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Linear  Estimation of Boundary  Value 
Stochastic  Processes-Part 1 1 :  

1 -D Smoothing  Problems 

Abstrucf --This paper  addresses  the  fixed-interval smoothing problem 
for  linear two-point boundary  value stochastic  processes of the type intro- 
duced by  Krener [q. As these  models  are  not  Markovian, Kalman filtering 
and  associated smoothing algorithms  are not applicable. The smoothing 
problem  for this class of noncausal  processes is solved here by  an  applica- 
tion of the  estimator  solution  which is developed in Part I of this paper [3] 
Fia  the  method of complementary  models. For an nth-order  model, this 
approach  yields  the  smoother as a  Znth-order  two-point  boundary  value 
problem. It is shown that this smoother can be realized in a  stable  two-fiiter 
form which is remarkably similar to two-filter smoothen  for causal 
processes. In addition,  expressions  for  the  smoothing  error  and smoothing 
error  covariance  are  developed. ntese equations are  employed  to  perform  a 
coyariance  analysis of estimating the temperature  and  heat  flow  in a 
cooling fin. 

Basar, Past  Chairman of the  Large  Scale  Systems,  Differential  Games 
Manuscript received  November  22,  1982.  Paper  recommended  by T. 

Committee. This work  was sup orted by  a Draper Fellowship  and in part 
by the National Science FounJtion under Grant ECS-8012668. 

MA 02139 and the Department of Aeronautics  and  Astronautics,  Mas- 
M. B. Adams  is  with  the  Charles s. Draper Laboratory,  Cambridge, 

sachusetts  Institute of Technology, Cambnd e, MA 02139. 
A. S .  Willsky  and B. C. Levy are  with k e  Department of Electrical 

En ‘neering  and  Computer  Science  and  the  Laboratory for  Information 

bridge, MA 02139. 
anf Decision  Systems,  Massachusetts Institute of Technology, Cam- 

I. INTRODUCTION 

B OTH linear filtering and linear smoothing for one-dimen- 
sional (1-D), nonstationary, causal  processes  have  been exten- 

sively  studied.  Many of the  classical solutions to these  problems 
are discussed in the  review paper by Kailath [l]. The derivations 
of these solutions have  relied  heavily on the Markovian nature of 
the models for these 1-D processes [2].  However,  inasmuch as 
stochastic processes in higher  dimensions (random fields) are 
typically  noncausal, and consequently are not Markovian in the 
usual sense, their estimators cannot be  derived through a direct 
extension of these 1-D derivations.  Thus, linear estimation prob- 
lems for noncausal processes require new approaches.  One such 
new approach has been  developed in Part I of k s  paper [3] 
where we have  extended  Weinert and Desai’s [4] method of 
complementary  models. This extension  allows us to write solu- 
tions to estimation problems for a broad class of noncausal 
processes in one and higher  dimensions. In this paper we build 
upon this solution procedure in order to perform a detailed 
investigation of the smoothing  problem for 1-D noncausal 
processes. 

The processes that we consider are governed  by the linear 
noncausal 1-D dynamic models introduced by Krener  in [5]. In 
his study of these  models,  he  has  developed  results on controlla- 
bility, observability,  and  minimality and has solved a determinis- 
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tic  linear control problem. In addition, he  has posed  the  fixed-in- 
terval  smoothing  problem for these  systems [6] and has derived 
integral  equations for both  the  weighting pattern aod  error  co- 
variance of the optimal smoother.  Working  directly  with  these 
equations he has had success in obtaining a  dynamic  realization 
of the smoother for a  special  “stationary-cyclic”  class of these 
models [7]. In this paper we begin  by  applying the solution for 
linear estimation of noncausal  processes  developed in Part I, and 
we obtain a  differential  realization  for  the  optimal  smoother  and 
the smoothing  error for the  complete  class of 1-D noncausal 
processes  considered  by  Krener. For a  noncausal  process  defined 
by an nth-order model,  this  solution  takes  the form of a  2n th- 
order two-point  boundary  value  problem.  Typically,  solutions  for 
this type of boundary  value  problem  are given in the  Green’s 
function form [8], and the  smoother  implementation  implied  by 
this form is such that the  estimate at each  point in the  interval of 
interest is obtained by  numerical quadrature over  the  entire 
interval. As an alternative, in this paper we develop  a  two-filter 
implementation  for our smoother  which  is  remarkably  similar  to, 
and of nearly  the  same  complexity as two-filter  implementations 
developed for the  fixed-interval  smoother  for  causal  processes [9], 
[lo]. As we  will show,  the  advantage of such  a  two-filter  form  is 
that the  estimate at each  point in the  interval  is  obtained  through 
a linear combination of stable  forward  and  stable  backward 
recursions rather than numerical quadrature. 

A. Outline 

In Section  I1  the  linear  stochastic  differential  equation  and 
boundary  conditions  which  define  the noncausall-D process that 
we study are presented.  Along  with  the  model for this process, 
two forms of the  general  solution are outlined  and  the  matrix 
differential equation governing  the  evolution of the  process  co- 
variance  is  given. The fixed-interval  smoothing  problem  for this 
model  is  described in Section 111. In Section IV we formulate  a 
+mo-filter implementation of the  smoother  by  applying  a  decou- 
pling  transformation to the  smoother  dynamics  which  are  speci- 
fied  by the complementary  models  solution.  Transformations of 
tlus type  have  previously  been  applied to the  smoother for causal 
processes  by Kailath and Ljung [ l l ]  and  Desai  [12].  A  discussion 
of the properties of the smoother for some  special  cases  including 
causal  processes  and  a  class of systems  related to Krener’s  [13] 
“separable” systems is given in Section V. In Section VI we apply 
our smoother solution to a noncausal  model  representing  a  cool- 
ing fin. Finally,  Section VI1 contains some  concluding  remarks. 

11. LINEAR STOCHASTIC TWO-POINT BOUNDARY VALUE 
PROCESS (WBW) 

A. General Solution 

The model for the  one-dimensional  stochastic  process we con- 
sider here was introduced by Krener in [5 ] .  The process is 
governed  by an nth-order linear  stochastic  differential  equation 
together with a  specified  two-point  boundary  condition.  Accord- 
ingly,  the  process will be  referred to as a  linear  stochastic 
two-point  boundary  value  process or TPBVP. %s linear 
boundary  value  process has been  used to model  a  variety of 
space-time  processes in temporal  steady-state  including  the de- 
flection of a  beam under loading [8], the  deflection of a rotating 
shaft 1141, and the temperature distribution in a  cooling  fin [5 ] .  
(See  the  example in Section VI of this  paper.) 

