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Fourier Series and Estimation on the Circle with 
Applications to Synchronous Communication- 

Part II: Implementation 
ALAN S. WILLSKY, MEMBER, IEEE 

Abstract-The practical implementation of the infinite-dimensional 
optimal estimation results presented in Part I of this series is considered. 
Several techniques are described in detail. Included among these is the 
so-called “assumed density” approximation technique. Finite-dimen- 
sional suboptimal filtering equations based on this method are derived 
for several of the phase-tracking/demodulation problems studied in Part I. 
Finally, these techniques are applied to a phase tracking problem of 
importance in navigation systems such as Omega, and simulation results 
are reported that favorably compare a system designed using these 
techniques to an optimal phase-lock loop and an optimal linear system. 

I. INTRODUCTION 

I N PART I of this series [l] we studied a wide variety of 
discrete- and continuous-time phase-tracking and de- 

modulation problems in the presence of a number of 
different noise sources. We derived infinite-dimensional 
optimal estimation equations by considering the stochastic 
differential equations satisfied by the conditional expecta- 
tions of certain functions of signal phase, frequency, and 
amplitude. These equations display the rich structure 
present in rather large classes of estimation problems on 
the circle J1. (See [2]--[I21 for other results on S’ 
estimation.) 

However, for any practical application of these results 
we must approximate the optimal estimation equations. In 
Section III we will discuss several methods for truncating 
the infinite-dimensional estimation equations derived in 
Part I. As in [l], we develop these general techniques by 
examining several specific examples. Also, we concentrate 
on the continuous-time problem, but the extension to 
discrete-time problems is clear. Section IV contains the 
results of simulations that compare the performance of a 
system designed using these techniques to that of two other 
systems for a phase-tracking problem important in naviga- 
tion systems such as Omega [5], [IS]. In the next section 
we briefly review the design of phase-lock loop (PLL) 
systems, since PLL systems provide several interesting 
comparisons with the Fourier series techniques developed 
here and in [l]. 
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Fig. 1. Basic PLL model. 

II. PHASE-LOCK LOOP 

In this section we consider a very important class of phase- 
tracking and demodulation systems. We will later use the 
PLL to understand the physical significance of the estimation 
techniques we develop and will also compare the per- 
formance of the two for an important example. 

The basic phase-lock loop model [13] is illustrated in 
Fig. 1. The received signal is of the form 

s(t) = J2p sin (o,t + e(t)) + $1) (1) 
where e(t) is usually taken to be some type of linear dif- 
fusion process and ti, is a white noise. The part of the loop 
below the dashed line in Fig. 1 essentially performs the 
function of tracking the time-varying phase (which is all 
that is needed for some applications, such as Omega [15]), 
while the filtering above the dashed line performs the 
desired demodulation, e.g., if 

t 
e(t) = cx(t) or e(t) = c 

s 
x(s) ds. 

0 

Following Van Trees [13], we can write the product of 
s(t) and the output of the voltage controlled oscillator (VCO) 
as 

JZ s(t) cos (w,t + O(t)) 

= JZ k,(t) cos (w,t + B(t)) + JP sin (0(t) - 19(t)) 

+ JP sin (204t + 0(t) + B(t)). (2) 

The reader is referred to [13], in which it is argued that 
n(t) = JZ G(t) cos (o,t + o(t)) is essentially a white 
noise process of strength equzl to that of +. Then, if we 
assume that the phase-tracking linear filter has a bandwidth 
much smaller than 20,, we can ignore the double-frequency 



WILLSKY : FOURIER SERIES AND ESTIMATION, PART II 585 

problem is to choose &t 1  t) to m inimize d[l - cos (0(t) - 
&I I t)) I z(s), 0  I s < t]. 

The  optimal filter can be  described [l] as follows : let 

c,(t) = & @p”@(‘) ( z(s), 0  5  s I t] 

(6) Fig. 2. Baseband PLL model. = b,(t) - k&(t). 
Then 

term in (2). In this case, we obtain the baseband mode l of de,(t) = - inw, + ; q(t) 1 c,(t) dt 
the PLL depicted in F ig. 2. 

