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Abstract. For linear predictive coding (LPC) of speech, the speech waveform is modeled as the output of an all-pole filter. 
The waveform is divided into many short intervals (10-30 msec) during which the speech signal is assumed to be stationary. 
For each interval the constant coefficients of the all-pole filter are estimated by linear prediction by minimizing a squared 
prediction error criterion. This paper investigates a modification of LPC, called time-varying LPC, which can be used to 
analyze nonstationary speech signals. In this method, each coefficient of the all-pole filter is allowed to be time-varying by 
assuming it is a linear combination of a set of known time functions. The coefficients of the linear combination of functions 
are obtained by the same least squares error technique used by the LPC. Methods are developed for measuring and assessing 
the performance of time-varying LPC and results are given from the time-varying LPC analysis of both synthetic and real 
speech. 

Zusammenfassung. Bei der Linearen Pr~idiktion (LPC) von Sprache wird die Sprachzeitfunktion modellhaft als Ausgangssig- 
nal eines Allpole-Filters aufgefaJ3t. Die Zeitfunktion wird dabei in zahlreiche kurze Intervalle von 10 bis 30 ms Dauer 
unterteilt, in denen das Signal als station~ir betrachtet werden kann. Fiir jedes Intervall werden die konstanten Koeffizienten 
des Allpole-Filters durch Lineare Pr~idiktion ermittelt, wobei ein quadratisches Pr~idiktions-FehlermaJ~ minimisiert wird. 
In der vorliegenden Arbeit wird eine Modifikation des LPC-Verfahrens vorgestellt - d a s  sog. Zeitvariante LPC-Verfahren 
- mit dessen Hilfe es m6glich ist, nicht-station~ire Sprachsignale zu analysieren. Bei diesem Verfahren dfirfen die Koeffizienten 
des Allpole-Filters variant sein unter der Voraussetzung, da~3 sie sich als eine Linearkombination eines Satzes bekannter 
Zeitfunktionen darstellen lassen. Die Koeffizienten der Linearkombination yon Funktionen erh/ilt man mit Hilfe der gleichen 
Technik des kleinsten Fehlerquadrats, wie sie auch beim LPC-Verfahren verwendet wird. Es werden Methoden zur Messung 
und Oberpriifung der Leistungsf~ihigkeit des Zeitvarianten LPC-Verfahrens entwickelt und Ergebnisse yon Verfahren der 
Zeitvarianten LPC-Analyse sowohl yon synthetisch erzeugter als auch von echter Sprache mitgeteilt. 

R6sum4. Pour le codage pr6dictif (LPC) de la parole, on mod61ise l'onde de parole comme la sortie d'un filtre tout-pole. 
Cette onde est divis6e en de nombreux intervalles de courte dur6e (10-30 msec), pendant lesquels le signal de parole est 
consid6r6 comme stationnaire. Pour chaque intervalle, les coefficients constants du filtre tout-pole sont estim6s en pr6diction 
lin6aire par minimisation d'un crit~re quadratique de l'erreur de pr6diction. Cet article 6tudie une modification de la 
pr6diction lin6aire, appel6e prediction lin~aire variable dans le temps, qui peut ~tre utilis6e por analyser des signaux de 
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parole non stationnaires. Dans cette m6thode, chaque coetficient du filtre tout-pole est autoris6 ~ varier dans le temps en 
consid6rant qu'il est combinaison lin6aire d'un ensemble donn6 de fonctions du temps. Les coetficients de la combinaison 
lin6aire de fonctions sont obtenus de la m~me fa~on qu'en LPC, avec la technique des moindres carr6s. Des m6thodes sont 
d6velopp6es pour mesurer et 6valuer les performances de la pr6diction lin6aire variable dans le temps, et les r6sultats de 
cette LPC variable sont pr6sent6s tant pour des signaux de parole synth6etiques que pour des signaux de parole r6els. 

Keywords. Autoregressive models, nonstationary signals, parameter identification, speech. 

1. Introduction 

Parametric analysis and modeling of signals 
using an autoregressive model with constant 
coefficients has found application in a variety of 

contexts including speech and seismic signal pro- 
cessing, spectral estimation, process control and 

others. In many cases, the signal to be modeled 
is time-varying. However,  if the time variation is 
relatively slow, it is nevertheless reasonable to 
apply a constant model on a short-time basis, 
updating the coefficients as the analysis proceeds 
through the data [1, 2]. 

In this paper, we consider autoregressive signal 
modeling in which the coefficients are time- 
varying, In our method, each coefficient in the 
model is allowed to change in time by assuming 
it is a linear combination of some set of known 
time functions. Thus each autoregressive 
coefficient is itself specified by a set of parameters, 
the coefficients in the linear combination. Using 
the same least-squares error technique as used for 

modeling with constant coefficients (specifically 
LPC as outlined in Section 2), the parameters in 
the linear combinations for all of the autoregres- 
sive coefficients can be found by solving a set of 
linear equations. Therefore the determination of 
the model parameters for time-varying LPC is 
similar to that for traditional LPC, but there is a 
large number of coefficients that must be obtained 
for a given order model. 

There are several potential advantages to time- 
varying LPC. In some cases the system model may 
be more realistic since it allows for the con- 
tinuously changing behavior of the signal. This 
should lead to increased accuracy in signal rep- 
resentation. In addition, the method may be more 
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efficient since the inclusion of time variations in 
the model should allow analysis over longer data 
windows. Therefore,  even though time-varying 
LPC involves a larger number of coefficients than 
traditional LPC, it will divide the signal into fewer 

segments. This could result in a possible reduction 
of the total number of parameters needed to accu- 
rately model a segment of data for time-varying 
LPC as compared with regular LPC. 

An interesting problem in itself is the question 

of how exactly to measure and assess the perform- 
ance of time-varying signal modeling methods in 
general and time-varying LPC in particular. One 
of the goals of this work has been to explore 
methods for understanding the behavior of time- 

varying models and for evaluating their perform- 
ance. Several such techniques are used in this 
paper and should be of some independent interest. 

In the next section we formulate the problem 
of time-varying LPC and derive the basic 
equations. Computational aspects of this approach 
are addressed in Section 3. In Section 4, we present 

and discuss methods for evaluating time-varying 
linear prediction and we apply these methods to 
some experimental results for synthetic speech 
waveforms. In Section 5, we compare the results 
of time-varying LPC and time-invariant LPC 
analysis for an actual speech waveform. The 
results of this analysis are of interest since a longer 
analysis window was used for time-varying LPC 
than for time-invariant LPC. 

