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Abstract-Martingale decomposit ion techniques are used to derive 
Markovian models for the error in smoothed estimates of processes 
described by linear models driven by white noise. These models, together 
with some simple Hilbert space decomposit ion ideas, provide a simple 
unified framework for examining a variety of problems involving the 
efficient assimilation of spatial data, which we refer to as mapping prob- 
lems. Algorithms for several different mapping problems are derived. A 
specific example of map updating for a two-dimensional random field is 
included. 

I. INTR~DU~TION 

I N THIS PAPER we consider several estimation prob- 
lems motivated by the subject of mapp ing. Our work is 

directed toward problems in which the objective is to 
obtain an  efficient procedure for producing a  map  of a  
random field which combines the information contained in 
several other maps and/or sets of measurements.  Problems 
of this type arise in a  variety of disciplines including 
geodesy and  meteorology [2], [3]. 

In a  previous paper  [l] we presented derivations of 
algorithms for several of the problems we consider here. 
Unfortunately, the approach in [l] consisted of tedious 
man ipulations of filtering and  smoothing equations which 
shed no  light on  the fundamental nature of the problems 
under  investigation. The  final forms of the solutions ob- 
tained in [l] were simple, suggesting that a  more elegant 
approach must exist which would provide greater insight 
into problems of mapp ing and  which would general ize 
more readily to problems outside the class considered in 
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[l]. In this paper  we present such an  approach and  use it to 
derive solutions to several problems. 

A variety of different mapp ing problems is of practical 
interest. The  first problem we will consider is that of map 
updating, in which one  wishes to update an  existing map  
(based on  previously available measurements)  with infor- 
mation contained in a  new set of data. We  also consider 
two other problems: the map combining problem, in which 
we wish to combine two maps over a  given region each of 
which is based on  a  different set of data; and  the map 
centralization problem, in which we are to produce a  single 
map  over a  given region given several individual maps of 
subregions. All three of these problems arise in a  variety of 
applications, including mapp ing of gravitational fields, 
topographical mapp ing, and  the production and  updating 
of meteorological maps. G iven the sizes of the regions 
being mapped  and  the large volumes of data to be  used to 
produce the maps, a  critical issue in these applications is 
the development of efficient methods for assimilating new 
information to produce up-to-date maps incorporating all 
available data sets. It is the need  for efficiency that moti- 
vated our research, which had  as its goals the development 
of recursive procedures for updating, combining, and  
centralization. 

The  basis for our approach comes from viewing a  map  
as an  estimate, that is, as the projection of a  random 
quantity onto the space spanned by a  set of measurements.  
At this abstract level the solutions to our mapp ing prob- 
lems are relatively clear. For example, in the map  updating 
problem our objective is to compute the projection onto 
the space spanned by the old and  new measurements.  
What  we would like to do, however, is to compute this 
estimate explicitly in terms of the projection onto the old 
data and  the new measurements.  As we will explain more 
precisely in Section III, we can achieve our goal by project- 
ing the error in our old map  onto the space spanned by the 
new information available from the more recent measure-  
ment survey. In a  similar fashion one  can view the other 
two estimation problems in terms of appropriate projec- 
tions. The  crucial problem then is to find efficient methods 
for computing these projections. As we will discuss, the 
key to solving this problem is the construction of a  mode l 
for the error in a  given map. 
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While the motivation for the problems we 
scribed involves random fields, that is, random 
of several independent variables, the solution 
problems has not even been considered (except 

have de- 
functions 
of these 

in [l]) in _ the case of a single independent variable. Consequently, m 
this paper we concentrate on this latter case in order to 
develop an understanding of mapping problems in a con- 
text about which a great deal is known already. In ad- 
dition, as we illustrate in Section IV, there are two-dimen- 
sional problems of practical importance that can be solved 
using the results presented in this paper. Furthermore, as 
we develop in a companion paper [13], the results devel- 
oped here can be extended to allow us to solve problems 
with far less restrictive geometries than that considered in 
Section IV. 
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In one dimension the problem of mapping is simply one 
of computing smoothed estimates. From the geometric 
perspective described previously, we see that in this con- 
text what is important is the construction of dynamic 
models for smoothing errors. Several examples of such 
models can be found in the literature. Perhaps the earliest 
of these is in [15, pp. 221-2261, in which a discrete-time 
formulation is considered and a reversed-time model of 
dimension 2n (where n is the dimension of the state) is 
constructed for the smoothing error process as an inter- 
mediate step in determining expressions for smoothing 
error covariances. A reversed-time model of dimension n 
was constructed in [4] and [16] as part of a study of the 
relationship between the theories of smoothing and sto- 
chastic realization, while a forward model of dimension n 
for smoothing errors can be obtained from results in [14] 
that are used in the development of new fixed-interval 
smoothing formulas. In Section II we present a simple 
direct derivation of an n-dimensional Markovian model 
for smoothing errors. An alternate derivation based on 
innovations is presented in the Appendix. Both of these 
are new. In Section III, we solve the one-dimensional map 
updating problem in a simpler and more illuminating way 
than in [l]. In particular, using our smoothing error model, 
we are able to reduce the map updating problem to a 
smoothing problem. This immediately provides numerous 
alternative algorithms for map updating of which that in 
[l] is but one example. In Section IV we apply the result of 
the previous section to solve a map updating problem for a 
two-dimensional random field given parallel track survey 
data, and in Section V we present the solutions to the map 
combining and centralization problems. Section VI con- 
tains conclusions and some comments on more general 
mapping problems. 

II. SMOOTHINGFORMULASANDAMARKOVMODEL 
FORTHESMOOTHINGERRORPROCESS 

The starting point for our investigation is a conventional 
model for a finite-dimensional zero-mean Gauss-Markov 
process in one dimension: 

‘Whenever possible we will suppress the time dependence of system 
dx(t) = A(t)x(t) dt + dw(t), 0 4 t < T, (2.1) matnces, state matnces, and error covanance matnces. 

where w(t) is a vector Wiener process independent of x(O), 
with 

E[dw(t) dw’(t)] = Q(t) dt. (2.2) 

We denote by a(O) the covariance of x(0). We assume that 
we have available a set of measurements 

dy(t) = H(t)x(t) dt + du(t), 0 I t I T, (2.3) 

where u(t) is a Wiener process, independent of x(e), with 

E[du(t) du’(t)] = R(t) dt (2.4) 

and R(t) > 0 for all t. In the one-dimensional map updat- 
ing problem considered in Section III we will have two sets 
of measurements as in (2.3), and we are interested in 
updating our estimate of x( .) based on the first set, given 
the new information in the second set. As a prelude to this, 
we first review some basic smoothing formulas for the 
model (2.1)-(2.4) for future reference, and we then derive 
forward- and reverse-time models for the error in the 
smoothed estimate of x(a), given the measurements (2.3). 

