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view: for example, by using the backward Markovian model for x(s) 
described  in 1201, and by  propagating  the square roots % and 
backwards in time, we can  derive  a  set of backward-smoothing formulas 
similar to those  presented  in 1141 from  the scattering point of view. In 
fact, this connection even suggests some  possible relations between 
scattering theory and square-root methods,  though we shall not pursue 
these  here. 

IV. CONCLUSIONS 

The  method  used in this paper to obtain the square-root equations has 
been to substitute directly P- SST inside the usual Riccati equation for 
the error variance. An alternative approach would  be to extend to 
continuous-time  the square-root array methods used in discrete-time by 
Bierman [7] and Morf and Kailath [8]. These  methods do not require the 
introduction of the Riccati equation and have the general advantage of 
reducing  the  filtering  problem to a  state-estimation  problem. 

However,  while  discrete-array  techniques depend on a  simple Gram- 
Schmidt orthonormalization of the input-output variables (see [81), the 
continuous arrays require  more  sophisticated  tools. For example, the 
Gram-Schmidt orthonormalization technique has to be replaced by the 
so-called  Doob-Meyer  decomposition of quasi-martingales, and ortho- 
normal operators have  to be substituted for orthonormal matrices.  The 
details will be omitted here. 

It was shown in  Section I1 that (12) has the advantage over the 
square-root  algorithms of Andrews [9] and Tapley and Choe [lo] of 
giving an explicit  differential equation for the square root S, a property 
that simplifies  the analog simulation of S. However, if implemented 
digitally, (12) requires  approximately  the  same  number of operations as 
the  algorithms of Andrews and Tapley and Choe, as is indicated in 
Table I which  gives the number of operations per step of integration. 
Here, n is  the  number of states, m the number of in puts,^ the  number of 
outputs, and only  the square-root updates are considered This compari- 
son also  shows that the computational complexity of the square-root 
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algorithms  is  only  slightly greater than the oneof the Riccati equation. 
Moreover, we note that the square-root algorithms  considered here 

require  a  similar amount of storage.  However, the number of operations 
and the volume of storage needed are not the only  relevant computa- 
tional aspects, and some further studies would be needed to compare the 
numerical stability properties of these  algorithms  (we  have shown in 
Section I1 that the stability of the Riccati equation implies the stability 
of (12)) and to see if they  require the same step size to retain a 
predetermined  accuracy. 

Absrmcr-lle  state estimation problem for bilinear stocbadc system 
evolving on the spkm Sn,  tbe spedal orthogooal groups SO(n), and 
certain otber compact Lie groups and homogeneops spaces is cousidered. 
The problem is motivated by some applicatioos involving rotational 
processa in tbree dimensions. The theory of harmonic analysis on com- 
pact Lie groups is used to  define assumed deusity approximations which 
result in implementable snbopthnal estimators for the state of the bilinear 
system.  The resulis of Monte Carlo simnlatiols are r e p o w  Ibse  
indicate that simple filters desiied by these techniques perform well as 

’ compared to otber filters. 

I. INTRODUCTION 
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In this paper we study bilinear  systems  evolving on the n-spheres S", 
the special orthogonal groups SO(n), and certain other compact Lie 
groups or homogeneous  spaces [29], to be  described below. The optimal 
estimator is in general M i t e  dimensional [7], and our approach to the 
design of suboptimal estimators  is  a  generalization of that of Wiky [4]. 
The  basic approach involves the definition of an "assumed density" form 
for  the conditional density of the system state at time t given observa- 
tions  up to time 1. These  densities are defined  via the techniques of 
harmonic analysis on compact Lie groups [5],  [6] (which  generalize the 
Fourier series on the Lie group SI). Our method differs  from  most 
previous assumed density approximations in that our approximation is 
defined on the appropriate compact manifold (as opposed to the usual 
Gaussian approximations, for example,  which are defined on R" [71). 
T h i s  method also avoids  the  problem of merely truncating higher order 
terms in a harmonic expansion; as pointed out by Lo [I81 and Willsky 
[4],  such  higher order terms will not be neghgible,  especially if the filter is 
performing well. For an alternative approach to discrete-time estimation 
problems on Lie groups and homogeneous  spaces,  see  the work  of Lo 
and Eshleman [18]-[20], who  use  exponential Fourier densities to avoid 
the truncation problem. 