The  simplest PLL system is the first-order loop, in which 
the phase-tracking linear filter is taken to be  a  constant 
gain, More complicated loops can be  obtained by using 
standard Kalman filtering or W iener-Hopf techniques. In 
this case, the assumption that the loop is “above threshold” 
[13], i.e., that the approximation 

sin (6(t) - B(t)) N e(t) - 8(t) (3) 

+ (C,-lct) - cn+l(t)) + 2j7c (t) Im (c (t)) 
[ 2i - ” 1  1 

. dz(t) + 2n  Im (cl(t)) dt 
r(t) I 

(7) 

&t 1 t) = tan-” (8) 

is valid, is used to linearize the PLL mode l in F ig. 2. Then 
standard techniques can be  used to determine the opt imum 
linear filter (given the statistical properties of e(t)). 

III. MOMENT TRUNCATION METHODS FOR PHASE-TRACKING 
AND DEMODULATION PROBLEMS 

In this section we discuss a  few methods for truncating 
the infinite sets of moment  equations encountered in [l]. 
As ment ioned earlier, we will specifically treat only con- 
tinuous-time problems; however, these techniques are also 
applicable to discrete-time problems. In addition, as dis- 
cussed in [14], some of these techniques are quite general  
and  can be  appl ied to large classes of nonl inear estimation 
problems. 

In the present discussion we will examine only a  few of 
the types of approximations that can be  used. The  reader 
is referred to [5], [7], [14], and  [19] for other discussions 
of numerical methods in filtering theory. As in [l], we will 
treat the problem at hand by considering examples--a 
phase estimation problem and a  phase demodulat ion 
example, both considered in [l]. (The techniques discussed 
here can be  readily extended to the other problems studied 
in [I].) 

Example 1  

As discussed in [l], this filter consists of an  infinite bank of 
second-order filters (see F igs. 1  and 2  in [l]). Referring to 
F ig. 2  in [l] or to (7) we see that the c, filter looks like a  
damped oscillator (bandpass filter) at the frequency ncu,, 
with nonl inear (product) coupling terms to the other 
filters and to the measurement  dz. In particular, one  of these 
coupling terms involves the mu ltiplication of c, by dz. 

Now consider the PLL described in Section II. The  VCO, 
operat ing at the frequency wc, produces an  output that ,- 
looks something like 27rJ2 b,(t), and  this output mu ltiplies 
the received signal s(t). This mu ltiplication feature strongly 
resembles the product terms in the optimal system. Thus 
the optimal system can be  (loosely) interpreted as an  
infinite bank of PLL’s, with resonant frequencies being 
various mu ltiples of 0,. 

The  problem we wish to address here is a  practical one. 
Can we find finite dimensional approximations to the 
infinite dimensional optimal equations (7) and  (8); i.e., 
can we successfully truncate the infinite back of filters? 
In some sense, what we wish to do  is to approximate the S’ 
density 

p,(&t) = +f c,(t)einr (9) 
n=-m 

by a  density determined by a  finite set of parameters. 
A natural approximation is 

W e  consider the problem analyzed in Example 4  of [l]. i-N 
W e  receive the signal BdS,t) = JIN c,(tkinr (10) 

dz(t.) = sin e(t) dt + r’/‘(t) dw(t) c4) i.e., assume c,(t) = 0, for all m > N. As discussed in 
where [19], the Fourier coefficients usually fall off at least as 

s 

f 
e(t) = o,t + q  “2(s) do(s) + e. (5) 

l/n’, and  thus, for large Iv, this straightforward truncation 
method may work quite well. O f course one needs some 

