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Dynamic Model-Based Techniques for the 
Detection of Incidents  on Freeways 

I. MOTIVATION AND OVERVIEW 

T HE PROBLEM  addressed in this paper  is  the  develop- 
ment of a  systematic approach to  the  detection of 

freeway  incidents  (accidents,  stalled cars, debris on the 
road, etc.). The  goal of our work  was the  design of 
algorithms  that 1) directly  use data from  conventional 
presence  detectors which  provide  binary  information at 
each  point  in  time,  indicating the presence or absence of a 
vehicle  directly  over  the  detector; and 2) minimize  human 
operator  requirements  in  detection,  classification, and iso- 
lation of incident  events.  The  consideration of this  prob- 
lem  is of obvious  importance  both for the  efficient  dis- 
patching of emergency  services and for the design of 
advanced  technology  traffic  control  systems,  which  re- 
quire  accurate  knowledge of existing  traffic  conditions  in 
order to provide  effective  on-line  control  decisions. 

Our  work  represents  a  new  approach  to  the  traffic 
incident  detection  problem  in that we have  based our 
analysis on a  dynamic  model that describes  the  temporal 
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evolution of  key traffic  variables  (flows,  densities,  veloci- 
ties)  representing  aggregate traffic conditions  over links of 
the  freeway. Prior to our  investigations,  several  re- 
searchers [1]-[8] had studied the problem of reliable  inci- 
dent detection on freeways and had  developed  a  number 
of automatic  detection  systems. All of these  techniques 
directly  utilize  information  available  from  presence  detec- 
tors.  While  many of these  algorithms  take into account 
the  temporal  evolution and temporal or spatial  correlation 
of observables  derived  from  detector data, none of these 
techniques  involves  the  systematic  utilization of nonlinear 
differential  equations that relate key traffic  variables. In 
the most  comprehensive  study of incident  detection sys- 
tems of this  type  [SI,  Payne et ai. have  indicated that these 
techniques  have  false  alarm  problems  when  traffic  com- 
pression  waves  occur.  Intuitively,  the  use of dynamic 
models  that  capture  such  phenomena  should  help to 
alleviate this problem. In addition, we have found that 
previously  developed  algorithms do not do well in detect- 
ing  capacity-reducing  incidents in light or moderate 
traffic.  Again  the  use of dynamics  should be  of  use in 
extracting  information  concerning  such  incidents  in which 
the  direct  effect on the  observables  may  not  be  dramatic. 

Motivated by the  preceding  observations and by  the 
successful studies of dynamic  models  for  traffic  behavior 
[9], [40] and of freeway  traffic  control  based on such 
models  [lo]-[13],  we  have considered  the  problem of 
incident  detection  based on the model  proposed  by  Payne 
[9], [a], which  is  reviewed in Section 11. Using this  model, 
we have  developed  incident  detection  systems  using two 
different  hypothesis  testing  techniques,  the  multiple  model 
(") and generalized  likelihood ratio (GLR)  algorithms. 
The MM and  GLR methods are briefly  reviewed  in  Sec- 
tion I11 and IVY and the  testing of these  algorithms  using 
direct  measurements of the  aggregate  variables  is  dis- 
cussed  in  Section V. 

The  next  step  in  our  study  concerned  the  problem of 
using  presence  detector data to produce  estimates of the 
aggregate  variables  needed as inputs  for our detection 
algorithms.  The nature of presence  detector data is dis- 
cussed  in  Section  VI, and in  Section VI1  we develop an 
extremely  simple  system for the  estimation of traffic  vari- 
ables  (specifically,  density and flow)  from  presence  detec- 
tor data. We  feel that this  system is of interest  in  itself. In 
Section VI11  we combine this system  with  our  detection 
algorithms and describe  the  results of microscopic  simula- 
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tions in which  presence  detector data were generated and 
used. 

The results  described  in this paper  indicate  that  dy- 
namic  model-based  detection  algorithms do offer  the V ' r e L i  

potential  for  performance  improvements  over  existing 
algorithms. A number of questions  remain to be  ex- 
amined, perhaps  the  most  critical of  which  is a  precise S r e e  9om 

assessment of how  much  improvement is possible at what 
cost  in  terms of increased  detection  system  complexity. 
Issues  such as this and others  related  to  the  implementa- 
tion of MM- or  GLR-based  incident  detection  algorithms 
are presented  in  Section IX. Because of limitations on hold.  The  curve  between P ~ r e e  and Pjam is logarithmic, 
space,  some of the  details of our work  have been omitted. 
The interested  reader  may  find  them  in  [22]-[25],  [41]. u h h [ ~ j a m / ~ ]  

Fig. 1. The ue curve used 

0 '(PI = Pfree G P G Pjam. (2.3) 
h[ ~ j a m / ~ f r e e ]  

11. THE AGGREGATE TRAFFIC MODEL As we will discuss  in  a  moment.,  the  parameters of the ue 

(2.1) du, u'(pl)- ul v 1 P2- PI -- 
dt T ---I 1 1 - . (2.5) 

P1 ? ( & X l  + ax,) 

h i  ui(Ui-ui-J u;(pi)-ui+ui 
L 

-=- 
dt 1 

2 

+ T For our simulations,  "flow"  was  assumed to be  a  Poisson 
arrival  process with a  specified  mean  value,  which  was 
used to control the overall  level of traffic. For link My we 
assume  a  zero  density  gradient  across  the  last  boundary, 
leading  to  the  equation 

- (6X i  + axi- 1) 

v 1 [ P i + l - P i  1 (2.2) TPi - 1 
(axi + axi+ I )  -- 

dt 1 
- + 

T 
where +i = uipi. Here  subscripts are used  to  denote  the link 5 (6%- 1 + 

number with  which  each  variable is associated, axi is  the 
length of link i ,  mi represents  acceleration  noise (used to 
model  normal  variations  in  velocities  due to the statistical 
behavior of individual  drivers), and v and T are  parame- 
ters  introduced by Isaksen and Payne  to  model  driver 
response  characteristics.  The ue(p) term  represents  the 
driver's  desired  equilibrium  speed as a  function of the 
density of traffic. A number of shapes  for this curve  have 
been  proposed, and we have  used  a  form  which  yields  the 
correct  properties at high and low  density and yields 
reasonable  maximum  capacities.  Our  techniques  could  be 
easily  adapted to any  other  choice for the ue curve.  The 
general  form of our ue curve  depicted  in  Fig. 1, is  de- 
termined  by  three  free  parameters; uf, is the  equilibrium 
velocity  under  light  traffic  conditions; pfree is the  density 
at which  the  equilibrium  velocity  begins  to  decrease; and 
pjam is the  maximum  density of cars that the  freeway  can 

Links 1 and M essentially  establish the boundary  condi- 
tions, and thus our primary  concern is with  results on the 
M - 2 internal links. 

