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Fourier Series and Estima tion on the Circle with 
Applications to Synchronous Communication- 

Part I: Analysis 
ALAN S. W ILLSKY, MEMBER, IEEE 

Abstract-A wide variety of cont inuous- and  discrete-time estimation 
problems on  the circle S’ are considered with the aid of Fourier series 
analysis. Measurement  and  diffusion update equat ions are der ived for 
the conditional expectat ion of certain functions of the parameter to be  
estimated, and  we investigate the use  of Fourier series to obtain easily 
implemented optimal estimation equations. A variety of important 
examples-phase tracking, f requency demodulat ion, and  phase  de-  
modulat ion in the presence of oscillator instabilities, additive noise, 
Rayleigh fading, or any  combinat ion of these-are considered. 

I. INTRODUCTION 

S HAS BEEN discussed in the recent literature [l]- A [4], [6]-[7], and  [9], the circle S1 provides a  great 
deal of structure for the study of certain stochastic processes. 
This is reflected in the several new techniques [l]-[9] 
that have been  devised to study and  solve a  variety of phase 
tracking and  angle demodulat ion problems, 

One  of the most important analytical tools related to the 
circle is Fourier series analysis, Bucy and  his associates 
[6], [7] have used Fourier analysis to derive infinite- 
dimensional optimal estimation equations for several 
specific problems, and  W illsky and  Lo  [2], [4] have ob- 
tained a  general  infinite-dimensional discrete-time result. 
F inite-dimensional approximations were briefly discussed 
in [2], and  an  unsuccessful attempt was reported in [6]. 
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In this set of two papers we extend the Fourier-type results 
that have been  obtained to large classes of discrete- and  
continuous-time problems of practical importance. In the 
present paper  we will discuss the analytical results that 
have been  obtained. We  review the discrete-time result of 
W illsky and  Lo  and  apply it to several important examples. 
In addition, we develop (via a  series of examples) an  
approach to solving a  number  of continuous-time problems, 
including the problem discussed in [7]. In Part II we discuss 
the proble_m of implementation, i.e., of finite-dimensional 
approximation, and  present some numerical results com- 
paring a  Fourier-type system to a  standard phase-lock 
loop [IO ] and  a  “state-dependent noise” filter [8]. One  of 
the ma jor results of our work is the success we have had  in 
designing high performance approximations to the analytical 
Fourier series results. We  note that the results presented 
here and  in Part II have been  reported in part in [4]. The  
reader is also referred to some analogous results in [II] 
for spatially discretiied versions of some of these problems. 

II. OPTIMAL ESTIMATION OF S’ RANDOM VARIABLES 
USING FOURIER SERIES 

In this section we display estimation equations originally 
derived in [2] and  [4]. Let 8  be  a  random variable on  S’ 
(identified with [ - rc,r~)) with probability density 

Here 

p(B) = +f cneine. 
“=-cc (1) 

c, = & b(e-‘“‘) = b,, - ia, = cm,* (2) 
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where d denotes the expectation operator, * the complex Considering this as a function of g for fixed v, we have 
conjugate, and 

a, = & d(sin 80) b, = & b(cos no). (3) 
Py,e(V I 0 = n za 4tvP”r (13) 

where the d,, are functions of v (which do got, in general, 
As we shall see, the Fourier coefficients {c”} provide a have an interpretation as in (2)). Applying Bayes’ rule, we 
useful set of “moments” for 0. compute the-Fourier series form for the conditional density 

Suppose we wish to m inimize S[&0 - @ ] with respect 
to fi, where $ : [ - n,rc) -+ R is given by P& I v) = *c” c,( l)einc (14) “=-a3 

4(e) = E dneine. 
“=-CC 

A simple computation yields 

(4) 

.I(@  p a[$(0 - #)I = ‘f c,d,*einQ 
ll=-aJ (5) 

and necessary conditions for a local m inimum are 

explicit solutions of which is possible only for certain error 
functions. As an example, consider the error function (also 
used in [6], [7]) 

4(e) = i - cos e (7) 
for which we have 

J(O) = 1 - 2n(a, sin 0 + b, cos 0). 63) 
The optimal estimate and cost are given by 

(15) 

Thus the computation of Pelr involves the (in general non- 
linear) computation of the coefficients {d,(v)} and the 
evaluation of the convolution (16). We will comment at 
the end of this section on the computational savings that 
can be obtained by utilizing the structure of (16). Note 
that the only restriction on the applicability of these results 
is that we must be able to write P,,,~ as in (13). 

