previous singular values. Furthermore, in this 
illustration the knee in the solid curve indicates a 
sharp increase in the singular values, which in turn 
points to a value of p beyond which the level of 

d ° 

/ 
I 

Z 
I 

I 
I 

I 

P 

FIG. 4. Illustrating the plot of the optimum values of the 
robustness criterion as a function of the number of parity checks 
specified (p takes integer values only, but continuous curves have 

been used to facilitate illustration). 

robustness decreases markedly. 
Plots as in Fig. 4 can also be of value in comparing 

different system configurations. In particular, in 
specifying a sensor complement for a particular 
system, one is certainly interested in finding a set of 
sensors that provide a sufficient level of robust 
redundancy to allow accurate failure detection to be 
performed. Returning to Fig. 4, the dashed line 
might correspond to the robust redundancy curve 
for an alternative sensor set. This set has a higher 
level of robust redundancy than the one correspond- 
ing to the solid line, since the dashed curve lies below 
the solid one. Clearly this is not a sufficient reason to 
state that the alternate sensor set is superior to the 
original one, e.g., if the alternate set was obtained by 
adding several sensors to the original set, one would 
have to check that there is enough additional 
redundancy to permit the detection of the larger set 
of possible failures associated with this expanded 
sensor set, but it does provide useful information for 
this design process. 

Finally, note that throughout the paper a fixed 
order s for the parity checks under consideration 
has been assumed. In any application one would, of 
course, want to consider several values of s. There 
are clear advantages (in terms of response time and 
complexity of implementation) in considering small 
values of s, but the dynamics of a system may be such 
that there are important relationships of parti- 
cularly high order. What one can imagine doing is 
solving the robust redundancy problem for 
s = 1,2 . . . . .  Each such problem would result in a 
curve as in Fig. 4, with the curve for each successive 
value of s lying below the preceding one. While this 
would appear to indicate that larger values of s 
always produce additional useful parity checks, this 
is not necessarily the case one must check to see if 
these additional redundancy relations are truly 
useful or are simply non-minimal realizations of 
lower order parity checks. For example, if 
y2(k) = ayl(k), then yz(k) - -  a y l ( k )  is a valid parity 
check, but so is yz(k) + yz(k - 1) - ayl(k) 
- a y l ( k - 1 ) .  See Lou (1982) for a polynomial 
matrix characterization of a complete set of minimal 
order parity checks for deterministic linear systems 
and for a numerical example illustrating the issues 
raised in this section. 

5.2. Alternate robustness criteria 
In Chow and Willsky (1984) a somewhat different 

formulation of the robust parity check problem is 
considered. The criterion there has several 
significant differences from the one used here, and in 
this section the relationship between these is 
described. In the process, additional motivation for 
the present formulation is provided. Several other 
criteria that in a sense represent intermediate steps 
between Chow and Willsky (1984) and the present 
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paper and that provide some useful insights are 
indicated. A more thorough development of these 
can be found in Lou {19821. 

The model considered in Chow and Willsky 
(1984) is a modified version of (27), (28) that 
includes known inputs and noise, and in which the 
model uncertainties are not constrained to a finite 
set of values. As discussed in Section 4.2 and the 
Appendix, there are direct ways in which one can 
incorporate known inputs and continuous para- 
meter variations into the present formulation. The 
critical difference between Chow and Willsky (1984) 
and the approach taken here is the specific criterion 
chosen to define robustness. In particular, the 
principal problem posed and solved by Chow and 
Willsky is the determination of the single best parity 
check r(k) (so p = 1 ), where "'best" is defined as that 
with the minimum worst case mean-squared value 
over the specified range of parameter uncertainties, 
with the system at a specified operating point, i.e. the 
known input is assumed to take on a specified 
constant value, and the state x(k - s! at the start of 
the data window is assumed to be at the equilibrium 
state corresponding to the constant control. While 
the consideration of operation at a particular set 
point does allow one to consider adapting parity 
checks to changing operating conditions, this 
flexibility is achieved at the expense of requiring that 
one solve a complex non-linear optimization 
problem. Moreover, if one wishes to consider 
finding several parity checks, one must either solve 
one non-linear optimization problem of greater 
complexity or a sequence of problems of equal 
complexity for each additional parity check. 