Note  that  the  specification of ue@) implicitly  defines 
the  capacity as the Illaximum allowable  steady-state flow 
on the  freeway.  Specifically,  using this definition 

0 ' ( P I  = Pu ' ( P )  (2.7) 

we obtain the  "fundamental  diagram of traffic"  depicted 
in  Fig. 2.  From this curve, we see that by adjusting ufrce or 
pfree we can  parameterize  the  capacity (as defined  above) 
on each link of the  freeway.  Some  algebra  yields  capacity 
as a  function of the  parameters, 
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pf, to 7.4. However, our later tests  with  microscopic 
simulations led us to modify this model,  since an incident 
in  one lane does affect  traffic in other lanes  through the 
lateral lane switching of vehicles  away  from the lane on 
which the incident  occurred. The value of pfre finally 
chosen  was 0.03 cars/mi/lane. This value translates into a 
capacity of 500 cars/mi/lane-a  reduction of 75 percent 
of capacity. 

For the pulse of traffic model on link i, a value of  1600 
cars/h/lane was used as an input flow to  the density 

measurements of pi and uj are corrupted by  white  noise. 
Initially  for  the  macroscopic  studies,  the standard devia- 
tions of these  noises  were taken to be 3.33 cars/mi/lane 

L e  ?om equation on link i. Finally, we have  assumed that our 

Fig.  2. The fundamental diagram of traffic. 

Having this basic  model,  one can then consider the model- 
ing of abrupt changes in the  model that correspond to 
particular incidents or other inhomogeneities and prob- 
l em that one  wishes to distinguish  from capacity-redue 
ing events.  Specifically, we have modeled  three types  of 
events for each link of the freeway. 

1) A capacity-reducing  incident on link i. This was 
modeled as a decrease in the size of prm on the ith link, 
leading to the appropriate decrease in capacity. 

2) A pulse of traffic, lasting for a specified duration, 
entering link i. This model,  effected  by adding an input to 
the li,-equation  (2.1),  was included for two reasons.  First, 
one may  want  to  detect  large disturbances caused by,  say, 
a sporting  event letting out, in order to adjust a freeway 
control algorithm.  Secondly, and most  importantly,  nor- 
mal random fluctuations of traffic are a possible cause of 
false alarms for an incident  detection  system (e.g., the 
compression wave problem discussed  in  Section I), and 
our inclusion of this pulse  model  was  based on a desire to 
determine if our detection  methods were capable of dis- 
tinguishing  such  events  from real incidents. 

3) Sensor  failures. As mentioned in Section I, the mac- 
roscopic  model-based detection systems we have  devel- 
oped  assume that one has measurements of pi and ui on 
each link. At this level, a sensor failure is defined as any 
condition such that the sensed  density  or  velocity  differs 
systematically  from the actual value of the  variable  being 
measured. We will say  more about sensor failure models 
when we discuss  the MM and GLR  methods  in  the  next 
two  sections. 

For our simulation  studies, we have  considered a six- 
link freeway,  where,  under  normal  conditions,  each link 
was  assumed to have the same  number of lanes. The 
parameters ph and qree were  set at 23.1 cars/mi/lane 
and 55 mi/h which  corresponds to a capacity of 2000 
cars/h/lane. The  variable FLOW was  taken as a mean 
flow  (which was varied in our study) plus a zero-mean 
fluctuation with a standard deviation of 50 (cars/ 
h/lane). In our initial macroscopic  simulation of the MM 
and GLR detection  algorithms we used a reduction of 
capacity by 1/3 (from 2000  to  1333 cars/h/lane) to 
model an incident  causing the loss of one lane on a 
three-lane  highway. This corresponds to a reduction  in 

and 5 mi/4 respectively. Later microsimulatio&  &ectly 
using  presence detector data, led to  larger  values for these 
noises: 10 cars/mi/lane  and 28 mi/h (see  Section VII). 

Finally,  both the MM and GLR methods  require the 
use of state estimation  techniques. As the dynamics of 
traffic (2.1),  (2.2) are highly  nonlinear, an approximate 
filtering  technique has been  used.  Let  our state be denoted 
by x(0 ,  

x ' ( t )=  [ Pl(t)?ul(t)Y * * * Y P M ( k & ) ]  (2.8) 

and our measurement  vector  by z(r,), 

44) = X ( t k )  + N t , )  (2.9) 

where the components of N are assumed  to  be  indepen- 
dent white  noise  processes. 

The estimation  technique we  have  used  is the nominal 
linearized  Kalman  filter.  Let 2(rl r,) be our estimate of x(r) 
given Z, = {z(rl),- - - ,Z(r,)}. Then, given 3(r,lr,), we pre- 
dict ahead to  obtain a(&+ r,) by integrating (2.9, (2.2) 
assuming  zero  noise and an initial  condition of a(r,)r,). 
The new  measurement Z(r,+J is then incorporated 
according to 

A 

~ ( ~ ~ + , l ~ , + l ) = ~ ( ~ , + l l ~ k ) + ~ [ ~ ( ~ k + l ) - ~ ~ f k + I l f k ) ]  

(2.10) 

where  the  gain H is determined off-line by  solving  for the 
Kalman filter  gain for the traffic model  linearized about 
some  equilibrium  mean  flow-density-velocity  point. This 
linearization  has  been done about many operating points. 
Comparing  the Kalman gains  from a wide variety of such 
points revealed  very little variation with  flow. Thus, it 
appears that one  set of gains  adequately  handles  most 
levels of flow. 

