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Reconstruction  from  Projections  Based  on  Detection 
and Estimation of Objects-Parts I and II: 

Performance  Analysis  and  Robustness 
Analysis 

DAVID J. ROSSI, MEMBER,  IEEE,  AND ALAN s. WILLSKY, SENIOR MEMBER, IEEE 

Abstruct-The  problem  of  reconstructing a multidimensional  field 
from  noisy,  limited  projection  measurements is approached using an 
object-based  stochastic field  model.  Objects  within  a  cross  section  are 
characterized  by a fiite-dimensional  set  of  parameters, which  are 
estimated directly from  limited,  noisy  projection  measurements using 
maximum  likelihood  estimation.  In  Part I, the computational  structure 
and  performance of the ML estimation  procedure are investigated  for 
the  problem of locating  a single object in a deterministic  background; 
simulations  are  also  presented.  In  Part 11, the issue of  robustness to 
modeling  errors is addressed. 

PART I 
PERFORMANCE ANALYSIS 

I. INTRODUCTION 

T HE problem  of  reconstructing  an  n-dimensional  function 
from  its (n - 1)-dimensional  projections arises, typically 

in the  context  of cross-sectional imaging, in a  diversity of disci- 
plines. In  the two-dimensional (2D) problem,let f (x )  represent 
the value of the cross-sectional function (for  example  X-ray at- 
tenuation  coefficient) at a point specified  by the vector x = 
(x1 x 2 ) ’ .  The projection of f (x )  at  any angle 0 is a 1D  func- 
tion  denoted as g(t ,  0 )  shown  in Fig. 1.  For a given value  of 
projection angle 8 ,  the  projection  evaluated at  the  point t is 
the integral 

m m  

go,  e> =J J f ( x )  s(t - x’@ dxl d x 2  
-01 -m 

=J f(x) ds e [Rfl (t ,  0) (1) 
X‘e = t 

along the line 
q t , e ) = { x : x l c o s e   t x 2 s i n 8 = t } = { x : x ’ 8 = t }  

e 6 (COS e sin e)’ 
(t,  e)  E Y P {(t, e ) :  - 00 < t < 00, o G e < r }  

(2) 
as shown  in Fig. 2 .  In (l), s(t)  is the Dirac  delta  function. 
Equation (1) corresponds to the Radon  transfornation, which 
maps  the  2D  function f : R 2  + R into  the  function  on a  half- 
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Fig. 1. Projection  at  angle 8 .  

Fig. 2. Measurement  geometry. 

cylinder g :  Y -+ R :g(t,  0 )  is called the  Radon  transform  of f (x )  
[l]  - [ 3 ] ,  and is also denoted by [ R f ]  (t, e). The  reconstruc- 
tion  problem,  determining  the  function ffrom its  projections g, 
is an inverse problem, since the  measurements are specified  by 
the integral equation in  (1)  which must be inverted to recover 
an  estimate  of  the original function. 

Reconstruction  from  projections  has  been  employed success- 
fully in radio  astronomy,  electron  microscopy,  medical CAT 
scanning, and  other applications.  Recently, it has  been sug- 
gested that these  techniques be  similarly applied to a  number 
of technologically  demanding  and novel applications,  for ex- 
ample real-time monitoring of high  production  rate  manu- 
facturing  processes, mesoscale oceanographic  thermalmapping, 
quality  control nondestructive  evaluation,  and “stop action” 
imaging of very rapidly changing media [4] , [5] . Virtually all 
of .these  applications, as  well  as many  current  applications,  are 
characterized  by  a  limited availability of  measurement  data, 
due  to: 
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economic  constraints  that limit the  total  number  ofmea- 
surement transducers-e.g., oceanographic  transducers are 
sophisticated,  low-power  units  that are costly to build, 
place, and  maintain  [5] ; 
time  constraints  that limit  measurement quality-e.g., 
limited  measurement  time  interval  in  “stop  action” imag- 
ing of  very  rapid  events, or in  nondestructive  testing of 
high production rate processes  such  as steel manufactur- 
ing [dl ; 
safety  and  operating  constraints  that limit the measure- 
ment quality-e.g.,  high temperature  and/or  caustic 
operating  environments in certain process monitoring 
applications  may  limit sensor accuracy  and SNR per- 
formance; in medical  tomography,  patient  safety  con- 
strains the overall X-ray or injected  radionuclide  dose; 
geometrical or physical  constraints  that limit the view 
angle-e.g., in  ultrasonic imaging of  the  heart, where  bony 
structures  limit  the view  angle, or  in  nondestructive  test- 
ing of large objects; 

0 inaccuracy of the  measurement  model-the simple line 
integral  measurement  model in (1) is an idealization that 
does not  incorporate,  for  example,  the  effects of refrac- 
tion,  diffraction,  scattering,  and  polychromaticity. 

It is  well known, however, that  when  the  projection measure- 
ments are limited in number  or view angle,  or have high noise 
levels, the inverse problem is ill-posed and/or  has a  numerically 
sensitive or noisy solution [ l ]  , [2] , [l 11 , [12]  -that  is,  it is 
not possible to reliably  produce  accurate,  artifact-free, and 
high-resolution imagery  of the cross section. 

In  a  number  of  applications,  particularly applications where 
the  measurement  data are limited,  the ultimate goal of  process- 
ing the projection  measurements is typically  far  more  modest 
than obtaining  high-resolution  cross-sectional imagery. Rather, 
reconstructed imagery  is an  intermediate result of  the overall 
analysis,  and is itself processed  (either visually or  by  auto- 
mated  or  semi-automated  techniques) to extract very particular 
information  about  the cross section. 

In  many cases, this  particular  information is related to ob- 
jects, regions, or boundaries  within the cross section.  For 
example, in medical  CAT  scanning,  the  detection,  localization, 
and  characterization  of  organs  and  tumors is a  routine  step in 
diagnostic interpretation  [6],  [7] ; the localization  and  identi- 
fication of boundaries  of  high-contrast  objects  such as bone  and 
metallic surgical clips by direct processing  of projection  data 
has also been  studied [8]. Another  application where object. 
related  information is desired is oceanography; large, high- 
contrast  thermal regions are  present in many  oceans (e.g., cold- 
core rings [5]  and  the Gulf  stream),  and  oceanographic  acoustic 
tomography  has  been  investigated as a  means of detecting  and 
tracking these  regions [SI, [9] . In  the area  of  nondestructive 
evaluation,  tomographic  techniques have  also been  studied  for 
detecting  and  characterizing  interior  cracks and flaws in 
materials [4]. 

The  focus  of  this  paper is on processing projection  measure- 
ments when 1) the overall  goal is to  extract  object-related 
information  about  the cross  section,  and 2) limitations on  the 
total  number, SNR, or  overall  view  angle  of the  projection 
measurements  preclude  the  formation  of  high-resolution,  arti- 
fact-free  reconstructed imagery.  In particular,  an  alternative 
to full image reconstruction is proposed  and investigated that 

involves  processing limited,  noisy  projection  measurements 
directly, in order to  detect,  locate,  and characterize one  or 
more  objects  within  the  cross  section.  Specifically,  a  stochastic, 
object-based field model is presented, in which  objects  are  rep- 
resented by a  finite  number  of  parameters,  characterizing,  say, 
the  object  location, size, boundary  shape,  contrast,  and/or 
detailed  internal  density  variations.  These  parameters are 
estimated,  in  the case  of limited  projection  measurements 
corrupted by  additive  white  Gaussian  noise,  by  maximum  like- 
lihood (ML) parameter  estimation [ 131 . 

While it is  possible to present  procedures  which may be ap- 
plied’to cross sections  containing  arbitrarily  complex arrange- 
ments  of  objects and  boundaries, the focus is rather  on  a 
simpler problem,  in  order to lay  bare the  problem essentials. 
The  specific  problem  considered is estimation  of  the location 
of a single, randomly  located  object  situated  within  a  known 
background  field;  problems  of  this  type, involving detection 
of  objects  in  an  otherwise  completely  known  field,  have  been 
of  interest  for some  time in radiology [6]. Concentrating  on 
this specific localization  problem allows 1) the  development  of 
insight into  the  computational  structure of the  parameter  esti- 
mation  (the  computation is shown to resemble  one  solution to 
the image reconstruction  problem,  namely  the  convolution 
back-projection (CBP)  inversion formula [ 11 ), 2) the  demon- 
stration  of  quantitative  tools  that  can be utilized in critically 
evaluating  estimator  performance and robustness  in  a  system- 
atic  manner,  and 3) the  establishment of a  framework  within 
which more  sophisticated  algorithms  may be developed  which 
take  into  account,  for  example, detailed a priori information 
about  object  boundary  shapes,  or  the  presence of multiple 
objects.  One  particular result obtained which  demonstrates 
the  potential  utility  of  this  approach is the  identification of the 
minimum size  of  an object  that  can be  located  from given 
noisy projection  measurements. 

In developing the relatively simple localization  problem,  a 
number  of simplifications are necessarily made.  The  robust- 
ness  analysis in  Part I1 assesses the  robustness of ML object 
localization  when  applied to less  idealized versions  of the  prob- 
lem, taking into  account,  for  example,  that  the real object 
may have a  shape  and  density that differ  from the simple 
assumed ,shape  and  density,  or that  additional,  unmodeled 
objects  may be present  within the cross  section.  This  robust- 
ness analysis, by  providing insight into  the sensitivity of  the 
performance to different  types of modeling  errors,  in turn pro- 
vides intuition  about  potentially useful  extensions  or  improve- 
ments in the  development of more  sophisticated  algorithms. 

In  the  next  section, 1) a simple stochastic,  object-based 
model  for  the cross section is introduced, as  are models  for 
discrete  and  continuous  measurements,  and 2) the ML object 
localization  problem is formulated.  In  Section 111, the  error 
covariance  of the ML location  estimate is examined;  both local 
and global  errors are treated.  In  Sections IV and V, an  ex- 
ample  and  simulations are presented  which  illustrate  the 
localization of an  object having a simple geometric  shape. 

11. PRELIMINARY ANALYSIS 

Cross-Sectional  Model 

Suppose  the cross section  under  investigation is represented 
as a known background function fb(x) ,  superimposed  upon 
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which is a single "object"-an object will be  modeled as a 2D 
function  that is an  additive component of the overall cross- 
sectional  density.  The overall cross-sectional  density, then, is 
of  the  form 

f(x> =f&) 4- d .fo(x - c) (3 1 
where d represents  the brightness or  contrast  of  the  object, 
fo(x) corresponds to a  unit-contrast  object  situated at  the 
origin, and c = (c l  cz)' denotes  the  object  location  in  the 
plane.' Note  that because the  function f(x) depends  non- 
linearly  (by  a  shift in x) on  the object  location,  the  problem 
of estimating c from  measurements  of f ( x )  (or  its  integrals) is 
a  nonlinear  estimation  problem.  This is in  contrast to direct 
image reconstruction,  in  which  a  linear  estimation  problem of 
considerably  higher  dimensionality is  solved. 

As an  example of the  representation in (3), consider  the 
problem  of  locating  a  connected region K (e.g., a  disk)  having 
constant density d relative to  the background.  In  this case, 
the object is a  discontinuous  function  that  equals  zero  every- 
where  except  at  points  within  the  set K,  where  it  takes  on  the 
value d. Alternatively,  a  circularly  symmetric  object  of  radius 
R and  density d may  be  described  by using a  Gaussian  object 
fo(x)=  exp (-IIxl12/R2), where llxll is the distance  of the 
point x from  the origin. See [14]  for a discussion  of these 
and  other  continuous  and  discontinuous  object  models.  In 
Sections IV and V,  results  are  illustrated using as an  example a 
discontinuous  object  that  has a constant  density  on a disk. 