We note that if we use an estimation criterion of the 
form given in (4), our optimal conditional estimate becomes 
an explicit function of the {c,(l)} (e.g., see (7)-(g)). It is 
this observation that provides much of the motivation for 
our study of the evolution of the Fourier coefficients of 
probability densities on S’. The following examples are 
but a few of the many problems that fall into this framework. 

8, = tan-’ : 
0 1 

J(&-J = 1 - 27c&~,~ + b,’ 

where (9) is to be interpreted as 

(9) 
Example 1 

Let 0 be an S1 random variable with density given by (12). 

(10) 
Let u be a real-valued random variable, independent of 8, 
with density p,(v) = N(v; 0,~) (normal density with 0 
mean and variance y). Consider the observation 

sin 8, = cos & = b, 
(a~” + b12)1’2 * (“) In this case 

y = sin e + 21. (17) 

Since 1 - cos 8 w e2/2 for small 8, we see that, at least 
locally, this is a type of least squares criterion. A detailed 
discussion of this criterion can be found in [2]. 

We remark that the computations involved in solving (6) 
become increasingly more difficult as the number of 
nonzero Fourier coefficients of 4 increases. The reader is 
referred to [2], [4], and [7] for more on this subject. 

III. GENERAL DISCRETE-TIME S’ ESTIMATION PROBLEMS 

In this section we will first consider a general single 
stage S1 estimation problem (see [2], [4]). Several important 
examples, extensions to multistage problems, and com- 
putational considerations will be discussed later in the 
section. 

Let f3 be a random variable on the circle with a priori 
density 

pe(<) = 2 cn(0)ein5. (12) 
n=--00 

Suppose that we take a single (possibly nonlinear) measure- 
ment y of 8 and that the noise density pyle(v I 5) exists. 

P~~&J I 5) = NV - sin t; 0,~) (18) 

and we can show [4], [12], [13] that the associated Fourier 
series (13) is a complicated expression involving Bessel 
functions. In principle we can use this expression together 
with the observation value v and the update equations 
(14)-( 16) to compute the conditional density (approximate 
methods are discussed in Part II). We also note that vast 
computational simplifications arise if we consider the 
continuous time analog of (17) (see Example 4). 

Example 2 

Let 0 and v be as in the previous example and suppose our 
observation is 

y = (0 + V) mod 27~. (19) 
This type of problem was studied in [2] and [4] in a dif- 
ferent way, using the mod 2rc equivalence of points on the 
real line. We have 

Py,eb I 5) = F(JJ - 5; 049 (20) 
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where F(a; q,y) is the “folded normal” density (evaluated 
at a) with mode  q  and  “variance” y. This density is related 
to the normal density in the following way: if x is a  real 
random variable with density N(a; u,y), then 8  = x mod  27c 
has the density 

F(a; V,Y> = E Nta + 2nn; V,Y) (21) 
l l=--0D 

[i.e., we “fold” N(a; v,y) around the circle]. We  note that 
the folded normal density is the solution of the standard 
diffusion equation on  the circle (i.e., it is the density for 
S1 Brownian motion processes) and  is as important a  
density on  S1 as the normal is on  R1. We will find this 
density to be  most useful in devising suboptimal schemes 
in Part II. For further discussions on  the folded normal, 
see PI, C41, [141-P61. 

One can show [l], [4] that the Fourier series form for 
pyle in (20) is 

pyle(v j t) = & Ig e-“2y/2ei”(y--5). (22) 
n co 

We can then compute the Fourier series form of PO,,, from 
(14)-(16). 

We  can also handle the problem of computing conditional 
densities of random processes given a  series of discrete 
measurements.  Assuming that the measurement  noises of 
the various measurements are independent of each other 
and  of the process 0  that is to be  estimated, we can process 
each measurement  as in (14)-(16) and  can propagate the 
density between measurements via some sort of “diffusion” 
equation. O f course, if we are using the Fourier series 
representation for probability densities, our diffusion up- 
date equations should be  in terms of the Fourier coefficients. 
We  consider an  example of a  random process on  S’ to 
show how the Fourier series approach leads to simple 
diffusion update equations. 