In Section I1 we  review some  general  properties of stochastic bilinear 
systems and discuss the estimation  problem for systems  evolving on 
compact Lie groups and homogeneous  spaces.  Section I11 contains the 
application of the technique to systems  evolving on S", while  Section IV 
contains the application to systems on SO(n). Results of Monte Carlo 
simuhtions of the S* estimator are presented in Section V. Some of the 
concepts of this paper were introduced in [21] and [22], but no simula- 
tion  results  were  presented. 

11. ESTIMATION FOR STOCHASTIC BILINEAR SYSTEMS 

The basic stochastic bilinear  system  (or linear system  with  state-depen- 
dent noise)  considered here is described  by the Ito stochastic  differential 
equation k], [9]-[17],  [21], [25] 

where x is an n-vector  or an n X n matrix, the Ai are n X n matrices, Q, is 
the ( i~3th  element of Q, and w is a  Brownian  motion  (Wiener)  process 
with strength Q(f )  such that E[w(t)w'(s)]= / ~ ( " ' ) Q ( T ) & .  Following 
the notation of [8]-[Ill, we define E = { A , A I ; . -   , A N } u  to be the 
smallest Lie algebra containing these  matrices. The corresponding con- 
nected matrix Lie group is denoted by G=(expe}G. Then, if x is an 
n X n  matrix and x(ro)€G, the solution x ( t )  of (1) evolves on G (i.e., 
x ( t ) E  G for all t 2 0) in the mean-square  sense and almost  surely 
[15]-[17].  If x is an n-vector,  then  the  solution of (1)  evolves on the 
homogeneous  space G.x(to). 

Associated  with the It0 equation (1) is a  sequence of equations for the 
powers of the state x ( r )  (see  Brockett 191, 1101). If N(n,p)  denotes the 
binomial coefficient + p  - , then  given an n-vector x ,  we define x [ P 1  

to be the N(n,p)-vector with  components  equal to the  monomials  (homo- 
geneous  polynomials) of degree p in xl;. . ,xn, the  components of x,  
scaled so that IIxJIP = IlxlP111. Given an m X n matrix A ,  we denote by AtP1 
the  unique  matrix which  verifies 

( P )  

y = Ax*y[PI =AIPlxlPI. (2) 

ALP] can be interpreted as a linear operator on symmetric  tensors of 
degree p [9], and is known as the  symmetrized  Kronecker pth power of A 
1261. It is clear that if x satisfies  the linear differential equation 

i ( t )  = A x ( t )  (3) 

then xIP1 also satisfies  a linear differential equation 

&-J( 2 )  = A I p ] X q r ) .  (4) 

We regard this as the definition of Alp] ,  which  is  the  infinitesimal  version 
of A b !  In fact, AKpl can be easily  computed from A 1251. 

It can easily  be shown that if x satisfies (I), then xIP1 satisfies the It0 
equation 

In addition, if the n X n matrix X satisfies (I), it is easy to show that X b l  
also  satisfies (5). As we s h a l l  see later in the section, this sequence of 
equations is a  valuable tool in the study of state estimation. 

The observation model  considered in this paper consists of linear 
observations of the state corrupted by additive white  noise, or 

r n ( t ) = L ( x ( t ) ) d t + d o ( t )  (6 )  

where L is a linear operator and u is a  Wiener  process. This bilinear 
system-linear  observation  model  is  useful in the study of certain practical 
problems,  such as the S2 satellite  tracking and SO(3) rigid  body orienta- 
tion estimation problems  discussed in [13, ch. 41 and [21, sec. I q .  

The remainder of the paper is  devoted to the study of the estimation 
problem for two classes of systems of the form (l), (6),  which are 
motivated by the  aforementioned  examples. The first  system consists of 
the  bilinear state equation 

N 

i =  I 
X(t )dr+ x AiX( t )dw , ( t )  (7) 

with  linear  measurements 

d z , ( t ) = X ( t ) h ( l ) d t + R ~ ( t ) d u ( t )  (8) 

where X ( t )  and { A i }  are n X n matrices, zI(t) is ap-vector, w is a  Wiener 
process  with strength Q(t)  2 0, u is  a standard Wiener  process  indepen- 
dent of w, and R >O. More  general linear measurements can obviously 
be  considered, but for simplicity of notation we restrict our attention to 
(S), which  arises in the star tracking  example of [13, ch. 41. We will make 
the crucial assumption that the Lie group G = { exp E} is compact; in 
particular, we will usually assume that (7) evolves on the  special  orthogo- 
nal group SO(n) 2 {X E R " ~ " I X ' X =  I, detX= + I } ,  and thus that {Af} 
are skew-symmetric. 

