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Relationships  Between Digital Signal  Processing 
and Control and  Estimation  Theory 

Invited  Paper 

Akmcr-The purpose of this paper is to explore several current 
le&aeh directions in the fields of digitrl signal procesing and modem 
cant101 and estimation theory. We examine topics such as stability 
theory, tineu prediction, and pmuneter identifiition, system synthesis 
and implementation, twodimensionnl filtering, decentralized control 
and estimation, and image processbrg, in order to uncover some of the 
brsic similarities and differences in thegods, techniques, and philosophy 
of the two disciplines. 

T 
INTRODUCTION 

HE WRITING of this  paper was motivated  by  the belief 
that  the fields of digital signal  processing and  control 
and  estimation  theory  possess  enough similarities and 

differences  in  philosophy, goals, and  analytical  techniques to 
merit  a  detailed  joint  examination. In order  to  explore  the 
relationship  between  these  two fields, I found  it  essential to 
concentrate  on several  specific  research directions to provide 
a  focus  for my  investigations. The  results of this  study were  a 
talk delivered  during the  1976 IEEE Arden  House  Workshop 
on Digital  Signal  Processing, the present  paper,  and  a  far  more 
comprehensive  manuscript [ 1621. 

Although the paper  consists of discussions of several  specific 
research  directions,  the  primary  emphasis of this  paper is not 
on results. Rather, I have  been  far m.ore interested  in  under- 
standing  the goals of the research  and  the  methods  and  approach 
used  by  workers  in both fields. Understanding  the goals  may 
help  us t o  see  why the  techniques used  in the  two disciplines 
differ.  Inspecting the  methods  and  approaches may  allow  one 
to see areas  in  which  concepts in one field may  be  usefully 
applied in the  other. In summary,  the  primary goal of this 
study is to  provide  a  basis  for  future  collaboration  among 
researchers  in  both fields. 

It is hoped  that  the above comments will help  explain the 
spirit in which  this  paper  has  been written. In reading  this 
paper,  the  reader  may  find  many  comments  that are either 
partially or  totally  unsubstantiated. These points have  been 
included in keeping  with the speculative nature of the  study. 
However, I have attempted  to provide  background  for the 
speculation  and have limited  these  comments to  questions 
which I feel represent  exciting  opportunities  for  interaction 
and  collaboration. Clearly  these  issues  must be studied  at  a 
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far  deeper level than is possible  in this  initial  effort. To aid 
others  who  may wish to  follow  up on some of the directions 
developed  in this  paper; an extensive  bibliography  has  been 
included.  In  addition, the  interested  reader is referred to 
[ 1621 in which all of these  research directions  are  explored 
in  substantially  greater  breadth  and  detail. 

Nowhere in the  paper have I made  a  direct attempt  to 
define the fields of digital signal  processing  and control  and 
estimation.  Rather, I hope  that by examining  many of the 
issues of importance to workers  in  these  fields,  the  reader will 
be  able to piece together  a  picture of the disciplines  and their 
relationship to each  other. As a  preface to  our  examination, 
let  me  mention several points  concerning  each  field. 

In digital signal  processing, one of the crucial problems is 
the design of an  implementable  system  meeting  certain given 
design  specifications  such  as  an  ideal  frequency  response.  Here 
the emphasis  often is on  the word implementable, with  a fair 
amount of attention paid to issues  such  as the  structure of the 
digital filter,  its  complexity  in  terms of architecture  and  com- 
putation  time,  the  effect of finite  wordlength on performance, 
etc. Much  of this  attention is motivated  by  the need for ex- 
tremely  efficient  systems to  perform  complex  signal  processing 
tasks (e.g., the  implementation of high-order  recursive or  non- 
recursive  filters) at very  high data  rates  (for  example, sampling 
rates  encountered  in  speech processing run  on  the  order of 10 
kHz,  and  higher  rates  are the rule in video  and  radar  systems). 

In control  and  estimation,  the  emphasis  has been  far less on 
implementation  and  more  on developing methods  for deter- 
mining system design specifications for  estimation  or  control 
systems.  At  one level these  specifications  are  just  a  particular 
class of design  guidelines  which  can then be  used to  construct 
an implementable digital system.  However, there are  major 
differences  between the systems  arising  in the  control  context 
and the  typical digital processing application.  For  one  thing, 
the  data  rates  for  control  systems  are  often  far  lower (e.g., in 
aircraft  control  systems  sampling  rates on  the  order of 0.1  kHz 
are often  encountered,  although  much higher  rates  can  be 
found  in  certain cases  such  as  video-directed  systems). More 
fundamentally,  however,  the signal  processing to be done  in a 
control  system  cannot be  judged  by  itself, as can other signal 
processing  systems,  since it is part of a  feedback  loop,  and  the 
effect of the processing  must  be  studied in the  context of its 
closed loop  effects. 

Also, many  modern  control  and  estimation  techniques involve 
the use  of a  state-space  formulation, as opposed to  input-output 
descriptions  which  are  usually  encountered in digital signal 
processing  applications.  Some of the reasons  for  this  difference 
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will be  made  clear  in  the  following  sections,  but  one implica- 
tion  is  immediately  evident.  The use of a  state-space  descrip- 
tion  implies that  the  system  under  consideration is causal. In 
standard  feedback  control  problems  this is clearly the case, 
and  thus  state-space  formulations  make a  great  deal  of  sense. 
As we shall  see,  there  are  digital signal processing problems 
involving noncausal  systems or systems  in  which the indepen- 
dent variable has  nothing to do  with  time  and  for which 
causality  has no intrinsic  meaning.  Thus, while we  will find 
several places in which state  space  concepts  fit in naturally 
in  the digital signal processing context, we’ll also find  others 
in  which that is decidedly not  the case. 

The  preceding  comments  were  made  in  order to  provide the 
reader  with  some insight into  the perspective I have taken  in 
writing this  paper. With this as background,  let us begin our 
examination  of  research  topics  in  the  two fields. 

I .  DESIGN, REALIZATION, AND IMPLEMENTATION 

In this  section we investigate one subject  area  in  which  some 
of the differences  in  perspective  between  the two disciplines 
are  most  apparent. Specifically, we consider the  question of 
design.  However, our discussion will not  deal very much  with 
design methods  but  rather  with  the  question of trying to  pin- 
point  what  researchers  in  the  two disciplines mean  by “design” 
and  what  sorts of problems  their  techniques  are  equipped to  
handle. 

Perhaps  the  most  obvious  difference  between  the fields‘is in 
the  type of  system  representations  used. In  digital signal pro- 
cessing, the emphasis is heavily on  input-output descriptions, 
while in  control  and  estimation  the  emphasis is more  on  state- 
space  models. The reasons for  this  difference  stem  from  the 
different  questions  addressed  by  researchers in the  two dis- 
ciplines.  In  digital signal processing one is  interested  in the 
issue of  implementation  of a system  with a  specified input- 
output behavior  (hence the need for  an  input-output de- 
scription).  Questions  such as efficient  implementation  and 
number  of  bits needed to  achieve  the desired level  of  ac- 
curacy  are  of  great  importance. 

On  the  other  hand, in control  and  estimation  theory  the 
issue of implementation is not considered to  nearly the same 
extent.  Realization  techniques do  address the  question of 
constructing a  state-space  realization that leads to a  specified 
input-output behavior. However,  as discussed in  the following 
subsections,  such  techniques do  not  address  many  of  the  major 
issues involved in implementation,  and, in fact,  state  space 
realizations,  when viewed as  implementable  algorithms,  don’t 
include  some of the  most  important  system  structures  that  are 
used in digital  system  design. Nevertheless, state-space models 
do play  an  important  role  in  control  and  estimation  system 
design.  Specifically,  a  state  space  model  for a given physical 
system, is a  necessary  ingredient  in the  application of a number 
of  techniques  for  the  analysis  of  system  performance  and  for 
the design of  feedback  control or estimation  systems (Le., the 
specification of the desired input-output behavior  of  a  control 
or  estimation  system). 

Thus, we  see some  fundamental  differences  between  the 
perspectives  of  researchers in the  two disciplines. There also 
clearly  exist  several  areas for  interaction  between  the  fields-to 
develop  useful  multiinput-multioutput  structures  (a  marriage  of 
digital  implementation  and  multivariable  realization  concepts), 
to utilize  state-space  techniques to analyze the performance 
of digital filter  structures,  and t o  consider  the  digital imple- 
mentation of state-space control and  estimation  system de- 
signs. All of  these issues are discussed in detail in this  section. 

A.  State-Space  Realizationsand  State-Space Design Techniques 
The basic  realization  problem (for linear  systems) is  as 

follows: we are given a  (possibly  time-varying)  description  of 
the  input-output behavior of a system 

(1 )  

where u and y may  both be vectors.  In  the  time-invariant 
case we have that  the  sequence of impulse  response  matrices 
satisfies 

T ( k ,   i )  = T(k - i ,  0) p Tk-i 

and  in  this case we may  be given an  alternative  input-output 
description  in  the  transform  domain 

00 

Y ( z )  = G(z)U(z) ,  G ( z )  = Tiz-’. (3 1 
i=O 

The  realization  problem  consists of finding  a  state  space  model 

x ( k  + 1 )  = A ( k ) x ( k )  + B ( k ) u ( k )  

y(!c) = C ( k ) x ( k )  + D ( k ) u ( k )  (4) 

that  yields  the desired input-output  behavior (( 1 )  or (3)) when 
x(  0) = 0. 

The  realization  problem  has  been  studied  in  detail in the 
control  literature,  and  one  aspect  that  has received a  great 
deal of attention is that of  determining minimal  realizations- 
Le., models  as in (4) with  the  dimension  df x as small as pos- 
sible. The basic idea  here is that a  minimal  realization  has no 
superfluous  states  that  either  cannot  be  affected  by  inputs or 
do  not  affect  the  output.  These  concepts lead  directly to the 
notions of controllability  and  observability. In the time: 
invariant  case, one  obtains a rather  complete  description. Spe- 
cifically, we find that  the system (3), has a  finite-dimensional 
realization if and  only if G ( z )  is rational  with  each  element 
having no  more zeroes than poles. Furthermore,  any  con- 
trollable,and  observable  time-invariant  realization is of minimal 
dimension,  and  any  such  minimal  realization  can  be  obtained 
from a  particular one by change  of basis (see, for  example, 
[ 4 l ,  1 5 1 ,  [271,  [301). 

The  algorithm  of Ho [ 291 and  that  of Silverman and Meadows 
[ 51 provide  methods  for  extracting minimal constant realiza- 
tions  from  the  Hankel  matrix  determined by the Ti (see 
Section 11-C and  the  references  for  details  of  these  results). 
Thus, if we are given a design specification or plant  description 
in  terms  of a rational G ( z ) ,  we can  readily  determine  a  minimal 
realization.  On the  other  hand, if  we are given G in the  form 
(3) as  opposed to  in rational  form, partial realization  algorithms 
must  be used. We will discuss such  algorithms in Section 11-C. 

State-space  realization  algorithms  can, in principle,  solve 
certain  questions  related to  system  implementation. Specifi- 
cally, the  computation of a  minimal  realization  allows us to  
determine  the minimal number  of  delays  required in imple- 
menting a system  with a given impulse o r  frequency  response 
function,  and  this clearly has  an  impact  on  storage  require- 
ments. Also, one  of  the  most  important  aspects of the  state- 
space  approach is that  it allows one  to  consider  multiinput- 
multioutput  systems  and time-varying systems.  Since  any 
minimal  state-space  realization  can  be  obtained  from  a given 
one  by  change of coordinates, clearly  realization  theory 
allows  some  flexibility  in designing good digital  filter  struc- 
tures.  But  it is far  from  the  complete  answer,  as we  will  see 
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in the  next  subsection.  Not  only is memory  becoming  cheaper 
(thus reducing the  importance of minimality),  but  there are 
other  implementation issues  besides  storage that  are of impor- 
tance,  and  one also runs  into  limitations in interpreting  state 
space  realizations as filter  structures (see  Section I-B). 

A more  important  aspect of state-space  realizations  comes 
from the  fact  that  they play  an extremely  important  part  in 
a  number of control  and  estimation design problems,  where 
one uses state-space  realizations to model the system to be 
controlled  or  the signals to  be filtered. By doing  this,  one 
can  bring into play  extremely  powerful  state-space  tech- 
niques  for  compensator  design  121, [ 61, decoupling of the 
effects of  different  input  channels [7] ,  etc.,  and we  refer 
the reader to the special  issue of the IEEE Transactions  on 
Automatic  Control [27]  for an  overview of many design 
methods  that have  been  developed.  These  design  algorithms 
allow one  to  consider  a  variety of extremely  complicated 
multivariable  system  problems  within  a single framework, 
and  this  ability  to  handle  many variables at  once is at  the 
heart of the value of state-space  concepts. 

One important  aspect of some of these  techniques is that 
they allow one to  solve quantitative  optimization  problems. 
The  linear-quadratic  optimal  control  problem is an  example 
of this, as is the design of a Wiener filter  as  a  steady-state 
Kalman  filter [ 81, [ 271.  In  this  case, we begin  by  modelling 
the observed signal as the  additive  white-noise-corrupted 
output of a  linear  state-space  model (a shaping filter) driven 
by  white  noise. Having solved this  realization  problem,  the 
determination of the  optimal Kalman  filter is reduced to  
solving a time-varying  Riccati equation  or  a  nonlinear algebraic 
Riccati  equation  for  the  steady-state (Wiener)  filter. Algo- 
rithms  for solving  this  algebraic equation essentially  solve the 
Wiener  spectral  factorization  problem. 

In addition  to providing a  framework  for  the  specification 
of designs, the state-space  framework  allows  one to  analyze 
the  performance  characteristics of the overall  system after  it 
has  been implemented.  For  example,  the  techniques  described 
in  Section 111 can be used to  study  the  stability  characteristics 
of the system.  Another  analytical  tool  used to  study system 
performance is covariance  analysis. Consider the  model 

x ( k  + 1) = A x ( k )  + w ( k ) , y ( k )  = C x ( k )  + u(k) ( 5 )  

where w and u are  zero  mean,  independent  white noises,  with 
variances Q and R ,  respectively.  These  noises  may  represent 
actual noise  sources  or  the  effects of small  nonlinearities, 
unmodeled  phenomena,  etc. A simple  calculation  yields  an 
equation  for  the covariances P(k) and S ( k )  of x ( k )  and y(k): 

P(k + 1 )  = AP(k)A' + Q ,  S(k) = CP(k)C' + R .  (6) 

If A is a  stable  matrix, we can  evaluate the steady-state  co- 
variances P and S by  solving the Lyapunov  equation 

APA' - P = -Q. (7) 

B. The Implementation  of Digital Systems and  Filters 
As discussed in [ I ] ,  the design of digital systems  consists of 

several parts,  including the specification of the desired input- 
output relationship  and the  implementation, using  finite 
precision arithmetic, of a system that  approximates  this 
desired  behavior. From  this  point of view, the  methods of 
the preceding  section  deal  with the first issue. Realization 
procedures  play an indirect  role in these  techniques  in  pro- 
viding the state-space  models on which the design methods 

+ -@ + 

J Q  z: 
+ + J 

Unit D e l q  Unit Delay 

Fig. 1 .  A cascade of two fist-order filters. 

are  based. But what about  realizations  from  the  point of 
view of system  synthesis  and  implementation? As  we shall 
see, state-space  realizations  can  play  some  role,  but  they  are 
far  from providing the  entire  solution. 

