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Linear  Estimation of Boundary  Value 
Stochastic Processes-Part I: The 

Role  and Construction of 
Complementary Models 

Abstract --'Ibis paper presents  a substantial extension of the  method of 
complementary modek for minimum variance  linear  estimation introduced 
by Weinert  and Desai in their  important  paper [l]. Specifically,  the  method 
of complementary  models is extended  to solve estimation  problems for 
both  discrete  and  continuous parameter linear  boundary value stochastic 
processes in one and higher  dimensions. A major  contribution of this paper 
is an  application of Green's  identity  in denting  a differential  operator 
representation of the estimator. To clarify  the  development  and to illustrate 
the range of applications of our approach, two brief  examples  are  provided: 
one is a I-D discrete two-point boundaq value  process  and  the  other is a 
2-D process  governed by Poisson's  equation  on  the  unit  disk. 

I. INTRODUCTION 

N this paper we present an extension of the  method of 
complementary  models for minimum  variance  linear  estima- 

tion introduced by  Weinert and Desai in their important paper 
[l]. Weinert and Desai  showed that the  fixed  interval  smoothing 
problem for causal  one-dirnensional'  processes  described  by  lin- 
ear state equations  driven  by  white  noise  could  be  solved  by 
introducing the  so-called  complementary  process.  The  comple- 
mentary process has the  property that it is  orthogonal to the 
observations and that, when  combined  with  the  observations, 
contains information equivalent to the  initial  conditions,  driving 
noise and measurement  noise, Le., all of the  underlying  variables 
which  determine  the  system state and observations.  Here we 
build upon this general  concept of complementation  to  solve 
estimation  problems for both discrete and continuous  parameter 
boundary value  stochastic  processes in one and higher  dimen- 
sions. This class of processes  is  a  generalization of the 1-D 
boundary value  process  introduced  by  Krener in [14] and in- 
cludes  processes  governed  by  ordinary and partial linear  differen- 
tial equations and ordinary and partial linear  difference  equa- 
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multidimensional process is used  here to indicate  that  the  dimension  of 
'The  terminology  one-dimensional (1-D), two-dimensional (2-D), or 

the  independent  variable  for  the  process is one,  two.  or  multidimensional. 

tions. By employing operator descriptions for these  processes  we 
are able to  unify  the  development of the  estimators  for this wide 
variety of processes  within  a  single  framework. 

The major contribution of this paper is a differential operator 
representation  for the estimator  which  is  applicable to all of the 
types of linear boundary value  problems  mentioned  above. A key 
step in our derivation  is  the  use of Green's  identity in the 
construction of a  differential  representation  for  the  complemen- 
tary process. To help  clarify  our  presentation we carry  along an 
example,  a 2-D process  governed  by  Poisson's  equation  with  a 
white  noise  driving  function.  Finally, to illustrate the versatility 
of our solution, we briefly  describe  a 1-D discrete  two-point 
boundary value  process and derive  the  equations  defining its 
estimator. 

The emphasis in this paper is on the  development of the 
differential  representation  for  the  estimator.  In Part I1 of this 
paper [4], we consider  a 1-D continuous  parameter boundary 
value  stochastic  process.  Taking  the  specialization of the  result 
presented in the  present paper to this 1-D setting, we address in 
Part I1 the  issue of efficient  implementation of the  boundary-value 
equations which  define  the  estimator. As both Part 11 and [5] 
illustrate,  the  development of efficient  procedures for implement- 
ing the  linear boundary value  representation  for  the  estimator 
provided in this paper and the computation of its estimation 
error variance  are  interesting and challenging  problems  them- 
selves. 

Our approach to  deriving  the  differential  form of the  smoother 
for general  processes  begins ~6th an operator representation of 
the  complementary  process  for  the  estimation  problem of interest 
in this paper.  With  this  representation and Green's  identity in 
hand, we are then in a  position  to  derive  internal  differential 
realizations  for both the  complementary  process and the optimal 
estimator. To reach this point,  however, we require  some  machin- 
ery and notation.  These  are  provided in Section I1 in which  we 
briefly review the fundamental concept of complementation, de- 
fine notation, and state our general  problem. In addition, in 
Section I1 we present  the operator form of the  complementary 
process  for our general  problem. As is  pointed out in [l]  for 
causal 1-D models,  the  complementary  process  is  closely  related 
to the  adjoint of the system  which  describes  the  process to be 
estimated. As one  might  expect,  the  same  is  true  more  generally, 
and the operator form  displayed in Section I1 demonstrates this 
quite clearly and simply. 

A general  form for the internal differential  realization  for  the 
complementary  process  is  derived in Section 111. Given this 
realization, we formulate an internal differential  realization  for 
the  estimator.  Using  this  recipe  for  the  representation of the 
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estimator, in Section IV we present differential realizations for 
the estimators for both 1-D  and 2-D  examples.  Finally,  some 
observations and  concluding  remarks are offered  in  Section V. 

