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On the Algebraic Structure of Certain Partially 
Observable Finite-State Markov Processes 
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Electronic Systems Laboratory, Massachusetts Institute of Technology, 
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We consider a class of nonlinear estimation problems possessing certain 
algebraic properties, and we exploit these properties in order to study the 
computational complexity of nonlinear estimation algorithms. Specifically, we 
define a class of finite-state Markov processes evolving on finite groups and 
consider noisy observations of these processes. By introducing some concepts 
from the theory of representations of finite groups, we are able to define a pair of 
"dual" filtering algorithms. We then study several specific classes of groups in 
detail, and, by developing a generalization of the fast Fourier transform al- 
gorithm, we derive an efficient nonlinear filtering algorithm. A continuous-time 
version of these ideas is developed for cyclic groups. 

1. INTRODUCTION 

The  nonlinear filtering problem has proven to be an extremely difficult one. 

When  the filtering problem is described by a set of stochastic differential 
equations, the  optimal nonlinear filter in general requires the solution of a sto- 
chastic part ial  differential equation for the conditional density or the solution 
of an infinite set of stochastic differential " m o m e n t "  equations (Jazwinski, 1970). 
In  the case of  discrete-t ime part ial ly observable finite-state Markov processes 
(POFSMP) ,  the solution is conceptually far simpler, as the conditional distr ibution 
can be computed  sequentially" via straightforward finite-dimensional difference 
equations (Astrom, 1965). However,  even in this conceptually simple case, the 
nonlinear filtering problem can be computat ionally nontrivial. Specifically, we 
note that  if we are considering an n-state P O F S M P ,  a straightforward implemen- 
tation of the conditional dis tr ibut ion update equations requires O(n 2) multiplica- 
tions. (see As t rom (1965) and the following sections of this paper).  For  n of 
reasonable size this becomes an extremely demanding computational task. 
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In this paper we investigate the computational complexity of the nonlinear 
filtering problem for a class of POFSMPs possessing particular algebraic proper- 
ties. We have been motivated by the following observation. Let x and y be 
independent random variables taking values in the cyclic group Z~ = {0, 1 .... , 
n - -  1} with addition defined modulo n. Let Px(j) and p~(j) denote the proba- 
bilities that x = j and y = j, respectively, and define 

w = (x + y) m o d n  

Then  the probability distribution Pw is given by the cyclic convolution 

P (J) -- Z P (J- k ) p # )  & (1) 
k=O 

where all integers in the summation are to be interpreted modulo n. Note that 
the straightforward calculation of Pw from (1) requires n 2 multiplications. 
However, it is well known (Oppenheim and Schafer, 1975; Nicholson, 1971; 
Good, 1958), that, with the aid of a fast Fourier transform (FFT) algorithm, one 
can reduce the computational load to 0(n log n) multiplications (assuming n is 
a highly composite number). 

In this paper we will generalize these ideas to certain random processes 
defined over finite groups. Motivated by the comments made previously con- 
cerning the cyclic group case, we are led to utilize the natural generalization of (1) 
to obtain one form for the nonlinear filtering equations. A second form for the 
filtering equations can be found by examining more closely the use of the F F T  
in the Z ,  case. Specifically, by making use of results on harmonic analysis on 
finite groups, we obtain a "dual" form for the filtering equations. That  is, with 
every finite group G we associate a "dual" object, G*, consisting of a complete 
set of irreducible representations of G over the complex numbers, C. We then 
can regard G and G* as bases for the set of all functions from G into C, and 
hence any probability distribution p on G can be represented by its components 
with respect to either basis. We then find that the optimal estimation procedure 
can be broken into two stages. The first, called the "diffusion update," consists 
of the incorporation of the new randomness introduced into the system between 
measurements. This stage leads to what can be readily identified as a convolution 
with respect to the G-basis and a pointwise product with respect to the G*-basis: 
The second stage, the "measurement update," involves the incorporation of the 
information contained in the latest measurement. The major part of the com- 
putation in this stage consists of a pointwise product with respect to the G-basis 
and a convolution product with respect to the G*-basis (this is, in fact, how we 
will define convolution with respect to the G* basis). 

Our use of representation theory in the study of stochastic processes on 
groups is very much in the spirit of the work of Grenander (1963), who utilized 
Fourier analysis to study the problem of the multiplication of independent 



STRUCTURE OF CERTAIN MARKOV CHAINS 181 

random variables on a compact group. Depeyrot (1968, 1971) and Paz (1971) 
have also studied a "dual automaton" approach to stochastic automata (without 
measurements). In our work, we extend the analyses of these authors in order 
to study the nonlinear filtering problem, and we obtain a picture of the duality 
between diffusion and measurement updates and the two formulations of the 
nonlinear filtering equations. In this manner we are able to uncover some of 
the key computational issues in the filtering problem. In particular, our formula- 
tion of the dual filtering algorithms has led to a generalization of the F F T  to the 
fast convolution of functions over certain nonabelian groups. One possible 
application of our results is in the design of efficient decoders for certain codes 
defined over groups (see Willsky, 1973, 1975; Chizeck, 1976). 

In Section 2 we define the problem of interest and recall some results from 
the theory of group representations. Section 3 contains the description of the 
two filtering algorithms and a discussion of their structure and computational 
complexity. The issue of computational complexity is taken up in more detail 
in Sections 4-6, in which we consider several specific examples. The problems 
of smoothing and prediction are briefly addressed in Section 7, while in Section 8 
we discuss other probabilistic issues that can be considered within our framework. 
Finally in Section 9 we discuss some of the possible extensions and uses for 
these results. 

2. DEFINITIONS AND BACKGROUND 

Let U, X, and Y be finite groups, and let a : X - - ~ X ,  b: U - + X ,  and c: 
X -+ Y be group homomorphisms. A random finite group homomorphic sequential 
system (RFGHSS) is a system of the form 

x(k + 1) -~ b[u(k)] a[x(k)], k >~ O, (2) 

y(k) ~ v(h) c[x(k)], k >~ 1, (3) 

where {u(k)} and {v(k)} are sequences of independent random variables in U and 
Y, respectively, independent of each other and of x(0). We let ~(k), ~(k), and 
p(0) denote the-probability distributions for u(k), v(k) 1, and x(0), respectively. 
We regard these distributions as functions on the respective groups. For example, 
~(k), is the probability that u(k) = tz. 

Let p(k I l) denote the conditional probability distribution for x(k) given the 
measurements y(1),...,y(k) (here p(010 ) ~ t3(0)). The nonlinear filtering 
problem consists of finding an algorithm for the sequential computation of 
p(k q- 1 I k) and p(k I k). We also consider the prediction problem (compute 
p(k ] 1), l < k) and the smoothing problem (l > k). 

In order to provide the proper setting for the development of our results, we 
recall some definitions from group representation theory and perform several 
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computations. Let X be a finite group with cardinality n, and let C[X] denote the 
n-dimensional complex group algebra of all complex-valued functions on 2{. We 
represent any p E C[X] as a formal sum 

P - - - - -  Z Pg "g, (4) 
g ~  

where pg is the value of p at g. The operations of pointwise addition and scalar 
multiplication of functions are defined in the usual way, while the operation of 
multiplication in C[X] is function convolution 

p • ~ = ~ p , v n .  gh = T~ ~'~" t, 
g,h~X ~eX 

gEX geX 

(5) 

We can regard X as a subset of and, in fact, a basis for C[X] with the obvious 
identification of g with 1 • g. The convolution of g with any element of C[X] is 
particularly simple: 

(P * g) = Z P, .hg = Z P,,-," t. (6) 
hEX ~ X  

In this case the action of g simply permutes the components of p. In addition, 
C[X] can be made into a commutative algebra independent of the structure of X 
be endowing it with the pointwise product 

(pv)a = po=o. (7) 

We note that the use of formal series such as (4) to represent probability distribu- 
tions for finite-state Markov processes is very much in the spirit of the work of 
Fliess (1972, 1976), who has developed an extensive system-theoretic method- 
ology in terms of formal power series. Fliess' study of finite-state 1Vfarkov 
processes involves the examination of realizability conditions - -  i.e. when a 
particular finite state stochastic process can be thought of as being derived from 
a finite-state 1VIarkov process. We refer the reader to the references for details. 

