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The Digital  Implementation of Control 
Compensators:  The  Coefficient 
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Absbulci--'Ibere exist a mrmber of maulematid procedures for des&- 
ing rllscrete-thne compensators. However,  the digital implementatroo of 
these d e s i g n s ,  with a micropmassor,  for  example, bas not received nearly 
as thorough an investigation. 'Ihe finite-precision natnre of the digital 
hardware makes it necessary to choose a computational stroeture that will 
performadequafelywithregardtotheinitialobjeetivesofthedeslgaThls 
paper d e s u i i  a procedure  for estimating the reqnired fixed-point wef- 
ficient wordlength for any given computational structure for the im- 
plementation of a singleinput single-ontpnt LQG design. 'Ihe dts are 
compared to the actnal number of bits necssary to d e v e  a specified 
perfomance index. 

I.  INTRODUCTION 

T HE DESIGN of discrete-time compensators through 
the use of optimal regulators,  pole-placement  concepts, 

observer  theory, optimal filtering [l], [2], and also via 
classical control theory [3] has received a great  deal of 
attention in  the literature. In the past such  designs  have 
usually  been  implemented on large,  expensive,  floating- 
point  computer  systems.  However, the number of applica- 
tions that could  effectively  use  small-scale hardware con- 
trol  systems that work in real time has greatly increased, 
especially  with the advent of the  inexpensive  micro- 
processor. 

While  the  recent advances in digital hardware  capabili- 
ties  have  opened  many  new  possibilities for control system 
implementations,  they  have also raised new  issues. A 
number of these  involve  the  problems that arise in dealing 
with the  fixed-point arithmetic and finite wordlengths of 
small-scale  digital  systems. As these  problems are not 
addressed at all in the  idealized mathematical design 
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procedures that have  been  developed to  date, a methodol- 
ogy must  be  established for treating the digital implemen- 
tation of a design. The mathematical design procedure 
produces an infinite-precision ideal compensator  specifi- 
cation. The job of the implementation step is to  specify and 
order sequentially  the critical computations that must take 
place in the compensator so that the end result, the actual 
finite-precision  digital  system,  performs as close to the 
ideal as is consistent with  the expense and speed require- 
ments of the application. The implementation step also 
includes a specification of the hardware architecture and 
components. It is important to note that the mathematical 
design and the implementation phases  may  not be totally 
independent,  since  the implementation can be very  im- 
portant in determining an acceptable sampling rate  and 
the number of operations that can be  performed  per 
sampling  period.  These then become restrictions on the 
compensator design. 
Our approach draws on the field of digital signal 

processing [4], [5],  which has generated many results con- 
cerning the realistic implementation of digital filters. 
Good reviews concerning the  effects of finite precision in 
digital  filters-specifically,  the  effects of coefficient quan- 
tization, limit  cycles, and quantization noise-can  be 
found in  [6],  [7], and [8].  Some  work  has  been done in 
looking at similar  questions for digital feedback com- 
pensators, but it has been  somewhat  limited.  Knowles and 
Edwards [9] and Curry [lo] have  each  considered a 
roundoff  noise  analysis of certain sampled-data systems. 
Bertram [ 111, Slaughter [ 121, Johnson [13], and Lack  [14] 
have  developed amplitude bounds on the  effects of quan- 
tization in sampled-data control systems. Sripad [15] has 
looked in some depth  at the roundoff  noise and finite-pre- 
cision  coefficient performance of the discrete-time  Kal- 
man filter and linear-quadratic-Gaussian controller. Rink 
and Chong [16] have  derived bounds on the  effects of 
quantization errors in floating-point regulators. Farrar 
[17] has pointed out in a basic way some of the  issues 
involved in implementing  continuous-time  linear- 
quadratic-Gaussian controllers as discrete-time  fixed- 
point  microprocessor-based  systems. Willsky [ 181 has 
pointed out some of the parallels between  filter and con- 
troller  implementations. In this paper, we use, adapt, and 
extend the ideas of digital signal  processing for digital 
feedback compensators; specifically we examine the issue 
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of coefficient quantization in fixed-point compensator im- 
plementations. Since researchers in digital signal  process- 
ing have  developed a great many tools for implementing 
digital  filters, we should try to use  these  concepts.  How- 
ever,  because of the presence of a feedback loop around 
the digital compensator, many of these concepts do not 
directly apply for control, and adaptations are necessary. 
Finally, in our treatment, where the coefficients of the 
ideal compensator  have  been  chosen to optimize  some 
scalar criterion, we have to modify the notion of statistical 
coefficient  wordlength. This modification also constitutes a 
possible  extension for digital signal  processing. 