11. LINEAR ESTIMATION AND COMPLFAENTARY 
STOCHASTIC PROCESSES 

A .  The Method of Complementary  Processes 

In this section we establish notation which will be  used  in  the 
statement and  solution of OUT estimation problem  for  second- 
order stochastic boundary value  processes.  Let L,( dP) denote 
the Hilbert space of finite variance  random  variables (on some 
given probability space).  Let I denote an index  set. A second-order 
process  over I is a set of elements +(a)  in L2(dP)  indexed by 
a E I .  The  closed linear span in L,( d P )  of cp (as a ranges  over 
I )  will be  denoted  by Sp( +). The space of second-order  processes 
over I will be denoted by L,( I ;  dP). Linear  mappings  between 
two  such  spaces will be  called second-order  operators. 

Define an underlving second-order  process  over a specified 
index set Zr 

S E L z ( f f ; d P ) = S S , .  (2.1) 

The process to be  estimated X and the  observations Y are 
defined via second-order  linear operators acting on the  underly- 
ing process 

X = My{; k I y :  S, + L2 ( I x ;  dl") = .Y, (2.2a) 

and 

Y =  M J ;  M , :  Sf- L2(I , . ;dP)=S, .  (2.2b) 

where M, and My are known. For example, for the  class of 
problems  considered  here, 3 includes  the  driving  noise,  observa- 
tion noise, and uncertain boundary conditions; the  mapping M, 
is the input/output representation of the  solution of a linear 
boundary value  problem  in  one or several  dimensions;  and  the 
mapping M, is  of the  form [ H : I ] ,  where  the identity operator 
operating on the  underlying  prodess 5 produces an additive  noise 
component  in  the  observations. 

The complementary  process 2 is also defined via a second-order 
mapping of S as 

Z = M J ;  Mz:  S, + L2(  I,; d P )  = Sz (2 .2~)  

where M, must  be  chosen (if possible) so that the  following 
conditions are satisfied. 

0rfhogonalif)r: 

E [ Y ( a ) Z ( # ? ) ] = O  foral laEI , . ,  /3cfI.  (2.3) 

Complementation: The  relation  between S and { Z ,  Y )  

is  invertible. 
Assume that Mz can  be  found so that these conditions are 

satisfied. Partitioning the  inverse of the  augmented  system (2.4) 
as 

M - ' =  N =  N [ ? ; Nz] (2.5) 

we can  write 5 = 1, + S, with 
5, = N,Y, [: = NzZ. (2 .6 )  

It is not difficult then to see that, thanks to (2.3),  the linear 

minimum variance  estimate of 1 given y is S,, that the minimum 
variance  estimate of X given y is 

k= M,S;. = M,N,Y, (2.7) 

and that the estimation error 3 is simply  the linear minimum 
variance estimate of X given 2, which  can  be  expressed in terms 
of S, whose probability law  is known since 

2 = M,{, = M,N, M J .  (2.8) 

The simple notation used to express  the linear minimum vari- 
ance  estimate of X belies  the  complexity of the effort which  may 
be  required in 1) determining the  form of the operator M,, 2) 
augmenting  and  inverting to obtain M-',  and 3) implementing 
the solution. Unfortunately, working  with  these 1/0 representa- 
tions leads to neither a convenient  nor an easily  computed 
solution to the  second step listed  above.  However, as in the 1-D 
causal problems of Weinert  and  Desai [l] and Levy et al. [8], we 
will find that this second step is quite easily  accomplished  by 
considering estimation problems for which the state and  observa- 
tions are specified in terms of an internal differential realization. 
The key step then is obtaining a differential realization of the 
complementary  process. As we point out in  Section 11-C, the 
operator representation for the  complementary  process  is  speci- 
fied in terms of H*,  the Hilbert adjoint of the mapping  from the 
underlying  variables to the  noise-free  observations. 

A critical  development in our research has been  the  recognition 
that Green's identity for differential operators is the key to 
formulating an internal realization for the Hilbert adjoint map 
H* in terms of the operators involved in the internal description 
of the observations.  Given  these internal realizations, we are able 
to perform the augmentation and  inversion  yieldmg an internal 
differential realization  for  the  estimator. We feel that this rep- 
resentation for the estimator is an important one. In particular, if 
one directly applies  the  projection  theorem to problems of the 
type  which we consider  here,  the  results  are  generally in the  form 
of integral equations (e.g., Wiener-Hopf  integral  equations)  which 
must  be factored in some  way in order to produce a realization 
for the estimator. In contrast, our solution, obtained via  the 
method of complementary  models,  directly  yields a differential 
realization of the estimator. 

Much as in the  case of causal  processes  described  by  finite- 
dimensional state equations, these  realizations  provide an excel- 
lent  starting point for the construction of efficient  algorithms for 
implementing  the optimal estimator. In Part I1 [4] we present a 
detailed development of a two-filter implementation of this 
estimator for a noncausal one-dimensional  two-point boundary 
value stochastic process. 