2. Time-varying linear prediction 

For all-pole signal modeling, the signal s (n) at 
time n is modeled as a linear combination of the 
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past p samples and the input u (n), i.e., 

P 

s ( n ) = -  ~ ais (n- i )+Gu(n) .  (2.1) 
i l 

The method of linear prediction (or linear pre- 
dictive coding, LPC) is typically used to estimate 
the coefficients and the gain factor [1, 2]. In this 
approach it is assumed that the signal is stationary 
over the time interval of interest and therefore 
the coefficients given in the model of (2.1) are 
constants. For speech, for example, this is a 
reasonable approximation over short intervals 

(10-30 msec). 
For the method of time-varying linear predic- 

tion, the prediction coefficients are allowed to 
change with time, so that (2.1) becomes 

s ( n ) = -  ~ ai (n)s (n- i )+Gu(n) .  (2.2) 
i 1 

With this model, the signal is not assumed to be 
stationary and therefore the time-varying nature 
of the coefficient ai(n) must be specified. We have 
chosen to model these coefficients as linear combi- 
nations of some known functions of time uk(n): 

q 

a i (n )=  ~ aikuk(n). (2.3) 
k - 0 

With a model of this form the constant coefficients 
aik are to be estimated from the speech signal, 
where the subscript i is a reference to the time- 
varying coefficient ai(n), while the subscript k is 
a reference to the set of time functions uk(n). 
Without any loss of generality, it is assumed that 
uo(n ) = 1. 

By limiting our attention to such a model, we 
are clearly constraining the possible types of time 
variations that can be modeled. However,  if we 
allowed arbitrary variations in the coefficients, we 
would have as many degrees of freedom in the 
parametric model as in the original data, thus 
achieving no data compression or insight into the 
structure of the signal. Thus constraints on the 
nature of the time variations are essential. 
However,  by judicious choice of the basis func- 
tions uk (n) we can accurately approximate a wide 
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variety of coefficient time variations. Possible sets 

of functions that could be used include powers of 
time 

uk (n) = n k (2.4) 

or trigonometric functions as in a Fourier series 

uk(n)=cos(kmn), k even, 
(2.5) 

uk(n)=sin(koJn), k odd 

where ~o is a constant dependent  upon the length 
of the speech data. In particular, we have chosen 
w = w/N, where N is the total number of data 
points in the speech data. The reason for this 
choice is that any time varying signal a (n) can be 
represented exactly as in (2.3) if we let q ~ oo and 
use the uk(n) in (2.5) with this choice of w. Note 
that a choice of o equal to 2w/N  or larger would 
force ai(n) in (2.3) to be periodic with period less 
than N (for example ~o = 2.~/N would lead to the 
condition a / N ) =  ai(0)). Any choice of ~o <2,r /N  
avoids this constraint, and our particular choice 
leads to some computational simplifications. 
Liporace [3] seems to have been the first to have 
formulated the problem as in (2.3). His analysis 
used the power series of the form of (2.4) for the 
set of functions. See also [10] which presents a 
general framework for estimating nonstationary 
A R M A  models. 

From (2.2) and (2.3), the predictor equation is 
given as 

~ ( n ) = - ~  1 (k~oaikuk(n))s(n-i)  (2.6) 

and the prediction error is 

e (n) = s(n) - ~(n). (2.7) 

As in LPC, the criterion of optimality for the 
coefficients is the minimization of the total squared 
error 

2 E = ~ e  (n) 
n 

+ • ~ a,kuk(n)s(n--i) . 
i = 1  k = O  

(2.8) 
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Minimizing the error with respect to each 
coefficient and defining the generalized correlation 
function 

cMi,/)=Y, uk(n)ul(n)s(n -i)s(n -/) ,  (2.9) 
rl 

the coefficients are specified by the equation 

P q 

Y. aikckl(i,i)=--Cot(O,i) 
i ~ 1  k - O  

l <~/ <~p, O<~l <~q. (2.10) 

For the correlation function cMi, ]), the subscripts 
k and l refer to the set of time functions, while 
the variables inside the parentheses, i and f, refer 
to the signal samples. Since u0 (n) = 1, the time- 
varying LPC correlation function Coo(i,/) is the 
same as the LPC correlation function. 

The minimization of the total error results in a 
p(q + 1)-set of equations that must be solved for 
the coefficients aik. The time-varying LPC 
equations reduce to the LPC equations for q = 0, 
that is, when a~(n) is a constant, a~ (n) = aio. 

The limits of the sum over n can be chosen to 
correspond to the limits for the covariance and 
autocorrelation methods of LPC. For the covari- 
ance method, the sum over n goes from p to N - 1, 
and (2.10) can be expressed in matrix form by 
defining the vectors 

aT=[ali, a2i, a3i . . . . .  api], O<~i<~q (2.11) 

and 

0 T = [Co,(0, 1), Co~(0, 2 ) , . . . ,  Co,(O, p)], 
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O<~i<~q, (2.12) 

and the matrix 

Fck,(1,1) ck,(1,2) " ' "  cMa ,p ) ]  

clJkl=lCk,(2, X) C k , ( 2 , 2 ) " '  CM2, p ) [ .  