0  numerical results to determine how many terms are enough.  
and z) and  ware independent Brownian motions, &(du2(t)) = The  reader is referred to Section IV for a  discussion that 
6(dw2(t)) = dt, q(t) 2  0, r(r) > 0, and  o, > 0. Also B. is indicates that this straightforward method is not as good 
a  random initial condition independent of a  and w. The  as it first appears to be. 
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A second truncation method is suggested by the PLL. 
Recall from Section II that a crucial assumption in the 
design of PLL’s is that the linear filter in the phase-tracking 
loop is low-pass and cuts off terms at carrier frequency 
2w,. Thus, in some sense, the PLL can be regarded [5] as a 
truncation of the infinite bank of filters in which we keep 
only the lowest mode and remove the coupling to the higher 
modes by filtering out of the 2w, term. This suggests an 
approximation method for (7). The Fourier. coefficients 
c,(t) can be written 

our bank of filters. In the next section we present results 
for this approximation method. 

One could also consider approximating pe by a uniform 
density 

1 
Pe(5) = eb- 

-rc 5 6, I( 58, < n 

0, otherwise. (17) 

l -i(no,f+a,(t)) c,(t) = 271 e (11) 

We will not discuss this method here but will discuss an R1 
analog later in this section. In addition, we could consider 
approximations of the form 

Thus, if we use a low-pass filter that allows terms with 
frequencies INO, to pass unamplified and not phase- 
shifted, but chops off all frequencies 2 (N + l)o,, we can 
effectively truncate the infinite bank of filters. Consider the 
term in the differential equation for c, that causes the 
difficulty, i.e., that contains the coupling to the higher 
modes. Specifically consider the term 

(the set of such densities is dense in I.‘(-rc,n), [3], [5]). 
The details of several approximation schemes based on 
(18) are given in [5]. We now consider some R1 approxima- 
tion techniques. Again, to be specific, suppose we consider 
the phase demodulation problem of Example 5 in [l]. 

Example 2 

VNO) = [ 
CN-l(t) - CN+l(t) 

2i 
+ 271+(t) Im (c,(t)) 1 . (12) 

If we passed qN through an ideal low-pass filter of the 
desired type the output would be 

I?N(t) = --yg-- c,-,(t) + 

The effect of the low-pass 
assume 

2 ,-i((N- l)o,t+cw(f)-al(f)) 
i . (13) 

filter is precisely the same if we 

CN+l(t) = 2nCN@h(t> (14) 
which is, in fact, true if we are tracking perfectly. Thus, if 
we are tracking well, (14) may be a reasonable approxima- 
tion to use to truncate the bank of filters. 

We now discuss several examples of what has been called 
the “assumed density” type of approximation (see [14], 
[20]). The basic idea of the approximation is the following: 
we assume that the conditional density has some known 
form that is specified by a finite set of parameters; then, 
having (cn}t= i, we compute the assumed density parameters 
and the associated value of cN+i. For example, for the 
assumed density form (lo), we have cN+i = 0. A slightly 
more complicated example involves the assumption that 
p,(t,t) is a folded normal density (see [l]) 

In this case, if we have computed c1 and if we assume pe 
is given by (15), we can compute cN+ i from the equation 

In fact, for the folded normal, we can compute all of the ck 
if we know any one of them other than c,,. Using these 
relationships among the ci for the folded normal, we can 
obtain equations, such as (16), that can be used to truncate 

Consider the R1 signal process x(t) satisfying 

dx(t) = a(t)x(t) dt + q112(t) do(t) (19) 
where ZJ is as before and is independent of x(0). We wish to 
compute R(t ) t) z &[x(t) 1 z(s), 0 I s 5 t], where z satisfies 

dz(t) = sin (o,t + x(t)) dt + r112(t) dw(t). PO) 

Defining 

&n(t) = & g[xyt)e- ime 1 z(s), 0 I s I t] 

where 

we have 

= &&) - ia,, 

O(t) = (w,t + x(t)) mod 271 

(21) 

(22) 

&m(t) = ([ na(t) - m2dt) . - - 
2 

zmw, 1 %n(t 1 
- imaW,+ 1 ,&) 

+ n(n - l)q(t) 
2 . c,-2,,(0 - iq(thq- ,,.,(t)) dt 

0) - 

2i 
“87~+ let) + 27cc,,(t) Im (col(t))] 

J 

. [W) + 271 Im (cdO> dtl 
L r(t) 1 

a(t 1 t) = 2?Tb,,(t). 