The  basic idea behind the selection of a coefficient 
wordlength  is  the  same for digital filters and digital com- 
pensators. Approximating the coefficients of a structure 
with  a finite number of bits causes a degradation in the 
system’s performance as compared to the  ideal.  Assuming 
that a given quantitative performance  measure  is  pro- 
vided, we can  measure the tradeoff in the  number of bits 
versus the degradation. Then,  assuming that we specify an 
acceptable amount of degradation, one  must determine 
the minimum number of coefficient bits needed to meet 
this goal.  Clearly,  a straightforward way to determine this 
wordlength is to simply reevaluate the measure of perfor- 
mance for sets of coefficients that  are quantized to dif- 
ferent wordlengths, and  to choose the smallest  wordlength 
meeting the design specification. This direct method  can 
be quite time-consuming,  even  when we assume that the 
coefficients are to be rounded to the shorter wordlengths, 
and not chosen in some  more  complex  fashion  [19]. 

The concept of a (simpler) statistical estimate of the 
wordlength originated in the study of digital filters with 
the work of Knowles and Olcayto [20]. Avenhaus [I91 
applied this idea to the digital filter power transfer func- 
tion (as a performance  measure), and later Crochiere [21], 
[22]  used the concept with the filter transfer function 
magnitude and a wordlength optimization procedure. All 
three of these studies chose different performance 
measures,  none of which  seem to be particularly ap- 
propriate for control problems  where the compensator 
phase is critical. In this paper we adapt the statistical 
wordlength concept to the steady-state linear-quadratic- 
Gaussian  (LQG) control problem. We  have  selected the 
LQG  problem for several  reasons. First, it has  received a 
great deal of attention in the recent literature, due  to its 
robustness, multivariate formulation, and optimal nature. 
Second,  the  LQG  problem has  an explicit scalar perfor- 
mance index J which  can  be  used to gauge the effective- 
ness of an implementation. In fact, this  was the perfor- 
mance  measure  used  by Sripad [ 151. 

It would  also  have  been  possible to choose  a criterion 
such as phase margin, output noise  power, or any combi- 
nation of stability or noise  measures. If the problem  under 
consideration was  simply  a  Kalman filter, then a suitable 
performance  measure  would  be the trace of the error 
covariance matrix.  We  have  chosen J in order to present 
our results  in a specific context. These  results extend in  a 
straightforward manner to other measures. It should also 
be  noted that we treat the single-input single-output case 

for convenience, and because it is  in this setting that most 
digital filtering  results  have  been  developed.  The  following 
analysis can  be  extended  easily to the multiple-input mul- 
tiple-output case,  once a multiple-input multiple-output 
structure is  specified  [23]. 

In terms of its applications, the statistical wordlength 
estimate that we develop  is  useful  in the relative compari- 
son of different structures on the basis of their required 
coefficient  wordlengths.  However,  more importantly, the 
statistical estimate can be  used as the basis  for an iterative 
gadient-search constrained optimization procedure (see 
[23] and  the  conclusions of this paper) for generating 
minimum  coefficient  wordlength structures. This is  possi- 
ble because the statistical estimate is continuous, that is, 
not limited to an integral number of bits, and also because 
this estimate is differentiable with respect to the 
coefficients of the structure. These points are not true of 
the direct method of wordlength determination, which  is 
essentially  the  method  used  by Sripad [15]. 

The organization of this paper is as follows. In Section 
I1  we describe  the derivation of the LQG  compensator 
including the real computation  time constraints. The no- 
tion of a compensator structure and a notation adequate 
for expressing the computations that occur in such a 
structure is presented in Section 111. In Sections  IV, V, 
and VI  we introduce the notion of statistical wordlength 
and apply it to the LQG problem. Finally, we present 
examples of the technique and compare the results to the 
direct method. 

11. THE LQG CONTROLLER PROBLEM 

In this  section  we present the single-input single-output 
LQG control configuration and the mathematical, or 
ideal, design of the compensator. Assume that we  wish to 
design a digital  discrete-time  compensator  for  a continu- 
ous-time plant system, and  that the control signal  is  piece- 
wise constant. Typically, after sampling  the plant output 
at rate 1 / T,  the  compensator is designed to produce an 
output u(k)  based on the compensator inputs up to  and 
including y(k).  Such a design  would not be  implement- 
able, since u(k) and y ( k )  refer to identical sample  times, 
and a finite time  must  be  allowed for the  computation of 
u(k) from y(k).  These  two requirements are contradictory. 

Kwakernaak and Sivan [l] present a design procedure 
where u(k)  depends  only on compensator inputs up to 
and including y ( k -  1). This allows  a  full  sample interval 
for the  computation of u(k).  If, however, the computation 
time  is  much shorter than the  sample interval, this  implies 
some  inefficiency; the output u(k) will  be available long 
before it is  used as a control. Thus, Kwakernaak and 
Sivan also include a method for skewing the sample  time 
of the plant output with respect to the rest of the com- 
pensator. The  compensator output u(k) will still  depend 
on inputs up to and including y ( k  - I), but now y ( k  - 1) is 
produced  only  one calculation time before u(k) is  needed. 
This eliminates  any  inefficiency [l], [23]. 