Let f :  G - +  H be a group homomorphism. We define two maps between the 
group algebras of G and H. The first of these, also denoted by f,  is called the 
extension off. It  maps C[G] into C[H] via 

, . . , )  -- 2 -- 2 ( , , ) . , .  
gEG g~G h~H g~ (h) 

(8) 

I t  is easily seen that the definition given in (8) simply involves the extension of a 
function defined on a basis (i.e., G) to a linear map on all of C[G]. I t  is also clear 
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that the extended map is a convolution homomorphism if the original function 
on G is a group homomorphism. 

The second map, f :  C[H] --> C[G], is called the pullback o f f  

f ( L  % ' h ) =  n~H ~ %'(.~s~<,) g)" (9) 

This is clearly a linear map, and it can also be readily shown that it is a pointwise 
homomorphism. This latter statement is true independent of any assumptions 
on f. As we will see, however, the structure o f f  can be useful in computing f 

We now introduce the Fourier transform of a function on a finite group 
(Curtis and Reiner, 1966). For our purposes, we define an n-dimensionai 
representation of a finite group X as a homomorphism T of X into the group of 
invertible n × n complex-valued matrices. Two representations T and V are 
said to be equivalent if there exists an invertible n × n matrix P such that 

PT(g)P- I=  V(g), g e X .  

By the direct sum of two representations T and V we mean the representation 

T @ V(g) = diag(T(g), V(g)) = [T~g) 0 ] 
v ( g )  " 

A representation is said to be reducible if it is equivalent to the direct sum of 
two other representations. Otherwise, it is irreducible. 

One of the most fundamental results of group representation theory is the 
following (Curtis and Reiner, 1966): Suppose X has cardinality n; then there 
exists a complete set of irreducible representations T1,..., T 8 such that 

(i) Any representation is equivalent to a direct sum of several of the T i 
(where some T i may be repeated). Thus any irreducible representation is 
equivalent to some Tq 

(ii) If we let at = dim(Ti), we have 

~ z / ~  = n .  ( 1 0 )  
i= l  

(iii) Let t~ denote the element in thej th row and kth column of T i. These 
functions satisfy the orthogonality relations 

z~ ~ T~(g ) t~(g_l) - = E ~ 8 ~ , ,  ( 1 1 )  
n O ~ X  

- 
where 8i~ is the Kronecker delta, and E ~  is the z~,xz~ matrix whose (i, j) dement 
is 8j~8~t. 
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(iv) From (10) and (11), we see that the tjk form a basis for C[X], and, 
if  ¢ ~ C[X],  we can compute 

zi 

Cg = f ]~ c~(¢)t~k(g), (12) 
i=i j,k=l 

i is the (j, k) element of the ith transform matrix where cje 

Ci(¢) : z--L{ ~ Cg[T{(g-1)] '. (13) 
n gex 

(v) Without loss of generality, we can take T z ~ 1. 

Thus  we have two representations of functions in C[.X]. The  first of these, (4), 
can be regarded as an expansion of the function with respect to the set of basis 
functions {g}. The  expansion (12) is in terms of the basis functions {t~k(g)}. We 
have seen in Eqs. (5)-(9) how the coordinates with respect  to the first basis are 
mapped under the various operations of interest in this study. We will now see 
how the coordinates defined by the transform matrices (13) are mapped.  Let  p 
and ~7 be elements of C[X]; then a straightforward calculation (Curtis and Reiner, 
1966) yields 

o ( p  • 7) : ~- -  ci(p) ci(~). (14) 

As we shall see, it is this relation that will provide the basis for the computational 
savings that can be achieved in the efficient solution of our problem. 

As a special case of (14), consider the case in which p is arbitrary and ~? = g. 
In  this case 

C{(~) : z_L [Ti(g-1)] '. 
n 

05) 

As pointed out earlier, the product  p • g involves a permutation of the compo- 
nents ofp.  In  the transform domain, we must  compute the products (14), where 
the Ci(~?) are as in (15). Thus  the calculation of the transform matrices for p ,  ~1 
involves a number  of multiplications, and the complexity of the computation 
depends upon the structure of  the T i. For example, in many  cases one can take 
the T i to be monomial representations (Curtis and Reiner, 1966). Tha t  is, for any i 
and any g E X, there is only one nonzero element in any column or row of Ti(g).  
In  this case it is easily seen that the calculation of Ci(p * ~), i = 1 .... , s, involves 
at most n multiplications. 

There  are three remaining calculations that must  be performed to determine 
the transform counterparts of (7)-(9). We have placed these somewhat involved 
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computations in Sections A.l and A.2 of the Appendix, and for simplicity we 
adopt the notation 

L~[C(p), C(40] ~ Ci(o¢), (16) 

f,[C(?)] zx C'[f(p)], (17) 

•[c(p)] =~ c~[/(p)]. (18) 

Referring to our discussion in Section 1, we see that (16) can be interpreted 
as a convolution with respect to the set of basis functions {t~k }. This observation 
will lead to the formulation of our "dual" filtering algorithm. 

3. THE FILTERING ALGORITHM 

Regarding all of the relevant probability distributions as elements of the 
appropriate group algebras, we obtain the foUowing 

PROPOSITION 1. Consider the estimation problem described in Section 2. We 
gave the following filtering algorithm: 

Diffusion update 

o(h + 1 1 k) = b[~(k)] * a[p(k l k)]. (19) 

Measurement update 

;~(k) ~- ~(k) • y(k), 

y(k 

N(k 

p(k 

~(k) = e[a(k)l, (2o) 

k) = ix(k) p(k [ k -- 1), (21) 

k) = Z 7(k l k)~, (22) 
g~X 

k) = r ( k l h )  (23) 
X ( k  I k) " 

The proof of this result is a straightforward application of Bayes' rule (see 
Section A.3). With the aid of the calculations made in the preceding section, 
we obtain a "dual" filtering algorithm. 

COROLLARY. An alternative form for the filtering equations is 

Diffusion update 

ci(o(k + 1 I k)) = (,~/~,) b~[C(~(k))] a,[C(e(k l k))]. (24) 
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Measurement update 

C~(A(k)) = C'(~(k)) Ti[y(k)- l] ,  C~(ff(k)) = 2~[C()(k))], (25) 

C~(7(k l k)) = L,[C(ix(k)), C(p(k l k --  1))], (26) 

C~()'(k l k)) (27) 
C~(p(k l k)) = nC~(7(k l k)) • 

Let  us now take a look at the two algorithms step by step: 

1. Diffusion update 

A. Action of the homomorphism a. In  the distribution domain, the necessary 
calculation is 

a [p (k lk ) ]  ~ =  y,  p ( k l k ) ~ .  (28) 
hea-l(g) 

Thus,  if a is an isomorphism, (28) is simply a permutation of the coefficients ofp.  
I f  ker a has t elements, then a(p) has only (n/t) nonzero elements, and for each 
we must  per form ( t  - -  1) additions (each element in a(x) has precisely t preimage 
points), yielding a total of n(t - -  1 ) )  additions. 

T h e  effect of the homomorphism a in the transform domain is considered in 
Section A.2 (see equations (81)-(85)). Essentially the calculation of ai(p) involves 
only similarity transformations of the Ci(p) and of direct sums of the C~(p). 
T h e  calculations are particularly simple if the T i and the S i (a complete set 
of irreducible representations of a(X))  are monomial,  or if a is an isomorphism. 
Our  examples in Sections 4-6 will indicate the simplicity of this step. 