A. Basic Fixed-Interval Smoothing Formulas 

In this subsection we establish some notation and briefly 
summarize formulas from [8], [lo], [17], [18]. The covari- 
ante a( t ) of x( t ) in (2.2) satisfies the equation ’ 

7i = A?r + ?TA’ + Q. (2.5) 

Define the three u fields 

r,- = u{ dyb), 0171t) (2.6a) 

r,’ = u{ dy(d, tsT<T} (2.6b) 

Y= u{dy(d, OSMT}. (2.6~) 
The forward-filtered, reverse-filtered, and smoothed esti- 
mates of x(t) are then, respectively, 

a,(t) = E [x(t) P-1 (2.7a) 

%(t) = E [x(t)lr:l (2.7b) 
i,(t) = E[x(t)lY]. (2.7~) 

The covariances of the errors (denoted by 5t,( t), Z,.(t), and 
a,(t)) in these estimates are denoted by P,(t), P,(t), and 
P,(t), respectively. 

The calculation of )2, and Pf may be done by standard 
Kalman filtering equations: 

di, = A.?$ dt + PfH’R-‘(dy - HZ, dt) 

2,(o) = 0 (2.8) 

kf = AP, + PfA’ + Q - PfHWIHPf 

P,(O) = m(0). (2.9) 
Similarly, j?2, and P, satisfy analogous reverse-time Kal- 
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man filter equations 

-dZ, = -(A + Qr-‘)&dt + P,H’R-‘(dy - H?,dt) 

i,(T) = 0 (2.10) 
- i’? = -(A + Qv’) P, - P,( A’ + +Q) 

+Q - P,H’R-IHP, 

P,(T) = r(T). (2.11) 

The  smoothed estimate and  its error covariance can be  
expressed as follows in terms of the quantities defined 
earlier: 

The  relation (2.16) does not represent a  Markovian 
realization of the smoothing error process, since iit( .) is 
not a  W iener process and  since it(.) is not independent of 
the initial condition of Zs( a), that is, u{ dG( 7) 0 I t I T} 
is not independent of either u{Z~(O)} or u{Zs(T)}. Our 
method for deriving forward and  reverse Markovian reali- 
zations of the smoothing error process is to decompose 
dw(t) with respect to u  fields associated with future and  
past values of the smoothing error process. Specifically, let 

a,(t) = P,(t)(P;‘(t)S,(t) + P;‘(t)&(t)) (2.12) 

P,?(t) = P,-‘(t) + p,-‘(t) - p-l(t). (2.13) 

In the sequel several identities such as (2.13) will arise. 
Thus it is worthwhile to provide some intuition which 
explains (2.13) rather simply and  which also can be  used in 
interpreting similar identities in this paper. Specifically, we 
interpret the inverse of an  error covariance as the informa- 
tion contained in the corresponding estimate. Thus 7-l is 
a  measure of our a priori information concerning x(t) 
(here the a priori estimate is the a priori mean  = 0), while 
Pf- ‘, P; ‘, and  P,-’ are measures of the a priori informa- 
tion together with the information provided, respectively, 
by the past, future, and  entire history of the observations. 
Thus (2.13) says only that the total information available 
concerning x(t) consists of the a priori information plus 
the past (P,-‘) plus the a priori plus the future (P;‘) 
m inus the a priori (c’). Alternatively, if we define the 
information matrix 0, 

2y = u{n,(7) 0  IT I t} (2.18) 

and 
2; = ~{R,(T) t I T  I T}. (2.19) 

Now, we define two families of u  fields, -F, (forward) and  
B, (backward), by 

F,=u{2t-,Y} (2.20) 

and 
B,=u{g+,Y}. (2.21) 

We  may easily verify that the past increments of w(t), that 
is, { dw(T), 7 < t}, are measurable with respect to F, and 
that the future increments { dw( T), 7  > t } are measurable 
with respect to B,. Therefore, we can perform two 
martingale decomposit ions of dw( t), one going forward 
and  one  going backward, as follows: 2  

dw(t) = E[dw(t)lF,] + dfi,(t) (2.22) 

dw(t) = E[dw(t)(B,] + dGr(t) (2.23) 

where the forward increment dGf(t) is independent of F, 
and the reverse-time increment dii;( t) is independent of 
4  

o,(t) = P,?(t) - v-‘(t), (2.14) 

which represents the information in the future measure-  
ments excluding a priori information, then 

P,-‘(t) = Pf(t)-l + O,(t). (2.15) 

B. Markou Model for the Smoothing Error Process 

In this subsection we derive a  Markov mode l for the 
evolution of Z,(t) = x(t) - i,(t). Our approach uses 
martingale decomposit ions, and  its appeal  is in its simplic- 
ity and  in the straightforward interpretation that can be  
given to each term in the resulting realization. To  highlight 
these features, we will present our derivation informally. 
The  validity of our calculations is easily verified using 
elementary properties of martingales and  their decomposi-  
tions [5], [6]. 

Substituting (2.22) and  (2.23) into (2.17) and  (2.16), we 
immediately obtain reverse and  forward Markovian reali- 
zations for the smoothing error process in which kf( *) and  
kr( .) are the input processes for the forward- and  reverse- 
time  realizations of Z,(e). (Note also that by construction 
these noises will be  independent,  respectively, of 2$(O) and  
ZstT).) 

Since Y is independent of both &- and  2:) the identi- 
ties (2.22) and  (2.23) may be  expressed as 
dw(t) = E[dw(t)(&tp] + E[dw(t)(Y] + di$(t) (2.24) 

and 
dw(t) = E[dw(t)&?] + E[dw(t)lY] + dfi;(t). (2.25) 

Note that in (2.24) and  (2.25) we have made  use of the fact 
that if zr, z2, z3 are jointly Gaussian, zero-mean random 
vectors such that z2 and  zs are uncorrelated, then 

To  begin, if we formally take the conditional expectation 
E[ .jY] on both sides of (2.1), we obtain an  equation for 
the evolution of z?,( .), which when subtracted from (2.1) 
yields the following evolution equation for Z,(a): 

dZs(t) = A(t)Ps(t) dt + d%(t) (2.16) 

where 

2To be precise, what we must verify is that the integrated increments 
from 0 to t and from t to T  are quasi-martingales with respect to F, and 
B,. respectively. According to [6], to verify this we need only check that 
they are adapted to these (I fields. This is guaranteed if we note that 

dw(t) = d&(t) - ‘4(t)a,T(t) dr + E[dw(t)lY], 

dfict) = dw(t) - E/dw(t)lYl. 
since this she-ws that these integrated increments depend only on either 

\ , \ I L  \ II > \ I 
[X,- , Y] or [X:, Y], respectively (2.17) 
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E(z11z2, za) = E(z&) + E(z11z3). Using the fact [5] that 
the martingale parts of a given quasi-martingale decom- 
posed with respect to different u fields have the same 
quadratic variation, we conclude that dGf(t) and dSr(t) 
are Wiener processes with 

E[dG,(t) d@;(t)] = E[d$(t) d+,!(t)] = Q(t) dt. 
(2.26) 

Using (2.16), (2.17), (2.24), and (2.25), we obtain the 
following equations for the evolution of the smoothing 
error process: 

dZ,(t) = A(t)ZS(t) dt + E[dw(t)lgt-] + dk,(t) (2.27) 

and 
-dZ,(t) = -A(t)E,(t) dt - E[dw(t)lf;] - d@(t) 

(2.28) 

where (2.27) is to be interpreted as a forward model and 
(2.28) as a reverse-time model. From (2.27) and (2.28) it is 
apparent that 

d$(t) = dZ,(t) - E[dZ,(t)l%;] (2.29) 

and that 
-dGr(t) = -d&(t) - E[-di,(t)@?]. (2.30) 

Equations (2.29) and‘ (2.30) can be interpreted to mean 
that dtit(t), (-diir(t)) represent the components of d?,(t), 
( -dZS(t)), which are not predictable from it-, (%:), 
respectively. 