3. The Problem Statement 

I) Diffrential Operators and Green's  Identity: Our stochastic 
differential equations are dehed  in terms of differential opera- 
tors acting on Hilbert spaces of square-integrable functions as 
follows.  Let Q,v be a  bounded convex  region in RN with  smooth 
boundary [lo]. The  space of n X 1  vector functions which are 
square-integrable on t J N  is represented  by L;(W,). Let L be a 
formal' differential operator mapping into L;(Q,v) and  defined 
on D( L) ,  the  subspace of sufficiently differentiable elements of 

Green's identity for L is obtained from integration by parts of 
the  N-fold integral specified  by  the inner product on the left-hand 
side of (2.9).  The  result  is  Green's identity 

G ( Q , v ) .  

simply represent differentiation of a function. We will reserve the term 
'The term formal differential operator is used to  denote  operators which 

differential operator to denote the combined  action  of a formal differential 
operator along with an appropriate boundary condition representing a 
well-posed boundaq value problem. 
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where Lt is  referred to as the  formal  adjoint  differential operator 
[2],. xb  and hb are  elements of a  Hilbert  space Hb of processes 
defined on and E is a  mapping  from H6 into itself; E: 
Hb + Hb. In particular,  these  processes are defined through the 
action of an operator A,: Ly(Qhr) -+ H6, so that 

Xb=AbX and h b = A b h .  (2.10) 

The nature of Hb,  Ab, and E d depend upon L and a!\,. For 
Green’s identity for ordinary differential  operators, see  [3] and [5, 
ch. 31; for elliptic,  hyperbolic, and parabolic  second-order partial 
differential operators, see  [2] and [5,  ch. 71. In this paper, we  will 
restrict our discussions to operators L and  regions 9, that  admit 
a Green’s  identity. 

The boundary condition  associated  with L is  defined by a 
mapping Y 

I/: H b - t R ( I / )  (2.11) 

where  the nature of the  range  space R ( V )  is determined by the 
following  well-posedness  condition. We will say that the pair 
( L ,  Y )  leads to a well-posed boundary value  problem if the 
differential operator A formed  by  augmenting  the formal dif- 
ferential operator L and boundary mapping V 

(2.12a) 

has a  unique  continuous  left  inverse A*. We denote  the  compo- 
nents of the  left  inverse by 

where 

(2.12b) 

G,: L,”(O,%,)+D(L) and G,: L;o(asl , )+D(L).  

(2.12c) 

The value of the  vector  dimension n ,  in (2.12c),  which  is  required 
for a  well-posed  problem, depends on the  type and order of the 
operator L and the  dimensions N and n. In this  case,  the 
equation 

A x =  [ :] (2.13a) 

with u and u in the domains of G, and G,, respectively, has a 
unique solution  which  can  be  written as 

x = G,u + G,.L‘. (2.13b) 

It will be assumed that all problems  considered  here  are  well 
posed. 

A description  nearly  identical to  that given  above  holds  for  a 
class of discrete  processes  defined  by  linear  boundary-value par- 
tial difference  equations. In this case L is  a partial difference 
operator and 9,%, is a  multidimensional  discrete-valued  index  set. 
It is shown in [5 ]  that the  estimation  problem  statement and 
solution  presented in this paper apply  as well for this class of 
discrete  processes. 

2) The Problem Statement:  Let u be an rn X 1 vector  white 
noise on 9, with an invertible  correlation operator Q (i.e.,  the 
correlation  matrix of u is  thought of as the  kernel of an operator). 
Let u be an nu X 1 vector  second-order  process  over ail,, 
uncorrelated  with u and with  invertible  correlation operator I I C .  

Then the process to be estimated  is  formally  defined  by 

Lx= Bu (2.14a) 

with boundary condition 

vxb = u .  (2.14b) 

The observations  are  defined as follows.  Let C ( t )  be a p X n 
matrix  continuous in t E i l x .  Let W be an operator mapping 
elements of Hb into R( W), a  space of n H. X 1 vector functions 
defined  over  the  index  set ast,v. Let r be a p X 1  vector  white 
noise  over 9, with  invertible  correlation operator R, and let 
be a nH. X 1 vector  process  with  invertible  correlation operator 
n b .  It will be assumed that u ,  u, r ,  and rb are  mutually 
uncorrelated. The set of observations of x is  given by 

y = Cx + r on Q,v (2.15a) 

and 

yb = w x b  + rb on aQ,. (2.15b) 

We will need to make  some  assumptions  with  respect to the 
relationship  between the operators V and W. The importance of 
these  assumptions will become apparent later in our development 
of Hilbert adjoint systems in Section 111-A.  As explained in the 
1-D continuous  case  studied in Part 11, one  consequence of these 
assumptions is that no element of the boundary observation y b  
can simply  be  absorbed into updating the boundary value u 
alone. That is, the boundary measurement  contains  information 
about the part of ?Lb not captured by Vxb. In particular, we will 
assume  that if the operator 

(2.16a) 

is not invertible,  then  there  exists an operator W, such  that 

r =  1-51 (2.16b) 

is invertible. (As will become  clear in Section 111, we have 
included  the  minus  sign in defining r for convenience.) 
Our estimation  problem is to find  the  linear  minimum  variance 

estimate of x given the  set of observations in (2.15). To transform 
this problem into notation similar to that used in Section 11-A let 
the inverse of (2.13a) be denoted by 

x = M , [ : ] .  (2.17) 

This is  simply  the  Green’s  function  form of the solution  [see 
(2.13b)l.  Recall  from  (2.10)  that x,, = Abx .  If  we define H as 

(2.18) 

and specify  the  underlying  process as 

(2.19a) 

then  the  observations (2.15) can  be  expressed in the  desired  form 
of signal  plus  noise 

Y =  [ ; b ]  = [ H  : Z ] 5 = H 5 1 + 1 2 .  (2.19b) 

(The significance of the partition of 5 into and SZ will be  made 
clear  shortly.) 