111. THE MULTIPLE MODEL METHOD 

The  multiple  model (MM) method for system  identifi- 
cation has been  considered  by  several  researchers, and we 
refer the reader  to [26]-[28] and the  references  cited 
therein for a detailed  development of the  technique. The 
method  addresses the problem of identifying a linear- 
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Gaussian  system  equation (2.9), 

i ( t ) = A x ( t ) + w ( t )  (3.1) z(t,) = W t k )  + N t k )  (3.9) 

4 f k )  = W t k )  + 4 t k )  (3'2) where C is diagonal, with 1's along the diagonal  except  for 

&( t )  = AiXi(t) + Wi( t )  (3.3) ment that contains only noise and is uncorrelated  with the 

z(t,)= CiXi(fk)+i)i(tk). (3.4) state. 

given  the  measurements 2, and a  set  of  hypothesized a Zero in  the lOGitiOn  COlTeSpOnding to the  particular State 
models ( i=  1; - - ,N) measurement  which  is  hypothesized  to be faulty. Note 

that (3.9) corresponds  to  modeling  a  failure as a  measure- 

3) The  residuals  from  the  Kalman  filters are used 
The output Of *e " method is *e set P i ( t k )  Of condi-  together  with (3.6) to compute  the  probabilities for each 
t i o d  probabilities  for  the  validity Of each of the  models  hypothesis.  Note that (3.5) was  derived assuming that: 
given Z,. A Kalman  filter  is  implemented  for  each of the  a)  the  actual  system and all of the  hypotheses are 
N models and the  measurement  residuals  linear-Gaussian; 

b)  one of the  hypotheses  matches  the  true  system; 

from  each  filter are used  to  update thepi(tk) according to c) the  true  system  does not switch  from  one hypothe 
the equation sis to  another  (corresponding,  for  example,  to  the  onset of 

an incident). 
(3.6) None of these  assumptions  is  valid, and thus  some 

comments  are  in  order.  Assumption  3a)  essentially 

earized  Kalman  filter,  i.e.,  assuming  the  dynamic  model  is 
where 4 is the  probability  density for ~ ~ ( t , + ~ )  assuming correct,  is  it  valid to postulate  that  the  filter  residuals will 
the ith model is correct. If hypothesis i is  true,  then yi is  a  be  Xro-mean, white, with precomputed  covariance?  The 
white  zero-mean  Gaussian  sequence  with covariance second  assumption  implies that [under  assumption  3a)] 

the  residuals  from  one of the  filters will be whte and zero 

which can be  determined  off-line as part of h e  ~ a l m ~  experience  has  been  that  neither of these  assumption  has 
filter  calculations. Thus, caused  great  problems. A number of explanations  can  be 

given to account  for this, but  there are no general  results 
that  predict  when  these  filters  will  work  well.  Based on 
our  experience  it  is  our  feeling,  however,  that,  while  the 
estimates  from  the  filters may be sensitive  to  linearization 
and model  uncertainties,  a  discrete  decision  process  based 

(3*8) on the  filter  residuals  should  work  well, as long as the 
where m = dim y;. models  for  the  several  hypotheses are sufficiently  differ- 

ne " method  has  been adapted for use with the ent.  Intuitively, this can  be  thought of as a  signal-to-noise 
Payne model as described in the preceding section. A ratio  problem,  where  the  effects of the  assumptions add 

number of comments  need to be made  about this design uncertainty. In this sense,  assumptions  3a) and b) will 

and about the MM method  in  general. limit  the  minimum size incident that can be  detected, 

1) We have  implemented  a  nominal-linearized Kalman where  size  is  to  be interpresented as the  magnitude of the 

filter'  for  each of our hypotheses. effect of the  incident  on  the  dynamics.  For  example, we 

a) For the  normal  model,  the  dynamics (2.1),  (2.2) may be  able to detect a stalled  car, which  causes  severe 

used the normal ue curve on each link. and localized  capacity  reduction, but the  smaller  effect 

b) For the  model  representing an incident on link i, caused,  say, by debris on the  road may not  be  detectable. 

the dynamics (2.1),  (2.2) are modified  by  replacing  the Also, as we will see,  the  effect of an incident  increases  in 

normal ue curve on link i with  the  reduced  capacity  curve. magnitude as the  level of traffic  increases. Thus, one 
c) For the model  representing  a  pulse of traffic on might  expect  there  to  be  a  minimum  flow  level,  such  that 

link i, the  dynamics  (2.1),  (2.2) are modified by including it is  impossible  to  detect  incidents  in  traffic  lighter  than 

an input flow in  the  equation  for rji. 
that level. 

2) In to the above, there are also a set of Assumption  3c) can lead to difficulties in the  ability of 
and filters representing sensor failures. to detect  incidents  as  they occw i.e., before  the 

We have modeled a failure in our to a occurrence  of an incident on link i, the  probability  for this 
state by mowMg the measurement hypothesis may  become so small that the  system will not 

be able to respond  quickly  after  the  incident  has  occurred. 
The  remedy  employed  in our work  is  a  relatively common 

understood that they are all nominal linearized Kalman filters. one-a  lower bound is  set on any  probability (we  have 

Y i ( t k + l ) = Z ( t k + l ) -  c ; w k + l l t k )  (3.5) and 

<(Y;(',+ I)IPi(tk) 

2 q(yi0,+ I))Pj(tk) 
Pi(&+ 1) = N 

j =  1 addresses  the  problem of the  utility of the  nominal-lin- 

E [  ~ i ( t k ) ~ i ( t k ) ' ]  = Vi(tk) (3*7)  mean. In practice  this  is  never  precisely  the  case,  but our 

1 
exP { - 2 Yi( fk+ J vi- I (&+ JY;(t,+ 1)) 

I;I.(YiUk+ 1)) = 
[ ( W "  det( W k +  '))I 1'2 

'From now on we will call all our filters ' " U  filters." It should be 
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used  0.01). As we will see, this leads to  good  response 
characteristics. We note also that the Kalman  filter  based 
on a pulse of traffic on link i is unstable if no such  pulse is 
there (the Kalman filter has a constant driving  term in the 
bi equation not  present  in  the true system).  Thus, if such a 
pulse  were  to  develop at some point in time, the filter 
estimate for this  hypothesis  might already be so much  in 
error that the MM system  might not detect  the  pulse. To 
overcome  this,  whenever  the probability of a pulse  model 
falls  below 0.05, the estimate  produced  by  this  filter is 
reset to the  estimate  for the most  probable  model. 