As we have  shown in Part I  the formal structure of the  linear 
stochastic  differential  equation  governing the complementary 
process is defined  by  way of the structure of a  related  determinis- 
tic  differential  equation. For this reason, in Part I  and  here in 
Part I1 we find it convenient to employ the white  noise  formalism 
for representing  linear  stochastic  differential  equations.  Let u( t )  

be a m X 1  white  noise  process  with  covariance  parameter e(?). 
Let u be  a n X 1 random  vector,  independent of u ( t ) ,  with 
covariance  matrix I I r .  The n X 1 boundary  value  process x(  t )  is 
governed  on  the  interval [0, T ]  by 

i ( t ) = A ( t ) x ( t ) + B ( t ) u ( t )  (2.1a) 

c’= V O X ( O ) +  V T x ( T ) .  (2.lb) 

with  boundary  condition 

It will be  assumed that A and B are  continuous on [0, T ]  and 
that all  random  variables are zero-mean  since  the contribution of 
any nonzero  mean  can  be  added  separately  by  invoking  super- 
position. 

It is  instructive to derive one form of the  general  solution for 
(2.1) as the approach we take in this derivation will be  used  later. 
The fom of the  solution  which we obtain differs  from  the  usual 
Green’s  function  solution  (e.g.,  see [5] ) .  Specifically, this deriva- 
tion  which  is  posed in the  terminology of linear  systems  the0 
highlights the  role of a process whch we  will denote below  by x 7 . 
Let @( t ,  s) be  the  transition  matrix  associated  with A ( t ) .  If x(0) 
were  known,  then x ( t )  could  be  represented in the  variation-of- 
constants form 

x ( t ) = @ ( t , O ) x ( 0 ) + x o ( r )  (2.2a) 

where x 0 ( t )  is the  solution of (2.la) with xo(0) = 0 

x O ( t ) = / ’ B ( r , s ) B ( s ) u ( s ) d s .  (2.2b) 

Substituting  from  (2.2a) at t = T into the  boundary condition 
(2.lb), we can  write 

0 

u - V T x o ( t ) =  [ V O + V T B ( T , O ) ] x ( 0 ) .  (2.3a) 

For a  well-posed  problem,  there will be  a  unique x(0) for a  given 
G and u on [0, TI. Thus, well-posedness  requires that the n x n 
matrix 

F = V o  + V’@ (T,O) (2.3b) 

be nonsingular.  With F invertible, we can solve for x(0) as 

x(0) = F - y c  - VTxO(T)) .  (2.3~) 

Substituting ~ ( 0 )  into (2.2a)  gives  the  general  solution  for (2.la) 
(2,lb) as 

x ( t ) = Q ( t , O ) F - ’ ( u - V T X o ( T ) ) + x o ( t ) .  (2.4) 

The Green’s function form of the  general  solution can be ob- 
tained  from  (2.4)  by  combining  the two integrals  representing 
Q(t ,O)F- ’VTxo(T)  and x o ( t )  into a single  integral  over [0, TI. 

The noncausal nature of the TPBW .x( t) is clearly  displayed if 
we correlate the value of x at t = 0 with future values  of  the 
input u 

E { x ( 0 ) u ’ ( t ) } = - F - ’ V T @ ( T , r ) B ( t ) Q ( l )  t = [ O , T ] .  

(2.5) 

Thus, the nth-order model in (2.1)  is  not  Markovian,  and  conse- 
quently K h a n  filtering  and  associated  smoothing  techniques 
are not directly  applicable. 

It is often the  case  for a TPBVP that  the  system  dynamics 
matrix A in (2.la) will  have both positive  and  negative  eigenval- 
ues  (see  the  example in Section VI). In these cases, when  imple- 
menting  a  solution for x o ( t )  in (2.2b) as an initial  value  problem, 
the positive  eigenvalues  may  cause  numerical  instabilities. Below, 
as an  alternative, we present a second form for  the  general 
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solution of (2.1)  which  leads to a numerically stable implemen- 
tation. Consider  the  equivalent  process obtained by transforming 
x as 

(2.6a) 

where  the transformation matrix T ( t )  is  chosen so that 1) the 
dynamics of the system  model  in  (2.1)  become decoupled:' 

and 2) Af is  exponentially stable in the forward  direction  and A ,  
is exponentially stable in the  backward  direction. For "time"- 
invariant systems this is always  possible  by  assigning  those  modes 
associated  with  eigenvalues  greater than or equal to zero to A, 
and those  less than zero to Ab. For time-varying  dynamics, it may 
be difficult to determine the  dynamics  and boundary conditions 
for a transformation T( t )  which transforms the  system  dynamics 
into this form. However,  we will find that by invoking results 
obtained previously for smoothing  solutions  for  causal  processes 
we can overcome this difficulty for the  systems of interest to us 
later in this paper. 

The boundary condition for the transformed  process will be 
written in the  following partitioned form: 

The reason for our choice  of subscripts f and b, denoting 
forward and  backward,  respectively, will become apparent below. 

If x f ( 0 )  and X b ( T )  were  known, then we  could  solve  for x / ( [ )  
and Xb(t)  aS 

./(t) = @ / ( t , O ) x f ( O ) + X ; ( t )  (2.7a) 

and 

X b ( ~ ) = i P b ( t , T ) X b ( T ) S x b o ( t )  

where xo(t) is governed b (2  6b  with xfO(0) = 0, and x ; ( t )  is 
governed by  (2.6b) with X b  B ( T )  .-) - 0. Following a derivation simi- 
lar  to that used to obtain the general  solution in (2.4), it can be 
shown that 

where 

(2.10) 

As we will see, the two-filter form of the general  solution in 

to the  independent  variable, ie., A ( r )  + A .  
'When  there is no risk of confusion we will often omit explicit  reference 

(2.8) is  the foundation for the implementation of the estimator 
that we  develop later in Section IV. The  term  two-filter  is used to 
signify that the numerical solution of (2.8)  requires  the integra- 
tion of a forward  process x; and a backward  process xi. 