From (2.27) and (2.28) we see that to complete the 
specification of our forward- and reverse-time Markovian 
models for Z,(a), we need to compute the means for the 
process noise, dw(t), conditioned on the u fields spanned 
by past and future values of the smoothing error process, 
respectively. To do this, we rely on results in the literature 
(see, for example, [lo] and [17]) to write an explicit repre- 
sentation for the smoothing error process. Specifically, 

Z,(t) = Zf(t) - Pj(t)/’ (P;(s, t)H’(s)R-‘(s) dv(s) 
s=t 

(2.31) 

where dv( t ) is the forward innovations process 

dv(t) = dy(t) - H(t);,(t) dt (2.32) 

and @r( ., .) is the transition matrix associated with the 
forward filtering dynamics matrix 

I’(t) = A(t) - P,(t)H’( t)R-‘(t)H(t). (2.33) 

We may verify from (2.31) that 

E[dw(t)@-] = Q(t)(P[‘(t ) - P,-‘(t))?,(t) dt 
(2.34) 

and 

E[dw(t)&+] = Q(t)P;‘(t)Z,(t) dt, (2.35) 

where P,(t) denotes the smoothing error covariance ma- 

trix. We do this by checking the orthogonality conditions 

E[(dw(t) - Q(t)(P;‘(t) - PS-‘(t))a,(t)dt)Z;(7)] = 0 
(2.36) 

for 0 5 r I t and 

E[(dw(t) - Q(t)P;‘(t)Z,(t) dt)Z;(T)] = 0 (2.37) 

for t I r I T. Therefore, by substituting (2.34) and (2.35) 
into (2.27) and (2.28), respectively, we obtain the following 
forward- and reverse-time models for the smoothing error 
process: 

d%(t) = [A(t) + Q(r)( P;‘(t) - P?(t))] 
-i?,(t) dt + dGt( t) (2.38) 

and 

-dZ,(t) = -[A(t) + Q(t)P;‘(t)]ZS(t) dt - d@(t). 
(2.39) 

In the Appendix we provide an alternate derivation of 
the reverse-time model (2.39) starting from the representa- 
tion of Z,(t) in (2.29). The derivation in the Appendix is 
related to that of Badawi and Lindquist in [4], in which 
they obtain a reverse-time realization for P,(t)%,(t). In 
addition, the forward model (2.38) is equivalent to that of 
Weinert and Desai in [14] (see [7] for some additional 
discussion), although, as in the case of (2.39), the deriva- 
tion presented in this section is new. 

III. THE MAP UPDATING PROBLEM 

A. Formulation and Preliminary Calculations 

In this section we examine the problem of map updating 
for a class of processes with a single independent variable. 
Specifically, we consider the problem of computing the 
smoothed estimate of such a process over a fixed interval 
(0, T), given two data “passes,” that is, two sets of mea- 
surements. The term updating signifies that we are looking 
for algorithms which compute such an estimate in terms of 
the second pass of data and the estimate of the process 
based on the first pass only. That is, we wish to produce a 
new map based upon the new data and the old map. Our 
solution technique makes use of Hilbert space decomposi- 
tions of the space spanned by the two passes of data, as 
well as results on Markovian realizations of the smoothing 
error process derived in Section II. As mentioned in the 
Introduction, this approach allows us to expose the nature 
of the map updating problem, and this in turn allows us to 
derive a variety of alternative algorithms with relative ease. 
In this section we present two alternative two-filter 
algorithms for solving the map updating problem, which 
we call the smoothing error filter algorithm and information 
filter algorithm, respectively. The second of these is derived 
directly from the former and is included explicitly, as it 
ultimately serves to facilitate the solution of the map 
combining problem in Section V. 
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Consider the mode l (2.1), (2.2), and  suppose that two 
measurement  passes have been  made,  with mutually inde- 
pendent  measurement  noises, and  are mode led by 

dy,(t) = H,x(t) dt + du,(t) (3.1) 
and  

where 
dy,(t) = H,x(t) dt + du,(t) (3.2) 

E[du,(t) du;(t)] = R, dt (3.3) 
and  

E[du2(t) do;(t)] = R,dt. (3.4) 
We  assume that for all t, R,(t), R2(t) > 0. Let Y, i = 1,2, 
be  defined as the Hilbert spaces of zero-mean finite vari- 
ance random variables spanned by the individual measure-  
ment passes, that is, 

yl: A H(dy,(T) 0 I 7  I: T) 

G H(Yi(71) -.Yi(7*): T1, r2 E [O, T]). (3.5) 
In addition, let Y denote the space spanned by both data 
passes, denoted 

Y = Y, v Y,, (3.6) 
and  define the smoothed estimates Z,,(t) corresponding to 
the maps derived from each data pass separately as 

a,(t) = E[X(t)lYi] (3.7) 
and  the smoothed estimate a,(t) corresponding to the 
aggregate two-data-pass map  as 

2,(t) = E[x(t)lY]. (3.8) 
Let Zis(t) and Z-,(t) denote the smoothing errors corre- 
sponding to the estimates (3.7) and  (3.8). Let Pi,, P, denote 
the corresponding smoothing error covariance matrices. 
The  map  updating problem is specified as that of comput- 
ing a,( .) as a  linear functional of i,,( 0) and  the second 
pass data yZ( .). 

What  makes map  updating somewhat complicated (and 
interesting) is that the two data passes are not indepen- 
dent, that is, Y, and  Y, are not orthogonal. For this 
reason, the projection of x(t) onto Y, that is, 2,(t), is not 
simply obtained by adding i,,(t) to 2,,(t). To  determine 
what should be added  to Z,,(t) to update the map, con- 
sider the following orthogonal decomposit ion of Y: 

where 

Y = Y, CB f2 (3.9) 

and  

(3.10) 

dhb)  = dy,(d - Ekh(dIY,l. (3.11) 

The  space YZ denotes the part of the second-pass data 
space Y2 that is not predictable from the first-pass data Y,. 
By using the independence of the measurement  noises, we 
can express dJ2(7) as 

d%(d = dY,b) - HA,(d d7  (3.12) 

or, alternatively, as 
dy&) = H,Zl,(7) dr + d&) (3.13) 

where it should be  noted that &( 9) and  duz(.) are inde- 
pendent.  Using the orthogonality of Y1 and  &;, we im- 
med iately have that 

i,(t) = al,(t) + E[x(t)lF2]. (3.14) 
Note, however, that x(t) = 2,,(t) + Qt). From (3.13) 
and  the fact that A,,( a) is orthogonal to J&J.) and  u,(e), 
we find that 

W ) = ~1sW + J%Wl~21~ (3.15) 

Equation (3.15) represents the two-pass map  as the sum 
of the first-pass map  plus a  correction term corresponding 
to an  estimate of the first-pass map  error based on  new 
information in the second-pass data. Since from (3.12), 
dj2( -) can be  expressed in terms of a,,( .) and  dy2( e), 
(3.15) represents the solution to the map  updating problem 
in a  still somewhat abstract form. In the next two subsec- 
tions we present algorithms which implement the solution 
suggested by (3.15) and  which utilize the smoothing error 
Markov mode l results of Section II. 