Iv. THE GENERALIZED LIKELIHOOD RATIO 
METHOD 

The  generalized  likelihood ratio (GLR) method  for  de- 
tecting abrupt changes  in  dynamic  systems  is  described  in 
[17] for a specific  case and  in [30] for a larger  class of 
problems.  The  basic  idea  is the following. We assume that 
a dynamic  system  under  normal  conditions is described 
by the  model 

i ( t ) = A x ( t ) + w ( t )  (4.1) 
z ( t k ) = C X ( t k ) + D ( f k ) .  (4.2) 

A Kalman  filter  based on this model  is  implemented.  We 
then  hypothesize that an abrupt change  (the ith of,  say, N 
possible abrupt changes)  in the system  occurs at time 8 
and  that this change can modeled  by an additive  term in 
(4.1) or (4.2). In this  case linearity yields the  following 
model for the residuals of the normal  model  filter: 

y(t)=agi(t,@)+f(t) (4.3) 

where f(t) is  the  normal  zero-mean  white  residual and 
gi(t,8) is the  precomputable  deterministic  signature d e  
scribing the bias  induced  in y at time t by a type i abrupt 
change  occurring at time 8. The parameter cy is an un- 
known  scalar  magnitude  for the  abrupt change (e.g., the 
size  of a bias in a sensor,  the  effect of a stalled car on the 
residuals,  which, as we have stated, may depend on the 
flow  level). 

Given the model  (4.3) for each of the N hypotheses, we 
compute a set of correlations of the actual filter  residuals 
with the various  signatures 

k 
di( tkYe)= 2 g, ‘ ( tm~8)v-1( tm)Y(tm) .  (4.4) 

m= 1 

The  generalized  log-likelihood ratio for a type  i  incident 
occurring at time 8 then is 

we then  have a measure of the likelihood that a type i 
incident  has  occurred  sometime  in the past. 

The GLR algorithm as described  above has been 
adapted  for use  with the  Payne  model.  Again a number of 
comments are in order. 

1) In this  case  we  have  implemented a single  nominal- 
linearized  Kalman  filter  based on the normal dynamics 
(2. l), (2.2). 

2) Since  the true system and the Kalman  filter are 
nonlinear,  in  principle the decomposition of the filter 
residuals as in (4.3)  is not  valid.  However, we assume a 
decomposition of this  form and thus must  calculate the 
incident signatures,  which  correspond  to the deterministic 
response  to an incident of the true system-normal  mode 
filter  combination. The nonlinearity of the system and 
filter  necessitated the computation of  these  signatures via 
simulations:  the  macroscopic  model and normal  model 
Kalman filter  were  simulated  without  any  stochastic 
effects  in  the  dynamics or measurements,  and, for each 
incident type,  the  model  (2.1), (2.2) was chosen to corre 
spond to the particular incident (e.g., a reduced  capacity 
ue curve on link i for the link i incident  hypothesis). The 
resulting  filter  residuals constituted the signature  for that 
incident type. The models  used for capacity  reducing 
incidents and traffic  pulses  were  the  same  as  those  used  in 
the MM method.  Sensor  failures,  however,  were  modeled 
by  the  development of a bias in one  component of z 

Z ( t k ) = x ( t k ) + N ( r k ) + c y e i a ( t k Y e )  (4.7) 

where a is the  unknown  bias  size, 8 is the time at which 
the failure occurs, ei is the ith  standard basis  vector, and 
a(t,8) is the unit step (= 0 for t <8, = 1 for t >e). 

3) As with the MM algorithm, the GLR system is 
based on several  assumptions that do not  hold in the 
application to incident detection. For example,  modeling 
errors imply that none of the hypotheses is precisely 
correct. As we discussed  in the preceding  section, the issue 
then  becomes  one of whether the effect of the incident on 
the observables is significantly  larger  than the effect of the 
approximations and uncertainties. 

4) Note that,  unlike the MM algorithm, the GLR 
method  explicitly  considers the shifting of the system from 
normal to incident  conditions at  an unknown  time. In 
principle we should  calculate 4.(tk, 8 )  for 8 = t,,. - - , tk- a 
growing computational load. We have  employed a stan- 
dard method  for  overcoming this-we  compute li only  for 
a “sliding  window”  of the most  recent  past, rk--M sl 8 < tk. 
With a sampling  time tk - tk-  = 5 s, we have  kept a 250 s 
window (51 points). 

V. SIMULATIONS OF THE MACROSCOPIC DETECTION 
SYSTEMS 

The first two sets of tests  of the GLR and MM systems 
were  designed to determine the performance  characteris- 
tics of these  methods and their  robustness in the presence 
of both modeling errors and the effects of the  lineariza- 
tions  involved in their  design. For each of these  sets of 
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Fig. 3. MM probability  plot.  Accident on link 4, nominal flow= loo0 cars/h/lane;  aggregate  model simulation, 
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Fig. 4. GLR, h(k): Link 4 accident; nominal flow= loo0 cars/h/lane; aggregate model simuhtio~~ 

tests, the GLR and MM systems were  designed about a 
single, fixed operating  point with  fixed  values  for all 
parameters,  such as the assumed measurement  noise co- 
variances,  the  postulated  effects of different  incidents on 
traffic  dynamics, etc. The parameter  values used were 
those  given in Section 11. In addition, the linearized Kal- 
man filters were  designed about a high mean flow operat- 
ing  point of 1667 cars/h/lane? 