The second  system consists of the  bilinear state equation (I)  with 
hear measurements 

k2(t)= H(r )x( t )dt+  Rf(t)du(t) (9) 

where x ( t )  is an n-vector, Ai are n X n matrices, and z2, u and w are as 
above. It will be  assumed that x evolves on a compact homogeneous space 
[8],  [13],  [29]-i.e., the solution of (1) is 

x ( t ) = X ( t ) x ( O )  (10) 

where X satisfies (7) with X(0) = Z and evolves on the  compact  Lie group 
G = (exp E} G; in particular, we will usually  assume that (1) evolves on 
the (n-1)-sphere Sn-'  { x E R " J x ' x = l } ,  and thus that { A ; }  are 
skew-symmetric. 

It is shown in [I31  that, by a  linear  change of basis on the state space, 
(7) and (1) evolving  on other compact Lie groups can be transformed 
into equations which  evolve on SO(n) and Sn- ' ,  respectively.  Hence, the 
results  presented  here can also  be  extended to certain other compact  Lie 
groups and homogeneous  spaces.' 

The  estimation criterion which wiU be used for these  two  problems on 
SO(n) and S" is the constrained least-squares estimator, which is analo- 
gous to the criterion used in [lb [4], and [21Lfor  the  phase estimation 
problem. That is, for (7)-(8) we wish to find X( t l t )  which  minimizes the 
conditional error covariance 

constraint can also be  taken into account in the anaiysis. If, for example, the system 
'In fact, the system (7) may evolve on some subgroup of SO(n), in which case this 

evolves on the t o m  T"=SO(Z)x- .  . xSO(2) ( n  times), a subgroup of S0(2n), the system 
can be decoupled into n systems of the form (7) on SO(2). 
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denotes  the conditional expectation given the a-field u { z { )  generated by 
the  observed  process z ;  {zl(s),O<s<t} up to time f. For (I), (9) we 
seek x(tlr) which  minimizes 

J 2 = E [ ( x ( t ) - x ( t ~ t ) ) ' ( x ( r ) - ~ ( r ~ f ) ) ~ z ~ ]  (12) 

subject  to  th& S"-' constraint Ilx(tl t) l12=x(tl t) 'x(t l t)=1. It is easily 
shown I131 that the optimal estimates are, respectively, 

&It)= t - ~ ( t ( t ) [ i ( t l t ) . i ( t I t ) l - f  (13) 

where the conditional expectation is denoted by the  equivalent notations 

i ( t l t )  ~ [ x ( t ) l z ; ]   ~ ' [ x ( t ) ] .  (15) 

The  sign  in  (13) is chosen to ensure that deti(tlt)= + 1 [23]? Thus in 
both cases we must  compute  the conditional expectation of the state 
( X ( t )  or x(t ) )  given  the past observations (2; or zi ) .  

equations for computing  the conditional expectation can be 
derived from the general  nonlinear  filtering equation [7] and the moment 
equation (5 ) .  The resultant equations for the SO(n) system (7)-(8) are 

+ {Er[xJP'(r)h'(l)x(r)l 
- E ' [ X S P l ( t ) ] h ' ( t ) E ' [ X ( t ) ] } R - l ( t ) d v ~ ( t )  (16) 

dv,(r)= dr,(t) - i ( t l t )h ( t )d t  (17) 

where @ denotes Kronecker product and X i p I  is  the  vector containing 
the  elements of the  matrix X [ P I  in lexicographc order [26],  [32, p. 641. 
For the S"-' system ( I ) ,  (9).  we  have 

+ { E ~ [ X [ ~ l ( f ) X ' ( f ) J -  E ' [ X q t ) ] E ' [ X ' ( t ) ] }  

- H ' ( t ) R  -I(t)dv2(t) (18) 

dv,(f)=dz,(r)-H(r)x( t~t)dt .  (19) 

The structure of these equations is quite  similar  to that of  [4]-i.e., 
each estimator consists of an infinite band of filters, and the  filter for the 
pth moment  is  coupled  only to those for the first and ( p  + 1)st moments. 
Therefore, we are led  to  the  design of suboptimal  estimators. The 
technique  proposed  here is motivated by the highly  successful  use of 
folded normal assumed  density  approximations in the  phase tracking 
problem  [4];  filters  designed  using this technique  performed very  well as 
compared with other suboptimal estimators. We will describe  similar 
techniques  for the design of suboptimal  estimators on S" and SO(n). 