A wide  variety of digital filter  design methods have  been 
developed to deal  with the  second issue. One  factor  that 
does  enter  into  this design question is the  number of .storage 
elements  (delays) in the  filter  structure, and thus  the issue 
of minimality is  of some importance. Of course, in dealing 
with  single-input  single-output transfer  functions,  one can 
read  off the  order of a  canonic  structure and  can construct 
several quite easily by  simple  inspection of the specified 
transfer  function.  The  determination of the  order of a  canonic 
realization  and the ability to  construct several  minimal realiza- 
tions  without  much  difficulty barely  scratches the surface of 
the  structures  problem,  however. As pointed  out in [ 11,  the 
various  filter  structures  available  may  be  equivalent  from an 
input-output  viewpoint if one did not have to worry  about 
computation  time,  the  complexity of the digital architecture 
or algorithm  required to  implement  a given structure,  the ef- 
fect of finite precision in representing  filter  coefficients, or  the 
effects of overflow  and  quantization.  These  are the issues that 
motivate  much of the  study of various  filter  structures [ I ] ,  

Let  us  examine  some of these  issues in the  context of a 
particularly  important  structure,  the cascade form,  obtained 
by  factoring  a  transfer  function H(z)  as  a  product of lower 
order  transfer  functions.  Consider  the  example 

[IO], [ I l l .  

z 2   + ( b + d ) z + b d  (1 + b z - ' ) ( I   + d z - ' )  
z 2  - (a + c ) z   + a c  (1 - U Z - ' ) ( I  - cz-'1 

H ( z )  = - - . (8) 

In Fig. 1 we have  realized this  filter  as the cascade of two 
first-order  filters.  Note  that  the overall filter is minimal. 

In  Section 111 we consider the  effects  on digital filter  per- 
formance of quantization  and  overflow  on  system  stability. 
An alternative,  approximate  method  for  evaluating the ef- 
fect of finite word  length  on  system  performance is to model 
each  quantization as if it introduced noise into  the  system 
[ 11.  By assuming independence of these  various  sources-a 
rather  strong  and  sometimes  unjustified  assumption  (as  the 
existence of periodic  effects, i.e., limit  cycles,  indicates)-one 
can  in  principle  evaluate the overall  noise power  at  the  out- 
put,  and  thus  obtain  a  measure of the size of the  quantization 
effects  for  any given filter  structure. We can then use this 
information to compare  alternative  designs  (see [ 11, [ IO], 
[ 121 for  detailed discussions of the uses of such  noise  analysis 
techniques). As an example,  consider  the case [ 11  of fixed- 
point  arithmetic  and  roundoff  quantization in which the 
quantization  interval 4 is 2-b.  In  this  case, the  quantization 
error e introduced  by  a single  multiplication  takes on a value 
between +0.5q.  If one  makes  the  assumption  that e is uni- 
formly  distributed, we find  that it has  zero  mean  and  variance 
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q2 /12 .  Then,  for  example,  in  the  cascade  filter  of Fig. 1,  one 
could  add  one  such noise source  following  each of the  four 
multiplications. We will return  to  this  topic  shortly  to see 
how  state-space  methods  can be used to  analyze noise effects. 

Another  extremely  important issue  in  filter design  is the 
sensitivity  of  filter performance to  variation in coefficients. 
This is quite  central  an issue,  since one  can  only  represent 
coefficients up to a finite  degree of accuracy,  and  hence  one 
cannot obtain  filters  with  arbitrary  pole  and  zero  locations. 
The  allowable  poles  and  zeroes  and  the sensitivity to variations 
in parameters  depend  quite  significantly  on  the  particular 
structure  under  consideration.  For  example, parallel and 
cascade  structures  are  often used because the  perturbations 
in the poles  are  isolated  from one  another. 

For  the  remainder  of  this  section, we  wish to  examine  the 
relationship of state-space  techniques  and  concepts to  some of 
the  questions  in digital  filter  design. Let us first examine  the 
use of  state-space  techniques to  determine  filter  structures. 
Consider the  transfer  function (8). In this case,  state-space 
techniques yield  a  variety of minimal  realizations of the  form 

If we interpret (9) as an  algorithm, we must compute  the 
various  products f i ix i (k) ,   g iu(k) ,   h ix i (k)   ( i ,  j = 1,  2),  and  per- 
form  the  appropriate  additions.  Note  that in general,  there  are 
eight  multiplications  and six additions  required. 

Now  consider  the  cascade  structure of  Fig.  1. Interpreting 
it as an  algorithm ( a  and b multiply x l ( k ) ,  c and d multiply 
x 2  ( k ) ,  and we perform  the  required  additions), we see that we 
require  four  multiplications  and  four  additions,  but  this is not 
the  most  important  difference  between  the  two  algorithms, 
since it is possible to  obtain realizations (9) with  some  zero 
elements  in ( F , g ,   h ) .  However, the crucial  difference is the 
following: if  one  interprets Q state-space  realization QS deter- 
mining an algorithm o f  the  type  indicated,  then  there is no 
way  that  the Cascade algorithm is of this t ype!  This is not 
to say that  one  cannot  find a  state-space  description of the 
cascade  realization.  In  fact 

~ ( k )  = [ ( a  + b) ,  ( c  + d ) l  x ( k )  + u(k) (10) 

is such a  realization. 
The  point  made  above  may,  at  first  glance, seem to be 

trivial, but  it is not, since is points  out  that  although  any 
(infinite  precision)  algorithm  can be described  dynamically 
in state-space  terms,  direct  interpretation  of  a  state-space 
description  as an  algorithm  does not allow one to consider 
all possible algorithms. That is, it is relatively easy to  go  from 
an  algorithm t o  a  state-space  description, but  it is not  at all 
natural or clear how to go  the  other  way,  and  hindsight is 
needed in  order  to  interpret a  realization  of the  form  of  (1 0) 
as a  cascade  structure. 

Thus, we  see that state-space  models  have  limitations  when 
one considers the issue of  implementation.  There  are,  however, 
several areas  where  interaction  between  the  two  fields  may be 
of  use.  First of all, the  techniques used in  digital  signal process- 
ing should  be  of  use in considering the  implementation of con- 

trol  and  estimation  system designs such as those  mentioned  in 
Section I-A. Also, recall that  state-space  realization  tech- 
niques  allow one  to  determine  minimal  realizations  for  systems 
with  multiple  inputs  and  outputs. It is possible that  this  fact, 
combined  with a thorough  understanding  of  the  relationship 
between  state-space  realizations and  various  digital  system 
structures will lead to  the  development of useful  filter  struc- 
tures  for  multivariable  systems. 

Also, as mentioned in the preceding  subsection,  the  state- 
space  framework is particularly  useful  for the analysis of the 
properties  of  dynamical systems. Thus,  it  seems  natural to  
ask if these  techniques  might be useful  in  the analysis of 
various  filter  structures.  In  Section 111 we discuss  this question 
with  respect to stability  analysis  techniques. Also, it is pos- 
sible that state-space  sensitivity techniques [ 91 could be useful 
in the  study  of  the sensitivity  of  various  digital  filter structures, 
but  this  awaits  further  study. 

Finally,  let us examine  the  utility  of  state-space  techniques 
in  the analysis  of the  effect  of  quantization noise on  filter 
performance. We do this  by  example,  although it should be 
clear that  this  approach  extends  to  arbitrary  structures.  Con- 
sider the cascade  structure in Fig. 1 where we add  quantization 
noise  after  each mu!tiplication. A state-space  representation 
of  this  system can be written  down by inspection: 

x ( k  + 1 = p x ( k )  + gu(k)  + rN(k) 

y ( k )  = h‘x(k)  + u ( k )  + \kN(k)  ( 1  1) 

where F ,  g, and h are given in ( 1  O),N(k)  is the four-dimensional 
noise vector whose components are the noises  contributed  by 
the multiplications  by a ,  b ,  c ,  and d ,  respectively.  Then 
\k=.(l ,   1,  1, 1),and 

r=[1 1 1 0 1  

1 0 0 0  

If  we make  the usual independence  assumptions  concerning 
the  components.and  time-behavior  of N ,  we can  directly  apply 
the covariance analysis equations ( 6 ) ,  ( 7 )  to  determine  the 
effect  of  quantization noise on x and y .  Note  that ( 6 ) ,  ( 7 )  
yield the  effect  of  noise throughout the  network.  The  utility 
of  an  approach  such  as  this  for digital network analysis  needs 
to  be examined  more  carefully,  but  it  appears  that  it  may be 
computationally  superior to  other  methods,  such  as  those  that 
use  signal flow  graph  techniques [ 121 or that  require com- 
puting a number of partial  transfer  functions [ 3 ] .  We nqte 
that Parker  and Girard [ 151 used Lyapunov-type  equations 
and  analysis  quite similar to  our development  for  the evalua- 
tion  of  output noise power due  to  correlated  quantization 
errors.  In  addition,  similar  analyses have been  undertaken by 
Hwang [ 171, Mullis and  Roberts [ 181,  and Sripad and  Snyder 
[ 191, [ 201. Hwang uses Lyapunov state-space equations to  
study  the  effects  of possible structure  transformations  and 
state-amplitude scalings.  Mullis and  Roberts have obtained 
some significant  results for digital  filter design using a  frame- 
work similar to  Hwang’s to study  what  they call  “minimal 
noise realizations  (see [ 3 1 ] for  further  developments). Sripad 
and  Snyder  develop  conditions  under which quantization 
errors  are  in  fact  white,  and  they also use Lyapunov-type 
analysis t o  compare  the  performance  of  two  different realiza- 
tions. Within this  framework,  one  can  pose a number  of 
other questions. For  example,  in  the case  of  floating point 
arithmetic,  the  quantization  error  depends  on  the size of the 
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signal. Can  state-space  procedures  for  analyzing  “state- 
dependent noise” [ 161  be of  value  here?  Questions  such  as 
these  await  future  investigation. 

In  this  section we have  seen  some of the issues  involved  in 
system  design  in the  two fields. The issue of implementation 
is at  the  very  heart of the  problems  considered  by  researchers 
in digital signal  processing,  while  researchers in control  and 
estimation have concentrated  more  on  the  development of 
general  design  procedures for state-space  models  and methods 
for  analyzing  the  characteristics of such  models. We have 
seen that  there are points of overlap  and  places in which 
techniques  and  concepts  from  one  discipline  may be of value 
in the  other.  State-space  techniques may be useful in the 
analysis of multivariable structures  and in the analysis of 
sensitivity  and quantization noise  behavior of different  struc- 
tures.  Such  issues  remain to be studied, but it is in the  other 
direction that  there is the  most to  be done.  The issues  involved 
in the digital implementation of systems  specified  by state- 
space  design methods remain  largely unexplored.  Numerous 
problems  abound. What  is the  effect of roundoff noise on 
closed-loop controller  performance,  and  how  many  bits  must 
we use to  achieve the desired  regulation  properties [ 2 1 ] , [ 221 , 
[241;  [25], [ 28]? It is  well known  that  “optimal”  con- 
trollers  and  estimators  require  many  arithmetic  operations  and 
hence  lead to low  sampling  rates. Can  we improve  overall 
performance by using  a  simpler “suboptimal”  system  at  a 
higher  sampling rate [ 131 ? If  we are  controlling  a  complex 
system,  “optimal”  controllers  require  not  only  a  great  deal 
of computation,  but also the  centralized processing of all 
information,  and  the  cost of relaying information  to  a  central 
location may be prohibitive.  Can we device  decentralized 
control  architectures  that  take advantage both  of,  the  struc- 
ture of the  dynamics of the  system being controlled  and  the 
capabilities of the available types of digital processors?  Here 
again, if we include the cost of information  transfer,  “sub- 
optimal”  decentralized  systems  may  outperform  the  “optimal” 
system  (see [ 141, [ 231, [ 261 for  some  results  and  problems 
concerned  with parallel and distributed processing  and  de- 
centralized  control). 

The  study of problems such  as  these-i.e.,  the  interaction of 
implementation and architecture issues and  the design of con- 
trol and  estimation  systems-is  still  in  its  infancy,  and it a p  
pears to  offer  an  extremely promising  avenue for  research. 
We note  that  architectural issues  have  received  a  great  deal of 
attention  in  the field of digital signal  processing [ 101, [ 121, 
and  this,  together  with  the  wealth of literature  on digital 
filter structures,  indicates  that  there is much to be gained from 
future  interaction  and  collaboration. 

11. PARAMETER IDENTIFICATION, LINEAR PREDICTION, 

A problem of great  importance in many  disciplines is the 
determination of the  parameters of a  model given observations 
of the physical  process  being  modeled.  In  control  theory  this 
problem is often called the system  identification  problem,  and 
it arises in  many  contexts.  The  reader is referred to  the special 
issue of the IEEE  Transactions on Automatic  Control [41] 
and to  the survey  paper of h r o m  and  Eykhoff  [421  for 
detailed  discussions and  numerous  references. 

Parameter  identification  problems  also arise in  several digital 
signal  processing  applications.  Several  examples of such 
problems  are given in the special  issue of the PROCEEDINGS 
OF THE IEEE [64],  and one of these, the analysis,  coding, and 
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synthesis  of  speech,  has  received  a  great  deal of attention in 
the past  few  years [46] ,  [ 52]-[  541. We will use this  problem 
as the basis for  our discussion of the  identification  question. 
Our  presentation is necessarily  brief and  intuitive, and the 
reader is referred to these  references  for  details. As discussed 
in [ 521 a popular  approach is to model  a  discretized  speech 
signal {y(k)}  as the  output of a  linear  system,  which,  over  short 
enough  intervals of time, can  be  represented by a  time-invariant 
transfer  function  C(z).  Here the  input is taken as  a  periodic 
pulse train  (whose  period is the  pitch  period)  for voiced sounds 
(such as vowels)  and as white  noise for unvoiced sounds  (such 
as the  sound  “sh”). In addition,  a  common  assumption is that 
G is  an all-pole filter, which  leads to  an  autoregressive (AR) 
model 

y ( k ) + a l y ( k -   l ) + . . . + a p y ( k - ~ ) = u ( k )  . (13) 

This assumption has  been  justified  in the  literature  under  many 
conditions,  although  strong nasal sounds  require  zeros [ 5 21 . 

The  problem  now is to  determine  the  coefficientsa, , - . . , up.  
Having these  coefficients,  one is in a position to solve a  number 
of speech  analysis and  communication  problems.  For  example, 
one can use the  model  (13)  to  estimate  formant  frequencies 
and  bandwidths, where the  formants are the  resonances of the 
vocal tract [ 551. In addition,  one  can use the  model  (13)  for 
efficient  coding,  transmission,  and  synthesis of speech [ 601. 
The basic  idea  here is the  following: as the  model  (13) indi- 
cates, the speech  signal y(k) contains highly redundant in- 
formation,  and  a  straightforward  transmission of the signal will 
require high  channel  capacity  for  accurate  reconstruction of 
speech. On the  other  hand,  one can interpret  (1  3) as specifying 
a  one-step  predictor  for y(k) in  terms of preceding  values of 
y (assuming u(k) = 0). As discussed in [ 601,  one  often  requires 
far  fewer bits to code  the  prediction  error u than  the original 
signal y .  Thus,  one arrives  at an  efficient  transmission  scheme 
(linear  predictive  coding-LPC): given y ,  estimate  the ai, com- 
pute u,  transmit  the ai and u. At the receiver, we then 
can  use (13)  to  reconstruct y .  An alternative  interpretation 
of  this  procedure is the following: given y ,  estimate G ,  pass 
y through  the inverse, all zero  (moving  average-MA)  filter 
l/G(z), transmit  the  coefficients in G and the  output of the 
inverse  filter.  At the receiver, we then pass the received 
signal through G to recover y (thus  this  procedure is causal, 
and causally  invertible). 