The  first  set of tests  involved  the  use  of data obtained 
from  simulating  the  model (2.1),  (2.2)  using parameter 
values that differed  from  those assumed in  the MM and 
GLR designs. The parameters  that were  varied are as 
follows. 

ZNote that this mean flow  not only affects the gain, but  it also is a 
driving term in the prediction step of the fiters, as it enters in as a 
driving term in the equation for I;,. 

1) The actual  mean flow onto link 1. This was  varied 
from  a  low  flow of 900 cars/h/lane up to capacity (2000 
cars/h/lane). 

2) The sensor  noise  variances.  Significantly  larger  val- 
ues  for  these  variances  were used in some of the  experi- 
ments. 

3) The initial  estimation  error.  Large  values  were used 
for this in  order to observe the transient  behavior of the 

The  performance of both systems was encouraging. 
1) Detection  performance  was  uniformly  good  over  the 

entire  range of actual mean  flows  used (900-2000 
cars/h/lane). No false alarms were  observed, no incorrect 
detections (e.g., declaring a pulse on link 3 when  the  true 
event  was an incident on link 4) occurred, and the re- 
sponse  time of the  systems was small. Figs. 3 and 4 

algorithms. 
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Fig. 5. MM probability  plot.  Accident on link 4; nominal flow= loo0 ws/h/lane; aggregate  measurements  from 
microscopic simulation. 
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Fig. 6. GLR, h(k): Accident on link 4; nominal flow= l o o 0  ws/h/lane; aggregate  meamrements  from  microscopic 
simulation. 

illustrate typical  performance of the GLR and h4M sys- mation about system  robustness to the details of the 
tems. The value of E indicated in Fig. 4 and in later figures  Payne  model. To provide this type of information, we 
is 16. Under all of the assumptions  used  in the derivation  have used a microscopic traffic simulation [15]. This pro- 
of the GLR method  (such  as the whiteness of the residu-  gram is based on the St. John car-following  equations  [14] 
als), this  threshold  implies a false alarm probability at any and can be used to simulate  traffic  under  almost any 
instant of  time  of  less than 0.0002. conditions.  The  program  simulates two lanes of  flow, 

2) Performance  is  somewhat  degraded  when the actual operates in discrete time, and offers the following fea- 
measurement  variances are a factor of  16 larger than tures: 
nominal. All incidents were correctly  identified  with, how- a) a variety of vehicle and driver  types can be  modeled, 
ever,  increased  detection  delay. b)  presence detectors can be placed as desired, 

effects on GLR and MM. Performance is excellent after d) accidents can be  simulated  by  stopping a vehicle at 
the initial startup. any desired time and location. 

These  tests,  while  indicating a certain level  of robust- Because the simulation is based on a microscopic 
ness of the GLR and MM systems, do not provide  infor- model, the position, speed,  acceleration,  driver type, and 

3) Large  initial  estimation errors cause only  transient  c)  on-ramp and input flow  rates can be  specified, 
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Fig. 7. MM probability  plot. No accident, two slowly  moving  vehicles; nominal flow= loo0 cars/h/lane; aggregate 
measurements  from  microscopic  simulation. 
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Fig. 8. GLR, &k): No accident, two slowly  moving  vehicles; nominal flow= 1600 cars/h/lane; aggregate measurements 
from  microscopic  simulation. 

vehicle type for  each  vehicle on the  road are known and 
available  in  the  program. Thus, it is  possible to compute 
the  density and average  velocity of traffic  over links of the 
simulated  freeway. We have done this in  order  to  generate 
measurements  (which  we  have  then corrupted  with  noise) 
of the  aggregate  variables  used  in  the GLR and MM 
algorithms.  These data were then  fed  into  the  detection 
systems.  The  following  are  the  conclusions  that  can  be 
drawn,  from this study. 

1) Both  the GLR and MM systems  performed  well  in 
detecting  incidents  down  to flow  levels of 900 cars/h/ 
lane. This gives us an idea of the  fundamental  limitations 
of our  algorithms-at  flows  less than this the  various 
noise  sources and approximations are stronger  than  the 
“signal”  due to the  incident. 

2) The GLR approach  has  some  difficulties at low 
flows in  distinguishing  incidents  from  sensor  biases.  We 
will discuss this problem  in  Section IX. See  Figs. 5 and 6 
for typical MM and GLR responses. 

3) Short-term  spatial  inhomogeneities in traffic  cause 
transient  responses in the GLR and MM systems.  Figs. 7 
and 8 are  from  a  simulation in which two slowly  moving 
vehicles  disrupt  traffic  flow. As expected, this looks  like a 
“traveling  incident.” This could  be  alleviated  by  a  per- 
sistence  requirement on the  probabilities  or  log-likelihood 
or by incorporating  a  traveling  incident  model for MM 
and signature  for GLR. 

Thus,  while  some  questions are raised  by  these  simula- 
tions, the  basic  conclusion of this study is that the MM 
and GLR algorithms  appear to be  insensitive to the  de- 
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tails of the  dynamic  models used in  their  design and to the 
precise  parameter  values  used. On the  other hand, the 
measurements  used  by  the  MM and GLR algorithms  in 
these  simulations are not available in practice: in the  first 
set we used  a  macroscopic  simulation,  while  in  the  second 
we used a microscopic  simulation and actually  computed 
the  aggregate  variable  measurements  needed  by  counting 
cars on each link and averaging  their  velocities.  What  is 
still  missing  is  a  system  for  taking  presence  detector data 
and producing  estimates of pi and vi that can  then be used 
as inputs  to  the GLR and MM systems. This is the  topic 
of the  next few sections. 