Suppose we compute only c,,, for 
m  = I,... ,M. From (23) we see that to 

(23) 

(24) 
n = l;**,N and 
truncate the filter 

equations effectively, we must compute approximations 
for {cN+l,m}r=l and (Cn,M+l}~cl. In some sense this 
truncation problem is more difficult than the S’ problem 
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discussed previously, since, for example, the moments As with the normal density, we can compute d,,, = 

c&t) = & 8[x”(t> 1  z(s), 0  I s I t] 
d(x”e- imx), if x has the density U(x; V,G) 

(25) 
& = (q + O)“+’ - (? - O)n+’ 

2a(n + 1) (34) 
do  not necessari ly go  to zero for large II. 

W e  first note that we can come up  with truncation 
techniques analogous to those for the S’ problem by 

and for ~ r o  and m  5: 1  

replacing folded normal densities with normal densities. 
(Note that finite linear combinations of normal densities dnm = 2:, 

L  [(? + aye-i4i+d _  (? _  oye-iWi-d] 

are dense in L’( - co,co), [23].) For such techniques we 
need to know the form of &(x”e- imx), if x has the density - 2  d,TI,,. (35) 
N(x; ~7) (normal density with mean  y and variance 7). m  

For such a  random variable x, let W e  can use these equations to truncate the phase demodula-  
tion equat ion (23). 

P nm = &(xneeimx) . (26) Another technique involves the notion of cumulants of a  
W e  can then show that for all m  2  0, we have the following probability density [24], [26]. Let x be  a  real-valued random 
equations : variable with density p(x), and  let 0,(u) be  the characteristic 

function of x 
Porn = e  -m2y/2e-imq (27) +02 

O ,(u) = fif(eiux) = eiUXp(x) dx. (36) 
P s -cc nm = VPPn-l,m + $Cn - l)~,-,,, - ~mPn-I,m19 n 2  1. 

(28) 
If we write 

’ An obvious analog of one  of the S’ techniques is to 0 (u) = exp f (iu>” k x 
approximate the density p(x,t), for x(t) condit ioned on  

( 1  n  I (37) n=l n. 

z(s), s 5  t, by the k, are called the cumulants of x. The  cumulants are 
related to the moments 

P(x,t) = N(x; 27qJ(t), 2Tcc&t) - 4n2q02(t)). (29) 

Then, if we compute c,,,, for n  = 1, * * * ,N and m  = 1, * * * ,M, 
we can approximate {cN+ 1  ,,}f= i and  {c,,~+ 1},“= 1  by using 

by the formulas 

(26)-(28) with the approximation (29) and the relation kI = m , 

m , = 8(x”) (38) 

c,,(t) = 2k e-imwct~[xn(t)e-imX(t) 
k, = m2  - m12  

I z(s), 0  I s I t]. k, = m3  - 3m,m, -I- 2m13 
(30) k, = m4  - 3m22 - 4m,m, + 12m12m2 - 6m14.  

Using this approximation in (23), we can truncate the filter (39) 
equations. W e  also note that analogous to the S1 case, 
we can approximate p(x,t) by a  finite linear combination 
of normal densities. 