B. The Smoothing Error Filter Algorithm for Map Updating 

In the preceding subsection we saw that the map  updat- 
ing problem reduces to the problem of computing the 
estimate of &(t) based on  FZ. From the results of Section 
II, however, we know that it is possible to write forward 
and  reverse Markovian realizations of Zl,(t) as in (2.38) 
and  (2.39). In these realizations Zs, P,, P,, J%~, and  io, are 
replaced by &, P,, Pls, % i,, and  iti,., respectively, where 
the “1” denotes that these are quantities based on  consid- 
ering the first pass of data alone. For example, P, and P,, 
satisfy an  equation like (2.9) and  (2.11) with H replaced by 
HI and R by R,. 

Given these Markov mode ls for Z is and  the fact that 
from (3.13) dJ2 can be  viewed as a  noise-corrupted mea-  
surement of Z ls, we see that the computation of 
E[&,(t)lr’,] is a  standard smoothing problem, and  conse- 
quently any of the existing solutions of the linear fixed 
interval smoothing problem may be  used. In particular, let 
us make use of the two-filter smoothing algorithm de- 
scribed in Section II-A. Let f,(t) and Z,(t) denote, re- 
spectively, the forward and  reverse filtered estimates of 
.Zl,(t) based on  j$, and  let Prs and P,, denote the error 
covariances matrices corresponding to these estimates. 
Then,  by using the results in Section II-A applied to the 
mode ls for R,, in (2.38) and  (2.39), we obtain the following 
equations for the evolution off,, Prs, i,, and  P,,: 

d&(t) = (A + Q( PG’ - P;‘) - Pf,H;R;*H2);,( t) dt 

+ P,sH;R,’ dj,( t) 

(3.16)3 

‘We  have placed boxes around those equations which together form 
the required on-line computations. 
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with 

with 

jB,(o)=o/ 

i;s = (A + Q( P;’ - K’))P,s 

+P,s(A + Q(p;,' - G’)) 

+Q - PfsH;R,‘H2P/, 

p,s@) = Pls(O) 

(3.17) 

(3.18) 

(3.19) 

-d;,(t) = (-A - QPv’ - P,H;R;‘H,);,(t) dt 

+ P,,H;R;l dJ2( t) 

with 
(3.20) 

In,(T)=ol 
and 

-&, = (-A - QP$)Prs + Prs( -A - QP$)’ 

(3.21) 

with 
+Q - P,,H;R;lH2P,, (3.22) yr(.): 

dyf(t) = (-A’ - P1/’ + P;’ - Pl,‘Qur(t)) dt 

P,,(T) = PI,(T)- (3.23) + H;R,’ dy2(t) (3.29) 

with 

Y,(O) = 0 (3.30) 
Specifically, the forward filtering equations (3.16) and 
(3.18) for the estimate s,(t) and error covariance Prs, are 
obtained by applying the standard forward Kalman filter- 
ing equations (2.8) and (2.9) to the forward first-pass 
smoothing error model (2.38), with the measurements 
(3.13). In a similar manner, the backward filtering equa- 
tions (3.20), and (3.22) for 2,(t) and P,,, follow from 
applying the backward Kalman filtering equations (2.10) 
and (2.11) to the backward first-pass smoothing error 
model (2.39), with measurements (3.13). 

and 

The estimates computed in (3.16) and (3.20) can be 
combined to produce the smoothed estimate of a,,(.), 
given j$(. ). The only additional quantity needed to do this 
is the covariance of the error in this smoothed estimate. 
Note that this error represents the only remaining uncer- 
tainty in x(t), given the two-data-pass space Y. It is given 
by 

w> = Ud - E MM21~ (3.24) 
as can be derived from (3.14). Thus the covariance of the 
right side of (3.24) is simply what we have referred to 
earlier in this section as P,, and adapting (2.13) to our 
current problem, we can express P,-’ as 

-dy,(t) = (A’ + P$ - P,;‘Qy,(t)) dt + H;R,’ d3;(t) 

(3.31) 

with 

Y,(T) = 0. (3.32) 

Then, by substituting (3.27) and (3.28) into (3.26) we 
obtain the following relation: 

E[%s(t)lfi:21 = 9,(v,(t) + u,(t)). (3.33) 

As a final note, we point out that relations (3.29) and 
(3.30) can be expressed more simply as 

)I (3.34) 

+H;R,l dj2(t) 
(3.35) 

In summary, we have the following map updating al- 
gorithm for computing 2, in terms of z&S and y2. a) We 
first compute A, the new information in the second pass, 
from (3.12). b) Then 2, and 2, are computed from (3.15) 
and (3.20) (with initial conditions (3.17) and (3.21)). c) J2, 
is computed from (3.15) by adding (3.26) to J2,,. The 
quantities that must be calculated off-line from the origi- 
nal model of (2.1), (2.2), and (3.1)-(3.4) are the covariance 
P, of the error in t2, (from (3.25)) P,$ (from (3.18), (3.19)), 
Pr, (from (3.22), (3.23)), Plf, and P,, (these last two 
quantities would have been needed previously in the origi- 
nal processing of the first pass to compute ii,). 

C. Information-Filter Algorithm for Map Updating 

In this section we describe an alternative map updating 
algorithm that will aid us later in deriving a solution to the 
map combining problem. We begin by defining yf(t) and 
x.(t) as 

yf(t) = P&(t) 

y,(t) = Pr;%,(t). 

(3.27) 

(3.28) 

By using (3.16)-(3.23), we can derive the following sto- 
chastic differential equations for the evolution of yr( .) and 

(3.25) 

Finally, E[21,(t)l?2] can be expressed as where P, is the forward filtered error covariance based on 
both passes and O,(t) is obtained from (2.14) in which 

E(Zls(t)l?2) = Ps(P$,(t) + Pr;‘ir(t)). (3.26) P,(t) is the reverse filtered error covariance based on both 
passes. Note that in this case Pr and P, satisfy (2.9) and 
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(2.11) with 

H=(2) R=(; i2). (3.36) 

Furthermore, from (2.5), (2.11) (2.14) and  a  bit of algebra 
we can obtain the following equation for the direct compu- 
tation of O,(t): 

- f 0, = A’O, + 0,A - O,QO, + H’R-‘H 

O,(T) = 0 (3.37) 

where H and R are as in (3.36). 
Equations (3.34) and  (3.35) are immediate consequences 

of the following two identities: 

and  

Pf-’ = PV’ + PC’ - P1,’ (3.38) 

0, = Pr;’ - PI>‘. (3.39) 

The  first of these identities may be  interpreted in the 
following manner.  The  quantity Pf-’ represents the infor- 
mation (concerning x(t)) contained in the past of both 
data passes, together with a priori information. The  terms 
on  the right side represent a) the information contained in 
the past of the first pass and  the a priori information, 
b) the information in the entire first pass together with 
that in the past of the second pass and  the a priori 
information, c) the information in the entire first pass 
together with the a priori information. Equation (3.39) can 
be  interpreted in a  similar manner.  