Example 3 

Consider a  discrete-time random process 8, that satisfies 

8 k+l = (6, + wk) mod  2rc (23) 
where the wk are independent random variables on  S’. 
G iven a  sequence of (possibly nonlinear) noisy observations 
yk of t$, we wish to compute the conditional distributions 

pett; W ) = de, = E I Y,,**-,Y,) = ‘c” c,(k ( k)e’“< 
“=-cc 

(24) 

P&; k +  1, k) =  p(b+l =  t I y,;--,Y,) 

= F  c,(k + 1 I k)ei”e. 
n=-m (25) 

The  computation of p&t; k,k) from ~~(5; k, k - 1) and  
the measurement  yk proceeds as discussed previously. We  
now consider the “diffusion update”-the computation of 
~~(4; k + 1, k) from ~~(5; k,k). Assuming that the density 
for w, can be  written as 

p,(a,k) = y d,(k)ei”’ (26) 

579  

we have the convolution form of the diffusion update 

2n p,(l; k + 1, k) = 
s 

pe(5 - a; k,k)p,(a,k) da (27) 
0 

which leads to the Fourier series update equation 

c,,(k + 1 I k) = 2nc,(k I k)d,(k). cw 

The  fact that the convolution (27) transforms into the point- 
wise mu ltiplication (28), together with the interpretation 
of c, in (2), indicates the close relationship between the 
Fourier coefficients and  the characteristic function of a  
real random variable [17]. We  also note a  type of “dual” 
result to the diffusion update pair (27), (28). Looking at 
the measurement  update computation, we see that, except 
for the normalization factor, Bayes’ rule involves pointwise 
mu ltiplication of functions (pe(t) times pyle(v I 5); regard 
the latter as a  function of <), but when we transform to the 
Fourier coefficient framework, we obtain a  convolution 
(16). This observation is important in understanding the 
computational aspects of our results. Since we cannot avoid 
a  convolution (we obtain one  in either the diffusion or 
measurement  update depending on  whether we use the 
density or its Fourier coefficients), the high-speed con- 
volution and  fast Fourier transform techniques discussed 
in [26] and  [19] may be  of value in performing the cal- 
culations efficiently. (See [4] for a  further discussion and  
[l l] for a  related discussion on  quantized versions of these 
problems.) 

Note that (28) can be  used to study the properties of 
stable distributions on  S’, i.e., classes of densities that are 
closed under  convolution, or equivalently, classes of 
densities that are closed under  the mu ltiplication of Fourier 
coefficients, as in (28). We  will not go  into this problem 
here except to remark that one  can show that the class of 
folded normal densities is a  stable class. (See Lemma 2  of 
[l] and  the discussion in [4].) 

F inally, we note that if e(t) = w(t) mod  271, where w(t) 
is a’ standard Brownian motion process, we obtain an  
equation of the form (23) if we take 8, = 8(kA), wk = 
w((k + l)A) - w(kA). In this case, we can show [l], [4] 
thatp,(<; k + 1, k) is the solution of the diffusion equation 

ap la2P o --= 
at - 2  a82 

at t = (k + 1)A when we start at time  t with ~~(5; k,k). 
Also 

p,(a,k) = k 8: e-n2A/2einas 
n cc 

IV. FOURIER ANALYSIS AND CONTINUOUS-TIME PHASE 
TRACKING AND DEMODULATION 

In this section we consider a  class of estimation problems 
of importance in a  number  of communicat ion applications. 
We  wish to investigate the processing of a  signal of the form 

r(t) = sin (o,t + 4(t) + v(t)) + a(t) (31) 
where o, is a  carrier frequency, 4  is some type of modu lating 
information, v is a  phase drift, and  3  is additive channel  “=-a 
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noise. With this model we can consider phase tracking, 
phase demodulation, and frequency demodulation. Standard 
techniques for such problems involve a system called a 
phase-lock loop (PLL) [lo]. The reader is referred to Part II, 
where we review the basic ideas behind the PLL and present 
some results comparing the performance of PLL systems 
with the performance of systems designed using the tech- 
niques developed here. 

In the following discussion we utilize the tool of Fourier 
series analysis to design tracking and demodulation systems. 
The goal of our approach and also of the similar techniques 
discussed in [6] and [7] is to devise methods for designing 
filters that utilize the inherent structure of the problem at 
hand and that are of practical value. In this light, one of the 
main contributions of our work is that the Fourier series 
formulation allows us to understand the structure of optimal 
(infinite-dimensional) trackers and receivers and to devise 
high performance finite-dimensional approximations. In- 
stead of describing a general method, we illustrate our 
technique by discussing several important examples. 