This problem  formulation is illustrated in the  following  exam- 
ple. In subsequent  sections, we formulate  the  solution to this 
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class of problems in a differential operator form  with y and Y b  
as the input  and  boundary condition, respectively,  and  the esti- 
mate of x as an element of the output. 

Example (Poisson's Equation on the Unit Disk): In h s  case the 
dimension N of the  index  set is 2 and the  index set itself (9,) is 
the unit h k .  Points  within the disk will be  represented by index 
variables s, 1 E Q,, and points on the  unit circle aQ, will be 
denoted by an angle 0 E [0,27r].  Let u be a scalar  white  noise 
over Q 2  with continuous covariance parameter Q ( s ) .  Let u be a 
scalar white  noise  over aQ2, with continuous covariance  parame- 
ter II,(e). Let B ( s )  be a continuous function on 8, and V ( 0 )  
be a nonzero  continuous function on ail,. The  process to be 
estimated is formally defined by 

v2x(s) = B ( s ) u ( s )  (2.20a) 

with boundary condition (in polar coordinates) 

v(e)x(l,e) = .(e). (2.20b) 

For this example L is the  Laplacian v2 which  is  formally 
self-adjoint [2],  i.e., Green's identity is 

(v2x,X)=(x,v2X)+boundaryterm. (2.21) 

The  boundary term  is  expressed as follows  [see  (2.9)].  With x ,  
the normal derivative of x along aQ,,,, define  the function x b  as 

Thus, x b  is an element of the Hilbert space Hb = L:( d9,)  with 
inner product 

(2.23a) 

The function A, in (2.9) is defined in terms of A in the  same 
fashion as x b  in (2.22). Furthermore, the operator E in this case 
is  simply  the  multiplication of elements of L:(aO,) by a 2 x 2  
matrix which we also denote by E. Specifically, 

E =  [i -:I. (2.23b) 

Let r be a scalar  white  noise  over Q 2  and rb be a scalar  white 
noise  over aQ2 with continuous covariance parameters R ( s )  and 
I Ib (6J ) ,  respectively.  Let C(s) be a continuous function on 0, 
and W ( 0 )  be a nonzero continuous function on 39,. The ob- 
servations  are  defined by 

y ( s ) = C ( s ) x ( s ) + r ( s )  onP2 (2.24a) 

and 

The estimation problem  is to find  the least squares  estimate of x 
given y on Q,  and y b  on its boundary. We will return to this 
example  in  Section IV. 

C. Operator Form for M, and the Optimal Estimate 

In this section we present  expressions for the  mapping Mi and 
for the optimal estimate. Only the continuous parameter case is 
addressed here;  however,  with a few obvious  changes  the  same 
arguments can be adapted to the discrete parameter case  (see  [5]). 

It will be  convenient to partition the underlying process 1 into 

the two parts indicated in (2.19a).  Here 3, corresponds to the 
boundary value  and input process, and represents  the additive 
noise on the  observations.  The  covariance parameters of the 
elements of 1 are assumed to be continuous and  the  covariance 
parameters and covariance  matrices  are  all  assumed  invertible. 
The second-order statistics of 5 can  be  defined  by way  of a 
correlation operator. The range  and  domain S of this operator 
are identical and are defined via the folloning spaces 

S l = L ; ( Q , ) x L ; ~ ~ ( a ! d 2 , ) ,  (2.25a) 

s, = L;( q V )  X L:( (2.25b) 

and 

S=S1XS2.   (2 .25~)  

When aQt, is finite (i.e., when N = l), the L2 spaces of functions 
over an, should be replaced  by the Euclidean  spaces R". and 
Rq. The correlation operator Z, is the self-adjoint invertible 
mapping  which we will express in partitioned form as 

(2.26) 

The observations are defined  via the operator M,.: S 4 S,,  
where  from  (2.19b) 

M y =  [ H  : I]. (2.27) 

The following  theorem  establishes an operator representation of 
the complementary  process for this set of observations. 

Theorem 1 (CompIementaty Process): Let M; be  the  mapping 

M, = [ - I ; H*] E;'; iMz: S + S ,  (2.28a) 

where H* is the adjoint of H ,  and I is the identity on S,. Then 
the stochastic process  given by the second-order mapping 

z = M,S (2.28b) 

is the complementary  process for the  observations Y,  i.e., 2 in 
(2.28b)  satisfies both the orthogonality and  complementation 
conditions as prescribed in (2.3) and  (2.4). 

The theorem  is  proved  in  [5] by establishing  the orthogonality 
and complementation conditions in (2.3) and (2.4). In particular, 
it  is shown that for the  problem at hand  the  inverse of the 
augmented operator M [see  (2.4)] is 

(2.29) 

Equations (2.5), (2.3, (2.8), and  (2.29)  provide us with  explicit 
operator representations for the optimal estimate 2 as a func- 
tional of the observations Y and for the  estimation error as a 
function of the underlying  process 5.  A direct implementation of 
this operator form of the estimator requires a realization of the 
inverse of the operator (Xcz HZ,,H*).  As an alternative, in 
Section I11 we obtain a reahation for the estimator without 
explicitly  performing this inversion. 