We first review the notions of Brownian  motion and Gaussian  densi- 
ties on Lie groups and homogeneous  spaces.  Yosida  [28]  proved that the 
fundamental solution of 

where y > 0 and A is  the  Laplace-Beltrami operator (Laplacian) on a 

neous spaw.  For example, if .x(,) belongs to the ellipsoid (xlx'P.r= I ) ,  then  the  estimate 
2The optimal  estimates  are  slightly  different  for  other  compact  Lie  groups and homoge- 

whtch mlnimires ~ [ ( ~ ( r ) - ~ ( r l r ) ) ' P ( x ( r ) - i ( r l r ) ) l z ~ ]  subject to i(rlr)'Pi(rlr)= 1, is i ( r l r )  

estimate  which minimizes E[tr[(X(r)-X(r~r))'P(X(r)-X(rlf))](r(] subject to X'(rlr) 
= ~ ( ~ l r ) / ( ~ ( r l r ~ P ~ ( r l r ) ) ~ .  If X ( r )  belongs-to the Lie grcup ( X I X ' P X = P ] ,  thep  the 

. P i ' ( r l r ) = P ,  is given  by , f ( r l r ) =  ~ ~ ( r l r ) [ , f ' ( r l r ) P , f ( r l r ) ] - ~ P ~ .  Other cases can be  de- 
rived  similarly using Lagrange  multipllers. 

If  the  system  evolves on a  subgroup  of SO(n). the  estimate  should  be hrfher con- 

form  (13) &s formed 03 each  component SO(2) of the  direct  product,  and  the resulting 
strained. For example, if the  state  space Tn=SO(2)x. .  .xSO(2), an estimate X,(rlr) of the 

estimate (X , ( r \ r ) ;  . . , X,(rlr)) will belong to the  subgroup SO(2)x. . . xSO(2). 

Riemannian homogeneous  space M [5],[13],[29],  is the density  (with 
respect to the Riemannian measure) of a Brownian  motion on M? 

According to 151, the fundamental solution of (20) is given by 

where X, and +i are the eigenvalues and the corresponding eigenfunctions 
of the  Laplacian. The function p ( x , t ;  xo,tO) is the solution to (20) with 
initial  condition equal to the  singular distribution concentrated at x = xo. 
Also, Grenander [27] defines a Gaussian (normal) density to be the 
solution of (20) for some t .  

The folded normal density F(0; q , y )  used by Willsky as an assumed 
density approximation for the phase tracking problem is indeed a normal 
density on S' in the  sense of Grenander [4];  in  fact,  the  trigonometric 
polynomials are eigenfunctions of the Laplacian on SI. Motivated 
by the  success of Willsky's suboptimal filter, we will design suboptimal 
estimators  for the SO(n) and S" bilinear  systems by employing normal 
assumed conditional densities of the form 

where q(t)  and y ( t )  are parameters of the  density  which are to be 
estimated? 

111. E!XIMATION ON S" 

In this  section the suboptimal estimation  technique  discussed in the 
previous  section will be used in order to design  filters for the S" 
estimation  problem (I) ,  (9). The optimal constrained least-squares esti- 
mator  is  described by  (14) and (18)-(19). First, the  suboptimal estimator 
for S2 will  be described in detail; then  the  generalization  to S" will be 
discussed. 
In our  discussion of estimation on S2, we  will refer to a point on S2 in 

terms of the Cartesian coordinates x ( x I , x 2 , x 3 )  or the polar  coordi- 
nates (e, +), where 0 G B  G B and 0 < + < 2 ~ .  