W e  now consider another assumed form density tech- 
nique. In this method we again use cIo(t) and  clO(t) to 
compute approximations for 

I++ l,m<O>f;;= 1  and {c,,~+ l<O>i’= 1. 
As discussed in [14], we assume that p(x,t), our approxima- 

As ment ioned earlier, we cannot assume that the 8(x”) 
tend to 0  as n  approaches co ; however, as discussed in [24], 
it is reasonable to assume that the cumulants tend to zero. 
Thus suppose we compute {c,,,,(t)}f= 1  and assume k,(t) = 0, 
for all n  > N. W e  can then use (39) to compute k,(t), 
n  5  A? Using the approximation 

&4 (40) 

tion to the conditional density p(x,t), is the uniform density we can compute 

P(x,t) = & 
s 

+m 
e-i”XgX(u,t) du  (41) _  

m  
q(t) - o(t) I x I q(t) + o(t) and  the appropriate expectations. 

otherwise (31) 
The  reader is referred to [7], [14], [24], and  [25] for 

a  variety of other techniques, including several using Hermite 
where polynomials and quasi-moments. F inally, for the general  

(32) 
mu ltidimensional problem discussed in [l], we note that 
the preceding discussions suggest a  general  assumed 

(33) density approach; i.e., we can approximate p(y,t) by a  
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multidimensional normal density, a sum of such terms, or a 
uniform density over some region of R”. We will not discuss 
such techniques here, since the details are quite similar to 
those for the scalar problems previously considered. 

IV. PHASE-TRACKING~ROBLEMIN THEPRESENCE OF 
ADDITIVE CHANNEL NOISE 

In this section we will discuss the results of a series of 
simulations of several different types of phase-tracking 
systems. The tracking problem used is the one discussed 
in Example 1. We wish to track the phase Q(t) mod 2x, where 

e(t) = w,t + p%(t) (42) 
(u(t) is a standard Brownian motion process), and we observe 

i(t) = sin e(t) + r”“ti(t) (43) 
(w is a standard Brownian motion independent of u). We 
note that l/q is called the oscillator coherence time [13]. 

The first tracking method we discuss is a PLL system. 
The reader is referred to [ 13, pp. 37-41-j for the development 
of the optimal PLL phase tracker. Referring to Fig. 1, 
the optimal (steady state) linear filter in the phase-tracking 
loop is a constant 

k = 

Also, the analysis in [13] yields the result that, if the linear 
assumption used to aid in the PLL analysis is valid (i.e., 
if the system is “above threshold”), the phase error variance 
(in radians) is 

Pet = J2rg. (45) 
A second phase-tracking system has been proposed by 

Gustafson and Speyer [9]. Essentially, their system is the 
optimal linear filter (in the sense of minimizing error 
variance). The reader is referred to [9] for the development 
of the filter equations. 

The other two systems were motivated by the Fourier 
series results discussed in Example 1. As discussed there 
and in Section III, we must consider suboptimal filtering 
techniques that involve a truncation of the infinite Fourier 
series. The first method we have considered is the straight- 
forward truncation procedure; i.e., assume all coefficients 
a,, and b, are 0, for n > N. We will not present any simula- 
tion results for this method, since several runs were made 
with N = 3, and extremely poor results were obtained. An 
intuitive explanation for this is that the higher coefficients 
need not be negligible. For instance, suppose we know the 
phase perfectly; then the probability “density” is an impulse 
at the known value q, and the formal Fourier series expansion 
for this is 

p(e) = & + f 5 cos n(e - ?). 
nn=1 

(46) 

In this case, the various coefficients are of the same order. 
Thus, if we are tracking well (i.e., the density is nearly an 
impulse), the assumption that the higher coefficients are 
negligible is a poor one. 

Thus it was necessary to devise an alternative truncation 
procedure. The one adopted was the folded normal assumed 
density approximation. The system that has been simulated 
is the simplest of this type; i.e., we only compute a, and b, 
and approximate a2 and b, using (16). Referring to the 
Fourier series equation (7), our suboptimal filter equations 
are 

dl = (i - 2naJ 
r 

b, = - 

- 87t3(b14 - a14) - 2za12 1 
(2 - 27ca,) 

r 

(47) 

. [8n3a,b,(a12 + b12) - 2na,b,] (48) 

(j=tan-l a1 
0 ig . (49) 

Note that the right sides of (47) and (48) are polynomials in 
a, and b, and can-be computed easily. 