VI. THE NATURE OF PRESENCE DETECTOR DATA 

In this  section we  briefly  discuss  the  type  of  informa- 
tion  contained  in  the outputs of presence  detectors. A 
detailed  discussion  is  contained  in  [23].  The  ideal  output 
of a  detector at any  time  is 0 if no car is above  the 
detector and 1 if a  car is  present.  Hence,  the  time  history 
of a  detector  output is a  sequence of unit  pulses,  whose 
pulsewidth  is  the  time  that an individual  car  is  over  the 
detector.  From  such data, one  can  directly  compute two 
quantities of importance in estimating aggregate traffic 
variables and in  detecting  incidents. 

1) Car count  data-the  number of cars  passing  a  given 
detector  station in a  prescribed  interval of time. This 
directly  yields  flow  information,  i.e., cars/h/lane. 

2) Occupancy  data-the  percentage of  time that cars 
are over  the  given  detector  during  the  prescribed  time 
interval. This is related to traffic  density. 

Intuitively,  when  a  capacity  reducing  blockage  occurs 
somewhere on a  freeway,  the  density of traffic  upstream 
of the  incident  location  increases,  while  it  decreases  down- 
stream.  Hence,  one can consider  designing  incident deteo 
tion  algorithms that look  for  low  occupancy at the  down- 
stream  detector and high occupancy at the  upstream  de- 
tector. In fact, this is  the  basis of many of the  algorithms 
discussed [1]-[8]. One  particular  algorithm of this type, 
the  so-called  Algorithm #7, has  emerged as the  most 
widely  accepted  incident  detection  system [8]. This algo- 
rithm  employs an occupancy  difference  test  along  the 
lines of the  one  mentioned  above,  together  with  a  per- 
sistence  requirement  (to  reduce  false  alarms) and a  test at 
adjacent detectors to reduce  the  number of alarms  caused 
by  traveling  compression  waves.  The  details of this  algo- 
rithm are described  in [8] and in [23]. 

We have  used our microscopic  simulation,  equipped 
with  presence  detectors at half-mile  intervals to generate  a 
number of scenarios  for  the  testing of Algorithm #7 and 
of the  systems  described in the next two sections.  These 
results  indicate that Algorithm #7 detects  incidents well 
in heavy  traffic but has  difficulty  in  detecting  incidents  in 
low or moderate  traffic. In our simulations this algorithm 
was unable  to  detect  incidents  in flows  below 1400 
cars/h/lane. In fact, in  [23] it is argued that the  probabil- 
ity is 0.5 that  Algorithm #7 will be  able to detect  (with 
arbitrarily large  detection  delay) an incident at a  flow  of 
1300 cars/h/lane. For  the ve  curve  described  in  Section 

11, this flow corresponds to a  high  enough  density (>p,d 
so that the  equilibrium  velocity  is 48 mi/h.  Thus, this is 
not a  light  traffic  condition. 

Although  the  above  comments  indicate  a  limitation to 
the  performance of Algorithm #7, it should  be  remem- 
bered that 1) this  algorithm  directly uses  presence  detector 
outputs and 2) the  algorithm  is  extremely  simple to imple- 
ment. In the  next two sections we develop  a  method for 
using  presence  detector data with the MM and GLR 
systems. In Section IX we discuss  the  complexity  issue. 

As described  in  the  preceding  section,  a  presence deteo 
tor provides  time-averaged information about traffic con- 
ditions at a fixed spatial  location. On the  other  hand,  the 
variables in the  models on which the GLR and MM 
systems  are  based are spatial-averaged  quantities at fixed 
times. A number of authors [32]-[35]  have  considered  the 
problem of processing data of  the  first  type to produce 
estimates of variables of the  second  kind.  The  simplest of 
these  is  discussed  by Nahi and Trivedi  [32],  [33].  Their 
recursive  estimation  system is based upon counting 
vehicles as they enter and exit  the link. Given  a  good 
initial  density  estimate, Nahi’s method  showed  the  ability 
to track  the  density  very  closely  in  spatially  homogeneous 
conditions. In fact, an explicit  homogeneity  assumption 
was made  in  the  development of the  system. This type of 
assumption is clearly not valid for incident  conditions and 
can be  expected to lead to large  estimation  errors. 

Motivated by the  results  in [32],  [33]  we have  developed 
a new link density  estimation  system that is  very  simple 
and also  overcomes  the  limitations of Nahi’s system. Con- 
sider  a  single link of a  freeway  with  detectors  in  each lane 
at both  ends of the link. Let A be  the  time  interval  over 
which the  temporal  averaging of loop  detector data is 
performed, and let k denote the discrete-time  index, e.g. 
p(k) denotes  the  spatial  average  density at time kA. Let 

C,(k),  C,(k)= the  number of cars  counted  in  the 
time  interval ( k -  1)A < t  <kA at the 
upstream and downstream  detector 
stations,  respectively 

OCCJk),  OCC,(k) = the  occupancy  measured  over 
the  time  interval ( k  - 1)A < t < 
kA at the  upstream and down- 
stream  detector  stations,  re- 
spectively. 

First  note  that C,(k)/A is a  direct  measure of the flow 
(cars  per  unit  time) at the  upstream  detector, and C,(k)/A 
is an analogous  measure at the  downstream  detector. 
Thus,  a  reasonable  estimate  of  flow on the  link is the 
average of these  quantities, 

Also note  that  the difference CJk) - C,(k) measures  the 
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change  in  the  number of cars on the link during  the  time 
interval (k  - 1)A < f < kA. Hence, we directly  obtain  the 
following  equation  for  the  evolution of link density: 

u(k- l)+w(k- 1) (7.2) 

where h is  the  length of the link and w(k-  1)  is a  noise 
process  used  to  model the possible  discrepancies  between 
the actual  change  in  the  number of cars on the link and 
the number  obtained  from car count  information. This 
discrepancy  may  be  caused  by  imperfections  in  the  detec- 
tors, by a  detector  missing a car, or by a car being 
counted by detectors  in two different  lanes at the  same 
station (see  [23],  [41] for details). The calculation of the 
variance Q of w(k - 1) is discussed  in [23], and a  value of 
Q on the  order of  0.1 (cars/mi/lane)’ was found to  be 
valid  over  a  wide  range of traffic  conditions. 