B. Effect of the noise on the state. We want to argue that, without loss of 
generality, we can assume that U = X and b := identity. This  basically comes 
f rom the argument  that we can just  as easily regard b[u(k)] as the basic driving 
noise. Equivalently, if the ~(k) are assumed to be known a priori, we can pre- 
compute b[~)(k)] or b~[COj(k)) ]. Assuming that U = X, b = identity, equations 
(19) and (24) become 

p(k + 1 J k) = ~(k) , a[p(k I k)], (29) 

c,(e(k + 1 I k)) = (n/~,) c,(;7(k)) adc(p(k I k))]. (30) 

T o  get an idea of the complexity of the convolution in (29), let us assume that 
v(k) is the distribution of b[u(k)], where u e U, and card [b(U)] = m. In  this 
case, ~7 has only m nonzero elements. Lett ing M -~ a (X)  with card(ker a) = t, 
we find that a gtraightforward calculation of (29) requires (ran)It multiplications. 
T o  compute the number  of additions, let 

card[M n b(U)] = l l ,  card[b(U)M] ~ l 2 . 
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Then  l~(l 1 - -  1) additions are required. Note that if our system (2) is controllable 
(i.e., if every state x e X can be reached f rom any other by an appropriate 
sequence of inputs), then b ( U ) M  = X and l~ = n (Brockett and Willsky, 1972). 

In  the t ransform domain, we calculate the s matrix products (30), which 
require at most 

• zi 3 multiplications and ~ zi g - -  n additions. 
i=i i=i 

T h e  use of the transform domain for this calculation can be quite efficient in 
certain cases. For example, if m = n and t = 1, the distribution computation 
requires n 2 multiplications and (n ~ - -  n) additions. These numbers  can be much 
larger than the corresponding numbers in the transform domain. For example, 
if X is Abelian, then s = n and zi = 1 for all i (Curtis and Reiner, 1966), and 
the transform calculation consists of n multiplications and no additions. As we 
will see, it is Step B that is the most complex part  of the diffusion update. I t  is 
here that  the utility of fast t ransform methods will be most  apparent. 

2. Measurement Update 

A. Effect of the measurement: calculation of 1(k) and Ci(;~(k)). As described 
in Section 2, (20) consists simply of a permutation of the elements of ~:. On the 
other hand, (25) consists of a number  of matrix multiplications. As pointed out 
earlier, if the T i are monomial representations, then we require at most n 
multiplications to compute (25) for all s. As we shall see in the examples described 
in subsequent sections, the transform calculation (25) can often be simplified 
even more. 

B. Effect of the pullback map E. In  the distribution domain, we must compute 

e(A(k)).  = h(k)o(~). 

I f  c is an isomorphism onto a subgroup of Y, ~ simply permutes the elements of 
the restriction of A to c(X). I f  c has a nontrivial kernel, a number  of components 
of g(A) will be equal. 

The  relevant equations in the transform domain are (86)-(92), where (89) and 
(92) represent the required on-line calculations (note that (89) is nontrivial only 
if c is not surjective--i.e.,  only if the range of the noisy measurement  v(k)c[x(k)] 
is larger than the range of the noise-free measurement c[x(k)]). Again, the required 
calculations, involving linear combinations and similarity transformations, are 
often extremely simple. We refer the reader to the examples to see what these 
calculations actually entail. 

C. The numerator of Bayes' rule. The  next step in the distribution domain 
is the pointwise product of ~[;t(k)] and p(k I k - -  1). This  involves n multiplica- 
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tions and no additions. I n  the transform domain, referring to (26), one must 
compute the transform matrix of the pointwise product of two elements of C[X]. 
The relevant develoment is in Section A.1 of the Appendix. In general, the 
calculation in the transform domain for this step is far more complex than in the 
distribution domain. However, this calculation does display structure that can be 
exploited. Specifically, for the diffusion update, Step B consists of a convolution 
in the distribution domain and a "pointwise product" of transform matrices in 
the transform domain. On the other hand, for the measurement update, Step C 
consists of a pointwise product in the distribution domain and (78) in the transform 
domain. As we will see in the examples, in at least some cases (78) turns out to be 
a convolution. 

D. Normalization. In the distribution domain, (22), (23) requires ( n -  1) 
additions and n divisions, while in the distribution domain, we need one multi- 
plication and (n --  1) divisions. 

4. AN EXAMPLE: THE CYCLE GROUP Z n 

Consider the cyclic group Z~, which we interchangeably identify with the 
integers and with the set {r~}, where integer addition is defined modulo n. 
We adopt the notation 

/~0 

for elements of C[Z~]. All of the irreducible representations are one-dimensional, 
and a complete set of these is given by 

Ti f f )  = ej2~i/n _~ yi, i -~ 0 ..... n - -  1 

(here j = (--l)l(z). In this case, the transform pair (12), (/3) are the usual 
finite Fourier series equations 

n--1 n--1 
i X? A -- i~ Ci(¢) = n  ~ o  -,-,,,7= , '/',~ = i=oZ C'(¢)¢ 'n" (31) 

Consider the most general RFGHSS with U = X = Y = Z~ (a, c ~ Z~) 

x(k -~- l) = ax(k) -~- u(k), y(k) -= cx(k) -~- v(k). (32) 

1. Diffusion Update 

A. Effect of multiplication by a. Let ¢ ~ C[Z~] and let d -~ gcd(a, n). Then 
aZ~ has cardinality n/d, and a straightforward calculation yields 

d--1 

( a¢)l~a ~- Z Ck+(]n/d)" (33 )  
5=o 
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Also, from (31) we have 

a~[C(¢)] = C~(¢).  (34) 

Thus in the distribution domain, (33) requires n(d -- 1)/d additions, while (34) 
is simply a reshuffling of the Fourier coefficients. Note that (33), (34) are permuta- 
tions of the elements of ¢ and C(¢) if and only if a is invertible--i.e., d = 1. 

B. Effect of the convolution. Let ¢, ¢ E C[Z~]. The convolution product is 
given by 

(¢ * ¢),~ = 2 ¢~'/'~-,-, (35) 
7"r~,= 0 

which requires n 2 multiplications and n ( n -  1) additions. The transform 

c'(4, • 40 = nc'(¢) c'(¢) 

requires n multiplications. 

2. Measurement Update 

A. Effect of the measurement. Let ~: c C[Z~] and consider ~ • r k. Application 
of the results of the preceding section yields 

B. Effect of the pullback map. Let ¢ E C[Z~]. Then using (31) and the defini- 
tion of g, we obtain 

(e¢),~ = ¢ . . . .  (36) 

Also, if we let f -- gcd(c, n), we find that the only nonzero Fourier coefficients 
of ~¢ are ~z~[C(¢)], l = 0, 1,..., n / f -  1, where 

f--1 

ezc[C(¢)3 ~_ ~_, Cz+(~/YI(¢). (37) 

Thus (36) is a simple reshuffling, while (37) requires n( f - -  1)If additions (note 
that here the subgroup matrices are trivial). Also (36), (37) are permutations if 
and only i f f  = 1. 

C. Effect of the pointwise product. Let ¢, ¢ e C[Z~]. Then the pointwise 
product ¢¢ requires n multiplications, while in the transform domain we obtain 
the convolution 

?Z--1 

c'(44,) = Z cr(4)c~-r(4,), (3s) 
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which requires n ~ multiplications and n(n- 1) additions. This  follows easily 
f rom the results of Section A. 1 when we observe that  

T i T "  _= Ti+~ => L(i,¢~,~') = 8¢,~_o~. 

TABLE I 

Required Computations for the Two Zn Filtering Algorithms 

Group algebra Transform 

d--1 

1.A. (ap(k ] h))z~ = ~ p(k I k),+~/a 
r=O 

B. ; ( k + l  I k)~ = ~ ~(h)~(~p(k I k))~_~ 

2.A. A(k)~ = ¢(k)~_~(e) 

B. (e(a(k)))~ = a(k)0~ 

C. y ( k l k ) ~  = (8( ) (k) ) )~p(k lk  -- 1)~ 

r(kl k) 
D. o(k I h) = 

x2,2'; ~,(k I k),,, 

1.A. ai(C(p(k J h))) ~- C~i(p ] k)) 

B. C~(p(k+ l ] k)) ---- nC~(Tl(k)) a /C(p(k  ] k))) 

2.A. C{(A(k)) = 7-i~ck'C{(6(k)) 

f--1 

B. e,o(C(a(k))) = ,F__, c,+~,,/,(,~<k)) 
~ o  

c. C'(r(k I k) )  

--- ~ 5(c(;,,(k))) c " ( K k  I k - 1 ) )  
r=o  

c ' (~ , (k  I h))  
D. C"(p(k I h)) 

nC°(7(h I k))  