When we discretize the continuous-time plant model at 
some rate 1/ T and account for any sample  skewing  we 
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obtain the following  set of equations describing the plant 
output  at the sample  times: 

where n is the  system order, @(n X n)  is the transition 
matrix, r(n X 1) and L(1 X n) are  the  input  and  output 
gains, and w1 and w, are discrete white Gaussian noise 
sequences with covariance matrices O,(n X n )  and 0,(1 X 
l), respectively. The control law  is  chosen to minimize the 
following performance index (the discretized  version of a 
continuous-time performance index): 

+2x'(k)Mu(k) + Ru,(k)) (2) 1 
where Q is n X n ,  M is n X l ,  and R is 1x1. Assuming a 
piecewise-constant control signal u(t) formed  by  applying 
the u(k) samples to a zero-order hold, and a linear com- 
pensator, the optimal compensator design can be de- 
scribed as follows: 

q k  + 1) = a q k )  +ru(k) + ~ ( y ( k )  - ~ q k ) )  
u(k+  1)= G i ( k +  1). (3) 

Note  that the equations in (3) base  the current control 
u(k) only on past outputs y ( k  - I),y(k - 2),. - * , [ 11, as dis- 
cussed  above. The ( n  X 1) matrix K is  the solution to a 
Kalman filter problem, and  can be computed by solving 
the  following algebraic Ricatti equation [l]: 

z=@{I-zL'(0,+LzL')-'L}z@,'+0, 

where 

K=@ZL'(O,+LzL')-'.  (4) 

Similarly,  the (1 X n) matrix G results from an optimal 
regulator  design and the following algebraic Riccati  equa- 
tion [l]: 

P=(@-rR-'M')'P(I-r(R+r'Pr)-'r'P} 

- (@-rR-"')+Q-MR-"'  

where 

G = ( R + r ' P r ) - l r ' P ( @ - r r R  -'M')+ R -%'. (5) 

Fig. 1 presents a simple  block diagram of the system 
and its (infinite-precision) compensator. This ideal com- 
pensator (3) can be described  by an infinite-precision  map 
(transfer function) in the digital frequency domain, 

The digital filter transfer function (6) must be imple- 
mented in finite precision and therefore will suffer  some 
degradation in the  system's  measure of performance J .  

'1 

I 
I 

Continuous-time I 

zero-order 
hold - t COMPENSATOR 

IDEAL  DIGITAL I * 
OF (6) 

Fig. 1. Plant and compensator. 

111. ALGORITHMS AND STFWCTURES 

In order to discuss different implementations, one must 
have an accurate notation  that reflects  these  differences. 
The term  "structure"  is  employed to specify the exact 
finite-precision algorithm by  which the compensator out- 
put samples u are generated from its input samples y .  All 
structures for implementing a given filter or compensator 
would perform  identically  under  infinite-precision 
arithmetic, but produce different quantization noise, 
coefficient quantization effects, and limit  cycles  when 
implemented  in  finite-precision. A good review  of some of 
the structures used to implement  single-input,  single-out- 
put digital filters can be found  in 1221,  [24], and [25]. 

Now  let  us  examine  the compensator equations (3) to 
see if they  represent a possible computational structure. 
Consider  the  nodes f ( k )  to be the states of  the structure, 
where a state corresponds to  the  output of a delay  element 
in the  signal flow graph [22] of the structure. Then the 
f(k + 1) equation describes the new state values to be 
functions of the current states R(k), the current output 
u(k), and the current compensator input y(k).  This is an 
accurate representation of a set of computations. How- 
ever, the last equation in (3) shows  the  next output value 
to be a function of the next state values. This cannot 
accurately describe real computations, since  some finite 
time  must  be  allowed to compute u(k+ 1) from f ( k +  l), 
and this is inconsistent with the identical ( k +  1) indexes. 
There is in effect a series  delay that is  implied, yet  such a 
delay is not accounted for in the compensator design. 

This example points out the difference  between  com- 
pensator and filter structures [23]. In digital  filtering, (3) 
would be taken to represent a structure. This is done 
frequently in describing the dependence of the output 
node on the state nodes. The series  delay that murt exist is 
ignored; after all, series  delay in the filter  output is not 
really important. However, in control systems,  series  delay 
is critical. Unplanned for delay adds negative phase shift 
and affects  the performance of the closed-loop  system  in a 
negative way. Thus, we must include all the  required 
computational delays in our description of a compensator 
structure. Simply adding the delay to the plant model and 
redesigning  the compensator is a poor solution, since  the 
order of the cornpensator will increase when we do this. 
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The best solution is to implement the compensator in such 
a way that its computations can take place in the allotted 
time  intervals. For example,  we can rewrite  (3) as follows: 

Z ( k + l ) = @ Z ( k ) + r u ( k ) + K ( y ( k ) - L i ( k ) )  
u ( k + l ) = - G ( @ i ( k ) + I ' u ( k ) + K ( y ( k ) - L i ( k ) ) } .  (7) 

The equations (7) do represent a compensator structure, 
since the next  values of state and outputs depend on only 
current values of states and inputs. In fact, note  that u(k), 
the  compensator output, is a  state. This will always be true 
for compensator structures. For any nth-order filter struc- 
ture with  only n unit delays (canonic in  delays), a corre- 
sponding nth-order compensator structure will  exist.  How- 
ever, the LQG  compensator structure will have an extra 
delay at its output because of the series  delay. Thus, an 
nth-order delay-canonic compensator structure will have 
n + 1 unit delay  elements. 