The  question  remains as to  how  one  estimates  the ai. The 
most  widely  used technique in the  literature is linearprediction. 
Using the  interpretation of (13), as  specifying  a  one-step 
predictor  for  the signal y ,  we  wish to choose the coefficients 
a l  , * * * , a p  to minimize the sum  of  squares of the prediction 
errors e ( n )  = y ( n )  - ? ( P I ) ,  n E I .  Here we assume that we are 
given y(O), . . , y ( N  - l ) ,  while  the  set I can  be  chosen  in dif- 
ferent  manners,  and we  will see in the following  subsections 
that different  choices  can  lead to  different  results and to 
different  interpretations. 

Before  beginning  these  investigations, let  us  carry  out  the 
minimization  required in linear  prediction.  Taking  the  first 
derivative  with  respect to  the ai of the sum of squared  errors, 
and  setting  this  equal to  zero, we obtain  the normal equations 
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These equations are  typical of the  types of equations  that 
arise in  linear,  least  squares  problems,  and  their  efficient 
solution  has been the  topic of many  research efforts. 

A. The Autoconelation  Method, Kalrnan Filtering for 
Stationary Process, and  Fast  Algorithms 

n < 0, n 2 N .  In this  case, we find that 
Suppose we let I = all integers,  where we define y(n) = 0 for 

N-l-li-jl 
cii = 1 y(n)y(n + Ii - g r ( I i  - (16) 

and  the  normal  equations  become Tu = d ,  where a’ = (a l ,  * * * , up), 
(here  the  prime  denotes  transpose),  d‘=(-r(l),-r(2); a ,  - r (p) ) ,  
and T is a  symmetric  Toeplitz  matrix [ 341, [ 521, [ 591,  [68],  
[ 731 (Le., the  ijth  element  depends  only  on li - j l )  with 
Tjj = ci,.  We also note [ 461 that if y is a stationary  random 
process  with  autocorrelation 

R(i) = E[y(nly(n + i)l  (17) 

and if we want to  find  the  one  step  prediction  coefficients  to 
minimize E[e2(n)] ,  we obtain an  identical  set of (Toeplitz) 
equations  with r ( i )  replaced  by  R(i).  This  statistical  point 
of  view is extremely  useful  for  obtaining  certain insights into 
the  approach. 

The  solution of such  Toeplitz  equations  has  been  the  subject 
of a  great  deal of attention in the  mathematical,  statistical,  and 
engineering literature [34] ,   [35] ,   [46] ,   [48] ,   [49] .  An 
efficient  algorithm  was  proposed  by  Levinson [ 481,  improved 
upon by  Durbin [63] and  studied  in  the speech  processing 
context by  several authors,  including  Itakura  and  Saito [ 541. 
The  method essentially  consists of solving  forward  and  back- 
ward prediction  problems of increasing size in a recursive 
manner.  That is, the  algorithm  computes  the  coefficients 
a( 1  Ii), . . . , a(ili)  for  the best prediction of y(n) based on 
y(n - l ) ,  . * . , y(n - i) and the  coefficients b( 1 Ii), * . * , b(i1i) for 
the best  prediction of y(n - i - 1) based on  y(n - i), * . * , 
y(n - 1).  The  algorithm  iterates on  i. As a  part of this  algo- 
rithm,  at each  stage one  computes  the  prediction  error  (for 
both  forward  and  backward  prediction),  and  thus  one  can 
determine when to  stop based on  the size of  this  quantity. 
Also, at  each stage we must  compute  a  coefficient  ki, which 
is known  as  the  partial  correlation coefficient  (see (461, [ 521, 
[ 541).  Finally,  while  the  Levinson  algorithm is extremely 
efficient,  it  must be kept  in mind that  the  computational 
savings reaped  here  may be quite small  compared to  the 
calculation of the  correlations  according  to ( 16). 

Let us now  examine  what  this  algorithm  means  from  a 
statistical  point of view. The  algorithm specifies estimators 
of the  form 

n=o 

i 

j=1  

i 

j = 1  

y^(i) = - Ca( j l i )y( i  - j )  (18) 

9(0) = - b(jli)y(j). (19) 

Thus, we can think of the algorithm  as  providing us with the 
time-valying  coefficients of the weighting pattern of the  opti- 
mal one-step  predictor  and of the  optimal  initial  time  smoother. 
Note that these  coefficients are, in  general,  time-varying  (i.e,, 
a(ili) # a ( j ) ) ,  since the mechanism of prediction is time- 
varying  when  one bases the  prediction  on  only  a f i i t e  set of 
data. 

What does  this mean  as far as all-pole modeling via linear  pre- 
diction goes? The answer to  that is not  much. In the all-pole 
modeling  problem, we are  equivalently  only  interested in design- 
ing a  FIR  filter-i.e.,  a  prediction  filter  that  produces  the  best 
estimate  ofy(n)given  the  “data  window”y(n - l ) ,  .. * , y(n - p ) .  
The  coefficients of such  a  filter  are precisely a(l Ip), . . . , a(p lp ) ,  
and it does not  matter  (except  from  a  computational  point of 
view) that these  coefficients  were  generated  as  part  of  a  time- 
varying filter weighting pattern. 

On the  other  hand,  the time-varying  weighting pattern  inter- 
pretation is extremely  important  from  a  statistical  point of 
view,  especially if one wishes to design  recursive  predictors 
that are  capable of incorporating all past  measurements  and 
not  just  a  data  window  in  the case  when y has a Markovian 
representation 

x ( k  + 1)  = Ax(k) + w(k)  y(k) = c’x(k) (20) 

where x is a random  n-vector, A is a  constant n X n matrix, 
c is a  constant  n-vector,  and w is a  zeremean uncorrelated 
sequence  with  covariance Q. The  correlation  coefficients 
of y can  be computed by  direct  examination of (20). We note 
that x and y will  be stationary  with 

~ ( i ) =  c i ’ r ~ c ,  i 2 0 (21) 

if A is stable  and if n, the covariance of x ,  satisfies the Lyapunov 
equation 

AIIA’ - n = -Q. (22) 

We now wish to design  an optimal  predictor  for recursively 
estimating  y(n).  This is a  standard  estimation  problem,  and 
the  solution is the Kalman  filter [ 35 ] : 

?(n) = A?(n - 1)  +AK(n - l )y(n  - 1) 9(n)  = c’x(n) 

r ( n -   l ) = y ( n -   1 ) - 9 ( n -  1) (23) 

where  the time-varying gain satisfies 

P(nln - 1)c 

c’P(nln - I ) C ’  
K( n ) = 

Here P(nln - 1) is the covariance of the  prediction  error 
x ( n )  - ?(n), 

P (n+   l In )=AP(n ln -  I ) A ’ + Q -  
AP(nIn - l)cc’P(nln - 1)A‘ 

c’P(nIn - 1 )c  

(25) 

Let us make  a few comments  about  these  equations.  Note 
that  the  filter  innovations r ( n )  is precisely the  prediction  error 
e (n) ,  and  its variance is c’P(nln - 1)c. Also, recall that in the 
all-pole framework, we could  alternatively  view the prediction 
fiiter as  specifying  an  inverse filter, which took  the  y’s as 
inputs  and  produced  the  uncorrelated  sequence of prediction 
errors  as  the  output. In the  context of the Kalman filter,  the 
analogous  filter is the  innovations  representation (see  repre- 
sentation IR-1 of [58]),  in which we  view the  output of (23) 
as  being y(n).  Finally, note  that  one can compute  the pre- 
dictor  coefficients a(jli) as the weighting pattern of the 
filter  (23). 

Examining  (23)-(25), we see that  the  computation of the 
recursive  filter  coefficients requires  the  solution of the (dis- 
crete  time)  Riccati  equation  (25). If x is an  n-vector,  then 
(using the  fact  that P is symmetric), ( 2 5 )  represents n(n + 1)/2 
equations.  For  reasonably large  values of n, this can be an 
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extreme  computational  load, especially given that all that is 
needed for the filter is the n X m gain matrix K (when y is 
m-dimensional).  Thus  when m <<n, the  question  of  com- 
puting K without P arises quite  naturally,  and  this issue-in 
both  continuous  and  discrete  time, in stationary  and  in  some 
nonstationary cases-has been  the  subject  of  numerous  papers 
in the  recent  past [ 321-[  361.  The  underlying  concepts  that 
have led to these  “fast  algorithms”  (at  least in the  stationary 
case)  are  the same as those  that lead to  the Levinson algo- 
rithm. For some  historical  and  mathematical  perspective on 
this  subject, we refer the  reader  to  [34],  [35]. In  particular, 
the  extension of the Levinson algorithm to  the multivariable 
case  is discussed in these  papers (see  also  reference [49]).  In 
this  case, the  matrix T in the  normal  equations is block- 
Toeplitz,  and  the  extension  to  this case is decidedly  nontrivial. 

There  are a number of deep  mathematical  and  physical in- 
sights that can be  obtained by the  examination  of  these  fast 
algorithms. As discussed in [46 ] ,  [ 521,  the Levinson algo- 
rithm involves an  auxiliary  partial  correlation  coefficient ki, 
which  has  an interpretation as a  reflection  coefficient,  and 
this  fact  has  been  utilized in speech processing, in  which these 
coefficients spec.ify certain  parameters  in  an  acoustic  model 
of the speech  process [46] ,  [ 521. In addition  Casti  and  Tse 
[ 5 1 ]  Kailath [ 321, [ 351 and  Sidhu  and  Casti [ 391 have  shown 
that  the fast  Kalman gain algorithms  are closely  related to  the 
work of certain  astrophysicists,  in  particular  Chandrasekhar 
[SO] who devised algorithms  for solving finite  time Wiener- 
Hopf equations arising  in  radiative  transfer. Also, relationships 
between  linear  filtering  and  scattering  theory have been  brought 
to  light in the  recent  paper  [65],  [66]. And  finally, for a 
good overview of some  of  the  mathematical  relationships, in- 
cluding  some  with the  theory  of  orthogonal  polynomials, we 
refer the  reader t o  [ 351, [ 731.  These ideas are  of  interest  in 
that seeing these  algorithms  from several perspectives  allows us 
to gain insight into  their  properties,  potentials,  and  limitations. 

B. The  Covariance Method,  Recursive  Least  Squares 
Identification,  and  Kalman  Filters 

Consider again the  normal  equations ( 14), ( 15). We now  con- 
sider the range of n to  be  only as large as the  actual  data allows- 
i.e., in  equation  (13) we will require  that k, k - 1, * . . , k - p 
all be  within  the range 0, . * * , N - 1. This  leads to  the restric- 
tion p Q n Q N  - 1. Also, in  this case cij is not in  general  a 
function  of i - j ,  the  matrix T is symmetric  but  not  Toeplitz, 
and  the  fast  methods  of  the  preceding  subsection  don’t  carry 
over  quite so nicely. Recently, however Morf e t  al. [61] have 
obtained  fast  algorithms  for  the  covariance  method  by  exploit- 
ing the  fact  that,  although T is not  Toeplitz,  it is the product 
of  Toeplitz  matrices. 

Let us take a look  at  the covariance  method  from a  slightly 
different  point  of  view. Recall that  the  algorithm  mentioned 
above  and  the  one in the preceding  subsection involve re- 
cursions on  the  order of the  filter given a  fixed  set  of  data. 
Suppose  now  we  consider a  recursion  for  updating  coefficients 
of  a  fixed-order  filter given more  and  more  data.  To  do  this, 
we refer to   [42] ,  where the covariance  method  is discussed. 
Given the  data y(O), * . . , y ( N -  l),   the covariance  method 
attempts to fit a model  of  the  form of (13)  by finding  a  least 
squares  fit $ ( N )  to  the  equation 

has  various y ( i )  as  its  elements.  Suppose we have a^(N- 1) 
and we now  obtain  the  new  data  point y ( N ) .  We would  like 
t o  update  our  estimate  in a manner  more  efficient  than re- 
solving (26)  from  scratch.  Following  standard recursive  least 
squares (RLS) procedures [ 4 2 ] ,  we find  that  (here I‘(N) is 
the last row of L N ) :  

a^(N) = a^(N - 1) + K ( N ) [ y ( N )  - Z’(N)a(N - 1)l 

pa^(N - 1) + K ( N ) r ( N )  (27) 

P(N - l)Z(N) 

1 + l‘(N)P(N - l)Z(N) 
K ( N )  = 

(29) 

Examining  these equations,  we see that  they  can  be  inter- 
preted  as  defining a  Kalman  filter  (see 1431 ). In  fact,  referring 
to   [45] ,  we  see that  these  are  precisely  the Kalman filter 
equations used by Melsa et al .  in  speech processing. Specifi- 
cally, they consider the  dynamic  equations 

a(k + 1) = a(k) ,  y ( k )  = l ’ (k)a(k)  + ~ ( k )  (30) 

where ~ ( k )  is a  zero-mean  white  process  with  variance \k. If 
9 is set t o  1, we obtain  (27)-(29). Also, in  this  formulation, 
P ( N )  has  the  interpretation  as  the  covariance of the  estimation 
error a - a^(N). 

Let  us  note  some  of  the  properties  of  the recursive solution 
(27)-(29). Examining (27), we see that  the  increment  in  our 
estimate â  is proportional to the  error  (innovations)  in pre- 
dicting the  latest value of y using  preceding  values  and our 
previous  estimate  of a. This suggests that a monitoring of the 
innovations r ( N )  can  be  used to help  detect  abrupt  changes 
in  the  predictor  coefficients or the presence  of  glottal  excita- 
tion  in  voiced  sounds.  In  this  manner  one  may be able to 
improve  upon  the  estimation  of a. Whether  such a procedure 
would be of  value is a matter  for  future  study. Also, it is 
possible to  make  the filter  more responsive to  changes in the 
coefficients by using one  of several methods available for 
adjusting  Kalman  filter [ 721.  These  include  exponentially 
age-weighting old data in favor  of the  more  recent pieces of 
information  or  the  modeling of a as a  slowly  varying Markov 
process.  In addition,  the  formulation  (30)  provides a method 
for  developing  an analysis  system for noise-degraded speech 
(i.e.,  the case when \k > 1). 

Let us now  consider  the  computational  complexity  of 
(27)-(29).  First  note  that  one  does  not  have to compute 
the  correlation  coefficients. However, one does have to 
calculate K ( N )  a t  every stage,  and if one solves for  the gain 
from  the  Riccati  equation  (29),  one  has  on  the  order  of p 2  
multiplications  per stage.  However, Morf et  al. [61 I and 
Morf and  Ljung [ 7 11 have  exploited  the  structure  of  the 
equations to  obtain fast  algorithms  for  the  direct  compu- 
tation  of K. Combined  with  the  fast  algorithms  mentioned 
earlier, one  now  has  efficient recursive procedures  for  the 
covariance  method  as  one  increases  either  the  order p of the 
predictor or  the  number N of  data  points. 