Measurement Model 
The cross-sectional  density function f(x) can  be  observed 

only via limited,  noisy  projections.  Two  types  of  measure- 
ments are considered here, specifically,  projection  measure- 
ments  taken over a continuous interval  of view  angle  values 8 
and  projection  measurements  taken at only  a  finite  number 
of discrete projection angles.  In both cases, the measurement 
at angle 8 will be modeled as a  convolution of the  continuous 
1D  projection g(t ,  6 ;  c) (which  depends on  the object  location 
c )  with a 1D  measurement  aperture h(t) ,  and  corrupted  by  ad- 
ditive zero-mean  white  Gaussian noise: 

u(t, e )  = g(t ,  0 ;  C )  * h( t )  + w(t, e )  
e s(t, e ; c )  t w(t ,  e )  ( t ,  e )  ES c Y. (4) 

Various  aperture  functions  may be considered,  for  example,  a 
rectangular pulse aperture  corresponding to strip  integration, 
an impulsive aperture  corresponding to line  integration,  or the 
sinc  aperture 

h(t)  = 
sin 271 W t  

271 W t  

corresponding to projections having a  spatial bandwidth of W 
cycles  per unit distance in the t direction. The use of  a  nonim- 

'More  generally, the object  may  depend on  a finite  number of param- 
eters  characterizing,  say,  its size, shape,  and/or  detailed  boundary,  and 
these  parameters may  be  estimated [ 141. 

'y(f, 0 )  could  also be considered as a  counting  process  with  a  rate 
that  depends  ong(t, 0;  c). Such  a  model is appropriate, for example, in 
very  low-dose X-ray problems. 

pulsive measurement  aperture h(t)  facilitates the modeling 
of  finite  bandwidth  projection  measurements. 

Case 1: Continuous-View  Measurements: In  the  continuous- 
view case,  measurements are taken over a total viewing  angle 
of 2A  centered  at  n/2, Le.,  views  are taken  up to an  angle A on 
either side of  the x1 axis  (here, 0 < A < n/2). The  measure- 
ment  set S is a  subset  of the half-cylinder Y ,  and is  given by 

S = S A ~ { ( t , 6 ) : - m < t < ~ , - - A < O < - t A } .  
71 77 

2  2 

(6) 
In  the continuous-view  case, the additive noise w(t ,  e )  is a 2D 
zero-mean Gaussian random field on S A  with covariance 

E {w( t ,  e )  w(7, = - s(t  - 7, e - G) (7) 
NO 
2 

where 6 ( t ,  0 )  is a 2D impulse.  The  standard  tomographic re- 
construction  problem,  where (noise-free) measurements are 
assumed to be available at all  possible projection angles, is the 
special  case  of the continuous-view  measurement case where 
A = n/2. This will be referred to as the fill-view measurement 
case, and  the case A < 7112 will be referred to as the limited- 
view measurement case. 

Case 2: Discrete-View Measurements: In  the discrete-view 
case,  projections are measured at N angles that are uniformly 
spaced on  the interval [0, n). The  measurement  subset is 

s=s,g { ( t , e ) : - " < t < m ,  e = e . = L  71 

' N  

j = O ,  l ; . - , N -   1 ) .  (8) 

For each view  angle Bi, the noise process w(t ,  0,) is a 1D zero- 
mean  Gaussian  process  with covariance 

E {w( t ,  e j )  ~ ( 7 ,  e j ) }  = - q t  - 7) NO 
2 (9) 

and  the noise at  different view  angles B i  and Bi, i f j ,  is 
uncorrelated. 

For  the cross-sectional  density function shown  in (3), the 
Radon  transform (1) is 

g(t ,  e )  = J f b ( x )  ds + d J - W .  (10) 
x'e = t x'e = t 

Since the  background  function is known,  the first  term in (10) 
is known  and may  be  subtracted  from  the  Radon  transform 
(this is assumed to be done  for  the remainder  of  this analysis) 
to leave the  part  due solely to  the  object, namely 

get, e ;  c) = d I fo (X - C )  ds . (1 1) 
x'e = t 

Let g,(t, 0 )  denote  the  Radon transform when  the  object is 
located  at  the origin, 

go(t, e )  $g( t ,  e ;  01 = d J- f o (x )ds .  (12) 
x'e= t 

For  an  arbitrary  object  location c E C C R 2 ,  the  Radon  trans- 
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form is, from (1 1) and (12), 

g(t, 0 ;  c) = d J fo(x)ds  =go(t - c'6, e). (13) 

Equation  (13)  indicates  the  nonlinear  dependence  of  the 
Radon  transform g(t ,  8 ;  c) on  the object  location. Specifi- 
cally,  when  an  object is translated  from  the origin to  the point 
c, its  Radon  transform experiences  a  shift  in the( t variable, 
where the  magnitude  of  this  shift, c'8 = c1 cos0 + c2  sine, de- 
pends  sinusoidally on 0 .  

Example 1: Consider  a  constant-density  object  on a disk  of 
radius R  centered  at  the  point c in  the plane [see Fig. 3(a)], 

x'o = t - c'o 

( 
d if IIx - cIl <R 

0 otherwise. 
d .&(X - C) = (14) 

For  any value of 0 ,  the  projection g(t, 0 ;  c) is a  half-ellipse 
centered  at  t = c'8, 

889 

t 

2 d d R 2  - (t - c'8)2 if It - c'8 I < R 
g(t ,  6 ;  c) = 

otherwise. 

(1 5) 
This Radon  transform, viewed  as a  function g:  Y -+ R ,  is the 
0-dependent  function  shown  in  Fig.  3(b).  Note  that while in 
this  example the  object fo(x) is  circularly  symmetric, an  object 
is generally not circularly  symmetric,  and  consequently  its 
Radon  transformg,(t, 0) is &dependent and  nonsymmetric. 

Maximum  Likelihood  Location  Estimation 
Given a  set  of  continuous- or discrete-view  measurements 

y( t ,  e), it is desirable to estimate  the  object  location c by maxi- 
mum likelihood (ML) estimation.  The ML location  estimate is 
obtained  by  first using the  projection  measurements to com- 
pute  a log  likelihood function  L(c), and then finding  the  2D 
parameter c E C C R 2  at which the  maximum value occurs. 

In  the continuous-view case with  a  total viewing angle of 2A, 
the log  likelihood  function is given by [ 131 

n f z + A  * 
LA(c) = LJ S_ ~ ( t ,  6') ~ ( t ,  8 ;  C) dt dB 

No nlz -A 

nfz+A m 

- LJ 1- s2(t ,   0;c)dt dB (1 6 4  

and in the discrete-view case with a total o f N  views, it is  given 

N O  nlz-A 

by 

In each  case,  the log likelihood function is the  difference  be- 
tween two  terms,  the  first of which is obtained  by  amatched 
filtering  operation [ 131 on the measurements  using  a  filtering 

(b) 

Fig. 3. (a) Projection  of  the  disk  object. (b) Radon  transform  of  the 
disk object. 

filtering  template  energy. From (4), (13), and a change of 
variable 

r m  "m 

=jI s2 (7, 6 ; 0) dr. (17) 

The final integral  in  (17) is c-independent, so the  matched 
filter  template  energy  terms  in  (16)  are  constant  and  may be 
dropped,  as  can  the first  term scaling constant, leaving 

FIZ + A  = 
LA(c) = y ( t ,  0 )  so( t  - ~ ' 6 ,  e )  dt de (18a) 

n/2 - A  - m  

and 

N-1 
LN(c)= 5 y(t ,  0,) so(t - c'6ji, 0,) dt (18b) 

j = O  -m 

where  s,(t, 0 )  2 s(t, 8 ;  0) = g,(t, e )  * h(t). 
In summary, the ML estimate  for  the  object  location is de- 

termined by computing  the log likelihood  function in (18), 
and determining the value of the two-dimensional  parameter 
c E C at which the peak of  the log  likelihood  function  occurs, 

LA@) in  the continuous-view  case 

argmax LN(c)  in  the discrete-view  case. 
CEC 

template  s(t, 8 ;  c). The  second  term  compensates for  the (19) 
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Remarks 
The  convolution  back-projection (CBP)  inversion formula 

[ 11 - [3] is one  solution to the integral equation in (1);  it 
assumes the availability of noise-free full-view measurements 
and is  given  by 

=in 1; g(t, e )  u ( t  - %'e, e )  d t  de 

=in q(x'o, e )  de 6 p q l  (x). (20) 

This  mapping  of g + f̂  is referred to as a  convolution  back- 
projection  operation.  For  perfect  reconstruction  from full- 
view  noise-free projections,  the convolving kernel u ( t ,  8 j  i s  
8-independent,  and  its Fourier  transform  with  respect to t 
satisfies V(w) = I a/ [ 11 , [2] . The so-called back-projection 
operator  (the  integral  with  respzct to 0) maps  the  function 
q : Y + R into  the 2D function f :  R 2  + R ; the  latter  function 
Ax) is called the  back-projection  of q and is denoted by 

Consider the case  of  full-view measurements (A = n/2), and 
notice  the similarity  between the log likelihood function in 
(1 Sa) and  the  convolution  back-projection inversion formula 
in  (20). In (20), the noise-free  projection  me2surements g ( t ,  
e )  are  used to determine  a 2D reconstructionf(x) by  convolu- 
tion  back-projection  with  a  0-independent convolving kernel 
u ( t j .  In (18a)  with A = n/2, the noisy  projection  measure- 
ments y ( t ,  e )  are used to determine  a  2D  log  likelihood  func- 
tion by  convolution  back-projection  with  a generally &de- 
pendent  and  nonsymmetric convolving kernel so(t, 0) .  

Note  that  although  (ISa)  may be interpreted as a CBP, the 
resulting  log likelihood function is not interpreted as a  recon- 
structed image  because the convolving kernel is not chosen 
with  direct image reconstruction in mind.  Rather,  the  con- 
volving kernel s o ( t ,  e) is  specified in  the  solution  to  the  prob- 
lem  of ML estimation of the  object  location  from noisy projec- 
tion  data. 

In  the limited-view case (A < n/2), and  in  the discrete-view 
case, the log likelihood function in (18) still has the same 
general  form as the CBP operation in (20),  except  that  the 
integral  with respect to 6 for 8 E [0, n) (i.e.,  the  back-projec- 
tion Operation) is  replaced by  either  an  integral  with  respect to 
0 for 8 E [n/2 - A, n/2 + A) or by  an N-point sum  over Bi.  
These expressions resemble those  associated  with approximate 
convolution  back-projection  reconstruction algorithms [3] . 
These are practical  implementations of the  reconstruction 
formula  in  (20)  that are used to compute  approximate  recon- 
structed images when  measurements are available only  on 
some  subset of the full measurement set Y .  The  distinction 
between  reconstructing  an image  using (20) and  evaluating  a 
log likelihood function using (1 8) still applies. 

In  terms  of computational  complexity, direct image recon- 
struction  and log likelihood function evaluation both involve 
the  determination of a  2D  function whose  value at  any  point 
is given by an integral  or sum  of weighted  projection  data. 
Consequently,  both  procedures require the same amount of 
computation  for  a given set of measurements.  If  the overall 
goal of  the signal processing is to  locate  an  object within  a 
cross section,  however,  the task is completed  when  the log 

(x> ~31.  

likelihood  function  peak is found. In contrast, when a  recon- 
structed image  is formed,  further image  processing  (e.g., 2D 
prewhitening  and  matched  filtering) is required if the  location 
of  the  object is to be determined. 

Thus  far,  a  parametric  object-based field model  has  been  put 
forth  and  the  problem of  ML estimation  of  object  location 
using  noisy projection  measurements  has  been  formulated.  Two 
performance-related  questions arise. 1) If the  actual cross sec- 
tion satisfies the modeling  assumptions  exactly,  how well  can 
the  object  parameters be estimated  from noisy projection 
data? 2) Modeling errors  inevitably  exist;  when the  model is 
an  inaccurate  representation  of  the  actual cross section,  how 
well can the object  parameters be estimated? 