B. Covariance of rke TPBVP x(t) 

By a direct calculation, it can be  shown that the  covariance of 
x(t) 

9,(1) = E {  x ( O x f ( 0 )  (2.11a) 

satisfies  the differential equation 

px =AP,  + P,A'+ BQB'- BQB'(a'(T, t)YT"F-'%'(t,O) 

- (a ( t ,O)F- 'VT~(T , t )BQB' ;  (2.11b) 

P,(O) = F - q  II, + VTIT0( T )  v") F-1 (2.11c) 

where no is  governed  by 

no = Ano + I IoA'+ BQB'; IIo(0) = 0. (2.11d) 

h alternative expression for P, which  requires  the  solution of 
only one  matrix differential equation can be  derived from (2.4)  as 

p , (~ )=pro( t )+~(r ,O)F . - ' [n , ,+V 'PP(T)VT ' ]F- ' iP ' (1 ,0 )  

- ( a ( t , o ) ~ - ' ~ ~ p , ( t ) - ~ , O ( t ) ~ / ~ ~ ~ - ' i p ' ( r , 0 )  (2.12a) 

where P,"( t)  is the  covariance of xo(  t )  satisfying 

j: = AP; + P,A'+ BQB'; P:(O) = 0. (2.12b) 

An additional expression for P, can  be  derived  from  the  two-filter 
form of the  general solution (2.8).  However,  because this expres- 
sion  is  somewhat  complex, we  will  wait until later in Section IV 
to present it in the context of our examination of the  estimation 
error covariance. 

C. Green's Identiq 

It was  shown in Part 1 that the dfferential realization for the 
estimator is  written in terms of the operators which define the 
Green's identity for the differential operator governing the dy- 
namics of the process to be  estimated. In the notation of Part I, 
the differential operator representing  the  dynamics  in (2.la)  is 

L : D ( L ) - . R ( L ) ;  ( L T ) ( t ) = k ( t ) - A ( t ) x ( t )  
(2.13) 

where D ( L )  is the space of once  continuously differentiable 
n x 1 vector functions on [0, T ]  and R ( L )  is the Hilbert space of 
square integrable n X 1 vector functions on [0, TI. Let E be the 
2 n  x2n matrix partitioned into n x n blocks with 

and define the 2n X 1 vector 

(2.14a) 

(2.14b) 

The formal adjoint of the operator L is [16] 

( L f X > ( t )  = - h ( f ) - A ' ( t ) X ( f ) .  (2.14~) 

Given  these definitions, the Green's identity for L on the interval 
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111. PROBLEM STATEMENT 

The fixed-interval  smoothing  problem for the  noncausal pro- 
cess x(t) defined  earlier in Section 11-A is stated as follows.  Let 
r ( t )  be a p X 1 white  noise  process  uncorrelated  with 1' and u( t )  
and with  continuous  covariance  parameter R ( t ) .  Let C ( t )  be  a 
p X n matrix  whose  elements are continuous on [0, TI. The  ob- 
servations of x( t) are given by  the p X 1 vector  stochastic  process 

y ( t ) = C ( t ) x ( t ) + r ( t ) .  (3.1) 

In addition to the  observation y( t), we  assume that there  may be 
available  a  boundary  observation yb defined as follows.  Let rb be 
a q X 1  random  vector  uncorrelated with r ( r ) ,  u(t). and 1 1  with 
covariance  matrix I I b .  Define  a q x 2 n  matrix W partitioned 
into q X n blocks as 

w=[wo : w']. (3.2a) 

The boundary  observation is the q X 1 random  vector 

yb = wxb + rb. (3.2b) 

Define an n X2n matrix V as 

v =  [ vo : v'] (3.3a) 

so that the  boundary  condition in (2.lb) can  be  written as 

c = vxb. (3.3b) 

A condition  imposed in Part I is  the  assumption that the rows of 
W and the  rows  of V are  linearly independent. The  significance 
of this assumption is explained as follows. If, say,  the ith row  of 
W were  a  linear combination of the rows of V 

W, = M,V (3.4a) 

then the ith element of )'b could be written as 

y b ,  = + 'b ,  

M,U + rb8. (3.4b) 

Thus, Y b ,  in (3.4b)  can be viewed as a  measurement of the 
boundary  condition u. Without loss of generality we can  assume 
that Y b  has been  transformed so that the  elements of rb are 
mutually  orthogonal. As such, yb, could be eliminated  from  the 
boundary  observation to be  used to update our knowledge  of 2'. 

This relationship between J'b and L' implies that the dimension of 
Y b  is less than or equal to n ,  the  dimension of L!. 

The  concept of the  boundary  measurement has been in- 
troduced  previously in a  simpler form ( W o  = 0, W' = I )  into a 
smoothing  problem  for  causal  processes  by  Bryson  and Hall [17]. 
They  included  a  "post-flight''  measurement  and  showed  that this 
additional measurement  results in a nonzero  initial  condition for 
the backward  filter in the  two-filter  implementation of the  causal 
smoother solution.  Thus, the boundary  measurement  introduces 
additional symmetry into the  structure of the  two-filter  solution. 
This type of boundary  measurement  has  a natural analog in 
higher  dimensions  where  measurements of a  random  field  may 
often be made along the boundary of the region  over  which it is 
defined. For example,  one  might  have  observations of tempera- 
ture on the  surface of an object  whose  internal  temperature 
hstribution is of interest.  Measurements of gravity at the surface 
of the earth or some  other  body  provides another example. 

Returning to the 1-D problem of interest  here, the fixed-inter- 
val  smoothing  problem is to find  the  linear minimum variance 
estimate of the  noncausal TPBVP x ( t ) ,  t E [O, TI, given  the  com- 
plete  observation set Y 

r = { y b , y ( f ) : f E [ O , T ] } .  (3.5) 

IV. W TPBVP SMOOTHER 

A .  Introduction 

A direct application of the differential operator representation 
for the  estimator  developed in Part I immediately  yields the 
TPBVP  smoother as a 2nth-order boundary  value  process.  Given 
this  two-point  boundary  value  process, we show how it can be 
transformed into a  two-filter form as &cussed in Section II-A. 
In a  similar  manner, we also apply  the  results of Part I to write  a 
2 n th-order  boundary  value  representation of the  smoothing error 
and  use  the  same  transformation to develop  expressions for the 
error covariance. 