In  Table  I we have summarized the two Z~ filtering algorithms for convenience. 
I n  this form the duali ty between the algorithms becomes quite apparent.  Com- 
paring steps 1.A and 2.B, we see the duali ty of the operations on elements of 
C[Z~] and their  t ransforms induced by the extensions and pullbacks of homo- 
morphisms.  I f  one compares 1.B and 2.C, we see that  the diffusion update 
induces a convolution in the group algebra domain and a pointwise product  in 
the t ransform space, while the measurement  update requires a pointwise product  
of  group algebra elements or a convolution of their  transforms. 1 Finally, if we 
examine the computat ional  complexity of either algorithm by itself, we find that 
all calculations other  than the convolutions require O(n)  multiplications, while 

1 Note the factor of n in 1.B in the transform domain. If we had moved the factor of 
zffn from (13) to (12), the factor of n would have appeared in 2.C in the group algebra 
domain. A symmetric picture arises if a square root of zi/n is included in both (12) and (13). 
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a naive calculation of the convolution requires O(n 2) multiplications. The overall 
computational burden of the filtering problem can clearly be reduced if we can 
avoid direct calculation of the convolution by performing the associated pointwise 
multiplication in the other domain. This can be done in an efficient manner if n 
is a highly composite number--e.g., if n = 2 ~ in which case one Call utilize 
the fast Fourier transform (FFT) to compute (35) or (38) with O(n log n) 
multiplications. 

We note that the extension of the results of this section to the case in which X, 
U, and Y are arbitrary finite abelian groups is straightforward. Recall (Rotman, 
1965) that any such group G is a direct product of cyclic groups 

G = Z ~ I × Z ~ x  ... × Z ~  . 

In addition, all the irreducible representations are one-dimensional and are 
simply products of the representations of the component cyclic groups. Specific- 
ally, for any m = (m 1 ,..., rnlc) ~ G, we define T m via 

/e 

T~( l )  = ~"~ /' r I  '~'~' 
i=1 

I = (/1 , ' " ,  l k )  E G ,  ~ i  = eJ21/ni, ~] = (~]1 . . . . .  ~ k ) -  

Examination of these representations shows that the transform of ¢ e C[G] 
is just a multidimensional finite Fourier Transform and hence can be computed 
using the multi-dimensional F F T  (Oppenheim and Schafer, 1975). Thus, filtering 
on arbitrary finite abelian groups can be accomplished efficiently, as we can 
decrease the complexity of convolutions by utilizing FFTs to turn them into 
pointwise products (see also Depeyrot, 1974). The general finite abelian group 
case also exhibits duality properties along the lines of those we have displayed 
for Z~, although in the special ease we considered, the situation is most striking, 
since the output group is the same as the state group. 

5. A NONABELIAN EXAMPLE: THE DIHEDRAL GROUP D~ 

Let D n denote the group of order 2n generated by the two elements o~ and fi, 
which satisfy the relations 

~ = / ~  = 1, ~ = 

(note Z,~ ~ '  @)). For ~ ~ C[D~] we write 

n--1 1 

m=O l--O g~D n 
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(we will use both notations). I f  n is odd, there are two inequivalent one-dimen- 
sional representations, defined by 

U°(g) = 1 Vg, 

Vl(~) = 1, tn (~)  = - 1 .  

I f  n is even, we have two additional 1-D representations: 

U~(~*t3~ ) = ( - - l y ( - - 1 ) ~ %  k = 2, 3. 

The  remaining irreducible representations, V i, i = 1 .... , [ (n - -1 ) [2 ]  (here 
Ix] = largest integer ~x) ,  are two-dimensional and are given by 

Let  ~ ~ C[Dn] , and define its transform 

1 
B~(¢) = - ~ -  ~ GUm(g-I) '  

1 F~ G[V~(g-~)]'. 
D~(¢) = n 

g~D n 

Note also that (~} has two distinct cosets, itself and (c~}fl. Restricting ~ to each 
of these, we effectively have defined two elements of C[Z~]. Their  transforms 
are given by 

1 n--1 
_ _  - -mk 

A straightforward calculation then yields 

B°(¢) = ½(~0 + v0), 

B~(¢) = ~(V~/~ + .~/~), 

1 n--X 

~ ( ¢ )  = n y '  4 ~ ' 1 ~ - ~ "  (39) 

B1(¢)  = ~(~0 - -  ~o), 

B~(¢ )  = ~ ( ~ / ~  - -  ~ / = ) ,  
(40) 

(41) 

Thus  we see that we can devise a fast C[Dn] transform algorithm consisting of 
two F F T ' s  to compute (39), combined with the identifications (40), (41). 

Let  us now turn to filtering on D~.  Consider (2), (3) with U - -  X ~ Y = D~,  
b = identity, and a and c defined by 

a(~) = a "-1, a(/3) = a/3, (42) 

c(~) = ~2, c(fi) = ~2/3, (43) 
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for a given s >~ 0. We have chosen (42), (43) to illustrate some of the properties 
of extensions and pullbacks in this setting. The comments concerning the 
remaining parts of the algorithms hold in general. 

1. Diffusion Update 

A. Action of the homomorphism a. Note that a is an isomorphism and that 
a -1 : a. Hence, following (81), we compute a complete set of irreducible 
representations {~i ,  Vi} from {Ui, Vi} by setting Pi = I, Vi. Then, from (81), 
we have 

~fi = g i  o a - X  = U i ° a -  

This yields ~ '0=  U o, /_71 = g ~, (Tz= U a, /_73- U z. Also 

~ i  = V ~ o a,  V i = R i g i R i ,  

R , : R T ~ =  [ 0 y;/21 ,y--i/2 

We can then apply (84) 

B i ( a ( p ) )  =.  B i ( p ) ,  i =- O, t ,  

(44) 
B~(a(p)) = B~(p), B~(a(p)) = B~(p), 

Di(a(p)) = R~Di(p)Ri. (45) 

Thus (44), (45) represents a permutation of the transform matrices, together with 
the multiplications implied in (45). On the group algebra side, a permutes the 
elements of p. Explicitly 

a ( p ) ~ . 0  = p .  . . . . .  0 ,  a ( p ) ~ , l  = p . - ~ + 1 , 1 .  

B. Effect of the convolution. Using the multiplication rules in Dn, we have 

n--1 n--1 

(¢ * ¢),..o = ~ ¢,~.o¢,~-,:.o + ~ 4k.lCk .... 1, (46a) 
lc=O k=O 

n--1 n--1 

k=O k~0 

The straightforward calculation of (46) requires 4n 2 multiplications. However, 
with the aid of transforms, we can find two faster ways to perform this step. 
First, recall that in terms of the transform matrices 

B~(¢ * ¢ )  - 2 n B ~ ( ¢ )  B ~ ( ¢ ) ,  

D I ( ¢ ,  q~) : nDi(r}) Di(~). 

(47a) 

(47b) 
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The calculations in (47a) are scalar, while those in (47b) consist of 2 × 2 matrix 
multiplications, each of which can be performed in 7 multiplications with the 
aid of Strassen's algorithm (see Strassen (1969) and Borodin and Munro (1975)). 
Thus counting up the multiplications, we find that (47) requires ( 7 n -  3)•2 
(n odd) or ( T n -  6)/2 (n even) multiplications. This, combined with the fast 
Dn transform described earlier, leads to an efficient implementation of this step 
of the filtering algorithm. 

We note that one also has a second (not quite as) fast algorithm. Examing (46} 
we see that these calculations consist of four cyclic convolutions. Using the 
definitions in (39), we find that 

.,-(~ * ¢) = . ~ ( ¢ )  re(C) + ~.(¢) ~.-~(¢)], 
(48} 

Equation (48) consists of 4 pointwise products of the transforms of ¢ and ¢ 
restricted to the cosets of Z~ and requires 4n multiplications. 

2. Measurement Update 

A. Effect of the measurement. Let ~ E C[D~] and consider ~ • y, where y is 
the measurement 

y = o~'fl ~, O ~ < p ~ < n - - 1 ,  0~<1~<1 .  