Equation (7.2)  implies  that  we can use car count data to 
keep  track of changes in  density, but by  itself  such data 
cannot reduce  any  initial  uncertainty  in p, and the  ac- 
cumulation  over  time of the noise process w(k) will lead 
to further deterioration in our estimate of density.  Thus, 
we  would  like to use  occupancy data to provide  a  direct 
measurement of density.  Intuitively, if traffic is spatially 
and temporally  homogeneous,  one  should  be  able to relate 
temporal  averages to spatial  averages.  Using  results of this 
type [36]-[38], it is shown  in  [23],  [41]  that  under  spatially 
homogeneous  conditions  density is proportional to oc- 
cupancy.  Thus,  let 

OCCJ k )  + OCC,( k )  
z( k )  = 2a (7.3) 

where a is the  occupancy-density  proportionality  constant 
(see  [23],  [41] for  the  evaluation of a). Then,  under  spa- 
tially  homogeneous  conditions, we have 

4 k )  = d k )  + q ( k )  (7.4) 

where ~ ( k )  is an unbiased  sequence of errors,  which are 
assumed  to  be  white  with known variance R.  Results in 
[23] indicate  that the variance of q(k) should  be  taken  in 
the range  from  50-100  (cars/mi/lane)’. 

Given  the  model (7.2),  (7.4) we can design a one-dimen- 
sional  Kalman  filter  as  a  density  estimation  system that 
works  well  under  spatially  homogeneous  conditions 

j ( k + l l k ) = [ l - H ] j ( k l k - l ) + H z ( k ) + u ( k )  (7.5) 

where  the  filter gain and the  variance Y of the  residual 
y(k)= z(k) - fi(klk - 1) are calculated  from  the usual Kal- 
man filter  equations. 

This system  has  been  studied  using our microscopic 
simulation,  and,  under normal conditions,  large  initial 
errors  in  the  estimate of p can be  reduced sipficantly 
within  1 min with  measurements  taken  every  5 s. This is a 
major  improvement  over  previously  developed  techniques. 

Recall  that  the  underlying  assumption  behind (7.4)  is 
the  homogeneity of traffic.  Clearly,  any  inhomogeneity, 

such  as an incident,  may  cause  the  relationship (7.4) to 
fail. This leads  directly to the idea of monitoring  the 
residuals y(k) in  order to detect and compensate  for  such 
inhomogeneities. To this end,  we  consider  a  simple  model 
for the  development of spatial  inhomogeneities-the  onset 
of a  bias of unknown size Y, 

(where a(m)=l,   m>O, =0, m<O). 
Using (7.2),  (7.6)  we can devise  a  simple  density estima- 

tion system for use  under any traffic  conditions.  Design  a 
Kalman  filter  as  in (7.5). Then, following the  discussion of 
the GLR algorithm  in  Section JY, the  residuals can be 
written as 

v (k )=vg(k -@+%k)  (7.7) 
where f(k) is a  zero-mean  white  process  with  variance V. 
The signature g(k - e) can be  easily  calculated in this case 
as 

g( i>  = (1 - HY’. (7.8) 

We  now can  implement  a  GLR-based  algorithm  (not to 
be  confused  with  the  incident  detection  algorithm of  Sec- 
tion IV). We compute d(k,O), Z(k,8), and S(k - 8) using 
g(k -  e) as given  in  (7.13) and the scalar  versions of 
(4.4)-(4.6) (with t, replaced by m). A sliding window of 
k - 13 < k  - 9 was  used for these  calculations.  Then, 
letting 

J(k) = arg max /@,e) (7.9) 
k - 1 3 < 8 t k - 9  

the  decision  rule  used  was 

bias  detected 

normal conditions 
I( k, 6( k)) 2 e (7.10) 

where  the  threshold c is chosen  to  provide  a  reasonable 
tradeoff  between  false  alarms and correct  detections.  Note 
that  the  probability of detection  depends  upon  the size v 
of the  bias. In [23] a  discussion  is  given of the  expected 
size  for v under  different  traffic  conditions.  The  results of 
this  analysis  are that the  size  of Y increases  with  increasing 
flow. Thus,  one can set e at a  higher  value  in  heavy  traffic, 
reducing  false  alarms  while  maintaining  a  high  correct 
detection  probability.  Note that flow-scheduled  thresholds 
are easily  implemented, as the  estimate of (p given  by  (7.1) 
is  good. 

Following  the  detection of a bias, we want to com- 
pensate  the  filter  estimate j to  correct  for  the  effect of the 
bias. In a  manner similar to the calculation of g(k - e), we 
can calculate  the  bias pb in fi(klk) caused  by a  measure- 
ment  bias Y occurring at time 8, 

Then,  given that a  detection is made at time k and given 
the  most  likely  time ê  from  (7.19) and  the  most  likely 
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Fig. 9. MM probability plot.  Accident on link 4; nominal flow= loo0 ws/h/lane; presence  detector data. 

magnitude of the measurement  bias  [17] 

d(k,8) 
V =  

S(k - 8) (7.12) 

we obtain a correction to the estimate following the detec- 
tion, 

Having done this and having  compensated  the  measure- 
ments by subtracting t from all incoming  measurements, 
we are in a position to detect further changes,  such as the 
return to homogeneous  conditions. This system  has  per- 
formed extremely  well in all types of inhomogeneous 
traffic conditions. For a detailed discussion of the perfor- 
mance of this algorithm,  see [23],  [41]. 

Finally,  recall that the GLR and MM systems  require 
measurements of both p and u. We can obtain an estimate 
of velocity  as  follows: 

This estimate is not nearly as good as the estimates of + 
and p, due to the errors in the approximation u =+/p .  
Note  that for a compressible  fluid this is an exact  relation- 
ship if we use point values for u, +, and p .  It is only 
approximate if we use spatial averages. 