LCk,(p, 1) ck,(p, 2) - . .  ck,(p,p)J 

O<~k<~q, O<~l<-q. (2.13) 

From (2.9) it is clear that q~kl = ~lk = q~[l SO that 
(2.10) becomes 
Signal Processing 

r+00 +Ol ill @..10 @11 ' ' '  al  

L@<,o ~ q l  " ' "  • q I; ° } q 

(2.14) 

o r  

qSA = _qt.  (2.15) 

Because 4~kt = 4~lk = q~[t, q~ is a (q + 1) x (q + 1) 
block symmetric matrix with (p x p )  symmetric 
blocks. Equation (2.15) can alternately be 
expressed so that q~ is a (p x p )  block symmetric 
matrix with (q + 1) x (q + 1) symmetric blocks (see 

[4]). 
A similar, but not identical, set of equations, 

analogous to the autocorrelation method in the 

time-invariant case, can be formulated by window- 
ing the data and minimizing the error over an 
infinite time interval. In this formulation, in order 
for the matrix 4' in (2.15) to be expressed as a 
block Toeplitz matrix, (2.3) is modified to 

q 

ai(n) = Y~ aikuk(n-i), l<~i<~p. (2.16) 
k = O  

The minimization of the total error again results 
in eq. (2.10) with the autocorrelation coefficients 

defined as 

cMi,])= ~. uk(n--i)ul(n--/)s(n--i)s(n--/) 
n = - o o  

oo 
= ~ uk(n)ul(n +i--])s(n)s(n +i--f) 

n = o o  

a__ rkdi -/) .  (2.17) 

With this definition of the autocorrelation 
coefficients, the matrix ~ in (2.15) is symmetric 
and block Toeplitz. Note that (2.16) does not 
represent a substantive change and is merely a 
rearrangement that leads to a particularly nice 

structure for 4~. 
The limits of the error minimization for the 

time-varying covariance method have been chosen 
so that the squared error is summed only over 
those signal samples that can be predicted from 
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the past p samples. However,  the error for the 
time-varying autocorrelation method is minimized 
over the entire time interval (the same range that 
is used for the traditional LPC autocorrelation 
method). Therefore,  the distortions of the LPC 
coefficients due to the discontinuities in the data 
at the ends of the interval evidenced in the time- 
invariant case apply also to the time-varying 
coefficients. This distortion in the coefficients 
estimated by the autocorrelation method may or 
may not be significant depending on the data at 
the ends of the interval. 

Windowing of the signal is a usual practice for 
the LPC autocorrelation method in order to 
reduce the distortion. However,  even though win- 
dowing might reduce the end effects for the 
autocorrelation method, it also imposes an addi- 
tional time variation upon the speech sample. This 
tends to cause two problems. The estimates of the 
coefficients by time-varying LPC will be adversely 
affected since the method, by its very formulation, 
is sensitive to any time variation of the system 
parameters such as that caused by the windowing 
of the signal. In addition, the window affects the 
relative weight of the errors throughout the inter- 

val. Since the windowed data at both ends of the 
interval will be smaller, there is more signal energy 
in the central data. Therefore  the minimization of 
the error will result in coefficients that in general 
will reproduce the signal in the center of the inter- 
val better than at the ends. 

Because of the possible adverse effects on the 
estimation of the prediction coefficients due to an 
additional time variation caused by windowing the 
data, the use of a window does not seem beneficial 
for either the autocorrelation or covariance 

method. However  for the autocorrelation method, 
there are distortions in the estimates caused by 
the end effects when the data is not windowed. 
Therefore  the autocorrelation method seems to 
have more disadvantages than the covariance 
method. This conclusion is supported by the fact 
that for time-invariant LPC, there is a basic 
assumption for the autocorrelation method that 
the signal is stationary. The use of the autocorrela- 
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tion method for time-varying LPC would imply a 
contradiction of this basic assumption since the 
signal is definitely not stationary. Nevertheless, 
we have implemented this method in order to 
observe its behavior. 

To completely represent the signal by the model 
of (2.2), the prediction coefficients ai(n) ,  the gain 
factor G, and the input u (n) must all be estimated. 
The analysis of this paper is concerned primarily 
with the estimation of the time-varying prediction 
coefficients, while the problem of estimating the 
gain and the input for the time-varying model has 
not been addressed. However,  the effect of the 
time-varying gain on the estimation of the pre- 

diction coefficients will be discussed in Sections 5 
and 6. 

3. Computational aspects of time-varying linear 
prediction 

For the time-varying linear prediction method 
outlined in Section 2, the predictor coefficients 
(aik, 1 <~ i <~p, 0 <~ k <~q) are obtained by solving 
a set of linear equations given by (2.10). Because 
the number of coefficients increases linearly with 
the number, ( q + l ) ,  of terms in the series 
expansion, there is a significant increase in the 
amount of computation for time-varying LPC as 

compared with traditional LPC (where q =0).  
Some of the techniques discussed in reference [4] 

can be used to make the coefficient determination 
efficient. This section is an initial discussion of the 
computational aspects, and no detailed algorithm 
has been developed. 

There are four possible techniques (covariance- 
power, covariance Fourier, autocorrelation- 
power, and autocorrelation-Fourier) that can be 
used for time-varying LPC since there are two 
methods of summation (covariance or autocorre- 
lation) for (2.9) and two possible sets of basis 
functions (power or Fourier series) that we have 
used for the prediction coefficients. For any of 
these techniques, the computations needed for the 
determination of the coefficients can be divided 
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into two categories. Most of the computational 
effort is involved with calculating the elements of 
49 and 0. Then once these elements have been 
determined, the normal equations of (2.15) must 
be solved. 

There are p2(q + 1)2 elements in the matrix 49 

and p(q  + 1) elements in the vector 0 that need 
to be calculated. However,  49 is symmetric for 
both the covariance and autocorrelation methods, 
which reduces the number of distinct matrix ele- 
ments to be computed to ½p(q + 1)[p(q + 1) + 1]. 
But because 49 may have additional symmetry, 
this number can be reduced further. 

For the covariance method (either for power or 
Fourier series), the matrix elements of (2.9) have 
the additional symmetry that 

ckt(i, j )  = Clk (i, j )  = Ckl(f , i) = Ckt(j, i ). 

Therefore the matrix 49 can be expressed as a 
block symmetric matrix with each block being a 
symmetric matrix. Because of this symmetry only 
¼p(p + 1)(q + 1)(q +2) distinct elements for the 
matrix 49 need to be calculated. This number can 
be reduced even more for the covariance power 

series method, because for k + l = m, Uk(n)u l (k  ) = 
u,, ,(k) = n m, and thus 

C,,o(i, ]) = Ckl(i, j ) ,  (3.1) 

SO that only the elements cko(i, j ) ,  0 ~ k <~ 2q, need 
to be computed. Because of this symmetry 49 can 
be expressed as a block Hankel matrix (where all 
the block matrices along the secondary diagonal, 
northeast to southwest, are equal) for the covari- 
ance power series method. With the additional 
symmetry, only [~p(p + 1)](2q + 1) elements must 
be computed for the 49 matrix of the covariance 
power series method. 