Then, for I = 0, we have in the distribution domain 

(~: * Y)~,o = ~ -~ ,o ,  (~: * Y)~a = ~:~+~,1, (49) 

while for the transform matrices 

B*(~ • y )  = B~(~), i = O, 1, 

B~(~ , y )  = (--1) , B'(~), i = 2, 3, 

D*(~ *y)  = Di(~)[v; , i  0 ]  ~ • 

Also, for the Z n transform 

~i(~ * Y) = V-~ilzi(~), vi(~ * y) = ~%(~).  (50) 



STRUCTURE OF CERTAIN MARKOV CHAINS 195 

If  I = 1, we have 

B°(~ • y) = Bo(~:), BI(~ * y )  = --BI(~), 

B~(~ , y )  = ( - -1 )  ~+~ B'(~), i = 2, 3, 

Di(~ * y) = Di(~) [ 0 
7 -~ i  0 J' 

(51) 

(52) 

Note that the calculations required here--permutations and multiplications 
by y~i--are quite similar to those required in the Zn case (see Section 4). 
Examining (49) and (51) we can see that the noncommutativity of D~ results in 
differences in the direction ( ~ p )  of the cyclic permutations induced by the 
measurement. This is also evident in (50), (52), where we see the difference in 
the multiplicative factor (y±~) and a reversal of the Z~ transforms when y = ~fl. 

B. Effect of the pullbach map. In the distribution domain we have 

This is a permutation if n is odd but not if n is even. To determine the effect in 
the transform domain, consider the Z~ transforms and the Z~ result obtained 
in (37). Let f = gcd(2, n). The nonzero /x~(g(¢)) are for k = 2l, l -=  0, 1,..., 
n/f--  1, with 

f--1 

~2~(e(¢)) == ~ ~,+~./r(¢). (53) 

This is simply a permutation of the ~(¢)  if n is odd. Similarly, we find 

f--1 

~2,¢(¢)) = ~ ~,+r~/A¢)/(~+'~). (54) 
r=O 

Again, if n is odd, (54) simply consists of a multiplication of v~(¢) by 7 ~, followed 
by a permutation. Equations (53) and (54), together with (40), (41) then give us 
a method for calculating the transform matrices. The detailed calculations for 
the case s = 0 are given in Willsky (1976) and indicate the essentially trivial 
nature of this step of the algorithm. 

C. Effect of the pointwise product. For ¢, ¢ ~ C[D,] we have 
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We can easily compute the transform version in terms of Z~ transforms 

n - -1  n - -1  

~(#) = ~ ~r(~)~-~(~), v~(#) = ~ vr(~)v,_r(~). (55) 
r=O ~=0  

The  calculation of the version of (55) in terms of the D n transform matrices 
can be done from (55) and (40), (41), or we can directly apply (78), which 
involves the calculation of the characteristic matrices for Dn • This calculation 
is carried out in Willsky (t976). 

Examining the equation for the two D n filtering algorithms, we again see a 
duality, although the noncommutativity of D~ does make the picture more 
complex than in the Z~ case (however the duality of extensions and pullbacks 
in group algebra and transform domains would have been far more apparent 
if we had taken a = e). Nevertheless the main poin t - - the  duality of "pointwise" 
and "convolution" products in the distribution and transform domains--is  
clearly evident. As these are the most complex steps computationaUy, we see 
that one can obtain a fast Dn filtering algorithm by utilizing the fast D~-transform 
to trade a "convolution" for a "pointwise product."  

6. A GENERALIZATION: METACYCLIC GROUPS 

The  dihedral groups are a very simple example of the following 

DEFINITION. G is a metacyclic group if there exists an a ~ G such that 

(i) H = ( a )  <] a ,  

(ii) G f H  is cyclic--i.e., there exists b e G such that 

G / H  = ( b H ) .  

Then  (following Curtis and Reiner (1966)) we can define several integers: 

(i) L e t l G l = n ,  I H l = m .  

(ii) By the normality of H, there exists an integer r such that b-*ab = a r. 

(iii) Since b H  generates G/H, there exist integers s and t such that b ~ = a t. 

We also have the relations 2 

n = m s ,  gcd(m,r) = l, m \ t ( r - - 1 ) .  

2 Here x\y should be read "the integer x divides the integer y." 
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We define the s-dimensional monomial  representations (here y--eJ2~/ '~):  

Ti(a) = diag(y i, yi%.., yir*-*), 

[i0 yi~] 

1 0 -.- 0 

T i ( b ) =  1 .-. 0 , i = l , . . . , m .  

• " 1 

Following Curtis and Reiner (1966), we have 

(i) Any irreducible representation of G is equivalent to some component  
in the direct sum decomposition of one of the T i. 

(ii) In  fact, every irreducible representation of G is one dimensional or is 
equivalent to one of the T i if and only if 

r S i = i m o d m  ~ r i = i m o d m  g i - -  1 .... , m a n d j =  1 , . . . , s - -  1 (56) 

In  fact, if we let d = gcd(r - -  1, m), then there are precisely sd inequivalent one 
dimensional representations and (m --  d)/s inequivalent irreducible T i. 

(iii) The  condition (56) is satisfied if s is a prime. 

The  details of the description of the set of irreducible G-representations is in 
general quite complex (see Curtis and Reiner (1966)). For our purposes, we need 
only take advantage of fact (i) above, which tells us that all of the G-transform 
matrices can be readily determined if we know the monomial transform 
matrices 

C~(~ ) = 1 ~ 4~[T~(g_l)]," 
m geG 

For any ~ c C[G], we write 

m--1 s--1 

i=0  ~=0 

Thus  we have s distinct restrictions of ~ to the cosets of H. Since H ~ Zm, 
we regard these as elements of C[Z~] and compute the Zm transforms 

= -  F, ~ ,~r -~', 
m ~=o 

k = O ,  1 , . . . , m - - 1 ,  i = 0 , 1  .... , s - - 1 .  (57) 

6 4 3 / 3 8 [ z - 5  
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Then (dropping the dependence on ¢ for simplicity) 

~li,o 7-it~li,s-z "'" 7-~t~i,1 ] 

c~(¢) = 1  ~.~.1 ~ .~ .0  "' 7 ~ .~  (58) 
/ 
L~7iC-I, s .1  ~ t r s - l , s - 2  " '"  ~irS-l,O _1 

(every term above the main diagonal has a factor of y-it). Examining (57), (58), 
we see that we can readily derive a fast metacyclic transform. We perform s 
FFT's  of length m to compute (57) and then caIculate (58) or directly the G- 
transform matrices, whose elements are linear combinations of the elements of 
the CL The amount of calculation involved is 0(n log m). 

We also have the duality result we have seen in the earlier cases. That is for 4, 
¢ ~ C[G], we have that the direct computation of ¢ * ~b requires n 2 = s~m ~ 

multiplications. In the transform domain, we must perform the "pointwise" 
multiplication of the irreducible G-transform matrices, which involves far less 
computation. For example, if (56) holds, then, allowing for s 8 multiplications 
to compute the product of two s by s matrices, we require sd + (m - -  d) s ~ 

multiplications, which can be substantially less. If (56) does not hold, there are 
some irreducible representations of dimension between I and s, and, in fact, 
the above bound can be made smaller. Also, we can tighten this bound if we use 
efficient matrix multiplication techniques (Hopcroft and Kerr, 1968; Strassen, 
1969; Borodin and Munro, 1975), as we did in the dihedral example. We also 
note that one can compute the transform version directly from pointwise 
products of "twisted" versions of the Z~ transforms. For example, 

s-1  

n,.0(¢ * ¢) = mn~.0(¢) n,.0(¢) + mr-" Y~ n,.s-J(¢) n,~J ~(¢)- 
J=l  

If we examine the pointwise product of ~ and ~b, we see that this requires sm 

multiplications in the group algebra domain. In the transform domain, we can 
consider each of the H-cosets separately, thus obtaining 

m - 1  

~e.i(¢¢) = ~ ~.i(¢) ~_~.i(¢), i -= 0,..., s -- 1, 

which is a set of s length m cyclic convolutions, which requires sm ~ multiplica- 
tions. Thus again we see the pointwise-convolution duality, and, with the aid 
of a fast transform technique, we are able to exploit this duality to obtain a fast 
metacyclic filtering algorithm. 
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7. THE PREDICTION AND SMOOTHING PROBLEMS 

We again consider the model (2), (3), and first let us solve the prediction 
problem--i.e.,  the computation of p(k [ l) for k > L As we saw in Section 3, the 
filtering algorithm can be used to compute p(!] l), which we take as our initial 
condition for the prediction problem. The independence assumption on the 
noise sequences then allows us to calculate (here we assume U = X, b 
identity) 

p(h + 11 l) = n(k) • ~[p(k 15], k >1 1. 