Since the notion of a  compensator structure is thus 
different from a filter structure, we must adapt the filter 
structure notation to account for the differences. Let u 
andy represent the compensator output  and input, respec- 
tively.  Let o represent the compensator states (other than 
u). We can  adapt the notation used  by Chan [24] for 
digital filters to produce the following modified state-space 
representation [23]: 

Several important points make (8) useful. 
1) Each (rounded) coefficient  in  the structure occurs 

once and only  once as an entry in one of the \ki matrices. 
The  remainder of the matrix entries are ones and zeros. 

2) The concept of a precedence to the operations (mul- 
tiplies, adds, and quantizations) is maintained. The order- 
ing of the + matrices implies that the operations in 
computing  the intermediate nodes 

are completed  first, then 

next, and so forth. The  parameter q specifies the number 
of such precedence levels. Examples of the  modified state 
space representation appear in Section VII. 

Notationally, it is also useful to define +, to  be the 
infinite precision  product of 4,, 9,- 1, - * - , 9, and to par- 
tition it as follows: 

4, = [ '11 4 1 2 1  

where+l , i s (n+l )x(n+1)and+k,2 is (n+l )x1 .  

IV. STATKTICAL  WORDLENGTH FOR D I G ~ A L  
FILTERS 

In this section we  review  briefly the basic  development 
of the statistical wordlength  measure as used in digital 
signal  processing 1211. Consider a general  measure of 
performancef,  a differentiable function of the  coefficients 
(cI,c2; - ,cm) of the structure. The  value of f associated 
with  any particular finite-precision structure reflects a 
degradation in  performance as compared to the ideal 
(unrounded  coefficients)  case f,. This degradation df can 
be  expanded in a Taylor's series about the ideal value. To 
first order 

where ci is  the ith coefficient to be rounded, dei is the 
error  due to quantization, and 3f/3cil, is the first partial 
derivative of f evaluated at the unrounded  coefficient 
values. Note that coefficients  such as  3,2,1,1/2, - - - are 
not normally affected by rounding and should not be 
included in  the  sum (10). 

If A is  the quantization step size (the fraction repre- 
sented by the least sipficant bit of the  fixed-point  coef- 
ficient  word), then each dci must  lie  between +A/2 
(rounding assumed).  Given the partial derivatives in (lo), 
we could (upper) bound the error df, producing  a  very 
pessimistic wordlength estimate. Specifically, 

The basic statistical wordlength idea is to produce a less 
pessimistic estimate by treating an ensemble of structures. 
Over this ensemble, the coefficient errors dci can be 
thought of as uniformly-distributed zero-mean  uncorre- 
lated random  variables,  each of variance A2/12.  Using 
(lo), we can now treat df as a  random  variable.  With dci 
as described above, df will  have a  zero-mean, and a 
variance 

For large m, the central limit  theorem can then be 
applied to justify a Gaussian distribution for df. Thus, 
with a given confidence level (probability), say  95  percent, 
one can predict the variance u$ needed  for the error df to 
remain  within  some prescribed bound. In other words,  95 
out of 100 of the structures in the ensemble will result in 
systems  where df remains within this bound. 

From a table of the Gaussian distribution, 

Pr [ ldfl< 2adf] = 0.954. 

If the quantity of interest f is constrained to lie  within 
f. E, of the ideal f , ,  then (13)  implies that I J ~  equal E0/2. 
This result can be  combined  with  (12) to produce an 
estimate of the  parameter A, 
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fi E, 
A =  

p(dJ1 

t 

Given A, the statistical wordlength can be  defined to be 
1 swL= [+log -. 2 A  (15) 

The first term in (1 1) represents  the number of bits 
necessary to represent the  integer portion of the 
coefficients and the  second term gives the number of bits 
necessary for the fractional portion of the  coefficient 
word. 

Crochiere [21], [22], [25] has presented a number of 
results  comparing the statistical wordlength of structures, 
using  the  transfer function magnitude as the performance 
measure f. Since this  choice of f is frequency-dependent, 
the resulting estimate is  also  frequency-dependent. The 
final wordlength can be  selected as the maximum of the 
estimates  over the frequency  range of interest. In the 
examples treated by  Crochiere,  the statistical wordlength 
estimate was typically 1-3 bits conservative as compared 
to the actual minimum number of bits necessary  to  meet 
the transfer function error limit.  Using  the statistical 
wordlength idea, Crochiere [21] was also able to formulate 
an  optimization  procedure  for designing shorter- 
coefficient-wordlength filter structures. Although this opti- 
mization  method is quite different from the one we have 
alluded to it  is a big motivation for developing the statisti- 
cal approach for compensators. 

v. STATISTICAL WORDLENGTH AND THE 
PERFORMANCE  INDEX J 

As mentioned in Section 11, it is convenient to use  the 
performance index J in (2) as the measure of performance 
f in an LQG setting. Using the approach of the previous 
section, the change  in J would  be  estimated by 