The normalized  spherical  harmonics of degree / on S2 are defined by 
[61 

y/,-rn(e,+)=(-l)my&(e,+) 

for /=0,1;.. and m=O,l;-.,/ ,  where P,rn(cosO) are the  associated 
Legendre functions and * denotes  complex  conjugate. It is shown in [30] 
that the ( YIm) are the eigenfunctions of the Laplacian 

and all  spherical  harmonics of degree / have  the  same  eigenvalue 
-I(/+ 1). Thus, the assumed  density approximation is a normal density 
on S2 of the  form (22), as discussed  in  the  previous  section: 

In other words, 

e/,([) 2 E'[   Y&(O(f) ,+(f))]= Y & ( q ( t ) , ~ ( r ) ) e - ' ( / + [ ) ~ ( ' ) .  (24) 

In order to truncate the  optimal  estimator  (18)-(19) after the i [ N 1 ( f ( t )  
equation using the assumed density (23), we must compute 
~ ~ [ x [ ~ l ( t ) x ' ( t ) ] ,  or  equivalently, J N + ' l ( t l t ) ,  in  terms of &"(tlt),p=1,2, 
... , N .  However, if ;(tit) is known, so are c,,(t) and c,,(t). A simple 
computation [13],  [22], then  shows that ( ~ , ~ + ~ , , , r n = - ( N + l ) ; . . , N +  
1) can be computed from 

neous  Markov  process on M whlch  satisfies  a  continuity  condition of Lindeberg's type. 
3Yosida  defines  a Brownian motion  process to be a  temporally  and  spatially  homoge- 

the  system is "controllable  from  the  noise" [IO], 1131, [17]. 
41n  order to assure  the  existence of a  conditional  density,  it is sufficient to m u m e  that 
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Finally, it is shown in [I31 that there  exists  a nonsingular matrix T such 
that, if Y, is the (21+ 1)-vector  with  components { Y,, - I < m < I ) ,  then 

Thus,~~N+*~(t~r)canbecomputedFrom{~N+l,m,-(N+l)<m<N+1) 
and i IN- l l ( r l r ) .  The optimal estimator (18) is truncated by substituting 
this approximation for i I N + I 1 ( t l r )  into the equation for iLN'(tlt). Notice 
that the entire procedure for truncating the optimal estimator can 
equivalently be performed on the infinite set of coupled equations for 
the generalized Fourier coefficients cr,(r), using the approximation (24). 

We note that one can show that 

and this quantity can be used as a  measure of our confidence in our 
estimate. If i ( t l t )  satisfies the assumed  density (23), 

a(r)= ~ l i ( t l t ) l l =  e-YCr) (27) 

so y -0 (zero  "variance")  implies a = 1, and y = m (infinite 'kariance") 
implies a = 0 (see [4] for the S analog). 

Example I :  Suppose that we truncate the optimal S2 estimator (18) 
after N =  1-i.e.,  we approximate < [ 2 ] ( r l r )  using the above approxima- 
tion.  Assume that Q(f )=  I and {Ai , i=  1,2,3) are given.  Then  the resuft- 
ing suboptimal estimator is  (for Q(t)= I )  

L 

+ P ( t ) H ' ( r ) R - ' ( t ) [ ~ , ( t ) - H ( r ) i ( r l r ) d r ]  (28) 
where the "covariance"  matrix p(r) is given by 

for i#j, i f k ,   j # k ,  and 

for i+j. It is shown in [37] that the matrix P(r) of (29)-(30) is positive 
semidefiite, and thus can be viewed as a covariance matrix. The results 
of Monte Carlo simulations to evaluate the performance of this estima- 
tor are presented in Section VII. 

The extension to S" of this technique for constructing suboptimal 
estimators is straightforward The procedure uses the spherical harmon- 
ics on Sn. In polar coordinates, a point on S" can be  described  by 
(@,,e ,,..., e,-,,+)>((e,+), where 0<$<7l and 0 < + ~ 2 2 r .  ALSO, the 
spherical  harmonics are denoted by 

where I > m, > . . . > m,,- > 0 and q' are the Gegenbauer polynomials 
[33] (that is, the functions Y,,cm) are eigenfunctions of the Laplace- 
Beltrami operator with  eigenvalue - I(n + I -  1)). Hence,  the  assumed 
density approximation on S" is 

That is, 

C/ , ( rn) ( t )  EL[ Y?(In)(@(OdJ(0)1 

is  assumed to be 

c/,cm,(t)= y ~ ( , , , ) ( q ( t ) , ~ ( r ) ) e - / ( ' + , - ' ) ~ ( ~ ) .  (33) 

The procedure for truncating the filter (18) is identical to the S2 case. 
If $tit) is known, so are c,,(,,,)(t), and these can be used to compute y(r), 
q(r), and h(t). Then {cN+ l , (m)(t))  can be computed from (33), and 
i I N + ' 1 ( t l r )  can be  computed  from { ~ ~ + ~ , ( ~ , ( r ) )  and i [ N - l I ( r l r ) .  The 
estimator is truncated by substituting this approximate expression for 
P ' + l J ( t l r )  into the equation (18) for P"(t l t) .  

