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view: for example, by using the backward Markovian model for x(s)
described in [20], and by propagating the square roots Y and £
backwards in time, we can derive a set of backward-smoothing formulas
similar to those presented in [14] from the scattering point of view. In
fact, this connection even suggests some possible relations between
scattering theory and square-root methods, though we shall not pursue
these here.

IV. CONCLUSIONS

The method used in this paper to obtain the square-root equations has
been to substitute directly P=SS7 inside the usual Riccati equation for
the error variance. An alternative approach would be to extend to
continuous-time the square-root array methods used in discrete-time by
Bierman [7] and Morf and Kailath [8]. These methods do not require the
introduction of the Riccati equation and have the general advantage of
reducing the filtering problem to a state-estimation problem.

However, while discrete-array techniques depend on a simple Gram~
Schmidt orthonormalization of the input-output variables (see [8]), the
continuous arrays require more sophisticated tools. For example, the
Gram~Schmidt orthonormalization technique has to be replaced by the
so-called Doob~Meyer decomposition of quasi-martingales, and ortho-
normal operators have to be substituted for orthonormal matrices. The
details will be omitted here.

APPENDIX
COMPUTATIONAL ASPECTS

It was shown in Section II that (12) has the advantage over the
square-root algorithms of Andrews [9] and Tapley and Choe [10] of
giving an explicit differential equation for the square root S, a property
that simplifies the analog simulation of S. However, if implemented
digitally, (12) requires approximately the same number of operations as
the algorithms of Aandrews and Tapley and Choe, as is indicated in
Table 1 which gives the number of operations per step of integration.
Here, n is the number of states, m the number of inputs, p the number of
outputs, and only the square-root updates are considered. This compari-
son also shows that the computational complexity of the square-root
algorithms is only slightly greater than the one of the Riccati equation.

Moreover, we note that the square-root algorithms considered here
require a similar amount of storage. However, the number of operations
and the volume of storage needed are not the only relevant computa-
tional aspects, and some further studies would be needed to compare the
numerical stability properties of these algorithms (we have shown in
Section II that the stability of the Riccati equation implies the stability
of (12)) and to see if they require the same step size to retain a
predetermined accuracy.
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The Use of Harmonic Analysis in Suboptimal
Estimator Design

STEVEN 1. MARCUS, MEMBER, IEEE, ALAN S. WILLSKY,
MEMBER, IEEE, AND KAI HSU, STUDENT MEMBER, IEEE

Abstract—The state estimation problem for bilinear stochastic systems
evolving on the spheres S”, the special orthogonal groups SO(n), and
certain other compact Lie groups and homogeneous spaces is considered.
The problem is motivated by some applications involving rotational
processes in three dimensions. The theory of harmonic analysis on com-
pact Lie groups is used to define assumed density approximations which
result in implementable suboptimal estimators for the state of the bilinear
system. The results of Monte Carlo simnlations are reported; these
indicate that simple filters designed by these techniques perform well as
compared to other filters.

1. INTRODUCTION

Fourier series analysis has been applied in several recent studies
[1]-[4] to estimation problems for stochastic processes evolving on the
circle §'. Willsky [4] used Fourier serics methods to define “assumed
density” approximations for certain phase tracking and demodulation
problems. In fact, a system designed using these techniques performed
better than other estimators, including an optimal phase-lock loop.
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In this paper we study bilinear systems evolving on the n-spheres 57,
the special orthogonal groups SO(n), and certain other compact Lie
groups or homogeneous spaces [29], to be described below. The optimal
estimator is in general infinite dimensional [7), and our approach to the
design of suboptimal estimators is a generalization of that of Willsky [4].
The basic approach involves the definition of an “assumed density” form
for the conditional density of the system state at time ¢ given observa-
tions up to time 7. These densities are defined via the techniques of
harmonic analysis on compact Lie groups [5], [6] (which generalize the
Fourier series on the Lie group S'). Our method differs from most
previous assumed density approximations in that our approximation is
defined on the appropriate compact manifold (as opposed to the usual
Gaussian approximations, for example, which are defined on R” [7)).
This method also avoids the problem of merely truncating higher order
terms in & harmonic expansion; as pointed out by Lo [18] and Willsky
[4), such higher order terms will not be negligible, especially if the filter is
performing well. For an alternative approach to discrete-time estimation
problems on Lie groups and homogeneous spaces, see the work of Lo
and Eshleman [18]-[20], who use exponential Fourier densities to avoid
the truncation problem.