B. A Differential  Realization for the  Smoother 

Let the 2n x 2 n  matrix H be given by 

Let the 2n X p matrix G be  given  by 

(4.la) 

(4.lb) 

Then substituting into (3.17a) of Part I, it can be shown that the 
smoother  dynamics are given  by  the 2 n th-order  differential  equa- 
tion 

To obtain an expression for the  boundary  condition for this 
differential equation, first  define  two 2n X 2 n  matrices 

vO'n-ly0 + wO'n-IwO - I - _ _ _ E _ _ _ - _ _ _ _ - _ _ - _ , - _ -  (4.3a) 
VT'rI,11/0 + wYI;lwO : 0 

b 

and 

Then from (3.1%) in Part I, with the transpose of the matrices V 
and W identified as the operator adjoints I/* and W*, the 
boundary  condition  for  the  smoother can be shown to be given 
by 

C. Hamiltonian  Diagonalization 

The solution of the 2 n th-order  boundary  value  process in (4.2) 
and (4.3) could be implemented  by  either of the two  forms of the 
general  solution  derived in Section II-A. However,  by  considering 
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the “time”-inwriant case we can  anticipate, as discussed  in that 
section,  that  there  may  be  numerical  instabilities  associated  with 
the  first of those  methods. In the  time-invariant  case  the  eigenval- 
ues of the 2n x2n Hamiltonian2  matrix H defined  in (4.la) are 
symmetric about the  imaginary axis [19],  Le., there  are n eigen- 
values  in  each of the  left  and  right  half  planes. Thus, for  the 
time-invariant  case,  the  right  half  plane  eigenvalues will result in 
numerical  instabilities  for  the  unidirectional  implementation sug- 
gested  by  (2.4).  Recall  that  these stability problems  can  be 
avoided  in  general  by  transforming  the  smoother  dynamics into 
the  stable fonvardfiackward form in (2.8). To achieve  this 
second  form, we need  a  transformation  which  diagonahzes  the 
dynamics of H into two n X n blocks,  one  stable  in  the  forward 
direction and the  other  backwards  stable. As discussed  below, 
this transformation  is  readily  obtained by adapting results from 
previous  studies of the  smoother  for  causal  processes. 

Since  the dynamics of our  smoother as represented  by H are 
identical to those of the  smoother  for  causal  processes as origi- 
nally  derived  by Bryson and Frazier [20], any  transformation 
which  results in a  two-filter  smoother  for  causal  processes will 
also diagonalize  our  smoother. As mentioned  earlier,  these  di- 
agonalizing  transformations  have  been  studied in [ l l ]  and  [12]; 
see also [21]. However,  choosing  a d i a g o n h g  transformation 
for our problem  requires  special  considerations  not  encountered 
in  the  causal  case. First, because  the  two-point  boundary  condi- 
tion  provides  incomplete  information for both  the  initial and 
final values of the  process, we  will choose  a  transformation  which 
corresponds to a  two-filter  solution  for  causal processes with  both 
filters in information  form.  Second,  as we  will  see, it is important 
to choose  the  boundary  conditions  properly  for  the  Riccati 
differential  equations  which  govern  the  time-varying  elements of 
the  diagonalizing  transformation. In particular,  the  choice that we 
make  here  leads to an explicit  representation  for  both  the 
smoother  and  smoothing  error  covariance  in  terms of a  single 
critical  variable.  With  the  smoother in this form we  will be  able 
to interpret some  special  cases  in  the  next  section.  Finally, as 
discussed later, our choice of diagonalizing  transformation  and 
corresponding  boundary  conditions  makes it possible to for- 
mulate  a  numerically  stable  two-filter  form  for our smoother 
which  is  remarkably similar to two-filter smoothen for causal 
processes. 

Define  the  time-varying  transformation T( t )  as the 271 X 2 n  
matrix  partitioned in n X n blocks as 

Let  the  transformed  process  be  denoted by 

(4.4a) 

Also define 

H ~ =  ?I-‘+ THT-’ (4.5a) 

and 
G4 = TG (4.5b) 

so that the  dynamics of the  transformed  process  can be written  as 

If  we  use the  following  form  for  the  inverse of T 

(4.5c) 

where 

and if  we choose  the  dynamics  for Of and 8, as 

and 

- 6, = 8bA + A’8b - 8bB&B‘8b + c‘R-’c, (4.6d) 

then  carrying out the  calculation in (4.5a), it can  be  shown that 
Hq is diagonahzed  with  diagonal  blocks 

Hf = - [ A ’ +  BfBQB’] (4.6e) 

and 

Hb = - [ A ’ -  8,BQB.I. ’ (4.6f) 

Thus, the  dynamics of q, and qb are decoupled  and  are  given  by 

and 

46 Hbqb - C’R- ’17. (4.7b) 

If we assume  for  time-invariant  dynamics that { A ,  B }  is stabi- 
lizable  and that { A , C }  is detectable,  and  for  time-varying dy- 
namics  that { A ,  B } is  uniformly  completely  controllable and 
{ A ,  C} is uniformly  completely  reconstructable,  then  the  invert- 
ibility of Ps in (4.6b)  is  guaranteed if both Bf(0) and B,(T) are 
nonnegative  definite [19]. Furthermore,  these  conditions guaran- 
tee that Bf and 8, and  their  derivatives  are  bounded  and that Hf 
and Hb are  forward  and  backward  stable,  respectively. 

Under the  transformation  (4.4a),  the  boundary  condition (4.3~) 
becomes 

where 

v,“ = V,O,T-’(O) (4.8b) 

and 

To simplify the- expressions  for  the  boundary  value  coefficient 
matrices in (4.8b)  and  (4.8c),  choose  the  following  nonnegative 
definite initial and final conditions  for  the  Riccati  equations 
(4.6~) and  (4.6d) 

+(O) = vO’rI,’vO + w0’II-1 b wo (4.9a) 

and 

Then  defining 8, as the  following n X n matrix: 

*The terminology Hamiltonian is employed for historical reasons [ H I .  8, = VT’rI,1VO + wT’rI;’wO (4.10) 
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it can  be shown that the  boundary  value  coefficient  matrices  can 
be  written as 

= [ vr" ; VaJ] (4.10a) 

and 

Since  the  dynamics of qf and qb are decoupled,  the  only 
coupling  between  the  two  enters  through  the  boundary  condition. 
By our choice of initial and final  conditions  for  the  Riccati 
equations, we have  been  able to display this coupling  solely as a 
function of the  matrix 0,. 