Example 4 

We consider a phase tracking problem that is essentially 
the same as that studied in [7]. This problem is the con- 
tinuous time analog of Example 1. Suppose we receive the 
signal 

i(t) = sin e(t) + r1j2(t)ti(t) (32) 
where 

s 

f 
e(t) = o,t + 4 i’2(S) do(s) + 8, (33) 

0 
and v and w are independent Brownian motions, q(t) 1 0, 
r(t) > 0, and o, > 0. Also B. is a random initial condition 
independent of v and w. 

Suppose we wish to estimate e(t) mod 2n given {i(s) 1 0 I 
s < t}; i.e., we wish to filter out r l/l+ and track the phase. 
Equation (32) is, of course, only formal since 6 is white 
noise. The Ita differential forms of (32) and (33) are 

de(t) = o, dt + q1’2(t) dv(t), e(o) = 8, (34) 

dz(t) = sin 0(t) dt + r’12(t) dw(t). (35) 

We take as our optimal estimation criterion the minimization 
of a[(1 - cos (e(t) - B(t)) 1 z(s), 0 I s I t]. AS discussed 
previously, it then makes sense to compute the Fourier 
coefficients {cn} of the distribution for e(t) conditioned on 
z(s), 0 5 s I t. 

The stochastic differential equation for c,(t) can be 
obtained using the results of Kushner [21], [22] 

de,,(t) = - ino, + g q(t) 1 c,(t) dt 

+ 

[ 

cc,-10) - G+1(0) 

2i + 240 Im MN 
I 

. dz(t) + 2n Im (c,(t)) dt 

4) 
(36) 
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Fig. 1. Form of infinite-dimensional optimal filter of Example 4. 

Fig. 2. Diagram of the c, filter shown in Fig. 1. 

Here Im (c,) = (cn - c,,*)/2i. Recalling that co = +n and 
c-” = c,“, we see that we need only solve (36) for n 2 1. 
Note that these equations are simpler than the discrete- 
time equations of Example 1, since the equation for c, 
depends only on cl, c,- 1, c,,, and c,,, instead of on all 
of the coefficients as in (16) (also we do not have to compute 
Bessel functions). 

The structure of the optimal filter, which is illustrated in 
Figs. 1 and 2, deserves further comment (recall that c, = 
b, - ia,,). The filter consists of an infinite bank of filters, 
the nth of which is essentially a damped oscillator, with 
oscillator frequency y1w,, together with nonlinear couplings 
to the other filters and to the received signal. Note that 
without measurements but with the oscillator phase noise 
q1’2(t) dv(t) present, the steady state density for 0 is 
uniform; i.e., c, = 0, for all IZ # 0. The purpose of the 
damping term in the c, filter is to account for this diffusive 
effect. We will have more to say about the structure of this 
filter in Part II. 

We note one very appealing feature of our filter; i.e., it 
is time-invariant (see Figs. 1 and 2) if q and r are constant 
and is equipped to handle any initial conditions. If we are 
interested in the pure synchronization problem after we 
have acquired the signal, we might impose the initial 
condition c,(O) = $n, for all n, which corresponds to our 
knowing that the initial phase is 0. On the other hand, 
setting c,(O) = 0, for all n # 0, corresponds to the assump- 
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tion that the initial phase is uniformly distributed; i.e., 
this is the acquisition problem. Thus, suppose we can build 
a  finite-dimensional approximation to the infinite dimension- 
al filter given by (36). Then,  assuming we retain the time-  
invariant nature of the original system, we see that the same 
filter can handle either synchronization or acquisition 
merely by the proper choice of initial conditions. The  
reader is referred to Part II, where we present and  discuss 
some simulation results for the problem discussed in 
Example 4. 

Example 5 

In this example we will consider a  phase demodulat ion 
problem. Consider the R1 signal process x(t) satisfying the 
It6 differential equat ion 

dx(t) = a(t)x(t) dt + q1’2(t) dv(t) (37) 

where v is a  standard Brownian motion process independent 
of the initial condition x(0). We  wish to estimate x(t) 
given the phase-modulated observation process 

dz(t) = sin (o,t + x(t)) dt + r”‘(t) dw(t) (38) 

where w is a  Brownian motion independent of v and  x(0). 
Suppose we want the m inimum variance estimate of 

x(t), given {z(s) I 0  I s I t}. It is known that the desired 
estimate is the conditional expectation &[x(t) I z(s), 0  I 
s I t] P 2(t 1 t). As in Example 4, we write the optimal 
demodulator equations in terms of some very special 
functions. The  form of the optimal demodulator, which is 
infinite-dimensional, is appeal ing physically and  suggests 
some new suboptimal demodulat ion techniques. The  ex- 
ponential time  correlation of x(t) (the presence of the term 
rt(t)x(t) dt on the right side of (37)) makes this problem 
somewhat more complicated than the preceding example. 