In Section II we review some general properties of stochastic bilinear
systems and discuss the estimation problem for systems evolving on
compact Lie groups and homogeneous spaces. Section III contains the
application of the technique to systems evolving on S", while Section IV
contains the application to systems on SO(n). Results of Monte Carlo
simulations of the S estimator are presented in Section V. Some of the
concepts of this paper were introduced in [21] and [22], but no simula-
tion results were presented.

II. ESTIMATION FOR STOCHASTIC BILINEAR SYSTEMS

The basic stochastic bilinear system (or linear system with state-depen-
dent noise) considered here is described by the Ito stochastic differential
equation [4], [91-{17}, [21], [25]

N
ax(t)= { [A0+% % Qr)'(’)AiAj]dt+ _glAidwi(!)}x(t) 1)

iJj=1

where x is an n-vector or an »# X n matrix, the 4; are nX n matrices, Q; is
the (i,/)th element of @, and w is a Brownian motion (Wiener) process
with strength @() such that E[w()w'(s)]= f§=¢*) Q(7)dr. Following
the notation of [8]-{11], we define £={AgA4,, -, An} 14 to be the
smallest Lie algebra containing these matrices. The corresponding con-
nected matrix Lie group is denoted by G={exp£}. Then, if x is an
nXn matrix and x({)€E G, the solution x(¢) of (1) evolves on G (i.e.,
x(f)EG for all ¢+>0) in the mean-square sense and almost surely
[15]-[17). If x is an n-vector, then the solution of (1) evolves on the
homogeneous space G-x(#g).

Associated with the Ito equation (1) is a sequence of equations for the
powers of the state x(1) (see Brockett [9], [10]). If N(n,p) denotes the

binomial coefficient { +r-1 , then given an n-vector x, we define x{?]

to be the N(n,p)-vector with components equal to the monomials (homo-
geneous polynomials) of degree p in x,,---,x,, the components of x,
scaled so that |jx||? =|x!#}). Given an m X n matrix 4, we denote by 47!
the unique matrix which verifies

y= Ax:ylpl = APixlP], )

A7) can be interpreted as a linear operator on symmetric tensors of
degree p [9], and is known as the symmetrized Kronecker pth power of 4
[26]. It is clear that if x satisfies the linear differential equation

x(8)=Ax(1) (3)
then x!# also satisfies a linear differential equation
xlPK(e) = ApyxtP)(s). %

We regard this as the definition of A, which is the infinitesimal version
of AL In fact, 4;,; can be easily computed from 4 [25].

It can easily be shown that if x satisfies (1), then x!?! satisfies the Ito
equation
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N

: z Qij(t)AilplAjlp] ] xlPX(s)a

dxlFI(f)= {A(,m+ 3
ij=1

N

+ 2 Ay, PN (D). ®)

i=
In addition, if the n X » matrix X satisfies (1), it is easy to show that X2
also satisfies (5). As we shall see later in the section, this sequence of
equations is a valuable tool in the study of state estimation.

The observation model considered in this paper consists of linear
observations of the state corrupted by additive white noise, or

dz(t)= L(x(t))dt + do(t) (6)

where L is a linear operator and v is a Wiener process. This bilinear
system-linear observation model is useful in the study of certain practical
problems, such as the §2 satellite tracking and SO(3) rigid body orienta-
tion estimation problems discussed in {{3, ch. 4] and (21, sec. IV].