The  smoothed  estimate of x is recovered  by  inverting T ( t )  in 
(4.4b) so that we obtain 

n ( z ) = p s ( z ) [ ~ / ( z ) + ~ b ( z ) ] .  (4.11) 

Following  (2.8),  an  explicit  expression  for  the  two-filter solution 
for qr and q b  is formulated as follows.  Let q/" and q: be 
governed  by  (4.7a)  and  (4.7b),  respectively,  with  boundary condi- 
tions qfo(0) = 0 and q i (  T )  = 0. Define F f b  and Offb as  the 2 n X 2n 
matrices 

4 b = [ [ ' + v f T @ / ( T , 0 )   v z + v ! @ b ( O , T ) ]  

: I + (O) O b  (0, T ,  1 
(4.12) 

and 

Then the  two-filter  solution  for q ( t )  is  given  by 

+[:::;I. (4.14) 

The  computational  complexity of the noncausal smoother im- 
plementation  suggested by  (4.11)  and  (4.14)  is  nearly  the  same as 
that of the  two-filter  smoothers  for  causal  processes  such as the 
Mayne-Fraser  form [9], [lo]. We note,  however, that before q, 
and q b  can  be  evaluated  for  any t E [0, TI, both q/" and q: must 
be computed  and  stored  along  with P, and @fb for  the  entire 
interval [0, TI. Thus,  the  required  storage  exceeds that of the 
smoother  for  causal  processes.  Indeed,  the  Mayne-Fraser  solu- 
tion and ours differ  si@cantly in one  aspect.  That  is,  for our 
smoother  the contribution of the  forward  filter to the  smoothed 
estimate  at  some  point z depends not only on past  observations, 
as does the  Mayne-Fraser solution, but  also on future observa- 
tions  through  the  term 8fPd(T)qfo(T) in  (4.14). A similar state- 
ment  applies  for  the  backward  process. 

D. Smoothing Error 

From (3.23) in Part I, the  differential  realization of the  smooth- 

ing error is 

~ith boundary  condition  (from (3.20) of Part I) 

The same diagonalizing  transformation in (4.4a)  can  be  applied 
to the error dynamics with the  result that, as we will see,  the error 
covariance can be  computed  from  many of the  same quantities 
required  for  computing  the  smoothed  estimate. 

In a  manner  similar to (4.4b) let 

Then  the  smoothing error is 

a ( t ) = P s ( f ) [ e / ( z ) + e b < r > ]  (4.17) 

where ef and e b  satisfy the decoupled  dynamics 

= H,ef + [ BfB : - C'R-'1 [ y ]  (4.18a) 

and 

e ,  = Hbeb + [ ebB : C W ]  [ y ] . (4.18b) 

Under h s  transformation  the  boundary  condition  takes  the  form 
[see  (4.10a) and (4.1Ob)l 

Below  we develop  an  expression  for  the  error  covariance.  Let 

Z,W = E {  . , ( oe ; (o } l  (4.20a) 

z b ( r >  E {  e b ( z > e i ( r ) }  (4.20b) 

and 

z / b ( t ) = E {  e / ( t > e i ( t ) } -  (4.20~) 

The covariance of the smoothing error can  be  written  directly 
from (4.17) as 

P ( t ) = E ( n ( t ) n ' ( t ) }  

= p s ( t ) [  z / ( z ) + P b ( z ) + Z / b ( l ) + Z ~ b ( z ) ]  p ~ ( z ) .  
(4.21) 

We  derive  expressions  for  each  of  the  individual  covariances in 
(4.20) by expressins e ( t )  in the  two-filter form of (2.8). Accord- 
ingly,  let e/o and e b  be  governed  b  (4 lea) and  64.18b),  respec- 
tively,  with  boundary  conditions e80 j( ) - 0  and e b ( T ) = O .  Then 
e/ and eb can be  written as 

(4.22) 
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Thus, the covariances in (4.20) can be  expressed in terms of the 
covariance of ue and  the  covariances and cross-covariance of e; 
and e:. 

First note from  (4.15b) that the  covariance of ~7~ is given  by 

The covariance of efo 

satisfies 

2,” = HlZ; + Z;Hi+ er3Q3’8, + C‘R-lC; ZY(0) = 0. 

(4.24b) 

That is, 

z ,”( t )  = e,”(t) and z.bO(t) = e;(+ (4.31~) 

When 2: and X: are  replaced in (4.30)  by  the  expressions  in 
(4.31a)  and  (4.31b), it can  be  seen that the  only computation 
required in excess of that already performed for the smoother 
solution is the integration of n y b  in (4.27). 

Although the expression for the covariance  in (4.30)  may  seem 
forbidding, it does  explicitly display the dependence of 2 ,  on 8,. 
In the next  section we discuss a special  class of problems  for 
which 8, is  zero. As a preview to that discussion, we note that 
when 8, = 0, 

i) 
q b = I  

and 
ii) 

To obtain  an expression for the  cross-correlation 
Substituting from  (4.29), Z e ( t )  for this case  becomes  simply 

first define which  implies that the forward and backward error processes er 
and eb are orthogonal and that the  smoothing error covariance in 

f i Y b  = f f / n ; b  + n;bf f , ’+  8,BQB’Bb - C’R-IC; n,”b (0) 0. (4.21)  is 

(4.27) P ( t ) = P , ( t ) =   [ 8 / ( f ) + 8 b ( t ) ] - ’ .  

Substituting the variation of constant integral  expressions for the 
processes in the expectation in (4.26), it can be shorn that for Also, when 0, is zero,  the noncausal contribtdions of the forward 
t > r  and backward  processes qy and q: to the  smoothed  estimate are 

eliminated  [see  (4.14)], Note that all of  these  are also properties 
p b  ( [, = Q ,  ( r ,  T)  q; ( - q b  ( t )  Q; ( 7 ,  t )  (4.28a) of the two-filter smoothen  for causal  processes P I .  In the  next 

section we will show that for the  case  when 8, is  zero, qf and q b  
can be interpreted as the forward  and  backward information 
vectors  for a causal process  smoother  with  special  nonzero and that 

2&( 7 ,  t )  = q;( t ,  7 ) .  (4.28b) boundary values for 8/ and ob. 