We  now write the stochastic differential equations 
satisfied by 

c,,(t) = & 6[x”(t)e-ime(‘) I z(s), 0  I s 5 t] (39) 

where e(t) is the signal phase 

O(t) = (o,t + x(t)) mod 271. (40) 

Again using Kushner’s results, we find that 

&wntt) = m2dt) na(t) - - - imw, 1 c,,(t) 

- ima(t)c,+ ,1(t) + n(n -21)q(r) 

. cn-2,&) - idt)nmcn-l,m tt) d t 1  
+ cn,m-1 

[ 

(t> - cn,nl+ 1(t) 

2i + 2~ktt) Im tcol@N 1 
. tdztt) + 271 lm (col@> dt)) 

r(t) (41) 

Feeds Into Each Filter 

Feeds Into Each Filter - '(t't) 

Fig. 3. Form of optimal phase  demodulator  of Example 5. 

where cnk(t) A 0, for all n  < 0, and  c,,(t) = c,*,-,(t). 
Note that our optimal estimate is 

Iz(t 1  t) = 27cc,,(t). (42) 

We will make a  few comments about this filter, which is 
illustrated in F ig. 3. The  demodulator consists of a  doubly 
infinite bank of filters. The  c,,, filter is directly connected 
only to the col, G+~,,,,, c,,-~,,,,, c,,-~,,,,, c,,,-~, and  c,,,+~ 
filters. Referring to (41), we see that the c,, filter for m > 0 
resembles the damped  oscillator filter in F ig. 2. The  cno 
filters are much simpler in form. 

The  reader is referred to Part II, in which we discuss a  
number  of systematic methods for truncating this doubly 
infinite bank of filters. We  also note that in this same frame- 
work, one  can consider phase modu lating more complicated 
signals and  the filtering out of phase drift noise or a  random 
initial phase (i.e., the acquisition problem). The  next 
example, in which we consider an  FM problem, illustrates 
the versatility of this conceptual approach. 

Example 6 

Consider the received signal process 

dz(t) = sin (ce=t -I- 9  ji x(s) ds + 1: e’/“(s) df(s)) dt 

+ rli2(t) dw(t) (43) 

where x satisfies (37), and  f and w are independent standard 
one-dimensional Brownian motion processes, both in- 
dependent  of x. The  term r. e’/“(s) df(s) represents random 
phase drift, and  the dw(t) term is additive channel  noise. 
We  note that x(t) can be  considered to be  an  error in our 
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knowledge of w, (e.g., dx = 0 with x(0) unknown cor- something other than the minimum variance estimate, 
responds to a constant offset in the carrier frequency or a e.g., 1 - cos (0 - @.) 
constant Doppler shift [23]). Let us define the two-dimen- We also note that the general problem (51), (52) is 
sional signal process 

Y(t) = [::Z] = [g s,’ x(s) ds :y-; e’%) ,,I. 

We then have 

conceptually no more difficult than the problems considered 
in the examples and, as in these cases, yields a time- 

(49 
invariant solution if A, Q, and r are constant. However, 
the bookkeeping becomes more complicated. Some straight- 
forward calculations indicate that, in general, we must 
compute 

dy(t) = A(t)y(t) dt + Q”‘(t) du(t) 

a(t) 0 40 = g 0 [ 1 
Q”2(t) = p’;(‘) e&)-j . 

Also 

dz(t) = sin (met + My(t)) dt + r’j2(t) dw(t) 

h’ = [O, 11. 