At this point, we note that while we have explicitly 
defined two algorithms for the solution of the map  updat- 
ing problem, the most important aspect of our approach is 
that, by recasting the problem as one  of computing the 
smoothed estimate of a  process, Z’,(t), described by a  
causal state- space mode l, we immediately have at our 
disposal the plethora of algorithms that have been  devel- 
oped  for such problems. Displaying this fundamental 
structure of the map  updating problem is a  ma jor improve- 
ment over the previous algebraic man ipulations of [l]. 

IV. UPDATING OF TWO-DIMENSIONAL MAPS 
USING DATA OBTAINED ALONG PARALLEL TRACKS 

In this section we illustrate the applicability of the 
results of the preceding section to a  problem of updat ing 
the map  of a  two-dimensional random field, given mea-  
surements along sets of parallel tracks (we will also use this 
same example in Section V-B). Such a  problem can arise in 
the production of maps of gravitational anomalies, given 
measurements taken on  survey ships traversing sets of 
straight-line paths. 

Let F(t, s) be  a  stationary zero-mean two-dimensional 
scalar random field with separable correlation function 

R(71,72) = E[F( 71,72)F(O,O)1 = +(7&(72), (4.1) 
where +(r) and  #(T) are assumed to be  one-dimensional 
correlation functions for the outputs of finite-dimensional 

linear systems. Such mode ls have been  used by several 
authors. For example, Powell and  Silverman [ll] have 
assumed correlation mode ls of the form in (4.1) to mode l 
scalar image intensity random fields. Let us assume that it 
is desired to map  the field along a  set of trajectories z;(t) 
defined by 4  

Z i(t> = F(t, Si), (4.2) 
for 0  I t I T and i = 1  * * * M , and  that for each survey, 
measurements are obtained along some subset of the M  
tracks. Defining the M-track field vector Z(t) by z’(t) z(t) = : I * 1  ) 

\ Z M W  1 
we show in the following that Z( .) has a  finite-dimen- 
sional Markovian representation. We  then formulate the 
map  updating problem, relying on  the results of Section III 
for its solution. 

From relations (4.2) and  (4.3) we can show that the 
one-dimensional correlation function associated with the 
aggregate M-track field vector process Z(t) assumes the 
form 

R,(T) = ’ l *, (4.4) . 
\ 0  dw 

where \k is an  M  x M  matrix with the i, jth element ‘Elj 
defined by 

(4.5) 
Since ‘@  is a  symmetric positive semidefinite matrix, it may 
be  represented as a  product of lower and  upper  triangular 
factors as 

where 
\k = LL’, (4.6) 

‘1 1,’ 0 ’ 
. . 

LA. . (4.7) . . 

,M,l ’ ’ 1 
l ‘M,M/ 

Hence by emp loying (4.5) and  noting that L commutes 
with the diagonal matrix whose entries are specified by 
C+(T), we may express the correlation function R =( 7) for 
the aggregate M-track field vector process Z(t) as 

I 
+b> 0 

Rz(~)=L ’ l L’. (4.8) . 

I 0 

4This amounts to the assumption of constant velocity as the survey 
sensors traverse the field. This is not an essential assumption and can be 
removed using the results in [12]. 
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We next use our assumption that +(a) corresponds to a 
correlation function generated by a finite-dimensional sys- 
tem, and we use (4.8) to determine our desired Markovian 
representation for Z( .). Letting z”(. } denote the bilateral 
Laplace transform, we define a’(s) as 

w = =q44.)>. (4.9) 
Assuming that cP(.s) is strictly proper and rational, that is, 
that @(co) = 0, we can determine a strictly proper rational 
spectral factor h(s) with no poles in the right half-plane 
[19, p. 1731 such that 

O(s) = h(s)h(-s). (4.10) 

For the purpose of realizing Z(t) we will need M copies of 
an irreducible state-space realization for h(s) [19, pp. 
105-1141 of the form 

d&(t) = F&(t) dt + Gdw,(t) (4.11) 

ri(t) = hEi( (4.12) 

and 
F \ 

E[x(O)x”(O)] = ~(0) = ’ l . 
0 

. 
. 

\o 
;:22) 

Given the foregoing finite-dimensional Markovian rep- 
resentation for the aggregate field vector process Z(t), we 
can model the physical field variables of the i th survey as 

zi(t) = M,Hx(t) (4.23) 

where 

(1, if the k th track in (4.3) is the 

t”i)j,k 

i 

jth track associated with the 
i th survey 

(4.24) 

0, otherwise. 
for i = 1; * 0, M, where wi( .) is a standard scalar Brownian 
motion process and Letting Hi = M,H and assuming an additive measurement 

E[Si(O)El(O)] = z (4.13) 
noise model, we obtain the equation for the i th survey 
measurements 

with z being the unique positive definite solution to the 
equation 

dy,(t) = Hix(t) dt + dq(t), (4.25) 

FS + ZF + GG’ = 0. (4.14) for 0 I t 5 T, where the ui( .))s are assumed to be inde- 

Finally, we employ (4.11)-(4.14) and (4.8) to obtain a 
pendent Wiener processes with 

Markovian representation for the aggregate field vector E[dui(t) duj(t)] = R,dt (4.26) 
process Z(t) of the form and Ri > 0. Defining the Zth pass smoothed estimate of 

Z(t) = Hx(t) (4.15) the global state, ?j’)(t), as 
with 

dx(t) = Ax( t) dt + Bdu(t) 
where 

x(t) A 

du(t) 0 

/ t’(t) \ . . . 
t,(t) \’ 

I d%(t) . . . 
\ dw,,(t) 

i 
F 

. 

in this section and in Section V-B extend simply to the 
mapping of a general stationary field, whose correlation 

t4 18) function is approximated as a weighted sum of separable 
correlation functions. Furthermore, these results also ex- 

O\ AA 
I 

. . 
0 F ! 

(4.16) (4.27) 

where Y. denotes the Hilbert space spanned by the ith 
survey measurements, we can use the map updating results 

(4.17) of Section III to express i?j’)(t) as a linear functional of 
z$‘-l)( .) and dy,( a). 

As a final remark, let us note that the results presented 

IG 0 
. 

Bl . 
. 

\O G 1 

tend, in principle, to the case of general survey data over 
nonparallel tracks, although in such a case the realization 
obtained corresponding to (4.15), (4.16) is infinite-dimen- 

(4.19) sional (see [7]). However, as we will discuss in a future 
paper, the discrete-time counterparts of the results in this 
paper, when applied to survey data of arbitrary geometry, 
result in finite dimensional mapping algorithms. 