We see that the computations involved here arc identical to those for the diffusion 
update in the filtering algorithm. 

To solve the smoothing problem--i.e.,  the recursive computation of p(k r m) 
as a function of m ~ k, with initial condition p(k ] k)--we must introduce some 
new maps. First define Mx , M~: C[X x X] --~ C[X]. 

Note that M 1 is the extension of the homomorphism (g, h) --* g, while M 2 is the 
extension of (g, h) --+ h. For any t e X, we also define Pt: C[X × X] ---> C[X] 

g, X flEX 

This is simply the restriction of a function to the coset X × {t}. Finally, we 
define a pointwise product "o" between elements of C[X] and C[X × X] 

g,h~X g ,h~X 

PROPOSITION 2. The solution to the smoothing problem is 

~t(m) = ~(m) y(m), (59) 

¢(m, k) ~ e[h(m)] o ~(m, k), (60) 

7(k  t m)  = p(k l m - -  1) M~[C(,n, k)], (61) 

N(k l m) = ~ 7(k [ m)g, (62} 
g~X 

p(k U m) -~ 7(k l m)/N(k [ m), (63) 
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where 

q,(m, k)(g.~) = Pr[x(m) ----- g I x(k) = h,y(k + 1),... ,y(m - -  I)] (64) 

The  proof  of this result is similar to the proof of Proposition 1, and we refer 
the reader to Willsky (1976) for a proof. Let  us briefly examine the computational 
issues involved. The  measurement  permutation (59) and the pullback g are the 
same as before, and the same comments  hold. The  quantity ~(m, k) is computed 
"column by column"-- i .e . ,  we computepg[q~(m, k)] for eachg e X. But pg[~(m, k)] 
is just the distribution for x(m) given we know that x(k) = g  and given the 
observations y(k + 1),..., y(m + 1). This  is just a filtering problem with initial 
condition p(k lk)  = g (an impulse), and the computations involved in such 
problems have been discussed in earlier sections. The  pointwise product ~[,~] o 
involves many of the issues involved in usual pointwise products, and we leave 
the details of this to the reader. Also, since M 2 is an extension, the calculation of 
Mz(~b) can be understood in terms of the concepts introduced in earlier sections. 
Finally the pointwise product  pM(~b) and the normalization (62), (63) are 
identical, as far as computational complexity goes, to the corresponding opera- 
tions in the filtering algorithm. Detailed analyses can, of course, be worked out 
in specific eases. 

8. FURTHER TRANSFORM CALCULATIONS FOR Zn-RANDOM PROCESSES 

In  this section we illustrate some other issues that can be studied using trans- 
form ideas. We do this in the simplest setting (i.e., Z~) but the concepts carry 
over to the general finite group case. 

A. Convolution and Translation-Stable Densities 

DEFINITION. A class Y of probabil i ty distributions on Z~ is convolution stable 
if we have Pl * P2 e °~- whenever P l ,  P2 e o~. A convolution stable class is 
translation stable i f f  * aj e ~ f o r j  e Z~ ,  whenever f E o ~ .  

Suppose that  a particular convolution stable class is parametrized by a single, 
nonnegative real variable c~. Let  us denote the parametrization by a subscript--i .e. ,  
p~ e o ~ ~ > 0. Let  us also define 

Ci( p.) = Di(oO/n , 

and let us assume that the parametrization is such that 

P ~  * P~2 = P~I+~. or De(%) Di(%) = Di(% + %). (65) 

I f  we assume a continuous dependence on the parameter  a, we have 

Di(oO = e~mi) 



STRUCTURE OF CERTAIN MARKOV CHAINS 201 

for some function [3 such that the resulting inverse transform is a valid probability 
distribution. A valid example is 

n! (66) 
~(k) = - ( ~ )  - k , ( n -  k)~" 

In  this case the distribution has zero mode and is symmetric about the mode. 
Given a convolution stable class ~" we can construct a translation stable class 

by adjoining to ~-  all distributions f ,  3j with f~ ,_~ ,  j ~ Z n . Applying this 
construction to the class defined by (66), we obtain the class 

= n V Y exp - ~  cos .  
/c=l 

2 ~ k ( j -  ~) 
n 

where a >~ 0, ~t ~ Z~ .  S ( j ;  ~, 7) has ~] as its mode and is symmetric about it. 
We note that one can also consider classes ~ that are stable under extensions 

or pullbacks. The  use of transforms should be as useful for the analysis of 
such classes as well. Note that if one has a stable class, the filtering algorithm 
may be simplified--i.e., we need only keep track of the evolution of the param- 
eters that specify the distribution. Issues such as these await future investigation. 

B. Optimal Estimation 

Let x be a Z~-random variable with distribution p. Note that p being real 
implies (here ..... denotes complex conjugate) 

Ci(p) = C"-~(p). (67) 

Let 4 be a real-valued function on Z~ given by 

n--1 

4q) = Z ~ - ~ .  

Suppose we wish t o  choose the estimate d; ~ Z~ that minimizes 

E[4(x -- ~)] = n Z Ck(p) d ~ .  (68) 
k=0 

In  general, the minimization of (68) requires a search over all ~ ~ Z,~; however, 
in some cases this process can be simplified. For example, consider the cost 
criterion obtained by choosing q6(j) = 1 --  cos(2zrj/n). The Fourier decom- 
position of ~ yields 

d o = I, dl : d ~ - i  = - - 1 / 2 ,  
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with all other d~ -~ 0. Using (67), we have that (68) reduces to 

E[¢(x - -  ~)] : 1 - -  Re(Cl) cos - -  - -  Im(Cl) s i n  2~r____~ . 
• n n 

A straightforward calculation yields the optimal estimate 

[ n l Ira(el) l  I (69) ~ tan-1  Re(ca) n 

where [a]. = the integer closest to a (modulo n). We note that this estimation 
criterion yields the mode of p if p is unimodal and symmetric  about its mode, 
and it allows us to compute an estimate directly as a function of the transform 
of the distribution p. 

C. Nonhomomorphic Observations 

We want to show that, although we lose the nice structure of the pull-bac k 
mapping,  the pointwise product-convolution duality is preserved even if one 
has nonhomomorphic  measurements.  To  do this it is enough to consider a 
static problem. Let  x be a Z~ ' r andom variable with distribution p, and suppose 
we observe y. All we need to know about this observation is the distribution 
( i fy  is discrete) or the density ( i fy is continuous) p( y ] x i). Using Bayes' rule, 
we then have 

P(Y  I x = i) p(i) (70) 
n(i) = Pr(x = i l Y) = ~-1 l) 0(l) " 

~ z = 0 P ( Y l x  = 

Regarding p ( y  f x = i) as a function of  i, we see that  the numerator  of (70) 
consists of a pointwise multiplication of two elements of C[Z~]. Here the 
observed value y simply tells us which function p ( y  I x = i) we want. 

We can also write a dual algorithm. Write 

n--1 
p ( y  I x  = t) = ~ hk(y)~, et, 

le~O 

where the hz are functions of y (see Willsky (1976) for art example). I t  is then 
clear that 

C~(rl) = B i / n B  °, 

B'= Z 

and we have the desired convolution result. 
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D. A Continuous-Time Estimation Problem on Z~ 

In this section we illustrate how the transform framework can be used to 
study continuous-time Z~ estimation problems. We do this by considering a 
specific phase tracking problem. The formulation presented here is similar to 
that used in phase-shift-keying (PSK) communication problems (Stiffler, 1971; 
Lindsey, 1966). 

Let x(t) be a continuous-time jump process on Z~ and let p~(t) denote its 
distribution. We assume that p~ satisfies the differential equation 

])~(t) = ~(t) , p~(t). (71) 

We note that such a process is the continuous-time analog of the process in (32) 
a = 1 (for more on this, see Willsky (1976)). 