111. A DIFFERENTIAL OPERATOR REPRESENTATION FOR 
THE ESTIMATOR 

A .  Introduction 

In this section we derive a differential operator representation 
for the estimator. The key  to its derivation is  the formulation of a 
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differential operator representation for the  complementary pro- 
cess  whose 1/0 map  is given in (2.28a). It is in the  formulation of 
this differential  representation for the  complementary  process 
that the  Green's  identity  introduced in Section 11-B plays an 
important role in that  it allows  us to determine  a  differential 
realization of the operator H*. With  differential  representations 
for both the process, to be estimated and the  corresponding 
complementary  process, we  will find that the augmentation and 
inversion  steps  (cf.  Section 11-A) required in the  formulation of 
the estimator become trillal. 

B. The Hilbert Adjoint System 

Theorem 1 provides us with  a  representation of the  comple- 
mentary  process.  Specifically,  using  (2.19a), (2.26), and (2.28), we 
obtain an expression for Z as an output signal plus noise 

Z = H*ZG'{I - 2c 'l1. (3.1) 

Our objective in this section  is to formulate an internal realiza- 
tion for the input-output map H*. The internal process in this 
realization  is  defined  by  a  differential operator whose input 
process  and boundary condition  are  the inputs to H*. 

To determine an internal differential  realization for H*, we 
temporarily leave the stochastic  setting. That is,  throughout  the 
rest of this subsection all processes  should  be  considered as 
elements of Hilbert  spaces of deterministic  functions rather than 
stochastic  processes. 

The internal realization  for  the input-output map H is  given 
by (2.14), together  with  a  noise-free  version of the output equa- 
tion  (2.15),  i.e., 

Q =  [;J = [ gb] = H [  b] 
It will be convenient to define  the  spaces  containing u and D as 
D,, and D,, respectively, so that the domain of H can  be  written 
as D( H )  = D,, x 0,. Similarly, define the  range  spaces  containing 
the output elements 9 and +b as R ,  and RQb so that the  range 
of H is R ( H ) = R * X R  . 

The adjoint of H i s  dekned to be that operator H* which maps 
from  the  range of H into the domain of H and  for  which  the 
inner product  identity 

( X 9  B ) R ( H ) =  ( 6 9  H * B ) D ( H ,  (3.3) 

is  satisfied for arbitrary 6 and in D( H )  and R ( H ) ,  respec- 
tively [7]. 

The first step in determining  an internal realization for H* is 
to rewrite (3.3) in a more  convenient  form.  Since the input 24 in 
(2.14) enters  only  through the action of B ,  we can  decompose H 
as 

ff=& B O  (3.4a) 

If  we denote the  range of B by R E ,  then H :  (RE X 0,) .+ R (  H ) .  
Given this decomposition of H ,  its adjoint H* can be decom- 
posed as 

H* = [ B* 
o z  (3.4b) 

The next step is to partition the  processes I ,  HI ,  9, and H*q in a 
fashion compatible  with  the  corresponding  cross-product  spaces 
of which  they  are  elements 

where u E Du, c E Dtl, uh E R, ,  eh  E R$*. The partition of HI is 
given in (3.2),  while 

Substituting  (3.2),  (3.5), and (3.6) into (3.3),  using  (2.14) to 
express Bu and u in terms of x and xb, and performing  some 
straightforward  manipulations, we find that (3.3)  reduces to 

( X , C * U A ) + ( X b , I Y * U h ) = ( L X , X ) + ( X b , T / * ~ b ) .  (3.7) 

Up  to this point we have  simply  combined  some new notation 
along  with that for the internal  representation  for H to reexpress 
the inner product identity (3.3). The next step is  more substantial 
and is a key one in the development of the internal realization for 
H*. In particular, we employ  Green's  identity  from (2.9) to 
replace ( L x ,  X )  in (3.7). Then (3.3) can be  written in terms of the 
formal adjoint differential  (difference) operator Lt 

( X , [ C * U h - L i h ] ) = ( X b , [ E ~ b + I / * ~ b - W * U X ] ) .  (3.8) 

Although  the Hilbert adjoint H* is  a  unique map, there  exists 
a  family of equivalent internal differential  realizations.  Using  the 
notation introduced  above, we will venfy one internal realization 
for H* with input 9 and output \k = { $, $ b }  by  showing that it 
satisfies (3.8). 

Let W, be one of the  family of operators which  complements Y 
and W in that r in (2.16b) is  invertible.  Define  the partitioned 
operator 

( T * ) - ' E .  (3.9) 

1 1 
This leads to an expression for E that will be useful later 

The following  theorem  establishes an internal differential  realiza- 
tion for H*. This realization  represents a generalization of the 
realization found in 1141  of the adjoint system for 1-D two-point 
boundary value  processes. 

meorem 2 (Hilbert A@int System); An internal differential 
realization for the input-output map 

is  given  by an internal process X satisfjkg 

L+h = C*lih (3.11a) 

with boundary condition 

and output map 

(3.11b) 

(3.11~) 

This result  is  proved by straightforward  calculation using (3.11) 
to show that  both sides of  (3.8) are zero (see [5]).  Although the 
differential realization is not unique due  to the  degrees of free- 
dom in choosing W,, we  will show that the  estimator  itself  is 
invariant with  respect to the  choice of W,, as it must  be. 