C. Design o f  a Predictor as a Stochastic  Realization  Problem 
A problem  that  has  attracted a  great  deal of attention  in  the 

control  and  estimation  literature is the stochastic  realization 
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problem [ 3 5 ] ,   [ 3 9 ] - [ 4 1 ] ,   [ 4 4 ] ,   [ 5 8 ] .  Briefly stated,  the 
stochastic  realization  problem  asks  the  following: given a 
stationary Gaussian random process y with  correlation  function 
R ( n ) ,  find  a Markovian representation 

x(n  + 1)  = A x ( n )  + w ( n )   y ( n )  = c’x(n) (3 1) 

where w is a  zero-mean  white-noise  process  with  covariance 
Q. Refemng  to (20)-(22), we see that  this  is  equivalent  to 
finding  a  factorization: 

R ( i )  = ch‘b ,  i 2 0 (32) 

b = P c   A P A ‘ -  P = - Q .  (33) 

Examining (32)  and (33), we see that  the algorithm falls 
naturally  into  two pieces: (i)  find  a  triple ( A ,   b ,  c) satisfying 
(32); (ii)  fiid P and Q satisfying (33). One  of the best known 
studies of this  problem is that of Faurre [ 4 4 ] ,  [ 561. As he 
pointed  out,  the  first  step of the algorithm is simply the well- 
known  deterministic  realization  problem when one is given 
the “weighting pattern” R(O), R(  l ) ,  R(2), . . . This  problem 
has  been  widely  studied in the  literature f301 ,   [3  1 1 ,  [371,  
[40] ,  and we  will make a few comments  about  this  aspect  of 
the problem  in  a  few  moments.  Before  discussing  the  numerical 
aspects of the first  step  or  the  details of the  second,  let us see 
what the first  part  yields in the  frequency  domain [ 571. Let 

S y ( z )  = R ( i ) z - i .  
+a 

(34) 
i=-m 

Then, we see that  the  factorization (32) yields 

S y ( z ) =  c ’ ( z Z -  A ) - ’ z b  + c ’ ( z - ’ I -   A) - ’Ab .  (35)  

Defining a ( z )  = det ( z l -   A )  and  putting  the  two  terms in (35) 
over a  common  denominator, we see that  the  first  step  in  the 
algorithm  yields 

That is,  we have obtained  a  factorization of the  denominator 
of S,. If  we can  also factor  the  numerator we  will have deter- 
mined the desired transfer  function @ ( z ) / a ( z ) ,  which,  when 
driven by  white noise,  yields the  spectrum S y ( z ) .  It is clear 
from (31) that  it is the  second  part of the  spectral  factoriza- 
tion  that is accomplished  by the second  step of the  stochastic 
realization  algorithm.  Finally,  note that  the model  obtained 
contains both poles  and  zeroes. 

There  are  several  methods  for  performing  the  second  step of 
the algorithm.  Faurre [44]  showed that (33) could  be  solved 
for values of P inside a given range,  and  he  identified  the 
smallest such  covariance, P ,  , as that arising  from  an innovations 
representation of y-i.e.,  a  steady-state Kalman  filter.  Thus to 
complete  the  second  step we  can either solve  an  algebraic 
Riccati  equation  or can  use the  “fast algorighms,”  as  described 
in subsection 11-A to compute  the time-varying  Kalman  gain. 
Letting  the  transients die out, we then  obtain  the desired 
steady-state  filter.  Although  this  approach involves  solving 
for  the  entire gain time  history,  this  procedure may  be faster 
than  direct  solution of the algebraic  Riccati equation. 

Let us now turn  to  the numerical  aspects of the  first stage- 
i.e.,  the  computation of the  factorization (32). The  algorithms 
of Rissanen [39]  and Ho [29]  are  based on  the  examination 

of the  Hankel  matrix 

L R k -  1) R ( N )  R ( N +  1) - * R(2N-   2)  J 
It is well-known [67]  (see also Section  I-A) that R admits  a 
factorization (32) if  and  only if there is some  integer n such 
that 

rank HN < n,  for all N .  (38) 

Ho’s original  algorithm  yielded  a  minimal  realization  (i.e.,  dim 
A in (32) is as  small  as  possible) if a  bound n was known  in 
advance.  A  far  more  critical  question  (from  a  practical  point 
of view) is the partial  realization  question. Here we take  into 
account  that we only  have  available a  finite  number of correla- 
tions R(O), R( I ) ,  , R(N - l ) ,  and  one  would like to  obtain 
the  minimal  factorization  that  matches  these. One  can  use 
Ho’s algorithm  for  this,  but it is not recursive-i.e., if we incor- 
porate R ( N ) ,  we must  re-solve the whole  problem. Fortu- 
nately,  Rissanen [ 391 and  Dickinson et  al. [ 371 have  developed 
efficient, recursive  procedures (the  latter of  which is based on 
the Berlekamp-Massey  algorithm [38], which was developed 
for  the scalar case). We note  that  these  algorithms essentially 
solve the Pade approximation  problem,  and we refer the 
reader to  the references  for details. 

Thus,  efficient  algorithms  exist  for  spectral  factorization 
and  one  would  expect  good  results if the  process  y  truly has 
a  Markovian  representation and if one has the  exact values of 
the  correlations. This  points  out  a  conceptual  difference 
between  linear  prediction  and the above stochastic  realization 
procedure. In linear  prediction,  no  pretense is made  about 
exactly  matching  a  model. All that is wanted is a  least  squares 
fit,  and  thus  one would expect  this  procedure  to be relatively 
robust when one uses a finite record of real data  to  generate 
an  estimate of the  correlation  function which is then used  in 
the  linear  prediction  procedure. On the  other  hand, it can 
easily be  seen that an infinitesimal  perturbation of HN in 
(37) can make  it have  full rank. In this case, in  the  partial 
realization  procedures-which in essence  are  looking to match 
a  model  exactly-will  yield  a  system of extremely high  dimen- 
sion. Thus, it appears that these  algorithms  are  inherently 
sensitive to  errors  in  estimates of the  correlation  coefficients. 
In addition, if y has no Markovian representation,  the  linear 
prediction  approach  may  yield  a  useful fit, while the  partial 
realization  procedure  may  very well run  astray as it tries to 
fit  the  data  “too  closely”. 

Does this mean that  the above  procedure is of no use  in 
identifying  parameters in a speech  model? The answer to that 
is perhaps  not. What is needed is a  modification of the first 
step  of  the  stochastic  realization  algorithm. As the version 
described  here  stands, it is too sensitive, and, in fact,  DeJong 
[ 6 8 ]  has  shown that these  methods are  numerically  unstable 
in that  the  inexact  minimal  realization  supplied by these 
algorithms,  as  implemented on  a  finite  wordlength  computer, 
may not be a  “numerical  neighbor”  of  the  sequence {R(i)}  
that is to be factored. By rephrasing  the  algorithm in terms of 
€-rank-the  least  rank of all systems  within  an  “€-neighborhood” 
of the given sequence-DeJong  obtains  a slower  algorithm  that 
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is similar to Rissanen’s but is numerically  stable.  This  ap- 
proach is extremely  appealing  for two reasons:  (i) we can, 
within  this  framework,  seek  minimal  realizations in the 
€-neighborhood of a sequence {R(i)}  that itself is not realizable 
by  a  finite  dimensional  system; (ii) we can  seek the “nearest” 
reduced-order  realization of  given dimension of a given system: 

In addition  to  the  work of DeJong,  a  number of other 
methods have  been  proposed for  “approximate” Pade  ap- 
proximations [62] ,   [69] ,  [ 701.  One  interesting  possibility 
is the all-pole approximations-i.e., we perform  linear predic- 
tion  on  the R( i ) .  This  would  require computing  the  correla- 
tion of the R ( i ) !  (Note  that an all-pole assumption  here 
would nor necessarily  lead to an all-pole model in (3 1). 

One of our goals in this  section  has  been to  point  out  a 
number of similarities between  the goals  and techniques of the 
two disciplines. We have  also  seen  some of the  differences, 
but  others have not been  discussed. In particular,  in  this 
section we have treated  identification  for  identification’s 
sake. As pointed  out  in  [42]  in  control  system design. identi- 
ncation is often simply  a  means toward  the goal of efficient 
control.  Thus, in many  control  applications,  the value of 
identification is not measured  by the  accuracy of the param- 
eter estimates,  but  rather by the performance of the overall 
system. In addition, in control  there  are several types of 
identification  problems,  since  one  has the  opportunity  to 
excite the system  through  inputs.  Different  problems arise 
if the  system is operating  open  loop,  in  a time-invariant 
closed-loop  mode, or in an adaptive  closed  loop  mode. We 
refer  the  reader  to [41],   [43] for  more on this  subject  and 
for  further references. In addition, in many  on-line  control 
problems  the  number of parameters to be identified is not 
very  large-four or five. In fact,  one of the key  problems  in 
practical  adaptive  control is the careful  choosing of which 
few parameters to  identify. 

On the digital filtering  side,  one is often  interested in the 
accuracy of the  parameter  estimates.  This is of importance, 
for  example, if one is attempting  to design an all-pole  filter 
that  matches  a given impulse  response  in  a  least  squares  sense, 
or if’ one is attempting  to  estimate  formants  from  an all-pole 
speech  model.  On the  other  hand,  for  linear  predictive  coding, 
the  accuracy of the parameters  may  be of secondary  interest, 
while the primary  concern is more  efficient  coding of speech 
data. In this case, accuracy is of importance  only  in so far as 
it  makes  the  coding  scheme  more  efficient. A l s o ,  in the 
speech problem, we are usually  dealing with many unknown 
parameters-between  twelve  and  sixteen [ 521. 

With  regard to  the speech  problem, we note  that  linear 
prediction has  proven to be a  particularly  appropriate  tool 
for  a  variety of reasons,  ranging  from  the  fact  that the all- 
pole  model is often  a realistic one to the  property  that  the 
linear  prediction  procedure  tends to  match  the  spectral en- 
velope of the  data [ 46) .  In this  section we have  described  a 
number of related  identification  concepts  (see [ 1621  for 
more),  some of which  may be useful in solving  problems in 
speech  analysis,  such  as enhancement of noise-degraded  speech. 
We have also  pointed out a  number of questions  concerning 
some of these  methods, such  as the need for  detailed  numerical 
analyses of the  many  “fast”  algorithms,  and  the necessity of 
further analysis  and experimentation to  assess whether  any 
of these  techniques can  improve  upon  the  performance achiev- 
able  in  speech  processing  using  linear  prediction. 

111. STABILITY ANALYSIS 
In the field of digital signal  processing, stability issues arise 

when one considers the consequences of finite  word  length 
in digital filters.  On the  one  hand,  a digital filter necessarily 
has  finite range, and  thus  overflows  can  occur,  while on  the 
other,  one is inevitably  faced  with the problem of numerical 
quantization-roundoff  or  truncation. Since the fiiter  has 
finite range, the  question of the  state of the  f i ter  growing 
without  bound is irrelevant.  However, the nonlinearities 
in the filter,  introduced  by  whatever  form of finite  arithmetic 
is used,  can  cause  zero-input  limit  cycles  and  can also lead 
to discrepancies  between the ideal  and  actual  response of 
the  f i ter  to certain  inputs.  Following  the discussions in [ 761, 
[821,  the  typical  situation  can  be  described as follows 

x ( n  + 1) = A x ( n )  + B u ( n )  y ( n )  = Cx(n)  

x ( n )   = N ( x ( n ) )  (39) 

where N is a  nonlinear,  memoryless  function  that  accounts 
for  the  effects of  overflow  and  quantization. If one assumes 
that  the associated  linear  system (Le., N = identity) is designed 
to meet  certain  specifications,  one  would like to  know  how 
the  nonlinearity N affects overall performance.  For  example, 
fiiter  designers are  interested  in  determining  bounds on  the 
magnitudes of limit cycles  and  in finding out  how  many  bits 
one needs to keep  the  magnitudes of such  oscillations  within 
tolerable  limits. 

On  the  other  side,  a  typical  feedback  control  system is 
described  by 

Y = Gl(e), e = u - G 2 ( y )  (40) 

where  the  input u,  the  output y ,  and  the  error e are  functions 
of time,  and G I  and Gz represent the dynamics of the forward 
and  feedback  paths,  respectively.  In  control  theory one is 
interested  either  in  the analysis or  the synthesis of such 
systems.  In the synthesis  problem we are given an  open  loop 
system GI and  are  asked to design  a  feedback  system G2 
such that  the overall  system  has  certain  desirable stability 
properties.  In the case  of stability analysis, one  may be 
interested  either  in  the driven or  the undriven  characteristics. 
In  the driven  case the problem  involves determining if bounded 
inputs  lead to bounded  outputs  and if small  changes  in u lead 
to small  changes in  the y .  In the undriven  case,  we  are  in- 
terested  in seeing if the system  response  decays,  remains 
bounded,  or diverges  when the  only  perturbing  influences 
are  initial  conditions. 

It is clear that  the problems of interest to researchers  in 
both disciplines  have  a  good  deal in  common,  and, as we 
shall see, workers  in  each  area have obtained  results  by  draw- 
ing  from very  similar  bags of mathematical  tricks. However, 
there  are  differences  between  the  methods used and  results 
obtained  in  the  two areas. In the analysis of digital filters 
the  work  has  been  characterized  by  the  study of systems 
containing  quite  specific  nonlinearities.  In  addition,  much 
of the  work  has  dealt  with specific filter structures. In par- 
ticular,  second-order  Titers have  received  a  great  deal of 
attention  [751,  [761, 1801, [821 since  more  complex  filters 
can  be  built out of series-parallel interconnections of such 
sections. Also, the class of wave digital filters  [78],  [79] 
have  been studied  in  some  detail.  Studies  in  these  areas have 
yielded  extremely  detailed  descriptions of regions of stability 
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in  parameter  space  and  numerous  upper  and  lower  bounds 
on limit cycle  magnitudes  (see [76],  [77],  [86],  [97]-[99]). 

In control  theory,  on  the  other  hand,  the  recent  trend  has 
been  in the development of rather  general  theories,  concepts, 
and  techniques  for  stability analysis. A number of rather 
powerful  mathematical  techniques have  been  developed, 
but  there  has  not  been as much  attention  paid to obtaining 
tight  bounds  for  specific  problems.  In  addition,  problems 
involving  limit  cycles  have not received nearly as much  atten- 
tion  in  recent  years as issues such as bounded-input  bounded- 
output  stability  and global asymptotic  stability  (although 
there  clearly is a  relationship  between  these issues and limit 
cycles). 

A .  The Use of Lyapunov  Theory 
The  technique of constructing  Lyapunov  functions to 

prove the  stability of  dynamical  systems  has  been  used  by 
researchers  in both fields  (see [95]  for details  and  further 
discussions).  Consider  a  system with  state x ( k )  and  with 
equilibrium  point x = 0. A Lyapunov  function V ( x )  for 
this system is a  scalar function  for  which V ( 0 )  = 0 and  which 
is nonincreasing  along  system  trajectories (i.e., V ( x ( k ) )  is 
nonincreasing  as  a  function of time). 

If this  function  has  some  additional  properties, we  can 
prove stability or  instability. Basically, we think of V as 
an  “energy”  function.  One  then  obtains  results  depending 
upon  how  energy behaves  along  trajectories. Intuitively, if 
V is everywhere  positive  except at x = 0 and V ( x ( k ) )  de- 
creases monotonically,  the  system  dissipates  energy  and is 
stable. On the  other  hand, if V ( x o )  < 0 for  some X O ,  then 
the system  cannot  be  asymptotically  stable, since the  non- 
increasing  nature of V ( x ( k ) )  guarantees that  the system 
can’t approach  the  zero  energy  state if started  at X O .  One 
advantage of Lyapunov-type  results is that  the  hypotheses 
for results  such as those  just  mentioned can  be  checked 
without  the  construction of explicit  solutions to difference 
or differential  equations.  However, the  major  problem  with 
the  theory is the difficulty  in  finding  Lyapunov  functions 
in general. 

With  respect to the limit  cycle  problem, Willson [75], 
[81]  has utilized  Lyapunov  functions to  determine  condi- 
tions  under  which  second  order digital filters will not have 
overflow  limit  cycles  and will respond to “small” inputs  in 
a  manner  that  is  asymptotically close to the ideal  response. 
Parker  and Hess [ 861  and  Johnson  and  Lack [98],  [99] have 
used Lyapunov  functions to obtain  bounds  on  the  magnitude 
of limit  cycles. In each of these  the  Lyapunov  function  used 
was a  quadratic  form which  in fact proved asymptotic  stability 
for  the ideal  linear  system.  In Willson’s work [81],  he was 
able to  show  that his  results  were  in  some  sense  tight  by 
constructing  counterexamples when  his condition was vio- 
lated.  In  [86],  (981,  [99]  the  bounds  are  not  as  good as 
others  that have  been found,  and,  as  Parker  and Hess state, 
this  may be due  to  the  difficulty of determining which  qua- 
dratic  Lyapunov  function to  use. As pointed  out  by Claasen 
et al. [76],  it appears to be  difficult to find  appropriate 
Lyapunov  functions  for  the  discontinuous  nonlinearities 
that characterize  quantization. 