We now consider a continuous-time observation process 

where r(t) > 0 and v is a Brownian motion process independent of x. We wish 
to compute the conditional distribution p(t) of x(t) given z(s), s <~ t. Using a 
result from Wonham (1965), we find that p satisfies 

dp(t), = [a(t) *p(t)]~ dt + [sin(2~d/n) -- h(t)] r(t) [dz(t) - -  h(t) dt] p(t)z , (72) 

(73) 

Thus, the computation ofp(t) involves the cyclic convolution (71), the computa- 
tion of ~ in (73), and the pointwise product to calculate the second term on the 
right-hand side of (72). 

The computations in the transform domain are decidely simpler. Let 

q~(t) = ~  ~ ~(t)r -~, 
l=O 

Then 

h(t) = --n Im[q(t)], 

d%(t) = nqk(t) %(t) dr, 

~_ [ dz(t) +rltlm[q(t)] ][Ck_l(t)--c~+1(t ) 
2j 

1 n--1 

/=0 

+ nc~(t) Im[q(t)]]. (74) 
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From (67) we see that we need only compute ck for k = 1 .... , [(n - -  1)/2]. Also, 
the right-hand side of (74) involves very few multiplications. 

We note that  there is no difficulty in considering an observation with a known 
carrier frequency. In  this case our received signal is 

2~x(t) 
dz(t) = sin (wet -}- n ) dt + ra/2(t) dr(t) 

2~x(t) 2~x(t) 
~-~ sin wet cos dt + cos wet sin - -  dt + rl/2(t) dv(t), 

n n 

and our filter becomes time-varying, but the filter structure remains essentially 
unchanged. 

Thus  we see that in this example we have a far simpler implementation of the 
filtering algorithm in the transform domain. The  convolution (71) is avoided, 
/~ is calculated easily in terms of the transform, the measurement update convolu- 
tion (essentially the second te rm on the right-hand side of (74) is extremely 
sparse, as only q ,  ck_l, c~+1 couple into ce, and, if we use the cost criterion, 
¢( j)  = 1 - -  cos(27rj/n), the optimal estimate can be calculated easily in terms 
of q (see (69)). 

9. CONCLUSIONS AND DISCUSSION 

In  this paper  we have studied a class of estimation problems on finite groups. 
By viewing probabili ty distributions as elements of a group algebra, and, by  
taking the transforms of such elements, we were able to uncover the underlying 
structure of the filtering problem. We have illustrated this structure by means 
of several examples which display the duality between the two proposed filtering 
algorithms. Also by utilizing fast Fourier transform techniques and a generaliza- 
tion of the F F T  to metacyclic groups, we have been able to point out an efficient 
realization of the filtering solution. We note that Depeyrot  (1968, 1971) has 
considered several of these issues (although none of the filtering aspects and 
hence none of the duality issues), but he has limited himself to the so-called 
character transforms, which utilize only the irreducible group characters (Curtis 
and Reiner, 1966). Since all characters are constant on conjugacy classes, a 
given character transform corresponds to many elements of the algebra unless 
the group is abelian. 

We have also briefly explored ~ number  of other problems that can be analyzed 
within our framework. These include prediction and smoothing, characterization 
of stable distribution classes, optimal estimation, nonhomomorphic  measure- 
ments, and continuous-time problems. In  the last of these we considered a 
problem often encountered in synchronous communication and have proposed 
what we feel is an efficient implementation. 
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The potential saving in computational burden for problems that can be put 
into our framework may have an impact on some finite state Markov process 
control problems, such as those considered in Astrom (1965). In these problems 
the control is a function of the conditional distribution of the state, which must 
be computed on-line. If  the particular process could be viewed as evolving on 
a finite group the problem could be cast into our framework, yielding computa- 
tional benefits. Also, Sandell (1974) considers a limited memory version of the 
control problem, and derives an off-line procedure for determining the optimal 
control law (here a function of the finite-state memory). Again, for those problems 
that can be placed into the finite group setting we may be able to achieve great 
computational savings in the off-line calculations as well as for those that must 
be performed on-line. 

Finally, let us comment on several possible extensions of the ideas presented 
in this paper. First of all, we note that there are quite likely to be far larger 
classes of groups for which fast transforms exist. A likely place to start is to 
investigate other group extensions beyond the metacyclic example considered 
in this paper. In addition, all of the algorithms considered in this paper have been 
defined over the complex numbers. This was done to guarantee that C[X] was 
semisimple and that C was a splitting field for X (i.e., no irreducible C-represent- 
ation is reducible over any extension field of C--see Curtis and Reiner (1966)). 
Quite often one can use other fields (e.g., finite fields) over which the implementa- 
tion of the fast transform algorithms are far simpler. For example, this is true 
for the so-called "number-theoretic transforms," which are simply transforms 
in K[Zn] for certain finite fields K (see Nicholson, 1971; Agarwal and Burrus, 
1975). Further general results on the computational complexity of convolution 
in K[G] for K a field and G a finite group are reported in Loui (1976). 

Extensions of our work are possible along several other lines. First of all, 
the directions explored in Sections 7 and 8 remain as areas for further work. 
For example, the study of parametrizable stable distribution classes may lead 
to efficient filtering algorithms, in which we need only track the parameters. 
Finally, we note that as discussed in Depeyrot (1968), Paz (1971), and Willsky 
(1973), by considering the extension of an arbitrary POFSMP to a process 
evolving on a finite semigroup (essentially the Myhill semigroup of a finite state 
automaton that realizes the given POFSMP), we obtain equations similar to (2), 
(3) but over a finite semigroup (and perhaps with a nonhomomorphic output). 
One is then led naturally to the development of dual filtering algorithms over 
semigroups, and this requires the study of semigroup algebras and representations 
of finite semigroups. Intuitively, the complexity of semigroup algebra convolution 
should be less than for a "comparable" group, since the semigroup product 
will "collapse" several terms together, thus trading off multiplications for addi- 
tions. This vague statement has been illustrated in an example in Willsky (1973) 
and is corroborated for finite cyclic semigroups in Loui (1976). Results beyond 
these initial ones await further study. This appears to be a useful direction 
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for further work, since in principle any P O F S M P  can be cast in this framework, 
and the computational savings to be obtained from further research would b e  
extremely useful in combatting the combinatorics problems that run rampant in 
estimation and control problems over finite state sets. 

A P P E N D I X  

A.1. Calculation of the Transform of Pointwise Products 

Let X be a finite group with cardinality n, and let T1,..., T ~ be a complete 
set of inequivalent orreducible representations, with dim T 1 - -  - z i .  Let p, 
~b E C[X]. We wish to compute Ci(p¢). Examining the equation 

] P~¢g = Z C~k(p) t~(g) C~q(¢) t~q(g) , (75) 
~,k=l = ~,q=l  

we see that we are faced with products of the form 

t~k(g ) t~q(g). (76) 

Such functions can be obtained as matrix elements of the tensor product repre- 
sentation T i @ T ~, where Ti(g) @ T~(g) is the Kronecker product of Ti(g) 
and T~(g). For example, the term in (76) is the ((j  - -  1) zz + p, (k - -  1) z~ -~ q) 
element of T i @ T z. From this and from the forms o f  (13) and (75), we can 
compute the Cr(p~b). Define the characteristic matrices 

Then  

L(i.=,v) _ zv ~ Ti(g ) @ T~(g ) t~, (g_l)" (77) 
,e n g~X 

<dp¢) = E 
i d , k  

Cjk(p) (78) 

The  characteristic matrices can be found as follows. The  representation 
T ~ @ T ~ is equivalent to a direct sum of irreducible representations--i.e., there 
exists an invertible matrix Pi~ such that 

P~-,a(Ti @ T~')Pi, = diag(T~(a),..., Tk(*)), (79) 

where the integers r, k(1),..., k(r) depend on i and a. Using (79), the definition 
of L (i'~'~) and the orthogonality relation (11), we see that 

i ~ . ~  --i~ : (E.~e~,,kO) ..... E.~3~,k(r)) • (80) 
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We note that in general most of t h e L  (i,~w) are zero. Also, there exists a direct 
method for determining r, h(1) ..... k(r) by examination of the group characters. 
We refer the reader to Willsky (1976) for the discussion of this method and for 
the calculation of the characteristic matrices and of Ci(¢¢) for X = D~ ,  the 
dihedral group on n letters. 