VIII. THE GLR AND MM ALGORITHM USING 
PRESENCE DETECTOR DATA 

The system  described in the preceding  section for com- 
puting estimates of spatial mean  densities  and  velocities 
was combined  with  the GLR and MM algorithms,  with 
the estimates  produced by the former  being  used as the 

measurements for the latter. This combined  system was 
then tested using the same  microscopic  simulations as 
described  in  Section V, although in th is  case detector data 
were  used  directly. As discussed  in  Section 11, the GLR 
and MM  systems  were modified  slightly  by  using  larger 
values for measurement noise variances to account for the 
errors in the  estimates of p and u provided  by our detector 
data preprocessing  algorithm. 

As one might  expect the additional errors introduced by 
the increased  uncertainties  in our derived  measurements 
of p and u lead  to a slight  increase in the minimum flow at 
which  incidents can be  detected.  However,  these  algo- 
rithms st i l l  detected  incidents  in flows  down to loo0 
cars/h/lane. Recall the Algorithm #7 required flows  of 
at least 1400 cars/h/lane in our simulations. 

Aside  from this increase in minimum flow  required for 
detection,  the  simulation  results  using  presence detector 
data  are extremely  similar to the  results obtained using 
aggregate  measurements  directly  computed  from  the mi- 
crosimulation.  Compare Figs. 9 and 10  with  Figs. 5 and 6. 

IX. DISCUSSION 

In this paper  we  have  described  the  application of 
modern  estimation and detection techniques to the prob- 
lem of detecting  incidents on freeways. The algorithms we 
have  developed  have  shown  promise of providing  perfor- 
mance  improvements  over  existing  algorithms.  Moreover, 
the extremely  simple  system  we  have  developed for esti- 
mating  aggregate  traffic  variables from presence detector 
data should  be of interest in traffic surveillance  applica- 
tions other than incident detection. 

While  the  techniques that we have  developed  have 
yielded  encouraging  results, a number of further questions 
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Fig. IO. GLR, ({k): same simulation as in Fig. 9. 

must be addressed.  First,  the  system  described  in  Section 
VI1 provides  good  estimates of p but rather  poor ones of 
0. Several  possibilities  for  improved  velocity  estimation 
are discussed  in [20], 1221, [23].  An alternative to using 
such  a  system  would  be  the  use of p and @ as the  basic 
measured  variables in the  design of the GLR  and MM 
systems.  Another  problem  that  must  be  attacked is that of 
sensor  failures. As discussed in Section V, the GLR tech- 
nique  has  some  difficulties  in  distinguishing  incident  hy- 
potheses and some of the  sensor  bias  models. The main 
point  involved  in  alleviating this problem  is  the  observa- 
tion that macroscopic  sensor  failure  models  have  very 
little to do with the  actual  failure of a  presence  detector. 
Thus,  it  seems  preferable  to  perform  sensor  failure  detec- 
tion directly on the  presence  detector  data. Fail to zero or 
full-on  failures are not  difficult to detect  using  simple 
logic  directly on detector  outputs. Also, it  is  possible  to 
design  a GLR system,  much as that  discussed  in  Section 
VII, for  the  detection of sensor  failures. 

Work  is  needed  in  the  development of useful  detection 
rules,  based on the MM probabilities or GLR log-likeli- 
hood  ratios.  Persistence  requirements  (i.e., pi or li remain- 
ing  above  a  threshold  for  a  period of time) are clearly 
needed, and such  a  feature will eliminate  many  problems 
such  as  the  transient  response of GLR  and MM in  the 
simulation  containing two slowly moving vehicles. In 
addition, we  may  wish to  consider  flow-scheduled 
thresholds, as were  used  in our aggregate  variable  estima- 
tion  system.  Here,  one  could  use  higher  thresholds in high 
flows to avoid  false alarms caused,  for  example,  by  com- 
pression  waves.  One  would not be  sacrificing  very  much 
in terms of detection  performance, as the  effect of an 
incident in heavy  traffic is much  larger  than  in  light 
traffic.  Conversely,  a  lower  threshold  in  light  traffic  would 
improve  detection  performance  without  any  drastic  effect 
on the  false  alarm  rate,  since  large  amplitude spatial 

inhomogeneities do not  occur  under  normal  conditions 
when  traffic  is  light. 

The  inclusion of additional  hypotheses  (and  the  dele- 
tion of some of the  present  ones)  should also be  investi- 
gated  for  both  the GLR and MM systems.  Basically,  we 
should  aim  to  include  hypotheses  for  events  that we want 
to detect  plus  hypotheses for events,  such as slowly 
moving  vehicles,  which  may  confuse  the  detection algo- 
rithms unless  accounted  for. In addition,  the  use of more 
complex  dynamic  models,  incorporating  effects  such as 
the  lateral  motion due to lane  changing,  should be consid- 
ered, as such  phenomena  play  a  sigmficant  role  in  the 
dynamics of traffic  under  incident  conditions and conse- 
quently  offer  the  possibility of improved  signal-to-noise 
ratio if they  are  included in our models.  Further, at least  a 
simple  model of lane  changing  clearly  must  be  considered 
if presence  detectors  are  not  placed  in  every  lane at every 
station. 

Finally,  computational  issues in the  implementation of 
the MM and GLR systems  must  be  examined, and the 
algorithms  should  be  tested on real data in  order to 
provide  a  basis  for  deciding if the  complexity of these 
systems  is  justified by commensurate  performance.  For an 
initial  discussion of implementation  questions  for MM 
and  GLR we refer  the  reader  to [22]-[24]. As for  the 
performance of these systems,  the  results of our simula- 
tions  using  presence  detector data generated  by  a  micro- 
scopic  dynamic  model of  freeway traffic  indicate that the 
MM and GLR  algorithms  offer  the  possibility of im- 
proved  detection  capabilities  over  existing  algorithms. 
This step is  a  sigmficant  one, as these  simulations  were not 
based on an  aggregate  traffic  model  but on models  for 
individual  vehicles. On the  other  hand,  systems  such as 
Algorithm #7 were  developed and have  been  tested on 
real data, and the  real  test  of  the  robustness and promise 
of our techniques will come  from  sunilar  experiments. 
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