The  latter  question is addressed in the robustness analysis 
of Part 11. In  the remainder  of Part I, it is assumed that  no 
modeling  inaccuracies  exist,  and the former issue is investi- 
gated.  The overall object  location  estimate  error  covariance, 
characterized  by both local  and global contributions, is ana- 
lyzed in  Section 111. In  this  development,  algorithmic or  im- 
plementation issues such as efficient  procedures  for  locating 
the log likelihood function peak  are not discussed;  instead, 
issues of how well one  can do assuming that  the ML estima- 
tion  procedures can  be carried out  exactly will  serve  as the 
focus. In Sections IV and  V,  the  error covariance  is evaluated 
and  computer simulations are presented  for the  constant- 
density disk object of Example 1. 

111. PEKFOKMANCE  ANALYSIS 
The  maximum  likelihood  estimate  for  the  location of  an 

object in the cross section is obtained  from  projection  mea- 
surements  by  first  performing  a CBP operation  to  obtain  the 
2D  log  likelihood function  shown in (IS), and  then finding  the 
point c E C at which the  maximum  occurs. As suggested by 
the  similarity  between (18aj  and (18b), the calculation  of the 
log  likelihood function for  the  continuous-  and discrete-view 
measurement cases is very similar, and  the general concepts 
involved in the continuous-view  performance analysis carry 
over directly to the discrete-view case, although  the  details 
of the analyses  differ [14]. Due to  the similarity  in the calcu- 
lations,  only the continuous-view  computations will  be de- 
tailed  here. 

Because the  measurements y ( t ,  e )  are noisy,  the  location log 
likelihood function is a  2D  random  field.  The  point cML E C 
that maximizes  this  random  field is a  2D  random  variable; in 
this  performance analysis the second moment of this  2D  ran- 
dom variable is characterized.  First, to see how  the log likeli- 
hood  function  depends on the  measurement  noise,  let c, 
denote  the  actual  object  location within the cross section,  and 
substitute (4) into  (lsa). 

n/2+A - 
i A ( c ,  c a )  =J J s(t, e ;  c,) s ( t ,  e ; c )  dt de 

T D - A  - -  

+i,-AJ- w(t ,  e j s ( t ,  w d t d e  
n/2 + A  

e zA(c, ca j + H A  (c). ( 2  1) 

The log likelihood  function is the sum of two  terms, &(c, c, j, 
the  expected value  of the log likelihood function, which is a 
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2D  deterministic  function  known as the generalized ambiguity Li is a  random  variable  defined to be the log likelihood  func- 
function [ 171 , and nA(c), a  2D  zero-mean  correlated  random tion in  (23)  evaluated at  the  point Yi. Since  the  additive  mea- 
field  with  covariance surement noise w(t,  8 )  in (4) is Gaussian,  the  random  vector 

L = ( L o  L 1  * * L M - ~ ) ’  is Gaussian,  with  density p(L)  and 
E{nA(c) nA(Z>) = -j- aA(c, 

No - (22)  moments 

The  ambiguity  function, since it -enters  both  the  deteiministic E {L i )  = a ~ ( 7 )  

and  random  components  of  the log likelihood  function,  plays 
a key role in the analysis of  estimation  performance in the 
problem  at  hand, as it  does in radar  and  sonar  applications  in 
the analysis of estimation  accuracy,  ambiguity,  and  resolution 

Because s(t, 8 ;  c) depends on c only by a shift in  the t vari- 
able, the  ambiguity  function  may be shown by  a change of 
variable to depend  on  its  two  arguments  only  through  their 
difference. That is, the  ambiguity  function  at  any given point 
c depends  only on  the  position  of  that  point relative to the 
actual  object  location c,. Consequently,  the noise nA(c) is 
stationary;  for simplicity, the  following  notation for the am- 
biguity  and log likelihood  functions will  be used. 

~ 7 1 .  

aA(E) 4 ZA(c, c,) 

L ~ ( E ) ~ L A ( c , c , )  € 4 ~ -  c,. (23 1 
Estimation Error  Covariance 

At this point,  the statistical  accuracy  of the  location esti- 
mate gML will  be investigated  by  considering A,, the  2 X 2 
error  covariance  matrix  for  the  location  estimate, 

One error  analysis  technique useful in nonlinear ML estimation 
problems is to write  the  error  covariance as a linear  combina- 
tion  of  conditional error  covariances,  where  each  term is con- 
ditioned on  the  event  that  the  estimate falls into a certain  sub- 
set  of the overall parameter space [ 131 . This  approach is at- 
tractive because in  many cases approximate  conditional  error 
covariances may be determined  quite easily if the overall 
parameter space is partitioned  judiciously. 

To apply  this  technique,  the  set  of  possible  parameter values 
C is partitioned  into M nonoverlapping regions Co,  Cl , * , 
CM- (for  example,  rectangular  subsets  of  the  plane).  Letting 
Ei denote  the  event  when  the  peak  of  the log likelihood  func- 
tion lies in region Cj,  the error covariance may  be  expressed 
as 

Ae = Ajpi p i  4 Prob {Ej}  
M -  1 

j =  0 

where Ai denotes  the  estimate  error  covariance  conditioned  on 

Two  approximations are made at this  time in order to 
simplify  the analysis and  provide an approximate  expression 
for  the  error  covariance Ae. As will  be evident,  the  validity 
of  these  assumptions  depends  upon  the  choice of the ‘Ci. 
In  Section IV, a detailed  example is provided  which  includes 
a  discussion  of  how  one can deduce  the  appropriate size for 
the Ci from  knowledge of the  ambiguity  function. 

1) Let{’Yi:’Yj€C~,j=0,1;..,M- 1 )bease to fMpoin t s  
(with  respect to  a  coordinate  system  centered  at c a ) ,  and  for 
simplicity,  assume that Yo = c, E Co. Let Li e LA(Yi), that is, 

Ej . 

E {(Li - E {Li})(Li - E { L i } )  I = - a ~ ( 3 / i  - Yj). (26) No 
2 

The  first  simplification  which is made is to approximate  the 
log  likelihood  function LA(€) as being constant  on  each of the 
M regions, taking  on  the value Li at all points in the region Ci, 
j = 0, 1, * , M - 1. For this approximation  to be good,  the 
regions Ci should be sufficiently small in size so that  random 
variables LA(?‘) and LA(?”) are  highly  correlated  for  any  two 
points y’ and y” in C’; this  ensures  that  the value Li at  a repre- 
sentative point Ti is indicative  of  the log likelihqod  function 
value over the  entire region Ci. When LA(c) is thus  approxi- 
mated as being piecewise-constant,  the  computation  of  the 
probabilities p j  is simplified, 

pi = Prob {Li > Li ,  V i # j }  

In practice, the probabilities pi are computationally  intensive 
to determine  when  the log likelihood  function values Li are 
correlated,  although some  work  on  bounds is available [18] . 
In  the cask of  uncorrelated Li, bounds such as the  union 
bound  [13] are  more easily obtained  (approximately  uncor- 
related Lj  arise when the regions Ci are large in size). 

2)  The  exact  expression for the  conditional  error  covariance 
Ai in  (25) is  given by 

A.  = 
1 J-i?- yo)(; - Yo)’P(c^lEi)dc^l dC2 

= JJL(c - yi) + (Ti yo)] [(g - yi) + (Ti - Yo)] ’ 

ci 

ci 
p(2l.q) d2, dc^. (28) 

If Y j  is a  representative  point in Ci (e.g., the  centroid),  then 
conditioned  on  the  event Ei, j # 0 (i.e., the  event  that  the  log 
likelihood  function  peak i? lies in an  incorrect region Ci), the 
magnitude  of 7. - ’Yo (between regions) is much larger than  the 
magnitude  of k -  Yi (within  a  region),  and  the  conditional 
error  covariance  may be approximately  written as 

Ai % (2  - ‘YO)(? - 70)’ j + 0- (2 9) 

Using the  approximation in (29),  the error  covariance  in  (25) 
may be written as 

(3 0) 

In (301, Ao is the  error  covariance  conditioned on  the  event 
that  the  peak  of  the log likelihood  function  lies  in Co, the re- 
gion containing  the  true  location  point. If the region Co is 
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small enough so that all of  its  points  are close to  the  true  ob- 
ject  location c,, the Cramer-Rao bound  [13] provides  an  ac- 
curate  estimate  of  the  covariance  matrix A,, and in particular, 
of  its diagonal  components.  Specifically, 

[Ao]ii>  [J-']ii i E  {1 ,2 )  (3 1) 

where J is the  2 X 2 Fisher's information  matrix 

and L A ( € )  is the log likelihood  function  in  (23). By taking 
derivatives of (21), (32)  may be written in terms  of  the am- 
biguity function as 

i, k €  {1,2}.  (33) 

When the  object  location  estimate i& lies in  the vicinity  of 
the  true  location c,, then  the  estimate  error variance  is char- 
acterized  in  terms  of p i k ,  the  second  partial derivative  of the 
ambiguity  function  evaluated  at  the origin. 

In  practice,  evaluation of pik by taking two derivatives of  the 
ambiguity function is tedious,  particularly  for a discontinuous 
object fo(x) ,  since both  the  integrand  and  the  limits  of  integra- 
tion  with  respect to t in  (21)  depend on 4. The  following  anal- 
ysis makes use of  frequency  domain analysis of  the critical 
operations of interest in tomography  (the  Radon  transform, 
convolution,  and  the back-projection) to develop an expres- 
sion for pik which is evaluated more easily than  the expression 
in  (33). 

Evaluating pjk 

Letting F i l  {.} denote  the  2D inverse Fourier  transform 
[15] , and using capital  letters  to  denote  Fourier  transforms, 
where the vector o = (a1 a2)' represents  a  point  in the spa- 
tial  frequency  domain, 

a(€)  = F;' { ~ ( w ) }  

= sww I_ ~ ( w ~  , a2) ej2n(w1e1 + W 2 e 2 )  dwl dw2. 

(34) 

By taking  partial derivatives  of both sides, pjk may be  obtained 
in  terms  of A ( o ) ,  the  2D  Fourier  transform of the ambiguity 
function a(€)  

p. zk = - 4  T 2 F i 1  { u i w k  A(o ) } , , o  i, k E  {1,2}. 

(35) 

In a moment,  an expression is developed  for the  Fourier 
transform  of  the  ambiguity  function as a product  of several 2D 
Fourier  transforms.  First,  note  that  the  ambiguity  function 
a(€)  may be written as 

a(€)  = B(Rf * h * RT* h * E )  (36) 

where * denotes 1D convolution in the t variable in Radon 

space, f ( x )  = d *f , (x)  is the  object  situated  at  the origin  with 
contrast d ,  h(t)  is the  measurement  aperture, ?(xl, x 2 )  4 
f(-x,, -xz), and B and R are the back-projection  and  Radon 
transform  operators discussed in  Section 11. In this  expression, 
the Radon-space function E(t, 0) is a  sampling function  that 
allows the limited-view CBP, with an integral over the interval 
0 E [n/2 - A, n/2 t A), to be written as a CBP  over the con- 
tinuous  interval 0 < 0 d n. 

Claim I: In the continuous-view  measurement case, [ in 
(36) is given by 

where 

1 if  IT^< 
0 otherwise. 

rect (7) = 

The function [A : Y + R in (37) is a truncated impulse  sheet in 
Radon space, that is, it  is the  product of an impulse sheet 
along the 0 axis and  a 2D function  that is zero everywhere 
except  for 6 E [n/2 - A, n/2 t A), where it equals unity. 