C. Augmentation and Inversion 

The internal differential  realization for H* in (3.11)  defines  a 
representation for the  complementary  stochastic  process [see  (3.1)] 
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.=[:,I. (3.12) 

In this subsection  we  augment the internal realization  for Z with 
that for the  observations. We then  invert this realization  to obtain 
an internal differential  realization for the  estimator. 

The differential form for the augmented  system is 

with boundary condition 

and outputs 

(3.13d) 

The inverse  system we seek is one with { Y ,  Z }  = { y ,  yb, z ,  zb}  
as input and p = { u,  u ,  r,   rb} as output. To this end, following  the 
approach taken  by Levy et ai. for the 1-D causal w e  in [9], we 
first solve for the elements of 5 by  inverting  the output equations 
(3.13~) and (3.13d). Substituting  the  resulting  expressions into the 
dynamics and boundary conditions in (3.13a)  and  (3.13b)  yields 
an internal differentid realization of the  inverse  system  with 
dynamics 

(3.14) 

and with boundary condition 

This boundary condition can be  simplified so that its dependence 
on W,, Vi, and Yic is eliminated.  Recalling  the  relation  between 
these operators and E in Green's identity from  (3.10), it can be 
shown that operating on the  left of (3.15) by [ - V* : W,* : W*] 
gives the boundary condition as 

(3.16) 

The estimator is the  solution of  (3.14) and (3.16) projected 
onto Sp( Y ) ,  i.e.,  the  solution  with Z = { z ,   zb}  = 0 

The estimates of the elements of the underlying  process 1, if 
desired, can be computed  from  the output equations (3.13~) and 
(3.13b)  evaluated at the  solution of (3.17) and with z and z b  

equal to zero. Note that since L and L' are of the  same order, 
the order of the  estimator  is  twice  that of L. Also note the 
important fact that in addition to the  original  problem statement, 
we only  need to know E and L? from  Green's  identity in (2.9) to 
completely  define  the differential realization  for  the  estimator. 
That is, it is not necessary to actually  determine  the  complete 
internal differential  realization  for  the  complementary  process. 

D. The Estimation Error 

The estimation error 2 = x - 2 is  obtained as the  solution of 
(3.14) and (3.16)  projected onto Sp( Z )  rather  than Sp( Y ) .  Here 
we formulate  a  differential  realization of the  estimation error 
which is driven  by {. The second-order  statistics of the  estimation 
error can  be  computed  from  those of { using this relation. 

Consider the boundary condition  (3.16)  projected onto S p ( Z )  

Substituting for t b  from  (3.13d),  using  the  basic  definition 

and employing  the  relations in (3.10) and (3.13b), the boundary 
condition (3.18)  can  be  rewritten as 

(3.20) 

We have  chosen - ̂hb instead of x ,  to  highlght the  similarity 
between  the structure of the boundary condition  for  the  estima- 
tion error in (3.20) and that of the  estimator in (3.17). 

The projection of (3.14) onto Sp( Z )  gives the error dynamics 
as 

Using  the fact that x =x - 1, eliminating z using  (3.13c), and 
noting from  (3.13a) that the  dynamics of h are given by 

(3.21)  can be rewritten as 

We remark that it can be-readily  deduced from (3.13~) that  the 
estimate of u is ir = QB*h. Thus,  the  first row of (3.23)  simply 
states that LT = BC, where D = u - ic. 

Thus, (3.20) and  (3.23)  completely  define  the  estimation  error 
in terms of 5 = { u ,  L', r,   rb} whose  probability  law  is  known. In 
addition, the  dynamics and boundary conditions of the  estima- 
tion  error  have  been  shown to be  similar  to  those of the  estima- 
tor.  One  should be able to take  advantage of these  similarities 
when  computing  the  estimate  and its error  covariance. For exam- 
ple,  see  the  discussion of the  implementation of the  estimator and 
the computation of the error covariance  for  the 1-D noncausal 
process in Part 11. 

IV. THE ESTIMATOR FOR Two EXAMPLES 

A. Introduction 

The ease  with  which one can apply (3.17) to obtain an internal 
differential  representation for the  estimator of a  noncausal sto- 
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chastic process  is demonstrated in this  section. We  show that the 
estimator for  the  process  governed  by  Poisson's equation intro- 
duced earlier takes  the  form of a  fourth-order biharmonic equa- 
tion. To illustrate the versatility of our solution, we also consider 
a substantially different process,  namely a 1-D discrete boundary 
value  process. It  is shown that a special  case of the solution we 
obtain from  (3.17) for this  discrete  process  is a well-known  form 
of the solution for  the fixed-interval smoother for 1-D discrete 
causal processes [SI. 