For the autocorrelation method (for either the 
power or Fourier series) it can be shown that 

rkl(i - - f )  = rtk ( f  -- i). (3.2) 

With this symmetry, the number of distinct ele- 
ments of 49 for the autocorrelation methods is 
p(q2+ 2q + 1)-½(q + 1)q. 
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These results show that, in general, there is a 
slightly smaller number of unique elements in the 
matrix 49 for the autocorrelation methods than for 
the covariance power series method. The covari- 
ance Fourier series method has significantly more 
elements that must be calculated than the other 
methods. For any of these methods, only some of 
the elements have to be calculated using the 
summation given by (2.9) or (2.17), for many 
elements can be calculated recursively from pre- 

viously computed elements. As an example, for 
the covariance power series method, it can be 
shown (see [4]) that 

_ ~ m' 
c m o ( i , j ) -  - -  cm ~,o(i- 1 , / ' -  1) 

~ = o ( m - r ) ! r !  

+ p '~s (p  - i ) s ( p  - j )  

- N " s ( N - i ) s ( N - j ) .  (3.3) 

Recursions can be developed for the covariance 
Fourier series method and the autocorrelation 
methods, however they cannot be expressed as 
compactly as the recursion of (3.3). Since the 
covariance Fourier series or autocorrelation ele- 
ments do not have the symmetry of the covariance 
power series elements as shown in (3.1) more 
elements must be computed using the summations 
of (2.9) for these methods. It should be noted that 
the determination of the individual matrix ele- 
ments is faster for the power series methods than 
for the Fourier series methods because no 
trigonometric functions need to be evaluated. 

There is another advantage of the power series 
method for the situation when the time-varying 
coefficients for an interval of speech data have 
been estimated and the interval is to be increased 
to include new data. The new matrix elements for 
the power series method can be calculated by using 
the matrix elements that were computed for the 
smaller interval and adding on the appropriate 
sums of the new data. However  for the Fourier 
series methods, the period of the coefficients is 
dependent  upon the interval of the data. The 
addition of more data changes the interval length 
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and the constant w. The new matrix elements must 

be calculated by summation over all the data using 
the new ~o. There is no way to use the matrix 

elements that were computed for the smaller inter- 

val (except for the elements with k = l = 0, which 
are not dependent  on ~o). Of course, if the data 
is being windowed the matrix elements for the 

power series method also have to be totally 

recalculated. 

Once the elements of the matrix q0 have been 
calculated, the set of equations must be solved to 
determine the coefficients. Liporace [3] has 

developed an efficient algorithm to solve the 

equations for the covariance method where @ is 
a block symmetric matrix with symmetric blocks. 

The covariance method using the power series has 
the additional advantage that @ can be expressed 

as a block Hankel  matrix for which there is an 
efficient solution [5, 6]. For the autocorrelation 
method,  q0 is a block Toeplitz matrix and there is 

an algorithm given in reference [7] for solving 

the equations. This method is an extension of 
Levinson+s recursive algorithm to the multichan- 

nel filtering problem. Thus, the autocorrelation 

power series method yields the set of equations 
that can be solved most efficiently, as the matrix 

(b can be expressed either as a block Hankel  
matrix with Toeplitz blocks or a block Toeplitz 

matrix with Hankel  blocks. 

4. Experimental results for synthetic data 

For the evaluation of t ime-varying linear predic- 
tion, one method used was to analyze synthetic 

data created by all-pole filters with known time- 
varying coefficients. The purpose of these test 

cases was to determine the general characteristics 

of t ime-varying LPC and to obtain some insight 
into methods for evaluating the performance of 

t ime-varying parameter  identification techniques. 
The first set of test cases was generated by 

all-pole filters excited by a periodic impulse train 

with each coefficient changing as a truncated 
power or Fourier series. Therefore  for these cases, 
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the form of the system model of the t ime-varying 

linear prediction analysis matched the actual sys- 
tem generating the data. The results of these cases 
indicated the differences between using the power 

or Fourier series for analysis, between using the 
covariance or autocorrelation method of error 

summation (as developed in Section 2), and 
between windowing or not windowing the signal. 

An example of one of the test cases is shown 

in Fig. l(a). The signal was generated by a 6-2 

power series filter. 1 The sampling rate for this 
example was 10 kHz and the period of the excita- 

tion impulse train was 100 samples, corresponding 
to a fundamental  frequency of 100 Hz. 

In order to determine how well the estimated 

time-varying filters could reproduce the original 
signal, the impulse train used to generate the data 

was passed through the estimated filters. The 

response of the estimated 6-2 covariance power 
filter (with or without windowing) was virtually 
identical to the original and therefore is not shown. 

Similarly, the 6-2 covariance Fourier filter (no 
windowing) was also virtually identical to the 

original. The 6-2 autocorrelation power filter 

response (no windowing) is shown in Fig. l(b) and 
the 6-2 autocorrelation power filter response (win- 
dowing) is shown in Fig. 1(c). The response of a 

6-4 autocorrelation Fourier filter (with or without 

windowing) was essentially identical to that of the 
6-2 autocorrelation power filter (Fig. 1(c)). It can 

be seen that the major  differences between the 

original data and the responses of the filters deter- 

mined using the autocorrelation method occur at 
both ends of the interval. The response of the filter 

determined without windowing the data does not 

match the original data as well as the response 
estimated with windowing. 

As another  method of evaluating time-varying 
linear prediction using the different options, the 
' trajectories of the t ime-varying poles'  of the all- 
pole filters were compared.  By t ime-varying poles, 
we mean the zeros of p(z, n) (for each n in the 

t A 6-2 power series filter has 6 poles, t p :-6), with each 
coefficient being a quadratic power series (q = 2). 
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Fig. 1(a). Synthetic speech examp|e generated by 6-2 power series filter. 

Fig, l(b). Response of 6-2 autocorrelation power filter (without windowing the original data). 

Fig. l(c). Response of 6-2 autocorrelation power filter (windowing the original data). 

interval [0, N -  1]), where p(z, n) is defined as 

p 

p(z ,n)= l + ~ ai(n)z a. 
i l 

Strictly speaking, it is only correct to talk about 
poles for time-invariant systems. However, for 
systems that vary slowly with time, it may be useful 
conceptually to think of them as possessing time- 
varying poles. When these 'poles' change slowly 
in time, one should be able to deduce some quali- 
tative aspects of the system behavior by observing 
the pole trajectories. Thus one possible measure 
of performance is the ability of our parameter 
estimation system to track these poles. 