Finally, combining  these identities we can  express V. SPECIAL CASES 

as 

z,(r) = E {  e ( t ) e ’ ( t ) }  = ‘ f b ( f )  (4.29) A.  Introduction 
[‘;b::) 1 

In the first part of this  section we discuss  some properties of 

(4.30) 

Next, note that it can be  shown that the solutions of (4.24) and the smoother for a class of noncausd processes with special 
(4.25) are related  to 8, and o b  in (4.6~) and  (4.6d)  by boundary conditions and boundary observations. A subset of this 

class was first studied  by Krener [13]. Here we  show for this class 
E,”( t )  = e,( t ) -  Qf ( t  ,0) 8,(0)@; ( t , O )  (4.31a) that the smoother  described  in  the  previous  section  is  equivalent 

to a previously  derived  smoother for causal  processes. The last 
and topic of the  section  is alternative transformations which lead to 

two of the popular forms of the  smoother for causal  processes, 
E,”( t )  = 8, ( t )  - @b ( t ,  T )  8 b  ( T )  (I ,  T ) .  (4.31b)  namely  the  Mayne-Fraser  and  the  Rauch-Tung-Striebel. The 
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former  belongs to the  class of diagonalizing transformations 
studied  by Kailath  and Ljung [ l l ]  and Desai [12], and the latter is 
a  triangularizing  transformation [21]. 

B. Separable Systems 

In the  context of 1-D linear  stochastic TPBVP’s, Krener  first 
introduced  the  terminology sepurable to describe  a  class of nth- 
order noncausal stationary processes  which  are, in fact, n th-order 
Markov,  i.e.,  their  evolution can be  described  by an  nth-order 
linear  stochastic  differential  equation  with  a  prescribed initial 
condition  which  is  orthogonal to future inputs. Recall that, in 
general,  the boundary value  representation for noncausal 
processes  which we presented in Section 11-A is not a  Markov 
model. Along with  stationarity,  Krener’s  criteria  for  separability 
includes  a b!ock-diagonal form for l l ,  and  the  orthogonality 
condition vT yo  = 0. In fact,  the  slightly  less  restrictive  condition 

U 0 (5.1) vT’n - 1yO = 

could  have  been  imposed. In [21],  the stationarity condition  was 
shown to be  unnecessary so that  (5.1) is both  necessary and 
sufficient  for  the  existence of an nth-order Markov  mode.  With 
respect to the  smoothing  problem,  the  existence of such  a  model 
implies that when  there is no boundary  measurement,  any of the 
smoothers for causal  processes  can  be  applied  directly to the 
Markov  model.  Here we will extend  the  notion of separability to 
include  cases  for  which  there is a  boundary  measurement  and  say 
that a  system  is  separable if 

8, = VTTI,’Vo + WT‘II i ’Wo (5.2) 

is zero. Note that this condition is compatible  with  Krener’s 
original  condition  when  there is no boundary  measurement ( W o  

When 8, is  zero,  the  boundary  condition  in  (4.8)  becomes. 
decoupled  [see  (4.10)]  and q b  in  (4.12)  becomes  the identity so 
that q, and qb are  completely  decoupled  with  boundary  condi- 
tions 

= wT = 0). 

and 

Based on this observation, we can interpret the  smoother for the 
separable  case as being  equivalent to Bryson and Hall‘s [17] 
problem  with  a “post-flight” measurement as follows. 

Here we consider  the infonnation.in the  boundary  condition v 
and observation Yb when combined into a  single  measurement 

This information will be  viewed in the  form of an  information 
vector  [22]. An information vector is used to store information 
about a random  vector  when  the a proiri uncertainty for that 
random vector (or at least  some of its components)  is  infinite,  i.e., 
it is totally unknown. When sufficient  measurement  information 
has been  gathered so that the  error-covariance  matrix  for  the 
random vector  becomes  finite,  the  stored  information in the  form 
of the  information  vector can be  transformed  by  the  inverse of 
the  covariance  matrix (the information matrix) to produce  a  finite 
error-variance  estimate of the  random  vector. In (5.4)  above  we 
have  posed  the ‘boundary condition  for { x(O), x (  T ) }  as a  mea- 
surement. In this way  we can  consider  the apriori information as 
totaIly  uncertain.  Since v and rb are  orthogonal  random  vari- 
ables, it can be shown that the  information  matrix and 
information vector i, associated  with  (5.4)  are 

(5.5a) 

and 

(5.5b) 

where 8,(0) and B,(T) are given by (4.9a) and (4.9b).  Separabil- 
ity is  thus  the  case  when  the  information about x(0) contained  in 
the  combined boundary measurement  (5.4)  is  orthogonal to that 
for x ( T ) ,  i.e., is block-diagonal. By considering  (5.3a) as the 
initial value  for  an  information  form  Kalman  filter  for x ( t )  with 
associated  information  matrix 8,(0) and by  considering  (5.3b) as 
the  information  vector  corresponding to a “post-flight” measure- 
ment  with  associated  information  matrix Bb(T), we find that 
separability  is  equivalent to a  causal  process  with  (possibly) 
incomplete information  about its initial value  plus  a  post-flight 
measurement.  Finally, we remark that from  (5.2)  we  see that even 
when  (5.1) is not satisfied it is still possible to achieve  sep,arab1iliq 
if the b o u n d y  measurement is designed so that W I I b  W 
cancels Y ~ ’ I I ,  Y O .  

C. Alternative Transformations 

As Kailath and  Ljung [l l]  have noted, there  exists  a  family of 
transformations  which  diagonalize  the  Hamiltonian H.  In addi- 
tion to diagonalization,  there  are other special  structures  for  the 
smoother  dynamics  which  lead to smoother  implementations 
which  may also be  of interest. For example,  here we present  both 
a  diagonalizing and a  triangularizing  transformation  each  with 
appropriate boundary  conditions so that their  application  results 
in the  Mayne-Fraser  and  Rauch-Tung-Striebel  smoothers,  re- 
spectively,  for  causal  processes. 

I )  Mayne-Fraser: The  Mayne-Fraser  two-filter  smoother  is 
obtained by  choosing  the  transformation 

T ( t )  = [ ----ji---i--] I * - P ( t )  (5.6a) 

where P satisfies 

P =  A P  + PA’+ BQB’- PC’R-lCP;  P(0) = nu 
(5.6b) 

and ob satisfies  (4.9b)  with  boundary  condition 8 , ( T )  = 0. 
2) Rauch - Tung- Striebel: As an  alternative to dagonahation, 

the  smoother  dynamics  are  triangularized  by  applying  the trans- 
formation 

with  the  dynamics and boundary  condition of P given  by  (5.6b). 
With this transformation,  the  Hamiltonian  dynamics  become 
block-triangular  yielding  the  Rauch-Tung-Striebel  smoother  for 
causal  processes. 