However, the optimal nature of the  LQG control problem 
forces  all  the  sensitivities aJ/aci to be zero.  Therefore, a 
higher order approximation is necessary: 

The use of second-order terms (not used in digital filter 
analysis) is a unique  aspect of our statistical wordlength 
formulation. However, the use of these  terms  would  be 
necessary in any filter or compensator design  analysis in 
which the statistical estimate is based on the degradation 
in a scalar performance  measure that has  been optimized 
with  respect  to the unrounded coefficients. For example, 
if a digital filter  were  designed  by mhimking the in- 
tegrated squared error between the desired and actual 
filter transfer function magnitude characteristics, then a 

Fig. 2. Probability density of dl. 

statistical wordlength estimate based on this performance 
measure  would  have to use second-order sensitivities, 
since  all first-order sensitivities  would  be  zero. The statisti- 
cal wordlength derivation that we have developed  would 
have to be used in this case, and therefore our formulation 
also has some potential applications in digital filter design. 

Proceeding  from (17), the mean of dl will no longer be 
zero, 

For convenience,  define  the random variable e to be the 
square of dci. Its mean and variance can be shown to be 
A2/12 and A4/180. The variance of dl can now be found 
1231, 

Recall  the application of the central limit  theorem in 
Section IV.  We can make the same  assumption for our 
higher order statistical wordlength  derivation. For the 
usual  digital  filtering  estimate, the coefficient quantization 
could either decrease or increase the error in the transfer 
function magnitude at any specific  frequency. This im- 
plied that the error was  zero-mean. In the control case, the 
value of J can only increase under coefficient quantiza- 
tion. Thus, we need  only  have a specification on the 
maximum  allowed  value of J including the degradation 
due  to coefficient quantization: J ,  + E,. Following the 
general approach of Section I V Y  we must equate this  value 
to the  two-sigma point in  the distribution for dl in order 
to compute our estimate of A (see  Fig.  2): 

- 
J m +  E,= Jm+ dl +2a,. (20) 

This choice of U~ gives a 97.5 percent confidence  level in 
terms of remaining  below the allowed  deviation E,. Com- 
bining (19) and (20) we can derive an expression for A2: 

Using  (15),  the  SWL can then be written 

1 1 
2 A2 

S W L = I +  -log,-. (22) 
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The use of second-partial derivatives in approximating 
dl in (17) has given  rise to a complex  expression  for the 
statistical wordlength.  Efficient  methods  for  evaluating 
(22) will be  discussed  in the next section. 

VI. COMPUTATIONAL PROCEDURE 

In order to compute the derivates of J,, the infinite- 
precision  (ideal)  performance index, it is convenient to use 
the trace form [26] of (2): 

J ,  = trace[ S Z ]  (23) 

where the (2n + 1) X (2n + 1) matrices S and Z are defined 
by (24) and (25): 

Q i O i M  

0: R 

Z = E {  [ x ( k )  :i:~]I..o...ik)y..(k)l}. (25) 

Here Q, M ,  and R are the performance  index parameters 
described in (2). The matrix Z, the  covariance matrix for 
plant and compensator states, can be shown to satisfy the 
following  Lyapunov equation, 

where 

Note  that (23)-(26) depend on the infinite-precision 
(ideal) compensator and on the selection of compensator 
state variables u. The resulting J ,  will be  independent of 
structure. However, the  partial derivatives of .I, 
(evaluated for ideal coefficients) will depend on the struc- 
ture since each  coefficient ci resides in one of the 
structure's \k i  matrices.  Taking  the partial derivatives of 
(23) will produce 

where all the partials in (28) are evaluated at the ideal 
values of the coefficients. 

Thus, we must  compute the second partials of Z. 
Taking the first derivative of (22) produces 

where 

Evaluation of the trace expression  in (28) will imply 
solving m Lyapunov equations of the form  shown in (29). 

Now to compute the second partials, we must take the 
derivative of (29) with  respect to c j  [23]: 

a ,z a 2z 
acia5 aciacj 
-- -A-  A'+ Xv + Xi;. 

where 

0 

Solving (30) for all i and j  would require m(m + 1)/2 more 
Lyapunov solutions; this would  be  extremely  time-con- 
suming. 

Fortunately, this burden can be substantially reduced. 
Specifically,  the concept of adjoint operators [I], [23] can 
be  used to simplify (28) and (30). The expression in (28) 
can be replaced  by 

a ,.i 
acia5 
-- - 2 trace( uxv) 

where U satisfies U- A' UA = S .  Thus, we need to solve 
this one  Lyapunov equation plus the m equations in (29) 
in order to compute the Xv. This saves  solving the m(m + 
1)/2 equations of (30). 