Two filters with different pole trajectories are 
necessarily significantly different in impulse 
response or general characteristics. However, the 
comparison of the pole trajectories of the filters 
using the coefficients estimated by time-varying 
LPC with the pole trajectories of the filter generat- 
ing the data will show qualitatively the effect of 
the different options on the accuracy of the 
analysis. 

Fig. 2 shows the pole trajectories of the filters 
using the estimated coefficients with the power 
series method. The graphs plot the real part of 
each pole on the ordinate and the imaginary part 
on the abscissa. The location of each pole of the 
filter is plotted every 25 msec of the analysis inter- 
val. The unit circle is also shown on the graphs 
for comparison purposes. 

Signal Processing 

~'---Im 
indication of   otion 

(a) 6-2 covariance power filter (without window) 

Iln 

(b) 6-2 autocorrelation power filter (without window) 

al,,,,---- m 

Real 

(c) 6-2 autocorrelation power filter (with window) 
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Fig. 2(a) shows the pole trajectories for the 6-2 

filter est imated by using the covariance power 
series method with no windowing. Since these 
trajectories closely matched the pole trajectories 

of the generating filter and of the estimated 6-2 
covariance power series filter using a Hamming  

window, these other trajectories are not shown. 
The only minor differences between the windowed 

and non-windowed cases occur at each end of the 
trajectory, where the effect of the window is the 

most significant. Figs. 2(b) and 2(c) are the pole 

trajectories for the filters estimated by the 6-2 

autocorrelation power series method with no win- 

dowing and windowing, respectively. The general 
characteristics of the trajectories for the 

autocorrelation method without windowing are 

correct, but there is also a considerable amount  

of trajectory distortion. This is most evident in the 
third pole (the poles are numbered by having the 
one with the smallest angle be the first, etc.) where 

both the angle and radius of the pole at the end 

of the interval differ significantly from the correct 

values as shown in Fig. 2(a). This would seem to 

verify the suggestion in Section 2, that the 

autocorrelation method at tempts to minimize 

(unrealistically) the error at the extreme ends of 
the interval, and consequently, there might be 

some distortion in the coefficients at the ends. 

Fig. 2(c) shows the pole trajectories for the filter 
for the 6-2 autocorrelation power series method 
with windowing. The windowing reduces the effect 

of the errors at the ends of the interval and there- 
fore the pole trajectories are not as distorted as 
for those of Fig. 2(b). In fact, these trajectories 

compare  favorably with those of Fig. 2(a). The 
only major  differences are those of the third 

pole. 

The figures for the pole trajectories of the 6-4 
covariance or autocorrelation Fourier series 

method are not shown because they are almost 
identical with the respective power series trajec- 
tories. 

There were many conclusions to be drawn from 
these examples. The differences between using a 
power series or a Fourier series for the analysis 
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seem to be insignificant. In general, a filter using 

one series can be represented almost exactly by a 
filter using the other series with either the same 

or a slightly larger number  of terms in the series. 
For example,  the 6-2 power series filter could be 
represented accurately as a 6-4 Fourier series 

filter, and a 6-2 Fourier series filter needed a 6-3 
power series filter to represent it almost exactly. 

The covariance method of summation gave bet- 

ter results than the autocorrelation method. Under  

some circumstances the differences between the 

two methods were minor, but this was not a gen- 

eral rule. 

The use of a window had only a slight effect on 

the analysis results. Windowing did not 
significantly degrade the performance of the 

covariance methods and, in fact, the autocorrela- 

tion methods that used a window seemed to give 
more accurate results than the autocorrelation 

method without a window. 
These results can be explained, however, by the 

fact that the test cases were generated by a system 
whose actual form was the same as that of the 

analysis model. Therefore,  these methods can esti- 
mate the coefficients of the series for the time- 

varying filter even with a window superimposed 

upon the signal because of the sample data in the 
central part of the interval. 

However,  for actual signals not generated by a 
system exactly of the form assumed in time- 

varying LPC, the use of a window will degrade 

the method 's  ability to track the time variation of 
the parameters  accurately throughout the entire 

time interval. Thus, it does not seem that window- 

ing is generally a good practice. In Section 5, the 
effect of windowing actual nonstationary speech 
on the analysis results will be shown. 

All of our analysis and experience, both with 

synthetic and real data, indicate that the covari- 
ance method without windowing should be used. 
Since the results seem to be similar for either the 
power or Fourier series, the power series form 
seems preferable because of its computational  
advantage over the Fourier series method,  as dis- 
cussed in Section 3. 
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The second set of synthetic data experiments 
involved the response of time-varying LPC to step 
changes in the center frequency of the poles of 
the system generating the data. Abrupt signal 
changes such as this represent an extreme form 
of nonstationarity, and in order to increase our 
understanding of time-varying LPC it is of interest 
to see how it performs under such conditions. In 
addition, many signal processing problems involve 
data containing such changes. For example, in the 
speech context, consonants and plosives might be 
modeled in this manner. Thus these experiments 
have both conceptual and practical motivations. 

The study was carried out using a four-pole 
system for the generation of the synthetic signal. 
The center frequency of two poles changes discon- 
tinuously. The 4-3 covariance power method 
without windowing was used to analyze the data. 
Of interest is the trajectory of the center frequency 
of the first pole. The pole angle trajectories for 
different changes in the center frequencies are 
shown in Fig. 3. Note that the trajectories of the 
poles for the time-varying linear prediction 
method resemble the step response of a non-causal 
low-pass filter. The fact that the response is 
anticipative is not surprising, since the entire data 
interval is used to estimate the coefficients. In 

addition, our results indicate that the time-varying 
LPC system response is approximately 
homogeneous in that the pole angle trajectory for 
a given center frequency change is proportional 
to the size of the step change and is approximately 
additive in that the response to two different jumps 
in one interval is approximately the same as the 
sum of the responses to each jump taken separ- 
ately in the same interval. Thus, the method can 
be thought of as acting like a linear lowpass filter 
in response to changes in the location of the poles. 
An estimate of the frequency response of the 
method's lowpass action was obtained from the 
computed step responses and is shown in Fig. 4 
for the 4-3 and 4-5 covariance power filter. The 
4-5 method has a broader 'frequency response'. 
Since we can fit higher order coefficient fluctu- 
ations using the higher order series expansion, the 
greater sensitivity of the 4-5 method to high 
frequency changes is not surprising. 