VI. EXAhfPLE: THIN ROD HEAT EXCHANGER 

A. Introduction 

Thin rods or fins are  commonly  used as the  medium  for 
dissipating heat from  some  primary  source to a  coolant  fluid 
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and 
m2 = hp/kA 

the state dynamics  with t in degrees F are given  by 

-1 
0 L 

--I 
0 L 

Fig. 1. (a) Thin rod case. (b) Pin-fin  case. 

which  passes  over  the  rods  [15].  We will consider  the  temporal 
steady-state heat transfer for the two configurations  depicted  in 
Fig. l(a) and @).3 That is, we will be  looking at the  heat 
distribution for some  snapshot in time  when  temporal  variations 
have  settled  out. 

In this section we present  a  probabilistic  two-point  boundary 
value  representation for the  steady-state  temperature distribution 
and heat flow along  the  rod  for  these  two cases. The  corre- 
sponding  deterministic TPBVP  models  for  these  configurations in 
temporal  steady-state can be  found in most introductory texts on 
heat transfer  such as [15] or [23]. Following  the  discussion of 
these  models,  some  numerical  results  for  a  covariance  analysis of 
the TPBVP  smoother as applied to these  cases  are  presented. 

B. The Dynamics 

As is  typically  done  [23], it will be  assumed that the  rod is 
sufficiently thin so that in temporal  steady-state  the  temperature 
of the  rod  can  be  considered  constant  throughout  any  cross  sec- 
tion.  Given this assumption,  the  spatial  dynamics of the  temporal 
steady-state temperature  and  heat flow are  derived  by  balancing 
the rod-to-coolant  heat  energy  exchange  with  the  along-rod heat 
energy  conduction. 

For  our probabalistic approach,  the  coolant  temperature  along 
the rod, t,(l), will be  modeled as a constant ambient  value  plus  a 
white  noise fluctuation 

The fluctuation is meant to account  for both spatial and temporal 
variations in coolant temperature. Note that q( I) might be a 
second-order  process which  could  be  modeled as the output of 
shaping  filter  and  incorporated into our state model  below  via 
state augmentation. We  have  used  white  noise  here for  simplicity 
in presentation. 

One state variable, t(l), is  defined as the  difference  between 
the  rod  temperature  and  the  coolant  ambient 

t ( 0  = t r O d ( 0 -  t a b -  (6.2) 

The  other state variable is the  derivative of t( I) 

Defining 
k = thermal  conductivity  of  the  rod (Btu/(h.ft-"F)) 
A = cross-sectional  area of the  rod (ft2) 
p = rod  perimeter (ft) 
h = rod-coolant heat transfer  coefficient (Btu/(ft2eoF)) 

variable,  length along the rod, by 1. 
3Temperatures are  denoted by lower case t and  the  independent 

The heat flow at any point along  the  rod is given by [23] 

g ( I ) = - k A i ( l )  ( B t ~ / h ) .  (6.5) 

C. Measurement Model 

The  dynamics in (6.4) are common to  both the thin rod and 
pin-fin  configurations.  Before  discussing  their  boundary  condi- 
tions, we describe  the  measurement  which is assumed to be 
available  for both cases.  Let 

represent  a  noisy  measurement of temperature  along  the  rod. One 
could  conceive of these  measurements as being obtained optically 
by infrared techniques.  Here we have  modeled  the  measurement 
noise as white,  while in practice  optical  measurements might also 
contain some  noncausal  blurring  which  could be accounted  for 
via state augmentation. 

D. Boundary Conditions 

The two cases depicted in Fig. 1 are  distinguishable through 
their boundary conditions.  The  boundary  condition for the thin 
rod  case  in  Fig. l(a) is determined  by 1) the  temperature of the 
rod at the source 

t (0) = t, 

= t ,  + U , ( O )  (6.7a) 

where t, is an a priori mean, and ~ ~ ( 0 )  is a  zero  mean  variation 
about t ,  with  variance u:(O); and by 2) equating  conduction and 
convection at the end of the rod 

U , ( ~ ) = h ' A [ t ( L ) - 1 , , ] + k A t ( L )  (6.7b) 

where h' is the coefficient of heat  transfer  through  the  end of the 
rod and v,(L) is a  zero  mean random variable  with  variance u,' 
used to compensate  for errors in  determining k and h'. 

Thus, we have  the  following  boundary  condition  for  the thin 
rod  case: 

Note that when v,(O) and u ( L )  are uncorrelated, (6.7~) satisfies 
the  separability  condition ($2). 

The boundary condition  for  the  pin-fin  case in Fig.  l(b)  is 
obtained from  (6.7a) at  both I = 0 and I = L 
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Similar to the thin rod  case, if u,(O) and u,(L) are  uncorrelated, 
then  (6.8)  would  represent  a  separable  case.  However,  in  many 
pin-fin  configurations,  the  physical  proximity of the  two  ends of 
the  fin d l  result in the  variations u,(O) and CJ,(L) being  corre- 
lated. For  example,  consider  the  correlated  case  represented  by 

(6.9a) 

In this case  due to the  nonzer  correlation p, e, is nonzero: 

resulting  in  a  nonseparable  case. 

E. Numerical Results 

Error covariance  results are presented  for  the  three  examples. 
The  first  is  a  thin  rod  case  and  the last two  are  pin-fin  cases. For 
one  pin-fii case  the  correlation p in (6.9)  is  assumed to be  zero 
and for  the other p is  assumed  nonzero. For all three  examples 
we assume  a  0.25 ft long  copper  rod  with  outer  diameter 0.1 ft: 
L = 0.25 ft, Do = 0.1 ft, and k = 280 Btu/(h.ft-"F). The  coolant 
is water at  100°F passing  over  the  rod at a  velocity of 5 ft/s. 
These  conditions  correspond to a  Reynolds  number R, = 6.75 x 
lo5, a Prandtl number P, = 4.52, and a  coefficient of heat trans- 
fer  for  the  water of k ,  = 0.364 Btu/@.ft. OF). Applying an 
approximation  from [23],  the water-to-rod  convective  heat trans- 
fer  coefficient  is 

0.0263k,R~.s05P~.31 
h =  

DO 
=1180 Btu/(ft2*h-"F). 