The remainder of the paper is devoted to the study of the estimation
problem for two classes of systems of the form (1), (6), which are
motivated by the aforementioned examples. The first system consists of
the bilinear state equation

N N
ax()=|dot3 S 0,044, X(@drt T AXWdw() ()

ij=1
with linear measurements

dzy(£) = X()h(1)dt + R3(i)do(r) ®)
where X(¢) and {4} are n X n matrices, z\(¢) is a p-vector, w is a Wiener
process with strength Q(z) >0, v is a standard Wiener process indepen-
dent of w, and R >0. More general linear measurements can obviously
be considered, but for simplicity of notation we restrict our attention to
(8), which arises in the star tracking example of {13, ch. 4]. We will make
the crucial assumption that the Lie group G={expL}s; is compact; in
particular, we will usually assume that (7) evolves on the special orthogo-
nal group SO(n) = {X €R™"|X'X=1I, detX=+1}, and thus that {A4;}
are skew-symmetric.

The second system consists of the bilinear state equation (1) with
linear measurements

dz,(t)= H(1)x(£)dt + R (£)do(t) 9)

where x(f) is an a-vector, 4; are nX n matrices, and z,, v and w are as
above. It will be assumed that x evolves on a compact homogeneous space
[8], [13), [29]—i.e., the solution of (1) is

x()=X()x(0) (10)

where X satisfies (7) with X(0)= 7 and evolves on the compact Lie group
G={expL}¢; in particular, we will usually assume that (1) evolves on
the (n—1)-sphere S"~'= (xER"x'x=1}, and thus that {4;} are
skew-symmetric.

It is shown in [13] that, by a linear change of basis on the state space,
(7) and (1) evolving on other compact Lie groups can be transformed
into equations which evolve on SO(z) and S"~\, respectively. Hence, the
results presented here can also be extended to certain other compact Lie
groups and homogeneous spaces.

The estimation criterion which will be vsed for these two problems on
SO(n) and S" is the constrained least-squares estimator, which is analo-
gous to the criterion used in {1}, [4], and [21] for the phase estimation
problem. That is, for (7)—(8) we wish to find X{z|z) which minimizes the
conditional error covariance

Jy=E[te {(X(0) = X(| ) (X (1)~ X (t])) }|4 ] (11

subject to the SO(n) constraint X (tlt)’.f(tl )= 1, where the notation (11)

"In fact, the system (7) may evolve on some subgroup of SO(n), in which case this
constraint can also be taken into account in the analysis. If, for example, the system
evolves on the torus 77 =S0O(2)x- - - xSO(2) (n times), a subgroup of SO(2n), the system
can be decoupled into n systems of the form (7} on §O(2).
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denotes the conditional expectation given the o-field o{z{} generated by
the observed process z{ = {2,(5),0<s<¢} up to time 1. For (1), (9) we
seek x(¢|r) which minimizes

Ja=E [(x()— x(d]6)) (x(1) — x(1]1))|z5 ] (12)
subject to thé $"~! constraint NXC 2= x|y (ejy=1. Tt is easily
shown [13] that the optimal estimates are, respectively,

X(dty= = XD X(tley X(1|0)] "7 (13)
g
XU0= N 149

where the conditional expectation is denoted by the equivalent notations

x(fey = E[x(2)|z5] & E [x(1)). (15)

The sign in (13) is chosen to ensure that detX(#|¢)=+1 [23].2 Thus in
both cases we must compute the conditional expectation of the state
(X(9) or x(?)) given the past observations (z{ or z3).

The equations for computing the conditional expectation can be
derived from the general nonlinear filtering equation [7] and the moment
equation (5). The resultant equations for the SO(n) system (7)—(8) are

dE' [ XPI(D)]= [(Aom 2 QU(I)A,[” J[p])®1]E‘[X,}P1(t)]dt

+{E'[XPUOK ()X (1)]
— E[XPUOH () E (XD} R~ (0)dv (1)
dv (1) =dz,(t) — X (2|0 k(1) dt

(16)
amn
where ® denotes Kronecker product and X/!#] is the vector containing

the elements of the matrix X!?! in lexicographic order [26], [32, p. 64].
For the §7~! system (1), (9), we have

N

dE'[xIF1(1)]= 2 Q,,(z)A,mAM E![x!)(0)]dt

AO{P]
+{E'[xP))x' ()] - E*[xPUO]E! [x' (D]}
-H'($)R ~(t)dpy(1)
dv,(1)=dz,(£)— H(£)x(#|1) 1.