B. 2 - D Continuous Case: Poisson's Equation 

The problem statement is  given  by  (2.20)-(2.24). Substituting 
the Laplacian v 2  for Lr in the estimator solution (3.17, we 
obtain the estimator dynamics as 

From (2.20b) and (2.24b) the boundary condition and boundary 
observation can be  expressed by functions on [0,2a] as 

(Vxb)(8)= [ v(e) o ] x b ( e )  (4.2a) 

and 

(W%)(O) = [o W@)] % ( e >  (4.2b) 

where we recall that xi(6) = [x(l ,  e), xn(l,  e) ] .  Using  this ex- 
pression and substituting for E from  (2.23b), it can be  shown 
that the boundary condition for (4.1) is (in polar .coordinates 
evaluated at p = 1) 

Substituting (4.4)  back into (4.1), we find that the estimator 
dynamics arc given by  the biharmonic equation 

{ v2[BZ(s)Q(~)]-'+CZ(~)R-1(s))~2%(s) 
= C ( s ) R - ' ( s ) y ( s ) .  (4.5) 

With a / a n  denoting the normal derivative and substituting from 
(4.4),  the boundary condition in (4.3) can be rewritten as 

o = ~ , 1 ( e ) n ( p , 8 ) - ( a / a n )  
. { [B ' (p ,e )Q(p ,e ) ] - ' v22 (p ,e ) }  (4.6a) 

evaluated at p = l .  We have not investigated analytical or 
numerical solutions for this biharmonic equation.  In practice, 
these equations might be  solved  by an application of one of the 
many available  numerical  techniques  such as finite difference 
approximations [13]. 

C, I - D Discrete Case: Two- Point Bounday Value Process 

This example is  the discrete version of a 1-D boundary value 
estimation problem  originally  posed  by Krener [14]. For this 
example, N = 1, 8, is  the  set of integers [0, K - 13, and d Q ,  is 
the set (0, K }. Let u be an m X 1 vector  white  noise  over Q ,  with 
nonsingular covariance matrix &, k E GI. Let u be an n X 1  
random vector  with nonsingular covariance matrix II,. Let Bk 
be an n X m matrix and Ak be a n X n matrix both on a,, and 
let I' be a full rank n X 2n matrix with n X n partitions 
[Vo : VKJ.  The  process to be estimated is defined by  the dif- 
ference equation 

x k + l  = i- BkUk (4.7a) 

with a two-point boundary condition 

0 = V O X ,  + v%,. (4.B) 

If we let D denote the 1-D delay 

( D x ) k = x k - l  (4.8) 

then L is the 1-D difference operator 

L = ( D - ' I - A ) ;  ( k ) k = X k + l - A k X k .  (4%) 

Note  that the range and domain of L are properly specified  by 

L:  l;[O,K] - l q [ O ,  K-1] (4.9b) 

where [0, k ]  = QIUdQl. Tbis illustrates an important point. That 
is, due to sequencing  issues for discrete dynamics, it will in 
general be the case for discrete problems that d8,  is neither 
disjoint from nor  a subset of 52,. 

The Green's identity for this example  is 

(Lx,A)1';[0,~-11=(-~tL~h)lq(o,~-1]+(xb,Eh6)~~" (4.10) 

where the formal adjoint difference operator is 

the boundary process  is 

x b = A b x =  [::I, (4.12a) 

and E is  a 2n X 2n matrix partitioned into n x n blocks as 

E = [ , '  (4.12b) 

With V the n X 2n matrix defined earlier, the two-point boundary 
condition (4.7b) is given by the product 

u=Vx'x,. (4.13) 

and 

Here u E R", i.e., n ,  = n. 
To define  the observations, let r be a p X 1 white  noise  over Q, 

whose  covariance matrix Rk is nonsingular on Q1, and let r, be  a 
q X 1 random vector  with nonsingular covariance matrix I I b .  Let 
C, be a p x n  matrix on Q, and let W be a full rank q x 2 n  
matrix with q d n ,  with  the  rows of W linearly independent of 
the rows of V and with a X n Dartitions: IWo : WK1. Then the 
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yk = c k x k  + rk on 81 (4.14a) 

along with the random vector 

y ,  = w a x o  + W K X ,  + r,. (4.14b) 

The  input processes u and u and the  observation  noises r and r, 
are all assumed to be mutually  uncorrelated. 

Again, to obtain the  estimator we simply substitute from the 
problem statement and from  Green’s  identity  for L’ and E into 
(3.17). This gives  the  estimator  dynamics as 

(4.15a) 
and boundary condition as 

(4.15b) 

If we consider  the  special  case of no boundary observation y h  
(i.e., W o  = W K  = 0) and an initial condition  for x (i.e., V o  = 
I ,  Y K  = 0), then the boundary condition in (4.15b)  becomes 

This boundary condition along  with  the  dynamics in (4.15a) is 
recognized as the well-known  solution  for  the  fixed-interval 
smoother for causal  discrete 1-D stochastic  processes [9]. It is 
shown in [5] that the solution  for  the  estimator  with  the  general 
form of the boundary condition (4.15b) can be implemented via a 
two-filter  form  similar to two-filter  forms of the  solution  for  the 
smoother  for  causal  processes. See Part I1 for the  continuous-time 
counterpart of this result. 

V. CONCLUSIONS 

Through an extension of the method of complementary  models 
[l], we have  developed a procedure for writing  the  estimator  for 
both discrete and continuous  parameter  linear boundary value 
stochastic  processes in a  differential operator form.  The  two 
major steps in the  development of the  estimator  have  been  1)  the 
formulation of an input-output operator representation  for  the 
complementary  process in Section I1 and 2) the  use of Green’s 
identity in Section I11 in the  derivation of an internal  differential 
realization for this input-output map. We emphasize  that at no 
point  in our derivations  have we required a Markollan represen- 
tation for the  process to be estimated, The variety of problems 
for which our estimator  solution  is  applicable has been  illustrated 
through two examples:  a 1-D discrete  parameter  process; and a 
2-D continuous  parameter  process. 