There  is s t i l l  the problem of the m Lyapunov solutions 
needed for the derivatives aZ/aci used in Xi,.. By using the 
Lyapunov solution method of Barraud [27], these  com- 
putations can also be  simplified. Consider the general 
Lyapunov equation (32), 

X =  FXF'+ C .  (32) 
Barraud's  method breaks into two distinct parts, one 
which transforms F into the  upper  Schur form, and one 
which  back substitutes using the transformed F and C 
matrices.  The  major portion of this  computation  involves 
the initial F transformation. Thus, if there exist  several 
Lyapunov equations with identical F matrices but dif- 
ferent C matrices, then the F transformation need be done 
only once. This is  exactly the situation for the Lyapunov 
equations (26) and (29) needed for Xi,.. Typically,  more 
than 75 percent of the Lyapunov  computation  time can  be 
saved,  depending on the particular A matrix. 

Still further computational time  savings are possible. A 
more  complete description of the computational proce- 
dure is  available in [23]. 

VII. AN LQG EXAMPLE 

A sixth-order example  was  chosen to test the statistical 
wordlength algorithm. It was adapted from the longitudi- 
nal control system  design done for the F8 digital fly-by- 
wire fighter [28]. The continuous-time plant parameters 
and performance  index parameters are given as follows. 
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Fig. 3. Direct form I1 structure. 

Continuous-Time System Parameters 
- 

-0.6696  5.7 X - 9.01 0 -15.77 
0 -0.01357 -14.11 -32.2  -0.433 

1 0 0 0 0 
0 0 0 0 -12 

A =  

- 0 0 0 0 0 

1 - 1 . 2 ~  1 0 - ~  - 1.214 0 -0.1394 

B = [ O  0 0 0 0 13 

C =  [ 1 0.003091  31.28 1 3.592 0 1. 

Continuous-  Time  Performance  Index  Parameters 

- 
0 
0 
0 
0 

12 
0 - 

0 
2.6554 X lo-' 2.686 X 0 3.085 x 0 
2.686 X 27.174 

0 

1: 0 
3.085 X 3.121 

0 

i? = 5.252. 

Continuous-Time  Noise  Covariances 

Z:,=diag[ 0 0 0 
Z2=0.0018Ml. 

0 3.121 0 
27.174 0 0 
0 0.3585 0 
0 0 0 

0 10-6 ] 

J 

This continuous-time system was discretized at a sam- 
ple rate of  10 Hz and the optimal regulator and Kalman 
filter designed. The double-precision parameters @, r, L, 
Q,  My R, a,, a,, G, and K can be found in [23]. 

Five structures for implementing the ideal  compensator 
transfer function (6)  were  examined.  These  were  the  dig- 
ital filtering-based direct form I1 structure, a cascade of 
direct form I1 second-order sections, a parallel structure 
composed of such  sections, a block-optimal minimum 
roundoff  noise structure, and the structure described in 
(7) which  we have  called  the simple structure. In all  five 
cases we present  the initial design  coefficient  values. 
These are not typically the coefficients that are used 
however; if they  were  used the structures could  exhibit 
overflows.  Consequently, we apply a scaling procedure 

~ 

that we have adapted for compensators [23] from the I,  
scaling of digital  filters  [29]. In  any case  where a unity 
entry in the unscaled structure would  become a multiplier 
coefficient (nonunity, nonpower of  two)  when scaled, we 
have indicated this with an asterisk. 

The first structure we examine is the direct form 11. Fig. 
3 presents its signal flow graph. Note the  presence of the 
delay  preceding the output node: the 12 coefficients of the 
direct form I1 structure come directly from  the unfactored 
transfer function (33), and its modified state space  repre- 
sentation (two precedence  levels) is shown in (34): 

H ( t )  = 
a , z - ' + a 2 z - 2 + a 3 z - 3 + a 4 z - 4 + a 5 ~ - 5 + u 6 ~ - 6  

1+blz-'+b2z-2+b3z-3+b4Z-4+b5Z-5+b6z-6 

(33) 



628 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL AC-25, NO. 4, AUGUST 1980 

- - 
1 0 0 0 0 0  
0 1 0 0 0 0  
0 0 1 0 0 0  

0 0 0 0 1 0  
0 0 0 0 0 1  

*,*I= 0 0 0 1 0 0 

a6 a5 a3 a1 - - 
0 1 0 0 0 0 0 0  
0 0 1 0 0 0 0 0  
0 0 0 1 0 0 0 0  
0 0 0 0 1 0 0 0  
0 0 0 0 0 1 0 0  

-b4 -b, -b4 -b3 -b2 -b l  0 1* 

(34) 
When  this structure is I ,  scaled, the unity  valued  marked 
with an asterisk  becomes a 13th nonunity coefficient. 