(18)
(19)

The structure of these equations is quite similar to that of [4]—i.e,
each estimator consists of an infinite band of filters, and the filter for the
pth moment is coupled only to those for the first and (p + 1)st moments.
Therefore, we are led to the design of suboptimal estimators. The
technique proposed here is motivated by the highly successful use of
folded normal assumed density approximations in the phase tracking
problem [4]; filters designed using this technique performed very well as
compared with other suboptimal estimators. We will describe similar
techaiques for the design of suboptimal estimators on S$” and SO(n).

We first review the notions of Brownian motion and Gaussian densi-
ties on Lie groups and homogeneous spaces. Yosida [28] proved that the
fundamental solution of

ap(x t)

—¥8p(x,1)=0 (20)

where y>0 and A is the Laplace-Beltrami operator (Laplacian) on a

2The optimal estimates are slightly different for other compact Lie groups and homoge-
neous spaces. For example, if x(f) belongs to the ellipsoid {x|x’Px=1}, then the estimate
which minimizes E[(x(t) X(2[0)) P(x(£) — x(t|))|z5] subject to Z(r|ry Px(s]e)=1, is x(s]2)
= X(#|0) /(x(t|1y Px(l[l))z If X(r) belongs_to the Lie group {X|X'PX=P}, then the
estimate which minimizes E(tr{(X())— X(:[:)) P(X(r) X(I]t))]lz[] subject to X Keih)
-PX" ¢ln="r, is given by X(llr)— +X(!|t)[X (t|l)PX(t|r)]‘sz Other cases can be de-
rived similarly using Lagrange multipliers.

If the system evolves on a subgroup of SO(r), the estimate should be furtber con-
strained. For example, if the state space T"=50(2)x- - - xSO(2), an estimate X,(r]#) of the
form (13) is formed on each component SO(2) of the direct product, and the resulting
estimate (X,(¢}1),* - -, X,,(#]2)) will belong to the subgroup SO(2)x - - - xSO(2).
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Riemannian homogeneous space M [5],{13],[29], is the density (with
respect to the Riemannian measure) of a Brownian motion on M3
According to [5], the fundamental solution of (20) is given by

P(x,15 X0, 00) = 2 ¢,(x),(xg)e At —tay (21
where A; and ¢; are the eigenvalues and the corresponding eigenfunctions
of the Laplacian. The function p(x,¢; xq,1) is the solution to (20) with
initial condition equal to the singular distribution concentrated at x = x;,.
Also, Grenander [27] defines a Gaussian (normal) density to be the
solution of (20) for some ¢.

The folded normal density F(#; 5,v) used by Willsky as an assumed
density approximation for the phase tracking problem is indeed a normal
density on S! in the sense of Grenander [4]; in fact, the trigonometric
polynomials e 9 are eigenfunctions of the Laplacian on §''. Motivated
by the success of Willsky’s suboptimal filter, we will design suboptimal
estimators for the SO(n) and S” bilinear systems by employing normal
assumed conditional densities of the form

p(x,0)= 2 ¢(x)¢(n(1))e A

where 7(f) and y(7) are parameters of the density which are to be
estimated.*

22)

11I. EsTiMATION ON S™

In this section the suboptimal estimation technique discussed in the
previous section will be used in order to design filters for the S§”
estimation problem (1), (9). The optimal constrained least-squares esti-
mator is described by (14) and (18)-(19). First, the suboptimal estimator
for §? will be described in detail; then the generalization to §” will be
discussed.

In our discussion of estimation on S2, we will refer to a point on $%in
terms of the Cartesian coordinates x = (xy,x,,x;) or the polar coordi-
nates (#,¢), where 0<f <7 and 0< ¢ <27,

The normalized spherical harmonics of degree / on 2 are defined by

6]

]ip,m(coso Yeims

Y, m(8,0)=(—1)"Y},(6:9)

for /=0,1,--- and m=0,1,---,/, where P, (cosf) are the associated
Legendre functions and * denotes complex conjugate. It is shown in [30]
that the {Y,,} are the eigenfunctions of the Laplacian