A.2. Calculation of  Extensions and Pullbacks 

The  general calculation of the functions f~ and f i  defined in (17), (18) is 
given in Willsky (1976). We content ourselves here with the derivation of the 
equations needed for our filtering algorithm. 

As discussed in Section 3, the only extension used in the filtering algorithm 
is a: C[X] ~ C[X]. Note first that if S is an irreducible representation of a(X) ,  
then S o a is an irreducible representation of X. Thus,  let $1,..., S v be a complete 
set of irreducible representations of a(X) ,  chosen and ordered so that 

T i - ~  P i ( S  i o a ) p [  1, i = 1,..., v. (81) 

Now, let p ~ C[X].  Then,  a straightforward calculation yields the transform 
matrices D~(~(p)) where a(p) is regarded as an element of C[a(X)]: 

Di(a(p)) = tP;Ci(o)(P;) -1, i -= l,. . . ,  v, (82) 

where i X i  = n, I a(g)l = n/t. 
The  problem now is to determine the transform matrices Ci(a(p)), of a(p) 

regarded as an element of C[X].  We first note that each of the T i, when restricted 
to a(X) ,  is not necessarily irreducible, but we can write 

T i = R~ diag(S~(1),..., S~("))R71, (83) 

where if, /(1) ..... l(ff) depend on i. Then  combining (82), (83), another simple 
calculation yields 

a~(C(p)) = C ' (a(p) )  

1 p ,  CZ(1), , ,p ,  ~_~ 1 
-~ zi(R~) -1 diag ~ z(1) tP)t ~(1)) ..... z~(,) 

, z ( ~ )  t - 1  , P,(.)C (p)(Pz(,)) )R~ .  (84) x 

Thus,  we see that the required calculation (84) consists of similarity transforma- 
tions, which, by judicious choice of the basic representations (the S 's  and T's) 
can often be made quite simple. In  fact, if the T i and S i are monomial,  then the 
Pi will be extremely sparse and will usually contain many entries of :~1. The  
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same will be true of the R i ,  although they may be somewhat more complex if 
/x > 1. Note however, that if a is an isomorphism, then the set S i o a is also a 
complete set of irreducible representations of X,/x =- 1 for all i, and (84) becomes 

a ~ ( C ( p ) )  ( R i )  - x  ' ~") ' - ~  ' = P~(~)C (P)(P,(1)) R{. (85) 

Tha t  is, the ai simply permute  the Ci(p)except for a similarity transformation, 
which, as our examples indicate, if often the identity. 

We now examine the pullback map g of the homomorphism c: X --~ Y, which 
is needed in the calculations in equations (20) and (25). The  calculation of 
Y(C(A)) for A E C[Y] consists of two steps, the first of which is necessary only 
if c is not surjective. Let  Ua,..., U" be a complete set of irreducible representations 
of Y (dim U i ~ vi), let V1,..., V ~ be an analogous set for c(X) (dim V i = wi), 
let A R e C[c(X)] denote the restriction of A to c(X), and let I c(X)I = d. We first 
wish to compute the c(X)-transform matrices Di(AR) when we are given the 
Y-transform CJ(A). As before, the U i need not be irreducible when restricted 
to c(X). Hence, on c(X) we have 

U z = M~ diag(V d~) ..... V'(q))M~ -1 (86) 

where q, ~(1),..., e(q) depend on 1. 
We now must compute the c(X)-transform of the elements of the U s restricted 

to c(X). Thus,  we define the (precomputable) subgroup matrices 

d ~ Uq(h) S~(h-a)" (87) 
hec(X) 

Then,  using (86) and (87), we compute 

L~ff : M~ diag(E~sSi.dl ) ,-.., E~o3i,dq))Mi, -1. (88) 

A direct calculation (Willsky, 1976) then yields 

C)~(a)[L~B]~ ~ (89) 
~=i / ,k=l  

Note that  if c(X) = Y,  D i = C i Vi. 
Having the D ~, we now want to compute the X-transform Ei(C(A))= 

Ci(~(A)) = Ci(gOtR)). For each T i, define the  function on c(X) 

~i(g) = d ~. T~(h), g e c(X). (90) 
1"1 h~c_ l (g  ) 
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Note that 2P i may equal 0, but if it does not, it is a (possibly reducible) representa- 
tion of c(X). In this case, we can write 

~ Qi diag(V~°),  ..-, V~(~)~O-1 (91) 

where a, a(1),..., a(~) depend on i. Using (9), (90), and (91), a straightforward 
computation yields 

1 D,(1)(AR),..., 1 D~(~)(AR) ) Q~ (92) e~(C(A)) = z~(Q}) -1 diag (-woo) w~(~) 

if L 4 = 0, and Ei(C(A)) • 0 if L = 0. 
Thus, the required on-line calculations are given in (89) and (92). Again, the 

calculation (89) is only necessary if c is not surjective. In any event, we note that 
(89) requires computing only certain linear combinations of the C~k(A), and in 
general the subgroup matrices will be quite sparse. In addition, many of the U i, 
when restricted to c(X), may still be irreducible (as they all are in the abelian case), 
and in this case the calculations become even simpler. As for the calculation 
of (92), again this only involves similarity transformations, and the sparseness 
of the Q~, combined with the possible irreducibility of the Ti, often make the 
calculation of gi quite simple. 

Finally, we note that one can directly determine the integers/z, l(1),..., l(/x) 
in (83) q, E(!),..., E(q) in (86) and a, a(1),..., a(a) in (91) with the aid of group 
characters for the various representations. We refer the reader to Willsky (1976) 
for details. 

A.3. Proof of Proposition 1 

Consider the system (2), (3) with the independence assumptions and notation 
introduced in Section 2. We first prove the validity of the diffusion update 
equation (19). Thus, suppose we have p(k[ k). Then, using the independence 
assumption on u(k), we have 

p(k -k l [ k)g = Pr(x(k + 1) = g I y(1),..., y(k)) 

= ~ Pr(b[u(k)] = h) Pr(a[x(k)] ~ h-lg [ y(1),...,  y(k)) 
h~X 

,' ~v~a - - l ( h - - l g )  

= ~ b[~(k)]~ ~[p(klk)]~_~ =(b[~(k)], a[p(hlk)]}o. 
h~X 
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Now we assume we have p ( k l k -  1). Then,  using Bayes' rule and the 
independence of the v(k), we have 

p(k [ k)g = Pr[x(k) = g I y(1),..., y(k)] 

Pr[y(k) [ x(k) = g, y(1),..., y(k  - -  1)] Pr[x(k) = g l y(O),..., y (k  --  1)] 
~h~xPr[y (k )  ] x(k) = h, y(1),..., y (k  --  1)] Pr[x(k) -~ h I y(0),..., y(k  --  1)] 

Pr[y(k) Ix(k) = g ]  p ( k l k - - 1 ) ~  
~]~x  Pr[y(k) ] x(k) = h] p(k ] k - -  1)4 " 

Noting the definitions of A(k) and 7(k ] k) in (20), (21), we see that our update 
equations will be shown to be valid once we have shown that 

e[$(k) y(k)]g = Pr[ y(k)  ] x(k) = g]. (93) 

Rewriting the right-hand side of (93), we obtain 

Vr[y(k) I x(k) = g] = Pr[v(k) : y(k)  c(g) -I] 

= Pr[v-a(k) = c (g )y (k )  -~] = ~(k)o(g)u(k)_l. 

The  definition of the pullback map yields 

y(k)] = e  (hy(k))] t 

=Z (k)hl _E t I. 
h~y tec l[hy(k)] 

(94) 

We wish to compute ~[~(k)y(k)]g--i.e.,  the g-component of ~[~(k)y(k)]. 
Examining (94), we see that 

g e c-l[hy(k)] .~  h =  c(g)y(k)  -I. 

Thus  
~[~(k) y(k)]~ = f(k)c(~)u~)_l, 

and the result is proved. 

RECeIWD: May 13, 1977; ReVISeD: October 21, 1977 
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