There is a class of digital fdters-wave  digital filters (WDF) 
[ 781, [ 791 -for which  Lyapunov  techniques  are  particularly 
useful.  Such filters  have  been  developed  by  Fettweis so that 
they possess many of the  properties of classical analog  filters. 

Motivated  by  these analogies, Fettweis  [78]  defines  the 
notion of “instantaneous  pseudopower,”  which  is  a  particular 
quadratic  form  in  the  state of the WDF.  By defining the 
notion of “pseudopassivity” of such  a fiter,  Fettweis  intro- 
duces  the  notion of dissipativeness. With this  framework,  the 
pseudopower  becomes  a  natural  candidate  for  a  Lyapunov 
function,  and  in  [79],  Fettweis  and  Meerkotter  are  able to 
apply  standard  Lyapunov  arguments to  obtain  conditions 
on  the  arithmetic used that  guarantee  the  asymptotic  sta- 
bility of pseudopassive WDF’s. The  introduction of the 
concept of dissipativeness in  the  study of stability is an  often- 
used  idea  (see the  note of Desoer [ 87]),-and  a  number of 
important  stability  results have as their basis  some notion of 
passivity. We also note  that  the use of passivity concepts 
and  the tools of Lyapunov  theory  appear to be of some 
value  in the development of new digital filter,  structures 
that behave  well in  the presence of quantization  [801. 

Lyapunov  concepts  have  found  numerous  applications  in 
control  theory.  The  construction  of  quadratic  Lyapunov 
equations  for  linear  systems is well understood  and is de- 
scribed  in  detail  in  [95].  The  key  result  in  this  area  is  the 
following.  Consider the discrete-time  system 

x ( k  + 1) = A x @ ) .  (4 1) 

This  system is asymptotically  stable if and  only if for any 
positive definite  matrix L ,  the  solution Q of  the  (discrete) 
Lyapunov  equation 

A’QA - Q = -L  (42) 

is also  positive definite. In this case the  function X’QX is 
a  Lyapunov  function  that  proves  the  asymptotic  stability 
of (41).  Note  that  this  result  provides  a  variety of choices 
for  Lyapunov  functions  (we  can  choose  any L > 0 in  (42). 
Parker  and Hess [86]  obtain  their  bounds  by choosing L = I  
(here  (41)  represents  the  ideal  linear  model).  Tighter  bounds 
might  be  possible  with other choices  of L ,  but, as they  men- 
tion, it is not  at all clear how  one  would go about  finding  a 
“better”  choice  (other  than  by  trial  and  error). 

In addition to their  direct use in  specific  applications,  one 
of the  most  important uses of Lyapunov  concepts is as an 
intermediate  step  in  the  development of other  more  explicit 
results.  For  example,  the  stability of optimal  linear  regulators 
with  quadratic  criteria  and of optimal  linear  estimators  can 
be  proven  by  constructing  particularly  natural  quadratic 
Lyapunov  functions [ 721, [ 1051. A further use of Lyapunov 
theory  has been to provide  a  framework  for the  development 
of many  more  explicit  stability  criteria.  Examples of these 
are  a  number of the  frequency-domain-stability  criteria  that 
have  been  developed in the last 10  to  15 years  (see [ 831 - 
[85],  [88],  [89],  [93],  [94]). These  results  are the subject 
of the  next  subsection. 

B. Frequency Domain Criteria,  Passivity,  and  Lyapunov 
Functions 

We have  already  mentioned that  the  notion of passivity is 
of importance  in  stability  theory  and have  seen that  Fettweis 
and  Meerkotter have  been  able to utilize  passivity notions 
to study  certain digital filters via Lyapunov  techniques.  The 
relationship  between  passivity,  Lyapunov  functions,  and  many 
of the  frequency  domain  criteria of stability  theory  is  quite 
deep,  and  in  this  subsection we  wish to illustrate  some of 
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these ideas. We refer  the  reader to  the work of J .  C. Willems 
[92],  [96], [ 1031,  in  particular,  for  a  detailed  development. 
The  general  development in these  references is beyond  the 
scope  of  this  paper, but we  will indicate  some of the basic 
ideas for a  discrete-time  system,  denoted  by  the  symbol G ,  
with  input u and output y .  In  this  case,  one can define  input- 
output  stability as 

m 

uf<- 2 y f < -  (43) 
i =  1 i =  1 

Le., if the  input  has  finite  energy, so does the  output. If we 
can  make the stronger  statement 

( 5 y f ) l i 2  < K (  5 u t )  
112 

i= 1 i =  1 
(44) 

tains Popov's  stability  condition [89]  and  the discrete-time 
analog  due to  Tsypkin  [85],  [93] : suppose f i s  nondecreasing 
and is strictly inside the  sector [0, k].  Then  the  feedback 
system is finite gain input-output  stable if there  exists  an 
a 2 0 such  that 

Re [ ( l   + a ( l  - e - i " ) ) C ( e i w ) ]  +- 20, QUE [0, 2771. 
I 

k 

(47) 

Claasen et  al. [82] have obtained  direct analogs  of (46)  and 
(47)  for  the  absence of limit cycles  of  period N: 

Re [C  (eiZn'lN )I+: >0, l = O ,  l , * * * , N -  1  (48) 
1 

or  the existence  of a p  2 0 such  that 

we call K the  input-output gain. A system is called passive N-  1 

if (strictly passive if there is an E > 0 such  that) Re  1 + a (1 - e i z n z p / N )  [ p = 1  
N  N 

(45)  (49) 
i = l  Here f is inside the  sector [O, k ]  and  is also nondecreasing 

The  motivation  for  the  definition  (45)  stems  from  the  in- 
terpretation of the  left-hand  side of (45) as the  total energy 
input  to  the system.  Thus  a passive system  always  requires 
a  positive  amount of energy to be  fed into it. This notion 
has  extremely  strong  ties to  the usual notions of passivity 
and dissipativeness for  electrical  networks  and is, in  fact, 
a  natural  generalization of these  concepts [ 1031, [ 1071. 

Having this  framework,  one  can derive important  results 
on  the stability  and  passivity of feedback  interconnections 
of  passive systems  (see [ 103]),  much  like  the  results of 
Fettweis  for his pseudo-passive  blocks. As outlined  by Willems 
in [ 1031,  there  are  three  basic  stability  principles.  The  first 
involves the  interconnection of passive systems  as  mentioned 
above,  while the second is the small  loop gain theorem  (sta- 
bility arises if the gain around  the  loop is less than  unity-a 
result  used  in the digital fiiter  context  in [ 1041 ). The  third 
result  involves notions of passivity  and of sector  nonlinearities. 
A nonlinearity is inside (strictly  inside)  the  sector [ a ,  b] ,  if 
its  graph is bounded by  (strictly  contained  within) the lines 
y = ax and y = bx.  Thus, the effective  gain of this  nonlinearity 
is between a and b .  As an  example,  the  operation of round- 
off is inside the  sector [0, 21 (see [ 761, [82]  for  the  sector 
characteristics of other  quantizers).  To  indicate  how  sector 
nonlinearity  conditions  can be  used,  consider  (40)  with G I  
specified  by  a stable  discrete  time  transfer  function C(z), 
and Cz a  memoryless  nonlinearity, f, assumed to  be  inside 
the  sector [0, k]. In this case, the general sector  input-output 
stability  theorem  reduces to  showing  that (Cl + ( l /k))  is a 
passive system,  and,  as developed  in [92], [ 1031,  this will be 
the case if and  only if C(z) + (1 / k )  is positive  real. 

in  the case of (49).  The  proofs given in  [82] rely  heavily 
on  the passivity  relations (48),  (49)  and  an  application of 
Parseval's theorem in order to contradict  the  existence of a 
limit  cycle of period N .  This  last  step  involves the assumed 
periodicity  in  a  crucial  way,  but the application  of  Parseval 
and  the use of the positive real relationship  (48) is very  rem- 
iniscent  of  stability  arguments  in  feedback  control  theory 
[92].  In  the proof of (49)  the  monotonicity of f & used  in 
conjunction  with  a version  of the rearrangement  inequality 
[91], [ 921  which  has  also  been  used to study  stability of 
feedback  control  systems. 

As mentioned  at  the  end of the preceding  subsection, 
many  frequency  domain  results  can be  derived with  Lyapunov- 
type  arguments. We have.  also  seen  in  this  subsection that 
many of these  results  can  be  derived via passivity  arguments. 
Clearly the  two are  related,  and  the  crucial result that leads 
to this  relationship is the Kalman-Yacubovich-Popov  lemma 
[ 1001, [ 101 1, [ 1031, which  relafes the positive  realness of 
certain  transfer  functions to  the existence of solutions to 
particular  matrix  equalities  and  inequalities. Kalman [ 1011 
utilized  this  result t o  obtain  a  Lyapunov-type  proof of the 
Popov  criterion,  and Szego [ 1001  used  a  discrete-time  version 
to obtain  a  Lyapunov-theoretic  proof of  Tsypkin's  criterion. 
We also note  that  the positive  real lemma  plays  a  crucial  role 
in several other problem  areas  including the  stochastic realiza- 
tion  and  spectral  factorization  problem  [44]  and  the  study 
of algebraic Riccati  equation [ 1021. 

Finally, we note  that  many of these  passivity-Lyapunov 
results have  instability  counterparts (e.g., see [74],  [901). 
Such  results  may  be  useful in developing  sufficient  conditions 
for  the  existence of limit  cycles. 

. _  . 

Re ( G ( e i w ) )  + - > 0, w E [0, 2n] 
1 
k (46)  In  this  section we have  considered  some of the aspects  of 

stability  theory  that  point  out  the  relationship  among  the 
which is Tsypkin's  stability  criterion [ 1061.  techniques, goals, and  results of researchers in both disciplines. 

A variant of this  type of result  involves the use of multipliers As we  have  seen, many of the results  in  the  two disciplines 
[92] in which one modifies the feedback  system of (40)  by involve the use of very  similar mathematical  tools.  On  the 
inserting  a  second  system  in the  forward  path  and  its inverse other  hand,  the perspectives and goals of researchers  in the 
in the  feedback  path. One  can then  apply  the basic stability  two  fields  are  somewhat  different.  The  development of a 
results to the modified G1 and C 2 .  In  this  manner  one ob- mutual  understanding of these perspectives and goals can 
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only  benefit  researchers  in  both  fields  and is in  fact  absolutely 
crucial for  the successful study  of  certain  problems.  For 
example, in the  implementation  of digital control  systems 
one  must  come to grips  with  problems  introduced  by  quan- 
tization. Digital controller limit cycles  at  frequencies  near 
the resonances of the  plant  being  controlled can  lead to 
serious  problems. In  addition,  the use of a digital filter  in 
a  feedback  control  loop  creates new quantization analysis 
problems.  Finite  arithmetic  limit  cycles  can  occur  only in 
recursive (infinite  impulse  response) filters. However, if a 
nonrecursive  (finite  impulse  response)  fdter is used in  a  feed- 
back  control  system,  quantization  errors it produces can 
lead to limit cycles of the closed-loop  system [ 1041.  How 
can  one  analyze  this  situation,  and  how  does  one  take  quan- 
tization  effects  into  account  in digital control  system de- 
sign? Questions  such as  these  await  future  investigation. 

IV. MULTIPARAMETER SYSTEMS, DISTRIBUTED 
PROCESSES, AND RANDOM FIELDS 

A growing interest  has  developed over the past  few  years 
into problems  involving  signals and  systems that  depend  on 
more  than  one  independent variable.  In this  section  we 
consider  several  problem  areas  involving  multiparameter 
signals and  systems  in  order  to  examine  some of the key 
issues that arise. For  an  up-to-date view  of some of the 
research  in this area, we  refer the reader to  the  recent special 
issue  of the PROCEEDINGS OF THE IEEE [ 1561. 

A.  Two Dimensional Systems and Filters 
In  analogy  with the 1-D case, a  2-D  linear  shift  invariant 

(LSI)  system  can  be  described  by  a  convolution of the  input 
x ( m ,   n )  and the  unit  impulse response h(m,  n).  Alternatively, 
taking  2-D  z-transforms, we obtain 

Y(z1, z z ) = H ( z ~ ,  Zz)X(Zl, ZZ). (50) 

Of special interest are the  rational  system  functions,  H = A / E ,  
which arise from  2-D  difference  equations  such  as 

Here Il , I2 are  finite  sets of pairs of integers. 
Let us first  discuss the  problem of  recursion.  Given  the 

equation  (51), we want to use it  to calculate the  next  output 
given previous outputs and  the  input. Unlike the  1-D case, 
in  which the  index n has the  interpretation of time,  in  the 
2-D  case,  in  general, it is not  clear what “next”  or “previous” 
mean. In fact,  just given (51)  it is not clear that  there is 
any definition of next  or previous that will allow us to 
compute y ( m ,   n )  recursively.  Dudgeon [ 1081,  Pistor [ 1 191, 
and  Ekstrom  and  Woods [ 1351  have studied  this  problem 
in great  detail.  Let us consider  one of the  most  important 
special  cases of (51) in  which A = 1  and b has  its  support as 
indicated  in Fig. 2. We then have 

0 0 0 . . . . . 0 0  

- -, 
0 0 1 l 0 0 0 0 0 0 0  

- - - - - 
0 0 0 0 0 0 0 0 0 0  

9 
k 

M r I 

Fig. 2. Support of  a fust quadrant of “Northeast” (NE) function. Pos- 
sible  nonzero  locations are indicated by solid dots. 

(a )  North (b )  Earl ( c )  NE 

Fig. 3. Several  possible  directions of recursion  for (52). 

Note  that  from  (52)  and  the figure, it is evident that we must 
store values  of y ( k ,  I )  for (k, 2 )  to  the  south  and west of the 
domain over  which we  wish to calculate y .  If  this  domain is 
infinite  in  either  direction,  the  required  storage  is also infinite. 
In fact  the  required  storage grows  linearly  as we increase the 
domain  in  either  direction  (see [ 1081  for  details).  Thus 
storage  requirements  in  2-D  depend  on  far  more  than  the 
order (M, N )  of the filter. 

We also find that  the storage  requirements  depend  on  the 
sequencing  of the recursion.  Several  directions of recursion 
are  indicated  in  Fig.  3.  Each  recursion calls for  its  own se- 
quence of data accessing  and  discarding. The N and E re- 
cursions  appear to  have  particularly  simple  sequencing  rules, 
but  the  data  must  be processed serially. On the  other  hand, 
the NE recursion has a  more  complex  sequencing but leads 
to  the possibility of parallel computation,  since,  for  example, 
points 4, 5, and  6  can be calculated  simultaneously.  The 
possible  directions  for  recursion  and  potential  use of parallel 
computation can  be determined  with  the aid  of  a conceptual 
device-the  precedence relation [ 1331, which  partially  orders 
points  with  the  rule ( m ,  n) < (I, k) if y ( m ,  n )  must  be cal- 
culated  before we can  calculate y(2, k). 

Let us now  return to  the  question of recursibility.  Clearly 
the  picture is symmetric-i.e., we can  have NW, SE, and SW 
recursions,  with b ( k ,  2) restricted to be  a function  on  the 
corresponding  quadrant. However,  as shown by  Dudgeon 
[ 1081,  this  by no means  exhausts  the possibilities for  recur- 
sion. In addition to  the  one  quadrant  functions, we can 
obtain recursive  difference  equations  with b(k, Z)’s that 
are  one-sided [ 1081.  In  this  case the  support of b is as  in 
Fig. 4, and we can  calculate y ( m ,  n )  column  by  column, 
recursing to  the  north  and  then  shifting  to  the  next  column 
to the east. 