The second structure,  the  cascade, derives its 
coefficients  from  a multiplicative factorization (and there 
are several  ways to group  the  poles and zeros [23]) of (33) 
and breaks into three series direct form I1 second-order 
sections.  The factored transfer function is  shown in (35). 
This structure has 12  coefficients, 4 precedence levels, and 
requires 3 additional scaling  multipliers  when  /,-scaled 
[see (36)] (details are available in [23]): 

'E4= 

'k, = 

partial-fraction expansion of (33) and is  divided into five 
parallel direct form I1 first- and second-order sections. 
The  expanded transfer function (also 12 coefficients  be- 
fore scaling)  is  shown  in  (37), and its modified state space 
is  given in (38): 

e , z - '+  e2z-' e3z - e4z - 
H( z )  = + + 

1 + c2z - '+  c2z- ,  1 + d3z-' 1 +d4z-'  
e5z-1 e6z - + + (37) 

1 + d5z-' 1 +d4z-l  

9, = 

\k, = 

- 
1 0 0 0 0 0  
0 1 0 0 0 0  
0 0 1 0 0 0  

0 0 0 0 1 0  
0 0 0 0 0 1  

0 0 0 1 0 0  (38) 

el e3 - 

0 1 0 0 0 0 0 0  
-c2 -c1 0 0 0 0 0 1* 

0 0 -cg 0 0 0 0 1* 
0 0 0 -c4 0 0 0 1* 
0 0  0 0 -c5 0 0 1* 
0 0 0 0 0 -c6 0 1* 

' (d lz -1+d2z-2) (1+d3z-1+d4z-2) (1+d5z-1+d6z-2)  
H ( z )  = 

( l + C I z - ~ + C 2 Z - 2 ) ( 1 + C 3 z - ~ + C 4 z - ~ ) ( 1 + C 5 Z - ~ + C 6 Z - 2 )  

0 1 0 0 0  0 0 
1 0 0 0 0  0 0 
0 0 0 1 0  0 0 
0 0 1 0 0  0 0 
0 0 0 0 0  1 0  
0 0 0 0 0  0 1 
0 0 0 0 d4 d5 1* 

1 0 0  0 0 0 0  
0 1 0  0 0 0 0  
0 0 0  0 0 0 1  
0 0 0  1 0 0 0  
0 0 0  0 1 0 0  
0 0 0  0 0 1 0  
0 0 d4 d3 -c6  -c5 1* 

0 0 0 0 0 1  
1 0 0 0 0 0  
0 1 0 0 0 0  

0 0 0 1 0 0  
0 0 0 0 1 0  
d2 -c4  -c3 0 0 dl 

\E2= 0 0 1 0 0 0  

- - 
1 0 0 0 0 0 0  
0 1 0 0 0 0 0  1 

To scale this structure, five additional scalers (one per 
section) are required [23]. 

The fourth structure tested  was a parallel block optimal 
minimum roundoff  noise structure analogous to the 
minimum roundoff  noise filter structure discussed  by 
Mullis and Roberts [29] and Hwang [30]. However, since 
the roundoff  noise  performance of an LQG control sys- 
tem  depends on the overall  closed-loop behavior, it was 
also necessary to adapt the techniques of Mullis and 
Roberts and Hwang for  compensators [23]. This structure 
is reported to have  low  coefficient  sensitivity  when  used as 
a filter even  though it requires 25 coefficients,  which  is 
many  more than the previous three structures. The mod- 
ified state space  is  shown in (39), and has three parallel 
second-order sections and only  one  precedence  level [23]: 

~~ 

9, = 

0 0 1 0 0 0 0  

0 0 0 0 1 0 0  

This last structure, the simple structure, is taken directly 
from the LQG  compensator equations (7). I n  other words, 
those equations exactly describe the computations that 
must take place.  The parameters of a, r, K, L, and G are 

The third structure, the parallel form, corresponds to a taken to be  the  coefficient  values of the structure (before 
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TABLE I 
SWL RESULTS FOR THE F8 EXAMPLE 

Structure SWL. bits TWL bits  Coefficients 
(equations) I (time) (time)  (incl. scaling multiplies) 
Direct-I1 16 35.9q0.81) 32(1.2)  13 
(3319 (34) 

(3%  (36) 

(399  (38) 

Cascade  6  14.61(0.86)  M(1.36)  15 

Parallel 1 6.8q0.93)  6(1.08) 17 

Block optimal 1 7.02(1.26)  7(1.11) 
(39) 

25 

Simple 1 9.05(2.44)  9(1.71) 50 
(a* (401 

time, the SWL exhibits a strong dependence on the num- 
ber of coefficients in the structure. These  times can be 
compared to the execution  times for the TWL value, 
which  should  be  relatively independent of the number of 
coefficients.  Thus, the SWL is faster to compute when 
there are fewer than 20 coefficients, and slower to com- 
pute for more than 20. However,  keep in mind that its 
main application is for the optimization of structures, 
where the TWL cannot be used  in the same fashion. 

VIII. CONCLUSIONS 

This paper constitutes an  attempt  to examine the issues 
involved in the digital implementation of control com- 

scaling).  We  have  considered  this structure because  it  has 
been  used  to  implement  LQG compensators more or less 
by default. The form of the transfer function containing 
the  coefficients of this structure is that of (6), and the 
modified state space is shown  below: 

pensators. To deal-with these  issues, we have  sought to 
ally the fields of digital  signal  processing and  control  and 
estimation. 

More  specifically,  this paper treats the statistical coef- 
ficient  wordlength  issue for the LQG compensator using 
fixed-point arithmetic. After  reviewing the LQG  design 

Note the three  precedence  levels, and also the enormous 
number of coefficients-up to 60 for a sixth-order  system. 