W .  ESilMAnoN ON SO(n) 

In t h i s  section we discuss  the construction of suboptimal estimators 
for the SO@) estimation problem (7)-(8). We will only  consider the 
SO(3) problem; the results are extended to SO(n) in [13]. The concepts 
of harmonic analysis on SO(3) presented in [5], [ 4  [13, Appendix], [29], 
and [30] will be  used  extensively. 

Any matrix R in SO(3) can be described in local coordinates in terms 
of the Euler angles 4, e, 4, where 0<+<22r, 0,<6<2r, 0 < 4 < 2 e .  
Talman [6] computes  a  sequence D'(+,@,+), l=O,  l;.. , of unitary 
irreducible representations of SO(3); its matrix  elements are given  by 

D ~ ( + , B , ~ ) = i " - n e - i m ~ d '  mn (@)e-*  

where 

for - Z < m, n < Z. Here r is s u m m e d  over all nonnegative  integers  such 
that 

m - n < r < l + m ,  O<r<l-n. 

The  Peter-Weyl Theorem [5, p. 401, [29, p. 2571  implies  that, for fixed 1, 
the matrix elements {DL; - I  <m,  n < I )  are eigenfunctions of the 
Laplacian [31] 

with  the  same  eigenvalue &; also,  each  eigenfunction of the Laplacian 
can be written as a linear combination of the { D L } .  Hence, the 
assumed  density  which will be used to truncate the optimal estimator 
(16)-(1T) is a normal density on SO(3) of the form (22): 

where R, q( t )  E SO(3) and y(f) is a scalar. That is, 

cAn(t) ' E ' [ D , L ( ~ ( N * ]  (35)  

is  assumed  to be 

c ~ ( ~ ) = ~ ~ ( q ( t ) ) * e - " y ( ~ ) .  (36) 

The  procedure for truncating the filter (16) is  similar to the S" case, 
although wp make  use of some additional concepts from representation 
theory. If X( t l t )  is known, so are {c;,,(t);  -1 <m,n < l}, since D l  is 
equivalent to the  self-representation of SU(3). Define the matrix C'(t) 
with  elements - ~ < m , n  < I ;  then 

A ( t )  el(t)c1(t)=[~~(q(r))1'[D'(~(t))l*e-U~~(~) 
-I.e-UIY(o - (37) 

since D is unitary (here c is the Hermitian transpose of C). Thus, y(t) 
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can be computed from 

y ( t ) =  --log -trA(f) . AI [: 1 (38) 

Then the  elements of q(t) can be  computed  from  (36) and (38), since 
D'(q(t))  is similar  to q(t). Once y ( t )  and q(t)  have  been  computed, 
(C:'; -(N+  I)<:m,n<N+ 1) are computed from the formula (36). 

In order to truncate (16) after the Nth moment equation, we  must 
approximate E'[X~Nl(t)h'(t)X(t)]; however,  this matrix consists of time- 
varying deterministic functions multiplying  elements of X["+']( t ( t ) ,  so 
we will show  how to approximate this matrix. The symmetrized 
Kronecker pth power X [ P l  operating on the symmetric  tensors x[pl such 
that IJx[P]JJ = IIxI(P= 1 furnishes a representation of SO(3) which is reduc- 
ible  [26]. It is shown  in  [I31 that there is a nonsingular  matrix  such that 

(39) 

The  matrix T is related to the  Clebsch-Gordan  coefficients [6], but T 
can also be computed by the method of Cjantmacher [34,  p.  1601. It is 
clear from the decoFposition (39) that XIN+ll(rlt) can be computed 
from CN"(t) and XIAv-l l ( t ( t ) .  The  optimal  estimator  (16) is truncated 
by substituting this approximation into the equation for X["l(tlt). 