As discussed in Lou (1982), if one removes the 
operating point constraint of Chow and Willsky 
and assumes instead that the initial state is 
completely unconstrained, one is led to a criterion in 
which a parity space P has to be chosen to maximize 
either the minimum or the average angle P makes 
with the observation space Zq as q ranges over its full 
set of values. Here the cosine of the angle between 
two subspaces is defined as the maximum length of 
the projection of a unit vector from one space on to 
the other. While for any two subspaces this angle 
can be calculated using singular values (Lou. 1982) 
the maximization of the average or worst case value 
of this angle is still a very complex non-linear 
optimization problem. However, reversing the steps 
of computing angles and averaging over parameter 
uncertainties leads to computing a subspace that is 
the average of the Zq and then choosing P to be 
orthogonal to this average. This is very nearly the 
criterion introduced in Section 3. 

Specifically, as shown in Lou (1982) and Bjorck 
and Golub (1973), in this case the matrix Zo is again 
chosen to minimize (17), but now with the columns 
of the matrices Z,~ chosen to form orthonormal 

bases for the Zq. The only difference between this 
and the criterion used is the introduction of the case 
of scaling, i.e. instead of viewing the initial state as 
completely unconstrained, its covariance is speci- 
tied. With this specification the interpretatkm of 
maximizing an angle between subspaces is lost 
(since Zq is replaced by orthonormal bases, with the 
columns of the Zq matrices defined in ( 15 ~), but the 
use of scaling is critical in order to obtain a 
practically meaningful criterion. 

5.3. The interpretation and use of  parity check,s 
Once a parity check is determined, the question 

arises as to how this relation should be used. Chow 
and Willsky (1984) provide a detailed discussion of 
this issue, which will not be repeated here. However, 
several brief comments will be made in order to 
point to interesting avenues for further work. 

Recall that the type of criterion on which this 
paper has focused is E[llr(k)H2], where the 
expectation is averaged over model uncertainty, 
noise, inputs and initial conditions. This criterion is 
directly related to the performance of an open loop 
failure detection system (Chow and Wiilsky, 19841 
in which the values of r(k) calculated over an interval 
are used to make failure detection decisions, e.g., by 
comparing the sum of the squared norms of the r(k) 
over the interval to a threshold. 

It is also possible to use a parity check to define a 
closed loop failure detection algorithm (Chow and 
Willsky, 1984). Specifically, as mentioned in Section 
2, a parity check can be interpreted as defining a 
dynamic model. For example, a parity check of the 
form 

r(k) = y l l k ) -  y l ( k -  1 ) -  Ty2(k- l) (62} 

(which might represent the relationship between the 
change in measured velocity, yl ,  to the measured 
acceleration, Y2, scaled by the sampling time) can be 
interpreted as defining a model of the form 

z 1 ( k ) = z l ( k - l ) +  T y 2 ( k -  1)+w(k)  (63) 

yl (k)  = zl(k)  + ~'l(k} (64} 

where Zl(k ) represents the ideal noise-free value ofy~ 
and the process noise, w(k), models both the 
expected deviations of r(k) from zero under noise- 
free conditions, e.g. due to modelling error, and the 
presence of sensor noise in y2(k - 1). The model 
(63), (64) could then be used with any of the many 
existing sophisticated failure detection methods. 

For example, one could consider basing failure 
detection decisions on the innovations v(k) from a 



Optimally Robust Redundancy Relations 343 

Kalman filter based on (63), (64).* A natural 
measure of robustness in this case would then be 
E[llv(k)ll2]. This in turn raises the question of 
determining parity relations (i.e. finding P) to 
directly minimize E[llv(k)ll21. While this is an 
interesting and meaningful criterion, it is also true 
that this quantity is an extremely complicated and 
non-linear function of P. Thus the methods of this 
paper would not directly apply to this problem and 
it remains to be determined (a) if an efficient method 
can be obtained for solving this problem and (b) 
under what conditions, if any, significant perform- 
ance improvements can be obtained by direct 
optimization of closed loop innovations. 