1 ing 3 )+_l__31
sind | 30 (5 38 )7 sind a2 |

and all spherical harmonics of degree / have the same eigenvalue
—I({+1). Thus, the assumed density approximation is a normal density
on §?2 of the form (22), as discussed in the previous section:

Aga=

-] !
PB.4D=2 2 V(8,6 Y n(D N0, (23)

In other words,
Cm(1) £ E'[ Y3, (8(1),0(1))] =

In order to truncate the optimal estimator (18)-(19) after the x!¥I(z|7)
equation using the assumed density (23), we must compute
E'[xW))x'(£)], or equivalently, x!¥ *U(2]7), in terms of xt7i(4|r), p=1,2,

-,N. However, if x(#]?) is known, so are co(¢) and c;(¢). A simple
computation [13], [22], then shows that {cy, ,,m=—(N+1),---, N+
1) can be computed from

({0}, A(1))e =YY, (24)

3Yosida defines a Brownian motion process to be a temporally and spatially homoge-
neous Markov process on M which satisfies a continuity condition of Lindeberg’s type.

4In order to assure the existence of a conditional density, it is sufficient to assume that
the system is “controllable from the noise” [10], [13], [17].
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ex s 1,m{D) = Yhap, m(n(,M1))e ™ FFHN D7)

[ (N+1—m) 2N 43 2
=(=D [(N+_1+n;)—‘ e ]P~+1-m(

(D) : )
(o) + 2y (DP)?

_(c._,(g)"’/ 2[ 2 (ol 2en(OP) |

ch(D)

1
AN+FHN+2)
(25)

Finally, it is shown in [13] that there exists a nonsingular matrix T such
that, if ¥; is the (2/+ 1)-vector with components { ¥;,, —/<m </}, then

Yyai(x)
Tx‘”+”=[xTNl—1]].

(26)
Thus, 3 +1)(#|7) can be computed from {cy .,y —(N+D<m<N+1})
and %IV =Y(r]s). The optimal estimator (18) is truncated by substituting
this approximation for x¥+1(|¢) into the equation for xI¥1(#|¢). Notice
that the entire procedure for truncating the optimal estimator can
equivalently be performed on the infinite set of coupled equations for
the generalized Fourier coefficients ¢,,(¢), using the approximation (24).
We note that one can show that

a(r) 2 Vo) <1

and this quantity can be used as a measure of our confidence in our
estimate, If x(¢|¢) satisfies the assumed density (23),

@n

50 y=0 (zero “variance™) implies a=1, and y= oo (infinite “variance”)
implies a=0 (see [4] for the S! analog).

Example I: Suppose that we truncate the optimal S estimator (18)
after N=1—4i.e., we approximate x1}(t|¢) using the above approxima-
tion. Assume that Q(¢)=17 and {4;,i=1,2,3} are given. Then the result-
ing suboptimal estimator is (for @(x)=1)

a()=[1x(t|)|=e" 7"

3
(1)) = [Ao+ : P A}]i(th)dt

+ P(OH' (DR (D] dzy(r)— H(DI(D)dr] (28)
where the “covariance” matrix P(?) is given by

Pu() =0 12¢01-1)

~ 3 (R010+ FEANIEEN + 3 @)
for i#j, i=k, j#k, and
PO = 5ADFEANNEN - 1) @30

for i=j. It is shown in [37] that the matrix P(t) of (29)-(30) is positive
semidefinite, and thus can be viewed as a covariance matrix. The results
of Monte Carlo simulations to evaluate the performance of this estima-
tor are presented in Section VIIL.

The extension to S”* of this technique for constructing suboptimal
estimators is straightforward. The procedure uses the spherical harmon-
ics on $”. In polar coordinates, a point on S” can be described by
(01,65, - ,8,_1,9) = (6,4), where 0<f,<7 and 0<¢<2m. Also, the
spherical harmonics are denoted by

Yim(8:9) = Yimyooim, (B 01 £6)
n-2
= eii"h~l¢ kHO(si'ngk-}-l)mkH C:!k*:lnzuzl("—k— 1)(0059k+1)
@D

where I >m > --- >m,_;>0 and C are the Gegenbauer polynomials
[33] (that is, the functions Y;, are eigenfunctions of the Laplace-
Beltrami operator with eigenvalue —I(n+/—1)). Hence, the assumed
density approximation on S™ is

p(6,4,1)= 1(2 , Y, (8 9) Y m(n(), A(1))e 1 n= v, (32)
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That is,

e, my(1) 2 E* [ Y my(8(1),6(1))]
is assumed to be
&, (my()= T (1), A(1))e ~ 1+ n— b7, (33)