We note  here that, due to  the  decomposition (39), the  estimation 
equations and the truncation procedure  could  have  been  expressed  solely 
in  terms of the irreducible representations DP(X(t ) ) .  However, we have 
chosen  to  work  with  the X [ P I  equations primarily for ease of notation. 
For large  N,  the DP equations would  provide  sigmficant computational 
savings  over the X [ P I  equations, as these are redundant; however, the 
practical  implementation of this technique will probably be limited to 
small  values of  N. 

v. SIMULATION RESULTS 

As an illustration of the  techniques  presented  in  the  previous  sections, 
the  first order filter (FOF) of Example 1 (Section III) was evaluated by 
means of digital Monte Carlo simulations. It was  compared  to both the 
extended  Kalman  filter (EKF) [7]  and  the  Gustafson-Speyer linear, 
minimum-variance quadrature filter (LQF) [24]. Identical noise 
sequences were  used  to  allow direct  comparisons. 

The  system  considered  was  the S 2  system,  i.e., 

3 
d u ( t ) = F x ( r ) d t +  2 Aix( t )dw, ( t )  (40) 

d z ( t ) = x ( t ) d f + r 1 / 2 d c ( f )  (41) 

where F=Z:=,f;A,+-qqZ:,,A,?, and {Ai,i=1,2,3) are the skew-sym- 
metric  matrices 

i =  I 

1 
2 

0 0 1  H :I [ - 1  0 0 1  [I 0 01  

-1 0 
- I  A,= 0 0 0 A,= 1 0 0 . (42) 

Also, w ( t )  has strength ql;  and D has strength I. In this  experiment, the 
nominal angular velocities ( J ,  i = 1,2,3} were  chosen  to  be 100.0, and q 
and r were  varied. 

For all  three  filters,  the  normalized  estimale x ( t )= i ( t l t ) / ( ( i ( t ( t ) ( (  was 
used. The filters  have an identical structure for the  approximate i 
equation: 

d i ( t l t ) = F i ( r / r ) +  , P ( t ) [ d z ( t ) - i ( t l t ) d t ] .  1 
(42) 

However, for the FOF, P(t)  is given  by the hghly nonlinear  memoryless 
equations (29)-(30). In the EKF, P(r) satisfies  the  Riccati equation 

--p(r)=FP(I)+P(r)F'+qG(i(tlf))G'(i(rJr))-cP(t)p'(t) 
d 
dr 

I 

(43) 
where 

G ( i ) = [ A 1 i , A 2 i , A 3 i ] .  

Since  the Riccati equation (43)  is a function of i ( t l t ) ,  the P(t) calcula- 
tion in the EKF requires extensive on-line computation, which  represents 
a considerable burden. In the LQF, P(f) is given as the solution of the 
coupled  dynamic equations 

- ~ ( t ) = F P ( r ) + P ( r ) F ' + A ( X ( t ) , r ) - ~ P ( t ) P ' ( r )  d 1 (45) 

~ X ( r ) = F X ( t ) + X ( t ) F ' + ~ ( x ( t ) , t )  

dr 

dt (4) 

where A(X( t ) , f )  is a diagonal  matrix with ith component 

Notice that these equations for P(t) and X ( t )  can be  calculated  off-line, 
but  the LQF thus has a considerable  storage  requirement.  Because P(r) 
in the FOF is only  given  by a memoryless nonlinearity, this filter 
requires  considerably less storage  than  the LQF and less on-line  com- 
putation than the EKF. 

Our approach to the statistical analysis of the Monte Carlo simula- 
tions  closely  parallels that of  Bucy and his associates [l], [SI,  [35]. The 
steady-state mean-squared error 

where xi(t) denotes the estimate of the ith component of the state xi(t), 
was used as the  performance  criterion. If {x")  and {x"}, n = 1,. ' . , N, 
are sequences of independent realizations of x(r )  and $r), respectively, 
then  the statistic 

(49) 

is an approximation to for sufficiently  large N. In fact, hy the Central 
Limit Theorem [36,  p. 2781, is  asymptotically normal with 

Et 1121=p2 (50) 
3 

v a r [ F z l = ~  ,2 (p44)i+2(p4Lq)12+2(p4013+2(~4Lq)u-(I*2)2 (51) {,=, 1 
where ( p4); E[(x,( t )  - xi(t))4] and 

( P J ~ = E [  ( ~ i ( r ) - x ; ( t ) ) ~ ( x , ( t ) - i j ( t ) ) ~ ] .  