The pole trajectories for the 4-3 and 4-5 covari- 
ance power methods are compared with the 
response for the traditional LPC covariance 
method (the 4-0 covariance method) in Fig. 5. 
Unlike the time-varying methods which used the 
entire 60 msec. data interval, a data interval of 
15 msec. was used for the time-invariant LPC 
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Fig. 3. Center  frequency trajectories for 4-3 covariance power filter. 
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Fig. 5. Center frequency trajectories for 150 Hz jump. 

method. The starting location of the analysis inter- 

val was shifted by 5 msec. for each successive LPC 
analysis, so that there was some overlap of the 
data on each interval. Over the full 60 msec., this 

means that 10 separate LPC analyses were per- 

formed. The center frequency of the pole for each 

interval is plotted at the center of the time interval. 
No windowing was used. 

From Fig. 5 we see that traditional LPC has a 
response time that is faster than that of the 4-3 

covariance power method and is similar to that of 
the 4-5 covariance power method. The interpreta- 
tion of this result, however,  requires some thought. 

Note that in this analysis we are effectively viewing 
t ime-invariant LPC as a t ime-varying 

identification method by examining its behavior  
over successive analysis intervals• In this sense, it 
is not surprising that t ime-invariant  LPC has a fast 
response to the abrupt  change, since it has less 
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memory  than the t ime-varying methods, and it 

changes discontinuously as the parameters  are 
updated at successive intervals. In addition, note 
that the 4-0 covariance method,  that is, traditional 

LPC, requires a total of 40 coefficients over the 
entire 60 msec. segment (4 coefficients for each of 

the 10 analysis intervals). In contrast, the 4-3 
covariance method requires 16 coefficients, while 

the 4-5 method needs 24 coefficients. 
Finally, test cases were also run to evaluate the 

ability of the method to track slowly varying 
changes. Specifically, the first pole was varied 

linearly in frequency over the interval, while the 

second pole was held constant. Examples of the 
change in frequency for the first pole are shown 

in Fig. 6. The changes in the center frequency of 

the first pole for the estimated 4-3 covariance 

power series filter are also shown. 

It can be seen from the figures that t ime-varying 

linear prediction can handle linearly changing 
poles very well if the slope is small. For larger 

slopes the variation of the pole tends to be smeared 

over a larger interval. This supports the studies 

discussed earlier in this section in which we indi- 

cated that the method acted as a lowpass filter. 

Evidently, the higher slope changes are beyond 
the cutoff frequency of the method, yielding the 

same estimated pole trajectory as for an abrupt 

step change. 

5. Experimental results for time-varying analysis 
of speech 

In this section, we give an example of the appli- 
cation of t ime-varying LPC to a nonstationary 

speech waveform, shown in Fig. 7. In order to 
estimate the spectral properties of the vocal tract, 

the waveform was pre-emphasized by a simple 
one zero filter in the form of 1 -  ~z -1 (~ = 0.95) 

to remove the glottal effects. Several different 
methods for evaluating the performance were 
used. The pole trajectories of t ime-varying LPC 
were compared  with the poles of the time- 

invariant filters estimated by regular LPC. The log 
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spectrum of each time-invariant LPC filter was 
also compared with the log spectrum of the time- 
varying filter evaluated at the time corresponding 
to the center of each of the analysis intervals used 
for regular LPC. As a measure of how well these 
spectra compare, a log spectral measure given by 
Gray and Markel [8] and Turner and Dickinson 
[9] was used. In addition, the impulse response 
of both regular and time-varying LPC were com- 
pared with the original speech data. The time- 
varying model that was used was a 12-5 power 
series filter, and the analysis was performed on an 
interval of length 150 msec. 

For regular LPC, a 12-pole filter was used and 
the length of each analysis interval was 20 msec. 
The center of the interval was shifted by 15 msec 
for each successive LPC analysis, resulting in some 
overlap of the data contained in each interval. 
S i g n a l  P r o c e s s i n g  

For the regular LPC analysis, the covariance 
method was used, both with and without window- 
ing the data. The results for both methods were 
so similar that only the covariance LPC method 
without windowing will be compared with the 
time-varying LPC method. For any of these 
methods, there was no attempt to estimate the 
gain for this speech signal, although it does seem 
evident from the speech signal that the gain was 
changing with time. 

The pole trajectories for the covariance power 
series method both with and without windowing 
the data are shown in Fig. 8. These results dramati- 
cally illustrate the effect of windowing, since for 
the windowed data some of the poles of the model 
leave the interior of the unit circle, while they do 
not when the data is not windowed. For a time- 
invariant filter, this would mean that the filter was 
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Fig. 7(a). Nonstationary speech waveform. 

Fig. 7(b). Pre-emphasized version of speech waveform of Fig. 
7(a). 

unstable.  For  a t ime-varying filter, this is not  

necessarily true. However ,  the few t ime-varying 

filters we have examined that have had some poles 

outside the unit circle have had impulse responses 

that usually remain bounded  but  excessively large. 

In general ,  the t ime-varying filter with poles out-  

side the unit circle would seem to be of no practical 
value. 

The  pole trajectories for the 12-5 autocorre la-  

tion power  series filter are shown in Fig. 9. Again,  

the autocorre la t ion  filter for the windowed data  

has poles outside the unit circle. The  results of the 

autocorre la t ion  me thod  (without windowing) 

agree favorably  with those of the covariance 

method.  The  most  significant differences occur  at 
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Fig. 8(a). Pole trajectories for 12-5 covariance power filter 
(data not windowed). 
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Fig. 8(b). Pole trajectories for 12-5 covariance power filter 
(data windowed). 

Fig. 9(a). Pole trajectories for 12-5 correlation power filter 
(data not windowed). 

__5" 

_L_ / . . . . . .  

Fig. 9(b). Pole trajectories for 12-5 correlation power filter 
(data windowed). 
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each end of the interval (as we would expect from 
our discussion in Section 2). 