Proof: See Appendix A. 
Since the  ambiguity  function  may be written as the CBP 

shown  in  (36),  its  Fourier  transform A ( o )  in  (35)  may be ob- 
tained  by using the  fact  that CBP may  be  written as a 2D con- 
volution (Davison and  Grunbaum [ 191 , Tuy  [20]). In partic- 
ular,  letting F ( o )  denote  the 2D Fourier  transform  of f(x) = 
d f, (x), it is shown  in  Appendix  B  that 

A ( o )  = IF(o)12 R i ( o ) B g ( o ) .  (3 9) 

Here BE(o) is the 2D Fourier  trarisfom  of b&), the back- 
projection of the Radon-space function E(t, 0). In (39), 
Rh(o) ,  due to  the measurement  aperture h(t), is a  circularly 
symmetric  function [since h(t)  is 0-independent]  with  a cen- 
tral  section given by H(w), the 1D Fourier transform  of h(t). 
The 2D  inverse Fourier  transform of Rh(w) will be denoted as 
rh(o) .  . The relationships in  (36)  and  (39) are  illustrated 
schematically  in Fig. 4. 

Combining (35)  and  (39),  the second  partial derivative  of 
the  ambiguity  function a(€) evaluated at  the origin, is  given by 

p. zk = - 4  n2F;' { W i a k I F ( o ) 1 2 R ~ ( o ) B g ( o ) } , = 0  

i, k €  {1,2}.  (40) 

The Back-Projection bt(x)  and Its 2 0  Fourier  Transform 
The  back-projection  of  the  truncated impulse  sheet t A ( t ,  0) 

is derived in  Appendix  A,  and is  given by 

0 otherwise 

where $ is the  angular'polar  coordinate  of x, $ € [-n/2,  n/2). 
The region  of the x plane  where bg, A ( X )  is positive is indicated 
in Fig. 5(a).  In the special  case of full-view measurements, 
where A = n/2 the  back-projection of tnl2 is positive every- 
where and is given by  the  function 1 /Ilxll. 

The 2D Fourier  transform  of bg,A(x) is also  derived in  Ap- 
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~ ( d  = F ( ~ P ( ~ R & ) B ~ ( ~  

Fig. 4. Schematic  representation of the transform relationships. 

t x 2  

(b) 
Fig. 5. (a)  Region  where ~ € , A ( x )  is  nonzero.  (b) RegiOnWheIeBJ+(X) 

is nonzero. 

pendix A, and is given by 

(0 otherwise 

where $J is the angular  polar  coordinate of o, $J E [0, n). The 
subset of the o plane  where B E , ~ ( o )  is positive is shown in 
Fig. 5(b); in  the full-view case,' it is positive  everywhere  and 
equals I / I I O I I . ~  

Summarizing, an expression is  given in (25) for  the ML loca- 
tion  estimate error  covariance as a  linear  combination  of  con- 
ditional  error  covariances.  The  probabilities pi in  this expres- 

31n the discrete-view measurement case, in (36) is a train of N two- 
dimensional impulses uniformly spaced on  the interval [ 0, n) along the 
e axis in Y .  The  back-projection b ~ ( x )  and  its Fourier transformi?@), 
in this  case, are both spoke functions [6] , [ 141. 

sion  are computed from (27) or some  approximation  thereof, 
and  the  conditional error  covariances are approximated  by 
(29) when j # 0, and  bounded as shown in (31) when j = 0, 
where the Fisher's  information  matrix  entries in (33) are  ob- 
tained using the inverse Fourier  transform  shown in (40).  Prior 
to evaluating  these  expressions,  the  regions Ci C C and  points 
3 E Ci must be chosen  appropriately.  In  the  next  section,  the 
constant-density disk object in Example 1 is reconsidered; 
systematic use of the  performance  analysis machinery  just 
developed is demonstrated  through  this  example.  In  par- 
ticular,  the ambiguity function for  the  object  localization 
problem is evaluated, the regions Cj and  point 'Yi are  selected 
based on  an  examination of  this  function,  and  an  approxima- 
tion  to  the  estimate error  covariance Ae is evaluated  for 
several different  measurement noise levels and  different values 
of  object  radius. As will be demonstrated,  localization  per- 
formance is characterized  by  a  clear  threshold effect; in par- 
ticular, it is possible to  identify, for  a given object  contrast  and 
a given measurement  noise  level,  the smallest object size that 
can be located  reliably. 

In closing,  it  should  be noted  that  the  problem of detecting 
a  constant  density disk object having known location by exam- 
ining a reconstructed image has been considered  by  Hanson 
[6] , who empirically  identified the relationship between mini- 
mum  detectable  contrast  and  object  diameter.  It is well 
known  [16]  that when the noise in projection  measurements 
is white,  the noise in the  reconstructed image is nonwhite. 
Hanson  demonstrated  the  necessity of appropriate 2D filter- 
ing  of the reconstructed  imagery; without such  filtering, 
human  interpreters have  difficulty  in  detecting large low  con- 
trast  objects in the presence  of  colored  reconstruction  noise. 
The  "appropriate" 2D filter  essentially  corresponds  to  a 
whitening  filter  [13] , which  undoes  the noise correlating ef- 
fect of  the CBP operation. 

IV. EXAMPLE 
Reconsider  Example  1 in Section 11, involving a  constant- 

density  object on  a disk  of  radius R centered  at  the  point c, € 
C C R 2  , and suppose that  the set C of  possible  object  loca- 
tions is itself  a disk of radius T .  

c = (x : llxll < T } .  (43) 

Since many of the expressions  in  this  section will depend  on 
T and k only  through  their  ratio,  the parameter k is defined 

k 2 TIR. (44) 

When the  object is located  at  the origin, its density function 
is given by 

This  density function is circularly  symmetric  and  consequently 
its 2D Fourier  transform is also circularly  symmetric [ 151 . 
Letting f ( r )  and F ( p )  denote  the  density  function  in  (45)  and 
its 2D Fourier  transform as functions  of  their  radial  polar  co- 
ordinate  only, 

f(r) = d ' rect ( r /2R)  (46) 
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where  rect(t) is defined in (38), and F(p),  known as the 
Fourier-Bessel or Hankel  transform  of  order  zero  off@) [ 151 , 
is  given by 

F ( p )  = 2a I,’ f(r) JO(2arp) r dr = (Rd/p)Jl  (2nRp). 

(47) 

Here, Jo(.) and J1(-) are  Bessel functions of the first  kind of 
order  zero  and  one, respectively. 

In this  example,  the full-view measurement case is con- 
sidered-the  measurements  are noisy projections  that are 
band-limited, i.e., smoothed  by 2W times the sinc  aperture 
in (5). The  1D  Fourier  transform of h(t) is 

H ( o )  = rect ( 4 2 W ) .  (48) 

In  the full-view  case  being considered, 

1 
4 ,  a(o) = 11011’ (49) 

The  ambiguity  function  and  its 2D Fourier  transform  in (39) 
are both circularly  symmetric.  Denoting  them  respectively  by 
a(r) and A ( p )  as functions  of  their  radial  polar  coordinates 
only, a(r) may be  expressed  in  terms  of the inverse Hankel 
transform [15] as 

a(r) = 27f A(p)Ji3(2nrp)p dp. 6- (5 0)  

From (39), (47)-(49), and  a  change  of  variable, 

R W  
a(r) = 2rd2R3 1 J1”(2ap)J,(2apr/R)(1/p2) d p  

P Ea*(r/R, R W )  (5 1) 

where E is the energy  in the  Radon  transform (i.e., the signal 
part  of  the measurements), 

E q n l :  
{ 2 d d m } 2  dt dB = - nd2R3.  (52) 

16 
3 

The  normalized  ambiguity function a* is seen to depend  on 
the  spatial  bandwidth W only  through  the radius-bandwidth 
product R W ;  a* is plotted  in Fig. 6 for several  values of R W .  
The radius-bandwidth product  has a  simple interpretation; it 
equals the  object radius R ,  expressed as a  number of  wave- 
lengths at frequency W .  As Fig. 6  indicates, the general  shape 
of  the  location  ambiguity  function is virtually  independent of 
the value of  radius-bandwidth  product  for values of RW in 
excess of 0.5, i.e., whenever the  object  diameter exceeds  one 
wavelength at  frequency W .  In  this  example,  performance is 
analyzed  for  radius-bandwidth products  in excess of 0.5. 

As was  discussed in Section 111, an approximation to  the 
error covariance  of the location  estimate  may  be  obtained  by 
partitioning  the  parameter space C into M nonoverlapping 
regions Cj, and  then evaluating the linear combination  of  con- 
ditional  error  covariances  in (30), where Yj is a  point  in Cj. In 
this  example, C is a disk of radius T,  and  it is partitioned  into 
square regions of side length 2R, centered at  the points 

0 
-6  - 4  - 2  0 2 4 6 

R W = m  

I lel l iR 

Fig. 6 .  Centxal  section of the normalized  location  ambiguity  function. 

yj E {(2Rm,  2Rn):(2Rm,  2Rn) E C, m, n integer}. ( 5 3 )  

This value  of region size, although  somewhat  arbitrarily  chosen, 
appears to  be  appropriate  in view of  the discussion in  Section 
I11 and  the form  of the ambiguity  function in Fig. 6 for RW> 
0.5. In  particular, each region Cj is small enough so that  the 
log  likelihood  function L(E) can,  for  the  purposes  of  global 
error analysis,  be  reasonably  approximated by a piecewise 
constant  function  on regions q, yet large enough so that  the 
statistical  correlation  between  random variables L and L j ,  i # j ,  
is small enough to allow, an  easy  approximation to the  proba- 
bilities pi  in (27), as  is  discussed shortly. 

When the regions Cj are  squares  with  side  length 2R, the 
number  of regions in the disk C is  approximately  the  ratio 
of the disk area nT2 to  the region area 4R2, or  using k in (44), 

To proceed  with  evaluation of the  approximate  error co- 
variance in (30), the probabilities pi in (27)  and  the condi- 
tional  error  covariance A. are  needed.  Considering the first 
of  these,  the set  of  random variables Lj = L@), j = 0 ,  1 ,  * . , 
M - 1  are jointly Gaussian and as indicated  by (26) and Fig. 6, 
have nonzero  mean  and  nonzero covariance. Because the log 
likellhood function values Lj are correlated,  determination of 
the probabilities pi in (27) is computationally  intensive, involv- 
ing an  M-dimensional  numerical  integration if evaluated di- 
rectly.  The analysis  of this  example will exploit  the  fact  that 
the coefficient of correlation  betweenLi  and Lj, 

is  always  less than 0.35, for i f  j .  This  correlation is neglected, 
and  the  random variables Li and Lj  are approximated as  being 
uncorrelated  when i # j .  This is equivalent to assuming that 
the  ambiguity  function equals zero  for lr/R I > 2. 

The  error  introduced  by  this  approximation is minor,  and, 
in  fact,  this  approximation  makes the results conservative in 
the following sense.  When the Lj are  approximated as  being 
uncorrelated,  and  conditioned  on c, = To, the  probability 
masses at  the  points 3 are  identical  for j = 1, 2, . . * , M - 1. 
That is,  conditioned on  the peak  lying in  an  incorrect region, 
under this  approximation  it is equally  likely to occur in any 
one of the regions C1, C 2 ,  . . , C M -  1, and 
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Actually,  however, since the ambiguity  function is  positive and 
monotonically decreasing away  from the point c, , if the  peak 
lies in  an  incorrect  region,  it will be  more likely to lie  close to 
the  location of the  true  object,  rather  than far  away. 