1 M N  Let us make  another  connection  with 1-D  processing. 
y ( m ,  n )  = - - W ,  Oy(m - k, n - I) Suppose  that  one of the  two  indices,  say m ,  has the  interpre- 

tation as time.  Then  one  might  think o f y ( m ,  n )  and x ( m ,  n )  
(k, 1 )  + ( 0 ,   0 )  as (1-D)  spatially  distributed processes that evolve in time. 

(52) Temporal  causality  might  then  correspond to  the  support 
b(0,O) x(m’ n)’ of 6 in Fig. 4 being  modified  by  deleting the  points  on  the 

b(o,o)  k=O l = O  

1 +- 
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Fig. 4. Support of a  one-sided  function. 

positive n axis,  yielding  a “strictly”  one-sided  function. In 
this case, one  could  define  the  “state” of the  system,  and it 
is clear that  this  “state” will be  finite  dimensional  only if the 
range of n is bounded,  which is precisely  when the require.d 
storage  for  the  2-D  recursion is finite. 

As mentioned  earlier,  the  ability t o  solve a 2-D  difference 
equation recursively  leads  directly to  the definition of a 
partial  order on  the  part of the 2-D grid over  which we wish 
to solve the  equation. Given this  precedence  relation,  one 
then  has  some  freedom in deciding how to sequence the 
calculations.  Specifically, if  we think of a  sequence of cal- 
culations  as  determining  a total order  on  the  part of the 
2-D grid of interest, all we require is that  this  total  order 
be compatible  with  the  precedence  relation.  Once we  have 
such  a  total  order, we can either view this  as  transforming 
I-D  filters  into  2-D  fiters  or vice versa [ 1221.  One  widely 
used order is the line-scan [ 1081, [ 1121, [ 1221: 

(i, j ) <  ( I ,  k) if i <  I or i =  1 and j <  k. 

Assuming we are  interested  only in lines of finite  extent, 
we can  readily  see  one of the problems  with  this  order  and 
with  orders in general. If we attempt  to process the  order 
input  data  with  a 1-D LSI system,  the  resulting  2-D  pro- 
cessing is not SI, essentially  because our ordering  has placed 
the last  point on  one  line  “next”  to  the first  point on  the 
next. 

We close our discussion of 2-D  orders  and  precedence 
relations  by  noting  that  these very  same  issues arise naturally 
in  certain  feedback  control  problems. Ho and  Chu [ 1281 
consider  optimal  control  problems  in which one  has  a  set 
of decision  makers  who  base  their  decisions on certain  ob- 
served data. Ho  and  Chu  define  a  precedence  relation  among 
decisions: j < i if the decision of j affects  the  observation  of 
i. They assume that  this is a  partial  order-i.e. that if j < i, 
we cannot have i <  j (this is precisely the  condition  needed 
for recursibility of 2-D fiters).  Then,  under  a  “partially 
nested  information  condition”-if j 4 i ,  then i’s observation 
includes  knowledge of j ’ s  observation-they  solve  an  optimal 
control  problem. Witsenhausen [ 1291  has also studied  this 
partial  order  and  has  pointed  out  that if one  totally  orders 
the set of decision  makers in ,  a  way compatible  with  the 
precedence  relation,  one  can  then  define the  state  evolution 
of the system.  Hence we see that  there  may  be many pos- 
sible sets of states  corresponding to  different  compatible 
total  orders  (just as  storage  requirements vary with the choice 
of recursion). 

In the preceding  discussion we have  seen that  the presence 
of a  partial  order as opposed to  the usual  1-D total  order 

leads to  some  complications. New difficulties  are  also  en- 
countered  in  the  stud$ of the  stability of  recursive  2-D  filters 
[ 1081, [ 1201. As in the 1-D  case, the  stability of the filter 
depends on  the  direction of recursion,  and  there  are  many 
more possibilities in  2-D.  In  addition,  although  there  are 
analogs  of  results  such as those  in 1-D that  test  to see if all 
poles are inside the unit circle [ 1081, [ 1161,  the  required 
calculations  are  far  more  complex.  This  increase in com- 
plexity  also arises in the related  problem of the  stabilization 
of a given 2-D  system  function  while  keeping  the  magnitude 
of the frequency  response  unchanged.  In  1-D  this  is  done 
easily by  shifting  those  poles  that  lie  outside  the  unit  circle, 
but  this  cannot  be  done  that easily  in  2-D,  since we cannot 
factor 2-D  polynomials.’ 

Another  stabilization  approach  in  1-D is spectral  factor- 
ization-i.e.,  we  write  a given rational H ( z )  as the  product 
of two pieces, H E ( z )  and H w  ( z ) ,  where HE has all its poles 
inside the  unit circle (and  hence is stable if used to process 
inputs  in  the  eastern  direction)  and H w  has all its  poles  out- 
side the  unit circle (stable to  the west).  Thus, in  2-D,  one 
is tempted  to seek factorizations  into  four  stable  quadrant 
fiters [ 1191 or  into  two  stable  half-plane  fiiters [ 1081, 
[ 1231, [ 1351  much  like the 1-D case. Such techniques have 
been  developed  using  2-D  cepstral  analysis,  and we refer the 
reader to  the references. We do  note  that  the lack  of  a  fun- 
damental  theorem of algebra does mean that  the  factors  in 
these  factorizations will not in general  have  finite order 
denominators. 

A  final  stabilization  procedure is based on  the guaranteed 
stability  in 1-D  of  least  squares  inverse. The least squares 
inverse (LSI) is obtained using exactly  the  methodology  one 
brings into play  in  performing  linear  prediction of speech. 
Given the  denominator B and  its inverse  transform b ,  one 
seeks  a finite  extent  impulse  response p that  approximates 
the convolutional  inverse of b by  choosing  the  coefficients 
in p to minimize the sum of the squares of the  difference 
between b * p  and  the  unit  impulse. In 1-D,  one  has  the 
guarantee  that p is minimum  phase (i.e., that  the all pole 
model 1 / p  is stable). In [ 1201,  Shanks et al. conjectured 
that  this  minimum phase property  holds  in  2-D.  Under  this 
assumption,  they  proposed  the use  of  a double  least  squares 
inverse to  stabilize  and  unstable  denominator of a NE filter. 
Using this design procedure,  numerous  2-D  filters have  been 
designed. Unfortunately,  Genin  and Kamp [ 1601  have re- 
cently  shown  that  this  conjecture is false in 2-D if one  con- 
strains oneself to  quarter-plane  Titers  (although  it is true  in 
certain  restricted  cases [ 1571).  On  the  other  hand,  Marzetta 
[ 1501  has  shown that  the desired  minimum  phase property 
does hold if the least squares  inverse  problem is posed in 
terms of half-plane  fiiters. We will return to  this  point again 
later. 

As in the  I-D case,  a  critical question in the design of 
2-D IIR filters is the existence of limit  cycles  and the effect 
of roundoff  noise  on  the  filter  output.  The  results  in [ 1171 
on  the existence of horizontal, vertical, and  noninteracting 
diagonal  limit  cycles  parallel  1-D  results.  Open questions 
involve the intriguing  question of whether  one can extend 
any of the  other  techniques discussed  in  Section 111. Do the 
passivity-Tsypskin-positive-real-frequency domain  results of 
Claasen et al. [82] and  others  extend  to  the  2-D case?  What 

of algebra’’ for multivariable polynomials (see, for  example, [ 1081). 
‘This is often referred to  as the  “absence of  the fundamental  theorem 
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about  the  Lyapunov  techniques of Willson [ 751 ? Of course 
in  this case one would  need  2-D state space  models  and  a 
2-D  Lyapunov  theory, which  in itself might  be  of  interest 
in  providing  a method  to  test  for  stability of 2-D  LSI  systems 
even with  perfect  arithmetic. 

The analysis  of roundoff noise  in 2-D  filters  can  be  carried 
out  much as for  1-D  filters,  but  another  open  question  con- 
cerns the  extension of the covariance  noise  analysis method 
described  in  Section I for  1-D  roundoff analysis. Again one 
would  need  a  state-space  model in order  to  consider  this 
question. 

B. Two-Dimensional  State-Space Models 
In addition  to  1-D  state space  descriptions  for  recursively 

ordered  2-D  systems [ 1331,  some work  has  been  done on 
the analysis of 2-D  state-space  models. Roesser [ 1341  con- 
siders the NE model 

u(i  + 1, j )  = A l u ( i ,  j )  + A 2 h ( i ,  j )  + B l x ( i ,  j )  

h(i,  j + 1) = A 3 u ( i , j )  + A , h ( i ,  j )  + B z x ( i ,  j )  

y ( i ,  j )  = C l u ( i ,  j )  + C2h(i, j )  + D x ( i ,  j )  (53) 

here x is the  input, y is the  output, and u and h together 
play the role of a  “state”  variable,  “carrying” vertical  and 
horizontal  information,  respectively. Given  this model, 
Roesser  considers  several issues, including  a  variation of 
constants  formula  to solve (53),  a  2-D version  of the Cayley- 
Hamilton  Theorem, which  in turn is used to  obtain  an effi- 
cient  method  for  computing  the  transition  matrix,  and  the 
notions of controllability  and  observability. In obtaining 
his  algorithm  for  recursively  computing the  transition  matrix 
via the Cayley-Hamilton  theorem, Roesser  used the  notion 
of 2-D  eigenvalues in a  crucial  manner,  and in the usual 
nonfactorizable case the calculation of zeroes of a  charac- 
teristic  polynomial is extremely  difficult.  This  not  only 
complicates  his  transition  matrix  algorithm,  but  it  makes 
stability  tests  more  difficult,  as we have  already  mentioned. 
Furthermore,  the  model  (53) i s  limited to  quadrant-causal 
systems.  This is perfectly  reasonable  for the  study of quad- 
rant-recursive  filters,  but  its  value  for the analysis of other 
2-D  signals is unclear.  For  example, Roesser mentions  the 
possibility  of  a  2-D  filtering  theory,  where  (53) plays the 
role of a  “spatial  shaping  fiiter.” As Ekstrom  and  Woods 
[ 1351  point  out,  one cannot obtain  arbitrary  spectra  from 
a NE shaping  filter.  Hence,  one  may  need two such  filters, 
as  well  as  a method  for  modelling  the  spectra of the signal 
field.  Finally, we note  that Roesser’s “state” (u( i ,  j ) ,  h ( i ,  j ) )  
might better  be  termed  a “local state” [ 1311. As we saw 
earlier,  in  recursively  solving  2-D  equations,  the  required 
amount of storage  in  general  depends on  the size of the 
arrays  of  interest, while the dimensions  of u and h correspond 
to  the order of the  system, as  in (52). 

Issues of this  type have  also  been  considered by  Fornasini 
and Marchesini [ 13  1 1. They  consider  local NE state-space 
descriptions of the  form 

x ( m  + 1, n + 1) = A O x ( m ,  n )  + A l x ( m  + 1, n )  

+ A z x ( m ,  n + 1) + B u ( m ,  n )  

y ( m ,  n )  = C x ( m ,  n). (54) 

They  show  that  a NE IIR  fiiter  can  be  realized as in (54) 
if and  only if the  transform of the impulse  response is rational. 

The “if” part of this  result  involves the  construction of a 
realization that is a  generalization of the  1-D  “standard 
controllable  form.” Having such  realizations,  attention 
naturally  focusses on minimality.  This  leads  directly to  the 
notions of  (local)  controllability  and  observability,  with 
finite  rank  conditions  for  these  properties being  developed 
in  a  manner  analogous to  that of Roesser.  The  main  mini- 
mality  result  of  Marchesini  and  Fornasini is that  minimality 
implies  local  controllability  and  observability  but  that  local 
controllability  and  observability do not imply  minimality. 

Attasi [ 1301  has  studied  a  special  case of  (54), in  which 

A0 = -A1A2 = -A2A1 .  (55) 

In this  case, the system  transfer  function is separable (H(z1, z2 )  = 
Hl(z,)H2(z2)), and, as shown  in  [1321,  this is the  only 
case  in  which the global state is finite  dimensional. As 
any  FIR  fiiter can  be  realized  by (54), (55 )  any  stable  impulse 
response  can be approximated  arbitrarily closely  by  a  system 
of this  form.  This, of course, is neither  startling nor nec- 
essarily very useful,  since the dimension of the resulting 
state-space  system may  be extremely large. Having this 
framework,  Attasi  defines  dual  notions of local  controllability 
and  observability  and  derives  conditions  somewhat  simpler 
than in [ 13 11, [ 1341  because  of the assumed  separability. 
Attasi also  considers  minimal  realizations,  obtains  a  state 
space  decomposition  result  and  minimal  realization  algorithm 
much like those  in  I-D,  and  shows  that  minimality implies 
controllability  and  observability. He also proves the con- 
verse  of this last result,  but  this  is only true if one  looks  for 
the minimal  realization  in the class of  models  satisfying (55) .  
We refer the reader to  [ 13 11 for an  example  illustrating 
these  points. 

Undoubtedly  the  major  contribution of  Attasi’s  work is 
that  he did something  with his  models,  and we  will discuss 
his  filtering  results  in the  next  subsection. He also  developed 
a  2-D  Lyapunov  equation, which he used  in  a  generalization 
of the “invariance  principle,” [ 1521.  The  exact  implication 
of this  result  for  2-D  stability  theory  and  its  potential  utility 
in  such  areas as  limit  cycle  analysis  remain  as  questions for 
further  work.  Attasi also  considers  systems  as  in  (54), (55 )  
which  are  driven by  white noise. Again he  obtains  a 2-D 
Lyapunov  equation  for the  state  covariance,  and  this  result 
may  be  of  some  value  in  performing roundoff  noise analysis 
for  2-D filters. In addition,  he develops  a stochastic realiza- 
tion  theory  that  exactly parallels the 1-D  case  with one 
rather surprising exception,  in  that,  unlike  the  1-D case, 
in  the  2-D case the  stochastic  realization is essentially  unique. 
This is due  primarily to the  additional  constraints  imposed 
by the fact that we  use a  single quadrant  shaping  filter. An- 
other novel feature of Attasi’s  development is the necessity 
for using nonsquare  factors-i.e., to perform  the  required 
factorization 

S(z1, zz) = H ( z l ,  z 2 ) H ’ ( z i 1 ,  z:’) ( 5 6 )  

where H is NE causal  and of the form (54), ( 5 5 ) ,  one must 
consider rectangular factors.  For  example, if y is a  scalar 
process, then H in  general  must  be 1 X m ,  and,  in  fact,  the 
aforementioned  uniqueness  result f i es  the value of m .  

Recently, Morf et al. [ 1381  have made several noteworthy 
contributions  to  2-D  state-space  theory.  They  consider  the 
properties of  polynomial  and  rational  matrices  in two vari- 
ables  in  order to generalize the scalar  2-D  polynomial  results 
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of Bose (1371  and  the  matrix 1-D  polynomial  results of 
Rosenbrock  [139]  and Wolovich [ 1401. The  concepts of 
local  controllability  and  observability  for  the Roesser model 
are  explored  in [ 1381,  and the  authors  point  out  that  these 
conditions  neither  imply  nor  are  implied  by  the  minimality 
of the realization  (this is done  with several instructive ex- 
amples). To  obtain  notions of controllability  and observ- 
ability  that  are  equivalent to minimality, Morf et  al .  gen- 
eralize the  approach of Rosenbrock,  and  this  leads to the 
notions of modal controllability  and  observability  and  a 
related  concept of minimality. In this  setting  the  existence 
of  minimal  realizations  becomes  a  difficult  problem,  and 
one may not even  exist if we restrict ourselves to systems 
with  real  parameters. In related  work,  Sontag [ 1361  has 
also found  realizations of lower  dimension  than  those  pro- 
posed  by Fornasini and Marchesini, and  he  has  shown  that 
minimal  realizations  need not be  unique  up to a  change  of 
basis. All of these  facts  indicate that  the 2-D  state-space 
model is an  extremely  complex  one  and  offers  some  extremely 
difficult  mathematical  and  conceptual  problems.  It  remains 
to be  seen whether  any of these  state  models  and  realization 
theories can  provide  a  useful  framework for solving  2-D 
analysis  and  synthesis  problems. 