As a final comment, note that the interpretation 
of parity checks as reduced order models raises the 
question of whether the constructions developed 
here provide a useful new method for model 
reduction. The exploration of this question remains 
for the future, but note one interesting point. 
Specifically, what a parity relation such as (62) 
specifies is a constraint among the time evolutions of 
the components of y(k). If one wishes to interpret 
such a relation as a dynamic model for the evolution 
of one of these components, as in (63), (64), then the 
other components of the measurement vector act as 
inputs to this model. 
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APPENDIX 

Derivation of  optimal parity checks Jot several criteria 
Consider the problem of choosing an N × p matrix P to 

minimize 

(2 
j = ~ IIPTZJI~ 

q I 

subject to the constraint that pTp = I. Note first that 

(A.I) 

J = qlpTzII~ = tr(PTZZSP) (A.2} 

where Z is defined in (16). As discussed in Section 3, assume 
without loss of generality that N < Qn. Let the singular value 
decomposition of Z be as given in (18), (19). 

Now show that the minimum value of J is 

J = ~ o~ (A.3} 
i - I  

and the optimum choice of P is 

P = [Ux:U2:...:u.] (A.4) 

where the u~ are the first p left singular vectors of Z. To do this, use 
the following elementary result, which is a direct consequence of 
the Courant-Fischer minimax principle (Lou, 1982; Klema and 
Laub, 1980). Suppose that 

= F A ~  A121 
A LA21 A22J (A.5} 

is n x n, symmetric and positive semidefinite. Suppose also that 
All is m x m, and let 21(A), ,:.dAxl) denote the ith smallest 
eigenvalue of A, AI~ respectively. Then 

2i(A) <<_ ,~i(A11), i = 1 . . . . .  m. (A.6) 

Consider then any choice of P satisfying the constraint 
pTp = I, and augment this matrix with N - p  additional 
columns so that the square matrix 

F = EP:D] (A.7} 

is orthogonal. Then 

:] (A.8) 

Applying (A.6) to (A.8) and using both (A.2) and the fact that F 



I.\ orthogonal. 

From (18). 

with 

ZZ7 = C’EzrLir. (A.10) 

ET = diagonal [u:. . uj j. (A.ll) 

From this one can see that the inequality in (A.9) becomes an 
equality if p is chosen as in (A.4), thereby proving the assertion. 

Note that from this analysis it can be directly deduced that the 
same choice of P minimizes a variety of other criteria. For 
example. an interesting one is 

det(P’ZZ’P) (A.12) 

which has the interpretation of minimizing the volume of the 
projection of the columns of 2 onto the subspace P. The proof 
that the same P minimizes (A.12) is also a straightforward 
consequence of (A.6) and (A.8). Specifically 

det(PTZZTP) = fr &(P’ZZ’P) 2 fI i.;(ZZ’ ) = fi of, 
/=I ,=I c-1 

(A.13) 

with equality resulting once again if P is taken as in (A.4). 
Finally, note that (as can be seen in (A.10)) the eigen- 

value-eigenvector decomposition of 

IS actually bemg used to tind the optimal choice <)I 1’ 1h1a 
suggests a direct generalization of the criterion IA. t I IO altoM 
continuous parameter variations. Specifically. assume thai 
y c K. a compact subset ofa tinite-dimenslonal F&dean space. 
and consider the following criterion 

(As before, this can be Interpreted as E[jlr(k)ll’ j. where the square 
root of the probability density of (, has been absorbed into the 
definition of Z,). 

Consider the eigenvalue eigenvector representation 

I Z,,Z; dq = CA’ I’ (A.15) 
Oh 

where 0 I i., 2 lz 5 I iv. Then the first p columns of C 
define the optimal choice of P. Note also that (assuming that 
i, > 0) if 

c; = A ’ lC”Z, IA.161 

is defined, then 

zq = C’A’ lLq (A.17) 

where Urli = 1 and 

i 
P,P’: dy = 1. (A.18) 

h 

Hence (A.17) is the singular value decomposition of the map Z,. 