Under  the  approximation of uncorrelated Li,  a simple ap- 
proximation  for  the probabilities pi  in (27)  may  be  obtained. 
If the  true  object  location ca is Yo,  then  the  union  bound  [13] 
may  be  used to approximate  the  probability of error  1 - p o  as 

Prob(error) = 1 - p o  = 1 - Prob {Lo >Li,  V j  # 0 )  

( 5  7) 

While the last  line is an  upper  bound  on  the  error  probability, 
it is tight  for values of E/No in excess of 5 or so [ 131 ; since the 
performance is  assessed for  SNR values greater than 5 in  this 
example, the expression in (57) is treated as an accurate ap- 
proximation to  the error  probability,  rather  than as a bound. 

Using (56),  the  approximate  error covariance in (30) be- 
comes 

( 5 8 )  
The (M - 1)-term  summation  corresponds to the second  mo- 
ment  about  the  point Yo of a  discrete 2D random variable 
which is equally  likely to occur at any  one o f M  - 1  points  on 
the lattice 

{(2Rm, 2Rn):(2Rm,  2Rn) 

E C, m ,  n integer,  not  both zero}. ( 5  9) 

This moment is  well approximated  by  considering  a 2D con- 
tinuous  random variable  uniformly  distributed on  the disk C; 
it has a  second  moment  about  the  point Y o  = c, of 

where ca = (tal caz)' .  For  the sake  of  illustration,  only  the 
case where the object is located at  the origin is considered 
here,  in  which case (58) becomes 

A e  A O P O  + (1 - po>(T2/4) (6 1) 
where I is the 2 X 2 identity  matrix. 

The final step in the  performance  characterization is the 
local  error  analysis involving computation  of  the  2 X 2 Fisher's 
information  matrix J .  From  (33),  the  ikth  entry  in  the Fisher's 
information  matrix is - (2/N0)Pik, where  from  (40),  (42), 
(47),  and  a change to polar  coordinates ( p ,  $), 

r n  

where 

1 cos2 $ if i = k = l  

v(+) = sin2 $ if i = k = 2  (63) 

cos$ sin$ if i f k .  

Performing the integration  with  respect to $, P12 = Pz1 = 0,  and 

277R W 

B i i = - 2 R ( ~ 4 ~ i  J : ( p ) d p  9-(3n/8RZ)Ep(RW) 

iE {1,2}  (64) 

where E is the  Radon transform energy  given in  (52). By the 
symmetry of the problem,  then,  the Fisher's information ma- 
trix is a scalar times the 2 X 2  identity  matrix,  and  from (3 l )  
the diagonal  entries  of the  conditional  error covariance A, are 
bounded  by 

[AOlii> - - i E  {1,2}. NO 
2Pii 

A plot of the  function p(RW) in  (64)  for RWE [0, 10) is 
shown  in Fig. 7 .  Note  that  p(RW) is a  monotonically  nonde- 
creasing function  and as RW approaches  infinity (i.e., for a 
fixed  object size R ,  as the  measurement system bandwidth W 
approaches  infinity), p(RW) becomes  infinite.  This  implies 
that  the  ambiguity  function a(r) is not twice  differentiable  in 
the limit RW + 00 [ s ( t ,  6) approaches  a half-ellipse which  has 
points  of  infinite  first derivative] , and  the Cramer-Rao  lower 
bound in (65) degenerates to zero.  This is a well-knownphe- 
nomenon  that also arises in  radar  performance analysis in  the 
limiting case  of infinite  measurement  system  bandwidth [21]. 
In any  practical  case,  smoothing  or  bandlimiting  of the projec- 
tion  measurements always occurs, so that  the  aperture h(t) 
is nonimpulsive and  the  radius-bandwidth  product is finite. 

Denoting  by u," the diagonal entries  in  the  approximation 
ton,  in (30), it  follows from  (61)  and  (65)  that 

Finally, by incorporating  the  approximation  for  (1 - p o )  in 
( 5 7 ) ,  approximating M - 1 as shown  in  (54),  and using (64), 
the  error covariance u," normalized  by T 2  , is approximately 
lower bounded by the following quantity. 

2 4 (y) = 3nk2 @/No)  p(R W )  

+ [-- 1 

-exp (- g-). 
The  dependence of the localization  performance  on the ob- 

ject size R ,  for a f i e d  value of density,  may  be  illustrated  by 
substituting E from (52) and  considering (67)  for fixed values 
of d2/No. The inverse  of this  normalized  error  variance is 
plotted in Fig. 8 versus normalized  object size R/T for  three 
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0 2 4 6 8 1 0  
RW 

Fig. 7. N(RW) versus  radius-bandwidth  product. 

Fig. 9. Image representation  of  the single-object  cross-sectional  density 
function. 

R/T 

Fig. 8. Localization  performance versus normalized  object size. 

values of d 2 / N ,  = 60, 500, and  7500,  with W =  50. These 
curves depict  a  very  strong  threshold  behavior  in  localization 
Performance;  for  a given object  contrast d and noise levelN,, 
there  exists  a  clearly  defined smallest  sized object  that  can be 
located reliably from noisy  projection  data. 

Summarizing, the analysis of this  section  has  focused on  the 
problem of  using noisy, full-view projection  measurements  of 
a  cross-section to estimate  the  location of a  constant-density 
disk object. A framework  has  been  presented  for  evaluating 
the estimation  performance.  Quantitative  performance anal- 
yses may also be  carried out  within  this  framework  for  the 
cases of limited-view (A < n/2)  and discrete-view projection 
measurements,  as well as for  other  object  models, such  as the 
Gaussian object  mentioned in  Section I1 [ 141 . 

V. COMPUTER SIMULATION 
A limited  amount of noisy  projection  data were generated 

by  computer  and were processed using a CBP algorithm for 
two  purposes: 1) to determine  the  2D log  likelihood function 
for  the  unknown  object  location,  and 2 )  by using a  conven- 
tional  reconstruction  kernel, to develop an  estimate  for  the 
2D cross-sectional  density function. 

The  specific  example  considered  in  these  simulations is the 
simple disk object  of  Example 1, having  radius R and  situated 
within the disk C of  radius T. The  object size is chosen so 
that k = T/R in  (44)  equals 5. For  notational convenience, the 
geometry is normalized so that T equals unity, in which case 
the object  has  a  radiusR = 0.2. The  actual  object is located at 
the  point  (0.2,  0.4); an  image representation of this cross sec- 
tion is shown  in Fig. 9. 

A total  of 105 projection  measurements  were  calculated, 

corresponding to  infinitely  narrow line integral  measurements 
(RW = -) using a  parallel-ray  measurement  geometry. Five 
views were  generated at angles @i = jn/5, j = 0,  1, * . ,4 .  Within 
each  view,  integrals were calculated along 21 parallel lines  with 
t values satisfying tm = O . l r n ,  m = -10, -9, . * , 10, corre- 
sponding to an  inter-ray spacing  of 0.1. 

Pseudorandom  white noise  samples  having zero  mean and ad- 
justable  variance u2 were added to  the  105 line  integrals to 
provide  noisy  measurements y(t,, Oi) .  The  measurement sig- 
nal-to-noise  ratio (SNR) in  dB is defined as 

where Ed is the  Radon transform energy 

and g(t, 8) is the  Radon  transform of the simulated  density 
function. 

The  noisy data y(t,, e j )  were  processed to develop 240 X 
240 pixel images (16 grey levels per  pixel) by using the CBP 
equation 

The convolving kernel z ( t ,  0)  is given by  one of two  functions, 
depending on whether  the log likelihood function  or a  recon- 
structed image  is  being computed.  In  each case, a piecewise 
linear  approximation to  the ideal continuous convolving kernel 
was used in  order to reduce the  computation time. 

Since the disk object is circularly  symmetric, the convolving 
kernel  for  the log likelihood function evaluation,  denoted  by 
Z L L ( ~ ) ,  is @-independent,  and is given by  the following  piece- 
wise linear  approximation to  the projection of a disk with  a 
radius of 0.2. 

2.\/(0.2)~ - t 2  if It1 < 0.2, t an  integer 

0 if It\ > 0.2, t an  integer i multiple  of  0.02 
ZLL ( 0  = 

multiple  of  0.02. 

(7 1) 
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If t is not  an integer  multiple  of  0.02,  the value of z L L ( t )  is 1 if 1x1 G0.2 
obtained  by linear  interpolation of its  two nearest values in = { 
(71). 

0 otherwise. . ,  
In  calculating  a  reconstructed  image, the convolving kernel, The image in Fig. l l(a) is the result  of matched filtering the 

denoted zr(t) ,  is the 0-independent  kernel  presented  in  Shepp image in Fig. 10(b)  with f,(x), with the gray scale distributed 
and Logan [ l ]  , and is  given by the piecewise linear function on  [0.6,  11. Similarly, Fig. 1 l(b) is the result  of matched 

filtering the image in Fig. 10(d),  with  the gray scale distributed 

10n 0.25 - loot2 to  the log likelihood images in Fig. lO(a) and (c), although  the 

if t is an  integer  multiple  of  0.1.  (72) log likelihood images were computed directly  in much less 
time than  the  two-step process of first  reconstructing  and  then 

If t is not  an integer  multiple  of  0.1, the value o f z d t )  is ob-  performing  2D matched filtering.  The  similarity  of  these  im- 
tained  by  linear  interpolation Of its  two nearest VdUeS in (72). ages  is due in  part to the robustness of the  matched  filter- 

In  this  simulation,  two mea.SUrement SNR noise levels (68) even though  the  matched  filter  in  (73) is optimal  only  in  the 
were  used,  namely 0 and -3 dB,  and the Same noise samples at presence of  white image noise, its  performance is very  robust 
each level were used with  both convolving kernels. T O   ~ i m -  to the presence of nonwhite  noise. 
plify interpretation  of  the images, the image  values are first 
normalized to  the interval [0, 11 with 0 and 1  corresponding VI. CONCLUSIONS 
to black and  white,  respectively, and  the 16-level gray scale is In  this  paper the  problem  has  been investigated  of using  ML 
then  uniformly  distributed  on  the interval  [0.6, 11 or 10.759 estimation  methods in order to locate  a single object  whose 
11  as indicated,  resulting  in the blackening out of lower inten- geometry is known  precisely a pn'ori. An approximate  expres- 
sity  regions. sion was  developed in Section 111 for  the  location  estimate 

Fig. lo(a)  and (b)  corresponds to  the log likelihood  function error,covariance,  reflecting contributions  due to both local and 
[kernel  in  (71)l and  reconstructed  image  [kernel in (7211 global errors. In  Section  IV,  an  approximation  to  this expres- 
respectively,  when the measurement  SNR is 0 dB  and  the gray sion was evaluated  for  a  constant-density  disk object;  the re- 
scale is distributed on  the interval [0.6, 11. Fig. ~ O ( C )  and (d) sults  of  this  example  indicate  that  for  a given value  of  object 
is the  likelihood  function  and  reconstructed image for  an contrast d and noise spectral  levelN,,  there  exists  a  minimum 
SNR  equal to -3 dB,  with  the gray scale distributed on  the value of  object size for which  reliable  localization  may  be 
interval [0.75,1]. Notice  that  for  both  measurement  noise performed. 
levels the image reconstruction  kernel z ~ ( t ) ,  because  of its A computer  simulation was also presented  which  illustrates 
higher  gain at high  frequencies,  leads to spurious  peaks  in  the the evaluation of the log likelihood function for the localiza- 
reconstruction, all having approximately  the same size and dis- tion o f a  constant-density  disk  object  from  computer-generated 
tributed  throughout  the cross section.  The log likelihood noisy  projections,  as well as the evaluation of a  reconstructed 
function, on  the  other  hand,  has only  one  peak  in  the C dB image from the Same noisy measurements.  These  simulations 
case,  occurring  at  (0.24,  0.34),  which is  very  close to the  true demonstrate that  at high noise levels and  with a  limited  num- 
object  location (0.2, 0.4). In  the -3 dB  case, the log likeli- ber of  projections,  an  object  in a cross section is much  more 
hood  function  has several secondary  peaks,  but  the  major easily  discerned by examining the log likelihood  function  than 
peak,  located  at  (0.18,0.49), is also  close to  the  true  location. by examining  a  reconstructed  image  that  has  not  undergone . 