H= 

4,lh 

bt,d’ * . . lM,Mh 

(4.20) V. MAP COMBINING AND MAP CENTRALIZATION 

In Section III we showed how algorithms for map 
updating followed from an orthogonal decomposition of 
the two-data-pass space Y, and we showed the use of the 

(4.21) smoothing error models obtained in Section II. In this 
section we use these results to derive a solution to the map 
combining problem-the problem of forming the two-pass 
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smoothed estimate a,(t) as a  linear functional of the 
smoothed estimates corresponding to each data pass, a,,( .) 
and  Z,,(e). We  then formulate and  use the map  combining 
results to solve a  special case of the map  centralization 
problem, that is, the problem of forming a  map  over some 
global region of interest by combining local maps formed 
over subregions. In what follows, we again display inside 
boxes the essential relations defining the map  combining 
and  map  centralization procedures. 

with 

Pf(O) = P,(T) = 0. (5.12) 

We  will emp loy the notations %Z t(dy,(.), dy,( e)) and  
~~?~(t(dyi( a), dy,( e)) to denote the W iener integrals defined 
over the past and  future increments of (d!,(a), dy,( .)), 
respectively, that represent the causal and  anticausal con- 
tributions to the smoothed estimate f,(t) determined by 
(5.9)-(5.12), that is, we let 

A. The Map Combining Problem 
% W  = c&,(dYlC), dY*(*)) +4(dY,t-), dYkW (5.13) 

Recall that (3.15) which yields the solution to the map  
Then, from examining the information-filter algorithm for 

updat ing problem, follows from decomposing Y as 
computing E[.!iiS(t)]?J, defined by (3.33)-(3.35) and  
the similar information-filter algorithm for computing 

Y= Y,cB E;. (5.1) E[.?&(t)]YJ, it can be  concluded that these algorithms 

We  could similarly imagine decomposing Y as may be  restated using the formalism of (5.13) as 

Y = Y, cl3 ?I (5 -2) E [WM*] = %1(0~4w + J%(O> dX1) (5.14) 

where and  

Yl p  H(djgT), Os7sT) (5 -3) E[~*,(t)l~1] = ~&@lt*),o) +4(4w,o>. (5.15) 
and  

= H,.%,,(t) dt + du,(t). (5.4) 
Hence, by emp loying the decomposit ion expressed by (5.2), 
we can derive the following formula for 2,(t), analogous 
to (3.15): 

%O> = G ,(t) + E [~*sWl~11. (5.5) 
By adding (5.5) and  (3.15) and  by subtracting 2,(t) from 
both sides of the resulting identity, we obtain the following 
relation: 

w> = %s(t) + M t) 
+ [E [%,(t,l%] + Jq~,,Wl~ll - .;s(t)l. (5.6) 

In what follows we show that (5.6) represents the desired 
map  combining algorithm by demonstrat ing that the term 
inside the brackets may be  expressed as a  linear functional 
of n,,(-) and  Z,,(e). 

Relation (5.16) represents the term in brackets of rela- 
tion (5.6) as a  linear functional of a,,(.), &(a). From the 
form of Ft(., .) and  J-&~(., a) determined by (5.9)-(5.12) 
we may express (5.16) more explicitly as 

-q%s(t)l%l + Jq%swl~Il - % W  

where 
= P,W(?l/(t) + do) (5.17) 

F irst, note that the two-pass smoothed estimate i,(t) 
defined by (2.8), (2.10), and  (2.12), with y’ = (y;, y;) and  
H, R as in (3.36), could also be  computed by the informa- 
tion filter algorithm obtained by setting 

p,(t) 2  P&(t) 

dq,(t) = (-A’ - P;‘Q)q,(t) dt - H2’R;1H22,,(t) dt 

- H;R,1H,2Z,,( t) dt 

(5.18) 

Now, by adding relations (5.14) and  (5.15) and  then sub- 
tracting (5.13), making use of the linearity of the W iener 
integral, and  emp loying the definitions of dJ,( .), dJ2( .) in 
(5.4) and  (3.12), the following relation is obtained: 

Jq~lstw2 l + Jq~2s(tVIl - % (t) 
= W t( - H$,,( t) dt, - H,R,,( t) dt) 

+dt( - HI&,( t) dt, -H,&,(t) dt). (5.16) 

B,(t) A pr-l&(t), 
in which case 

&(t) = pstt>( fqt> + B,(t)) 
where 

(5.8) 

(5.9) 

-dq,(t) = (-A’ - O,,A)q,(t) dt - H;R;lH,~Z,,(t) dt 

- H;R,‘HIZZ,,( t) dt 

(5.19) 

d/3,(t) = (-A’ - P;‘Q)/$(t) dt with 

+ H;R,’ dy,( t) + H;R;’ dy,(t) (5.10) / (5.20) 

and  

-d&(t) = t-A’ - O,Q>&tt) dt 
Consequently, from (5.6) we see that the solution of the 
map  combining problem consists of the computation of 9, 

+ H;R,’ dy,( t) + H;R,’ dy,( t) (5.11) and  11, according to (5.18)-(5.20) followed by the calcula- 
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tion 

B. The Map Centralization Problem 

While the map updating and map combining problems 
were motivated by situations where a centralized comput- 
ing facility produces a map of the random field over a 
given region based on either new data and an old map, or 
different maps constructed from different data sources, in 
the map centralization problem we have several maps, 
produced from different surveys, where the maps may not 
be over identical regions. Thus local surveys might be used 
to produce local maps. The map centralization problem is 
one of combining these local maps to produce an overall 
global map of the entire region of interest. In this section 
we will discuss the solution of this problem when all of the 
processing done for the local maps is “consistent,” that is, 
where the random field models used to do the local 
processing are exactly interpretable as the restriction of the 
global field model. The case for which local models are 
inconsistent will not be discussed here. This case typically 
happens when the local processing is based on a simplified 
approximate model obtained by neglecting or approximat- 
ing some of the correlations that exist in the actual global 
model. 

Consider the problem formulation developed in Section 
IV. We obtain several sets of parallel track survey mea- 
surements of the scalar random field F( a, a) and would 
like to use all of these data to obtain a map of F(. , a) 
along a specified set of tracks (4.2) (which include all of 
the survey tracks). In Section IV we focused on the updat- 
ing problem, that is, on the computation of the map based 
on the first I surveys in terms of the map based on the first 
(I - 1) surveys and the Ith survey data. The map centrali- 
zation problem is somewhat different. Each of the 1 sets of 
survey data has been processed to produce a local map of 
F(. , e), that is, an estimate of F(. , .) over a subset of the 
set of tracks in (4.2) (where the particular regions mapped 
by the surveys may differ from survey to survey). The 
objective, then, is to combine these local maps to produce 
the overall global estimate of F(. , a) over the full region of 
interest based on all 1 surveys. For the sake of simplicity, 
we restrict our development here to the case of two surveys 
(I = 2), as the generalization to 1 > 2 is immediate but 
notationally cumbersome. 