We note that if we are tracking the phase perfectly, (16) 
gives precisely the correct values for a2 and b,. Then, since 
the differential equations for a, and b, do not explicitly 
depend on a,, and b,, for n > 2, the finite dimensional 
filter (47)-(49) performs optimally; i.e., the a, and b, 
values are exactly the same as the values obtained from 
the optimal infinite dimensional filter, and thus our estimate 
I!) = tan-l (al/b,) is the optimal one. Thus, for small noise 
variances, one would expect the highly nonlinear filter 
(47)-(49) to operate nearly optimally, where the “optimal” 
performance is that attained by the linearized PLL, i.e., 
PO,. (Note that below threshold Pet is not actually achieved 
by the PLL.) 

Finally, we note that the right sides of (47) and (48) are 
highly nonlinear, and this leads to two complications. The 
first of these concerns the existence of solutions to the 
equations, since the right sides do not satisfy the Lipschitz 
conditions that are used in the standard proof of the exist- 
ence of solutions to Ito differential equations [25]. We do 
not prove the existence of a solution, but rather point out 
that the actual Fourier coefficients are bounded in magnitude 
by $7~~ so that we can replace the various terms on the right 
sides of (47) and (48) by “saturated” versions. For example, 
al4 can be replaced by the function 

fW = 1 

t 

4 al 3 Iall I & 

16n4’ 
Iall > 1. 

27r (50) 

If we do this, we obtain equations that do satisfy the neces- 
sary Lipschitz conditions. We remark that this discussion is 
academic, since our simulations indicate that the perform- 
ance of this filter is quite good, and the values of a, and b, 
in the simulations never exceeded $7~. 
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TABLE I 
PHASE TRACKING SIMULATION PERFORMANCE SUMMARY-RMS PHASE 

ERROR (DEGREES) 

Pea Linear Predicted Actual 

(rad.2) Predicted PLL PLL SDNF FCF 
RMSPE FMSPE FNSPE RMSPE RMSPE 

0.041 11.6 11.6 12.0 11.9 11.6 

0.130 20.6 20.6 20.3 20.1 19.8 
0.225 27.1 29.1 26.8 28.8 28.1 

0.4 36.6 44.0 43.4 42.0 41.2 

0.7 46.2 62.5 61.2 57.3 57.0 

1.0 57.3 72.5 71.9 69.1 68.9 
1.3 65.1 78.2 76.2 73.1 73.0 

A second complication caused by the nonlinearities in 
the filter equations arises in considering the numerical 
integration of the filter equations. Wong  and Zakai [16], 
[17] have shown that in numerically integrating stochastic 
differential equations driven by white noise, one  must 
include correction terms (which are nonzero only if the 
equations are nonlinear) in the equations to be  integrated 
in order to obtain a  numerical solution that faithfully 
approximates the solution to the original stochastic equa-  
tions. Following [16], [17], we obtain the following 
equations that have been used in the numerical simulation 
of (47) and (48): 

a, = ( coJ3l - !f lx1 
2  1 

1 -_ 
2 ( l 0 ab’+g 

act, 2  
Ei 
33, 1  

+ (2 - 274) o1 
p 112 

(52) 

- 8n3(P14 - q4) - 2nct12 
)I 

(53) 

W e  note that Wong  and Zakai’s results also require Lip- 
schitz conditions on  the right side, but the same type of 
arguments as shown previously can be  used here. Also, the 
integration scheme used was the Runge-Kutta method, 
for which the “full” Wong-Zakai  correction term is needed 
[27]. For other discussion along these lines, we refer the 
reader to [27]-[29]. 

As in [13] and  [9], we use Pel as the variable to be  varied 
in the simulations. W e  take the phase error variance and its 
square root, the RMS phase error, as our performance 

2.0 - 

e 1.2 - - 

Y  

5 - 6z 1.0 

s 

8 0.6 - 

E  
w  
z 0.6 - 

I 
a 0.4 - 

0 FCF RESULTS 

I 1  1  I I I I 
0  0.2 0.4 0.6 0.8 !.O 4.2 1.4 

Pea (rad.2) 

Fig. 3. Phase error variance results. 