The procedure for truncating the filter (18) is identical to the S case.
If x(¢]¢) is known, so are ¢y (,,(#), and these can be used to compute ¥(#),
(1), and A(#). Then {cyiy(m(#)) can be computed from (33), and
x™*1(7|1) can be computed from {cy .,y m(H)} and ¥ ~U(er). The
estimator is truncated by substituting this approximate expression for
x¥+1l(1¢) into the equation (18) for xVI(¢|7).

IV. ESTIMATION ON SO(n)

In this section we discuss the construction of suboptimal estimators
for the SO(n) estimation problem (7)-(8). We will only consider the
SO(3) problem; the results are extended to SO(n) in [13]. The concepts
of harmonic analysis on SO(3) presented in [5), [6], [13, Appendix], [29],
and [30] will be used extensively.

Any matrix R in SO(3) can be described in local coordinates in terms
of the Euler angles ¢, 8, ¢, where 0< <27, 0<8<27, 0<y <2,
Talman [6] computes a sequence DX,8,¢), {=0,1,---, of unitary
irreducible representations of SO(3); its matrix elements are given by

D} (¢,0.4)=im""eimeg! (0)e i
where

_ o [+ m)(1— m)\(I+ mW (= )}
Gn@)= 2 0 = i ) A —n— )]

'COSZH'"—"_z'(g)sinz”"-'"(g_)

for —/<m, n</. Here ¢ is summed over all nonnegative integers such
that

m—n<i<i+m, 0<igi—n.

The Peter—Weyl Theorem [5, p. 40), [29, p. 257] implies that, for fixed /,
the matrix elements {D},; ~!/<m, n<!} are cigenfunctions of the
Laplacian [31]

az

62
ZCOSBW-FW)

_ 1 34, .3 1 (8% _
Bso= gnd @(smé) ag) Ry ( FYe

with the same eigenvalue A;; also, each eigenfunction of the Laplacian
can be written as a linear combination of the {D2,}. Hence, the
assumed density which will be used to truncate the optimal estimator

(16)-(17) is a normal density on SO(3) of the form (22):

] {
PRN=3 X

D} (R)D], (n(2))*e (34)
1=0 mn=-1
where R, 7(f) € SO(3) and y(¢) is a scalar. That is,
cha(f) 2 E*[ DL, (n(1))*] (3%
is assumed to be
Canl8)= D (n(2))y*e =20, (36)

The procedure for truncating the filter (16) is similar to the S” case,
although we make use of some additional concepts from representation
theory. If X(1|#) is known, so are {c).(); —1<m,n<1}, since D! is
equivalent to the self-representation of SO(3). Define the matrix C/(z)
with elements ¢}, (¢), — [ <m,n<{; then

A(D) & THHCO =[D ()Y D N (q(2))]*e~2vD
_—.]-e_?J\I'Y(I) (37)

since D! is unitary (here C is the Hermitian transpose of C). Thus, y(¢)
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can be computed from

()= - Zkillog[;—m(o]. (38)
Then the elements of 7(#) can be computed from (36) and (38), since
D(n(?) is similar to 7(f). Once y(¢) and 7(r) have been computed,
{ch*l, —(N+1)<m,n<N+1} are computed from the formula (36).
In order to truncate (16) after the Nth moment equation, we must
approximate E‘[XM A (9)X(1)]; however, this matrix consists of time-
varying deterministic functions multiplying elements of XI¥+1(4)5), so
we will show how to approximate this matrix. The symmetrized
Kronecker pth power X!?! operating on the symmetric tensors x!?! such
that ||x[?)||=||x||? =1 furnishes a representation of SO(3) which is reduc-
ible [26]. It is shown in [13] that there is a nonsingular matrix such that

(39

TX[p]T_,=[DP(X) 0 ]

0 xbr-2 |

The matrix T is related to the Clebsch—Gordan coefficients [6], but T
can also be computed by the method of Gantmacher [34, p. 160]. It is
clear from the decomposition (39) that XW+1i|7) can be computed
from C¥*!(r) and XW~U(z|r). The optimal estimator (16) is truncated
by substituting this approximation into the equation for X¥}(|).