To begin, recall that the problem is to estimate Z(t) in 
(4.3), for 0 I t I T. Since Z(t) can be realized by the 
finite-dimensional Gauss-Markov model (4.15), (4.16), we 
can view the goal of the map centralization problem as the 
estimation of x(e), which we call the global state process, 
since it is employed to represent the field over the global 
region of interest. As in Section IV, the i th survey (i = 1,2) 
consists of measurements on a subset of the tracks (4.2). 
The physical variables measured by the i th survey are the 
zi( t) defined in (4.23) (4.24), and the actual survey mea- 
surements are given by (4.25), (4.26). For convenience, we 
summarize here the global state model and the two-survey 

measurement equations: 

and 

dx(t) = Ax(t) dt + Bdu(t), (5.21a) 
dy,(t) = H,x(t) dt + du,(t), (5.21b) 

dy,(t) = &x(t) dt’+ du2(t). (5.21~) 

Let Yi and Y, denote the Hilbert spaces spanned by the 
first and second survey measurements, respectively, and let 
Y = Y,VY,. Then, the overall objective is to compute the 
smoothed global state estimate 

i,(t) A E[x(t)lY]. (5.22) 

However, we are required to perform this computation 
completely in terms of individual local maps produced 
based on each of the two surveys. Specifically, we suppose 
that the i th survey data are used (by a local processor) to 
compute a map of F(. , a) along a subset of the full set of 
tracks (4.2) (the subset, of course, includes the actual ith 
survey tracks). Applying precisely the same realization 
procedure as that used in Section IV, we obtain a 
reduced-order model for i = 1,2: 

zi(t) = Cixj(t) (5.23) 

dxi(t) = Aix;(t) dt + Bidui(t) (5.24) 

where the local state x,(t) is employed to represent the 
random field over the set of tracks mapped by the local 
processor. That is, the ith local processor uses the model 
(5.24) and the ith survey data are written as 

dy,(t) = Cixi(t) dt + dq(t) 

to produce the smoothed estimates 

(5.25) 

n,(t) = E[x,(t)l&]. (5.26) 

The map centralization problem, then, is the computation 
of jz,( 0) in terms of a,,( .) and Z,,(a). Note that, in 
general, x1( .) and x,(a), and hence 32is(.) and -jz,,(*), may 
have different dimensions. 

The solution to this problem is obtained in two steps: 
we first use a,,( a) to recover the smoothed estimate of the 
global state based on the ith pass alone, that is, 

&s(t) = mtN$ (5.27) 

Then we can use the map combining algorithm of Section 
V-A to express ?Z,( .) as a linear functional of R,J .), 
i = 1,2. It is only the first step that remains to be speci- 
fied, and it is on this that we focus attention in the 
remainder of this section. As a first point we note that 
(5.23)-(5.25) represent a reduced-order realization of the 
ith survey data (as compared with (5.21a) and (for i = 1) 
(5.21b) or (for i = 2) (5.21~)). In fact, it is not difficult to 
see from the realization procedure of Section IV, that xi(t) 
is a subprocess of x(t), that is, that the Gauss-Markov 
model (5.24), is a restriction of the model (5.21a). That is, 
a transformation Di exists so that 

xi(t) = D,x(t). (5.28) 

This transformation can be readily determined from the 
realization procedure in Section IV and the specification of 
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the subset of the tracks in (4.2) which x,( .) is used to 
represent. Equation (5.28) implies that xi(*) and  Dix(.) 
have the same covariance matrices, and  hence 

and  

Dp(O)D/ = q(0) (5.29) 

DiQD/ = Qi (5.30) 

where ~(0) and  rri(0) are the covariances of x(0) and  x,(O), 
respectively, and  

Q = BB’ Qi = B,B; (5.31) 

are the strengths of the input noise terms (B du(t)) in 
(5.21a) and  Bj du,(t) in (5.24)) in the global and  local 
mode ls, respectively. Furthermore, since xi is a  subprocess 
of x(t), Di is one-to-one, and  we can augment  it to form a  
nonsingular matrix 

2) formally taking E{*]Y,} of both sides of (5.38) and  
(5.39) in order to determine effectively equations 
satisfied by the incremental predictable part of the 
decomposit ion of both xi(t) and pi(t) with respect to 
the u  field spanned by the ith pass observations. 

Because both dw,,(t) and dwiZ(t) are related to the 
increments of du(t) by (5.36a) and  (5.37) and  du(t,), du(tZ) 
are orthogonal for t, # t,, some matrix K, exists so that 
the decomposit ion of dwiZ(t) with respect to Ui: may be  
expressed as 

dwiZ(t) = Kidwi,(t) + d@,(t), (5.40) 

where dGi2(t) is a  W iener process orthogonal to Uif. By 
using the orthogonality property 

E[(dw,,(t) - Kidwi,(t)) dw&)] = 0 (5.41) 

for 0  I 7  I t, it can be  shown that K, has the form Di 
T= q [ 1  (5.32) 

so that the process x(t) expressed in terms of the change 
of basis implied by (5.32), that is, 

(5.33) 

obeys equations of the form 

zi(t> = (G j O)tjtt> 
with 

(5.34) 

&(t) dt + qBdu(t). (5.35) 

The  critical point to observe in (5.35) is the block of zeros 
in the upper  right corner of the block matrix on  the right 
side. That such a  transformation can be  found follows 
from the fact that xi by itself is Gauss-Markov. 

Let 

FisCt) = EIPi(t)lY,]’ (5.36) 

We  now must determine how to compute fiis( .) in terms of 
a,( a). As a  first step, define the two input-noise processes 
dw,,( +) and  dwi2( .) by 

dwi,(t) = DiBdu(t) (5.36a) 

and  
dwiz(t) = EiBdu(t). (5.37) 

We  may then express the dynamics for pi( .) and  xi( .) as 
dxi(t) = Aix,(t) dt + dw,,(t) (5.38) 

and  
dp,(t) = Mixi dt + &pi(t) dt + dwiz(t). (5.39) 

Equations (5.38) and  (5.39) are now emp loyed to derive 
an  algorithm for computing fiis( .) as a  linear functional of 
a,( 0) through the following two steps: 

1) decomposing dwiz(t) with respect to the u  field C$ 
A a{dwil(T)O I 7  I t}, and 

K, 2 [ E~QD;]Q# (5.42) 

where #  denotes the Moore-Penrose pseudoinverse. 
Now, substituting (5.40) into (5.39), taking E[.]q] of 

both sides of (5.38) and  (5.39), and  using (5.38) to express 
E[dw,,( t)ly], the following equation is obtained for the 
evolution of gis( e): 
d;,(t) = Mi2,,(t) dt + N,&(t) dt 

+ Ki [ d2,( t) - A,&,(t) dt]. (5.43) 

In deriving (5.43), we have used the fact that E[diGi,(t)Jq] 
= 0, since dfii2(t) is orthogonal to dwi1(7), 0  I T  I t, ii(O), 
and the observation noise du,( .). 