The major  advantage in having a differential  realization  for  the 
estimator is that this form of representation  provides  an  excellent 
starting point  for the development of methods  for  implementing 
the estimator. This is in contrast to estimators  derived  by  a  direct 
application of the  projection  theorem,  which  usually  leads to 
integral  equations  (e.g. Wiener-Hop0 requiring  factorization in 
order to obtain an implementation. Furthermore, we have also 
derived an internal differential  realization  for  the  estimation 
errors in a  form  which  is  nearly  identical to that for  the  estimator. 

In Part I1 of this paper [4] we apply  the  estimator  solution 
formulated in this paper to  a  continuous 1-D two-point boundary 
value  stochastic  process and develop  a  stable,  recursive  imple- 
mentation for the  resulting  differential  form of the  estimator. In 
addition, by  following  the  same  procedures as used to obtain the 
recursive  estimator  implementation, we develop  recursions  for the 
computation of the  smoothing error covariance.  Investigations of 
the  implementation of estimators for discrete 1-D and 2-D and 
continuous 2-D processes can be found in [5 ] .  
In addition to questions of implementation,  there  are  also 

interesting unanswered  questions  which  relate to the boundary 
conditions for multidimensional  problems. For example,  recall 
from  (3.17b) that the boundary condition for our estimator is 
defined in terms of the operator adjoints V* and W* and the 
inverses of the  correlation operators II, and IIb. In our 2-D 
example we have  tacitly  avoided  any  complications  which  might 
arise in determining  these  adjoints and inverses by choosing u 
and rb as white  noise  and  by  choosing V and W as a  simple 
scaling of the  process on the boundary [see  (4.2a),  (4.2b)l. It 
would be of interest to investigate  the  estimator  for this 2-D 
example  when  the boundary value L‘ is  a 1-D periodic  stochastic 
process on the uni t  circle. Another issue  concerning  the  estimator 
boundary con&tion,  namely the case  when I I L ,  is  singular, is 
addressed in [5]. In particular, it is  shown  that in this case  the 
estimator boundary  condition  is  somewhat  more  complex  than 
that in (3.1%) but  that it does allow LIS to determine  estimator 
for a  variety of problems  including  those  involving 1-D periodic 
processes. 

In summary, we  feel that this paper presents an extremely 
useful and broadly  applicable  method for deriving optimal linear 
estimators for noncausal  processes in one and several  dimensions. 
Given this valuable  tool,  one is then in a position to focus  one’s 
attention on the  problem of implementing  the optimal estimator 
in an efficient fashion. As mentioned  previously, this is  precisely 
what  is done in Part I1  for  the  case of 1-D continuous parameter 
processes and in [5] for 2-D processes. In the  more  general, 
multidimensional  case  many  open  questions  remain, but the 
results in this paper bring  us  significantly  closer  to  answering 
them. 
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Linear  Estimation of Boundary  Value 
Stochastic  Processes-Part 1 1 :  

1 -D Smoothing  Problems 

Abstrucf --This paper  addresses  the  fixed-interval smoothing problem 
for  linear two-point boundary  value stochastic  processes of the type intro- 
duced by  Krener [q. As these  models  are  not  Markovian, Kalman filtering 
and  associated smoothing algorithms  are not applicable. The smoothing 
problem  for this class of noncausal  processes is solved here by  an applica- 
tion of the  estimator  solution  which is developed in Part I of this paper [3] 
Fia the  method of complementary  models. For an nth-order model, this 
approach  yields  the  smoother as a  Znth-order  two-point  boundary  value 
problem. It is shown that this smoother can be realized in a  stable  two-fiiter 
form which is remarkably similar to two-filter smoothen for causal 
processes. In addition,  expressions  for  the  smoothing  error  and smoothing 
error  covariance  are  developed. ntese equations are  employed  to  perform  a 
coyariance  analysis of estimating the temperature  and  heat  flow  in a 
cooling fin. 
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I. INTRODUCTION 

B OTH linear filtering and linear smoothing for one-dimen- 
sional (1-D), nonstationary, causal  processes  have  been exten- 

sively  studied. Many of the  classical solutions to these  problems 
are discussed in the  review paper by Kailath [l]. The derivations 
of these solutions have  relied  heavily on the Markovian nature of 
the models for these 1-D processes [2].  However,  inasmuch as 
stochastic processes in higher  dimensions (random fields) are 
typically  noncausal, and consequently are not Markovian in the 
usual sense, their estimators cannot be  derived through a direct 
extension of these 1-D derivations.  Thus, linear estimation prob- 
lems for noncausal processes require new approaches.  One such 
new approach has been  developed in Part I of k s  paper [3] 
where we have  extended  Weinert and Desai’s [4] method of 
complementary  models. This extension  allows us to write solu- 
tions to estimation problems for a broad class of noncausal 
processes in one and higher  dimensions. In this paper we build 
upon this solution procedure in order to perform a detailed 
investigation of the smoothing  problem for 1-D noncausal 
processes. 

The processes that we consider are governed  by the linear 
noncausal 1-D dynamic models introduced by Krener  in [5]. In 
his study of these  models,  he  has  developed  results on controlla- 
bility, observability,  and  minimality and has solved a determinis- 
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