We note here that, due to the decomposition (39), the estimation
equations and the truncation procedure could have been expressed solely
in terms of the irreducible representations D?(X(#)). However, we have
chosen to work with the X?] equations primarily for ease of notation.
For large N, the D? equations would provide significant computational
savings over the X[7! equations, as these are redundant; however, the
practical implementation of this technique will probably be limited to
small values of N.

V. SIMULATION RESULTS

As an illustration of the techniques presented in the previous sections,
the first order filter (FOF) of Example 1 (Section III) was evaluated by
means of digital Monte Carlo simulations. It was compared to both the
extended Kalman filter (EKF) [7] and the Gustafson—Speyer linear,
minimum-variance quadrature filter (LQF) [24]). Identical noise
sequences were used to allow direct comparisons.

The system considered was the S? system, i.e.,

dx(r)=Fx(f)dt + % A;x(t)dw, (1) (40)
i=1

dz(f) = x(£)dt+ r'/%do(1) (41

where F=33_ lf,Ai+%q2f=lA,?, and {A;,i=1,2,3) are the skew-sym-
metric matrices

0 0 0 0 0 1 0 -1 o0
Ai=10 0 -—1(4,=| 0 0 0|43=|1 0 0| (W)
0 1 0 -1 0 0 0 0 0

Also, w(7) has strength ¢7; and v has strength 7. In this experiment, the
nominal angular velocities { f;,/=1,2,3} were chosen to be 100.0, and ¢
and r were varied.

For all three filters, the normalized estimate x(¢)=x(¢|t)/ || x(¢|£)|) was
used. The filters have an identical structure for the approximate x
equation:

dx(t|t)=Fx(t]t)+ %P(z)[dz(t)—i(dt)dt]. (42)
However, for the FOF, P(z) is given by the highly nonlinear memoryless
equations (29)~(30). In the EKF, P(¢) satisfies the Riccati equation

%P(z)=FP(t)+ P(1)F'+ gG(R(H11) G ({1 1)) %P(t)P’(t)

(43)
where

G(x)=[4,x,4,%,4;x]. (44)
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Since the Riccati equation (43) is a function of x(#}¢), the P(r) calcula-
tion in the EKF requires extensive on-line computation, which represents
a considerable burden. In the LQF, P(¢) is given as the solution of the
coupled dynamic equations

ditp(z)= FP(t)+ P(1)F' +A(X(1),1) — %P(t)P’(t) (45)
2 X(1)= FX(1)+ X(1)F+ AX(0),) (46)
where A(X(?),?) is a diagonal matrix with ith component
3
A(X(e), )= 7, /§= 1 (A i Am) X (2)- @n

Notice that these equations for P(f) and X(¢) can be calculated off-line,
but the LQF thus has a considerable storage requirement. Because P(r)
in the FOF is only given by a memoryless nonlinearity, this filter
requires considerably less storage than the LQF and less on-line com-
putation than the EKF.

Our approach to the statistical analysis of the Monte Carlo simula-
tions closely parallels that of Bucy and his associates [1), [3], [35]. The
steady-state mean-squared error

3
= Ellx()=#0Pl= 2 E[(x()=5(1)’] (48)

where x,(f) denotes the estimate of the ith component of the state x,(),
was used as the performance criterion. If {x”} and {x"}, n=1,--- N,

are sequences of independent realizations of x(¢) and x(f), respectively,
then the statistic

(49)

is an approximation to p, for sufficiently large N. In fact, hy the Central
Limit Theorem [36, p. 278], 1, is asymptotically normal with

El )= (50)
3

ar[[h]= % { igl (P4),'+2(I’-4)12+2(P'4)13+2(P~4))_3—(l-‘2)2} 62))

2 E[(x{n) - %{1))"} and

[ (x(0) = 50 (%0 = 5(0))*]-

where (,);

(."-4)ij=

Thus, for large N, a consideration of the 3o confidence interval implies
that

Pr{ ip=3Vvar(ii) <p<f+3Vvar(i,) }=09974. (52)

In the Monte Carlo simulations, var ( fi,) was estimated from the samples
(using sample means to estimate (u,); and (p,); as in (49)), and ap-
proximate confidence intervals were thus computed.