This example shows that for any of the time- 
varying methods discussed in this paper, there is 
no guarantee that the poles of the filter will remain 
inside the unit circle. This is a limitation of the 
time-varying method, but whether it is a serious 
problem in general practice is not known. Because 
windowing the data seems to increase the proba- 
bility that the resulting filter will have poles outside 
the unit circle, it appears that the data should not 
be windowed. Since the covariance method seems 
better justified analytically than the autocorrela- 
tion method, the covariance power method 
(without windowing) will be used from this point 
on for comparison with regular LPC. 

For the covariance power method, it can be seen 
that there are only 5 sets of complex poles over 
much of the interval. The other two poles were 
generally real. This was also true occasionally for 
the time-invariant filters determined using regular 
LPC. For comparison purposes, only the five sets 
of poles that were always complex were compared 
with the time-invariant LPC poles. 

The trajectories of the center frequencies shown 
in Fig. 10 for both methods agree favorably. The 
main deviations between the time-varying method 
and regular LPC occurred in the first and second 
poles at the beginning of the time interval, where 
the 'lowpass' nature of the time-varying LPC 

2 ,5  
$ 

- 12-5 l i I t e r  
• I2 p o ] e  LPC f i l t e r  

g 

f Y  

150 
Tirae (mse~) 

Fig. 10. Center  frequency trajectories for 12-5 covariance 
power filter and 12 pole LPC filters. 
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method is most evident. The time-varying method 
corresponded to 'smoothed' values of the center 
frequency locations of regular LPC. The radius 
trajectories of the poles shown in Fig. 11 agree 
fairly well except for the fifth pole. The center 
frequency trajectory of the fifth pole matched very 
well, while the radius trajectory did not. The radius 
trajectory deviations seem to be a result of the 
'lowpass' nature of the time-varying method. 

Next we compared the log spectra of the all-pole 
time-invariant and time-varying filters with log 
spectra of the speech signal. The spectra were 
compared because LPC can be thought of as 
attempting to match the spectral envelope of 
speech with the spectrum of the all-pole filter. 
This is discussed in detail in [2]. For the time- 
varying case, the spectrum was defined at a time 
instant k as the frequency response of the filter 
with coefficients ai (k )  for i = 0 . . . . .  p. 

The spectra for the regular LPC and time- 
varying LPC filters for selected times are shown 
in Fig. 12. The spectra have been adjusted so that 
the largest value is 0 dB. 

We used a log spectral measure to determine 
quantitatively the difference between the spectra 
for both LPC methods [8, 9]. Following the deriva- 
tion given by Turner and Dickinson, the RMS log 
spectral measure, d2, for the comparison of two 
all-pole filters ( G / A ( z )  and G / A ' ( z ) )  is given by 

I: (d2) 2 = I ln (G2/ IA(eJ° )12  ) 

-ln(a2/lA '(eJ°)f2)l d0. (5.1) 
Tr 

The Taylor series expansion for In A (z) (assuming 
A(z) is stable) is 

l n A ( z ) = -  ~ CkZ -k (5.2) 
k = l  

with the cepstral coefficients given by 

Co = ln(G2), 

k 1 ( k - n )  
ck = - - a k - -  ~ C k - ~ a , - - ,  k > 0 .  (5.3) 

n = l  F/ 



.5 

M.G. Hall et ai. / Time-varying parametric modelling 

12)-5 C o v a r i a n u ~ '  pm4er  f i l t e r  
• LPC 

1 _  

.3 

281 

Time (msec) 150 lime (m~u~) i~0 

(a) first pole (b) second pole 

.5 

, _ I i, i i 

Tfme (msec) 150 

(c) third pole 

.5 

I i :::c (rose, 3 15c) 

(d) f o u r t h  p o l e  

Tb~e (m~uc) 

(e) fifth pole 

Fig. 11. Radius trajectories. 

150 

By applying Parseval 's  relationship to (5.3), the 
log spectral measure  is 

(d2) 2= f (Ck--Crk) 2 (5.4) 

with Ck = C-k.  By using only the first p terms and 
scaling for a dB variation in the power spectrum, 

the spectral measure SPDIFF is given by 

(10) ~ [~1 ~ --Ck)2] 1/2 
S P D I F F =  • 2 Y~ (Ck 

(5.5) 

Markel and Gray [8] have reported that there is 
a high correlation between SPDIFF and d2. Turner  

and Dickinson [9] state that perceptual  studies 
have shown that SPDIFF changes of 2 dB are 

barely noticeable, but that changes of 3.5 dB are 
consistently perceptible. 

Turner  and Dickinson have also developed an 

average SPDIFF for filters with t ime-varying 
coefficients. In our study, we want to compare  a 
filter that has constant coefficients (ai, i = 1 , . . . ,  
p) with a filter that has t ime-varying coefficients 

( a i ( n ) ,  i = 1 . . . . .  p ) ,  where n is evaluated over 
an interval of interest (which, for now, we will 
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Fig. 12. Comparison of actual and filter spectra for pre-emphasized speech example. * Difference between 12-0 (regular) LPC 
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assume to be [1, L]). For this, the time-average 

spectral difference is 

A VG SPDIFF 

10 • 2 • (Ck--C~(n)) 2 z 

n = l  k = l  

1 / 2  

(5.6) 

where the cepstral coefficients are ck (n) using the 
coefficients (a i (n  ), i = 1 . . . . .  p ) .  This is a measure 
of the average spectral difference between the 
time-invariant filter and the time-varying filter 
over the interval [1, L]. 

The spectral difference, SPDIFF, between the 
regular LPC estimated filter and the time-varying 
LPC filter evaluated at the time corresponding to 
the center of the regular LPC analysis interval is 

given in the right-hand column of Fig. 12. The 
time average of the spectral difference, AVG 
SPDIFF, between the regular LPC filter and the 
time-varying filter for all the time steps n in the 
corresponding regular LPC analysis interval is also 
listed. As an indication of how quickly the speech 
spectrum is changing, the spectral difference 

between the regular LPC filters for successive 
analysis intervals is given in the left-hand 
column. 