C. Image  Processing, Random  Fields,  and  Space-Time 
Processes 

Digital  processing of images for  data  compression,  noise 
removal, or  enhancement  is  one of the  major  areas of appli- 
cations of 2-D digital signal  processing  techniques. In  addi- 
tion, image  processing  has  spurred  a  great  deal  of work  in 
the analysis of spatially  distributed  stochastic variables- 
random fields. Let g( i ,  j )  denote  the image radiant energy 
as a  function of two discrete  spatial  variables,  where, for 
the  time being, we  will assume that  the system is free of 
noise. The image  results  from an image formation  process 
that  transforms  the original radiant energy f ( i ,  j )  into  the 
observed  image.  A  general model  that  is  often used for  the 
image formation process is 

N 
g( i ,  j )  = h(i, j ,  k, l ) f ( k ,  I ) ,  i ,  j = 1, * , N  

k, I = 1  

(57) 

where h is the point-spread  function  (PSF),  which  models 
the  smoothing  and  blur  that  take place in  the image forma- 
tion process [ l l l ] ,  [ 1261, [ 1531.  Note  that  one  important 
case of (57) is the shift-invariant  case,  in  which h depends 
only on i - k and j - I. In this case (57) is a  2-D  convolution. 

In addition to  the image formation process, one  must  take 
into  account  the  process of wage recording  and  storing. 
Several  noise-corrupted  nonlinear  image  models  have  been 
developed [ 1261, [ 1531  for  this;  however, as  discussed  in 
[ 1531  often  one  may  be able to  justify  the use of an  additive 
noise  model 

q(i, i )  = d i ,  i )  + u(i, i) (58) 

where u is an  additive  noise  process. We now turn  our  atten- 
tion to the analysis of this  model. 

At  various  points  in  this  development, it will be  more 
convenient to  view f, g, q,  and u as  vectors  by  performing  a 
scan  (lexicographic)  ordering,  in  which  case we write q = 
Hf + u, where H is an N2 X NZ matrix  formed  from  the 

PSF. Examination of (57) yields that H i s  an N X N matrix 
of NX N blocks {Hi i ) ,  where the ( m ,  n )  element  of H f j  is 
h(i,  m ,  j ,  n ) .  If the imaging  system is shift-invariant, it is 
readily  seen that H is block  Toeplitz,  and, in fact,  each of 
the blocks  is itself a  Toeplitz  matrix.  Note also that if h is 
separable, then 

h(i, j ,  m ,   n ) = h , ( i ,   m ) h z ( j ,  n)and H = A 1  @ A z  

wlere @ denotes  the  tensor  or  Kronecker  products,  and A i  
is an N X N matrix  obtainable  from hi.  

It is evident  from the preceding  development that proba- 
bilistic  and  statistical  methods  must  play  some  role  in image 
processing. In this  context, f, g ,  u, and  perhaps h are random 
fields. For  now we  consider  such  a  random field s(i, j )  to be 
characterized  by  its  mean T(i ,  j )  and  its covariance 

(59) 

The field will  be  called  (wide-sense) stationary if 

r ( i ,  j ,  m ,   n )  = r(i  - m ,  j - n ) .  (60) 

Note  that if s is ordered  lexicographically,  then  its  covariance 
R is the NZ X NZ matrix  obtained  from r in  the same  manner 
that H is obtained  from  the  PSF h .  We also observe that R 
is block  Toeplitz  with  Toeplitz  blocks if s is  stationary. 

One  important  problem  in  image processing is the efficient 
representation of images for  storage  or  transmission [ 1531, 
[ 1541.  One  well-known  method  for  obtaining  a less redun- 
dant  representation of an image is the Karhunen-Loeve  trans- 
form [ 1531, which  involves the diagonalization of R .  How- 
ever,  in  general,  this  transform involves exorbitant  amounts 
of computation.  There  are,  however, several  special  cases 
in  which  this  transform can be  calculated  efficiently.  One 
of these,  motivated  by  similar  analysis  performed  by  Hunt 
[ 1531  and  Andrews  and  Hunt [ 1261, is quite  instructive. 
Suppose  that s is stationary,  and  that  any  particular  pixel 
is  uncorrelated  with  ones s o p e  distance d away.  Then the 
block  Toeplitz covariance matrix is nonzero  only  near  the 
main  diagonal  (and the same  can  be  said  for  each of the 
blocks). We now  modify R and  its  blocks, to make R block 
circulant  with  circulant  blocks. A block  circulant  matrix 
is block  Toepiitz  with each  row  a  cyclic  shift to  the right 
of the preceding  one,  where  the  last  block  on  the  right  of 
one  row  becomes  the  first  block  on  the  left  in  the  next  row. 
This  merely  means  replacing  some of the zeroes in R with 
nonzero  entries.  Intuitively,  imaging the image  as  a flat 
array, we  have connected  opposite edges, fmt to create  a 
cylinder,  and  then  a  torus.  The reason for  making  this  ap- 
proximation is that  the  matrix of eigenvectors of R , ,  the 
circulant  modification of R ,  can  be computed  efficiently 
using the fast  Fourier  transform (see [ 1261, [ 1621 1, and 
thus  the Karhunen-Loeve  expansion  can  be performed 
quickly. 

As discussed in  Section 11, one of the  most widely  used 
coding or compression  .schemes  for  1-D  time series, such as 
speech, is linear  prediction,  in which we design  a one-step 
predictor  or inverse  whitening  filter  for the  time series. This 
method  has several  appealing  features  in  1-D:  it is efficient 
(if one uses the Levinson algorithm);  it 'leads to recursive 
coding  and  decoding  algorithms;  and  it  yields  excellent  per- 
formance. In 2-D  the  situation is not as clear. What direction 
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do we predict  in  and  what  old  data do we  use to  do  the 
predictions? At this  time, answers to  these  questions  are 
beginning to  be  formed.  Genin  and  Kamp [ 1601  have  shown 
that NE predictors  need  not  be  minimum  phase,  and  Marzetta 
[ 1501  has provided an  argument  for  why  this is in  fact  the 
case. Specifically,  in 1-D, we are  guaranteed that  the  optimal 
predictor  for y ( n )  based on y ( n  - l ) ,  y ( n  - 2), * , y ( n  - r )  
is necessarily  minimum phase;  however, if  we skip some 
points  in  the  past, e.g., if we predict y ( n )  based on y ( n  - l ) ,  
y ( n  - 2),  and y ( n  - 4),  the  optimal  predictor  may  not  be 
minimum  phase.  Marzetta  points out  that NE predictors do 
skip  points.  For  example,  consider  the  predictor of y ( m ,  n) 
based on y ( m  - 1, n), y ( m ,  n - 11, and y ( m  - 1, n - 1). If 
we totally  order  the  points in the plane in  a  fashion  com- 
patible  with  the  partial  order  for  calculating  points recursively 
to the NE, then (m - 1, n), (m, n - l ) ,  and (m - 1, n - 1) 
will never be the  three  immediate predecessors of (m, n). 
Thus,  just as  in 1-D,  there is no reason to  expect  the  optimal 
predictor to  be  minimum  phase.  Marzetta  then  points out 
that if we don't  skip  points, i.e., if we use  a  full  half-plane 
predictor, we do get the minimum  phase  properties,  Levinson- 
type  algorithms involving  reflection  coefficients,  etc.  Note 
that  this  predictor is primarily of conceptual  interest, since 
the  predictor involves the  incorporation of an  entire,  infinite 
extent  column  before  any  points  in  the preceding column 
may  be  included. We refer the reader to  [ 1501 for details 
and  for  practical,  suboptimal  methods  which also have the 
minimum  phase  property. We also  refer the reader to  [ 1581 
for  another  generalization of the Levinson  algorithm to 2-D. 

We now turn  our  attention  to  the problem of restoring 
blurred  and  noise-corrupted images [ l l l ] ,  [126],  [153]. 
A  number of nonrecursive  methods have  been  developed 
for  the  removal of  blur  and  for  noise  rejection:  inverse  filter- 
ing;  2-D  minimum  mean-square  error (MMSE)  Wiener fiil- 
tering;  etc. We refer the reader to  the survey [ 1531  for 
more  on  these  methods  and  for  further references. We merely 
point  out  here  that  techniques  such as the Wiener  filter  have 
some  difficulties  and  limitations  as  image  processing  systems. 
To a  great  extent  this is due  to  the  fact  that  the MMSE cri- 
terion is not  particularly well-suited to  the way  in  which the 
human visual  system  works [ 1271.  In  particular, the Wiener 
filter is overly  concerned  with  noise  suppression.  In  addition, 
in  order  to  make  the  filter  computationally  feasible,  one 
often assumes stationarity.  This  in  turn leads to  a  filter that 
is insensitive t.o abrupt  changes, i.e., it  tends  to  smooth edges 
and  reduce  contrast.  On  the  other  hand,  in high contrast 
regions, the  human visual  system will readily  accept  more 
noise in  order to obtain  greater  resolution.  Several  schemes 
have  been  proposed that are  aimed  at  trading-off  between 
the  potentially  high-resolution,  poor  noise  performance of 
the inverse  filter and  the  lower  resolution,  good  noise per- 
formance of the Wiener  filter.  One of these is the constmined 
least  squares  filter [ 1  1  1 1, [ 126 1.  

Several other observations can be made  concerning the 
processing  systems mentioned so far. As mentioned  earlier 
they  are  nonrecursive  and  in  principle  require  the  block 
processing of  the  entire image or  substantial  sections  of  the 
image. , Hence the  computational  burden of these  schemes 
can  be quite high. In  1-D,  one  finds  that recursive methods 
are  often  preferable to nonrecursive  ones  because of their 
computational advantages. As discussed  in [ 1261 the  1-D 
Kalman filter  offers great computational savings over non- 

recursive methods,  and an  appealing  question is the extension 
of such  filters to 2-D.  Anyone familiar  with  1-D  Kalman 
filtering  theory realizes that  the design of the filter relies 
heavily on a  dynamic  representation of the received signal. 
Hence, to  develop  such techniques  in 2-D, we need  a  more 
complex  model of an  image than  that  provided  by  the  mean 
and  covariance.  The  need  for  the use of such  models is an 
obvious  drawback to  this  approach,  but  the  potential gains 
in  computational  efficiency  represent  a  distinct  advantage. 

One  approach to  recursive  processing  of  images  involves 
the 1-D  processing of the scan-ordered  image  (see  Section 
IV-A).  This  work  has  been  developed  by  Nahi, S i ! v e m m ,  
and  their colleagues IlO91,  11121,  [1141,  [141].  Suppose 
we have an image f ( m ,  n) (assumed to be  zero  for conve- 
nience)  with  stationary  covariance r ( k ,  I ) ,  and we observe 
q =f+ u where the additive  noise u is,  for  simplicity,  assumed 
to  be  zero  mean  and  white,  with  variance R .  We now take 
the scan  ordering  of  the N X N grid on which q ,  f ,  and u are 
defined.  Let us use the  same  symbols to  denote  the  resulting 
1-D  processes. We then have 

E [  f ( k )   f ( Z ) ]  = S ( k ,  I ) ,  k ,  I = 1, * . * , N 2  (61) 

where S ( k ,  I )  can  be  calculated  from  knowledge  of r ( m ,  n). 
Note that  the scanned  image f ( k )  is not stationary  due to the 
abrupt change that  occurs  when  the  scanner  reaches  the  end 
of one line and  begins the  next. We wish to use  Kalman 
filtering  techniques  in  order to  suppress the noise. In  order 
to   do this, we need  a  state-space  model  for f .  Unfortunately, 
as pointed  out  in [ 1121, S ( k ,  I )  does  not have the required 
separability that is needed  in  order  for  such  a  realization to  
exist.  Hence, some  sort of approximation is needed,  and 
several  have  been  developed. The simplest  of these involves 
finding  a  stationary  approximation R ( k )  to  (61), much  as 
Manry and Aggarwal found  shift-invariant  approximations 
to  the shift-varying  scanning  filters  they  studied in [ 1221. 
Having R ( k ) ,  one can then use  some  realization  procedure 
to find  a  Markov  model that realizes or  approximates  the 
given correlation  function. 

We can now  obtain  an image restoration  scheme  by  direct 
application of Kalman  filtering.  Several  comments  are  in 
order. We fnst  note  that  the filter  has  an  artificial  causality; 
only  the  points  below  and to  the left on the same line affect 
the  estimate of a given pixel. This  can  be  partially  removed 
by  the use  of  smoothing.  With the model we have  developed, 
this can  be done  efficiently  with  two  Kalman  filters,  scanning 
in  opposite  directions  and  starting  at  opposite  ends of the 
image. The  resulting  estimate still has  difficulties  because 
of the  effects  at  the  ends of lines. ' In  this case, one can  re- 
move  some  of  these  difficulties  by  transposing the image 
and  performing the same type of processing  again; we then 
have  NE, N W ,  SE,  and SW Kalman  filters. 

The recursive methods discussed so far  have  assumed that 
there  is  no  blurring  due to  a  nontrivial PSF. If there is such 
blurring,  essentially we must  develop  a  scan-ordered  1-D 
dynamical  model for  the  effect of the  blur  and  then  incor- 
porate  this  model  into  our Kalman  filter.  The simplest  ex- 
ample  of  this,  motion  blur  along  the  direction of the  scan, 
was considered  by  Aboutalib  and  Silverman [ 1 141  (see [ 161 ] 
for consideration  of  more general  blurs). Again this  system 
offers  computational advantages  over  nonrecursive  schemes, 
but  the  restoration  system  may  be very  sensitive to errors 
in  the knowledge of the PSF. 
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The previous technique did not  directly use  a  2-D  recursive 
model  for  the image. The first work  along  this  line was that 
of Habibi [ 1131  who  considered  a  2-D,  recursive,  auto- 
regressive  shaping  filter 

x ( k + 1 , I + 1 ) = ~ ~ ~ ( k + 1 , I ) + ~ ~ x ( k , I + 1 ) - ~ ~ ~ 2 ~ ( k , l )  

+do - P:)(l -Pi) w ( k ,  0 (62) 

where w ( k ,  I )  is a  white,  zero  mean,  unit variance  process. 
Assuming  measurements of the  form 7 = x  + u, Habibi then 
developed  a  suboptimal  estimator to estimate x(R + 1, 1 + 1) 
based on { y ( m ,  n )  Im < k, n < I } .  The  suboptimality of 
Habibi’s estimator arises essentially  because x is only  the 
local  state,  and  one  needs to estimate  the global state  for 
optimal  filtering. The most  complete  study of optimal 2-D 
Kalman  filtering  has  been  performed  by  Woods  and  Radewan 
[ 1481. We assume that we  have  a  one-sided  causal dynamic 
model  for  the  random field 

M +M 
x ( m ,  n) = b(k ,  I )x(m - k ,  n - I )  

k = l  I = - M  

M 
t b(0, I ) x ( m ,  n - 2 )  + w ( m ,  n). (63) 

1 - 1  

Suppose we want t o  estimate x ( m ,  n) given all values of q = 
x + u in the past,  where  past is defined  relative to the  direction 
of recursion  in  (63).  Woods  and  Radewan  point out  that 
this can  be done  optimally  with  an  extremely high dimen- 
sional  Kalman  filter to  estimate  the global state of the  system, 
which  in  this case has  dimension on  the  order of MN (M = 
order of the  filter, N = width of the image). 