localization is difficult  by  direct visual examination  of  noisy  The  focus  of  Part  I was the simple  problem  of  locating  a 
reconstructed  imagery. As  discussed at  the  end  of  Section 111, single object of known  contrast  and  density distributionf,(x), 
image post-processing to extract  object  related  information  superimposed on a known background field that  contains  no 
has been  considered  by  Hanson  [6]  and  others.  In the pres- additional  objects. By casting the  problem in  this  framework, 
ence of projection  measurement noise that is white,  the re- insight was obtained  about  the CBP computational  structure 
constructed image  noise is nonwhite [ 161 , in which case opti-  of  the log likelihood function evaluation, and  the  performance 
mal  object  localization  from  reconstructed  imagery involves of  the ML estimator was characterized. In  Part 11, robustness 
2D noise prewhitening  followed  by  matched  filtering. A sub- issues are  addressed, in particular,  the robustness of these 
optimal  approach to post-processing  a  reconstructed image procedures  when  applied to less idealized  versions of  the  prob- 
for  object  identification puqoses, and  one  that is quite  often lem that  take  into  account,  for  example,  that  the  object size, 
used in image processing, is to perform  matched  filtering as- shape,  or detailed  density  variations may differ  from  those 
suming  that the measurement noise is white.  For  the  present  that are  assumed,  or that  additional  unmodeled  objects  may be 
problem,  this  corresponds to performing  2D matched filtering  present  within the cross section. 
on  the  reconstructed image  using a  disk  object  template. 

processed  by  treating the reconstructed image  noise  as white, ROBUSTNESS ANALYSIS 
and  performing  matched  filtering to locate  a  constant-density I. INTRODUCTION 
object  of  radius  0.2.  The  following  2D  matched  filter  tem- In  Part I, the  problem of locating  an  object  in a  cross  section 
plate was  used. using  projection  measurements was considered;  the  perfor- 

1  1 
q( t )  = - on [0.75,  11.  These  two images  are  seen to  be very similar 

As indicated  by Fig. 10(b)  and (d),  object  detection  and  time-consuming  post-processing. 

The  reconstructed images in Fig. 10(b) and (d) were post- PART I1 
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(c 1 
Fig. 10. (a) Log likelihood  func 

(b) Reconstructed image, SNR 
likelihood  function,  SNR = -3 
structed image, SNR = -3 dB, s( 

(dl 
tion, SNR = 0 dB, scale = [0.6, 1.01. 

dB, scale = [0.75, 1.01.  (d)  Recon- 
= 0 dB, scale = [0.6, 1.01.  (c) Log 

:ale = [0.75, 1.01. 

@) 
Fig. 11.  (a)  Result of convolving the  image in Fig. 10(b)  with fc(x);  

scale = [0.6, 1.01. (b)  Result of convolving the image in Fig. 10(d) 
with fc(x); scale = [0.75, 1.01. 

mance was analyzed and  illustrated  with  an  example  and simu- 
lations. A number of assumptions were made in the course of 
this development, including the following. 

The  measurements are projections observed through  a 1D 
measurement  aperture  and corrupted by additive white 
noise; evaluation of the  projection  at any point is given by 
the integral of the density field along a  straight  line, see 
(1.1) and (1.4), 
The cross-sectional field consists of exactly one object 
profile superimposed on  a background field that is known 
exactly, see (1.3). 

e The  boundary  shape and  detailed  density variations cor- 
responding to the  object are known precisely, i.e., the 
contrast parameter d and  the  object f , (x)  are assumed to 
be  known, see (1.3). 

(1) 
These assumptions were made in Part I so that insight into 

the  structure  and performance of the ML estimator  could  be 
more easily obtained. In practice,  these  assumptions are never 
completely satisfied, and as a consequence, the  localization 
performance is to some degree adversely affected. 

In this part of the  paper, several specific types of modeling 
errors or deviations from the assumptions in (1) are consid- 
ered, including errors  in the modeled  object contrast, size, and 
shape,  and in the number of  objects  that are assumed to be 
present.  For purposes of  illustration:  Example 1 in  Part I is 
reconsidered, in which the cross section is modeled as the 
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superposition  of  a  background  field fb(x)  and  the single circu- 
larly  symmetric disk object 

{ 
d IIx - cII  G R  

0 otherwise 
d.f ,(x - c ; R ) =  ( 2 )  

whose Radon  transform d -go(t  - c’8, 8 ;  R )  is  given in (1.15). 
The Radon  transform  subscript ‘‘0’’ refers to  the modeled 
object  situated  at  the  origin.  In  this  analysis,  modeling  errors 
will be  considered  by  taking the  actual cross  section to be the 
superposition  of  a  background  field  and N objects,  and is 
represented as 

Here, the  kth  object  has  contrast d k ,  location ck, and is char- 
acterized (e.g., size,  shape, orientation, or  detailed  density 
variations)  by the finite-dimensional  parameter  vector 6 k .  

Within  this  framework, the sensitivity  of the ML localiza- 
tion performance to various  modeling  errors is investigated. 
In  particular,  object  density, size, and shape  modeling  errors, 
as well as the presence of,one  or more unmodeled objects  are 
examined via the following  choices  for the  actual field in (3). 

0 Density and size modeling  error-the  actual  field is a single 
(N = 1 )  disk object of incorrectly  modeled  contrast dl 
and radius R . 

0 Shape modeling  error-the  actual  field is a single ( N =  1 )  
constant-density  object having an ellipsoidal boundary 
with  eccentricity A. 

0 Presence of unmodeled  objects-the  actual  field is the sum 
of one  correctly  modeled disk object (i.e., dl = d and R 1  = 
R )  plus N - 1 disk objects all having the same unknown 
dens i tydk=d ,andrad iusRk=Ru,k=2 ; -* ,N .  

As was the case in Part  I,  the background  field fb(x) is as- 
sumed in this  analysis to be known,  and  without loss of gen- 
erality is taken to  equal  zero. In this  case,  from (I.l),  the 
Radon transform of the  actual field in (3)  is 

The  focus  of  this  analysis will be on global  rather than local 
estimation  errors;  consequently,  the  measurement  at  the  point 
( t ,  0 )  in  Radon space is taken  to be the  projection  at angle 
6 evaluated at  the  point t (i.e., the special case of the measure- 
ment model in (1.4) where the measurement  aperture h( t )  
is impulsive), 

A t ,  8) = g( t ,  e> -k w ( t ,  e> 

= d k . g ( t - C ; 8 , 8 ; 5 k ) t W ( t ,  8 )  
N 

k= 1 

(t,  e )  ES c Y. (5) 

For  purposes  of  illustration,  only the case of full-view mea- 
surements, S = Y, is considered  here. 

As shown in Part 1, the ML estimate  of  the object  location 
c E  R 2  is obtained  from  noisy  projection  measurements  by 
locating the maximum  of the log likelihood function 

where d . g,(t, 8 ;  R )  is the  modeled  object  Radon  transform. 
The  second  term  in (6) is a  correction  for  the  energy  in  the 
Radon-space matched filtering  template d .go(t? 8 ;  R). Since 
this  energy  is  c-independent and  the modeled  object  radius R 
is fixed,  the second  term in (6) is constant  and  may be disre- 
garded, as can the scaling factor 2/N,, leaving 

L ( c ) = a J * [ = y ( t ,  e )g , ( t -c ’e ,e ;R)d tde .   (7)  
0 -= 

Using ( 9 ,  the log  likelihood function becomes 

.go(t - c’e, e ; R ) d t d e  

I’ la- w( t , e ) -g , ( t -  c’e,e;R)dtde 

N e ddka(C;Ck,R,3k)+lZ(C,d ,R) .  (8) 

The log likelihood  function  in (8) is a  generalization  of the 
expression in (1.21). The last  term is a zero-mean  random  field 
with  a second moment  that depends  only on  the  modeled 
field,  and  each of the remaining N terms  corresponds to  one 
of the N actual  objects. 

The  performance  of the  location  estimator  may  be  character- 
ized  by  examining the  estimate  error covariance-such  analysis 
led in Part  I to  the consideration of  two  types  of errors, 
namely  local and global  errors.  Local  error was characterized 
using the  Cramer-Rao  bound in (1.31)-(1.33). Global  error was 
characterized by evaluating an  approximation to pi in (I.27), 
the  probability  that  the log likelihood  function is a  maximum 
at  the  jth of M points in the plane 

k = l  

{Ti} E {(2Rm,  2Rn):(2Rm, 2Rn) E C, m, n integer}. 

(9) 
The  principle  focus  of  this  paper is on’characterizing major 

degradation  (associated  with  global  types of errors)  in the per- 
formance  due  to modeling  errors by evaluating  a bound  on  the 
probability p o  (one minus  the  probability of  a  global  error) 
that applies  when the actual  and  modeled  fields  differ.  Global 
error  analysis in the presence  of  modeling  errors is concep- 
tually  identical to  the analysis  carried out in Part  I.  In  the 
presence of modeling  errors,  however, the  conditional  ex- 
pected value of  the log  likelihood  function is no longer  ap- 
proximately  zero  at  the  points Yi,j # 0. This  has the effect of 
decreasing p o  = prob { E o } ,  the  probability  that  the log  likeli- 
hood  function peak  occurs in the vicinity of  the  actual  object 
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location. By  assessing the  manner  in  which  this  probability 
decreases in the  presence of particular  types of modeling  errors, 
insight into  the robustness  of the localization  procedure  may 
be  obtained-this is the  approach pursued in this  part  of  the 
paper. 

In  the presence  of  modeling  errors, m ,  the conditional  ex- 
pected value of  the vector of log likelhood  function values on 
the  set  of  points {Yj}, cannot be approximated as  having only 
a single nonzero  element. In this  case,  a  different bound  on 
pj than  that in (1.57) may  be  obtained (see Appendix C for  the 
details), and is  given by 

1 exp (- q) dx 

where 

and u2 is the log  likelihood  function variance at  each  point Yi. 
In the remainder of Part 11, the  three specific types  of 

modeling  errors  listed previously are  considered,  and for  each 
case the bound on p o  (one  minus the probability  of  a  global 
error)  in (10) is evaluated.  In  Section 11, degradation  in the 
global  localization  performance is  investigated for  the case 
where  a single disk object is present  but  its  contrast  and size 
are not  known precisely a priori. In  Section 111, the robustness 
of  object  localization to shape modeling  errors is considered 
for  the case where the actual  object is not a  disk object,  but is 
instead  elongated.  In  addition  to  global  error  robustness 
analysis, local  error  robustness is characterized using Cramer- 
Rao  bound analysis. Finally,  in Section IV, the sensitivity  of 
the global  performance  to  the  presence of one  or  more  un- 
modeled  objects is investigated. 