In the experiment, 15 sample paths, each of which contained 1000
steps of length 0.001 s, were run in each simulation. The first 200
samples in each sample path were discarded to allow the transients to
decay, so the remaining 800 samples represented steady-state. If all the
steady-state errors were averaged as in (49), this would lead to 12000
samples of the steady-state error. However, as noted in [4], {24], and [35],
adjacent errors in each path are correlated, so the effective Monte Carlo
length is somewhere in the range between N =1200 and N=12000. The
three standard deviation confidence intervals were calculated for both
values of M.

The results of the simulations are presented in Table 1. The 3¢
confidence intervals I; (for N=12 000) and 1, (for N=1200) are shown.
The results of this approximate statistical analysis of the Monte Carlo
simulations indicate that, for this simple example, the FOF performs
comparably to the LQF, and better than the EKF. The FOF seems to
perform better in comparison to the other filters as ¢ increases, due to
the increasing dominance of the bilinear noise term in the system
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TABLE 1
MONTE CARLO M. S. ESTIMATION ERRORS (X 1073)

Meothode in

in G ic in Theory, D. Q. Mayne and R. W, Brockett, Eds.
The Netherlands: Reidel, 1973, pp. 131-149.
D. L. Elliott, “Diffusions on manifolds arising from controllable systems,” in

1mn

M.S. Error Il 12
v, (K=12000) (N=1200)

q = 0.0 FOF r 9.65 {9.41,9.91) {8.92,10.52)

EKF | 10.21 19.96,10.48) £9-45,11.11)
r =0.01

LoF | 9.40 {9.26,9.75] (8.78,10.34}
q =0.01 FOF 11.69 {11.39,12.01} {30.79,12.77)

EXF | 11.75 {11.44,12.07) {10.84,12.82]
r =1.00 i

LQF | 11.69 [11.39,12.01] [10.79,12.77)
q =1.00 FOF } 170.38 [165.26,175.621 [155.19,188.87}

EXF 193.75 1183.74,199.04] [178.74,211.51)
r o= 0.0 i

LOF 170.65 [165.58,176.03) [155.60,188.92]

equation (40). These results are significant, due to the fact that the FOF
designed here requires considerably less storage and computation than
the other filters (no additional differential equations or storage for P(!)
are required).

VI. CONCLUSIONS

The state estimation problem for bilinear stochastic systems evolving
on compact Lie groups and homogeneous space has been considered.
The techniques of harmonic analysis on compact Lie groups have been
applied to the design of suboptimal estimators for such systems. Monte
Carlo simulations of a simple example indicate that a computationally
simple filter designed by these methods performs favorably as compared
to two other filters.
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Applying a Smoothing Criterion to the Kalman Filter
PER HEDELIN anp INGVAR JONSSON

Abstract—A performance measure is suggested for evaluating the per-
formance of a given optimal estimator at other lags than the design lag.
Applying this idea, suboptimal smoothers are found for both continuous-
and discrete-time systems, combining low complexity and good perfor-
mance. Several examples are considered. Suboptimal-smoothing improve-
ment is related to optimal improvement and interpreted in terms of
input—-output transfer-function properties.

A special class of discrete-time systems is also discussed where the
optimal smoother is of the same complexity as the zero-fag filter.

I[. INTRODUCTION

The classical Kalman filter is the optimal solution to the following
momentary estimation problem: given a noisy measurement, compute
recursively an estimate of the “present” message. Due to its robustness
and relative simplicity the Kalman filter has enjoyed much attention, as
shown in the survey, Kailath [1].

An estimation similar to that of the Kalman theory can be posed:
given a noisy measurement, compute recursively an estimate of a “past”
message. This is the smoothing problem. Meditch [2] presents the major
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