Thus, for large  N, a consideration of the 30 confidence  interval  implies 
that 

Pr{ & - 3 f i a m  <k<h+3va }=0.9974.  (52) 

In the Monte Carlo simulations,  var (& was estimated from the samples 
(using  sample  means  to  estimate ( p4), and ( p4)u as in (49)), and a p  
proximate  confidence  intervals were thus  computed. 

In  the  experiment, 15 sample  paths,  each of  which contained 1000 
steps of length 0.001 s, were run in  each  simulation.  The  first 200 
samples  in  each  sample path were discarded to allow  the  transients to 
decay, so the  remaining 800 samples  represented  steady-state. If all the 
steady-state errors were  averaged as in  (49), this  would  lead to 12000 
samples of the steady-state error. However, as noted in  [4], [24], and [35], 
adjacent errors in each path are correlated, so the  effective  Monte Carlo 
length is somewhere  in the range  between N = 1200 and N= 12000. The 
three standard deviation confidence  intervals  were  calculated  for both 
values of N. 

The  results of the  simulations are presented  in Table I. The 30 
confidence  intervals I ,  (for N= 12 OOO) and  12(for N= 1200) are shown. 
The  results of this approximate statistical analysis of the  Monte Carlo 
simulations indicate that, for this simple  example,  the FOF performs 
comparably  to the LQF, and better than the EKF. The FOF Seem to 
perform better in  comparison  to  the other filters as q increases, due to 
the increasing dominance of the  bilinear  noise  term in the  system 
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TABLE I 
MONTE CARLO M. s. E ~ T I ~ ~ A T ~ O N  ERRORS (x 

EI.5. E r r o r  11 12 
U P  (a=12Co0) (3-1200) 

q = 0.01 

[:C.79,12.77]  [11.39,12.011 I 11.69 FOF q = 0.01 

18.Sr2,10.521 , 9.65 I [9.41.9.911 FOF 

r = 0.01 
EKF i 10.21 I [9.96,1o.pc1 I [9.~5,11.111 

____ LQF ( 9.43 [8.70,10.3~11  [9.26,9.751 

r = 1.00 
EKF 

l1@.79,1?.771 [11.39,12.011 ’ 11.69 LQF 

110.84,12.821 111.4~,!2.071 , 11.75 

- 
q = 1.oc I [165.26.175.62l  [155.39,1&3.87: FCF 1 170.38 _____- 

EKF 133.75 

[155.60,!88.92] [165.53,176.031 LPF ’ 170.65 

1178.75,211.511, li82.73,199.LXI 
r = 0.01 I 

equation (40). These results are sigdicant, due to the fact that the FOF 
designed  here requires considerably less storage and computation than 
the other filters (no additional differential equations or storage for P ( t )  
are required). 

VI. CONCLUSIONS 

The state estimation  problem for bilinear stochastic systems  evolving 
on compact Lie groups and homogeneous  space has been  considered. 
The techniques of harmonic analysis on compact Lie  groups  have been 
applied  to the design of suboptimal estimators for such  systems. Monte 
Carlo simulations of a  simple  example indicate that a  computationally 
simple  filter designed by  these  methods  performs favorably as compared 
to two other filters. 

The authors are grateful to the anonymous reviewers for several 
helpful  suggestions and clarifications. 
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Applying a Smoothing Criterion to the Kalman Filter 
PER HEDELIN AND INGVAR JONSSON 

Absmcr-A performawe measure is suggested for evaluating the per- 
formance of a given optimal estimator at other lags than the design lag. 
Applying this idea, suboptimal SmODthers are found  for both coot in^ 
and discrete-time  systems, c o m b i i  low complexity and good perfor- 
mance. Several  examples are considwed Suboptimal-smoothing improve 
ment is related to optimal improvement and interpreted in tern of 
input-output transfer-function properties. 

Aspecialclassofdiscrete-bimesystemsisalsodiscussedwkrethe 
optimal smoother is of the  same  complexity as the mlag filter. 

I. INTRODUCTION 

The classical Kalman filter is the optimal solution to the following 
momentary estimation problem: given a  noisy  measurement, compute 
recursively an estimate of the  “present” message. Due to its robustness 
and relative  simplicity the Kalman  filter has enjoyed  much attention, as 
shown in the  survey, Kailath [I]. 
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