11. CONTRAST AND SIZE MODELING ERRORS 
In  this section, the way in  which  localization  performance 

degrades  when the size and contrast  of  the  actual  object are 
known imprecisely  is  examined. The  modeled field is the disk 
object  shown  in  (2);  suppose  that  the  actual field consists  of 
a single disk object  with  radius R, and  contrast d, (not neces- 
sarily equal to R and d ) ,  and  located  at  the  point c,. In  this 
case, the log likelihood function in (8) becomes 

L(c, ~ a )  = d  . d,  iv 1; g(t - CA 6, e;Ra> 

. g o ( t - c ’ 6 , e ; R ) d t d e + n ( ~ , d , ~ )  

Letting Eo represent the Radon-space  energy  in  a  unit-con- 
trast,  unit-radius  disk  object [see (1.52)], E,, the Radon-space 
energy in the  actual  object, is  given by 

E, = d: R: E,  (14) 

and (13) may  be written as 

L(c, c,) 4 Ea (:) .*(x 1 (c - c,), RIR,) + n(c,  d ,  R j  

(1 5) 
where 

Since both  the actual  and  modeled  objects  are  circularly  sym- 
metric, the normalized  ambiguity function  in (16) is  also cir- 
cularly  symmetric,  and  a  central  section  of  it is illustrated  in 
Fig. 12 for several  values of R/R, . Notice  that  the  width  of 
the peak  (full width  at  half  maximum), relative to  R ,  is essen- 
tially constant  when  the  modeled size exceeds the actual  size, 
and  the  width  of  the peak increases when the actual size ex- 
ceeds the modeled size. That is, the  width is determined es- 
sentially by  the size of the larger of  the modeled  and  actual 
objects. 

In  order to  determine  how po  (one  minus  the  probability  of 
a  global  error) is affected by  incorrect  knowledge of the object 
size, the vector of log  likelihood  function  means m on  the set 
of points {Yi} in (9) is evaluated, as is the variance u2, con- 
ditioned  on  the  actual  object  location being Yo = 0 and k = T/R 
in (1.44) equal to 10.  The  mean value  of the log  likelihood 
function  at  the  point 3, from (1 5) is 

The variance of the log likelihood function is 

U’ =E{n2(c, d ,  R)}  = -Ea*(O, 1) = ENo/2 NO 
2 (18) 

where E denotes  the energy in the modeled object, E=  d2R3Eo. 
Finally,  the  probability p o  is bounded as in (lo), where 

Notice that, as expected, mi/” does not  depend on  the value of 
the  modeled  contrast  parameter d ,  and  depends on  the actual 
contrast d, only through  the energy  term in (14). 

Fig. 13 illustrates the lower  bound on p o  versus the measure- 
ment SNR (10 log E,/No) for several  values of RIR,. The best 
global  performance is seen to correspond to perfect  object size 
information (R/R, = 1 j .  In  the presence of moderately sized 
modeling  errors,  however, the global  performance  appears to 
be  very  robust-even  when the modeled  object  area is in  error 
by 50 percent,  the measurement  SNR  must  only  be  increased 
by  2  dB or so to maintain  a  constant  global  performance. 



ROSS1 AND WILLSKY:  RECONSTRUCTION FROM PROJECTIONS 901 

-10 - 5  0 5 10 
IIrIl/R 

Fig. 12. Normalized location  ambiguity  function in the  presence of size 
modeling  error. 

SNR (dB) 

Fig. 13. Lower bound  on p o  versus measurement SNR in the presence 
of size modeling  error. 

111. SHAPE MODELING ERRORS 
In this  section, the way  in  which  localization  performance is 

adversely affected  when the shape of the  actual  object is not 
known precisely is evaluated. As before,  the  modeled  object 
is the disk object in (2);  the  actual field  consists  of  a single 
constant  density  object  on  an  ellipse, 

whose Radon transform is denoted byg(t, 8; R,, X). This ob- 
ject  can be thought  of as arising by  applying the  coordinate 
transformation 

to  a  disk  object  of  radius R, situated  at  the  origin.  Letting 
Eo@)  denote  the Radon-space  energy for  the  object  in  (20) 
when d, = 1 and R, = 1 , the Radon-space  energy for  the  actual 
object is given by 

E, = di  R,” Eo(X). ( 2  2) 

From (8), the log  likelihood  function for  the  location estimate 
is given by 

L(c, c,) = d d, lTJ: g ( t - c i o , e ; R a ) h )  

‘ go(t - c’O,8; R )  dt  d6 t n(c, d,  R )  

E, (G) a*(; (c - c,)) RIR,, X n(c, d, R )  ) 
(23) 

where 

(24) 

As in the  previous  section, the vector  of log likelihood  func- 
tion means m and  the variance u2 are  evaluated and used  in 
(10)  to  obtain  a  bound  on  the  probability p o  in  the presence 
of  shape  modeling  errors.  The  mean value of the log  likeli- 
hood  function  at  the  point Yi, from (23) ,  is 

The  variance u2 is ENo/2 as previously,  where E denotes  the 
energy in the modeled  object E = d2R3Eo.  The  probability 
p o  is bounded as in (lo),  where 

(26) 
Fig. 14  illustrates  the  lower  bound  on p o  versus the measure- 
ment  SNR in dB foractual object  eccentricities  of 1 , 2 , 4 ,  and 
9. The  global  localization  performance is seen to be quite 
robust to eccentricity  modeling  errors. 

This  robustness to shape  modeling  errors suggests that  in 
the presence  of  noncircularly  symmetric  objects,  it may  be 
feasible to employ recursive parameter  estimation  procedures, 
in which an object’s  location is first  estimated using a rela- 
tively  simple  circularly  symmetric  object  model.  Once the 
location is estimated using a  circularly  symmetric  model, more 
complicated  noncircularly  symmetric  object  models may be 
used to  estimate  finer  details of the  object  profile, see [14]  for 
further details. 

In  this section,  a  lower  bound  has  been  presented  for the 
probability  that  a global error  does not occur in estimating the 
location of an  object in the presence  of  shape  modeling  errors. 
As shown in Fig. 14,  for  a  sufficiently  high SNR,  the  location 
estimate  has a high probability  of being ‘‘close’’ to  the  actual 
object  location-more  detailed  characterization  of the estima- 
tion  error (e.g., addressing the  question of  whether or  not  the 
estimate  lies  within the actual  object  boundary)  may be ob- 
tained  by  performing  Cramer-Rao bound analysis in the pres- 
ence of  model mismatch. In  the following  section, such an 
analysis is performed  and the local error  covariance in the 
presence  of shape modeling  errors is bounded. 

Local Error Analysis 
As discussed in  Part I,  the Cramer-Rao  bound  provides  an 

accurate  estimate  of  the  local  error  covariance  matrix A,; in 
particular,  from (1.3 1)-(1.33) 

[Ao]ii> [ J - ’ ] i i  i E  { 1 , 2 }  (27) 

where J is the  2 X 2 Fisher’s  information  matrix, 
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I I 

SNR (dB) 
Fig. 14. Lower bound  on p o  versus  measurement SNR in the presence 

of shape  modeling  error. 

(28) 

where a(€) is the  ambiguity  function  in (1.23). One  derivation 
of  this expression  comes  from  examining the  error covariance 
for a linearized  version of  the  problem (linearized about  the 
actual  object  location);  the  ensuing  linearized analysis holds 
for  both  perfect and  imperfect  modeling.  In  the  latter case, 
the local  error analysis corresponds to determining the esti- 
mate  error  covariance  for  a  linear  estimation  problem  in  which 
the  measurement  model used is inaccurate. 

For  the case  being considered  in  this section,  the  modeled 
object is the disk object  in  (2),  the  actual  object is a constant- 
density  object on an ellipse as  shown  in  (20),  and  for  simplicity, 
further assume that R = Ra and d = du. When the  measurement 
aperture  function h(t) is 2W times  the sinc function  in (IS), 
& in ( 2 8 )  is  given by 

where 

. J1 (PI dP (30) 
where v ( $ )  and E, are  given in (1.63) and  (22), respectively. 

For  purposes  of  illustration,  this  expression  has  been evalu- 
ated  for values of  actual  object  eccentricity  equal to 1, 2, 4, 
and 9, and  the  radius-bandwidth  product R W equal to unity; 
the results  are  listed in Table  I. By the central  symmetry of 
the  problem, Pik is zero  for i # k.  This  implies that  the Fisher's 
information  matrix is diagonal, in which case it is sufficient to 
consider oll and u22 the diagonal  elements  in the inverse 
Fisher's information  matrix.  From  (27)-(29), 

The value of  the second  term on  the right-hand side  is also in- 

TABLE I 
VALUES OF THE EXPRESSIONS IN (30) AND (31) FOR ECCENTRICITIES OF 

1, 2, 4, AND 9 

A = I  1.29 1.29 0.0 0.72 
A = 2  0.71 1.26 0.0 0.95 
A=4 0.27 0.92 0.0 1.49  0.81 
A=9 0.09 0.58 0.0 2.32 0.94 

modeling  errors have been  made.  In  order  to develop insight 
into  the relationship  between  these two standard  deviations 
and  the likellhood that a  location  estimate is obtained  which 
lies within  the actual  object boundary, (31)  may be used,  for 
a given SNR, to identify an error ellipse, that is, the set of esti- 
mate  points lying  inside an ellipse centered  at the actual ob- 
ject  location,  with semiaxis lengths  equal to  the estimate  error 
standard  deviations ull and u22. Notice  from (3 1) that  the 
size  of this ellipsoidal region shrinks with increasing SNR. 

For fixed  values of SNR, R W ,  and  object  eccentricity A, this 
error ellipse may be calculated and compared to  the  actual 
ellipsoidal object  boundary. Fig, 15  illustrates the  error 
ellipse specified in  (3 1) for  two representative  eccentricities, 
namely X = 2  and  9,  with a  radius-bandwidth  product  of unity, 
and  an  SNR of 10 dB. As indicated  by  this  figure,  the 10 dB 
error ellipse is completely  contained  within the boundary  of 
the  actual ellipsoidal object  (this is also true  when  the eccen- 
tricity  equals 1 and 4). The  results  of  this analysis provide 
insight into  the effect  of shape modeling  errors on  the local 
estimate  error.  For  example,  with X equal to 9  (the  actual  ob- 
ject is  highly eccentric  but  the modeled  object is circularly 
symmetric),  when  the SNR is high enough  for  good global 
performance (say 20 dB, see  Fig. 14), the  location  estimate is 
seen to be very  likely to lie within  the  actual  object  boundary. 

The  information  obtained  from  this analysis  is  valuable in 
identifying the  maximum  eccentricity  of  an  object  that  can be 
located  reliably  when using a simple circularly  symmetric 
modeled  shape.  In  practice, if it is likely that  the  actual  object 
eccentricity  exceeds  this value, a  procedure  that  explicitly 
accounts  for  object  eccentricity (see, for  example, [14] ) may 
be  necessary in  order to obtain  an  accurate  location  estimate. 

Iv. ROBUSTNESS TO THE  PRESENCE 
OF UNMODELED OBJECTS 

In this  section,  the degradation  in  localization  performance 
is examined  when, in  addition to  the object being located,  one 
or  more  unmodeled  objects exist within the cross section. 
Suppose that  the  actual field,  shown in (3) ,  consists o fN  disk 
objects,  where the  kth object  has  contrast d k ,  location ck, and 
radius R k .  The  object  being  located is denoted  as the first (k = 
1) object,  and k = 2, . - , N correspond to unmodeled  ob- 
jects.  From ( 8 ) ,  the log likelihood function is  given by 

L ( C ) =  d d k  ["Jm g( t -  cL8,e;Rk) 
N 

k=  1 -03 

dicated  in  Table I.  
Equation  (31) is an expression  for the  standard  deviation of go(t - c '8 ,6 ;  R )  dt dB + n(c, d ,  R). (3 2) 

the  local  error. in the object  location  estimate  when  shape  Letting Eo denote  the energy  in  a unit-contrast,  unit-radius 
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i p, h = 9  

Fig. 15. Comparison of 10 dB  localization  error ellipse  and  object 
boundary  in  the  presence of shape  modeling  error. 

disk  object [see (1.52)], E k ,  the Radon-space  energy  in the  kth 
object is given by 

Ek = d i R i E 0 .  (3  3) 

The log likelihood  function  in  (32)  may  be  written as 

(3 4) 

where 

This  expression  resembles that  in (16), and  in  fact the  normal- 
ized ambiguity  function  for  the kth object  in (35) may be ob- 
tained  from Fig. 12 by replacing R / R ,  with RIRk. 