Table I presents data comparing the statistical word- 
length  estimates of the five structures mentioned  above to 
the actual required  wordlength as computed by the direct, 
almost trial-and-error, approach mentioned  in  Section  I. 
This actual value is called  the  "TWL" (true wordlength) 
in Table I, and was computed using a modified  binary 
search  algorithm [23]. The  amount of computation time 
required for each SWL or TWL calculation is also in- 
cluded in parentheses. 

For the system  tested, a 5 percent degradation was 
specified  as the maximum  allowed deterioration in the 
measure of performance J .  The wordlength  values  pre- 
sented in Table I do not include a sign  bit. 

The effect of structure on coefficient  wordlength is 
evident  from Table I. For compensators, the  most  im- 
portant observation  to  make  is that although the simple 
structure performs  fairly well in terms  of its required 
coefficient  wordlength, it is inefficient. It requires far too 
many  multipliers compared to the  parallel direct form I1 
and parallel block optimal structures which also outper- 
form  it.  Yet  this structure has  been  commonly  used. 

Among the  remaining structures shown, the direct form 
I1 requires  the  most bits by far, as is typical of digital filter 
applications [4]. The best structure of the  five  is  clearly  the 
parallel direct form 11, requiring &bit words and 17 coef- 
ficients. In performance,  the  block  optimal is nearly as 
good; however,  it  requires  eight extra coefficients. 

As an estimate, the SWL was from 0.02-0.84 bits con- 
servative for the best  four structures, which  is  extremely 
good, but 3.99 bits  conservative for the direct form 11. As 
a comparison,  recall  the digital filter  results of Crochiere 
[22], in which  the  SWL,  based on transfer function magni- 
tude, was 1-3 bits conservative. In terms of execution 

procedure and defining the notion of an implementation 
structure, the statistical wordlength concept for digital 
filters was  described. In adapting this concept to a control 
and estimation  problem, the index J was  chosen, although 
the method  readily  extends  to other measures  (for  exam- 
ple,  the  covariance matrix trace for. Kalman filter prob- 
lems). Finally, an efficient computational method was 
discussed and  an illustrative example  presented. 

Our  results demonstrate the feasibility of using  the 
statistical approach in determining a sufficient LQG com- 
pensator coefficient  wordlength. One application of this 
technique would  be in the comparison of different struc- 
tures for implementing a design. In addition, the statistical 
wordlength can also be an accurate criterion for selecting 
the  wordlength  once a specific structure is  chosen. 

Of more importance, the continuous nature  and analyti- 
cal form of the statistical wordlength estimate (it is not 
confined to an integral number of bits) make  it  possible to 
synthesize minimum coefficient wordlength structures in a 
straightforward manner. This would be extremely  difficult 
and time-consuming  with the nondifferentiable integer 
TWL.  Using  the statistical wordlength as described in 
Section IVY Chan [24] has presented a constrained optimi- 
zation technique for digital filter design  based on continu- 
ous transformations of an initial filter structure. Given a 
set of constrained and unconstrained coefficients in the \ki 

matrices,  the transformations are used  to  iteratively pro- 
duce structures of lower and lower coefficient  sensitivity, 
and thus smaller  coefficient  wordlengths. This idea has 
been adapted for the LQG compensator statistical word- 
length  estimate  presented  in this paper [23]. 

In addition, by computing the SWL estimate, we have 
available the various  coefficient  sensitivities a 2J/aciacj. 
By examining their relative  values, we can determine the 
dominant sensitivities in the structure. This information 
can be exploited to direct any effort at optimizing  word- 
length [23] or specializing the hardware multiplier 
associated with any particular coefficient. Thus, we could 
optimize just one portion of a higher order structure, 
instead of the entire structure. This would  save on the 



630 IBEB TRANSACI~ONS ON AUTOMATIC CONTROL, VOL. AC-25, NO. 4, AUGUST 1980 

number of multiplies. Also, an examination of the dif- 
ferent  sensitivities  opens up the possibility of using dy- 
ferent wordlengths in different parts of the  structure. 

Other  applications of the  statistical  coefficient  word- 
length  estimate  developed  in this paper  exist. As men- 
tioned  in  Section V, this  statistical  procedure  including 
second-order  sensitivities  can  be  used  for  digital  filters 
that are designed  through the optimization of some  scalar 
criterion.  Furthermore,  in  the  control  field,  this  statistical 
wordlength  formulation  would  apply  almost  unchanged  to 
suboptimal  compensators  designed via  some  parameter 
optimization  approach. The need  for  second-order  sensi- 
tivities  would  still  exist. 

As a  final  point,  it  should be mentioned that most of 
our  development  applies  unchanged  to  multiple-input 
multiple-output  compensators [23]. The difficulty  there  is 
in defining just how one develops  structures  for  such 
compensators.  However,  given  such a structure, we can 
easily  compute  its  statistical  wordlength  by  following  the 
procedures  described in this paper. 
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