Optimal  line-by-line  Kalman  filtering  for  images  has  also 
been  considered  by  Attasi [ 1301  using  a stochastic version 
of the  model discussed  in  Section IV-B. Specifically the 
image is assumed to  be  generated  by  a  separable  vector  analog 
of the  model used by Habibi [ 1131 

x ( i ,  j )  = F l x ( i  - 1, j )  + F z x ( i ,  j - 1) 

- F 1 F 2 x ( i -  1 , j -   I ) t w ( i -   1 , j -  1) 

q( i ,  j )  = f(i, j )  + u( i ,  j )  = Hx(i ,  j )  + u(i, j ) .  (64) 

We wish to obtain  the  optimal  estimate ?(m,  n) of x ( m ,  n) 
given q( i ,  j )  for i < m and all j .  The  optimal  estimate  in  this 
case  consists  essentially of two 1-D operations.  Suppose we 
have 2 ( m  - 1, n) for all n. We f i t  predict  ahead  one  line 
to obtain 

F(m, p) = F 1 2 ( m  - 1, n), for all n. (65) 

Note  that  each of these  estimates is calculated  independently. 
We now observe the new  line of measurements q ( m ,  n) for all 
n, and we create  the  error process and  the  error  measurement 

e ( m ,  n) = x ( m ,  n) - F(m, n) (66) 

y ( m ,  n) = q ( m ,  n )  - HZ(m, n )  = H e ( m ,  n) + u(m, n). 

(67) 

Thus  we have  a  1-D estimation  problem:  estimate e ( m ,  n) 
for all n, given y ( m ,  n) for all n. Attasi  shows  that  one can 
obtain  a  finite  dimensional 1-D  realization for e ( m ,  n) as a 
function of n. Hence,  this  estimation  problem  reduces to  the 
usual  1-D  smoothing  problem.  The  solution  consists of 

two  1-D Kalman  filters  starting at  opposite  ends of the line. 
Furthermore,  the  optimal  smoother  can again  be implemented 
with  two  filters of the  type devised by  Attasi,  one sweeping 
the  columns  in  order of increasing m ,  and  the  other  in  order 
of decreasing m .  This is reminiscent of the  decomposition 
of zero phase  filters into  two  half-plane  filters [ 1  191, [ 135 1. 

The  method of proof  used  by  Attasi involves the  taking of 
z-transforms along the n direction  and  the  treatment of 
m as  a time variable.  Essentially we regard the 2-D  system 
as a  high-dimensional ( i n fd t e  if the  domain of n is un- 
bounded) 1-D system,  where we  use  a  spatial transform 
“along” the 1-D  state  vector in order to simplify the cal- 
culations. The key  step  in Attasi’s  development is a  deriva- 
tion of a  set of Riccati  equations,  parametrized  by  the  trans- 
form variable z,  for  the power  spectral  density S,(z) of 
e ( m ,  n) considered as a  function of n. One  can then  factor 
these  spectra to obtain  the 1-D  realizations of the e’s. 

Methods  which  transform the  data  in  one  direction  in  order 
to simplify or  to  study recursion  in the  other have also been 
used in several other image  processing  schemes. For  example, 
a  method very  similar to Attasi’s  was  used in [ 1591. In 
addition,  Jain and  Angel [ 1181 have  considered  fields  de- 
scribed  by  a  nearest  neighbor,  interpolative  equation [ 1101 

x ( m ,  n) = a l  [x(rn,  n + 1) + x ( m ,  n - 1)l 

+a2 [ x ( m  + 1, n ) + x ( m  - 1,  n)l + w ( m ,  n). (68) 

Following [ 1  181, let us consider the  vector scan  process, i.e. 
we process  an entire  line of observed data, y = x + u, at a  time. 
Defining the resulting  1-D  vector  processes x , ,  y ,  , w, , and 
urn, we can  write (68) as 

xm+1 = Qxm - x,-1 + w m  (69) 

where Q is a  symmetric,  tridiagonal,  Toeplitz  matrix.  Jain 
and  Angel point  out  that  the  diagonalization of Q ,  A = M’QM, 
can be performed  with  the aid of the  FFT  without  any  ap- 
proximation. Thus, if we define the  transformed  quantities 
X, , V , ,  etc., (X, = M‘x,)  we obtain  a  set of N decoupled 
estimation  problems,  indexed  by j (which  indexes  the  com- 
ponents of the  transformed  vectors): 

- 
X m + l , i  = h i X m , i  - x,-1, i + E m , j  

- 
(70) 

(71) 
- 
Y m , i  - X m , i  + u m , i .  

- - 

Each of these  problems can  be  solved  using  a K h a n  filter, 
and we obtain  an  extremely  efficient  implementation:  trans- 
form  the  observations, solve the low-dimensional  decoupled 
estimation  problems  (perhaps  in  parallel),  and  transform 
back. 

As we have seen,  optimal 2-D  Kalman fitering algorithms 
require  large  amounts of storage  and  computation. Thus, 
the  study of suboptimal  estimators  that  require less com- 
putation is of importance.  One  suboptimal  fdter  developed 
in [ 1481 is the reduced  update Kalman filter.  Examining 
the  optimal  fiter of Woods  and  Radewan,  we  see that  the 
predict  cycle is computationally  straightforward.  One  simply 
uses the recursion  (63) assuming no noise and using  preceding 
estimates.  The  measurement  update  part of the  optimal 
filter, on  the  other  hand, involves updating  the  estimates of 
all of the  components of the  state. Assuming N >>M, 
we expect  that  a given pixel is most  correlated  only  with 
a  small  percentage  of the  elements of the  state  vector.  There- 
fore, it seems  reasonable  only to update.  the  estimates of 
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those  components of the  state  that  are  within  a  certain dis- 
tance of the  point being  processed, i.e., we constrain  many 
of the gain elements to be  zero  and  essentially  allow  only 
“near  neighbor  updates.” 

We have  now  surveyed  a number of nonrecursive  and re- 
cursive estimation  methods.  The recursive techniques  come 
with  many of the same  criticisms that were  made  concerning 
nonrecursive  filters.  They  require  detailed  models of the 
image  statistics  and  image  formation  process,  and  they  are 
essentially  based on the MMSE criterion. Hence, they in 
general will sacrifice  resolution  in  favor of noise  suppression. 
In addition,  these recursive techniques necessarily  affect 
the image  because  of the assumed model  structure.  Some 
of the recursive techniques allow the inclusion of image 
blur,  while  in other cases the  extensions to include  blur 
have yet to be  developed.  Also, we have  seen that  in  some 
cases optimal Kalman  filtering is extremely  complex,  and 
suboptimal,  but  intuitively  appealing, recursive  filter struc- 
tures  must be used.  In other cases we have  observed that 
the use of the  structure of the assumed model can  lead to  
extremely  efficient  optimal  estimation  algorithms  (with the 
aid of transform  techniques).  In  addition,  although work 
in  this area  has  been  limited in extent [ 1 141, [ 14 11 the 
recursive techniques  are  directly  amenable  to  the analysis 
of space-varying  and  nonstationary  models.  Thus,  in  spite 
of the  many  qualifications, we find  enough positive attributes 
to warrant  continued  study of recursive techniques  for image 
restoration. 

One  important area for  future  work involves the reliance 
on Q priori information. As mentioned  earlier,  one  often 
can  assume  knowledge of the PSF or can determine  it  by 
observing known  test scenes through  the imaging  system. 
In other cases, we may  not have such  information  and  must 
estimate  the PSF as well as the image. Thus  one  important 
question  concerns  the  robustness of these  techniques  in  the 
face of modelling  errors. As mentioned  in  Section I, tech- 
niques  do  exist  for the sensitivity  analysis of 1-D  state-space 
models  and  1-D  Kalman  filters.  Can we extend  these  methods 
to  the  2-D case, and  how well do  the 2-D  algorithms  perform? 
In addition,  methods  abound  in  1-D  for  on-line  parameter 
identification  and  adaptive  estimation  in  the  presence of 
unknown  parameters.  Can  we  apply  these  methods  with  any 
success to  the 2-D  problem? 

A  second  area of concern is the resolution-noise-suppression 
tradeoff. As mentioned  earlier,  the  human visual  system is 
willing to  accept  more  noise  in  certain  regions,  such  as  edges, 
in  order to improve  resolution.  Thus,  in  relatively  slowly 
varying  regions of the image,  we  would like to  remove  noise, 
while  where there  are  abrupt  scene changes or  other high- 
frequency  fluctuations of interest, we  would  prefer to forego 
noise  suppression  in  favor of resolution [ 1  1  1 1. In this  context 
an  important  problem is the  detection of edges or boundaries 
between  different regions  in  an  image. We also note  that  in 
many  applications  the  determination of the  boundaries  them- 
selves  may  be the  key Issue [ 1421. In recent  years  a  variety 
of techniques have  been  developed for  detecting  and recog- 
nizing  various types of boundaries  in  2-D  data (as an  example, 
see [ 1551 ). In  1-D,  a  variety of recursive techniques have 
been  developed  for the  estimation  and  detection of abrupt 
changes in signals [ 15 11. These  techniques have  been  suc- 
cessfully  applied  in  a  wide  variety of applications,  and  an 
important  question  then is the  extension of methods  such 

as  these to  the  detection of boundaries  in  images  (see [ 1151, 
[ 1421  for  some  work  along  these lines). 

Throughout  this  subsection we have  seen  several  examples 
of 2-D  signal  processing  problems  in  which good use is made 
of the  transformation of the signals obtained  by  considering 
them to be  1-D  vector time signals, in  which the  other inde- 
pendent  spatial  variable is used to  index  components of the 
vectors.  There  are, of course,  many  problems  in which the 
processes to be studied  truly  are  space-time processes [ 1621, 
and  in  many of these the use of 2-D  concepts can often  be 
of great  value.  One  of the best  examples of this  type arises 
in  problems  of  seismic  signal  processing [ 1241, [ 125 1, [ 1491 
in  which we observe the  time  response of the  earth using  a 
spatial  array of sensors. Other  applications  plus  several  spe- 
cific problem  formulations  are discussed in [ 1621.  In  addi- 
tion, [ 1621  contains  a brief  discussion  of  results  and formu- 
lations  that  utilize  both  1-D  and  2-D  tools of stochastic 
calculus and  martingale  theory [ 143 1, [ 144 1. Such  techniques 
are  in  their  infancy  and  work  continues to  determine  their 
utility  and  limitations. We note only that  the problem of the 
lack of a  natural  total  order  in 2-D  causes  difficulties in 
extending  I-D  stochastic calculus concepts to  2-D. This is 
not surprising, given the several  complications  that we have 
already  discussed. 

Given the several  examples  described  earlier  in  this  section, 
it is our  contention  that  there is potentially  much to be 
gained  by  utilizing both  the perspective  of  2-D  signals  and 
systems as well as that of  1-D  space-time  systems  in  studying 
problems  of  either  type. As a  final  example of  how  this 
concept  might  be  used,  consider  the  study of  large inter- 
connected  systems. In this case we let  the  spatial variable 
index  subsystem variables  which  may  be  vector quantities 
themselves.  A  general  linear model  then  is  the recursive  2-D 
model 

x ( k  + 1, i) = A i j x ( k ,  j )  + B i j U ( k ,  j )  + ~ ( k ,  j )  
i i 

(72) 

y ( k ,  i )  = C ~ i j x ( k ,  i) + v(k, j ) .  (73) 

Much as  in the analysis of 2-D  Kalman  filters [ 1481,  the 
off-line  analysis  of  such  systems (solution of Lyapunov or 
Riccati  equations,  for  example), as  well  as the  on-line imple- 
mentation of centralized  optimal  controllers or estimators, 
may  become  prohibitively  complex.  Indeed the analogy 
extends  farther, as the “nearest  neighbor”  constrained  filter 
of Woods-Radewan  involves  precisely the same  philosophy 
as is used in  many  decentralized  control  and  estimation 
problems  [261, [ 1451. 

Let us note  that  there  may be many  other  useful insights 
to  be drawn  from  this  type of analogy. For  example, if the 
model  (721, (73) falls into  the class considered  by  Attasi, 
then  the  optimal  centralized Kalman  filter  can  be  efficiently 
implemented using  Attasi’s  line-by-line optimal  filter, which 
involves  dynamics  in the transmission  of  information among 
subsystems  (Attasi’s two filters  “along”  each  “line”). As a 
second  example,  in  the case  in  which (72)  and  (73) are  spatially 
invariant,  Melzer  and  Kuo [ 1461  and Chu [ 1471  made  good 
use  of the  structure  by  taking  spatial  transforms  in  studying 
centralized  and  decentralized  optimal  controllers.  Similar 
analysis is contained  in [ 1621  for  the case of a  finite  string 
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with  circular  symmetry.  Much as in  the case of block  circu- 
lant  approximations [ 1261,  this allows us to use FFT  tech- 
niques to  reduce the  complexity of the  on  and  off-line cal- 
culations for centralized  controllers  in  a  manner  very  similar 
to that of Jain  and  Angel [ 1  181. In  addition,  the use of 
spatial  windowing  techniques [ 11 to obtain  nearest  neighbor 
decentralized  control  algorithms  may allow us to  develop 
useful  designs for  such circularly symmetric  systems. 

V. CONCLUDING REMARKS 

In this  paper, we have  examined  a  number of broad research 
areas  that have attracted  workers  in  two disciplines: digital sig- 
nal  processing  and control  and  estimation  theory.  The goal of 
this  examination  has  been  the  acquisition of some  perspective 
on relationships  among the  questions  asked,  methods  used, 
and  general  philosophies adopted by  researchers in these dis- 
ciplines. Upon  undertaking  this  study  it was my  feeling that 
such  perspective  would  be  extremely  valuable  in  promoting 
collaboration  and  interaction  among  researchers in the  two 
fields.  Upon  concluding  this  study, I think  that my  initial feel- 
ing has been thoroughly  substantiated. Not only  are  there  nu- 
merous  examples of questions  in  one discipline that can  bene- 
fit  from  the  point of  view of the  other,  but also we have found 
a  number of new  issues that naturally  arose  from  combining 
the  two  points of view. 

Each of the disciplines has  its  own  distinct  character,  and 
clearly  these will and  should  be  maintained. On the  other 
hand,  each discipline  can  gain from  understanding  the  other. 
State-space  methods have their  limitations,  such  as in specify- 
ing  useful digital algorithms  and  structures. On the  other  hand, 
state-space  methods  provide  extremely  powerful  computer- 
aided  algorithms  for  noise  analysis,  optimal  design  specifica- 
tion,  etc. State-space  ideas  also  allow one  to consider  multi- 
variable  and  time-varying  systems. All  of these  aspects of 
state-space  theory  may  prove of value to  people  involved in 
digital signal  processing.  On the  other side, researchers  in digi- 
tal  filtering  have  answered  many  crucial  questions  related to 
turning design  specifications into  implementable designs. The 
deep  understanding that workers  in digital signal  processing 
have  concerning the problems of digital implementation is 
something  that  researchers  in  control  and  estimation  would do 
well to gain. Thus it seems  clear that a  mutual  understanding 
will prove  beneficial to all concerned. 

Numerous  questions have  been  raised and  speculation  on va- 
rious possibilities has  been  made throughout  this  paper. 
Whether  any of these  issues  has  a  useful  answer is a  question 
for  the  future.  It is my feeling that many of them  do,  and  it  is 
my hope  that  others will think so as well. 
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