In  order  to  determine  how  the global performance is af- 
fected by  the presence  of  unmodeled  objects  in the cross sec- 
tion,  the vector of log  likelihood  means m and  the variance u2 

Two specific examples are  now investigated, the first involving 
a single unmodeled  object,  and  the  second involving the pres- 
ence  of  numerous small objects  distributed  throughout  the 
cross section.  The  latter case leads to random  fluctuations in 
the background  field,  and  may be thought  of as corresponding 
to background field modeling  errors. 

Example 2-A Single Unmodeled Object: In this  example, 
the  degradation  in global  performance is investigated  when the 
actual field consists  of two objects, the first  a  disk  object  of 
size R ,  = R = T/10, contrast d l  = d (perfectly  matched to 
the model)  situated at  the  point c,, and  the  second a  disk ob- 
ject  of  unknown size R U  and  contrast dU, situated at  the  co- 
ordinates ( 6 R ,  0). In  this  example  the  lower  bound  on p o  is 
examined,  and  its  dependence on  the measurement  SNR  and 
unmodeled  object size and  contrast is investigated. 

Fig. 16 illustrates the lower  bound on po [obtained using 
(IO) and  (37)] versus the contrast  ratio d u / d  for several  values 
of size ratio R I R u ,  when the value of El /No equals 20 dB 
(i.e., E,/No = 100). This figure illustrates  the graceful manner 
in  which  global  performance  degrades when a single unmodeled 
object is present in  the cross section.  Namely,  when the  un- 
modeled  object  is smaller than  the modeled  object (R/RU = 
3 and 5 curves),  even  if its  contrast is equal to  the value of 
the  actual object contrast, global  performance is virtually  unaf- 
fected.  Notice  in  particular  the case of  a smaller unmodeled 
object  with a radius of 0.6 times  the  actual  object radius-the 
unmodeled  object  can  be far denser than  the  actual  object 
without significant  degradation in  the ability to locate the 
main  object by using an  algorithm that  does  not  take  into ac- 
count  the possibility of  more  than  one  object. 

Example 3-Several Unmodeled Objects: In  this  example, 
the global  performance is investigated when  numerous small 
unmodeled  objects are distributed  throughout the cross sec- 
tion. As mentioned,  this  may  be  thought  of in  a sense  as 
corresponding  to modeling  errors  in the  background field, 

are  determined  and used  in (10) to obtain a bound  on P O .  The 
mean value of the log  likelihood  function at  the  point Yi,  ob- 
tained  from (34), is 

which,  in all of  our  models  for  object  estimation,  has been as- 
sumed to  be known  perfectly.  The  actual field considered in 
this  problem  consists  of the superposition  of  a  disk  object  of 
radius R1 = R = Til0 and  contrast dl  = d (perfectly  matched 

N to  the model)  situated at  the  point c,, plus  twenty smaller un- 
m i = E { L i } =  Ek (:) - (Ti - ck ) ,   R /Rk )  . (36)  modeled  disk  objects  each having unknown size R,  and  con- 

k= 1 trast d,, and  located  at  various  points on  the rectangular lat- 
The variance  of Li is ENo/2, as previously,  where E is the  en-  tice  in (9). Fig. 17  illustrates the  distribution  of  objects  within 
ergy in  the  modeled disk  object E = d2R3Eo.  A bound  on  the cross section  when the size ratio R / R ,  = 2, i.e., when  each 

of  the unmodeled  objects  has  a  radius  half  that  of the actual 
object,  which is located  at  the  center  of  the disk C. 

Fig. 18 illustrates the lower bound on po versus the  contrast 
ratio d J d  when El /No equals 20 dB,  and the size ratio RIR,  
equals  2 and 3 (that is, each  of the  unmodeled  objects  has a 
radius  of 0.5 times  the  actual  object radius in  the first case, 
and  a  radius of 0.75 times  the actual  object  radius in  the 
second case). As indicated by  this  figure,  the global  localiza- 
tion  performance is extraordinarily  robust to  the presence of 
smaller unmodeled  objects, even when  there  are  many  of 
them.  In  particular,  when the unmodeled  object size is half 
the  actual  object size, the global  performance is unaffected  for 

(37) values of  unmodeled  object  contrast up  to twice that  of  the 
actual  object. Even when  the  unmodeled  object  radius is 0.75 
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Fig. 16. Lower bound on p o  in the  presence of an  unmodeled  object 
with contrast  ratio d,/d. 
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Fig. 17. Distribution of unmodeled  objects  in  the cross  section. 
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Fig. 18. Lower bound on p o  in  the presence of 20 unmodeled  objects 
with  contrast  ratio d,/d. 

times the  actual  object radius, the global  performance is un- 
affected  for  unmodeled  object  contrast values  less than  or 
equal to  the actual  object  contrast.  The  results  of  this  robust- 
ness  analysis  suggest that  the ML object  localization  procedure, 
which was developed  assuming that  the  background field fb (x )  
is known, is quite  robust to random  fluctuations  in  the  back- 
ground field about  its assumed nominal  distribution. 

V. CONCLUSIONS 
In  Part 11, the way  in  which the single object  localization 

performance is affected  when the modeling  assumptions  in (1) 
do  not  hold was examined.  In  particular,  the behavior of p o  
was  investigated in the presence  of size and  shape  modeling 
errors, as well as in  the presence  of  unmodeled  objects  within 
the cross  section.  Also, the Cramer-Rao bound was evaluated 
in  the analysis  of  robustness to shape  modeling  errors  in Sec- 
tion 111. 

The  results  of  this analysis indicate  that  the ML localization 

procedure  developed  in  Part I is quite  robust to a variety of 
modeling  errors. In Section 11, it was  demonstrated  that  no 
major  degradation  in global performance  occurs  when  the  ob- 
ject size is in  error by  up  to 50 percent of the actual  object 
size. In  Section 111, it was shown  that  when  the  actual object 
shape  differs  from the modeled  shape, the local and  global 
localization  performance  is again quite insensitive to modeling 
errors.  Finally,  it was shown in Section IV that  global  per- 
formance is not  affected  significantly  by the presence of  un- 
modeled  objects (even if there are many  of  them)  that are 
smaller than  approximately 0.75 the size of  the  object being 
located. 

APPENDIX  A 
RADON SPACE SAMPLING FUNCTION ga(t, e) 

Proof of Claim I :  From (21) and (23) ,  the  continuous- 
view ambiguity function is 

71/2+A m 

a A ( E >  = J J s ( t ,  8 )  s ( t  - E ’ @ ,  e )  d t  de 
7112-A -m 

where s”((t, e)gs(-t,  e )  and B is the  back-projection  operator 
defined in (20). 

which agrees with (36), since s = Rf * h by (4). 

Back-Projection of $ A ( f ,  el4 
From  the  definition of the  back-projection  operator in (20), 

the  back-projection  of  the  truncated impulse  sheet Ea(t, 0 )  in 
(37) is  given by 

7712 + A  n / 2 + A  =J ~(x’o) de =J s(r cos (e - $1) de 
7112 - A  x12 ._A 

(A21 

where (r,  q5) are the polar  coordinates  of x, r E (--, CQ), and 
@ E [ - 7 r / 2 ,  w / 2 ) .  By a change of variable 

4For an alternative  derivation  of  the  limited-view  impulse  response 
function, see Tuy [ 201. 
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Fourier Transform o f  bg, A (x) 

of the polar  coordinates (r,  q5) as 
The 2D Fourier transform of bc, A (x) in (A4) isgiven  in  terms 

=SA d@Im e-i2hrw’&dr (AS) 
- A  -m 

where & =  (cos$  sin@))’  and w = (a1 wz)‘. 

evaluated  at 0’6, of  a  function  that is unity for all r. Thus, 
The  second  integral  in (AS) is the  1D  Fourier  transform, 

Equation  (A6)  has  the  same  form as (A2),  and  by  a  change of 
variable  yields 

where ~ is  the  angular  polar  coordinate of the  point o. 

APPENDIX B 

CALCULATING A(w)  

In terms  of  the  Radon  transform  and back-projection op- 
erators R and B in  (1)  and  (20), CBP with  a  &dependent  con- 
volving kernel z ( t ,  e) may be written  as 

?(x) = [*[I g(t, e )  z( t  - xf6, e )  d t  dB = B ( R f *  2) 

where ?(t, e )  4 z ( - t ,  e), and * denotes 1D convolution  in t ,  

The  relationship  in (B3) leads to an  expression  for the 
Fourier  transform  of  the  ambiguity  function.  In  particular, 
from (36) ,  

a(e)=B(Rf*  h * R y *  h E ) .  034) 

Here, f ( x )  = d . fo(x)  is the  object  situated  at  the origin and 
having contrast d,  f ( x , ,   x 2 ) &   f ( - x l ,   - x 2 ) ,  and { is the sam- 
pling function given in (37). Denoting by rh(x)  the circularly 
symmetric  2D function satisfying R(rh(x)) = h(t)  (that is,  a 
central slice of Rh(w), the  2D  Fourier  transform of rh(x),  is 
given by H(w), the  1  D Fourier  transform  of h(t)) ,  and succes- 
sively applying (B3), 

a(€) = f ** rh ** f ** rh ** b t .  
- 

(B5) 
Taking  2D  Fourier  transforms,  and  noting that f is real, 

A(m) = IF(w)I2 &(a) Bg(w). (B6) 

APPENDIX C 

LOG LIKELIHOOD  FUNCTION 
PROBABILITY  BOUND 

Let L denote the M-vector  of  log  likelihood function values 
at  the  points yj, j = 1,  2, . . * , M ,  which is a  Gaussian random 
vector having mean m and covariance u21. As in  Part I,  let pi 
denote  the  probability  of Ei, the event that  the  maximum log 
likelihood function value  occurs at  the  point 7,. The log like- 
lihood  function noise depends  only on the  modeled, and  not 
the  actual,  object  parameters; as was done in Part I, the nor- 
malized  ambiguity  function  for  the  modeled  object (Le., 
E{n2(c,  d,  R)})  is approximated as being equal to zero at 
distances  exceeding 2R. Under  this  ’approximation,  the ele- 
ments  in L are uncorrelated,  and  (1 - p j )  may be bounded 
using the  approach  in [13, p.  2641, 

1 -p i=Prob{anyLj>Lj ,  i#j} 

=Prob {L1 > L i o r L 2 > L j o r - * . o r L ~ > L i }  

<Prob {L1 >Li} + Prob  {L2 >Lj} t * 

+ Prob {LM >Li} 
n m  ern 

Substituting  the  Gaussian  distribution  and  simplifying, 

1 
exp { - 4 (xi - Aii)2 } 

[zl * z 2 ] ( 7 ) =  I z l ( t , 8 ) z z ( T - t , 8 ) d t .  (B2) 
-- m 

Letting ** denote 2D convolution, it is  shown in Davison and 
Grunbaum [ 191 that  (Bl) may be rewritten as where 

B(Rf * 2) = f ** B(?), (B3) Aij e - (mi - mi). 1 

that is, CBP operating on Rf with  a  convolving  kernel z(t, e )  U 

may be written  as  the  2D  convolution of f(x> with  the back- By a  change of variable  corresponding to  a 45’ coordinate sys- 
projection  of Z(t, e). tem  rotation, (C2) may  be  written  as 
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m limited  range of views,” J. Math. Analysis Appl., vol. 80,  pp. 

p j  3 1 -  exp (- 5) dx. (C4) 598-616,1981, 
[21] M. I .  Skolnik, Introduction to Radar Systems. New York: 

McGraw-Hill, 1962. 
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