There are large spectral differences between the 
successive regular LPC time-invariant filters for 
the comparison times of 45 and 60, and 60 and 

75 msec. These are the times in which the signal 
characteristics change significantly. The largest 
average spectral differences between the time- 
varying LPC filter and the regular LPC time- 
invariant filters occur at the times of 30 and 
45 msec. The values of the average spectral 
differences were 2.5 and 3.4, respectively, which 
would indicate that the differences between the 
two methods would be perceptible. After 60 msec, 
the average differences between the time-varying 
spectra and the time-invariant spectra were gen- 
erally less than the difference between the time- 
invariant spectra for successive intervals, which 
would signify that the time-varying method is 
'tracking' the changing spectra very well. 
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The relatively large deviation of the time- 

varying spectrum from the actual speech spectrum 
for the times around 45 msec can be explained in 
part because of the 'lowpass' action of the time- 
varying filter. The severity of the deviation is prob- 
ably also due to the unequal energy distribution 
of the speech signal and of the impulse driving the 
system. The conclusion is that the time-varying 
filters should match the high energy areas of the 
nonstationary signal the best. In order to have a 
relatively good match over all the data in the 
interval, the energy of the signal or the driving 
impulses throughout the entire interval should be 
approximately equal. This is discussed further in 
[4]. 

As an example of the effect of not estimating 
the time-varying gain, we attempted to reproduce 
the original pre-emphasized signal. For this 
example, a 15-4 covariance power filter (no win- 
dow) was estimated and used. (The 15-4 filter gave 
a better reproduction of the original than the 12-5 
filter.) The input to the 15-4 power filter was a 
train of constant amplitude impulses separated by 
100 data points, corresponding to a pitch period 
of 100 Hz. The reproduced signal is shown in 
Fig. 13. 

160 
msec 

Fig. 13. Reproduction of original signal using 15-4 covariance 
power filter. 
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The limitation of not having a time-varying gain 
estimation procedure is very evident in the repro- 
duced signal. The magnitude of the signal is much 
too large at the beginning of the interval, and for 
the latter portion of the interval, the signal is too 
small. However  the general characteristics of the 
original speech signal of Fig. 7 are there. 

This attempt at reproducing the signal empha- 
sized the need for a method to estimate the time- 
varying gain for the filter. However,  this need 
might be eliminated by the use of signal equaliz- 
ation as mentioned above. If the equalization 
could be done in such a way so that the impulses 
driving the system could be thought of as approxi- 
mately equal, then there would not be a time- 
varying gain. When attempting to reproduce the 
signal, the inverse of the signal equalization could 
be used. 

6. Discussion 

In this paper we have developed a method of 
time-varying linear prediction for the analysis of 
nonstationary speech signals. In our approach the 
coefficients of the speech production system are 
modeled as linear combinations of a set of known 
time functions. The coefficients in these linear 
combinations can be determined by solving a set 
of linear equations, much as in standard LPC, and 
we have briefly discussed the structure and 
efficient solution of these equations. 

Perhaps the most important contribution of this 
paper is the investigation of several methods for 
the evaluation of the performance of time-varying 

identification methods in general. By applying 
these methods to time-varying LPC we have been 
able to uncover some of its basic properties and 
to gain some insight into issues that may arise in 
time-varying modeling. Specifically, we have seen 
that by modeling parameter  time variations in a 
smooth fashion (as in the power or Fourier 
methods), the resulting system tends to respond 
in a low-pass fashion to a l:rupt signal changes. 
Therefore,  this method is most effective in tracking 
slowly varying signal characteristics. If we are 
Signal Processing 
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interested in detecting or tracking abrupt changes, 
several possibilities present themselves, We have 
seen that t radi t ional  time-invariant LPC per- 
formed over shorter analysis intervals can track 
abrupt changes, at the expense of an increased 
number of parameters. It is interesting to note 
that time-invariant LPC over a sequence of inter- 
vals is a special case of time-varying LPC in which 
we use basis functions of the form 

1, ( k - 1 ) N  <~n <kN, 
Uk(n) = 0, otherwise, 

so that the coefficients ai (n) are piecewise constant 
over intervals of length N. Thus, by choosing dis- 
continuous basis functions we can model abrupt 
changes. As we observed in our study of time- 
varying LPC to a speech waveform, abrupt 
changes in the data can lead to modeling errors if 
a smooth parameter  behavior is assumed. Perhaps 
a combination of smoothly and abruptly varying 
basis functions will turn out to perform well. 

In applying time-varying LPC to speech data, 
a number of additional characteristics and limita- 
tions of the method were uncovered. We saw that 
the time-varying 'poles' of the estimated model 
are not guaranteed to remain within the unit circle. 

The probability of this occurring is reduced if the 
data is not windowed, but the possibility remains. 
It may be possible to develop a time-varying esti- 
mation method or to determine sets of basis func- 
tions for time-varying LPC that will necessarily 
lead to stable filters. This remains for the future. 

For the speech example, the time-varying filter 
' tracked' the parameter  better during the high 
energy portions of the signal. This is a result of 
the least squares error technique of the method. 
One possible modification of the method to enable 
it to track the parameters equally well throughout 
the interval would be to have some form of auto- 
matic equalization of the signal. For this, the signal 
would be equalized so that it contains approxi- 
mately equal energy throughout the interval. A 
simple way of implementing this would be to 
divide the interval into segments and estimate the 
energy in each segment (one estimate of the energy 
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could be the c00(0, 0) covariance element). The 
magnitude of each segment could be adjusted 
proportionally depending on whether its energy 
was above or below the average energy. 

However, a more sophisticated technique might 
be necessary, because the equalization of the mag- 
nitude of the impulses driving the system is prob- 
ably more important for the uniform tracking of 
the system parameters than the equalization of 
signal energy. Therefore the equalization should 
be also based on an estimate of the impulse mag- 
nitude. 

Also, as we have discussed, time-varying LPC 
does not directly produce a time-varying gain esti- 
mate. A procedure for determining such an esti- 
mate is clearly needed. Perhaps a method could 
be developed that would both equalize the signal 
in conjunction with providing a time-varying gain. 

It is our feeling that the method of time-varying 
LPC has promise. It has the potential advantage 
of reducing the total number of coefficients needed 
to model a segment of speech, and it also provides 
a smoothed trajectory of the formants of the vocal 
tract. A number of limitations and questions have 
been raised about the method and about time- 
varying modeling in general. We have attempted 
to expose these issues, and it is our hope that our 
work will provide some useful insights and per- 
spectives for future work on time-varying signal 
representations. 
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