TABLE IX 
PHASE TRACKING SIMULATION PERFORMANCE SUMMARY- 

8[1 - cas (6 - S)] 

Pe!L PLL SDNF FCF 

0.041 0.0217 0.0212 0.0202 

0.130 0.0608 0.0601 0.0581 

0.225 0.1171 0.1178 0.1120 

0.4 0.2447 0.2335 0.2253 

0.7 0.4098 0.3728 0.3687 

1.0 0.5312 0.5040 0.5002 

1.3 0.6158 0.5719 0.5692 

criteria. A carrier frequency f, = w,/2n = 10  000 Hz was 
used in the simulation, and  the value of r was varied in 
order to achieve the desired values of Pal (see (45)). 

The  PLL, the Gustafson-Speyer “state-dependent noise 
filter” (SDNF), and  the Fourier coefficient filter (FCF) 
(47)-(49) were all simulated using identical noise sequences 
to allow direct comparison. Table I contains the per- 
formances (as measured by RMS Phase Error (RMSPE)) 
of the various filters, F ig. 3  graphically displays the phase 
error variance for the PLL and FCF, and filter performance 
as measured by the criterion &‘(l - cos (0 - 8)) is reported 
in Table II. W e  note that the phase error density for the 
PLL tracking system has been analytically determined 
(using the baseband PLL mode l) [13], and  thus our simula- 
tion of the PLL system provides a  check on  the validity of 
the overall simulation. 

W e  make several comments on  the simulation results. 
F irst of all, we note that the FCF performed consistently 
better than the other systems, al though the SDNF per- 
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TABLE III 
SUMMARY OF RESULTS FOR THE FCF WITHOUT WONG-ZAKAI 

CORRECTION TERMS 

0.041 16.4 0.0396 

0.4 44.9 0.2534 

1.3 73.6 0.5774 

formance is quite close. One interesting point involves the 
above-threshold performance. As mentioned earlier, the 
PLL is optimal, with respect to the m inimum variance 
criterion, above threshold (see [13]), while, as discussed 
in [9], the SDNF is not optimal above threshold. The 
simulation results obtained indicate that the FCF may be 
optimal above threshold. The proof of this is an open 
question; however, an intuitive argument can be made that 
above threshold, the phase density looks like a folded 
normal, and thus the approximation used in the FCF is, 
in fact, very nearly correct. If this is so, the FCF should 
perform optimally or very nearly optimally. (We note that 
the FCF is designed using the criterion S[l - cos (0 - 6)], 
but for small phase errors and 0, a folded normal random 
variable 8 for the FCF will also m inimize S[(0 - 8)2]). A 
related idea is that as PO, increases, the phase density looks 
less and less like a normal density, and thus the FCF 
approximation is not quite as good. Therefore, filter 
performance below threshold may be improved by including 
more Fourier coefficients in the FCF. Finally, we refer the 
reader to Table III in which we present the results of several 
simulation runs of the FCF without the Wong-Zakai cor- 
rection terms. Note that the performance is somewhat 
worse, more so above threshold where the filter works best. 

V. CONCLUSION 

In this series of two papers we have studied a large class of 
discrete- and continuous-time phase-tracking and demodula- 
tion problems. By using Fourier series techniques, we have 
been able to uncover the inherent structure in these problems 
and have displayed infinite-dimensional optimal estimation 
equations. 

The question of determining suitable finite-dimensional 
approximations to these equations has been considered at 
some length. One of these techniques was applied to a 
phase-tracking problem of importance in some navigation 
systems, and the performance of a rather simple approx- 
imate filter, one that keeps only the first Fourier coefficients, 
compares quite favorably to that of the optimal phase-lock 
loop and the optimal linear tracking filter. 
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