We will assume a proms noise  variance  parameter 4 =1 F2/ft 
and a  measurement  noise  variance  parameter R = 1 F [ft.  Table 
I lists  the  uncertainties  associated  with  the  boundary  conditions 
for the  three  examples. 

Plots of the  results of the  covariance  analyses  are  presented in 
Figs.  2-4. Part (a) of each  figure  shows  the standard deviation  in 
the  smoothing error for  temperature  along  the  rod in degrees F. 
Part (b) of each  depicts  the standard deviation of the  heat  flow in 
Btu/h which has been  calculated  by  scaling  the  uncertainty  in 
di/dl  as indicated in (6.5). 

The results  for  the thin rod  case in Fig.  2  show that the heat 
flow  uncertainty  at  the  end of the  rod, I = 0.25 ft, drops off to the 
boundary condition of 5 Btu/h. In contrast, no such drop is  seen 
for the  pin-fin  cases in Figs.  3 and 4, for  which  the  boundary 
condition is specified in terms of the  temperature at both  ends of 
the  rod.  Comparing  between  the  pin-fin  cases, we find that the 
highly  correlated  nonseparable  case of example 3 has  a  larger 
reduction in uncertainty  at  the  ends of the  rod than does  the 
separable  case of example 2. In effect,  the  correlation allows the 
estimate at each  end of the  rod to utilize  the  information  avail- 
able  at  the  opposite  end.  Comparing  among a l l  three  examples, 
we find that the  uncertainties at the  midpoint of the  rods, 
I = 0.125 ft, are about the  same  for all three  cases. In fact, under 
the  stabilizability and detectability  conditions  stated in Section 
IV it can be  shown  for  space-invariant  cases  and  for  very  large 
smoothing  intervals that the  smoothing  error  covariance in the 
middle of the  interval  approaches 

where ss denotes spatial steady-state  values.  Note that this ex- 

TABLE I 

u s" 8.00 1, 
W c 4.00 7 

o ' " " " " 1 " " " " " J  
DISTANCE  ALONG ROD ( f t l  x lo-' 

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  2.W 2% 

I- a 
y OO 0.25 0.10 0.75 1.00  1.25 1.50 1.75 2.00 225 2.50 

DISTANCE  ALONG RDD(ft) x io-' 
Fig. 2. Thin rod smoothing error  standard  deviations: Example 1 

iao:: a z I- 4.00 O 0.25 0.54 DISTANCE  0.75 1.00 ALONG  125 ROD 1.30 ((11 x io1 1.75 2.00 2.W 2.x) 

a 
g '1, 0:25 0;SO d75 tk0 I II25 1:50 l(75 ' 2 . k  I 2125 I 2.; 

DISTANCE  ALONG ROD ( f t l  x io-' 

Fig. 3. Pin-fin smoothing error standard deviations: Example 2, p = 0. 

t a 4.00 

I- 
O 

0 025 0.50 0.75 1.00 1.25 1 %  1.75 2.00 2.25 E50 
DISTANCE ALONG ROD ( f t l  x io-' - 

b S I  

DISTANCE ALONG ROD( t t )  x IO" 

Fig. 4. Pin-fin smoothing error  standard  deviations:  Example 3, p = 
0.99. 

pression  for  the  steady-state  error  covariance  is independent of 
both the structure and value of the  smoother's  boundary condi- 
tion,  i.e.,  the  steady-state  covariance is the  same  for  both  causal 
and noncausal  processes. 

W. CONCLUSIONS 

An internal differential  realization of the  fixed-interval 
smoother  for  a 1-D, nth-order noncausal  two-point  boundary 
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value stochastic process (TPBVP) has been obtained by applying 
the method of complementary  models  developed in Part I, the 
companion to this paper. This representation for the  TPBVP 
smoother has been shown to have  the  same 2 n th-order Hamilto- 
nian dynamics as the  fixed-interval  smoother for causal  processes. 
The boundary condition for the  TPBVP smoother,  however, has 
been  found to be more complex than that for the  causal  process 
smoother. By applying a time-varying  diagonalizing  transforma- 
tion much  like  those  employed  by Kailath and  Ljung [ll] for 
causal processes,  we  have formulated a numerically stable 72th- 
order two-filter  implementation. The simplicity of this two-filter 
form is achieved  by  employing an information form for the 
diagonalizing transformation with carefully  chosen boundary 
conditions for the differential equations governing  its  elements. 
The sigmficant  difference  between our two-filter  implementation 
and that for causal  processes is that in the  noncausal  case  the 
smoothed  estimate at a given point in the interval is a noncuusal 
function of each of the forward and backward  processes  [see 
(4.11) and (4.14)]. 

Our work  in Part I has  also  provided a recipe for writing a 
differential realization for the smoothing error. Through an appli- 
cation of the  same  diagonalizing transformation, we  have derived 
a two-fiiter representation for the  smoothing error as well. From 
this representation, we  have formulated an expression for the 
error covariance which is a function of the  solutions of forward 
and backward Rimt i  equations (as in the causal  process  case) 
along with  the solution of one additional matrix differential 
equation. 

We  have also discussed  the application of the TPBVP  smoother 
to a special  class of noncausal  processes  which we  refer to as 
separable, following  the  terminology introduced by  Krener [13]. 
We  have  shown that separability can  be interpreted in  terms of 
the information contained in the  two-point boundary condition u 
in (3.3b) and the boundary observation y ,  in  (3.2b). In particu- 
lar, if the part of this information which pertains to the  value of 
the process at the  beginning of the  smoothing  interval x(0) is 
uncorrelated with the information about the process value at the 
end of the interval x ( T ) ,  then  the  system is separable.  The 
smoother for this class of systems is shown to be  equivalent to a 
special  form of a previously  derived  smoother for causal  processes 
with “post-flight” measurements  [17]. 

As discussed in  Part I, differential reahations for estimators of 
both discrete and continuous parameter multidimensional sto- 
chastic processes can be  formulated as well  by the method of 
complementary  models. A preliminary  approach to the  imple- 
mentation of these estimators has been  pursued in [24]. This 
approach is based on an operator diagonalization  methodology 
which can be viewed as an extension of the  Hamiltonian  matrix 
diagonalization discussed in this paper. 
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