AS in the last example, suppose we want the minimum 
variance estimate of x(t). To do this, we write the stochastic 
differential equations for 

c nm = & E[yl”(t)e-im(wcf+y2(f)) 1 z(s), 0 I s I t]. (49) 

The optimal estimate is 2nc1,,(t), and the filter equations are 

&m(t) = ([ 
m(t) - f e(t) - imo, I c,,(t) 

- imgc,+,,,(t) + @ -21)q(f) c.,,.(t)) dt 

+ (cm-l(t) - %m+l(t)) + znc 
2i 

nm (t) Im (col(t)) I 
. dz(t) + 2n Im (col(t)) dt 

r(t) I* (50) 

Again c,~ g 0, for all it < 0. 
In a similar manner we can consider the general problem 

dy(t) = A(t)y(t) dt + Q”‘(t) do(t) (51) 
dz(t) = sin (o,t + My(t)) + r1j2 dw(t) (52) 

(45) &[ylk1yZk2 * . * y,k”e-im(oCt+h’y(t)) 1 z(s), 0 5 s < t]. 

Thus the general demodulator-tracker is a multidimensional 
version of the systems considered in the examples. As a 
final indication of how these techniques can be used, we 
consider a phase tracking problem in which the amplitude 

(46) of the sinusoidal signal is unknown. 

Example 7 

(47) Suppose we receive the signal 

(48) dz(t) = A sin e(t) dt + r”‘(t) dw(t) (53) 

where y is an n-vector, v is an m-vector, and the functions 
U,(f), * * * p,(t), w(t) are independent standard Brownian 
motion processes, all independent of y(0). Given (52) we can 
consider finding the minimum variance estimate (i.e., the 
conditional mean) of Cy(t) given {z(s) 1 0 < s I t}. (Note 
that if we allow y(O) to be random, we can consider a random 
initial phase problem.) Examples 4, 5, and 6 indicate that 
this model includes the phase tracking, phase demodulation, 
and frequency demodulation problems in the presence of 
both additive channel noise and phase drift noise. (In the 
phase tracking problem, our estimation criterion may be 

where 

s 

f 
e(t) = o,t + q1’2(s) &l(s) + eO. (54) 

0 

We assume that the signal amplitude is constant but un- 
known with a priori probability distribution Pi. Also, 
we let v and w be independent Brownian motions, which 
are both independent of A. We wish to devise a technique 
for tracking O(t). We use the criterion min &[l - cos (e(t) - 
e(t)) 1 z(s), s I t]. Adapting the techniques used in the 
preceding examples, we write the differential equations for 

c,,,(t) = J$ b[A”e-i”ect) I z(s), 0 I s 5 t]. (55) 

We can show that 

de,,,(t)=- m2dt) imw, + 2 I c,&> dt 
+ 

[ 
(C,+l,m-l(t) ; C,+t,m+l(t)) 

+ 2nc,,(t) Im (cll(t)) I[ 6Yt) + ‘5:; ‘c11(t)) dt I 
and our estimate is 

(56) 

(57) 

We note that in acquiring a sinusoidal signal such as in 
(53), we often do not know the transmitted signal power; 
i.e., A can be taken as a random variable. Thus we might 
use a filter of the type described here to determine A 
(equivalently, to determine the signal to noise ratio). Once 
we have “determined” A, i.e., reduced the variance in our 
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estimate (2rcc,,) of A to an  acceptable level, e.g., 

J27rc20 - 47?c,,2 < 0.027Lc,,, 

we can simplify the tracking filter. That is, we use the 
approximation A x 27cclo, and the problem reduces to the 
type considered in Example 4. In relation to (56) we then 
need  only compute corn. We  note that the only c,, with 
II 2  1  that directly enters the equations for dco, is elm, 
and  we can approximate it by 

Cl”, w 2nqoco,. (58) 

We can also consider the problem in which A is time-  
varying. One  important problem is the tracking of a  
sinusoidal signal that is transmitted through a  Rayleigh 
channel  [lo], [24]. The  received signal for such a  channel  
can be  mode led [lo], [25] as 

dz(t) = xl(t) sin e(t) dt + x2(t) cos e(t) dt + r’/2(t) dw(t) 

(59) 
where x1 and  x2 are zero mean, independent,  identically 
distributed Gaussian random processes. If we know that 
x1 and  x2 satisfy a  particular linear 1% differential equation, 
we can use the techniques developed in this section to 
track e(t). In this case, the quantities to be  estimated are 
(1/77)x11x2me-ine. 

V. CONCLUSION 

In this paper  we have investigated a  number  of phase 
estimation and  demodulat ion problems with the aid of 
Fourier series analysis. We  have found that this approach 
exposes the rich structure inherent in quite general  classes 
of estimation problems on  the circle. We  have considered 
a  number  of important practical problems as examples 
and  have derived infinite-dimensional optimal estimation 
equations. In Part II we will consider approximating these 
sets of equations and  will present some numerical results that 
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