Equation (5.43) now yields the desired relations for 
computing fiis( a) as a  linear functional of ?ii,( =). If we 
define vi(t) as 

Vi(t) ’ Pi,(t) - K,iis(t>, (5.44) 

a  straightforward calculation yields 

dq,(t) = (M, + N,K, - KiAi)2,(t) dt + N,qi(t) dt. 

(5.45) 

G iven (5.45) and  (5.44), the specification of an  algorithm 
for forming fiis( a) from a,(.) will be  complete once the 
calculation of a$‘) is defined. If Z,, denotes the correlation 
between p,(O) and  x,(O), then p,(O) may be  expressed as 

Pi(O) = Fit’) + zpxrF’(o)xi(o) (5.46) 

where ii(O) is orthogonal to xi(~), I= 2  0. Since F i(0) is 
orthogonal to both xi( .) and  dui(.), taking E[ .]YJ of both 
sides of (5.46) results in the relation 

and  hence 

6i3t”) = ZpxTi-‘(o)ajs(o>~ 
from (5.44) 

(5.47) 

/ 17i(O) = (B,,n,-'(O) - Ki)4,(0). ( (5.4’) 
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Finally, we note that by using (5.44) and taking E(. IT::) 
of both sides of (5.33), we may compute 2,Jt) as 

i,,.(t) = q-1 
i 
-----SC!------ 

I 
. 

Ki(t)2i3(t) + SiCt) 

(5.49) 

Given (5.49) we can invoke to the map combining results 
of Section V-A in order to express i,(t) as a linear 
functional of i2, is( a), i = 1,2, and hence ultimately to 
express a,( a) as a linear functional of Ti,( .), i = 1,2, thus 
solving the map centralization problem. 

VI. CONCLUSION 

In this paper, by employing Hilbert space and martingale 
decomposition techniques, we have provided a unifying 
framework for understanding and deriving the solutions to 
problems of map updating, map combining, and map 
centralization. While the particular two-dimensional exam- 
ples of Sections IV and V-B rely heavily on the parallel 
nature of the measurement geometries considered, we will 
show in a future paper how mapping algorithms may be 
applied to essentially general measurement geometries in 
the case of discrete-space stationary random fields. Even in 
the case of nonparallel measurement trajectories through a 
continuous space random field, for which the aggregate 
field vector process defined in Section IV-C has no 
finite-dimensional Markovian representation, our results 
still indicate the structure of the solution to the mapping 
problems, so that the remaining issues are technical or 
algorithmic in nature. 

APPENDIX 

In this Appendix we show how the explicit representation of 
the smoothing error process in (2.31) may be used to derive a 
backwards Markovian realization of the smoothing errors. We 
first indicate how the representation (2.31) follows from the 
innovations form of the smoothed estimate [lo]. Consider the 
state-space model (2.1) with measurements defined by (2.3). The 
innovations process is defined in (2.32), where ?f and its covari- 
ante P, are specified in (2.8) and (2.9), respectively. 

If we let vZ+ denote the Hilbert space defined by the future 
increments of the innovations, then the innovations form of the 
smoothed estimate follows from using the following orthogonal 
decomposition for the Hilbert space Y spanned by L+(T), for 
0171T: 

Y = E;- @  v: . (A.11 
Projecting x(t) onto both sides of (A.l), we obtain the equation 

2,(t) = 2,(t) + E[x( t)lv:] (A4 
Now if x(t) is expressed as 

x(t) =2,(t) + Z,(t) (‘4.3) 
where Zf( .) denotes the filtering error process and (A.3) is 
substituted into (A.2) (making use of the fact that g,(t) I v,+), 
and finally, if the resulting equation for n,(t) is used to form 
ks (t) = x(t) - R,(t), the following representation for j;-*(t) is 
obtained: 

ti,( t) = ji,( t) - E[E,( t)lq+] . (A.41 

It can be shown by straightforward calculation that (A.4) corre- 
sponds directly to (2.31). 

A backwards Markovian representation for Zs (t) now follows 
by employing (A.4) together with backwards representations for 
Zf(‘), and +(t) = EIZ,(t)lvr+]. A reverse-time realization of 
2, ( .) can be derived from the forward realization 

dZ,(t) = (A - P,H’R-‘H)?,(t) dt + dw(t) - PfH’R-’ du( t) 

(A.5) 

by decomposing the input noises dw( t) and du( t) with respect to 
u{~,(T) t 5 7 5 T} as 

and 
dw(t) = QP;‘ji,(t) dt + d%,,(t) ’ (A.6) 

du(t) = -HZ,(t) dt + dr&(t). 

By employing (A.6) and (A.7) and noting that 
d&,(t) = HZ,(t) dt + dv( t) = dv( t), 

(A.7) 

(A.81 
we obtain the following backward realization for 2, (e): 

-d%,(t) = -[A + QP,-‘]Z,(t)dt-dk&) 

+P,H’R-’ dv(t). (A.9) 

Next, we employ the backward realization (A.9) to derive a 
backwards representation for the process +(t). This realization 
follows directly from (A.9) after first showing that dfi,,( t) I Y, 
and hence dk,, (t) I VT. The fact that dfi,,( 1) I Y can be proven 
by demonstrating that 

dk,,( t) = di$( t) (A.10) 

where di;i,( t) is the input-noise process to the reverse-time reali- 
zation for k,( .) derived in Section II and is defined through 
(2.27) as 

di$(t) A dw(t) - E[dw(t)lk;] - E[dw(t)jY]. (All) 

Using the representation for Z,(t) of (2.31) or, equivalently, 
(A.4), we can show that 

E[dw( t)l%,?] = Qq-‘Z,( t) dt. (A.12) 

In addition, using the fact that v+ = y to compute E[dw(t)lY], 
explicitly and also using the innovations form of the smoothed 
estimate, it can be shown that 

E[dw( t)l Y] = QPF’( 2,( t) - jcf( t)) dt. (A.13) 

By employing both (A.12) and (A.13) in (A.ll) and noting (A.6) 
we prove (A.lO). Since dii+( t) I Y, by the nature of its construc- 
tion in (A.12), then di$,(t) I Y, and hence by formally taking 
E[ .]v,+] of both sides of (A.9), we obtain the following backward 
model for $I(.): 

-d+(t) = -[A + QP,+(t) dt + P,H’R-‘dv(t) (A.14) 
with 

$(T) = 0. (A.15) 

Finally, by employing (A.4) in order to form d?,(t) = dZf( t) 
- d+(t), using the backward realization for Z/(t) defined by 
(A.9), and using the backward realization for +(t) determined by 
(A.14) and (A.15), we obtain for Z,(.) the following reverse-time 
realization: 

-d%,(t) = -[A + QPF~]z,(~) dt - dkh(t) (~.16) 
with 

P,(T) = q(T). (A.17) 
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Given (A.lO) the backward realization for Z,( .) is identical to PI 
that obtained in Section II. The derivation here shows how the 
existence and structure of the backward realization for the [91 

smoothing errors follow from the structure of the backward 
model for the filtering errors alone. [lOI 
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